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On the extendability of parallel sections of linear connections

Antonio J. Di Scala∗, Gianni Manno†

June 2, 2015

Abstract

Let π : E → M be a vector bundle over a simply connected manifold, ∇ a linear connection in π, and
σ : U → E a ∇-parallel section of π defined on a connected open subset U of M . We give sufficient conditions
on U in order to extend σ to the whole of M . We mainly concentrate on the case when M is a 2-dimensional
simply connected manifold.

MSC 2010: 14J60, 53C29.

Keywords: Linear connections, parallel sections, extendability.

1 Introduction

Many interesting problems in Differential Geometry can be formulated in terms of the existence of parallel sections
of suitably defined linear connections in certain vector bundles. For example, if (M, g) is a pseudo-Riemannian
manifold, the existence of a Killing vector field turns out to be equivalent to the existence of a parallel section
of the Kostant connection ∇̃ in the vector bundle TM ⊕ so(TM) over M (which is canonically isomorphic to
TM ⊕ Λ2M via the metric) defined as follows (see also [4, 11, 17]):

∇̃X(Y,A) :=

(
∇XY −A(X), ∇XA− R(X,Y )

)
, (1)

where X is a vector field on M , ∇X is the covariant derivative associated with the Levi–Civita connection of
(M, g), and R the curvature.

Similarly, a projective vector field, i.e., a vector field which preserves the geodesics, understood as unparametrized
curves, is a parallel section of a suitable linear connection in the adjoint tractor bundle associated with the so-
called projective structure [7] (the general theory behind is developed in [8], where the projective case is briefly
discussed). More interesting examples can be found in the context of tractor calculus. For instance, the property
of (M, g) of being conformally flat is equivalent to the flatness of the tractor connection discussed in [3]. In a
broader perspective, the existence of an Einstein metric in the conformal class [g] amounts to the possibility of
finding a parallel section of the tractor connection [15].
The examples above represent the main contexts where the existence of a parallel section plays a prominent role.
Such an existence can be sometimes established only on an open and dense subset U ⊂ M , so that it is natural
to ask under which conditions the parallel section can be made global. Standard examples (see Section 2) show
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that, in general, these conditions are non-trivial, and suitable assumptions on U and M must be made. Even
more common are the circumstances where the existence of a parallel section can be proved in the neighborhood
of almost every point of M , naturally leading to the problem of gluing such sections into a global one. Such kind
of situation must be faced, for instance, in the study of the singular (local) action of the Lie algebra of projective
vector fields on a 2-dimensional pseudo-Riemannian manifold (M, g). Indeed, in [5] it has been proved that the
set of points on which such an action is locally regular (i.e., the points possessing a neighborhood foliated by
orbits of constant dimension) forms an open dense subset of M , and that a Killing vector field (which is a parallel
section of the connection (1)) exists in a neighborhood of any regular point.

The following problem sums up the above questions.

Problem 1. Let π : E → M be a vector bundle over a simply connected manifold M and ∇ a linear connection
in π. Let σ : U → E be a non-zero ∇-parallel section defined on a connected, open, and dense subset U of M .
Does σ extend to a parallel section to the whole of M?

There are two circumstances in which Problem 1 admits a (not so hard) positive solution. One of them occurs
when π is a rank–one vector bundle. In such a case, the existence of a non-zero parallel section on a dense subset
implies that the curvature tensor R∇ vanishes identically, so that the connection is flat and σ can be extended to
the whole of M . The other case occurs when π has rank two and it is endowed with a metric compatible with
∇. Now, the existence of a parallel section σ on a dense subset implies that R∇ vanishes identically and, again,
σ can be extended to the whole of M .

In Section 2 we give examples showing that neither the hypothesis of connectedness of U nor the hypothesis of
simply-connectedness of M can be discarded. However, if the complement F := M \ U has higher codimension
we can drop the hypothesis of simply-connectedness. Namely, we will prove Theorem 1 below, which is the first
result of this paper.

Theorem 1. Let π : E → M be a vector bundle over a connected manifold M and ∇ a linear connection in π.
Let σ : U → E be a non-zero ∇-parallel section defined on an open subset U of M whose complement F := M \U
is contained in a smooth submanifold of codimension greater or equal to 2. Then σ can be extended to the whole
of M as a parallel section.

In [6] R. Bryant discussed the existence of a Killing vector field defined on a compact Riemann surface M minus
a finite number of points: thanks to Theorem 1, such a problem can now be easily solved (see Remark 4).

In Section 3 we introduce two conditions, herewith denoted by R and R+, which can be fulfilled by an open subset
U ⊂ R2. We prove that, under the condition R (resp., R+), a ∇-parallel section σ : U → E of a vector bundle
E → R2, where ∇ is a metric (resp., general) connection, can be extended to the whole of R2. More precisely, we
will prove Theorem 2 below, which is the second result of this paper.

Theorem 2. Let π : E → R2 be a vector bundle endowed with a linear connection ∇. Let σ : U → E be a
∇-parallel section defined on the open and dense subset U ⊂ R2. Then σ can be extended to the whole of R2 as a
∇-parallel section if at least one of the following conditions holds:

(i) there exists a ∇-parallel metric g on E and the domain U of σ satisfies the condition R;

(ii) the domain U of σ satisfies the condition R+.

In Section 3.2 we show that an open and connected subset U of R2 satisfies the condition R if its complement
R2 \ U is a compact set of (Lebesgue) measure zero.
As an interesting application of Theorem 2, item (ii), we prove that a Killing vector field defined on a Riemann
surface minus a segment1 can be always extended to the whole of the Riemann surface. Such extension can be
also obtained by using a radial extension (see Remark 5).

1Here by a segment we mean a segment in some coordinate system.
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Remark 1. By the uniformization theorem, a 2-dimensional simply connected manifold is either the plane R2 or
the sphere S2. In order to adapt our extension theorem (Theorem 2) to the case of a vector bundle E → S2, it
suffices to remove a point from U and restrict the vector bundle to R2.

Even though Theorem 1 and Theorem 2 can be used for extending projective (in particular Killing, affine, homo-
thetic) vector fields, they cannot be applied to the class of conformal vector fields (Section 6). The point here
is that such vector fields, in the 2-dimensional case, are not parallel sections of a vector bundle endowed with a
linear connection.

Finally, in Section 7 we study the extendibility of Killing vector fields by using the Kostant connection.

It is worth mentioning that the main results of this paper have been used in [16] in the context of tractor
connections.

2 Why the hypotheses of connectedness of Problem 1 are essential

The examples below show that both the hypothesis of connectedness of U and that of simply-connectedness of
M in Problem 1 are essential. To begin with, we show that it is not possible to drop the hypothesis on the
connectedness of U .

Example 1. Let R2 = {(x, y)} be the standard Euclidean plane and X the Killing vector field (which, we recall,
is a particular parallel section of the connection ∇̃, see (1)) defined on U = R2 \ {(x, y) | y = 0} as follows:

X =

{
(1, 0) if y > 0
(0, 1) if y < 0

It is obvious that X cannot be extended to the whole of R2.

Now we list several examples regarding the hypothesis that M is simply connected.

Example 2. Let E := S1 × R be the trivial vector bundle over the circle S1 and e : p ∈ S1 → (p, 1) a section of
E. The non-exact 1-form dθ on S1, where θ is the angle coordinate, gives rise to a connection ∇ in E, i.e., the
derivative of the section e is given by

∇e := dθ ⊗ e .

Let p ∈ S1 and U := S1 \ {p}. Since U is an interval, there exists, by parallel transporting ep along U , a non-zero

∇-parallel section σ : U → E. Since the equation df
dθ + f = 0 has no non-zero periodic solutions, σ cannot be

extended to S1.

Example 3. Let Σ ⊂ R3 be a Möbius strip in the Euclidean space, which is the standard example of a non-
orientable surface. Denote by ν(Σ) the normal bundle of Σ endowed with the normal connection ∇⊥. It is
well-known that, by removing the central circle γ of Σ, one obtains a cylinder U := Σ \ γ, which is a connected
and orientable open subset. So, the restriction to U of the normal bundle ν(Σ) admits a ∇⊥-parallel section σ.
Since the Möbius strip is not orientable, the section σ cannot be extended to the whole of Σ.

Another way of constructing examples is to use a flat connection in a vector bundle over a compact Riemann
surface Σ of genus ≥ 1. Indeed, it is well-known (see e.g. [1, page 559]) that an irreducible representation ρ of
π1(Σ) gives rise to a flat connection γ whose holonomy group is ρ(π1(Σ)). Thus, such a connection admits no
global parallel sections. On the other hand, a compact Riemann surface is obtained from a polygon by gluing
together pairs of edges. The interior U of such a polygon is simply connected so that the restriction of γ to U gives
rise to a flat bundle over U , implying the existence of a globally defined ∇-parallel section σ on U . As explained
above, the section σ cannot be extended to the whole of Σ.
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3 The conditions R and R+

Let U ⊆ R2 be an open subset. Definitions 1 and 2 below clarify, respectively, the meaning of the conditions R
and R+ on U .

Definition 1. An open subset U ⊂ R2 satisfies the condition R if there exists a point p0 ∈ U and a dense subset
V ⊂ U such that for any p ∈ V there is a compact subset Kp containing the segment p0p such that for any ϵ > 0
there exist disjoint subsegments Ii ⊂ p0p and piecewise smooth curves γi ⊂ U , i = 1, . . . , n with the following
properties: p0p \

∪
i Ii ⊂ U and the concatenation Ii♯γi of Ii and γi forms, for each i ∈ {1, . . . , n}, a continuous

piecewise smooth Jordan curve bounding a region Si contained in the compact subset Kp such that

n∑
i=1

µ(Si) ≤ ϵ

where µ is the Lebesgue measure.

p0

p

γ1

γ2

γ3

γ4

F1

F2

F3

Kp

I1

I2

I3

I4

Figure 1: Example of condition R for the complement U of the closed set F = F1 ∪ F2 ∪ F3.

Definition 2. An open subset U ⊂ R2 satisfies the condition R+ if there exists a point p0 ∈ U and a dense subset
V ⊂ U such that for any p ∈ V there is a compact subset Kp containing the segment p0p such that for any ϵ,G > 0
there exist disjoint subsegments Ji ⊂ p0p and piecewise smooth curves γi ⊂ U , i = 1, . . . , n with the following
properties: p0p \

∪
i Ji ⊂ U and the concatenation Ji♯γi of Ji and γi forms, for each i ∈ {1, . . . , n}, a continuous

piecewise smooth Jordan curve bounding a region Si contained in the compact subset Kp such that

e
G
2
Lγ

n−1∑
i=0

eGLiµ(Si) < ϵ

where µ is the Lebesgue measure, Lγ is the sum of the lengths of the curves γi, and

Li = max
s∈[0,1]

{length(his)} , his(t) := hi(t, s) ,

where hi is a homotopy of the region Si relative to the endpoints of Ji deforming γi to the segment Ji.
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3.1 Example: the complement of a segment satisfies the condition R+

For any segment I ⊂ R2, we show that the complement U := R2 \ I is an open subset fulfilling the condition R+.
Without loss of generality we can assume that I = {(x, 0) : 0 ≤ x ≤ 1}. Let p0 = (12 ,

1
2) ∈ U . Set V = U and let

p = (px, py) ∈ V = U . Notice that if the segment p0p is disjoint from I then the property R+ holds trivially. So,
assume that p0p ∩ I is not empty. Let Kp ⊂ R2 be a closed ball centered at (0, 0) whose interior contains both
the interval I and the point p. Observe that p0 is an internal point of Kp. Let G and ϵ be as Definition 2. Let

Tδ = {q ∈ R2 : dist(q, I) ≤ δ}

be the set of points whose distance from I is less or equal to δ. Fix δ < min{1
2 , py} small enough such that Tδ

is contained in the interior of Kp. Let p1, p2 be the two points of the intersection p0p ∩ ∂Tδ, and assume that
p1 is the closest one top0. Set p3 := p and γ0 = p0p1. The curve γ1 is one of the two connected components of
∂Tδ \ {p1, p2}, and γ2 := p2p3. Now µ(S0) = µ(S2) = 0 and

µ(S1) ≤ µ(Tδ) = 2δ + πδ2 ;

Lγ ≤ dist(p, p0) + perimeter(Tδ) = dist(p, p0) + 2 + 2πδ.

Set h(x, s) := x(sp2 + (1 − s)p1) + (1 − x)γ1(s), where γ1(s) is a parametrization of γ1 from p1 to p2 and
(x, s) ∈ [0, 1]× [0, 1]. Then h is the homotopy required in Definition 2; since S1 is convex, we see that the curves
h(x, ·) are always contained in S1. The length of the curves h(x, ·) are always bounded by the length of γ1. Then

e
G
2
LγeGL1µ(S1) ≤ e

G
2
(dist(p,p0)+2+2πδ)eG(2+2πδ)(2δ + πδ2) .

Now it is clear that for ϵ > 0 there exists a number δ > 0 such that

e
G
2
LγeGL1µ(S1) ≤ e

G
2
(dist(p,p0)+2+2πδ)eG(2+2πδ)(2δ + πδ2) < ϵ .

This shows that the complement of I satisfies the property R+.

3.2 The case when R2 \ U is a compact set of Lebesgue measure zero

Here we prove the following proposition.

Proposition 1. Let U ⊂ R2 be an open and connected subset whose complement F = R2 \ U is a compact set of
measure zero. Then U satisfies the property R.

Proof. Let us fix a point p0 ∈ U . Let p ∈ U be any other point. Since F is compact there exists a disc Kp

containing F and the segment p0p in its interior. Let ϵ be small enough such that F can be covered with an
union D of discs contained in Kp and whose measure µ(D) is smaller than ϵ. In view of the compactness of F , we
can assume that D is a finite union of discs. The set D has a finite number of connected components. Assume
now that the connected components of D intersecting the segment p0p are also simply connected. By starting
at p0 and moving along the segment p0p we will meet a first point a1 belonging to the boundary of one of the
components of D. In the case when a1 belongs to several connected components we just select one of them and
call it D1. Since D1 is simply connected, by following its boundary, we will meet the segment p0p at a point
b1 ∈ p0p such that both the segment I1 = a1b1 and the boundary curve γ1 from a1 to b1 are as in the condition
R, i.e., their concatenation I1♯γ1 is a continuous piecewise smooth Jordan curve bounding a region S1 contained
in D1. Now, by starting at the point b1 and moving towards p along p0p, we will meet another point a2 of the
boundary of one of the connected components of D. Now we can deal with a2 much as we did with a1. Namely, by
following the boundary of the respective connected component, we will get another point b2 ∈ p0p such that both
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the segment I2 = a2b2 and the boundary curve γ2 from a2 to b2 are as in the condition R, i.e., their concatenation
I2♯γ2 is a continuous piecewise smooth Jordan curve bounding a region S2 contained in the respective connected
component. Then, by starting at b2, we can repeat the above reasoning to construct a finite sequence of segments
Ii and boundary curves γi, i = 1, · · · , N as in the condition R. Since all the regions Si are included in D, we get
that

N∑
i=1

µ(Si) ≤ µ(D) ≤ ϵ ,

showing that, under the hypothesis that all the connected components of D intersecting the segment p0p are
simply connected, the condition R holds.

Now assume that a connected component A of D is not simply connected.

Claim: There are finitely many connected and simply connected subsets A1, · · · ,Ak ⊂ A such that

F ∩A ⊂
k∪

j=1

Aj ,

where Aj , j = 1, · · · , k, are described as follows. For each j ∈ {1, · · · , k} there exists nj ∈ N such that
Aj =

∪nj

i=1Wij , where each Wij is either a disc or a broken disc. Here by a broken disc we mean one of
the two connected components of B \ γ where B is a disc and γ is a simple polygonal curve, made up of a finite
number of segments, starting at x ∈ ∂B and ending at y ∈ ∂B, x ̸= y.

To prove the above claim we show that the complement A′ = R2\A has a finite number of connected components.
Indeed, since A is a finite union of discs, the common boundary ∂A = ∂A′ is the union of a finite number of arcs
of disc. Let us denote by A the finite set of such arcs, i.e., ∂A = ∪β∈Aβ and let 2A be its power set.
Observe that, since A is bounded, there is just one unbounded connected component T of A′. Let M and N be
two different bounded connected components of A′. Both the boundaries ∂M and ∂N are made up of a finite
number of arcs of A. Moreover, if an arc of A belongs to ∂M , then it cannot belong to ∂N . For each connected
component M of A′, let AM be the set of arcs β ∈ A belonging to ∂M . Let C be the set of connected components
of A′. Then the map f : C → 2A defined by f(M) := AM is injective. This shows that A′ has a finite number of
connected components.
Let T,M1, · · · ,Mc, c ∈ N, be the (disjoint) connected components of A′. Let t ∈ int(T) and x ∈ int(M1). Observe
that t, x ∈ U . Since U is open and connected, there exists a simple polygonal curve γ ⊂ U , made up of a finite
number of segments, starting at x and ending at t. Set A1 := A \ γ. Observe that A1 is the union of a finite
number of discs or broken discs. Notice also that

F ∩A ⊂ F ∩A1 .

Moreover, the number of bounded connected components of (A1)′ := R2 \A1, which we denote by c1, is less or
equal to c−1. So, if c1 = 0, then A1 is simply connected with a finite number of connected components A1, · · ·Ak

as we claimed. If c1 > 0, then we can repeat the same reasoning we used to construct A1 from A. Thus, we get
a sequence of subsets A ⊃ A1 ⊃ A2 ⊃ · · · such that the number of connected components of (Ai)′ := R2 \Ai is
strictly decreasing, where Ai is a finite union either of discs or broken discs and

F ∩A ⊂ F ∩Ai

for each i. Thus, there exists a number i0 such that R2 \ Ai0 has just one connected component, so that any
connected component of Ai0 is simply connected. This proves the claim above.
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This concludes the proof of Proposition 1 as we can assume that any connected component A of D is simply
connected and argue as before.

Remark 2. As a by-product of the proof we have the following result. Let F ⊂ R2 be a compact subset of Lebesgue
measure zero µ and ϵ > 0 a positive real number. Then there exists a finite number of disjoint connected and
simply connected subsets Ai, i = 1, · · · , k, such that F ⊂

∪k
i=1Ai and

∑k
i=1 µ(Ai) < ϵ.

Remark 3. Notice that the hypothesis of compactness on F is just used to find a simply connected compact set
Kp containing all the connected components of the intersection of F and the segment p0p in its interior. So the
above proof applies also to non-compact subsets F whose all connected components are compact.

4 Proof of Theorem 1

Here it follows the proof of Theorem 1.

Proof. Since the domain of σ is assumed to be dense, it is enough to show that σ can be extended around any
point of F . So, let p ∈ F be a point where σ is not defined. Let S ⊂ M be the submanifold of codimension ≥ 2
which contains F . Then there exists a local coordinate system (x1, · · · , xm) of M centered at p such that S is
locally described by the system {x1 = x2 = · · · = xm−s = 0}, where s = dim(S). Let ϵ be small enough such
that an open ball Bq centered at q = (ϵ, 0, 0, · · · , 0) ∈ M is contained in the domain of the coordinate system
(x1, · · · , xm) and p ∈ Bq. Observe that q belongs to the open subset U . Consider the smooth section σ̃ defined on
Bq by parallel transporting σ̃(q) := σ(q) along the radial lines through the point q. If L is a radial line through
the point q which does not intersect S, then

σ̃|L = σ|L .

Observe that the subset G ⊂ Bq made of the points x ∈ Bq such that the radial line xq does not intersect S is
dense in Bq. Indeed, the radial lines through q which intersect S are contained in the intersection of Bq with the
hyperplane x2 = 0. Then,

σ̃|Bq
∩

U = σ|Bq
∩

U .

Since Bq
∩

U is dense in Bq, σ̃ is a ∇-parallel section on Bq. Now it is clear that σ has been extended as a parallel
section to U

∪
Bq.

Remark 4. The above result can be used to give a different solution to the problem of the extension of a Killing
vector field defined on a Riemannian surface minus a finite number of points, discussed by R. Bryant in [6].

5 Proof of Theorem 2

The idea behind the proof of Theorem 2 consists in using a suitable estimate, involving the curvature of the
connection, to control the parallel transport along curves. To this aim, we need the following lemma.

Lemma 1. Let a ∈ R. Let f(t) and g(t) be two continuous functions for t ≥ a. Let u(t) be a C1 function for
t ≥ a. If {

u′(t) ≤ f(t)u(t) + g(t) , t ≥ a
u(a) = u0

(2)

then

u(t) ≤ u0e
∫ t
a f(x)dx +

∫ t

a
g(s)e

∫ t
s f(x)dxds. (3)

Observe that the right-hand side term of (3) is the solution to the Cauchy problem obtained by imposing the
equality in the system (2).
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Proof. A direct computation shows that (2) can be written as

d

ds

(
u(s)e

∫ t
s f(x)dx

)
≤ g(s)e

∫ t
s f(x)dx , s ≥ a , u(a) = u0

and integrating over s from a to t we obtain (3).

Proposition 2. Let π : E → R2 be a vector bundle endowed with a linear connection ∇ and g a metric on π
(not necessarily compatible with the connection ∇). Let γ0 and γ1 be two curves starting at p ∈ R2 and ending at
q ∈ R2. Let γ : [0, 1]× [0, 1] → R2 be a smooth homotopy between γ0 and γ1 relative to the endpoints p, q which is
1-1 when restricted to (0, 1)× [0, 1]. Let S := γ([0, 1]× [0, 1]). Then

∥τγ0(ξp)− τγ1(ξp)∥g ≤ ∥ξp∥g R eGLµ(S) (4)

where τγi(ξp) is the parallel transport from p to q of ξp ∈ π−1(p) along γi, µ(S) is the area of S w.r.t. the Lebesgue
measure µ of R2, R is a constant depending only on the metric g and on the curvature tensor R∇ of ∇ on S,
L = max

s∈[0,1]
{length(γs)}, γs(t) := γ(t, s), and G is a constant controlling the norm of the tensor ∇g on S, i.e. the

constants G and R depend only on the image S of the homotopy and not on the homotopy itself.

Proof. We denote by ∥ξ∥2g := g(ξ, ξ) the square of the norm of the vector ξp of the fiber Ep := π−1(p). If v is a
tangent vector of R2, its norm ∥v∥ is taken w.r.t. the flat standard Riemannian metric.
Regarding the curvature tensor R∇ as a map R∇ : Λ2T(x,y)R2 → End(E(x,y)), we have

g(R∇(v ∧ w)η, ξ) = g(R∇(v, w)η, ξ)

with v, w ∈ T(x,y)R2 and η, ξ ∈ E(x,y). Since S is compact, there exists a constant R such that

g(R∇(v ∧ w)η, ξ) ≤ R∥v ∧ w∥ ∥ξ∥g ∥η∥g

for all tangent vectors v, w of S and η, ξ ∈ π−1(S), where ∥v ∧ w∥ is the area of the parallelogram spanned by
v, w.
We denote by ∂t and ∂s, respectively, the vector fields ∂ γ

∂t and ∂ γ
∂s , both tangent to S at the point γ(t, s). Let us

define X(t, s) as the parallel transport of ξp ∈ π−1(p) along γs at the instant t (see Figure 2). We have

∥τγ0(ξp)− τγ1(ξp)∥g = ∥X(1, 1)−X(1, 0)∥g ≤
∫ 1

0

∥∥∥∥DdsX(1, s)

∥∥∥∥
g

ds. (5)

The symbol D
dsX(t, s) stands for the covariant derivative along the curve s → γt(s) := γ(t, s) (i.e. t is fixed)

associated with ∇. Thus, for (t, s) ∈ (0, 1) × (0, 1), D
dsX(t, s) = ∇∂sX(t, s) and D

dsX(1, s) = ∂X(1,s)
∂s is the

derivative in the vector space Eq of the curve X(1, s) ∈ Eq, see Chapter 2 of [13] for more details. So, the above
estimate is obtained by applying the fundamental theorem of the integral calculus.
The tensor (∇vg)(ξ, η) := v

(
g(ξ, η)

)
− g(∇vξ, η)− g(ξ,∇vη) is continuous so that, by the compactness of S, there

exists a real constant G such that
(∇vg)(ξ, η) ≤ G∥v∥ ∥ξ∥g ∥η∥g

where ∥v∥ is the norm of the tangent vector v of S and η, ξ ∈ π−1(S). Then

∂t∥X∥2g = ∇∂tg(X,X) ≤ G∥∂t∥ ∥X∥2g ,
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p

q

γ1

γ0

ξp

X(1, 1)

X(1, 0)

X(1, s)

γs

S

Figure 2: X(t, s) is constructed by parallel transporting ξp along γs.

so that, in view of Lemma 1, we obtain

∥X(t, s)∥g ≤ ∥ξp∥g
(
e
∫ t
0 G∥∂t∥(t′,s)dt′)

) 1
2 ≤ ∥ξp∥ge

GL
2 (6)

where L = max
s∈[0,1]

{length(γs)}.

Now we estimate
∥∥DX

ds

∥∥
g
. From the equation

∂t

∥∥∥∥DX

ds

∥∥∥∥2 = 2g

(
D

dt

DX

ds
,
DX

ds

)
+∇∂tg

(
DX

ds
,
DX

ds

)
= 2g

(
R∇(∂t, ∂s)X ,

DX

ds

)
+∇∂tg

(
DX

ds
,
DX

ds

)
and the above inequalities we get

∂t

∥∥∥∥DX

ds

∥∥∥∥2
g

≤ 2R ∥∂t ∧ ∂s∥ ∥ξp∥ge
GL
2

∥∥∥∥DX

ds

∥∥∥∥
g

+G ∥∂t∥
∥∥∥∥DX

ds

∥∥∥∥2
g

,

which implies

∂t

∥∥∥∥DX

ds

∥∥∥∥
g

≤ R ∥∂t ∧ ∂s∥ ∥ξp∥ge
GL
2 +

G ∥∂t∥
2

∥∥∥∥DX

ds

∥∥∥∥
g

.

By Lemma 1 we obtain ∥∥∥∥DX(t, s)

ds

∥∥∥∥
g

≤
∫ t

0
R ∥∂t ∧ ∂s∥(t′,s) ∥ξp∥ge

GL
2 e

(∫ t
t′

G ∥∂t∥(t′′,s)
2

dt′′
)
dt′

and, consequently, ∥∥∥∥DX(t, s)

ds

∥∥∥∥
g

≤ ∥ξp∥g R eGL

∫ t

0
∥∂t ∧ ∂s∥(t′,s) dt′ .

Finally, from equation (5), we have

∥τγ0(ξp)− τγ1(ξp)∥g ≤
∫ 1

0

∥∥∥∥DdsX(1, s)

∥∥∥∥
g

ds ≤ ∥ξp∥g R eGL

∫ 1

0

∫ 1

0
||∂t ∧ ∂s|| dtds ,

which is that we wanted to show.
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Proof of Theorem 2. Assume that condition (i) of Theorem 2 holds. Let p0 ∈ U be the point given by the
conditionR (see Definition 1) and ξ the smooth section defined on the whole of R2 obtained by parallel transporting
ξ(p0) := σ(p0) along the radial straight lines starting at p0. Observe that σ ≡ ξ near p0. We first prove that
σ(p) = ξ(p) ∀ p ∈ V , where V is a dense subset of the domain U of σ. Fix p ∈ V and a compact Kp containing
the segment p0p as in Definition 1. We relabel the segments Ii (and the corresponding curves γi and regions Si)
of Definition 1 in order to obtain a sequence of subsegments on the oriented segment −→p0p. Let ai and bi be the
endpoints of Ii. The strategy is to apply the estimate of Proposition 2 to each region Si. Since g is compatible
with ∇, the constant G which appears in Proposition 2 is equal to zero. Since the regions Si are inside the compact
set Kp, we have an uniform bound R for the norm of the curvature tensor R∇ on Kp. We have that

∥ξ(p)− σ(p)∥g = ∥ξ(bn)− σ(bn)∥g = ∥τInξ(an)− τγnσ(an)∥g =

= ∥τInξ(an)− τInσ(an) + τInσ(an)− τγnσ(an)∥g
≤ ∥τInξ(an)− τInσ(an)∥g + ∥τInσ(an)− τγnσ(an)∥g
≤ ∥ξ(an)− σ(an)∥g + ∥τInσ(an)− τγnσ(an)∥g
≤ ∥ξ(bn−1)− σ(bn−1)∥g + ∥τInσ(an)− τγnσ(an)∥g

Since the region Sn, whose boundary is formed of the segment In and the curve γn, is simply connected (by
Definition 1), we can use the Riemann mapping theorem to map Sn in a 1-1 way onto the unit disc ∆ ⊂ R2.
Under such a mapping, the segment In and the curve γn are mapped, respectively, into two complementary arcs
δ1 and δ2 of the unit circle. Hence we can construct a smooth 1-1 homotopy γ : [0, 1]× [0, 1] → ∆ between δ1 and
δ2 relative to their endpoints. The pullback of γ by the aforementioned Riemann mapping is a homotopy between
In and γn. Then, by applying Proposition 2 to the region Sn, we obtain

∥ξ(bn)− σ(bn)∥g ≤ ∥ξ(bn−1)− σ(bn−1)∥g +R∥σ(an)∥gµ(Sn) = ∥ξ(bn−1)− σ(bn−1)∥g +R∥σ(p0)∥gµ(Sn)

By repeating the above procedure for j = n− 1, · · · , 1 we get

∥ξ(bj)− σ(bj)∥g ≤ ∥ξ(bj−1)− σ(bj−1)∥g +R∥σ(p0)∥gµ(Sj)

and, consequently,

∥ξ(p)− σ(p)∥g = ∥ξ(pn)− σ(pn)∥g ≤ R∥σ(p0)∥g
n∑

i=1

µ(Si) ≤ R∥σ(p0)∥g ϵ .

In view of the arbitrariness of ϵ, ξ = σ on V ⊂ U . Thus, ξ ≡ σ on U as V is dense in U . Finally, ξ is parallel on
the whole of R2 due to the fact that U is a dense subset of R2. This proves the theorem under the hypothesis of
item (i).

Now, assume that condition (ii) of Theorem 2 holds. Let p0 ∈ U be the point given by the condition R+ (see
Definition 2). Let g be a metric on the vector bundle π : E → R2 such that ∥σ(p0))∥g = 1. As in the previous
case, let ξ be the smooth section defined on the whole of R2 obtained by parallel transporting ξ(p0) := σ(p0) along
the radial straight lines starting at p0. We shall prove that σ(p) = ξ(p) ∀p ∈ V , where V is a dense subset of the
domain U of σ. Fix p ∈ V and Kp containing the segment p0p as in Definition 2. Let G be a bound for the norm
of tensor ∇g on the compact subset Kp. By using the same notations we introduced in the previous case, we have
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that
∥ξ(p)− σ(p)∥g = ∥ξ(pn)− σ(pn)∥g = ∥τIn−1ξ(pn−1)− τγn−1σ(pn−1)∥g =

= ∥τIn−1ξ(pn−1)− τIn−1σ(pn−1) + τIn−1σ(pn−1)− τγn−1σ(pn−1)∥g
≤ ∥τIn−1ξ(pn−1)− τIn−1σ(pn−1)∥g + ∥τIn−1σ(pn−1)− τγn−1σ(pn−1)∥g
≤ ∥ξ(pn−1)− σ(pn−1)∥ge

G
2
∥pn−pn−1∥ + ∥τIn−1σ(pn−1)− τγn−1σ(pn−1)∥g

≤ ∥ξ(pn−1)− σ(pn−1)∥ge
G
2
∥pn−pn−1∥ +R∥σ(pn−1)∥geGLn−1µ(Sn−1)

≤ ∥ξ(pn−1)− σ(pn−1)∥ge
G
2
∥pn−pn−1∥ +Re

GLγ
2 eGLn−1µ(Sn−1)

where the last two inequalities are obtained in view of Proposition 2 and inequality (6).
By repeating the above procedure for j = n− 1, · · · , 1 we get

∥ξ(pj)− σ(pj)∥g ≤ ∥ξ(pj−1)− σ(pj−1)∥ge
G
2
∥pj−pj−1∥ +Re

GLγ
2 eGLj−1µ(Sj−1)

and, consequently,

∥ξ(p)− σ(p)∥g = ∥ξ(pn)− σ(pn)∥g ≤ Re
G
2
Lγe

G
2
∥p−p0∥

n−1∑
i=0

eGLiµ(Si) ≤ Re
G
2
∥p−p0∥ ϵ .

In view of the arbitrariness of ϵ, ξ = σ on V ⊂ U . Thus, ξ ≡ σ on U as V is dense in U . Finally, ξ is parallel on
the whole of R2 due to the fact that U is a dense subset of R2. This proves the theorem under the hypothesis of
item (ii).

6 Extendability of projective vector fields and non-extendability of confor-
mal ones

We recall, from the introduction, that projective vector fields can be regarded as parallel sections of a suitably
constructed linear connection. Thus, a projective vector field defined on a open set U ⊂ R2 satisfying the condition
R+ of Definition 2 can be extended to the whole of R2. We underline that such result applies also to Killing,
affine, and homothetic vector fields as they are special projective vector fields.
One can ask if this result holds for some more general class of vector fields, for instance for that of conformal ones.
Below we see that, in dimension 2, this is not the case. Indeed, in dimension 2, conformal Killing vector fields
cannot be regarded as parallel sections of a linear connection in a vector bundle, whereas, for dimension greater
than 2, they can be seen as parallel sections of the so called Geroch connection [14, 19].
It is well-known that a conformal Killing vector field X of the Euclidean plane R2 is given by a holomorphic
function f . In fact, if

X(x, y) = u(x, y)
∂

∂x
+ v(x, y)

∂

∂y

is a conformal Killing vector field defined on U , then f(z) = u(z) + iv(z) belongs to the set of holomorphic
functions O(U) on U . Indeed the flow FX

t consists of holomorphic maps, i.e., FX
t ∈ O(U) for small values of t.

Since the operators d
dt and ∂ commute, we have that(

∂ ◦ d

dt

)
FX
t =

(
d

dt
◦ ∂

)
FX
t = 0

which shows that f(z) = d
dt

∣∣
t=0

FX
t (z) is holomorphic.
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The function 1/z defines a conformal Killing vector field X on the open and connected subset U = C \ {0}. Since
X is unbounded near 0 (i.e. the Euclidean length of the vector field X goes to infinity when approaching the
origin), it cannot be extended to the plane C. Observe that if a bounded conformal Killing vector field defined
on an open set U minus a discrete subset, then by Riemann’s extension theorem it can be extended to the whole
of U (see [18] for a general discussion regarding arbitrary 2-dimensional pseudo-Riemannian metrics).

Now we give an example of a bounded conformal Killing vector field X defined on R2 minus a segment that
cannot be extended to the whole of R2. As explained in [20, page 5], in order to construct the Riemann surface
of w2 = (z − r) · (z − s), r ̸= s ∈ C, we cut C = R2 along a segment I connecting the branching points r, s, thus
obtaining two single-valued branches, i.e. two holomorphic functions w1(z) , w2(z) : C\I → C. Observe that both
the functions w1, w2 are bounded. Therefore, by considering f(z) = w1(z), we get a bounded conformal Killing
vector field which cannot be extended to the whole of R2.

Remark 5. The above example shows that Bryant’s argument to solve the problem described in [6] (see also
Remark 4) can not be used to extend a Killing vector field X defined on a Riemann surface minus a segment on
the whole of the Riemann surface. However, by using the Kostant connection and considering a radial extension
of the parallel section associated with X, we see that X can be extended also in this case.

7 Extension of Killing vector fields of (R2, g)

In this section we prove the following theorem.

Theorem 3. Let R2 be the plane endowed with a Riemannian metric g. Let κ be the Gaussian curvature of g.
Assume that the differential of κ is nowhere vanishing. Let U ⊂ R2 be a connected, open and dense subset. If
(U, g) admits a Killing vector field X, then it extends to a Killing vector field of (R2, g).

For the proof of this theorem we will use the Kostant connection.

7.1 Local description of the Kostant connection

Let (x, y) be local isothermal coordinates about a point of (R2, g), i.e. the metric g is given by

ds2 = λ(dx2 + dy2) .

Let J be the complex structure given by J(∂x) = ∂y and J(∂y) = −∂x. Recall that J is parallel w.r.t. the
Levi-Civita connection of ds2.
Consider the bundle TR2 ⊕ so(TR2) endowed with the Kostant connection ∇̃ given by equation (1). The sections
ξ1 := (∂x, 0), ξ2 := (∂y, 0) and ξ3 := (0, J) are linearly independent, so that they form a frame of TR2 ⊕ so(TR2).
In order to prove Theorem 3, we need the following technical lemma.

Lemma 2. Let R∇̃ be the curvature tensor of ∇̃ and κ the Gaussian curvature of g. The matrices of the operators

R∇̃
∂x∂y

, (∇̃∂xR
∇̃)∂x∂y and (∇̃∂yR

∇̃)∂x∂y w.r.t. the frame {ξ1, ξ2, ξ3} are

R∇̃
∂x∂y =

 0 0 0
0 0 0

−κxλ −κyλ 0



(∇̃∂xR
∇̃)∂x∂y =

 0 0 0
κxλ κyλ 0
∗ ∗ −κyλ


12



(∇̃∂yR
∇̃)∂x∂y =

 0 0 0
κxλ κyλ 0
∗ ∗ −κxλ


Proof. The proof of the above lemma is based on straightforward computations. Let ξ = (Z, 0) be a section of
the Kostant bundle. Then

∇̃∂xξ = (∇∂xZ,−R(∂x, Z))

where R(X,Y )Z = κ(X ∧ Y )Z. Then

∇̃∂y∇̃∂xξ = (∇∂y∇∂xZ +R(∂x, Z)(∂y),−∇yR(∂x, Z)− R(∂y,∇∂xZ))

So
R∇̃

∂x∂yξ = (∇∂x∇∂yZ +R(∂y, Z)(∂x),−∇xR(∂y, Z)− R(∂x,∇∂yZ))

−(∇∂y∇∂xZ +R(∂x, Z)(∂y),−∇yR(∂x, Z)− R(∂y,∇∂xZ))

= (0,∇yR(∂x, Z) + R(∂y,∇∂xZ)−∇xR(∂y, Z)− R(∂x,∇∂yZ))

(0, (−κ⟨Z, ∂y⟩)yJ + κ⟨∇∂xZ, ∂x⟩J − (κ⟨Z, ∂x⟩)xJ + κ⟨∇∂yZ, ∂y⟩J)

Then
R∇̃

∂x∂yξ1 = −κxλ ξ3 , R∇̃
∂x∂yξ2 = −κyλ ξ3 , R∇̃

∂x∂yξ3 = 0

Now we compute the covariant derivatives of the sections ξ1, ξ2, ξ3.

∇̃∂yξ1 = (∇∂y∂x , −R(∂y, ∂x)) = (∇∂y∂x , κ∂x ∧ ∂y) = (∇∂y∂x , −κλJ) =

=

(
λy

2λ
∂x +

λx

2λ
∂y , −κλJ

)
=

λy

2λ
ξ1 +

λx

2λ
ξ2 − κλξ3

∇̃∂xξ1 = (∇∂x∂x , 0) =

(
λx

2λ
∂x −

λy

2λ
∂y, 0

)
=

λx

2λ
ξ1 −

λy

2λ
ξ2

∇̃∂yξ2 = (∇∂y∂y , 0) =

(
−λx

2λ
∂x +

λy

2λ
∂y, 0

)
= −λx

2λ
ξ1 +

λy

2λ
ξ2

∇̃∂xξ2 = (∇∂x∂y , −R(∂x, ∂y)) =
λy

2λ
ξ1 +

λx

2λ
ξ2 + κλξ3

∇̃∂yξ3 = (−J(∂y), 0) = (∂x, 0) = ξ1

∇̃∂xξ3 = (−J(∂x), 0) = (−∂y, 0) = −ξ2

Now we are in position to compute the covariant derivatives of R∇̃.
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(∇̃∂xR
∇̃)∂x∂yξ1 = ∇̃∂x(R

∇̃
∂x∂yξ1)− R∇̃

∇∂x∂x ∂yξ1 − R∇̃
∂x ∇∂x∂y

ξ1 − R∇̃
∂x∂y∇̃∂xξ1

= ∇̃∂x(R
∇̃
∂x∂yξ1)− R∇̃

λx
2λ

∂x ∂y
ξ1 − R∇̃

∂x
λx
2λ

∂y
ξ1 − R∇̃

∂x∂y∇̃∂xξ1

= ∇̃∂x(R
∇̃
∂x∂yξ1)−

λx

λ
R∇̃

∂x ∂yξ1 − R∇̃
∂x∂y∇̃∂xξ1

= ∇̃∂x(−κxλξ3)−
λx

λ
R∇̃

∂x ∂yξ1 − R∇̃
∂x∂y∇̃∂xξ1

= (−κxλ)xξ3 − κxλ∇̃∂xξ3 −
λx

λ
R∇̃

∂x ∂yξ1 − R∇̃
∂x∂y∇̃∂xξ1

= (−κxλ)xξ3 − κxλ∇̃∂xξ3 + λxκxξ3 − R∇̃
∂x∂y∇̃∂xξ1

= (−κxλ)xξ3 + κxλξ2 + λxκxξ3 − R∇̃
∂x∂y∇̃∂xξ1

= κxλξ2 − κxxλξ3 − R∇̃
∂x∂y∇̃∂xξ1

= κxλξ2 − κxxλξ3 − R∇̃
∂x∂y

(
λx

2λ
ξ1 −

λy

2λ
ξ2

)
= κxλξ2 − κxxλξ3 +

λx

2λ
κxλξ3 − κyλ

λy

2λ
ξ3

= κxλξ2 +

(
λxκx − κyλy

2
− kxxλ

)
ξ3

(∇̃∂xR
∇̃)∂x∂yξ2 = ∇̃∂x(R

∇̃
∂x∂yξ2)− R∇̃

∇∂x∂x ∂yξ2 − R∇̃
∂x ∇∂x∂y

ξ2 − R∇̃
∂x∂y∇̃∂xξ2

= ∇̃∂x(R
∇̃
∂x∂yξ2)− R∇̃

λx
2λ

∂x ∂y
ξ2 − R∇̃

∂x
λx
2λ

∂y
ξ2 − R∇̃

∂x∂y∇̃∂xξ2

= ∇̃∂x(R
∇̃
∂x∂yξ2)−

λx

λ
R∇̃

∂x ∂yξ2 − R∇̃
∂x∂y∇̃∂xξ2

= ∇̃∂x(−κyλξ3)−
λx

λ
R∇̃

∂x ∂yξ2 − R∇̃
∂x∂y∇̃∂xξ2

= (−κyλ)xξ3 − κyλ∇̃∂xξ3 −
λx

λ
R∇̃

∂x ∂yξ2 − R∇̃
∂x∂y∇̃∂xξ2

= (−κyλ)xξ3 − κyλ∇̃∂xξ3 + λxκyξ3 − R∇̃
∂x∂y∇̃∂xξ2

= (−κyλ)xξ3 + κyλξ2 + λxκyξ3 − R∇̃
∂x∂y∇̃∂xξ2

= κyλξ2 − κxyλξ3 − R∇̃
∂x∂y∇̃∂xξ2

= κyλξ2 − κxyλξ3 +R∇̃
∂x∂y

(
λy

2λ
ξ1 +

λx

2λ
ξ2 + κλξ3

)
= κyλξ2 − κxyλξ3 +R∇̃

∂x∂y

(
λy

2λ
ξ1 +

λx

2λ
ξ2

)
= κyλξ2 − κxyλξ3 −

λyκx
2

ξ3 −
λxκy
2

ξ3

= κyλξ2 −
(
κxyλ+

λyκx
2

+
λxκy
2

)
ξ3

(∇̃∂xR
∇̃)∂x∂yξ3 = ∇̃∂x(R

∇̃
∂x∂yξ3)− R∇̃

∇∂x∂x ∂yξ3 − R∇̃
∂x ∇∂x∂y

ξ3 − R∇̃
∂x∂y∇̃∂xξ3

= −R∇̃
∂x∂y∇̃∂xξ3 = R∇̃

∂x∂yξ2 = −κyλξ3
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The lemma follows by taking into account the above computations.

7.2 Proof of Theorem 3

Proof. Since the domain U of the Killing vector field X is assumed to be dense, it is enough to show that X can
be extended about any point of the boundary of U . If the Killing vector field is zero then the lemma is trivial.
So, we will assume that X is not zero; recall that this implies that the zero set of X is discrete. Let p0 be a

boundary point of U . Then Lemma 2 implies that either (∇̃∂xR
∇̃)∂x∂y or (∇̃∂yR

∇̃)∂x∂y has rank 2 in a small disk

Bp0 of p0. Assume that (∇̃∂xR
∇̃)∂x∂y has rank 2 on Bp0 . Then the kernel of (∇̃∂xR

∇̃)∂x∂y defines a smooth real
line subbundle L of the restriction of TR2 ⊕ so(TR2) to Bp0 .

We claim that L is a flat parallel line bundle w.r.t. the Kostant connection ∇̃.

In fact, let ξ be a generator of L and Y any vector field of Bp0 . First we show that

ξ ∧ ∇̃Y ξ ≡ 0. (7)

Observe that, on the intersection Bp0 ∩ U , the parallel section σ induced by the Killing vector field X must take
values in L. Since the zero set of X is discrete, the equality (7) holds on Bp0 ∩ U , hence it holds on Bp0 in view
of the fact we assumed that U is dense. This shows that any covariant derivative of the generator ξ is in L, so L
is ∇̃-parallel.
It follows that L is flat since σ is a parallel section taking values on L|Bp0∩U with U a dense subset. Then the
section σ can be extended to a parallel section of L on the whole of Bp0 as Bp0 is simply connected. This shows
that X extends to a Killing vector field of U ∪Bp0 .

Acknowledgments

The authors thank D. Alekseevsky, S. Fornaro, T. Kirschner, V. Matveev, C. Olmos, P. Tilli, and F. Vittone
for useful suggestions and discussions. They also thank the anonymous referee for communicating the contents
of Remark 2. A particular thank goes to Giovanni Moreno for his suggestions during the final preparation of
the manuscript. This research has been partially supported by the project “Finanziamento giovani studiosi -
Metriche proiettivamente equivalenti, equazioni di Monge–Ampère e sistemi integrabili”, University of Padova
2013-2015, and by “FIR (Futuro in Ricerca) 2013 - Geometria delle equazioni differenziali”. Both the authors are
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[7] Čap A.: Private communication.
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