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Abstract

In this paper various sinusoidal shear deformation theories are used for the buckling anal-
ysis of functionally graded sandwich plates. The theories may account for through-the-
thickness deformations afut Zig-Zag dfect.

The governing equations and boundary conditions are derived using the Principle of Vir-
tual Work under a generalization of Carrera’s Unified Formulation and further interpolated
by collocation with radial basis functions.

A numerical investigation has been conducted on the buckling analysis of sandwich
plates with functionally graded skins. The influence of the thickness stretching and the Zig-
Zag dfects on these problems is investigated. Numerical results demonstrate the accuracy
of the present approach.

Keywords: Buckling; plates; Functionally graded materials; meshless methods; Zig-Zag
effects; warping ffects; sinusoidal shear deformatithreories.
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1 Introduction

The buckling phenomenon consists of a sudden change of equilibrium geometry at a certain critical
load. It is one of the characteristic failure modes of slender structures such as laminated composite
plates.

Functionally graded (FG) materials were first proposed by Bever and Duwez [1] in 1972. The
modelling of FG materials is important to understand the behavior of FG structures.

When compared to isotropic and laminated plates, the literature on FG plates is relatively scarce
[2,3] [4—7] [8]. The thermo-mechanical response of FG plates was considered by Reddy and Chin
[9], Reddy [10], Vel and Batra [11,12], Cheng and Batra [13], Javaheri and Eslami [14]. Studies
on the mechanical behaviour of FG plates include the static analysis of FG plates performed by
Kashtalyan [15], Kashtalyan and Menshykova [16], Qian et al. [17], Zenkour [18,19], Ramirez
et al. [20], Ferreira et al. [21,22], Chi and Chung [23,24], and Cheng and Batra [25]. Vibrations
problems of FG plates can be found in Batra and Jin [26], Ferreira et al. [27], Vel and Batra [28],
Zenkour [29], Roque et al. [30], and Cheng and Batra [31]. Mechanical buckling of FG plates
can be found in Najafizadeh and Eslami [32], Zenkour [29], Cheng and Batra [31], Birman [33],
Javaheri and Eslami [34].

Most of the shear deformation theories neglect the thickness stretghibging the transverse dis-
placement considered to be independent of thickness coordinategtadteéthickness stretching

in FG plates has been recently investigated by Carrera et al. [35]. The zigfeapie produced

by the large diterence of mechanical properties of sandwich skins and core. For sandwich plates,
the classical plate theories of Kirchif36] or Reissner-Mindlin [37,38] present somdfdiulties.

Two possibilities can be used to capture the Zi2e (see the overviews by Burton and Noor [39],
Noor et al. [40], Altenbach [41], Librescu and Hause [42], Vinson [43], and Demasi [44]): the
so-called layer-wise models, and a zig-zag function (ZZF) in the framework of mixed multilayered
plate theories. An historical review on ZZ theories has been provided by Carrera [45].

In order to avoid the computationally expensive layerwise theories, Murakami [46] proposed a ZZF
that is able to reproduce the slope discontinuity. A review of early developments on the application
of ZZF has been provided in the review article by Carrera [47]. The advantages of analysing mul-
tilayered anisotropic plate and shells using the ZZF as well as the Finite Element implementation
have been discussed by Carrera [48], and by others [48-50].

ACCEPTED MANUSCRIPT
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This paper focus on the buckling analysis of functionally graded sandwich plates. It adresses the
influence of the warpingfiects in the thickness direction as well as the Zig-Zag (ZB9ats on

these problems. Four sinusoidal theories are used. The governing equations and boundary con-
ditions are derived under a generalized version of Carrera’s Unified Formulation (CUF) [51,47]
based on the principle of virtual displacements and further interpolated by collocation with radial
basis functions (RBF). This meshless technique can be seen &&canealternative to the finite
elements method [52-55] [56-59] [60,61].

2 Problem formulation

A rectangular sandwich plate of plan-form dimensiarendb and uniform thicknesh is consid-
ered. The co-ordinate system is taken such thakth@lane ¢ = 0) coincides with the midplane
of the plate.

The sandwich core is fully ceramic (isotropic) and skins are composed of a functionally graded
material across the thickness direction. The bottom skin varies from a metal-rich surfact(2)

to a ceramic-rich surface while the top skin face varies from a ceramic-rich surface to a metal-rich
surface ¢ = h/2) as illustrated in figure 1. There are no interfaces between core and skins. The
volume fraction of the ceramic phase is obtained from a simple rule of mixtures as:

V, = (Z‘—ho)p in the bottom skin

hi—hg
V. =1 inthe core 1)
V, = (hZZ‘_hrfg)p in the top skin

wherez € [-h/2,h/2], hy, hy, hy, andhs are thez-coordinates of the interfaces of the layers as
visualized in figure 1, ang > O is a scalar parameter that allows the user to define gradation of
material properties across the thickness direction of the skinspTh® case corresponds to the
(isotropic) fully ceramic plate. The volume fraction for the metal phase is giv&fy,asl — V..

The sandwiches may be symmetric or non-symmetric about the mid-plane as we may vary the
thickness of each face. Figure 2 shows a non-symmetric sandwich with volume fraction defined
by the power-law (1) for various exponergsin which top skin thickness is the same as the core
thickness and the bottom skin thickness is twice the core thickness. Such thickness relation is
denoted as 2-1-1. A bottom-core-top notation is being used. 1-1-1 means that skins and core have
the same thickness. The sandwich plate is subjected to compressive in-plane forces acting on the
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mid-plane of the plateN_XX and I\I_yy denote the in-plane loads perpendicular to the edge$ and
y = 0 respectively, and&\l_xy denote the distributed shear force parallel to the edge$ andy = 0
respectively (see fig. 3).

3 Overview of existing zig-zag theories

The Murakami’s zig-zag functiod(z) dependes on the adimensioned layer coordidgtaccord-
ing to the following formula:

Z(d = (-1)¢ (2)

lk is defined agy = Zh—zkk wherez is the layer coordinate in the thickness direction apds the
thickness of théth layer.

Z(2) has the following properties:

() ltis a piece-wise linear function of layer coordinatgs

(2) Z(2) has unit amplitude for the whole layers,

(3) the slopeZ’(2) = % assumes opposite sign between two-adjacent layers. Its amplitude is layer
thickness independent.

In 1986, a refinement of FSDT by inclusion of Z&excts and transverse normal strains was intro-
duced in Murakami’s original ZZF [46], defined by the following displacement field:

U= Up+ 2t + (-1)2 (2 3 (2 + Za1)) Uz
V=vo+ 2w+ (-1)E (2 3 (@ + Zen)) V2 (3)

W= Wo + 2w + (12 (2= 3 (2 + Zr) ) Wz

whereu andv are the in-plane displacements amds the transverse displacement. The involved
unknows areuy, Uy, Uz, Vo, V1, Vz, Wo, W1, andwz: Ug, Vo andwg are translations of a point at the
midplane;u;, v; andw; are rotations as in the typical FSDT; and the additional degrees of freedom
Uz, vz andw; have a meaning of displacement.z,, are the bottom and tapcoordinates at each
layer.

ACCEPTED MANUSCRIPT
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More recently, another possible FSDT theory has been investigated by Carrera [48] and Demasi
[49], ignoring the through-the-thickness deformations:

U= Up+ 2t + (-1)2 (2 3 (& + Za1)) Uz
V=vo+ 2w + (-1)E (2 3 (@ + Zen)) V2 4)

W =Wy
with ug, uq, Uz, Vo, V1, Vz, Wo, Z, andz..1 as before.

Ferreira et al. [62] and Rodrigues et al. [63] used a ZZF theory involving the following expansion
of displacements

U= Up+ 2t + (-1)2 (2 3 (& + Za1)) Uz
V=vo+ 2w+ (-1)E (2= 3 (2 + Zen)) V2 (5)
W =W + ZW + Z2W,

This represents a variation of the Murakami’s original theory, allowing for a quadratic evolution of
the transverse displacement across the thickness direction. Furthermore, Ferreira et al. [64] used
two higher order ZZF theories allowing for a quadratic evolution of the transverse displacement
across the thickness direction as well and involving the following displacement fields:

U=+ + ZPus + (w12 (2- £ (& + Zer)) Uz
V=Vo+ 2w + 2Vs + (12 (2- L @+ Z)) vz (6)
W = W + ZW + Z2W>

The use of a sinusoidal shear deformation theory for composite laminated plates and shells was first
presented by Touratier [65,66] [67] in the early 1990’s. Later Vidal and Polit [68] used a sinusoidal
shear deformation theory for composite laminated beams. The use of sinusoidal plate theories for
functionally graded plates was first presented by Zenkour [19], where=20 approach was used.
Recently Neves et al. [60,61] successfully used a sinusoidal plate theory for the bending and stress
analysis of functionally graded plates.

U= U+ ZW + sin(”ﬁ) Us + (—1)‘<h£k (z— 2 (z+ zk+1)) Uy
V=Vo+ 2 + Sin() Vs + (1) 2 (2 § (& + Ze)) V2 (7)

W =W + ZW + Z2W,
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All previous cited work using ZZ functions deals with laminated plates or shells. Refering to func-
tionally graded sandwiches, the authors have sucessfuly used two hyperbolic-sine shear deforma-
tion theories for the static study of functionally graded sandwich plates [69]. They both account
for the Zig-Zag &ect, but only one allows for warping in the thickness direction:

U= Uy+ZWU + sinh(’%) Us + (—1)",%k (z— 2 (z+ zk+1)) Uz
V=Vy+ 2% + sinh(’%) Vs + (—1)"%k (z— 2 (z+ zk+1)) Vy (8)

W =Wp

U= Uy+ZWU + sinh(’%) Us + (—1)"}%k (z— 2 (z+ zk+1)) Uy
V=Vy+ 2% + sinh(’%) Vs + (—1)"h£k (z— 2 (z+ zk+1)) Vy 9)

W = Wo + ZW + Z2W,

4 The present sinus shear deformation theories

In this paper we compare four sinusoidal shear deformation theories. In-plane displacemgnts (

are considered to be of sinusoidal type across the thickness coordinate and may include or not the
terms to account for the zig-zafect. The transverse displacemen} (nay be defined as constant

if warping is not allowed, or as parabolic in the thickness direction if warping is allowed.

For the easy reading of the paper, nomenclature is now introduced. All theories aresiaogas

they all consider a sinusoidal expansion across the thickness coordinate for the in-plane displace-
ments. In addition the name will include tE& letters if the zig-zag féect is considered, and will
include the 0 number i,, = 0, i. e., thickness-stretching is not allowed (see table 1).

The displacement fields of each theory are as follows:
Displacement field of sinus theory:

U= Uy + ZU + sin(”f) Us
V=Vt 2\ + sin(”ﬁ) Vs (10)

W =W + ZW + Z2W,

ACCEPTED MANUSCRIPT
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Displacement field of sinusO theory:

U= U+ zZU + sin(’%) Us
V=Vo+ 2y + sin(”ﬁ)vS (11)

W =Wg

Displacement field of sinusZZ theory:

U= U+ zZWU + sin(”ﬁ) Us + (—1)"h—2k (z— 3@+ zk+1)) Uy
V=Vo+ 2% + sin(’%) Vs + (—1)"h—2k (z— z(@+ zk+1)) Vz (12)
W = W + ZW + Z2W5

Displacement field of sinusZZ0 theory:

U=Uy+ 2z + sin(%z) Us + (—1)"%k (z— I(z+ zk+1)) Uy
V=\o+ 2V + sin(”ﬁ) Vs + (—1)"h—2k (z— 2 (zc+ zk+1))vz (13)

W =Wg

The expansion of the degrees of freedognuy, Us, Vo, Vi, Vs, Wo, W1, andw, are functions of the
thickness coordinate only. These are layer-independent, unlike thoseantlv,, as illustrated in
figures 4 and 5.

5 The Unified Formulation for the buckling analysis of FG sandwich plates

In this section it is shown how to obtain the fundamental nuclei under CUF, which allows the
derivation of the governing equations and boundary conditions for FG plates.

5.1 Functionally graded materials

A conventional FG plate considers a continuous variation of material properties over the thickness
direction by mixing two diferent materials [2]. The material properties of the FG plate are assumed
to change continuously throughout the thickness of the plate, according to the volume fraction of
the constituent materials. Although one can use CUF for one-layer, isotropic plate, we consider
a multi-layered plate. In fact, the sandwiches in study present 3 physical l&yers, 1,2, 3,

ACCEPTED MANUSCRIPT
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and depending on the considered theory may hatverdint displacement fields. Nevertheless, we

are dealing with functionally graded materials and becomes mandatory to model the continuos
variation of properties across the thickness direction. A considerable number of layers is needed
to ensure correct computation of material properties at each thickness position, and for that reason
we consider a total oN, = 91 virtual (mathematical) layers of constant thickness for the entire
plate of thickness. In the following,kp refers to physical layers ard= 1, ..., 91 refers to virtual

layers.

The CUF procedure applied to FG materials starts by evaluating the volume fraction of the two
constituents for each layer. To describe the volume fractions an exponential function can be used
as in [70], or the sigmoid function as proposed in [71]. In the present work a power-law function is
used as most researchers do [72] [32,18,19]. In the typical FG plate the power-law function defines
the volume fraction of the ceramic phase as:

V, = (0.5 ; E)p (14)

wherez € [-h/2, h/2], his the thickness of the plate, apds a scalar parameter that allows the user

to define gradation of material properties across the thickness direction. In the present sandwich
plate, the volume fraction of the ceramic phase of the FG skins are obtained by adapting the typical
power-law. Furthermore, we need to compute the volume fraction for each layer. Considering (1),

one has:

VE=(Ee), zelhohi]

hi1—hg
V<I:( =1 ze[hyh] (15)
VE=(22)", zelhyhy

whereZ'is the thickness coordinate of a point of each (virtual) skin layer,lant;, h,, hs, and
p>0areasin(1).

Having the volume fraction of each constituent, a homogenization procedure is employed to find
the values of the modulus of elasticig, and Poisson’s ratiof, of each layer. A possible homog-
enization technique is the Mori-Tanaka one [73,74], and other possibility is the law-of-mixtures.

In the present work we use the last one so that we can compare our results with referenced authors.
The law-of-mixtures states that:

EX(2) = EmVim + EoVe; v (2) = vV + veVe (16)

whereEX(2) andv*(2) are thek — th layer homogeneized modulus of elasticity and Poisson’s ratio,

ACCEPTED MANUSCRIPT
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Emn andE,; are the modulus of elasticity for metal and ceramic phases, respectiyedndV, are
the corresponding volume fractions, anglandv. are the Poisson’s ratios for metal and ceramic
phases.

5.2 Displacements

According to the Unified Formulation by Carrera, the three displacement companenjé=V)
andu,(=w) and their relative variations are modeled as:

(Ux, Uy, Uz) =F; (UXTa Uy, uZT) (5ux» 5Uy, 5uz) =Fs (5uxs, 5UySa 5Uzs) (17)

The vectors are chosen by resorting to the displacement field. In the present formulation the thick-
ness functions of each theory are as follows

sinus theory:

Foux= Fouy= Frue= Fry = [1 2 sin(3)] (18)
I:suz: I:1-uz: [1 z i]

sinusO theory:
Foux= Fouy= Frue= Fry = [1 2 sin(3)] (19)
Fsuz=Frz= [1]

sinusZZ theory:
I:sux: I:suy: FTUX = I:Tuy = [1 z Sin(%z) (_1)kp%p (Z_ % (ka + kaﬂ))] (20)
Fsuz= Fruz = [1 VA 22]

sinusZZ0 theory:
Fa= Fay= Frx=Fry=[1 2 sin(2) (-1)Z (- & (2 + zepnr))] 21)
Fsuz=Frz= [1]

The present formulation can be seen as a generalization of the original Carrera’s Unified Formu-
lation in the sense thatfiiérent expansions for the in-plane and the out-of-plane displacement are
considered.

ACCEPTED MANUSCRIPT
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Stresses and strains are separated into in-plane and normal components, denoted respectively by
the subscripte andn.

The geometrical relation§s) between the mechanical strains in ktle layer and the displacement
field u* = {u§, uk, Ut} depend on the option of considering or not the warping in thickness direction.

For thesinusandsinusZZtheoriesG can be stated as follows:

E'SG = (6o €y Yoyl < = D';(”')uk , (22)

GEG = [Yx2 Yy2 &) = (Dﬁp + Dﬁz) u,

wherein the dierential operator arrays are defined as follows:

dy 0 822 0 00, 9,00
Dy" =10 48,822, Dip={00d,|. Di.={04,0]: (23)
|0y 0 050y | 000 10 04,

Although one needs to account for the nonliner contributions for the buckling analysis, we can use
the linear version of CUF as the non-linear terms will only influence the equation referéug.to
In fact, the compressive in-plane forces and distributed shear forces only actuate on the mid-plane

2 2
— H \Wo 1 (owo O0Wp OWp
(z=0) and the nonlinear terms are reduceé (é—ﬁx) 5 (—0y ) , and>2 e

For thesinusandsinusZZtheories &, # 0, i.e., warping is allowed), we use

ox 00

DE=|04,0 (24)

d, 65 0
instead oD}{™ and just add the terms in referred equation.

For thesinu® andsinusZ theories &, = 0, i.e., warping is not aIIowed)r't‘)G and the diferential
operator arrajD'; remain as before, but the other strains are reduced to

ens = [yxz 1yd*" = (DK, + Dy u*, (25)

ACCEPTED MANUSCRIPT
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wherein the dferential operator arrays are defined as:

‘ 0 00y ‘ 0, 00
an: , Dpn,= >
009y 00,0

5.4 Elastic stress-strain relations

To define the constitutive equatiorS)( stresses are separated into in-plane and normal compo-

(26)

nents as well. The elastic stress-strain relations depend on which assumptionetonsider.

For thesinusandsinusZZtheories, the 3D constitutive equations are used:

kK _ KT _ ~k K kK k kK _ KT _ ~k Kk k Kk
Opc = [oxx Oy, 0] = Chp €56 + Cpn €c  Onc=0xz0yn0]" = Cnp €pc Chn €nc

pp =pG
with
ck Cck, 0 00Ck, 0 00 ck, 0 0
Cop=|Ck, Ck, 0 Cin=l00C%| Chp=[0 0 0 Cimn=| 0 Ck 0
| 0 0 Cf,]| 100 0 | Ck, CY, 0] | 0 0 Cf |

and theCi"j are the three-dimensional elastic constants

EX1- ("9

| ESOA + 09Dy E
1—3(v)2 — 2(W4)3’

Ck = X C = —
H 1 - 3(V)2 — 2(v4)3 U201+

k _
C12_

where the modulus of elasticity and Poisson’s ratio were defined in (16).

For thesinug) andsinusZ theories, as we havg, = 0, the plane-stress case is used:

Ko KT _ ~k Kk K _ KT _ ~k Kk
Tpc =[x Ty, 0x]" = Cpp €5 Tnc = [0xz 7yl " = Cpn €0

with C¥, andefs; as beforees = [yx7y]*" and

ck. o
Cﬁn: 44
0 C'Z4

(27)

(28)

(29)

(30)

(31)

ACCEPTED MANUSCRIPT
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andCi"j are the plane-stress reduced elastic constants:

Ek

EX . EX
1- (092’

k = _— = -
Cuu = 1 (k)2’ Caa 2(1+ %)

Ck, = (32)

5.5 Principle of virtual displacements

In the framework of the Unified Formulation, the Principle of Virtual Displacements (PVD) for the
pure-mechanical case is written as:

Ni
Z ff 6epG O'pc + 0eks O'ﬁc} dQdz = ZéL'é (33)
k=1 k=1

QA

whereQy andAy are the integration domains in planey) andz direction, respectively. As stated
before,G means geometrical relations a@dconstitutive equations, arklindicates the virtual
layer.T is the transpose operator afic is the external work for thith layer.

Substituting the geometrical relationS)( the constitutive equation<], and the modeled dis-
placement fieldk, andFy), all for thekth layer, (33) becomes:

f f | (Dl Fooul)T(Cl, DY Fouk + CK (D, + DI)F.uk)
Qe A
+((DY, + DE,)F0US)T(CK,DYs Fouk + CK (DK, + Dk,)Fu¥)|dQdz = 5L (34)

Applying now the formula of integration by parts, (34) becomes:

fg k ((Dg)éak)T akdQy = — fg k ((D )a) dy + fr k sa ((1e)a¥) dr, (35)

wherel o matrix is obtained applying th@radient theorem

f W g = 9§ nuds (36)

beingn; the components of the normalto the boundary along the directiénAfter integration
by parts, the governing equations and boundary conditions for the plate in the mechanical case are

ACCEPTED MANUSCRIPT
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obtained:

f f ( 5uS)T ( DK)"(CK (D) +C¥ (D, +Dk)+(~D¥,+Dk,)" (CK,(D¥)+CK(D Q+Dnz)))|: Fsu ]dxdydz
QA

+ Qf A{ (SuyT[(1KT(CK (DY) + C (DK, + DL,))

+ 1KT(CK (D) + CK (DX, + Dﬁz)))FTFsu';]dxdydz: Jop, SUETF spldQ . (37)

WhereI"‘J andl ﬁp depend on the boundary geometry:

n, 0O 0 0 ny
lk=lono|. Ie=|00n|- (38)
»nynXO‘ POO 0_

The normal to the boundary of domdinis:

ﬁ: nX _ COiQDX) (39)
ny coqypy)

wheregp, andgy are the angles between the normaind the directiorx andy respectively.
5.6 Governing equations and boundary conditions

The governing equations for a multi-layered plate subjected to mechanical loadings are:

kT .
S

su Kiwus = P, (40)
where the fundamental nuclels’’ is obtained as:

Kirs = [(— DE)T(CE,(DE) + Ck,(Dlg + D)

+(-D¥, + DE,)"(CK,(DE) + Cl,(DX, + DE,))|F-Fs (41)

and the corresponding Neumann-type boundary condition% are:

HkTS u k Hk‘rS kK
d

T s

(42)
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where:

I = [IKT(CE (DY) + Ck (D, + D) +

IKT(Ca(DY) + Cli(D, + DY) |F-Fs (43)
andP¥_are variationally consistent loads with applied pressure.
For FG materials, the fundamental nuclei in explicit form becomes:

I(kTs = (—G;aicn + 5;0§C55 - 8;a)s/C66) FTFS

Ul 1

Kite, = (=0303C12 — 0505Ce6)F-Fs

Uth2

KkTS = (—(9;(9?(:13 + 826§C55) FTFS

ulh3

KK'S = (~3703C12 — ,05Ces)F-Fs

ulp
Kl'jﬁfz = (—5;83(:22 + 0%05C44 — 0505Ce6)F-Fs
KKTS = (~9503Cas + 505Caa) F- Fs
KEs = (0305C13 — 0305Css)F-Fs
KK'S = (9505C 23 — 9703Cas)F-Fs
KKrS. = (3305Css — A05Caa — 0L05Cas) . F
(44)

TP = (Nd5C11 + NyACog) F-Fs

I5%° = (Nd5Caz + Myd3Ce6)F-F s

IS = (Nyd3Cr3)F - Fs

II57 = (nyd5Ci2 + NydSCo6) F - Fs

TI5S = (nyd5Coz + Ned3Co) F-Fs

IS = (nydsCog) F-Fs

IS = (N d5Css)F - Fs

IS = (nydsCas)F-Fs

IT5% = (Ny95Ca4 + N3Cs5)F-Fs (45)

5.7 Equations of motion and boundary conditions in terms of displacements

In order to discretize the linearized buckling equations by radial basis functions, we need the ex-
plicit terms of that equations and the corresponding boundary conditions as well in terms of the
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generalized displacements. The explicit governing equations and corresponding boundary condi-
tions in terms of generalized displacements for the static and free vibration analysis of functionally
graded plates of thsinustheory can be found in [61]. Those equations are the same for the buck-
ling problem, by setting to zero the terms with the inertigsds well as the external forcep,,

and adding the non-linear terms to th&, equation. For the sake of completeness we present here
the equation of the buckling problem sihustheory that corresponds to thg variable.

ouy ouz ovy OVz 0? WO 62W0
oW : Aiz— + 2B A 2By3— — -
0 ¢ Arsg s+ 2Bis—o- + Ags—r ay + 2By ay A55 A44
62W1 82W1 0 Wz a Wz
B e Baa a2 Dss e Daa ay?
— GZWO — (92W0 — 62W0
+NXXW + 2ny% + yya—yz =0 (46)

The stifness components of this equation can be computed as follows:
N

Aj = ZCIkJ (Ze1—2); By = Ezclkj (Zi+1_ i) Dij = §chkj (Zﬁ+1—23) (47)
k=1

whereCi"j are the elastic constants previously defined in (28), (29), (31), andNBi&)the number
of mathematical layers across the thickness directipig the thickness of each layer, andz ,
are the lower and uppercoordinate for each layér Ny, N_Xy, andl\Tyy denote the in-plane applied
loads.

6 The radial basis function method applied to buckling problems

Recently, radial basis functions (RBFs) have enjoyed considerable success and research as a tech-
nique for interpolating data and functions. A radial basis functigiix — x;l|) is a spline that
depends on the Euclidian distance between distinct data ceqtgrs 1,2,...,N € R", also called

nodal or collocation points. Although most work to date on RBFs relates to scattered data ap-
proximation and in general to interpolation theory, there has recently been an increased interest in
their use for solving partial ¢fierential equations (PDES). This approach, which approximates the
whole solution of the PDE directly using RBFs, is truly a mesh-free technique. Kansa [75] intro-
duced the concept of solving PDEs by an unsymmetric RBF collocation method based upon the
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MQ interpolation functions, in which the shape parameter may vary across the problem domain.

The radial basis functiorp] approximation of a functionu) is given by

N
T(X) = > @i (IX— Willo) . x € R" (48)
i=1

wherey;,i = 1,.., N is a finite set of distinct points (centers)RA.

Derivatives ofli are computed as

N

o0 ¢

ax = 29 (49)
]=

P00

W = Za’jm,etc (50)

In the present collocation approach, one needs to impose essential and natural boundary conditions.

Consider, for example, the conditisn= 0, on a simply supported or clamped edge. The conditions
are enforced by interpolating as

w=0- > a}’¢;=0 (51)

Other boundary conditions are interpolated in a similar way.

The most common RBFs are
Cubic: ¢(r) =13
Thin plate splines: ¢(r) = r?log(r)
Wendland functions: ¢(r) = (1 - r)"p(r)
Gaussian: ¢(r) = e ©”’
Multiquadrics: ¢(r) = Vez +r2

Inverse Multiquadrics: ¢(r) = (¢? + r?)~*?

where the Euclidian distances real and non-negative ards a positive shape parameter. In the
present work, we consider the compact-support Wendland function [76] defined as

(r) = (1-cn?(32cn®+25cr)’+8cr+1) (52)
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The shape parametet)(is obtained by an optimization procedure, as detailed in Ferreira and
Fasshauer [77].

ConsideringN distinct interpolations, and knowing(x;), j = 1,2,...,N, one findse; by the solu-
tion of aN x N linear system

Aa=u (53)
whereA = [ (X = Yill2) lnxns @ = [@1, @2, ..., an]T @andu = [U(Xg), U(Xp), ..., U(Xn)] T

Consider a linear elliptic partial fierential operatot acting in a bounded regiof2 in R" and
another operatofg acting on a boundargQ. The eigenproblem looks for eigenvalueg and
eigenvectorsy() that satisfy

LUu+u=0inQ (54)
Lgu = 00noQ (55)

The eigenproblem defined in (54) and (55) will be replaced by a finite-dimensional eigenvalue
problem, after the radial basis approximations.

The solution of the eigenproblem by radial basis functions consMiensdes in the interior of the
domain and\g nodes on the boundary, with a total number of nodes N, + Ng. In the present
work, a®R? Chebyshev grid is employed (see figure 6) and a square plate is computed with side
lengtha = 2. For a given number of nodes per sidle« 1) they are generated by MATLAB code

as:

x = cos(pi*(0:N)/N)’; y=x;
One advantage of such mesh is the concentration of points near the boundary.

The interpolation points are denoted kye Q,i = 1,...,N, andx € 9Q,i = N, + 1,..., N. At the
points in the domain, the following eigenproblem is defined

N
D aiLe(Ix=yill)) = A(x), j = 1,2,..., N, (56)
i=1
or
La=2T (57)
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where

L =[Lo(Ix- Yill2) Iy xn (58)

At the points on the boundary, the imposed boundary conditions are

N
D aLed (Ix=yill) = 0,j =N +1,..,N (59)
i=1
or

whereB = Lgg [(IIxn 11— Vi)

NgxN’

Therefore, one can write a finite-dimensional eigenvalue problem and solve equations (57) and
(60) as a generalized eigenvalue problem

£| A|
a=2A a (61)
B 0
where

A= [(I% = Yill)) g

The eigenproblem associated to the linearized buckling equations is defined as
[L-2G]X =0 (62)

where L collects all stifness terms ang collects all terms related to the in-plane forces. In (62)
X are the buckling modes associated with the buckling loads defineéd as

7 Numerical results

In this section the sinusoidal shear deformation plate theories are combined with radial basis func-
tions collocation for the buckling analysis of functionally graded sandwich plates. The plate is
subjected to compressive in-plane forces acting on the mid-plane of the plate. The buckling loads
of simply supported (SSSS) squaege<{ b = 2, see figure 6) sandwich plates with FG materials in
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the skins are analysed, for both symmetric and unsymmetric plates. The plates have side lengths
a = b, thicknesdh, being the span-to-thickness ra#igh taken to be 10.

As stated before, all numerical examples are performed employing a Chebyshev grid and the Wend-
land function as defined in (52) with an optimized shape parameter. The bottom skin varies from
a metal-rich surface to a ceramic-rich surface while the top skin face varies from a ceramic-rich
surface to a metal-rich surface. The core material of the present sandwich plate is fully ceramic.
Recall that the plate is a sandwich, physicaly divided into 3 layers, although 91 virtual layers are
considered for the evaluation off§tiess components. The power-law function is used to describe
the volume fraction of the metal and ceramic phases (see (1)) and the material homogeneization
technique adopted is the law of mixtures (16), the same used in the references. The material prop-
erties areE,, = 70E, (aluminum) ande; = 380E, (alumina) beingeg = 1GPa. Poisson’s ratio is

vm = v¢ = v = 0.3 for both aluminum and alumina. The homogeneization technique is applied to
the Young’s modulus only. Various power-law exponents, and skin-core-skin thickness ratios are
considered in the following.

Both the uni- and bi-axial critical buckling load are studied. An initial study was performed for
each type of buckling load to show the convergence of the present approach and select the number
of Chebyshev points to use in the computation of the buckling problems. The non-dimensional
parameter used is

5. P&
~ 100M3Eq’
7.1 Uni-axial buckling load

The uni-axial case convergence study is presented in table 2 for the 1-1-1 sandwigh=with
Based on this study a grid of 4 points was used for the forward uni-axial buckling study.

The first four buckling modes of a simply supported 2-2-1 sandwich square plate with FG skins,
p = 10, subjected to a uni-axial in-plane compressive load, using present sinusoidal theories are
presented in figures 7 to 10.

The critical buckling loads obtained from the present approach suiths sinu$, sinusZZ and
sinusZd theories are tabulated and compared with available references in table 3 for various
power-law exponent and skin-core-skin thickness ratios. The table includes results obtained
from classical plate theory (CLPT), first-order shear deformation plate theory (FSORT5/6
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as shear correction factor), Reddy’s third-order shear deformation plate theory (TSDPT) [10], and
Zenkour's sinusoidal shear deformation plate theory (SSDPT) [29]. The table is organized so that
the material power-law exponent increases from up to dgwe (O, 05, 1, 5, 10) and the core
thickness to the total thickness of the plate ratio increases from left to(ﬁﬁghto, :,3.3.8, %) In

the particular case of the 1-0-1 sandwich, the sandwich degenerates in a FG two layers plate (see

figure 11 on the left) and the ZZF is as in figure 11 on the right.

7.2 Bi-axial buckling load

The bi-axial case convergence study is presented in table 4 for the 2-1-1 sandwigh-wihA
grid of 172 points was used for the forward bi-axial buckling study.

In figures 12 to 15 the first four buckling modes of a simply supported 2-1-2 sandwich square plate
with FG skins,p = 0.5, subjected to a bi-axial in-plane compressive load, using present sinusoidal
theories are presented.

The critical buckling loads obtained from the present approach swiths sinu$, sinusZZ and
sinusZ 2 theories are tabulated in table 5 for various power-law expomeatsl skin-core-skin
thickness ratios. As for the uni-axial case, results are compared with those from classical plate
theory (CLPT), first-order shear deformation plate theory (FSO¥PFE 5/6 as shear correction
factor), Reddy’s third-order shear deformation plate theory (TSDPT) [10], and Zenkour’s sinu-
soidal shear deformation plate theory (SSDPT) [29]. The table is organized so that the material
power-law exponent increases from up to down and the core thickness to the total thickness of the
plate ratio increases from left to right. As in the uni-axial load case, the 1-0-1 case becomes as in
figure 11.

7.3 Discussion of results

Results obtained with the present formulation are in good agreement with considered references
(except for the classical plate theory, which is not adequate for this type of plates). This allow us
to conclude that the sinusoidal plate theories combined with collocation with radial basis functions
are good for the modeling of SSSS sandwich plates with FG skins.

The isotropic fully ceramic plate (first line on tables 3 and 5) has the higher fundamental buckling
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loads. As the core thickness to the total thickness of the plate ratio increases the buckling loads
increase as well. We may also conclude that the critical buckling loads decrease as the power-law
exponentp increases. From the comparison of tables 3 and 5 we deduce that the bi-axial buckling
load of any simply supported sandwich square plate with FG skins is half the uni-axial one for the
same plate.

The zig-zag &ects have influence on the buckling loads of SSSS sandwich plates with functionally
graded skins. By comparirglnusandsinusZZtheories we see that the first one (without Zi&et)

gives higher buckling loads than the other (with ZEeets). Same happenssmu$) andsinusZD
theories. The influence of the Z4fect is also seen in the first column of tables 3 and 5: for the
isotropic fully ceramic plate, ¢lierent values are obtained.

Another thing to note is that theinu® andsinusZ theories are in better agreement with [10]
and [29] tharsinusandsinusZZtheories. This can be explained by the= 0 option that the four
theoriessinug), sinusZ, [10] and [29] share. The influence of the warpirftgets is stronger
than the ZZ €&ects.

8 Conclusions

For the first time, a study on the influence of Zig-Zag and warptieres on buckling problems of
functionally graded sandwich plates by radial basis function collocation was performed. For that
purpose, four sinusoidal theories were compared. The computation procedure becomes fast and
straightforward in MATLAB as a consequence of combining a generalized version of Carrera’s
Unified Formulation and collocation with radial basis functions. The collocation code depends only
on the choice of two vectors and the buckling loads for any typ&%aghear deformation theory

are obtained just by changirfg, andF.. The present formulation was compared with available
references and proved very accurate in buckling problems.

Although buckling loads of sandwich plates with functionally graded skins depend on both warping
and zig-zag ffects, the influence of the warpingects is stronger.
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Fig. 1. Sandwich with isotropic core and FG skins.
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Fig. 2. A 2-1-1 sandwich with FG skins for various power-law exponents in (1).
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Fig. 3. Rectangular plate subjected to in-plane forces.
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Fig. 4. Scheme of the expansions involved in the displacement field.
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Fig. 5. Zig-Zag #ect for the 1-8-1 (left) and the 2-1-1 sandwiches (right).
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Fig. 6. A sketch of @2 Chebyshev grid with Ppoints
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Fig. 7. First four buckling modes. Uni-axial buckling load of a simply supported 2-2-1 sandwich square
plate with FG skinsp = 10, and using the sinus theory.
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Fig. 8. First four buckling modes. Uni-axial buckling load of a simply supported 2-2-1 sandwich square
plate with FG skinsp = 10, and using the sinusO theory.
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Fig. 9. First four buckling modes. Uni-axial buckling load of a simply supported 2-2-1 sandwich square
plate with FG skinsp = 10, and using the sinusZZ theory.
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Fig. 10. First four buckling modes. Uni-axial buckling load of a simply supported 2-2-1 sandwich square
plate with FG skinsp = 10, and using the sinusZZ0 theory.
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Fig. 11. The 1-0-1 sandwich with FG skins: influence of the exponent power-law (left) and the ZZF (right).
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Fig. 12. First four buckling modes. Bi-axial buckling load of a simply supported 2-1-2 sandwich square plate
with FG skins,p = 0.5, and using the sinus theory.
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Fig. 13. First four buckling modes. Bi-axial buckling load of a simply supported 2-1-2 sandwich square plate
with FG skins,p = 0.5, and using the sinus0 theory.
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Fig. 14. First four buckling modes. Bi-axial buckling load of a simply supported 2-1-2 sandwich square plate
with FG skins,p = 0.5, and using the sinusZZ theory.
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Fig. 15. First four buckling modes. Bi-axial buckling load of a simply supported 2-1-2 sandwich square plate
with FG skins,p = 0.5, and using the sinusZZ0 theory.
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Table 1
The present sinuheories.

theory | considers Zig-Zadfect aIIowstichness-stretchinJ;
sinus no yes
sinus0 no no

sinuszZ yes yes

sinuszZZ0 yes no
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Table 2
Convergence study for the uni-axial buckling load of a simply supported 1-1-1 sandwich square plate with
FG skins ancp = 1 case using the sinus and sinusZZ theory

grid 1% 172 212

Psinus | 6.31557| 6.31502| 6.31495

P sinusZZ | 6.31474| 6.31414| 6.31406
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Table 3
Uni-axial bucklingP load of simply supported sandwich square plates with FG skins using the sinusoidal
theory.

p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
0 CLPT 13.73791 13.73791 13.73791 13.73791 13.73791 13.73791
FSDPT 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449

TSDPT [10] 13.00495 13.00495 13.00495 13.00495 13.00495 13.00495

SSDPT [29] 13.00606 13.00606 13.00606 13.00606 13.00606 13.00606

sinus 12.95311 12.95311 12.95311 12.95311 12.95311 12.95311
sinus0 13.00543 13.00543 13.00543 13.00543 13.00543 13.00543
sinusZz 12.95300 12.95196 12.95281 12.95203 12.95190 12.95310
sinusZZ0 13.00532 13.00437 13.00515 13.00447 13.004213.00545

0.5 CLPT 7.65398 8.25597 8.56223 8.78063 9.18254 9.61525
FSDPT 7.33732 7.91320 8.20015 8.41034 8.78673 9.19517

TSDPT [10] 7.36437 7.94084 8.22470 8.43645 8.80997 9.21681
SSDPT [29] 7.36568 7.94195 8.22538 8.43712 8.81037 9.21670

sinus 7.16230 7.71642 7.98960 8.19279 8.55168 8.94166
sinus0 7.18761 7.74350 8.01710 8.22139 8.58128 8.97284
sinusZz 7.16223 7.71597 7.98960 8.19183 8.55081 8.94150
sinusZZ0 7.18755 7.74310 8.01710 8.22052 8.58039 8.97271

1 CLPT 5.33248 6.02733 6.40391 6.68150 7.19663 7.78406
FSDPT 5.14236 5.81379 6.17020 6.43892 6.92571 7.48365

TSDPT [10] 5.16713 5.84006 6.19394 6.46474 6.94944 7.50656
SSDPT [29] 5.16846 5.84119 6.19461 6.46539 6.94980 7.50629

sinus 5.06151 5.71145 6.05468 6.31499 6.78398 7.31966
sinus0 5.07874 5.73041 6.07363 6.33558 6.80542 7.34331
sinusZZ 5.06147 5.71123 6.05471 6.31414 6.78338 7.31949
sinusZZ0 5.07869 5.73022 6.07366 6.33480 6.80476 7.34317

5 CLPT 2.73080 3.10704 3.48418 3.65732 4.21238 4.85717
FSDPT 2.63842 3.02252 3.38538 3.55958 4.09285 4.71475

TSDPT [10] 2.65821 3.04257 3.40351 3.57956 4.11209 4.73469
SSDPT [29] 2.66006 3.04406 3.40449 3.58063 4.11288 4.73488

sinus 2.63640 3.00755 3.36252 3.52992 4.05069 4.64692
sinus0 2.64695 3.01855 3.37203 3.54149 4.06168 4.66043
sinusZZ 2.63631 3.00698 3.35966 3.52994 4.05056 4.64688
sinusZZ0 2.64687 3.01793 3.36937 3.54152 4.06160 4.66038

10 CLPT 2.56985 2.80340 3.16427 3.25924 3.79238 4.38221
FSDPT 2.46904 2.72626 3.07428 3.17521 3.68890 4.26040

TSDPT [10] 2.48727 2.74632 3.09190 3.19471 3.70752 4.27991

SSDPT [29] 2.48928 2.74844 3.13443 3.19456 3.14574 4.38175

sinus 2.47230 2.71991 3.06061 3.15730 3.66163 4.20546
sinus0 2.48259 2.73058 3.06950 3.16827 3.67158 4.21787
sinusZZ 247213 2.71679 3.05227 3.15658 3.66000 4.20449
sinusZZ0 2.48242 2.72733 3.06150 3.16749 3.67015 4.21685
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Table 4
Convergence study for the uni-axial buckling load of a simply supported 1-1-1 sandwich square plate with
FG skins ancp = 1 case using the sinus and sinusZZ theory

grid 1% 172 212

Psinus | 1.68144| 1.68127| 1.68125

P sinusZZ | 1.68002| 1.67983| 1.67981
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Table 5
Bi-axial buckling loadP of simply supported sandwich square plates with FG skins using the sinusoidal
theory.

p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
0 CLPT 6.86896 6.86896 6.86896 6.86896 6.86896 6.86896
FSDPT 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224

TSDPT [10] 6.50248 6.50248 6.50248 6.50248 6.50248 6.50248
SSDPT [29] 6.50303 6.50303 6.50303 6.50303 6.50303 6.50303

sinus 6.47656 6.47656 6.47656 6.47656 6.47656 6.47656
sinus0 6.50272 6.50272 6.50272 6.50272 6.50272 6.50272
sinusZZ 6.47650 6.47598 6.47641 6.47601 6.47595 6.47655
sinusZZ0 6.50266 6.50219 6.50258 6.50224 6.502146.50272

0.5 CLPT 3.82699 4.12798 4.28112 4.39032 4.59127 4.80762
FSDPT 3.66866 3.95660 4.10007 4.20517 4.39336 4.59758

TSDPT [10] 3.68219 3.97042 4.11235 4.21823 4.40499 4.60841
SSDPT [29] 3.68284 3.97097 4.11269 4.21856 4.40519 4.60835

sinus 3.58115 3.85821 3.99480 4.09640 4.27584 4.47083
sinus0 3.59380 3.87175 4.00855 4.11069 4.29064 4.48642
sinusZz 3.58112 3.85799 3.99480 4.09592 4.27541 4.47075
sinusZZ0 3.59377 3.87155 4.00855 4.11026 4.290204.48636

1 CLPT 2.66624 3.01366 3.20195 3.34075 3.59831 3.89203
FSDPT 257118 2.90690 3.08510 3.21946 3.46286 3.74182

TSDPT [10] 2.58357 2.92003 3.09697 3.23237 3.47472 3.75328
SSDPT [29] 2.58423 2.92060 3.09731 3.23270 3.47490 3.75314

sinus 2.53076 2.85573 3.02734 3.15750 3.39199 3.65983
sinus0 2.53937 2.86520 3.03681 3.16779 3.40271 3.67165
sinusZZ 2.53073 2.85562 3.02735 3.15707 3.39169 3.65975
sinusZZ0 2.53935 2.86511 3.03683 3.16740 3.402383.67158

5 CLPT 1.36540 1.55352 1.74209 1.82866 2.10619 2.42859
FSDPT 1.31921 151126 1.69269 1.77979 2.04642 2.35737

TSDPT [10] 1.32910 1.52129 1.70176 1.78978 2.05605 2.36734
SSDPT [29] 1.33003 1.52203 1.70224 1.79032 2.05644 2.36744

sinus 1.31820 1.50377 1.68126 1.76496 2.02535 2.32346
sinus0 1.32348 1.50927 1.68601 1.77075 2.03084 2.33022
sinusZZ 1.31816 1.50349 1.67983 1.76497 2.02528 2.32344
sinusZZ0 1.32344 1.50897 1.68469 1.77076 2.0308(2.33019

10 CLPT 1.28493 1.40170 1.58214 1.62962 1.89619 2.19111
FSDPT 1.23452 1.36313 1.53714 1.58760 1.84445 2.13020

TSDPT [10] 1.24363 1.37316 1.54595 1.59736 1.85376 2.13995
SSDPT [29] 1.24475 1.37422 1.56721 1.59728 1.57287 2.19087

sinus 1.23615 1.35996 1.53030 1.57865 1.83081 2.10273
sinus0 1.24130 1.36529 1.53475 1.58414 1.83579 2.10893
sinusZZ 1.23606 1.35840 1.52613 1.57829 1.83000 2.10224
sinusZZ0 1.24121 1.36367 1.53075 1.58374 1.835082.10843
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