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ABSTRACT 

  

Musculoskeletal ultrasound imaging allows non-invasive measurement of skeletal muscle 

thickness. Current techniques generally suffer from manual operator dependency, while all 

the computer-aided approaches are limited to be semi-automatic or specifically optimized 

for a single muscle. The aim of this study was to develop and validate a fully automatic 

method, named MUSA (Muscle UltraSound Analysis), for measurement of muscle thickness 

on longitudinal ultrasound images acquired from different skeletal muscles. The MUSA 

algorithm was tested on a database of 200 B-mode ultrasound images of rectus femoris, 

vastus lateralis, tibialis anterior, and medial gastrocnemius. The automatic muscle 

thickness measurements were compared to the manual measurements obtained by three 

operators.  The MUSA algorithm achieved the 100% segmentation success rate; with mean 

differences between the automatic and manual measurements in the range 0.06 – 0.45 mm, 

MUSA performance was statistically equal to the operators and its measurement accuracy 

was independent on the muscle thickness value. 

 

 

 

Keywords: Muscle ultrasonography, musculoskeletal ultrasound, automatic muscle 

thickness measurements 
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INTRODUCTION 

Musculoskeletal ultrasound imaging enables to non-invasively measure parameters 

reflecting skeletal muscle size. Muscle thickness measurement has been extensively used in 

both physiological and clinical studies to investigate the adaptations in muscle size 

occurring with training (i.e., muscle hypertrophy, Narici et al. 2011, Seynnes et al. 2013), 

disuse atrophy (de Boer et al. 2008), ageing (i.e., primary sarcopenia, Narici et al. 2003, 

Atkinson et al. 2010, Agyapong-Badu et al. 2014), and pathological conditions (Pillen et al. 

2008). Moreover, a number of studies adopted muscle thickness measurement to predict 

leg skeletal muscle  mass (Takai et al. 2013) and total body fat free mass and muscle mass 

(Abe et al. 2015; Takai et al. 2014), as well as to indirectly assess muscle volume and cross-

sectional area in extremity and trunk muscles (Abe et al. 2016; Akagi et al. 2010; Esformes 

et al. 2002; Ogawa et al. 2012; Takai et al. 2011). In most of the previous studies, muscle 

thickness values were obtained by measurements performed in triplicate on one scan (i.e., 

muscle thickness was obtained as the average of three measurements performed in the 

proximal, central, and distal positions of the scan) by one (or more) operator(s) and 

repeated on the same image on a separate day by the same operator(s) to provide evidence 

of low typical errors and high intra-class correlation coefficients (Atkinson et al. 2010; 

Caresio et al. 2014; Esformes et al. 2002; Narici et al. 2003; Seynnes et al. 2013). However, 

the visual identification of the profiles of the superficial and deep aponeuroses and the 

“manual” measurement of muscle thickness are time consuming and prone to errors.  

In recent years, several computer-aided approaches have been proposed to measure 

muscle thickness on ultrasound images. Koo et al. (2010) proposed a muscle boundary 

tracking algorithm to track the locations of aponeuroses and measure the thickness of the 
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pectoralis major muscle. Wong et al. (2012) proposed a sequential quadratic programming 

approach (based on a novel log-Rayleigh likelihood function) followed by the identification 

of the regions of interest to measure the thickness of abdominal muscles. Han et al. (2013) 

investigated the performance of two preprocessing procedures (aimed to enhance the 

aponeurotic hyperechoic regions over the speckles) which could help the automatic 

estimation of the gastrocnemius muscle thickness based on Revoting Hough Transform. 

Finally, Ling et al. (2013) proposed a method to extract the aponeuroses boundaries and 

calculate the gastrocnemius muscle thickness as the distance between the lower boundary 

of superficial aponeurosis and upper boundary of deep aponeurosis.  

A major limitation of all these approaches is that they are specifically optimized for a single 

muscle or manually driven (i.e., they consist in semi-automatic approaches that still require 

user input to provide a set of starting points), or both, making them unsuitable for clinical 

use. To the best of our knowledge, no previous study proposed a fully automatic method 

for the measurement of the thickness of different superficial skeletal muscles. Therefore, 

the aim of this study was to develop and validate a fully automatic method for 

measurement of muscle thickness on ultrasound images acquired from different skeletal 

muscles.  

 

MATERIALS AND METHODS 

Subjects 

Fifty healthy subjects of both genders (25 males and 25 females, mean ± SD age: 31.0 ± 10.9 

years; body mass index: 24.3 ± 4.7 kg /m2) volunteered to participate in the study.  They 

were free from neuromuscular or skeletal impairments. The subjects received a detailed 
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explanation of the study and gave written informed consent prior to participation.  The 

study was conducted  at the Division of Endocrinology, Diabetology and Metabolism, 

Department of Medical Sciences, University of Turin, Italy, was conformed with the 

guidelines in the Declaration of Helsinki and was approved by the local ethics committee. 

 

Ultrasound procedures and equipment 

Ultrasound B-mode images of the following four muscles were acquired in each subject 

during a single experimental session: rectus femoris, vastus lateralis, tibialis anterior, and 

medial gastrocnemius. The dominant side was investigated. 

The same sonographer (MAM, 5 years of experience in musculoskeletal ultrasound 

imaging) performed all assessments. Each muscle was acquired in the longitudinal plan, 

and a total of 200 images (50 subjects x 4 muscles) were captured and analysed. To ensure 

the optimal representation of the different muscles, we adopted the following criteria: i) 

rectus femoris: we optimized the representation of the superficial and deep aponeuroses; 

ii) vastus lateralis and medial gastrocnemius: we optimized the representation of the 

superficial and deep aponeuroses and of the muscle fascicles; iii) tibialis anterior: we 

maximized the representation of the bone boundary and of the muscle fascicles. 

Images of the medial gastrocnemius were acquired with the subjects in the prone position, 

whereas for all other muscles subjects were positioned supine. In all measurements, the 

lower limb joints were extended and the subjects were asked to completely relax their 

muscles. A suitable amount of ultrasound coupling gel was used to ensure optimal image 

quality and to minimize the transducer pressure on the skin. According to previous studies 

(Arts et al. 2010; Caresio et al. 2014; Minetto et al. 2016),  all scans were performed by 
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placing the transducer in correspondence of the largest muscle diameter at the following 

anatomical sites: the rectus femoris was measured half-way along the line from the 

anterior-superior iliac spine to the superior border of the patella; the vastus lateralis half-

way along the line from the anterior-superior iliac spine to the superolateral border of the 

patella; the tibialis anterior at one-quarter of the distance from the inferior border of the 

patella to the lateral malleolus; the medial gastrocnemius from the mid-sagittal line of the 

muscle, midway between the proximal and distal tendon insertions. 

All images were acquired using a MyLab™ Twice ultrasound device (Esaote, Genova, Italy) 

equipped with a linear-array transducer (code LA533) with variable frequency 3-13 MHz. 

The gain was set to 50% of the range, dynamic image compression was turned off, and time 

gain compensation was maintained in the same (neutral) position for all depths. All 

system-setting parameters were kept constant throughout the study and for each subject, 

except depth (initially set at 44 mm) that was modified during the examination (range: 44 -

59  mm) to visualize the entire muscle thickness. The images were converted in DICOM 

format and then transferred to a workstation for offline processing.  

 

MUSA algorithm architecture 

We named this algorithm as MUSA (Muscle UltraSound Analysis). The MUSA algorithm was 

designed in order to automatically detect the muscle aponeuroses in longitudinal 

ultrasound images. Once the aponeuroses are correctly located, the algorithm estimates the 

muscle thickness. The algorithm was developed using the MatlabTM (MathWorks, Natick, 

MA, USA) environment. A schematic description of the procedure is reported in fig. 1; the 

detailed description of the steps is reported in the following. 
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Image preprocessing 

The original DICOM image (fig. 2.A) is automatically cropped to maintain only the region 

containing the ultrasound data. Automated cropping is obtained by relying on the DICOM 

header tag “RegionLocation” (Molinari et al. 2009). The uppermost 2 mm of the image are 

then blackened to exclude the dead zone and the skin from further processing. The 

automatically cropped image can be seen in fig. 2.B. 

 

Automated search for the aponeuroses candidates 

This first processing step is devoted to automatically search for the possible position of the 

aponeuroses inside the image. The image is first downsampled by a factor of two (i.e., the 

number of rows and columns of the image is halved). To enhance all the structures inside 

the image that are possible aponeuroses we compute the vertical Sobel gradient of the 

image (fig. 2.C) and then we apply a vertical First-Order Derivative Gaussian (FODG) filter 

to the processed image. The FODG filter is obtained by the convolution of a Gaussian kernel 

and a simple derivative filter (Florack et al. 1992). This filter enhances all the structures 

bigger than the dimension of the FODG kernel and attenuates the others. Hence, the 

dimension of the FODG kernel is set to 9 pixels, in order to ease the aponeurosis 

highlighting.  

Finally, we threshold the FODG output to produce the binary FODG mask (fig. 2.D). The 

threshold is set the 80% of the maximum gray level of the FODG output. 

As can be seen by fig. 2.D, the binary FODG mask represents the two muscle aponeuroses as 

well as other white regions representing different structures. A heuristic cleaning step is 
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performed to remove all the structures that do not match specific conditions (i.e., that do 

not qualify as aponeuroses candidates). We label all the disconnected regions in fig. 2.D and 

we approximate them as ellipses. Since the structures corresponding to aponeuroses have 

a horizontal size similar to the size of the image, we remove all the regions with 

eccentricity lower than 0.995 and with a major axis shorter than 70% of the length (in 

pixels) of the image. The cleaned mask is shown in fig. 2.E. Branching and region filling is 

then performed to adjust the morphology of the remaining regions. The white arrow in fig. 

2.F shows the correction made with respect to the irregularity of the superficial 

aponeurosis of fig. 2.E. 

 

Selection of the actual aponeuroses 

As can be seen from fig. 2.F, the binary FODG mask often contains more candidate 

aponeuroses. To distinguish the two actual aponeuroses from the other candidates, we 

check the presence of muscle fascicles between each pair of candidates (i.e. we check that 

the two aponeuroses actually delimit the muscle region). We first equalize the original 

image and then apply a global thresholding using the Otsu’s method (Otsu 1979) to obtain 

a binary mask (that will be indicated in the following as “binary fascicle mask”). Figure 3.A 

shows the binary fascicle mask where aponeuroses and fascicles are visible. The 

aponeuroses candidates (fig. 2.F) are then removed from this binary fascicle mask (fig. 3.B), 

together with all the regions having an area lower than 10 pixels (which are likely to 

represent oversegmentation due to speckles). 

Since the muscle fascicles are represented by a line with a specific orientation, we applied 

the Standard Hough Transform (Duda and Hart 1971) on the binary fascicle mask. The 
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Standard Hough Transform uses the parametric representation of a line in polar 

coordinates. The variable θ is the angle of the perpendicular projection from the origin to 

the line measured in degrees clockwise from the positive x-axis. The angle of the line itself 

is θ+90°, also measured clockwise with respect to the positive x-axis. The range of θ for our 

application is −90°≤θ≤85°. Fig. 3.C shows the original B-mode image (background) with 

overlaid the binary FODG mask (white) and the detected fascicles (green lines). The 

uppermost endpoint of each fascicle is marked by a yellow dot. 

The image is then considered column-wise. We process one column every ten (decimation) 

until reaching the total number of columns N, since, at this stage, we do not need the 

accurate profile of the aponeurosis, but we just need to select the correct aponeuroses 

among the possible candidates. On each i-th column, the candidates are considered starting 

from the deepest. We apply an iterative heuristic search made of the following steps: 

1)   Considering a point of the deepest candidate (marked by Xi in fig. 3.D), we delineate 

a region of interest (ROI) (blue region in fig. 3.D). The vertical size of the ROI 

corresponds to the distance of the considered point Xi from the corresponding point 

on the same column belonging to the closest candidate aponeurosis upwards 

(marked by Yi in fig. 3.D). The horizontal size of the ROI is fixed to 41 pixels 

(corresponding to 3.8 mm). This horizontal size was selected in order to make sure 

that the region contained some fascicles. 

2)   If the vertical size of this ROI is lower than 15 mm, the two candidates are too close 

and they cannot be the actual aponeuroses; hence, the point on the deepest 

candidate is discarded and the procedure goes back to point 1). 
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3)   If the condition at point 2) is matched, the points Xi and Yi indicate the deep and 

superficial aponeurosis (that will be indicated in the following as APOInf and APOSup), 

respectively, only if muscle fascicles are present in between. Hence, we compute the 

number of fascicles endpoints (yellow dots in fig. 3.C) falling into the ROI. If this 

number is lower than 20% of the overall number of endpoints in the whole image, 

we consider that there is no muscle in between Xi and Yi. The procedure then 

discards Xi and steps back to 1). 

4)   If the number of fascicle endpoints is higher than 20% of the overall number of 

endpoints in the image, the point X1 is marked as the deep aponeurosis APOInf and 

the point Y1 as the temporary superficial one APOSup. 

5)   A further control is made on the gray level of point Yi : if the gray level of Yi , in the 

original image, is lower than the 60% of the maximum gray level found along the i-

th column, the index of Yi is iteratively updated proceeding from the bottom to the 

top along the column, until this condition is matched. 

6)   The procedure iterates considering all the other columns of the image (fig. 3.D). 

This heuristic search outputs a series of points Xi that delineate the position of the deep 

aponeurosis APOInf and a series of points Yi that delineate the superficial aponeurosis 

APOSup. The final result of the heuristic search is depicted in fig. 4.A. Spike detection and 

removal is applied to correct for possible inaccuracies and the APOSup and APOInf profiles 

(fig. 4.B). 

 

Final aponeuroses tracing 
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As can be seen in fig. 4.B, the profile is roughly placed in correspondence of the 

aponeuroses, but refinement is needed. We adopt a Difference of Gaussians (DoG) filter to 

detect the actual edges. The DoG mask of an input image I can be defined as:  

DoG = (I * G1)- (I * G2) 

where G1 and G2 are low-pass Gaussian kernels. We set for each kernel the size S 

(dimension in pixel) and the corresponding standard deviation σ as follows: S1 = 11 pixels, 

S2 = 81 pixels, 1 = 101 pixels, and 2= 21 pixels. The DoG mask is represented in fig. 4.C. In 

the DoG mask, the transitions from bright to dark (i.e. from APOSup which is bright to 

muscle which is dark) are positive, whereas the transitions from dark to bright (i.e. from 

muscle to APOInf) are negative. Thus, we could locate the exact position of the interface 

between muscle and aponeurosis in each column of the image. Figure 4.D reports the final 

profiles of the superficial and deep aponeuroses, interpolated by a bicubic spline. 

  

Tibialis anterior images 

The tibialis anterior is a bipennate muscle, meaning that the muscle fibers branch out at a 

specific angle (i.e., pennation angle), from a central intramuscular fascia to the superficial 

and deep aponeurosis (Maganaris and Baltzopoulos 1999). As shown in fig. 5.A, the 

fascicles of the two compartments present opposite pennation. Our MUSA architecture is 

adaptable to the processing of images of multi-compartmental muscles, since its 

architecture can be repeated for every compartment of the muscle. In the specific case of 

the tibialis anterior muscle: 

1)   Considering the FODG (fig. 5.B), the processing starts from the lower compartment. 

Among all candidates, the ones that are likely to correspond to the deepest 
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aponeurosis and to the central fascia are traced (fig. 5.C) by applying the same 

strategy as described in the previous section. 

2)   The central fascia of the tibialis anterior muscle defines the bottom limit of the 

upper compartment. MUSA is then applied from this profile upwards, to detect the 

superficial aponeurosis (fig. 5.D). 

3)   Once the deep and superficial aponeurosis are located, the final profiles are 

obtained by using DoG mask (fig. 5.E). 

Since the pennation changes between the two compartments, the range of theta for the 

Standard Hough Transform has been chosen as −90°≤θ≤85° for the upper compartment 

and as 95°≤θ≤260° for the lower compartment.  

 

Performance metric and statistics 

MUSA was tested on the whole database of 200 B-mode ultrasound images. The automatic 

muscle thickness measurement was obtained by the centerline distance metric. This 

distance metric has previously been used for thickness measurements (Saba et al. 2012; 

Sheehan et al. 1986) and consists in initially determining the centerline between two 

boundaries. Then, for each point of the centerline, a chord perpendicular to it is plotted. 

The length of this chord is the measure of muscle thickness in that point. The average 

distance for all the chords along the centerline is the final centerline distance metric.  

In addition to the automatic analysis of muscle thickness, three experienced operators 

independently and manually measured the muscle thickness in the same 200 images. The 

manual measurements were performed using the software ImageJ (National Institutes of 

Health, Bethesda, MD): the operators manually placed five segments between the two 
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muscle aponeuroses at around 10%, 30%, 50%, 70% and 90% of the entire length of the 

muscle profile in the image. The Euclidean distance between the end points of each 

segment was calculated and the final manual measurement was obtained as the average of 

these five distances.  

The automatic muscle thickness measurements were compared to the manual 

measurements obtained by the three operators for each muscle. The comparison was 

performed by using the Kruskall-Wallis ANOVA (followed by Dunn’s post hoc test) and the 

intraclass correlation coefficient ICC (2,1). Finally, the manual and automatic 

measurements were compared using the Bland-Altman plot (Bland and Altman 1990). To 

assess the existence of a statistical dependence between the two data sets, a correlation 

analysis between the differences and averages of the two measurement methods (x and y 

axis of the Bland-Altman plot) was also performed using the Spearman test. 

Data were expressed as mean ± standard deviation (SD). Threshold for statistical 

significance was set to P = 0.05. ICC analysis was performed with SPSS 20.0 (SPSS Inc., 

Chicago, IL, USA) software package, while all other statistical tests were performed with 

Statistica 6 (Statsoft Inc., Tulsa, OK, USA) software package. 

  

RESULTS 

Segmentation results 

Left panels of Fig. 6 shows the segmentation performance of the MUSA algorithm on 

representative images of all muscles studied: rectus femoris (fig. 6.A), vastus lateralis (fig. 

6.C), tibialis anterior (fig. 6.E), and medial gastrocnemius (fig. 6.G). Similar to these 

representative examples, the MUSA algorithm detected the aponeurosis profiles, and 
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therefore automatically calculated the muscle thickness, in the whole database of 200 

images (100% segmentation success rate).  

 

Performance evaluation 

Fig. 6 shows a representative comparison between the automatic thickness measurement 

(left panels) and the manual thickness measurement (performed by one of the three 

operators - right panels) in rectus femoris (fig. 6.A – 6.B: 18.55 mm vs 19.23 mm), vastus 

lateralis (fig 6.C – 6.D: 20.69 mm vs 21.36 mm), tibialis anterior (fig 6.E – 6.F: 24.11 mm vs 

23.96 mm), and medial gastrocnemius muscle (fig 6.G – 6.H: 18.33 mm vs 18.71 mm). The 

difference between the automatic and the manual measurement was in the range 0.15 – 

0.68 mm (respectively: 0.68 mm for rectus femoris, 0.67 mm for vastus lateralis, 0.15 mm 

for tibialis anterior, 0.38 mm for medial gastrocnemius).  

Similar to this example, analysis of the group data (Table 1) showed comparable results 

obtained by manual and automatic measurements. In fact, no significant differences 

between the former and the latter measurement were observed for both rectus femoris 

(P=0.63), vastus lateralis (P=0.70), tibialis anterior (P=0.85), and medial gastrocnemius 

(P=0.23). 

The results of the ICC analysis are showed in Table 2: the agreement was excellent (range 

of ICCs: 0.98-0.99) for all muscles both among the three operators and between the manual 

and automatic measurements.  

The Bland-Altman plot and the Spearman test showed (Fig. 7): (1) mean differences 

between the automatic and manual measurements in the range 0.06 – 0.45 mm and most of 

the differences between the 95% limits of agreement, thus suggesting that the two 
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measurement methods can be used interchangeably; (2) no significant correlation between 

the differences and means of the two measurements in each of the four muscles (rectus 

femoris: R= -0.08, P=0.55; vastus lateralis: R= -0.006, P=0.96; tibialis anterior: R= -0.15, 

P=0.29; medial gastrocnemius: R= -0.09, P=0.55), thus indicating that the accuracy of the 

automatic measurement was not related to the magnitude of the thickness value. 

 

 

DISCUSSION 

In the present study, we proposed a fully automatic method for the measurement of muscle 

thickness in musculoskeletal images acquired in the longitudinal plane (i.e., with the probe 

aligned to the direction of the muscle fibers).  

Our automatic technique did not require any user interaction and it was capable of 

automatically detecting different muscles and delineating their superficial and deep 

aponeuroses in the whole database of 200 images (100% segmentation success rate).  

The automatic detection of the aponeuroses in the ultrasound image is a challenging task. 

In fact, the muscle aponeuroses can be variable in shape and direction, and can also be 

located at different depth in the images, depending on different factors (subcutaneous 

adipose layer thickness, anatomy and contraction status of the muscle under study, age and 

health status of the investigated subject).  

The observed robustness in the aponeuroses detection provided by MUSA is mainly due to 

the use of the FODG operator. In fact, this first-order derivative of the Gaussian kernel 

provides enhancement of the aponeurosis profiles without enhancing noise and with a very 

low computational burden. The size and  values of the kernel were optimized to match the 

anatomical size of muscle aponeuroses.  
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The computational time depends on the image resolution, but in the current version of the 

method it is acceptable for both research investigations and clinical applications. The 

Matlab implementation of MUSA, which ran on a 3.1 GHz CPU, 8 GB RAM workstation, had 

an average computational time of 7.96 ± 3.04 s per image (6.40 ± 0.98 s for rectus femoris, 

vastus lateralis, and medial gastrocnemius images and 12.61 ± 2.24 s for tibialis anterior 

images). The most demanding task into the MUSA processing pipeline is the search for 

aponeurosis candidates that lead to the creation of the cleaned binary FODG mask, which 

required about 52% of the processing time (about 4.2 s). 

The comparison between the automatic measurements and those manually performed by 

the three operators showed mean differences between the former and the latter 

measurements below 0.5 mm (0.45 mm in the worst case). Since the average muscle 

thickness was 22.9 mm (average of the thickness values provided by the three operators), 

the average measurement error was about 2% of the nominal muscle thickness. From a 

clinical point of view, this error can be considered negligible. In fact, a percentage reduction 

in muscle thickness in the range 5-10% is required to identify a condition of muscle 

hypotrophy, while a percentage reduction above 10% is required to identify a condition of 

muscle atrophy (Minetto et al. 2016). 

We chose to study the four superficial muscles (rectus femoris, vastus lateralis, tibialis 

anterior and medial gastrocnemius) most informative for the investigation of 

neuromuscular disorders and sarcopenia (Abe et al. 2014; Minetto et al. 2016; Pillen et al. 

2008). Future studies are required to test the accuracy of the MUSA algorithm for 

measuring the thickness of other skeletal muscles. However, from a technical point of view, 

our algorithm can be used to detect the aponeuroses of any muscle, provided that the 
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longitudinal projection is acquired. Figure 6 demonstrates that MUSA was accurate even on 

multi-compartment muscle, such as the tibialis anterior. To the best of our knowledge, 

MUSA is the first fully-automated system that can process images of muscles with multiple 

aponeuroses. Being totally automated, this system could also be used in future studies to 

initialize other techniques for the measurement of the muscle architectural parameters 

(such as muscle fascicle length and pennation angle) in single frames or in dynamic 

conditions. 

 

CONCLUSION 

To the best of our knowledge, MUSA is the first fully-automated system that can process 

images of different skeletal muscles, including the tibialis anterior that presents two 

compartments and three aponeuroses. The main results of the present study can be 

summarized as follows: i) the MUSA algorithm detected the aponeurosis profiles, and 

therefore automatically calculated the muscle thickness, in all muscle investigated; ii) the 

automatic and manual measurement methods could be used interchangeably: in fact, the 

mean differences between the automatic and manual measurements were below 0.5 mm 

(range 0.06 – 0.45 mm); iii) the accuracy of the automatic measurement was not related to 

the magnitude of the muscle thickness value. 
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FIGURE CAPTIONS 

 

Figure 1.  

Schematic representation of the MUSA algorithm. 

 

Figure 2. 

MUSA algorithm first steps. (A) Original image of a representative medial gastrocnemius 

muscle; (B) Automatically cropped image; (C) Vertical Sobel of image; (D) Binary mask of 

the First-Order Derivative Gaussian (FODG) filter; (E) FODG mask with inconsistent 

aponeurosis structures eliminated; (F) FODG mask with branch removal. In panels E and F 

the arrow indicates the effect of the branch removal on the binary FODG mask. 

  

Figure 3. 

Fascicle detection and heuristic. (A) Binary mask obtained with image equalization and 

Otsu thresholding; (B) Cleaned fascicle mask; (C) Final fascicles mask overlaid on original 

image. The fascicles are portrayed in green, whereas the end points of the fascicles are in 

yellow; (D) Sketch of the heuristic search. The fascicles are shown in green, the end points 

in yellow, and three example ROIs are drawn in dotted rectangles. 

 

Figure 4. 

Final profile and correct aponeurosis determination. (A) Profile obtained at the end of the 

heuristic process. The white arrows indicates the presence of spikes; (B) Spikes removal 

and final trace of profile on the binary mask of the of the First-Order Derivative Gaussian 

(FODG) filter; (C) Application of the Difference of Gaussians (DoG) filter on the original 

image; (D) final interpolated profiles of the superficial and deep aponeuroses. 

  

Figure 5. 

Processing of tibialis anterior. (A) Example of tibialis anterior image; (B) Binary mask of 

the of First-Order Derivative Gaussian (FODG) filter for the tibialis anterior; (C) Profiles of 

the deep aponeurosis and of the central aponeurosis which define the deep compartment; 

(D) Profiles of superficial aponeurosis and of the central aponeurosis which define the 
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superficial compartment; (E) Final interpolated profiles of the superficial and deep 

aponeuroses for the tibialis anterior. 

 

Figure 6. 

Examples of automatic thickness measurement (left panels) and manual thickness 

measurement (performed by one of the three operators - right panels) in the four 

investigated muscles.  APOSUP: superficial aponeurosis, APOINF: deep aponeurosis. 

 

Figure 7. 

Bland-Altman plots showing the comparison between the mean of the three operators and 

the automatic measurements for all four muscles considered: (A) rectus femoris, (B) vastus 

lateralis, (C) tibialis anterior, (D) medial gastrocnemius. 
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TABLES 

  

Table 1 

Muscle thickness measurements (mean ± SDs) obtained by each of the three operators and 

by MUSA algorithm for the four considered muscles. 

 

Muscle 
Operator 

1 (mm) 

Operator 

2 (mm) 

Operator 

3 (mm) 

MUSA 

(mm) 

Rectus femoris 22.3 ± 3.8 22.4 ± 3.7 21.7 ± 3.7 21.8 ± 3.8 

Vastus lateralis 21.9 ± 4.0 22.0 ± 4.0 21.4 ± 4.0 21.3 ± 4.0 

Tibialis anterior 28.2 ± 3.6 28.0 ± 3.6 27.6 ± 3.5 27.9 ± 3.7 

Medial 

gastrocnemius 
19.9 ± 3.1 20.0 ± 3.0 19.3 ± 3.1 19.4 ± 3.1 
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Table 2 

Intraclass correlation coefficient ICC (2,1) analysis. 

  

 

Muscle 

ICC (2,1) among the three 

operators 

ICC (2,1) between the mean of 

three operators and the automatic 

measure 

Rectus femoris 0.98 0.99 

Vastus lateralis 0.99 0.99 

Tibialis anterior 0.99 0.99 

Medial 

gastrocnemius 
0.98 0.99 
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