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DISCRETE DOUBLE-POROSITY MODELS FOR SPIN SYSTEMS

ANDREA BRAIDES, VALERIA CHIADÒ PIAT AND MARGHERITA SOLCI

We consider spin systems between a finite number N of “species” or “phases”
partitioning a cubic lattice Zd . We suppose that interactions between points of
the same phase are coercive while those between points of different phases (or
possibly between points of an additional “weak phase”) are of lower order. Fol-
lowing a discrete-to-continuum approach, we characterize the limit as a contin-
uum energy defined on N -tuples of sets (corresponding to the N strong phases)
composed of a surface part, taking into account homogenization at the interface
of each strong phase, and a bulk part that describes the combined effect of lower-
order terms, weak interactions between phases, and possible oscillations in the
weak phase.

1. Introduction

In this paper, we consider lattice spin energies mixing strong ferromagnetic inter-
actions and weak (possibly antiferromagnetic) pair interactions. The geometry that
we have in mind is a periodic system of interactions such as that whose periodicity
cell is represented in Figure 1. In that picture, the strong interactions between
nodes of the lattice (circles) are represented by solid lines and weak ones by dashed
lines. In this particular case, we have two three-periodic systems of “strong sites”,
i.e., sites connected by strong interactions, and isolated “weak sites” (pictured as
white circles). Note that we may also have one or more infinite systems of con-
nected weak interactions as in Figure 2. In a discrete environment, the topological
requirements governing the interactions between the strong and weak phases char-
acteristic of continuum high-contrast models are substituted with assumptions on
long-range interactions. In particular, contrary to the continuum case, for discrete
systems with second-neighbor (or longer-range) interactions, we may have a limit
multiphase system even in dimension 1 (see the examples in Section 6).

This paper is part of a general study of spin systems by means of variational
techniques through the computation of continuum approximate energies, for which
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Figure 1. Picture of a double-porosity system.

homogenization results have been proved in the ferromagnetic case (i.e, when all
interactions are strong) [Caffarelli and de la Llave 2005; Braides and Piatnitski
2013], and a general discrete-to-continuum theory of representation and optimiza-
tion has been developed (see the survey [Braides 2014a]). In particular, a discrete-
to-continuum compactness result and an integral representation of the limit by
means of surface energies defined on sets of finite perimeter have been proved
[Alicandro and Gelli 2016]. In that result, the coercivity of energies is obtained by
assuming that nearest neighbors are always connected through a chain of strong
interactions. Double-porosity systems can be interpreted as energies for which
this condition does not hold but is satisfied separately on (finitely many) infinite
connected components.

We are going to consider energies defined on functions parametrized on the
cubic lattice Zd of the form

Fε(u)=
∑

(α,β)∈εN1∩(�×�)

εd−1aεαβ(uα − uβ)2

+

∑
(α,β)∈εN0∩(�×�)

εdaεαβ(uα − uβ)2+
∑

α∈�∩εZd

εd g(uα), (1)

where � is a regular open subset of Rd and uα ∈ {−1,+1} denote the values
of a spin function. For explanatory purposes, in this formula and the rest of the

Figure 2. A double-porosity system with an infinite connected
weak component.
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introduction, we use a simplified notation with respect to the rest of the paper,
defining u = {uα} on the nodes of �∩ εZd (instead of, equivalently, on the nodes
of (1/ε)�∩Zd). We denote by N1 the set of pairs of nodes in Zd

×Zd between
which we have strong interactions and by N0 the set of pairs in Zd

×Zd between
which we have weak interactions. The difference between these two types of in-
teractions in the energy is the scaling factor: εd−1 for strong interactions and εd

for weak interaction. We suppose that all coefficients are obtained by scaling fixed
coefficients on Zd , i.e.,

aεαβ = aα/ε,β/ε if α, β ∈ εZd , (2)

and a jk are periodic of some integer period T . Moreover, we assume that the
coefficients of the strong interactions are strictly positive, i.e., a jk > 0 if ( j, k)∈N1.
The “forcing” term containing g and depending only on the point values uα is of
lower order with respect to strong interactions but of the same order as the weak
interactions.

We suppose that there are N infinite connected components of the graph of
points linked by strong interactions, which we denote by C1, . . . ,CN . Note that
weak interactions in N0 are due either to the existence of “weak sites” or to weak
bonds between different “strong components” and, if we have more than one strong
graph, the interactions in N0 are present also in the absence of a weak component.
We will describe the asymptotic behavior of energies (1) using the notation and
techniques of 0-convergence (see, e.g., [Braides 2002; 2006]).

If we consider only the strong interactions restricted to each strong connected
component C j , we obtain energies

F j
ε (u)=

∑
(α,β)∈εN

j
1∩(�×�)

εd−1aεαβ(uα − uβ)2, (3)

where N
j
1 is the restriction to C j ×C j of the set N1. This is a discrete analog of an

energy on a perforated domain, the perforation being Zd
\C j .

We prove an extension lemma that allows us to define for each j ∈ {1, . . . , N }
a discrete-to-continuum convergence of (the restriction to C j of) a sequence of
functions uε to a function u j

∈ BV(�; {±1}), which is compact under an equi-
boundedness assumption for the energies F j

ε (uε). Thanks to this lemma, such
energies behave as ferromagnetic energies with positive coefficients on the whole
of Zd , which can be homogenized thanks to [Braides and Piatnitski 2013]; i.e., their
0-limit with respect to the convergence uε→ u j exists and is of the form

F j (u j )=

∫
S(u j )∩�

f j
hom(νu j ) dHd−1 (4)
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where S(u j ) is the set of jump points of u j , which can also be interpreted as the
interface between {u j

= 1} and {u j
=−1}.

Taking into account separately the restrictions of uε to all of the components C j ,
we define a vector-valued limit function u= (u1, . . . , uN ) and a convergence uε→ u
and consider the 0-limit of the whole energy with respect to that convergence. The
combination of the weak interactions and the forcing term gives rise to a term of
the form ∫

�

ϕ(u) dx

depending on the values of all components of u. In the case that
⋃N

j=1 C j is
all of Zd , the function ϕ(z1, . . . , zN ) is simply computed as the average of the
T -periodic function

i 7→
∑
k∈Zd

aik(ui − uk)
2
+ g(ui )

where u takes the value z j on C j . Note that with this condition only (weak) in-
teractions between different C j are taken into account. Note moreover that the
restriction of the last term g to εC j is continuously converging to

K j

∫
�

g(u j ) dx,

where K j = T−d #{i ∈ C j
: i ∈ {0, . . . , T }d} is the percentage of sites in C j . In

general, ϕ is obtained by optimizing the combined effect of weak pair interactions
and g on the free sites in the complement of all C j .

Such different interactions can be summed up to describe the 0-limit of Fε that
finally takes the form

Fhom(u)=
∫

S(u)∩�
fhom(u+, u−, νu) dHd−1

+

∫
�

ϕ(u) dx, (5)

where fhom(u+, u−, ν)= 1
2

∑N
j=1 f j

hom(ν)|u
+

j − u−j |.
We note that the presence of two terms of different dimensions in the limit high-

lights the combination of bulk homogenization effects due to periodic oscillations
besides the optimization of the interfacial structure. The effect of those oscillations
on the variational motions of such systems (in the sense of [Ambrosio et al. 2008;
Braides 2014b]) is addressed in [Braides and Solci 2015]. With respect to [Braides
et al. 2015], we remark that the case of spin systems allows a very easy proof of
an extension lemma from connected discrete sets and at the same time permits us
to highlight the possibility to include a weak phase with antiferromagnetic interac-
tions, optimized by microscopic oscillations.
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Discrete problems modeling high-contrast media in the case of elastic energies
have recently been considered in [Braides et al. 2015], but double-porosity homoge-
nization in a continuum framework is a long-standing issue. The interest in double-
porosity systems came at first from geophysics. The notion of double porosity, or
double permeability, is borne from studies carried out on naturally fractured porous
rocks such as oil fields. The benefits of describing oil flow and stock capacity
in these kinds of soils justified theoretical studies undertaken during the 1960s.
The double-porosity model was first introduced by [Barenblatt et al. 1960], and it
has been used since in a wide range of engineering specialties. The first rigorous
mathematical result on the subject was obtained in [Arbogast et al. 1990], where
a linear parabolic equation with asymptotically degenerating coefficients was con-
sidered. This result was subsequently generalized in [Panasenko 1991; Bourgeat
et al. 1996; 1998; 1999; Sandrakov 1999a; 1999b; Pankratov and Piatnitski 2002;
Marchenko and Khruslov 2006] also for nonperiodic domains and various rates of
contrast. On the physical level of rigor, double-porosity models were studied in
[Panfilov 2000]. Linear double-porosity models with thin fissures were considered
in [Pankratov and Rybalko 2003; Amaziane et al. 2009b]. The singular double-
porosity model was considered in [Bourgeat et al. 2003]. The works [Bourgeat et al.
1999; Marchenko and Khruslov 2006; Pankratov and Rybalko 2003; Amaziane
et al. 2009b] are carried out in the framework of Khruslov’s mesoscopic energy
characteristic methods. In addition, note that the double-porosity model was also
obtained using the two-scale convergence method in [Hornung 1997]. Elliptic and
parabolic nonlinear double-porosity models, including homogenization in variable
Sobolev spaces, were also obtained in [Pankratov et al. 2003; Amaziane et al. 2006;
2009a; Choquet and Pankratov 2010]. Finally, the double-porosity models of mul-
tiphase flows, including the nonequilibrium ones, were also obtained in [Choquet
2004; Yeh 2006; Amaziane and Pankratov 2016; Konyukhov and Pankratov 2015]
(see also [Hornung 1997] and the references therein). A reformulation in terms
of 0-convergence can be found in [Braides et al. 2004] with related results for
nonconvex integrands. An approach using 0-convergence and a two-scale for-
mulation at the same time is given in [Cherdantsev and Cherednichenko 2012].
Double-porosity models for interfacial energies on the continuum were previously
examined in [Solci 2009; 2012; Braides and Solci 2013].

The results in the present paper may be regarded as a geometrically simplified
model of continuum ones (but with more freedom in the lattice interactions), but the
same framework may also be useful for other discrete models actually developed
in mechanics. Among them are pantographic systems made of beams and used
for modeling of some metamaterials [Seppecher et al. 2011] and investigations of
two- and three-dimensional lattices in order to develop models used in nano- and
micromechanics.



84 ANDREA BRAIDES, VALERIA CHIADÒ PIAT AND MARGHERITA SOLCI

The plan of the paper is the following. In Section 2, we introduce the geometric
setting, identifying the “strong” and possibly “weak” phases of the lattice network,
and define the microscopic energy. In Section 3, we prove a compactness theorem
and a homogenization result for each separate strong phase. The resulting energies
will provide the interfacial energy part of the limit. In Section 4, we define the
interaction term between the strong phases by proving an asymptotic formula. The
main convergence result is stated and proved in Section 5, where the compactness
theorem in Section 3 applied to each strong phase is used to define a multiphase
limit. Finally in Section 6, some simple examples are provided, which in particular
also exhibit nontrivial limits in dimensions 1 and 2.

2. Notation

The numbers d , m, T , and N are positive integers. We introduce a T -periodic label
function J : Zd

→ {0, 1, . . . , N } and the corresponding sets of sites

A j = {k ∈ Zd
: J (k)= j}, j = 0, . . . , N .

Sites interact through possibly long- (but finite-)range interactions, whose range
is defined through a system P j

= {P j
k } of finite subsets P j

k ⊂ Zd for j = 0, . . . , N
and k ∈ A j . We suppose

• (T -periodicity) P j
k+m = P j

k for all m ∈ T Zd and

• (symmetry) if k ∈ A j for j = 1, . . . , N (hard components) and i ∈ P j
k , then

k+ i ∈ A j and −i ∈ P j
k+i , and 0 ∈ P j

k .

We say that two points k, k ′ ∈ A j are P j -connected in A j if there exists a path
{kn}n=0,...,K such that kn ∈ A j , k0 = k, kK = k ′, and kn − kn−1 ∈ P j

kn−1
.

We suppose

• (connectedness) there exists a unique infinite P j -connected component of
each A j for j = 1, . . . , N , which we denote by C j .

Clearly, the connectedness assumption is not a modeling restriction upon intro-
ducing more labeling parameters if the number of infinite connected components
is finite. Note that we do not make any assumptions on A0 and P0. In particular, if
k ∈ A j for j = 0, . . . , N and i ∈ P0

k , then k+ i may belong to any A j ′ with j ′ 6= j .
We consider the following sets of bonds between sites in Zd : for j = 1, . . . , N

N j = {(k, k ′) : k, k ′ ∈ A j , k ′− k ∈ P j
k \ {0}}

and for j = 0

N0 = {(k, k ′) : k ′− k ∈ P0
k \ {0}, J (k)J (k ′)= 0 or J (k) 6= J (k ′)}.
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Note that the set N0 takes into account interactions not only among points of the
set A0 but also among pairs of points in different A j . More refined notation could
be introduced by defining a range of interactions P i j and the corresponding sets Ni j ,
in which case the sets N j would correspond to N j j for j = 1, . . . , N and N0 to the
union of the remaining sets. However, for simplicity of presentation, we limit our
notation to a single index.

We consider interaction energy densities associated with positive numbers akk′

for k, k ′ ∈ Zd and the forcing term g. We suppose that for all k, k ′ ∈ Zd

• (coerciveness on the hard phase) there exists c > 0 such that akk′ ≥ c > 0 if
k ∈ C j and k ′− k ∈ P j

k for j ≥ 1,

• (T -periodicity) ak+m k′+m = akk′ for all m ∈ T Zd ,

• (symmetry) ak′k = akk′ , and

• (T -periodicity of the forcing term) g(k+m, 1)= g(k, 1) and g(k+m,−1)=
g(k,−1) for all m ∈ T Zd .

Note that we do not suppose that the akk′ are positive for weak interactions. They
can be negative as well, thus favoring oscillations in the weak phase.

Given �, a bounded regular open subset of Rd , for u : (1/ε)�∩Zd
→{+1,−1},

we define the energies

Fε(u)= Fε
(

u, 1
ε
�
)
=

N∑
j=1

∑
(k,k′)∈Nε

j (�)

εd−1akk′(uk − uk′)
2

+

∑
(k,k′)∈Nε

0(�)

εdakk′(uk − uk′)
2
+

∑
k∈Z ε(�)

εd g(k, uk), (6)

where

Nε
j (�)= N j ∩

1
ε
(�×�), j = 0, . . . , N , Z ε(�)= Zd

∩
1
ε
�. (7)

The first sum in the energy takes into account all interactions between points
in A j (hard phases), which are supposed to scale differently than those between
points in A0 (soft phase) or between points in different phases. The latter are
contained in the second sum. The third sum is a zero-order term taking into account
all types of phases with the same scaling.

Note that the first sum may also take into account points in A j \ C j , which
form “islands” of the hard phase P j -disconnected from the corresponding infinite
component. Furthermore, in this energy, we may have sites that do not interact at
all with hard phases.
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Remark 2.1 (choice of the parameter space). The energy is defined on discrete
functions parametrized on (1/ε)�∩Zd . The choice of this notation, rather than in-
terpreting u as defined on�∩εZd , allows a much easier notation for the coefficients,
which in this way are ε-independent rather than obtained by scaling as in (2).

3. Homogenization of perforated discrete domains

In this section, we separately consider the interactions in each infinite connected
component of the hard phases introduced above. To that end, we fix one of the
indices j , with j > 0, dropping it in the notation of this section (in particular, we
use the symbol C in place of C j , etc.), and define the energies

Fε(u)= Fε

(
u, 1
ε
�
)
=

∑
(k,k′)∈N ε

C (�)

εd−1akk′(uk − uk′)
2, (8)

where

N ε
C(�)=

{
(k, k ′) ∈ (C ×C)∩ 1

ε
(�×�) : k ′− k ∈ Pk, k 6= k ′

}
. (9)

We also introduce the notation Cε(�)= C ∩ (1/ε)�.

Definition 3.1. We define the piecewise-constant interpolation of a function u :
Zd
∩ (1/ε)�→ Rm , k 7→ uk , as

u(x)= ubx/εc,

where byc = (by1c, . . . , bydc) and bsc stands for the integer part of s. The conver-
gence of a sequence (uε) of discrete functions is understood as the L1

loc(�) con-
vergence of these piecewise-constant interpolations. Note that, since we consider
local convergence in �, the value of u(x) close to the boundary in not involved in
the convergence process.

We prove an extension and compactness lemma with respect to the convergence
of piecewise-constant interpolations.

Lemma 3.2 (extension and compactness). Let C be a T -periodic subset of Zd

P-connected in the notation of the previous section, and let uε : Zd
∩ (1/ε)�→

{+1,−1} be a sequence such that

sup
ε

εd−1 #{(k, k ′) ∈ N ε
C(�) : u

ε
k 6= uεk′}<+∞. (10)

Then there exists a sequence ũε :Zd
∩ (1/ε)�→Rm such that ũεk = uεk if k ∈Cε(�)

and dist(k,∂(1/ε)�)>c=c(P)with ũε converging to some u∈BVloc(�; {+1,−1})
up to subsequences.

Proof. For a fixed M ∈N and j ∈Zd , we consider the discrete cubes of side length M

QM( j) := j M +{0,M − 1}d .
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For each j , we also define the cube

Q′3M( j)=
⋃

‖i− j‖∞≤1

QM(i),

which is a discrete cube centered at QM( j) and with side length 3M .
For all ε, we consider the family

QεM :=
{

QM( j) : j ∈ Zd , Q′3M( j)⊂ 1
ε
�
}
.

We suppose that M is large enough such that, if k, k ′ ∈ QM( j)∩C , then there
exists a P-path connecting k and k ′ contained in Q′3M( j). The existence of such M
follows easily from the connectedness hypotheses. Indeed, we may take M as the
length of the longest shortest P-path connecting two points in C with distance not
greater than 2

√
d (in particular belonging to neighboring periodicity cubes) and

construct such a P-path by concatenating a family of those shortest paths.
We define the set of indices

Sε = { j ∈ Zd
: QM( j) ∈ QεM and uε is not constant on C ∩ QM( j)}.

By our choice of M , if j ∈ Sε, then there exist k, k ′ ∈ Q′3M( j)∩C with k ′− k ∈ P
such that uεk 6= uεk′ . Let

K := sup
ε

εd−1 #{(k, k ′) ∈ N ε
C(�) : u

ε
k 6= uεk′}.

Then we deduce that

#Sε ≤ 3d K
1
εd−1 (11)

(the factor 3d comes from the fact that k, k ′ ∈ Q′3M( j) for 3d possible j).
We define

ũε=
{

constant value of uε on QM( j)∩C on QM( j) if QM( j)∈QεM and j /∈Sε,

uε elsewhere.

This will be the required extension. However, we will prove the convergence
of ũε as a consequence of the convergence of the functions

vε =

{
ũε on QM( j) if QM( j) ∈ QεM and j /∈ Sε,

1 elsewhere.

By (11), we have that for fixed �′ b�

‖vε − ũε‖L1(�′) = O(ε)

(recall that we identify the function with its scaled interpolations in L1(�)).
If the value of vε differs on two neighboring QM( j) and QM( j ′)with ‖ j− j ′‖1=

1, then upon taking a suitable larger M , we may also suppose that there exist
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k, k ′ ∈ (Q′3M( j)∪ Q′3M( j))∩C with k− k ′ ∈ P and uεk 6= uεk′ . Arguing as for (11),
we deduce that the number of such j is O(ε1−d) so that

Hd−1(∂{vε = 1} ∩�′)= O(1),

which implies the compactness of the family (vε) in BVloc(�). �

The compactness theorem above proves that the domain of the limit is functions
u ∈ BV(�, {+1,−1}), which can be identified with the sets of finite perimeter
E = {u = 1}. In this case, the set of discontinuity points S(u) coincides, up to sets
of Hn−1-measure 0, with the reduced boundary ∂∗{u = 1}, whose inner normal we
denote by ν [Braides 1998].

Theorem 3.3 (homogenization on discrete perforated domains). The energies Fε

defined in (8) 0-converge with respect to the L1
loc(�) topology to the energy

Fhom(u)=
∫
�∩∂∗{u=1}

fhom(ν) dHd−1, (12)

defined on u ∈ BV(�, {+1,−1}), where the energy density fhom satisfies

fhom(ν)=

lim
T→+∞

1
T d−1 inf

{ ∑
(k,k′)∈ÑC (Qν

T )

akk′(uk − uk′)
2
: uk = sign〈k,ν〉 if k /∈ Qν

T

}
, (13)

where

sign x =
{

1 if x > 0,
−1 if x ≤ 0,

(14)

Qν is a cube centered at 0 and with one side orthogonal to ν, Qν
T = T Qν , and

ÑC(Qν
T ) denotes all pairs in (k, k ′) ∈ N 1

C(R
d) such that either k ∈ Qν

T or k ′ ∈ Qν
T .

Proof. In [Braides and Piatnitski 2013], this theorem is proved under the additional
assumption that the energies Fε are equicoercive with respect to the weak BV-
convergence. This assumption can be substituted with Lemma 3.2. Indeed, if uε

is a sequence converging to u in L1
loc(�) and with equibounded energies, then by

Lemma 3.2, we may find a sequence ũε coinciding with uε on Cε(�′) for every
fixed �′ b� and ε sufficiently small and converging to some ũ in BV(�; {±1}).
Since ũε=uε on Cε(�′), we have that ũ=u and Fε(ũε, (1/ε)�′)=Fε(uε, (1/ε)�′).
Then we can give a lower estimate on each �′ fixed using the proof of [Braides and
Piatnitski 2013] and hence on � by internal approximation. Note that neither the
proof of the existence of the limit in (13) therein nor the construction of the recovery
sequences depends on the coerciveness assumption, so the proof is complete. �
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4. Definition of the interaction term

The homogenization result in Theorem 3.3 will describe the contribution of the
hard phases to the limiting behavior of energies Fε. We now characterize their
interactions with the soft phase.

For all positive integers M and z1, . . . , zN ∈ {+1,−1}, we define the minimum
problem

ϕM(z1, . . . , zN )=
1

Md min
{ ∑
(k,k′)∈N0(QM )

akk′(vk−vk′)
2
+

∑
k∈Z(QM )

g(k, vk) :v∈VM

}
,

where

QM =

[
−

M
2
,

M
2

)d

, N0(QM)= N0∩(QM×QM), Z(QM)=Zd
∩QM (15)

and the minimum is taken over the set VM = VM(z1, . . . , zN ) of all v constant on
each connected component of A j ∩ QM and v = z j on C j for j = 1, . . . N .

Proposition 4.1. The limit ϕ of ϕM as M→+∞ exists.

Proof. We first show that

ϕK M ≥ ϕM for all K ∈ N. (16)

To that end, let v be a minimizer for ϕK M(z1, . . . , zN ). Then we have

K d MdϕK M(z1, . . . , zN )

=

∑
(k,k′)∈N0(QK M )

akk′(vk − vk′)
2
+

∑
k∈Z(QK M )

g(k, vk)

=

∑
l∈Zd∩QK

( ∑
(k,k′)∈N0(QM+l M)

akk′(vk − vk′)
2
+

∑
k∈Z(QM+l M)

g(k, vk)

)
+

∑
(k,k′)∈N0(QK M )\

⋃
l N0(QM+l M)

akk′(vk − vk′)
2

≥

∑
l∈Zd∩QK

( ∑
(k,k′)∈N0(QM+l M)

akk′(vk − vk′)
2
+

∑
k∈Z(QM+l M)

g(k, vk)

)
.

Let l ∈ Zd
∩ QK minimize the expression in parentheses. Then we deduce

K d MdϕK M(z1, . . . , zN )

≥ K d
( ∑
(k,k′)∈N0(QM+l M)

akk′(vk − vk′)
2
+

∑
k∈Z(QM+l M)

g(k, vk)

)
,

from which (16) follows by taking vk=vk−l M in the computation of ϕM(z1, . . . , zN ).
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We remark that for L ≥ L ′ we have

LdϕL ≥ (L ′)dϕL ′ −max|g|(Ld
− (L ′)d). (17)

Hence, fixing n, L , and M with L ≥ M2n and taking L ′ = bL/(M2n)cM2n in (17),
we have, using (16) with K = bL/(M2n)c2n

ϕL ≥
1

Ld

(⌊
L

M2n

⌋
M2n

)d

ϕbL/(M2n)cM2n −max|g|
(

1−
(⌊

L
M2n

⌋
M2n

L

)d)
≥

(⌊
L

M2n

⌋
M2n

L

)d

ϕM −max|g|
(

1−
(⌊

L
M2n

⌋
M2n

L

)d)
.

Letting L→+∞, we then obtain

lim inf
L→+∞

ϕL ≥ ϕM

and the conclusion follows by taking the upper limit in M . �

Let R be defined by

R =max{|k− k ′| : k, k ′ ∈ A j \C j that are P j -connected, j = 1, . . . , N }, (18)

and for all M positive integer, set

DM =

N⋃
j=1

⋃
{P j -connected components B of A j \C j not intersecting QM−R}.

For all z1, . . . , zN ∈ {+1,−1}, we define

ϕ̃M(z1, . . . , zN )=
1

Md min
{ ∑
(k,k′)∈N0(QM )

akk′(vk − vk′)
2
+

∑
k∈Z(QM )

g(k, vk)

: v ∈ VM , vk = 1 if k ∈ DM

}
. (19)

Proposition 4.2. There is a positive constant c independent of M such that

ϕ̃M ≥ ϕM ≥ ϕ̃M −
c
M
. (20)

Proof. The first inequality is trivial. To prove the second, let v be a minimizer for
ϕM(z1, . . . , zN ) and define v by

vk =

{
1 if k ∈ DM

vk otherwise.
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Using v as a test function for ϕ̃M(z1, . . . , zN ), we obtain

Md ϕ̃M(z1, . . . , zN )≤
∑

(k,k′)∈N0(QM ), k,k′ /∈DM

akk′(vk − vk′)
2
+

∑
k∈Z(QM )\DM

g(k, vk)

+ 2
∑

(k,k′)∈N0(QM ), k∈DM

akk′(vk − vk′)
2
+

∑
k∈Z(QM )∩DM

g(k, vk)

≤

∑
(k,k′)∈N0(QM ), k,k′ /∈DM

akk′(vk − vk′)
2
+

∑
k∈Z(QM )\DM

g(k, vk)

+

∑
(k,k′)∈N0(QM ), k∈DM

akk′ +
∑

k∈Z(QM )∩DM

g(k, 1)

≤ MdϕM(z1, . . . , zN )+ #DM #P0 max ai j + #DM 2 max|g|.

As #DM ≤ 2d Md−1 R, the result follows with c= 2d R(#P0 max ai j+2 max|g|). �

5. Statement of the convergence result

We now have all the ingredients to characterize the asymptotic behavior of Fε
defined in (6).

Definition 5.1 (multiphase discrete-to-continuum convergence). We define the con-
vergence

uε→ (u1, . . . , uN ) (21)

as the L1
loc(�;R

m) convergence ũεj → u j of the extensions of the restrictions of uε

to C j as in Lemma 3.2, which is a compact convergence as ensured by that lemma.

The total contribution of the hard phases will be given separately by the contri-
bution on the infinite connected components and the finite ones. The first one is
obtained by independently computing the limit relative to the energy restricted to
each component

F j
ε(u)=

∑
(k,k′)∈N ε

j (�)

εd−1akk′(vk − vk′)
2, (22)

where

N ε
j (�)= N ε

C j
(�)=

{
(k, k ′)∈ (C j×C j )∩

1
ε
(�×�) : k−k ′ ∈ P j

k , k 6= k ′
}
, (23)

which is characterized by Theorem 3.3 as

F
j
hom(u)=

∫
�∩∂∗{u=1}

f j
hom(ν) dHd−1. (24)

In Section 4, we introduced the energy density ϕ, which describes the interac-
tions between the hard phases. Taking all contributions into account, we may state
the following convergence result.
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Theorem 5.2 (double-porosity homogenization). Let � be a Lipschitz bounded
open set, and let Fε be defined by (6) with the notation of Section 2. Then the
0-limit of Fε with respect to the convergence (21) exists, and it equals

Fhom(u1, . . . , uN )=

N∑
j=1

∫
�∩∂∗{u j=1}

f j
hom(ν) dHd−1

+

∫
�

ϕ(u1, . . . , uN ) dx (25)

on functions u = (u1, . . . , uN ) ∈ (BV(�; {1,−1}))N , where ϕ is defined in Propo-
sition 4.1 and f j

hom are defined by (24).

Note that there is no contribution of the finite connected components of A j .

Remark 5.3 (nonhomogeneous lower-order term). In our hypotheses, the lower-
order term g depends on the fast variable k, which is integrated out in the limit. We
may easily include a measurable dependence on the slow variable εk by assuming
g = g(x, k, z) is a Carathéodory function (this covers in particular the case g =
g(x, z)) and substitute the last sum in (6) by∑

k∈Z ε(�)

εd g(εk, k, uk).

Correspondingly, in Theorem 5.2, the integrand in the last term in (25) must be
substituted by ϕ(x, u1, . . . , uN ), where the definition of this last function is the
same but taking g(x, k, z) in place of g(k, z) so that x simply acts as a parameter.

The proof of Theorem 5.2 will be subdivided into a lower and an upper bound.

Proof of the lower bound. Let uε→ (u1, . . . , uN ) be such that Fε(uε)≤ c <+∞.
Fixing M ∈ N, we introduce the notation

J εM =
{

z ∈ Zd
: QM + zM ⊂ 1

ε
�
}
,

Rε = Nε
0(�) \

⋃
z∈J εM

Nε
0(QM + zM),

Sε = Z ε(�) \
⋃

z∈J εM

Z(QM + zM)

and write

Fε(uε)=
N∑

j=1

Iεj + IIε + IIIε + IVε
+Vε,

where

Iεj = F j
ε(u),
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IIε =
N∑

j=1

∑
(k,k′)∈Nε

j (�)\(C j×C j )

εd−1akk′(vk − vk′)
2,

IIIε =
∑
z∈J εM

εd
( ∑
(k,k′)∈Nε

0(QM+zM)

akk′(vk − vk′)
2
+

∑
k∈Z(QM+zM)

g(k, vk)

)
,

IVε
=

∑
(k,k′)∈Rε

εdakk′(vk − vk′)
2,

Vε
=

∑
k∈Sε

εd g(k, vk).

Note that

IIε ≥ 0,

IVε
≥−c/M + o(1),

V ε
≥−max|g|

(∣∣∣∣� \ εd
⋃

z∈J εM

(QM + zM)
∣∣∣∣+ o(1)

)
,

(26)

where we have taken into account that the interactions in IVε may be negative and

lim inf
ε→0

N∑
j=1

Iεj ≥
N∑

j=1

lim inf
ε→0

Iεj ≥
N∑

j=1

∫
�∩∂∗{u j=1}

f j
hom(ν) dHd−1. (27)

It remains to estimate IIIε. To that end, we introduce the set of indices

3εM ={z ∈ J εM : u
ε constant on every connected component of A j ∩ (Q3M + zM),

j = 1, . . . , N }.

Note that
#(J εM \3

ε
M)≤

cM

εd−1 . (28)

We then write

IIIε =
∑

z∈3εM

εd
( ∑
(k,k′)∈Nε

0(QM+zM)

akk′(vk − vk′)
2
+

∑
k∈Z(QM+zM)

g(k, vk)

)

+

∑
z∈J εM\3

ε
M

εd
( ∑
(k,k′)∈Nε

0(QM+zM)

akk′(vk − vk′)
2
+

∑
k∈Z(QM+zM)

g(k, vk)

)
≥

∑
z∈3εM

εd MdϕM(uε1, . . . , uεN )− cεd Md max(|g| + |akk′ |) #(J εM \3
ε
M),

where uεj is the constant value taken by uε on (QM+zM)∩C j . Here we suppose M
is large enough so that the connected component of C j containing (QM+ zM)∩C j
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is connected in Q3M + zM . We set

U ε
=

∑
z∈3εM

(uε1, . . . , uεN )χQM+zM

and ϕM(0, . . . , 0)= 0. Note that U ε
→U := (u1, . . . , uN ) in L1(�)N so that

lim inf
ε→0

IIIε ≥ lim inf
ε→0

(∫
�

ϕM(U ε) dx − εmax|g|cM Md
)
=

∫
�

ϕM(U ) dx (29)

by the Lebesgue dominated convergence theorem and the estimate (28).
Summing up the inequalities (26), (27), and (29), we get

lim inf
ε→0

Fε(uε)≥
N∑

j=1

∫
�∩∂∗{u j=1}

f j
hom(ν) dHd−1

+

∫
�

ϕM(U ) dx . (30)

The lower-bound inequality then follows by taking the limit as M→+∞, using
Proposition 4.1 and the Lebesgue dominated convergence theorem. �

Proof of the upper bound. We fix U = (u1, . . . , uN ) ∈ BV(�; {1,−1})N . For every
j = 1, . . . , N , we choose u j,ε

→ u j a recovery sequence for F
j
hom(u

j ). We tacitly
extend all functions defined on Z ε(�) to all of Zd with the value +1 outside Z ε(�).
This does not affect the value of the energies but allows us to rigorously define some
sets of indices z in the sequel.

We fix M ∈ N large enough. As in Section 4, we introduce the sets of indices

J̃ εM =
{

z ∈ Zd
: (QM + zM)∩

1
ε
� 6=∅

}
,

3
j,ε
M = {z∈ J εM :u

ε constant on every connected component of A j∩(Q3M+ zM)}

and give the estimate
N∑

j=1

#( J̃ εM \3
j,ε
M )≤

cM

εd−1 . (31)

Note that, if z ∈
⋂N

j=13
j,ε
M , then u j,ε

=: u j,ε,z is constant on C j ∩ (QM + zM) for
j = 1, . . . , N . Let vε,z be a minimizer for ϕ̃M(u1,ε,z, . . . , uN ,ε,z).

We define

uεk =


u j,ε

k if k ∈ C j , j = 1, . . . , N ,
vε,z(k− zM) if k ∈ QM + zM and z ∈

⋂N
j=13

j,ε
M ,

1 otherwise.
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We first estimate the energy on the strong connections. By the definition of u j,ε,
we have for all j = 1, . . . , N

lim
ε→0

∑
(k,k′)∈Nε

j (�)∩(C j×C j )

εd−1akk′(uεk − uεk′)
2
= F

j
hom(u

j ) (32)

since uε = u j,ε on C j . On the strong connections between points not in the infinite
connected components C j ,∑

(k,k′)∈Nε
j (�)\(C j×C j )

εd−1akk′(uεk − uεk′)
2
= 0 (33)

since uε is constant on every connected component of A j \C j . Note that here we
have used the condition that vε,z = 1 on DM in the definition of ϕ̃M .

We then examine the contribution due to the interaction between weak connec-
tions and the term g. We first look at the contributions on the cubes in the sets 3 j,ε

M ,
where we can use the definition of ϕ̃M : for every z ∈

⋂N
j=13

j,ε
M ,∑

(k,k′)∈Nε
0(QM+zM)

akk′(uεk − uεk′)
2
+

∑
k∈Z(QM+zM)

g(k, uεk)= ϕ̃M(u1,ε,z, . . . , uN ,ε,z).

The contributions interior to all other cubes in J̃ εM sum up to∑
z /∈
⋂N

j=1 3
j,ε
M

εd
( ∑
(k,k′)∈Nε

0(QM+zM)

akk′(uεk − uεk′)
2
+

∑
k∈Z(QM+zM)

g(k, uεk)
)

≤ εd Md(#P0 max ail +max|g|)
N∑

j=1

#(J εM \3
j,ε
M )

≤ εMdc′M + o(1) (34)

by (31) and the fact that the boundary of � has zero measure. Finally, the contribu-
tion due to the weak connection across the boundary of neighboring cubes is given by∑
z 6=z′∈

⋂N
j=1 3

j,ε
M

εd
∑

(k,k′)∈Nε
0(�), k∈QM+zM, k′∈QM+z′M

akk′(uεk − uεk′)
2

≤ εd Md−1 #J εM #P0 max ail ≤ #P0 max ail
|�|

M
.

From the inequalities above, we obtain

lim sup
ε→0

Fε(uε)≤
N∑

j=1

F
j
hom(u

j )+

∫
�

ϕ̃M(u1, . . . , uN ) dx + #P0 max ail
|�|

M
.

Letting M→+∞ and using Propositions 4.2 and 4.1 then gives the result. �
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6. Examples

In the pictures in the following examples, weak connections are denoted by a
dashed line and strong connections by a continuous line.

6.1. One-dimensional examples. In this section, we consider easy one-dimensional
examples, highlighting the possibility of double-porosity behavior if long-range in-
teractions are allowed, contrary to the continuum case. We use a slightly different
notation than above, with the sums depending only on one index. The factor 1

4 is
just a normalization since (ui − u j )

2 is always a multiple of 4.

Example 6.1 (weak inclusions on alternating lattice). Consider a system of weak
nearest-neighbor interactions and strong next-to-nearest-neighbor interactions on
the even-odd lattice (see figure below); namely,

Fε(u)=
β

4

Nε∑
i=1

ε(ui − ui−1)
2
+
α

4

Nε/2−1∑
j=1

(u2 j+1− u2 j−1)
2
+

Nε∑
i=1

εg(ui ),

where we assume that � = [0, 1] and Nε = 1/ε ∈ 2N. In this case N = 1, A1 =

C1 = 1+ 2N, and A0 = 2N.

α

β

The 0-limit is

Fhom(u)= α #S(u)+
1
2

∫ 1

0
g(u) dx +

1
2

∫ 1

0
min{g(u), g(−u)+ 2β} dx

= α #S(u)+
∫ 1

0
g(u) dx −

1
2

∫ 1

0
max{0, g(u)− g(−u)− 2β} dx .

The last term favors states with the same value on A0 and A1 if the integrand
is 0 and of opposite sign if the integrand is positive. Note that this is always the
case if we have a strong-enough “antiferromagnetic” nearest-neighbor interaction,
i.e., β is negative and 2|β|> |g(1)− g(−1)|.

Example 6.2 (interacting sublattices). Consider a system of weak nearest-neighbor
interactions and strong next-to-nearest-neighbor interactions:

α1

α2

β
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Here

Fε(u)=
β

4

Nε∑
i=1

ε(ui − ui−1)
2
+
α1

4

Nε/2−1∑
j=1

(u2 j+1− u2 j−1)
2

+
α2

4

Nε/2−1∑
j=0

(u2 j+2− u2 j )
2
+

Nε∑
i=1

εg(ui ),

where we assume that Nε = 1/ε ∈ 2N. In this case, N = 2, A1 = C1 = 1+ 2N,
A2 = C2 = 2N, and A0 =∅.

The 0-limit is

Fhom(u1, u2)= α1 #S(u1)+α2 #S(u2)

+
1
2

∫ 1

0
g(u1) dx +

1
2

∫ 1

0
g(u2) dx +

β

4

∫ 1

0
(u2
− u1)2.

Note that, since A0 =∅, we have no optimization in the interacting term, which
then is just the pointwise limit of the nearest-neighbor interactions. Note moreover
that in the case β = 0 the interactions are completely decoupled.

Example 6.3 (interacting weak and strong sublattices). We consider the same pat-
tern of interactions as in the previous example but with only strong connections on
the odd lattice as in Example 6.1 (see figure below), i.e., with

Fε(u)=
β1

4

Nε∑
i=1

ε(ui − ui−1)
2
+
β2

4

Nε/2−1∑
j=0

ε(u2 j+2− u2 j )
2

+
α

4

Nε/2−1∑
j=1

(u2 j+1− u2 j−1)
2
+

Nε∑
i=1

εg(ui ).

α

β2

β1

In this case, we have three possibilities:

• the minimizing values on the even lattice agree with those on the odd lattice
(ferromagnetic overall behavior),

• the minimizing values on the even lattice disagree with those on the odd lattice
(antiferromagnetic overall behavior), or

• the values on the even lattice alternate (antiferromagnetic behavior on the
weak lattice).

The value of ϕ is obtained by optimizing over these three possibilities; i.e.,

ϕ(u)=min
{

g(u),
g(u)+ g(−u)

2
+β1,

3g(u)+ g(−u)
4

+
β1
+β2

2

}
,
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and we have

Fhom(u)= α #S(u)+
∫ 1

0
ϕ(u) dx .

Example 6.4 (third-neighbor hard phases). In the system described in the figure
below, involving strong third-neighbor interactions, we have two strong compo-
nents and a 0-limit obtained by minimization of the nearest and next-to-nearest
neighbors. Using the same notation of the previous examples for the coefficients,
we can write the limit as

Fhom(u1, u2)= α1 #S(u1)+α2 #S(u2)+

∫ 1

0
ϕ(u1, u2) dx,

and

ϕ(u1, u2)= 1
3(g(u

1)+ g(u2))+ 1
4β

2
12(u

2
− u1)2

+
1
3 min

{1
4((β

1
01+β

2
01)(v− u1)2+ (β1

02+β
2
02)(v− u2)2)+ g(v) : v ∈ {−1, 1}

}
.

α1

α2

β2
12

β1
12 β1

01

β2
02

β1
02

β2
01

6.2. Higher-dimensional examples. In the following examples, we go back to the
notation used in the statement of the main result. The normalization factor 1

8 takes
into account that each pair of nearest neighbors is accounted for twice.

Example 6.5 (a nearest-neighbor system with soft inclusions). Consider a nearest-
neighbor system in two dimensions in which A0 = 2Z2 and strong and weak inter-
actions are given respectively by

1
8α(uk − uk′)

2, 1
8εβ(uk − uk′)

2.

α

β
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In this case,

Fhom(u)= 1
2α

∫
S(u)∩�

‖νu‖1 dH1
+

∫
�

ϕ(u) dx,

where

ϕ(u)=min
{

g(u),
3g(u)+ g(−u)

4
+β

}
.

Example 6.6 (a lattice with weak nearest-neighbor interactions). Consider strong
interactions on a lattice of next-to-nearest neighbors as in the figure:

α

β

with weak nearest-neighbor interactions on the square lattice given respectively by

1
8α(uk − uk′)

2, 1
8εβ(uk − uk′)

2,

(the factor 1
8 takes into account that each pair is accounted for twice). We only

have one strong component, and with this choice of coefficients,

Fhom(u)= α
∫
�∩∂{u=1}

‖ν‖∞ dH1
+

∫
�

ϕ(u) dx,

where
ϕ(u)=min{g(u), 1

2(g(u)+ g(−u))+β}.

Example 6.7. We include just the pictorial description of two more two-dimensional
systems with a limit with two parameters (below, left) and with one limit parameter
but with the possibility of an oscillating behavior on the weak lattice (below, right),
analogous to the one-dimensional Examples 6.2 and 6.3, respectively.

α1 α2

β

α

β2

β1

Example 6.8. We finally consider a three-dimensional two-periodic geometry, with
one strong connected component pictured in Figure 3. Even in the absence of the
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Figure 3. Oscillations in the infinite weak component.

forcing term g, we may have several competing microstructures in the determina-
tion of ϕ. In Figure 3, we have represented the uniform data u =+1 on the strong
component with solid circles and a system of ferromagnetic connections between
strong and weak sites (positive coefficients) and of antiferromagnetic connections
between weak sites (a negative coefficient α). Correspondingly, the minimal states
have the value +1 on weak sites connected with the strong component (represented
by solid circles) and the value −1 on the other sites (represented by white circles).
Note that in this case the contribution of the weak phase is a constant.
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