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The aim of the present paper is to efficiently describe the membrane potential dynamics

of neural populations formed by species having a high density difference in specific brain

areas. We propose a hybrid model whose main ingredients are a conductance-based

model (ODE system) and its continuous counterpart (PDE system) obtained through

a limit process in which the number of neurons confined in a bounded region of

the brain tissue is sent to infinity. Specifically, in the discrete model, each cell is

described by a set of time-dependent variables, whereas in the continuum model,

cells are grouped into populations that are described by a set of continuous variables.

Communications between populations, which translate into interactions among the

discrete and the continuous models, are the essence of the hybrid model we present

here. The cerebellum and cerebellum-like structures show in their granular layer a large

difference in the relative density of neuronal species making them a natural testing

ground for our hybrid model. By reconstructing the ensemble activity of the cerebellar

granular layer network and by comparing our results to a more realistic computational

network, we demonstrate that our description of the network activity, even though it

is not biophysically detailed, is still capable of reproducing salient features of neural

network dynamics. Our modeling approach yields a significant computational cost

reduction by increasing the simulation speed at least 270 times. The hybrid model

reproduces interesting dynamics such as local microcircuit synchronization, traveling

waves, center-surround, and time-windowing.

Keywords: neural networks, hybrid models, conductance-based models, continuum models, cerebellum

1. INTRODUCTION

Interesting phenomena in the brain often involve complex networks with an extremely large
number of neurons. The description at the microscopic level of the whole network, i.e., the
modeling of each single neuron and synapse, would lead to numerical models demanding
prohibitive computational cost, even on the most advanced computers. The difficulties of such
a description may be alleviated to some extent by identifying a hierarchy among interacting
populations of neurons, and by using models with different resolutions and costs for simulating
the behavior of different populations. Cell density may be a criterion to identify families of neurons
and to partition the network in a multi-level manner, where each level corresponds to one or
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more species with comparable density. In the simplest situation
of a two-level organization, this option leads to describe each
neuron of the low-density population(s) by means of an ODE
system, and to characterize the high-density population(s) by
exploiting a PDE system that describes their ensemble as a
continuum. The hybrid model collects the ODE and the PDE
systems, as well as the fundamental interactions among them.

Several efforts have been made to understand and reproduce
the activity of high-density populations by reducing the degrees
of freedom from many, i.e., the variable states for each
neuron, to few, and they have resulted in the formalization
of different models. Mean field, neural mass, and neural field
models are some of the results of various “passage to the
continuum” approaches. A review concerning these models
can be found in Bressloff (2012) and Deco et al. (2008). The
major difference between neural-field models — such as the
one we are going to present — and the others lies in the
fact that the former account for the spatiotemporal evolution
of the variables, rather than considering just their temporal
evolution. A pillar formalization of a neural field model is
proposed in Amari (1977) and Wilson and Cowan (1972,
1973), in which the macroscopic state variable is the mean
firing rate. A more general neural-field model, not necessarily
involving only firing rate variables, is presented in Touboul
(2014).

We obtain a continuum model for the action potential of
a dense population of neurons by starting from a discrete
model and letting the number of neurons tend to infinity
while keeping them confined in a bounded region. We
identify limit operators, acting on the continuous variables,
describing specific interactions: in particular, electrical couplings,
like gap junctions or ephaptic coupling, are modeled in
the limit by the Laplace differential operator, as has been
rigorously justified in Canuto and Cattani (2014); on the
contrary, chemical synaptic couplings produce non-local integral
operators, i.e., spatial convolutions with suitable kernels (see
e.g., Section 9.2 in Ermentrout and Terman, 2010). Once the
expressions of both the discrete and the continuum model
have been set, we describe in a fairly general form how
the two models reciprocally interact, producing a hybrid
model: in addition to terms in the equations describing
interactions between “homogeneous” (i.e., discrete-discrete, or
continuous-continuous) variables, new terms are added to
account for the “heterogeneous” interactions (i.e., between
discrete and continuous, or specialized continuous and discrete,
variables).

To validate our new method in a complete workflow
we applied it to a realistic computational problem, the
neurodynamics of the cerebellar granular layer. Interest in the
cerebellum dates back to themorphological studies carried out by
Ramon y Cayal and Camillo Golgi, the electroencephalography
studies carried out in Adrian (1935) and the motor impairment
manifest in World War I and II patients with cerebellar lesions
studied in Holmes (1917). Only later on, the cerebellum’s
fine structure inspired theories built to link network structure
to function. This school produced a long stream of seminal
papers (Braitenberg and Atwood, 1958; Marr, 1969; Albus,

1971; Ito, 1984), and initiated a line of research yet to be
completed. Its peculiar structure comprehends series of highly
regular, repeating units, each of which contains the same basic
microcircuit. The similarity in repeating units, from architectural
and physiological perspectives, implies that different regions
perform similar computational operations on different inputs.
These inputs originate from different parts of the brain,
spinal cord, and sensory system which project directly into
the cerebellum. In turn, the cerebellum projects to all motor
systems. Despite the fact that the cerebellum’s regularity has
facilitated its description, it remains a network able to generate
complex dynamics whose potential and function are yet not fully
understood.

As underlined above, we specifically focus on the
reconstruction of the cerebellar granular layer network (GLN).
This network layer is densely populated by granule cells (GrCs)
densely populated by granule cells (GrCs) and sparsely populated
by Golgi cells (GoCs) providing an optimal application for our
modeling approach. Our proposed hybrid model has been
specialized to the description of the interactions between such
populations. Interesting dynamics such as local microcircuit
synchronization, center-surround and time-windowing, as
already described in a previous and more biologically detailed
model (Solinas et al., 2010b), are reproduced by the proposed
model. Moreover, our model shows the emergence of traveling
waves of network activity elicited by a generic input configuration
of diffused activation of the GLN. Our hybrid model of the GLN
is a very efficient computational representation of this network
able to run large size (300, 000 neurons) simulations for a long
simulated time (1 s) in about 1300 s on an ordinary laptop
computer. The corresponding simulation for the biologically
realistic model can only be run on a large computer cluster.

2. MATERIALS AND METHODS

2.1. The Hybrid Model
In this section we introduce the hybrid model by first
showing how to model each individual neuron belonging to
the same population. Here, intra-population communications
are taken into account. Secondly, we perform a continuum
limit of the discrete model that describes single neurons.
This is motivated by the fact that, according to experimental
evidence, even in a small brain area, the number of neurons
is often huge. Finally, we present a hybrid model in which
the discrete and the continuous models interact with each
other.

Let us start by analyzing how to describe the dynamics of
each individual neuron i in the network, where i = 1, · · ·N
and N is the number of neurons in a population. To be precise,
we consider three variables: the voltage-like variable vi, the
recovery variable ri, and the variable si that describes the fraction
of open channels in the synapses. In the most general case,
each neuron is influenced by other neurons in the network by
means of electrical and chemical connections, and its dynamics
is also driven by basic principles of neural excitability. All these
ingredients are taken into account in the following general
model:
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dvi

dt
= f (vi, ri)+ Iigap + Iisyn ,

dri

dt
= g(vi, ri) ,

dsi

dt
= αi(1− si)H∞(vi − vT)− βisi ,

(1)

where, Iigap is the input current that accounts for electrical

synapses, and Iisyn is that for chemical synapses. In particular,

Iigap = d
∑

j∈Q(i)

(vj − vi) ,

Iisyn = gsyn,i
∑

j∈B(i)

wijsj(vi − vsyn,j) ,
(2)

where Q(i) and B(i), resp., collect the indexes of neurons
connected to the i-th one by means of electrical and chemical
synapses, resp., wij are positive weights describing the directed
connection strength from j to i, d > 0 is the diffusion
coefficient, gsyn,i > 0 is the synaptic efficacy, and vsyn,j
is the reversal potential of the presynaptic neuron whose
sign determines the synapse nature, either excitatory or
inhibitory. In Destexhe et al. (1994), as well as Ermentrout
and Terman (2010), a detailed classification of synaptic
reversal potentials, linked to distinct neurotransmitter/receptor
pairs is specified. Furthermore, among the wide variety
of models which describe the basic properties of neural
excitability, we select the FitzHugh-Nagumo model (FitzHugh,
1961):

f (vi, ri) = −vi(a− vi)(1− vi)− ri ,

g(vi, ri) = bvi − cri ,
(3)

which is phenomenologically derived from the biophysically-
based Hodgkin-Huxley model. Here, a, b, c ∈ R

+ are
parameters chosen so that vi is a fast variable and ri is a
slow one. Finally, in the third equation in (1), α and β

are positive parameters describing the forward and backward
rate constants for transmitter binding, vT is an a priori fixed
threshold, and H∞ = H∞(z) is the Heaviside function such
that H∞ = 0 if z < 0 and H∞ = 1 otherwise. Model (1)
is supplemented by suitable initial conditions for the variables
(vi, ri, si).

In order to avoid prohibitive computational costs when the
density of cells in a population is too high, we perform a
“passage to the limit” as the number of neurons N tends to
infinity in (1). In this way, we capture the dynamics of a
neuronal population as a whole by describing three continuous
variables v(x, t), r(x, t) and s(x, t) (having the same meaning as
in (1)), where x is the spatial variable. Specifically, as N →

∞ in a fixed and bounded spatial region � ⊂ R
m, with

m ∈ {1, 2, 3}, the discrete model (1) leads to the following
integro-differential system of equations (hereafter, we simplify
the notation by making the t-dependence of each variable
implicit):

∂v(x)

∂t
= f (v(x), r(x))+ d∗1v(x)

−gsyn

∫

R(x)
w(x, y)s(y)(v(x)− vsyn(y))dy

∂r(x)

∂t
= g(v(x), r(x))

∂s(x)

∂t
= α(1− s(x))H∞(v(x)− vT)− βs(x) , (4)

supplemented by boundary conditions for v and initial
conditions for v, r, s. Here, d∗ is the diffusion coefficient, gsyn >
0 is the synaptic efficacy, and R(x) denotes a region centered
in x. The electrical synapse term, i.e., d∗1v(x), is the result of
two equivalent methods that lead to a non-trivial continuum
limit, as shown in Canuto and Cattani (2014). On the other
hand, the integral form of the chemical synapse term, i.e.,

gsyn

(

∫

R(x) w(x, y)s(y)(v(x)− vsyn(y))dy
)

, is due to the fact that

the set B(i) in (1) does not shrink to a point as N → ∞, as
explained in Ermentrout and Terman (2010) and Cattani (2014).
We refer to Cattani (2014) for a discussion on the mathematical
well-posedness of this model. Hereafter, in order to distinguish
between the discrete and continuous variables, we will denote the
continuous variables by Greek letters.

As already mentioned in the Introduction, by comparing the
cell densities we may diversify the description of the populations
in the network. Specifically, this comparison determines if a
population may be described by a set of discrete systems or by
a continuous model. However, the key point is that neurons
are linked to each other in a very intricate fashion depending
on the brain areas. It follows that signal transmission among
populations, in addition to intra-population connectivity, is
an important feature to be taken into account to explore the
emergent network dynamics. The essence of the hybridmodel lies
in the interaction coupling terms among different populations.

By, for simplicity, considering two populations only, on the
one hand the set of cells in the low-density population is
described by an ODE system:

dvi

dt
= f (vi, ri)+ φ(vi; vj, sj)+8(vi;ω, σ )+ Iiext ,

dri

dt
= g(vi, ri) ,

dsi

dt
= αi(1− si)H∞(vi − vT)− βisi ,

(5)

where

φ(vi; vj, sj) = d
∑

j∈Q(i)

(vj − vi)− gsyn
∑

j∈B(i)

wijsj(vi − vsyn,j)

(6)
takes into account inputs from other cells belonging to the same
low-density population, whereas

8(vi;ω, σ ) = δ1ω(xi)− γsyn

∫

Ri

w(i, y)σ (y)(vi − ωsyn(y))dy

(7)
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models the signal transmission coming from the continuous
population. Here, xi indicates the spatial position of the neuron
labeled by i from the discrete family, whereas Ri is the region
occupied by the neurons from the continuous family whose
synapses influence neuron i. The term Iiext represents an external
current coming from sources different from the two species here
considered. On the other hand, the high-density population is
characterized by a PDE system:

∂ω

∂t
= F(ω, ρ)+ ψ(ω, σ )+9(ω; v, s)+ Iext ,

∂ρ

∂t
= G(ω, ρ) ,

∂σ

∂t
= α(1− σ )H∞(ω − ωT)− βσ ,

(8)

where, similarly to (6),

ψ(ω, σ )(ξ ) = δ1ω(ξ )

−γsyn

∫

R(ξ )
w(ξ, y)σ (y)(ω(ξ )− ωsyn(y))dy (9)

describes interactions within the continuum population, while

9(ω; v, s)(ξ ) = d
∑

j∈Q(ξ )

(vj − ω(ξ ))

−gsyn
∑

j∈B(ξ )

w(ξ, j)sj(ω(ξ )− vsyn,j) (10)

describes the interactions between species, and Iext = Iext(ξ )
is an external current. We use the term hybrid to denote the
mathematical model constituted by the coupled systems (5)–(7)
and (8)–(10).

2.2. Application to the Cerebellar Granular
Layer Network (GLN)
The formalization of the hybrid model developed above is
suitable for describing a variety of networks in the brain
characterized by a large difference in their population densities.
This network feature is found in the cerebellum, and cerebellum-
like structures (Bell et al., 2008) such as the dorsal cochlear
nucleus in the auditory sytem, the dorsal octavolateral nucleus
of the electrosensory system of the electrosensive fish, the
electrosensory lobe of the mormyrid electric fish, the medial
octavolateral nucleus of fish and amphibians that possess a lateral
line system sensing pressure waves in water, the marginal layer
of the optic tectum of ray-finned fishes and the rostrolateral
nucleus of thalamus. In these systems a large population of
small neurons project to a relatively small number of inhibitory
units that either provide feedback to the first population, as
cerebellar Golgi cells do, or forward the signal to downstream
areas as cerebellar Purkinje cells do. The olfactory bulb and
the striatum also present a similar disparity in their neuronal
population and are suitable to be efficiently represented with
our new method. Out of these examples the cerebellar cortex is
the most extensively studied and modeled network. Its network

structure can be abstracted following previous modeling work
(Solinas et al., 2010a,b; Simões de Souza and De Schutter, 2011).

We focus our study on reproducing the transformation
imposed by the cerebellar granular layer network (GLN) to the
input signals provided by the Mossy fibers (MFs). The GLN is
composed of two main network pathways: a feedforward and a
loop or feedback path, where both Granular cells (GrCs) and
Golgi cells (GoCs) receive external excitatory inputs by MFs
originating from the precerebellar nuclei neurons. MFs excite
both cell populations duplicating their input into two pathways.
Along the feedback path MFs synapse on GrCs. These excite
GoCs through ascending axons and parallel fibers (PFs), and
GoCs, in turn, inhibit GrCs. The second or feedforward path
is constituted by the excitatory input from MFs to GoCs which
terminates inhibiting GrCs. A diagram of both the feedback and
feedforward pathways is shown in Figure 1.

Only a few cellular populations in the cerebellar cortex
compose this geometrically regular network and are localized
in three well distinct layers called molecular, Purkinje, and
granular. The latter is densely populated by GrCs (density
4, 000, 000/mm3) and sparsely by GoCs. The key point
supporting the application of our new modeling method is that
the number of GoCs significantly differs from that of GrCs: GoCs
are very few compared to GrCs (Korbo et al., 1993; Solinas et al.,
2010b; Billings et al., 2014) in the ratio of about 1 : 400. Thus,
by virtue of this considerable density difference, there is clear
motivation to study combined discrete and continuummodels of
the cerebellar granular layers. In particular, the variables (vi, ri, si)
describe each GoC through (5), while (ω, ρ, σ ) portray the GrC
species as a whole by means of (8). Inspired by assumptions
in Simões de Souza and De Schutter (2011) and for modeling
purposes, we consider the two populations belonging to two-
dimensional parallel layers, as described in Figure 2. The bottom
one consists of the GrC continuum and the upper one contains
GoCs. A third layer, above them, consists of PFs.

We define our model topology and connectivity in the GLN
taking into account the size and the fine structure of the biological
network and describing, point by point, the corresponding
structure in our networkmodel. Specifically, we consider a region
of the GLN with size 1500 µm along the sagittal axis, 500 µm on

FIGURE 1 | Diagram of the cerebellar granular layer network pathways.

Both the feedback and the feedforward paths are characterized by excitatory

(red arrow) and inhibitory (blue arrow) synapses.
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FIGURE 2 | Connection topology between GrCs and GoCs from a postsynaptic neuron perspective: GrCs linked to the i-th GoC (left) and GoCs which

are connected to the GrC at the point ξ (right). The domain decomposition of the GoC layer is obtained by exploiting the triangular mesh generator leading to a

sparse mesh. Instead, a regular grid discretizes the GrC layer (not shown). The long and short edges of the rectangular map are 1500 and 500 µm, respectively.

the transverse axis and 100 µm thick, including approximately
300, 000 GrCs, 750 GoCs, and 23, 000MF terminals. However, in
our representation the thickness of this flat volume is disregarded
(Figure 2). The projection of MFs inside the GLN shows an
abundant parasagittal branching. Each MF innervates multiple
cerebellum lobules. Within the lobule, local branching gives
rise to small clusters of about 8 MF terminals in a rectangular
area of 200 µm along the transverse axis and 150 µm along the
sagittal axis, data from the rat cerebellum (Sultan and Heck,
2003; Solinas et al., 2010b). About 50 GrCs, located within
a sphere surrounding a MF terminal, project their dendrites
(maximum length 30 µm, mean length 13.6 µm) onto the MF
terminal. In this projection pattern the activation of a single MF
gives rise to many small spots of activated GrCs with response
intensity degrading from center to periphery (Mapelli et al.,
2010b; Gandolfi et al., 2014). In our model, the GrC population is
represented as a continuous sheet split into vertices by a regular
tessellation allowing the calculation of numerical solutions. In
this configuration, we assume that each MF terminal provides
excitatory input to a subset of vertices located within 30 µm from
the terminal and activated with an intensity decreasing with their
distance, x, from the MF terminal as sin(arccos(x)) to mimic
the flattening of the sphere. GoCs receive excitatory input from
MF terminals from a wider area as GoC dendrites are longer
than GrC dendrites and span a larger GLN volume (Dieudonné,
1998). Each GoC arborized axon reaches the granular layer
throughout a parallelepiped volume (Barmack and Yakhnitsa,
2008) elongated along the sagittal direction, whose projection
on the two-dimensional granular layer is a rectangle 650 µm
long and 180 µm wide. A GoC sparsely inhibits GrCs lying
inside the rectangle. Therefore, in our model, a GoC provides
inhibitory input to a subset of the GrC nodes located within a
rectangle elongated along the sagittal axis, sampling a total of 40
tessellation nodes in the rectangle. GrC axons, i.e., PFs, ascend to
the molecular layer, bifurcate, and run parallel to each other in
either direction along the transversal axis, our x-axis, for a few
mm crossing the GoC apical dendrites. Each PF synapses onto
many GoC dendrites along its path. The GoC apical dendrites
branch out in all directions sampling PF input from a cylinder
in the molecular layer represented in the original model by a
circle of radius 50 µm (Dieudonné, 1998; Solinas et al., 2010b).
In the hybrid model, each GoC is influenced by all the GrC
nodes in a rectangle elongated along the transverse axis, covering

the entire GLN extension, and narrow along the sagittal axis,
covering 50 µm on either side of the PF wide stripe of the GLN
(see Figure 2, left) accounting for the parasagittal extension of
GoC dendrites (Solinas et al., 2010b). Notably, GoCs receive
chemical excitatory synapses by GrCs. Furthermore, GoCs are
linked among each other by gap junctions connecting their
apical dendrites (Vervaeke et al., 2010). This electrical coupling is
represented in our model by a diffusion term, d in (11), between
the vertices of the discrete model, i.e., in a first approximation
a GoC is coupled only with its nearest neighbors. As already
mentioned above, the Golgi cell system can be described by
model (5). Due to the specific synapses that involve the GoCs
as postsynaptic target, the general expressions of the functions
φ and 8, given in (6) and (7), take the following specific
form:

φ(vi; vj, sj) = d
∑

j∈Q(i)

(vj − vi)

8(vi;ω, σ ) = −γsyn

∫

Ri

w(i, y)σ (y)(vi − ωsyn)dy .

(11)

Moreover, Iiext = Iimossy is the excitatory input due to the
MFs. Let us recall that, in (11), the reversal potential ωsyn

may depend upon the specific type of synapse characterized
by the nature of the presynaptic neuron and, thus, it must be
included in the integral term. However, since here only GrCs
influence GoCs by means of excitatory chemical synapses, we
suppose ωsyn to be constant and we bring it out of the integral,
obtaining

8(vi;ω, σ ) = −γsyn

(∫

Ri

w(i, y)σ (y)dy

)

(vi − ωsyn) .

The set Ri determines the area containing those GrCs
which synapse onto the i-th Golgi cell. Taking into
account that GrCs excite GoCs through the PFs, as
specified above, we consider Ri as a thin rectangle whose
horizontal symmetry axis is determined by the i-th cell
projection (see Figure 2, left) having parasagittal extension of
50 µm.

Furthermore, the GrC continuum is described by the model
(8), where the functions ψ and 9 , introduced in (9) and (10),
take the following specific form:
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ψ(ω, σ )(ξ ) = δ1ω(ξ ) ,

9(ω; v, s)(ξ ) = −gsyn

(

∑

j∈B(ξ )

w(ξ, j)sj

)

(ω(ξ )− vsyn) .
(12)

As above, the reversal potential vsyn of the GoC to GrC synapses
is constant and it therefore does not contribute to the sum. The
second equation accounts for the inhibition provided to the GrCs
by the GoCs, while the first equation resulted from the passage to
the limit of the high density neuronal population. Specifically, it
introduces a reciprocal coupling of adjacent neurons as a result
of local electric fields. This kind of interaction, named ephaptic
coupling, has been documented in brain tissues (Bokil et al.,
2001; Anastassiou et al., 2011), and cannot yet be excluded in
the nature of the cerebellar granular layer tissues. In order to
consider inputs from Mossy Fibers, we set Iext = Imossy. The
discrete set B(ξ ) collects the indexes of GoCs which influence the
GrC continuum at the point ξ , thus describing the connection
topology. According to Barmack and Yakhnitsa (2008), a GoC
axon reaches a rectangular region in the granular layer, centered
on its soma; therefore, a possible choice is:

B(ξ ): = {j ∈ N : xj ∈ Rξ } , (13)

where Rξ denotes such a rectangle centered on the projection
of ξ on the GoC plane and oriented perpendicularly to the Ri

direction (see Figure 2, right).
Since cells are described by the FitzHugh-Nagumo model, it

is important to recall that the threshold is not involved in the
single-neuron dynamics but it concerns presynaptic neurons at
the synapse level. Indeed, when the presynaptic neuron exceeds
the threshold, i.e., vT and ωT , neurotransmitter release starts and
influences the postsynaptic cells. Notably, s and σ are strictly
positive functions of time (see Equations 5 and 8) and represent
the contribution of a neuron’s activity to its postsynaptic targets.
In our model, a GrC-high-density-population node encodes its
output in the dynamic variable σ that is used in the postsynaptic
neuron to compute the synaptic current. Specifically, σ is
incremented if in the node ω is larger that the threshold ωT ,
otherwise it decays exponentially toward zero with time constant
1/(α + β) = 1 ms (α = 0.9 ms−1, β = 0.1 ms−1 Equation 8).
This yields a rough approximation of the time profile of AMPA,
NMDA, and KINATE current injected by a GrC synapse in the
GoC neuron (cf. orange trace PF→GoC in Figure 3 of Solinas
et al., 2010b). As a single point in the high-density-population
represents more than one neuron, ω describes mean membrane
potential and σ represents thresholded and filtered transmission
to their postsynaptic targets. Therefore, σ can be seen as an
approximation of the mean activity of the GrCs represented in
a point of the continuous model. The same encoding holds also
for the nodes of the GoC grid, each node represents one GoC, v is
the neuron membrane potential and s represents the effect of the
recent GoC activity on the postsynaptic GrCs.

We close this section with a few words about the numerical
treatment of our model. Concerning GoCs — which form
a discrete set — they are placed at the vertices of a quasi-
uniform triangulation of the upper rectangular domain; we use
the triangular mesh generator BBTR, described in Barbera and
Berrone (2008), with the mesh refinement parameter chosen to

yield 755 vertices (RefiningOptions parameter set to 0.00337;
Figure 2). On the other hand, GrCs — which form a continuum
in our model — are described by a set of partial differential
equations that need to be discretized in space. To this end,
we resort to a classical second-order centered finite difference
method (see e.g., Quarteroni et al., 2000). In particular, we
consider 23232 nodes in the domain, lying on a regular grid,
to represent the 300, 000 GrCs. Therefore, using this grid size
each vertex represents 13 GrCs. However, the results of the
simulations turn out to be nearly independent on the GrCs
grid refinement, as will be documented at the end of Section
3.2. Finally, time integration of the resulting coupled system of
ordinary differential equations is accomplished by the MATLAB
routine ODE45. We remark that the spatial discretization might
be accomplished by finite elements instead of finite differences,
thus allowing for the use of modern adaptive strategies, providing
unstructured grids that adapt themselves to the formation of
localized patterns; this will be object of future work. The
MATLAB code used to run the GLN model is available on
GitHub at the link: https://github.com/annacatt/HybridModel_
CerebellarGranularLayer.git and it will made also available on
Model DB (Migliore et al., 2003; Hines et al., 2007; Gleeson et al.,
2014).

3. RESULTS

Numerical simulations were performed with a two-fold aim: to
show the dynamics that the hybrid model, composed of (5)–(11)
and (8)–(12), is able to exhibit and to validate its capability to
reproduce the GLN activity simulated in a biologically realistic
model (Solinas et al., 2010b). In particular, in the validation step
the values of the diffusion in the discrete and the continuous
models, d and δ resp., were set to zero in agreement with the
configuration of the biologically realistic model, where both the
gap-junctions among GoCs and the ephaptic coupling among
GrCs were not included.

3.1. Oscillatory Activity in the Granular
Layer
To present a sample dynamics of the hybrid model, we
considered a network whose size is equivalent to a box with
1500 µm by 500 µm edges along the sagittal and transverse axes,
and 100 µm thickness containing the cubic volume of brain tissue
simulated in Solinas et al. (2010b). The parameter values of the
FitzHugh-Nagumo model (3) were set to a = 0.25, b = 0.001,
and c = 0.003. The synaptic reversal potentials in (11) and (12),
resp., were set to ωsyn = 0.93 and vsyn = −0.2, resp. Moreover,
using parameters of the same order of magnitude as in Simões de
Souza and De Schutter (2011) and Solinas et al. (2010b), we fixed:

gsyn = 0.8, d = 0.005, Iimossy = IGoCmossy = 0.1 , (14)

for the Golgi cell discrete model, and

γsyn = 0.1, δ = 0.005, Imossy(ξ ) = I
GrC
mossy = 0.2 , (15)

for the Granular cell continuous one. In particular, IGrC
mossy was

applied to 3% ofMF, randomly chosen with uniform distribution,
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that excite the GrC nodes as described in Methods. Since in
the real GLN GoCs also receive excitatory input from MFs,
we assumed that 3% of GoCs randomly chosen with uniform
distribution receive a non-zero IGoCmossy. This current was applied
to GoCs for all t > 10 ms. MF current was maintained active to
GrCs from t > 0 ms. The thresholds vT and ωT for GoCs and
GrCs were both set to 0.5.

Frames extracted from a video (see Supplementary Material:
Video 1) of the GoC-GrC dynamics are shown in Figure 3.
This dynamics was obtained by exploiting (5)–(11) and (8)–(12),
assuming the topology described by (13). The excitatory input
delivered by MFs to GrCs drives their activity above threshold
and induces an increase in GoC potentials. The subsequent
inhibition elicited in GrCs by the GoC inhibitory feedback loop
(MFs-GrCs-PFs-GoCs-GrCs, see Figure 1) suppresses the GrC
activity and the cycle restarts. In the early stages of the dynamics
local microcircuit synchronous phenomena arise. The same
phenomena arise in the biologically realistic model of reference
(Solinas et al., 2010b) and this is a characteristic dynamics
observed in the GLN in vivo (Vos et al., 1999) and computational

models (Maex and DeSchutter, 1998). Furthermore, at a later
time in the simulation, t > 350 ms, the synchronous
dynamics spontaneously converts to an interesting dynamics
where excitatory waves travel in the whole domain involving both
GoCs and GrCs. In particular, these oscillations exhibit a quasi-
periodic behavior at the level of both the network and the single
node dynamics. The amplitude of the MF input can modulate
the frequency of oscillations driving it into the θ or to higher
β ranges. Moreover, the waves traveling along the sagittal axis
show the high degree of synchrony of the GoCs aligned along the
transversal axis that was shown in Vos et al. (1999), see Section 4.

3.2. Validation of the Model:
Center-Surround and Time-Windowing
Over recent years several studies on the GoCs-GrCs network have
been focused on the analysis of the integration of excitatory and
inhibitory input by GrCs (Mapelli et al., 2010a,b; Solinas et al.,
2010b; Gandolfi et al., 2014; Nieus et al., 2014). To validate our
modeling reconstruction we focused on reproducing the spatial

FIGURE 3 | Ensemble dynamics in the hybrid model. After an initial period of initialization, a synchronous phenomenon within each population arises and the

network activity shows oscillations with a frequency of 13 Hz. After a few cycles (t > 350 ms) a traveling wave phenomenon arises. The oscillatory frequency is

unaffected by the spontaneous emergence of the waves. The waves of network activity diffuse along the sagittal axis. GrCs are represented with the colored

continuous graph; GoCs are described with bars showing potentials multiplied by a factor 3 for graphical reasons. The bottom panels describe the dynamics of a

sample GoC cell and GrC node up to 5 s. Both of them show a quasi-periodic dynamics.
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and temporal interaction of excitation and inhibition in the GLN
following the work presented in Solinas et al. (2010b). This choice
is motivated by the fact that neither gap-junctions among GoCs
nor ephaptic coupling in the GrC population are considered in
the biophysically realistic model (Solinas et al., 2010b). Indeed,
significant comparisons with a previously published GLN model
are here presented to show that our hybrid model produces a
dynamics effectively expected for this network (Solinas et al.,
2010b) in agreement with known publications in the field (Maex
and DeSchutter, 1998; Santamaria et al., 2007; Dugué et al., 2009;
Vervaeke et al., 2010).

According to Gandolfi et al. (2014) and Solinas et al. (2010b),
the input delivered by a small bundle of MFs in the GLN elicits
the activation of a cluster of GrCs, a spot 33 ± 5µm wide at 70%
of the peak amplitude (Mapelli et al., 2010a). The spot is limited
in size and in time by the properties of the feed-forward and
feed-back inhibitory loops, due to the GoC integration properties
and the arrangement of their axons. These phenomena, defined
center-surround and time-windowing in D’Angelo and De Zeeuw
(2009), are the result of the mismatch between the small area
excited by the MFs and the wider area inhibited by GoCs
activated directly and indirectly, through GrCs by the same MFs,
in combination with the inherent delay of the inhibitory loops.

This section is devoted to present noticeable center-surround
and time-windowing phenomena reproduced bymodels (5)–(11)
and (8)–(12), where d and δ were set to zero. Differently from the
previous section, now we set Imossy(ξ ) = IGrC

mossy = 0.4 in the
granular cell layer to mimic the strong 2 spikes at 500 Hz used in
Solinas et al. (2010b).

The activation of a spot in the network center was achieved
in the original model by activating the 8 MF terminals located
within a sphere of radius equal to 20 µm located in the network

center. Considering that the average length of GrC dendrites was
set to 14 µm, the resulting excited volume was a sphere of radius
equal to about 34 µm. In the simulations we ran to reproduce
the impulse response of the GLN, we mimicked this activation
by providing excitatory input to GrC vertices within a circle
with radius equal to 34 µm located in the network center. We
first ran a control simulation reproducing a spot of activation in
the network center of the same size of the spot obtained in the
original model (Solinas et al., 2010b; data not shown). In a second
simulation, we increased the radius of the activated area to 70 µm
in order to achieve a spot 33 µm wide at 70% of the maximum
peak amplitude (Mapelli et al., 2010a) as shown in Figure 4.

Figure 5 shows the GLN response to a stimulus set on at
t = 0 ms and set off at t = 5 ms. The spot size increases
over time also after the end of the stimulus. According to Solinas
et al. (2010b), the center-surround organization of the inhibitory
projections shapes the GLN response in space and in time. In
order to highlight the effect of inhibition, Figure 5 compares the
spot of Figure 4 with the spot achieved after partial block of the
inhibitory GoC to GrC synapses and synaptic strength reduced
from 0.1 to 0.03. More precisely, we reproduce in Figure 5 the
same computational steps taken in Solinas et al. (2010b). After
the onset of the MF input the GLN initiates its response with 1
ms of delay, reaching its maximal activation after 4 ms indicated
as E peak in Figure 5. After 8 ms the GLN activation fades
off due to the emergence of the inhibitory feedback and we
chose this time to measure the E2 peak. After partial block of
the inhibitory synapses, the E2 peak increases in amplitude and
extension (inhibition partially blocked: E2ib). As in Solinas et al.
(2010b), the amount of inhibition I is calculated as the change
in GLN activity amplitude due to the partial block of inhibition.
Like in Solinas et al. (2010b), the difference between the E peak

FIGURE 4 | Snapshots describing the center-surround phenomenon. GoCs are excited by GrCs through the PFs. In turn, each active GoC inhibits GrCs lying

on a thin rectangle. The maximal activation is reached at t = 4 ms and the diameter of the spot at 70% of the maximum amplitude is 36 µm. The stimulus is set on at

t = 0 ms and set off at t = 5 ms.
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FIGURE 5 | Response of the hybrid model to 5 ms pulse delivered by MFs to GrCs and GoCs. The GLN activation at time 4.2 ms from the initiation of the

stimulus shows the maximal activation yielded by the excitatory input (E peak; upper left panel). After 4 ms the GLN activation fades off due to the emergence of the

inhibitory feedback (E2 peak; upper right panel). The time of the E2 peak is chosen at 4.2 ms after the peak response to reproduce a data analysis following the

methods used in Solinas et al. (2010b). Partial block of inhibitory synapses increases the E2 peak amplitude and spatial extension (E2ib; upper right panel). The

amount of inhibition is calculated as the change in GLN activation amplitude due to the partial block of inhibition at 8.2 ms from the stimulus initiation (−I; lower left

panel). The center-surround is represented as in Solinas et al. (2010b) as the difference from the E peak and the inhibition I (lower right panel). The stimulus is carried

by all the MFs included in a circle located in the network center (250,250)µm and with radius equal to 70µm. The intensity of stimulation is decreased from center to

periphery of the circle following an exponential profile (intensity from 0.4 to 0 with space constant 0.6). The input intensity is randomized using an additive random

noise with range [0, 0.05]. The so activated spot (upper left panel) has a diameter of 36µm if measured at 70% of its peak amplitude (Mapelli et al., 2010b). The CPU

time required to run this simulation was 2 s on a Apple® MacBook Pro (Intel Core 2 Duo 2.93 GHz).

and the inhibition I reveals, in the lower right panel of Figure 5,
the center-surround organization of inhibition as the central peak
surrounded by a deeper crown.

To compare our hybrid model with the biologically realistic
model, we re-ran the simulations of Solinas et al. (2010b),
using the code published in Solinas et al. (2010a). We changed
the stimulus protocol to activate 13 MF terminals, instead of
the original 8 terminals, to enlarge the stimulated area. This
change brought an increase of the spot size to 33 µm at 70%
of the maximum peak amplitude, consistent with the published
experimental evidence (Mapelli et al., 2010b). The network
size was left at 100 µm by 100 µm as increasing it to the
200 µm by 200 µm size of our hybrid network model would
imply a prohibitive computational cost. The recorded data were
processed using the same procedure applied to the hybrid model.
Figure 6 shows the stimulus effect 4.5 ms after onset, E peak,
and at 8 ms, E2 peak. Like in the hybrid model the block of
inhibition induces an increase of the network activity clearly
visible at the time of the second peak. In the lower right panel
of Figure 6 the spatial organization of the inhibitory feedback
generates deeper spots in proximity of the central area, shaping
the center-surround.

To further highlight the similarities and discrepancies
between the two GLN models we calculated the spatial integral
of the activity surface for each time step of both models. The
plot in Figure 7 shows how the time evolution of the hybrid
model follows the traces of the biologically realistic model until
the first peak is reached. From there on the discrepancy between
the two models progressively increases but, in both models, the
reduction of the inhibitory feedback leads to an increase of the
overall model activity with the specific spatial distribution shown
in Figures 5, 6.

Let us recall that our model constituted by (5)–(11) and (8)–
(12) has been designed under strong simplifying assumptions
that do not allow us to take into account the wide variety
of phenomena in the single cell and in the whole network.
Indeed, the FitzHugh-Nagumo model cannot reproduce the full
complexity of the spiking activity produced by the Hodgkin-
Huxley model. Furthermore, the GrC layer has been described as
a continuum. Nonetheless, the remarkable result obtained is that
our model is able to reproduce the benchmark dynamics present
in Solinas et al. (2010b), at least in the time range in which the
center-surround phenomenon arises. Concurrently, the delayed
activation of GoCs allows the response of GrCs to the stimuli
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to survive till the GoCs inhibition arises. This configures a time
window where GrCs are allowed to transfer their activity to the
subsequent network layers. The intervention of GoCs inhibition
closes this window resetting the GrCs activity and making them
ready to reliably transmit a new stimulus.

Finally, we conclude the present section by stressing that the
simulations provided in this paper turn out to be independent
of the GrCs continuous population grid refinement. Indeed,
focusing on the framework that describes the center-surround
phenomenon, we exhibit a comparison among the solutions
produced by the model with increasing number of nodes in the
space discretization of the GrC population. In Figure 8, we show
the evolution in time of the integral of the activity over the
network domain for different values of the spatial resolution. In
practice, all the grid refinements we checked are able to catch the
correct dynamics with sufficient accuracy. Convergence is clearly
documented, thereby providing a sound background to the use of
our numerical simulator.

3.3. Computational Comparison
The computational performance of our new modeling method
was assessed by running a simulation with an equivalent
representation of a portion of the GLN in both simulators:

NEURON (Carnevale and Hines, 2006) and our hybrid
model simulator. The simulation used as reference is the one
reproducing the center-surround effect in Solinas et al. (2010b).

On the one hand, in Solinas et al. (2010b) the full model
simulation was run using NEURON to reproduce 420 ms of
network activity (simulation run using the code available at
Solinas et al., 2010a) and required 1080 s on a Apple MacBook
Pro (Intel Core 2 Duo 2.93 GHz) for a network of 4001 GrCs
and 27 GoCs and their synapses. On the other hand, considering
an equivalent of 420 ms of activity with 4096 GrC vertices and
26 GoCs, the network we ran using our hybrid model simulator
required 20 s (i.e., 47.6 times slower than a real time simulator).
Therefore, our hybrid model simulator is roughly 54 times faster
than the NEURON simulator. However, in our large network
simulations we approximate the dynamics of small GrC clusters
(composed of 13 GrCs) with a single node of the regular grid.
Using the same approximation, we ran a simulation of the hybrid
model with 361 nodes, 192 nodes about 4096/13. This simulation
took 4 s to run, i.e., 270 times faster than the NEURON model
(9.5 times slower than a real time simulator). We must also
recall that the output of our simulator is immediately available
for visualization in MATLAB while the output generated by
the NEURON simulator requires an additional 30 min of post

FIGURE 6 | Response of the biologically realistic model (Solinas et al., 2010b) to the activation of 13 MF terminals located within 20µm from the

network center. As in the 2010 publication, at the end of each simulation the voltage trace of GrCs aligned along the vertical axis are pooled together to represent

their ensemble activity. The resulting 2D surface represents the activity of this 3D GLN network (vertical axes show the mean membrane potential in mV). The

simulations in control and partial inhibition block configuration are repeated 10 times, using each time a different network structure. The 2D surfaces belonging to each

configuration class are used to build an average response for that class of GLN to the stimulus. The arrangement of data plots replicates the organization of Figure 5.

The activated spot (upper left panel) has a diameter of 36µm if measured at 70% of its peak amplitude (Mapelli et al., 2010b). The stimulus consists in a sequence of 3

spikes with an inter-spike interval of 333 ms. The first peak of GLN activation is reached within 4.5 ms from stimulus onset (E peak; upper left panel). The GLN shows

a second peak of activity E2 with latency 8.2 ms from stimulus onset (upper right panel). Blocking inhibitory synapses induces a generalized increase of the GLN

activity from this time on, note the E2 peak amplitude and its spatial extension (E2ib; upper right panel). The spatial effect of inhibition is calculated as the point

difference of the E2 and E2ib surfaces (−I; lower left panel). The center-surround is represented as the difference the surfaces E and the I (lower right panel). The CPU

time required to run one of the 20 simulations was 20 min on a Apple® MacBook Pro (Intel Core 2 Duo 2.93 GHz) plus 30 min to process the recorded data.
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FIGURE 7 | Evolution in time of the GrC membrane potential shown in

the upper left panels of Figures 5, 6 (thin black and thin red trace,

respectively). The thick red and black traces show the time evolution of the

same integrals after total block of inhibition in the 2010 model and partial block

of inhibition in the hybrid model, respectively. Note that the thick traces

generated by models with reduced inhibitory feedback have the tendency to

stay above the thinner traces of model with control configuration as a result of

more intense ensemble network activity in absence of inhibitory feedback.

Furthermore, our hybrid model can follow the biologically realistic model up to

the first peak E and conserve a qualitatively similar behavior at the time of the

E2 peak.

FIGURE 8 | Grid convergence for different structured grid resolutions

of the continuous model for GrCs nodes. The total number of nodes is

shown in the plot legend. The plot shows the sum of the GrC membrane

potential ω over the entire surface shown in upper left panel of Figure 5,

divided by the area of the grid pixel and plotted as a function of time. Notably,

only the coarser grid resolution shows a visible difference from the other

resolutions and the difference among the solutions reduces for prolonged time

intervals.

processing to be visualized. The compactness of our simulation
setup allows running long and heavy simulations on a simple
laptop as it was done for the simulation run to show the
oscillatory network dynamics that reproduced the activity of
300, 000 GrCs for 1000 s. This simulation took 1.327 s and its
corresponding NEURON network cannot be run on a single
CPU computer. Moreover, our simulation can be interrupted,
fully stored, and restarted at any time and it allows changing
the configuration of the input and the network structure of the
stored simulation before restarting it. The simulation can be run

till a certain network state is achieved and multiple simulations
can be started from the same network state but with different
configuration of inputs.

This analysis quantitatively confirms the reduced
computational cost of employing our simplified model instead
of a detailed one, without losing information about such
fundamental activity in time and space as the center-surround
and the time-windowing. Let us stress that further improvements
of our codes will lead to further time simulation savings. The
most significant one will consist in translating our routines into
parallel codes allowing us to take advantage of computer clusters
or Graphics Processor Units (GPUs).

4. DISCUSSION

With the aim of efficiently describing the dynamics of neuronal
populations having a large density difference in specific brain
areas, the present work collects new results next to the ones
presented in Canuto andCattani (2014).We started by stating the
discrete conductance-based model (1) which describes the single
cell membrane potential variation in time due to both electrical
and chemical synapses. Afterwards, by letting the number of
neurons tend to infinity, we derived the continuum model
(4). The discrete and continuous models were then coupled to
describe populations exhibiting significant differences in their
densities, allowing us to formalize the hybrid model. Specifically,
each cell of the low-density population was modeled by the
discrete model, whereas the whole high-density population was
described by the continuum model. Communications among
populations, which translate into interactions among the discrete
and the continuous models, are the essence of the hybrid
model we presented. Such an approach, which leads to a
significant computational cost reduction, was applied to the
Golgi-Granular network in the cerebellum. Interesting dynamics
such as microcircuit synchronization, traveling waves, center-
surround and time-windowing were reproduced by the hybrid
model. The two latter dynamics were compared with recent
results in literature devoted to this specific network, confirming
the capability of our approach to reproduce significant dynamics.

In this work we adopted a large number of approximations,
explained in detail in Methods and Results. Nonetheless, our
network model was able to reproduce salient features of the
cerebellum GLN ensemble dynamics. However, this achievement
is not surprising as the features the hybrid model can reproduce
are strictly network emergent properties. The specific choice of
neuronal or synaptic models is reflected in the exact timing of
the first peak of the network response that we could approximate
using the FitzHugh-Nagumo model.

It is interesting to highlight that the traveling wave
phenomenon, which was not shown in the small network size and
the short simulation time used in Solinas et al. (2010b), is not
supported by evidence from experimental neuroscience. These
traveling waves are of different origin from those induced by
Purkinje cell recurrent collaterals in the developing cerebellum
(Watt et al., 2009) and take origin from a network interaction
limited within the GLN. Conversely, theta oscillations emerging
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in the hippocampus in freely behaving rats are present in the
form of traveling waves (Lubenov and Siapas, 2009). However,
based on the experimental data currently available on GLN
neurodynamics, we can only conclude that our hybrid model
is missing some features of the biological network that are
fundamental to prevent the emergence of the traveling waves.
Our first guesses to identify these missing features point to the
simplified synaptic models currently present in our network
model: the absence of the GoC-GoC inhibitory connections
(Hull and Regehr, 2012) or the lack of inhibitory effects of
the glutamate neurotransmitter on GoCs through metabotropic
receptors (Watanabe and Nakanishi, 2003). These issues will be
addressed in further computational work.

We wish to underline that the network size simulated here
(1500 and 500 µm) is only one order of magnitude smaller than
the rat cerebellar cortex (33, 000 and 6000 µm; Sultan and Heck,
2003). We expect that further improvements of the simulation
speed, as code optimization for multi-thread processing and
native code generation for the CPU and GPU hardware, may
allow realtime simulations of full network size on ordinary
computers.

In principle, these improvements should allow the simulation
speed to reach the same levels of other software simulators,
like EDLUT (Ros et al., 2006), NEST (Gewaltig and M., 2007),
BRIAN (Goodman and Brette, 2009), and the hardware simulator
SPINNAKER (Furber et al., 2013). Among these the EDLUT
simulator can be used for a direct comparison as it was used to
build a model of the GLN. EDLUT is able to run simulations of
100, 000 integrate-and-fire neurons in real time (Ros et al., 2006),
as long as the overall network activity remains low, i.e., the total
number of spikes traveling in the network is small. The same
kind of limitation is affecting all the aforementioned simulators.
Conversely, our hybrid simulator does not suffer from this
limitation. However, it is yet unable to run real time simulations.
Its inherently scalable mathematical basis, that allows to run a
direct translation on massively parallel GPU hardware or FPGA,
gives us confidence gaining simulation speed by applying simple
changes to the original code.

By proceeding on the path here traced, some improvements
should be taken into account in a forthcoming work. A major
objective should concern how much the network behaviors here
reproduced are related to the specific properties of the FitzHugh-
Nagumo single-cell description. Moreover, one should evaluate if
a different single-cell model is able to reproduce other significant
behaviors such as resonant dynamics (Gandolfi et al., 2013). An
extension to 3D representation of network structure can also be

provided. This extension would find a direct application to the
modeling of the cerebellum GLN as anticipated by anatomical
studies of MF projections in this layer (cf. Figure 7 of Sultan and
Heck, 2003). Finally, in order to make the model more realistic,
future work should include the plasticity in communication
strength among neurons.

Recent development of neuromorphic software highlighted
the relevance of the interaction of sub-networks to build complex,
high-level cognitive phenomena for processing and learning
of verbal information (Golosio et al., 2015) or multilayered
artificial neural networks able to perform very efficient learning

representations of big datasets with multiple levels of abstraction
(LeCun et al., 2015). In these examples the single neuronal
units can be, and often are, a very simple abstraction of
real neurons, far from biologically realistic neuronal models.
Nonetheless, the whole network is able to perform surprisingly
well or even outperform human operators in complex tasks.
We believe that reduced models of interaction among sub-
families of cells might be integrated to form composite
models describing more complex brain activities. From this
perspective, there is a precise interest in developing, testing
and validating reduced models, oriented toward network level
interactions — as done in the present paper for one specific kind
of interaction.
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