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Abstract

Scheduling multicast traffic in input-queued switches to maximize throughput requires solving a hard combinatorial optimization
problem in a very short time. This task advocates the design of algorithms that are simple to implement and efficient in terms of
performance. We propose a new scheduling algorithm, based on message passing and inspired by the belief propagation paradigm,
meant to approximate the provably-optimal scheduling policy for multicast traffic. We design and implement both a software and
a hardware version of the algorithm, the latter running on a NetFPGA. We compare the performance and the power consumption
of the two versions when integrated in a software router. Our main findings are that our algorithm outperforms other centralized
greedy scheduling policies, achieving a better tradeoff between complexity and performance, and it is amenable to practical high-
performance implementations.
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1. Introduction

In the last decade, input-queued (IQ) switches have been the
reference switching architecture for the design of high speed
routers in the Internet [3] and switches for data centers [2]. Fur-
thermore, at a much smaller spatial scale, they are widely em-
ployed to switch data flits in Network-on-Chips [5]. The main
reason is that IQ switches offer a convenient tradeoff between
computational complexity and memory speed. Indeed, input
buffers run at a speed equal to the line rate, so that the per-
formance bottleneck due to the limited memory access time is
minimized. Conversely, output-queued (OQ) switches always
achieve optimal performance but they require very high mem-
ory speed, which is definitely unfeasible at high line rates or for
large number of ports. In IQ switches, a scheduling algorithm
chooses the packets to transfer from input to output ports while
satisfying the switching fabric constraints, which permit at most
a single packet transfer from each input port and to each output
port. Finding the scheduling decision that is optimal in terms of
throughput for unicast traffic requires to compute a maximum
weight matching in a bipartite graph and this problem repre-
sents a reference model for a large class of resource allocation
problems in computer networks. Similarly, we expect that the
relevance of the multicast scheduling problem, addressed in this
paper, goes beyond the scenario of IQ switches considered here.

Unicast traffic has been the predominant traffic in the Inter-
net for a long time, but, nowadays, new applications have been
arising, based on multicast traffic, in which packets are sent
to a set of destinations, rather than a single one. Examples

of such applications are IP video broadcasting, P2P networks
and financial networks supporting high-speed trading. More-
over, in data centers multicast traffic is very relevant, due to
the required data redundancy (typically, multiple copies of the
same data are stored in different servers/racks) and to coopera-
tive/parallel computations (such as MapReduce) [4]. So far, the
support of multicast traffic in IQ switches is expected to have
been achieved by modifying unicast scheduling algorithms in a
heuristic way, without referring to the actual definition of opti-
mal algorithms for multicast traffic [7, 15].

In this work we specifically address the problem of schedul-
ing multicast packets in an IQ switch in order to maximize
throughput, considering the optimal switching architecture in
terms of queueing structure and scheduling algorithm. We pro-
pose a new distributed scheduling algorithm, inspired to the Be-
lief Propagation (BP) paradigm, and designed to approximate a
provably throughput-optimal scheduling policy. Moreover, we
implement a software version of the algorithm that we integrate
in a real traffic scheduler to measure performance under real-
istic workload. After profiling the actual resource usage under
real traffic, we implement a hardware accelerator of the sched-
uler on a NetFPGA platform. Finally, we thoroughly evaluate
the achievable performance and the power consumption of the
hardware accelerator.

The paper is organized as follows. In Sec. 2 we define the
multicast scheduling problem in IQ switches and we describe
the optimal policy. Sec. 3 discusses some related work. In
Sec. 4 we introduce the BP approach, and describe our pro-
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posed scheduling algorithm. Sec. 5 compares, by simulation,
the scheduler performance with other centralized greedy algo-
rithms. The implementation of the scheduler is presented in
Sec. 6 in both the software and hardware versions. The per-
formance and power consumption of the two versions are com-
pared in Sec. 7. Conclusions are drawn in Sec. 8.

2. Multicast traffic in input queued (IQ) switches

We consider an IQ switch of size N × M (Fig. 1), where
N = |I| and M = |O|, with I and O denoting the sets of input
and output ports, respectively. Coherently with standard im-
plementations [7, 11, 14], we assume that time is slotted and
the timeslot corresponds to the duration of the internal fixed-
size packets. Variable-size packets (as in Ethernet/IP packets)
that are received at the input interfaces are chopped into fixed-
size packets as soon as they enter the switch. These fixed-size
packets are then individually enqueued and switched through a
crossbar to the destination ports, where the original packets are
reconstructed before being sent to the output interface. From
now on, we shall always refer to the fixed-size packets trans-
ferred internally at the switch. During each timeslot, at most
one packet can arrive at each input and at most one packet can
depart from each output. Thus, we can define the throughput
as the average number of departed packets for each timeslot,
normalized by the number of output ports.

The fanout set of a multicast packet is defined as the set of
its destination ports. Let S denote the set of all possible fanout
sets, whose cardinality is |S | = 2M; notably, to simplify the sub-
sequent BP formalization, we artificially include the null fanout
set in S . The adopted queueing architecture is Multicast-Virtual
Output Queue (MC-VOQ), as proposed in [1], i.e., one logi-
cal FIFO queue is present for each possible fanout set at each
input port. Let Q be the set of all possible logical queues at
any input; by construction |Q| = |S | − 1. Thus, a maximum of
N × |Q| = N(2M −1) queues can be defined in the whole switch.
This queueing architecture, clearly poorly-scalable for large
values of M if implemented using distinct physical queues, is
nonetheless an interesting case, since it is optimal, as it avoids
the well-known head-of-line blocking problem, thanks to the
fact that a packet in front of a queue cannot prevent another
packet behind it to be transferred. Furthermore, MC-VOQ
queueing can be implemented using logical queues, by which
packets in the same RAM memory are organized. In this case,
the design is more scalable than using distinct physical queues,
since it requires managing internal linked lists within the RAM
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Figure 1: An N × M IQ switch with optimal MC-VOQ queueing for multicast
traffic.

memory and an indexing table to address specifically the first
packet for each possible fanout set.

Combined with optimal queueing, we consider a throughput-
optimal scheduling policy for multicast traffic. This policy is
fanout-splitting, as it allows for partial packet transmissions: A
packet can be sent to just a subset of its destination ports, leav-
ing some residual destinations for future transmissions. In this
case, the packet is re-enqueued to the queue corresponding to
the set of residual destinations, denoted as residual fanout set.
Such a behavior may introduce out-of-sequence packet trans-
missions, whose impact can be controlled and mitigated by the
techniques discussed in [17].

The state and temporal evolution of the input queues can be
described by a triple of time-dependent, integer-valued matri-
ces: Y(t), A(t), and D(t), with N rows (one for each input)
and |Q| = (2M − 1) columns (one for each queue/fanout set).
Y(t) = [yiq(t)] is the queue length matrix at timeslot t, whose
generic entry yiq(t) represents the occupancy of queue q ∈ Q
at input i ∈ I during timeslot t. Moreover, A(t) = [aiq(t)] is
the arrival matrix: aiq(t) = 1 if a new arrival occurs at input
i for queue q at timeslot t, and aiq(t) = 0 otherwise. Finally,
D(t) = [diq(t)] is the service matrix at timeslot t: diq(t) = 1
if queue q is served at input i, diq(t) = −1 if a packet is re-
enqueued to q (at input i), and diq(t) = 0 otherwise.

D(t) is computed by the scheduling algorithm and must sat-
isfy feasibility conditions imposed by the switching device. The
latter allows at most one packet to be sent from each input and
one copy of the packet to arrive at each output, and it supports
fanout splitting. These conditions can be formally defined as
detailed in [1]. To understand the notation, consider a toy ex-
ample of a 2×2 switch, with outputs labeled by 1 and 2. The set
of all possible fanout sets is S = {{1}, {2}, {1, 2}, ∅}. The set of
all possible queues is Q = {q{1}, q{2}, q{1,2}}. Let us now assume
that the scheduler chooses to transfer one packet from q{1} at in-
put 1 and one packet from q{1,2} at input 2, while re-enqueueing
the latter packet on q{1} at input 2, due to the conflict on output
1. The corresponding service matrix will be:

D =

[
1 0 0
−1 0 1

]
(1)

The queue length evolution can be described by the usual
relation: Y(t + 1) = Y(t) + A(t) − D(t). A traffic scenario, de-
scribed by a stochastic (matrix) process A(t), is said to be ad-
missible if E{A(t)} does not overload any input nor any output
port. In formulae: ∑

q∈Q

E[aiq] < 1 ∀i ∈ I (2)∑
i∈I

∑
q∈Q( j)

E[aiq] < 1 ∀ j ∈ O (3)

where Q( j) ⊂ Q is the set of all queues associated to a fanout
set including output j.

As shown in [1], while by construction an OQ switch yields
100% throughput under any admissible multicast traffic, an IQ
switch does not, even if a throughput-optimal scheduling algo-
rithm is adopted. An interested reader can refer to the simple
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counterexample for a 2×4 switch reported in Fig. 1 of Ref. [1].
Nevertheless, it is possible to define a scheduling algorithm that
maximizes the throughput (according to the formal definition
reported in [1]). The throughput-optimal scheduling decision
D̂(t) for the service matrix at timeslot t, capable of maximizing
the throughput under any admissible Bernoulli i.i.d. traffic pat-
tern, was proposed in [1] as well, and can be formalized as an
ILP optimization problem maximizing the following cost func-
tion:

w(D,Y) =
∑
i∈I

∑
q∈Q

DiqYiq (4)

defined for any service matrix D and queue length matrix Y .
The optimal scheduling algorithm selects D̂(t) by solving:

D̂(t) = arg max
D∈D

w(D,Y(t)) (5)

where D denotes the set of all feasible service matrices. At
each timeslot t, the algorithm chooses a feasible service matrix
maximizing the total cost function w, computed for the current
value of the queue length matrix Y(t). Notice that this policy
does not maximize the number of packets transferred at each
timeslot. The resulting combinatorial optimization problem is
NP-hard [1], so that in practice only approximate algorithms are
viable to solve this problem. Let us remark that the combination
of MC-VOQ with the optimal scheduler solving (5) is the only
solution known so far in the literature to provably maximize the
throughput under multicast traffic in an IQ switch.

3. Related work

Packet networks operate on resources that are shared among
the nodes and can often be modeled as constrained networks
of queues, in which packets are served according to the deci-
sions of a scheduling algorithm. The scheduling decisions must
satisfy some constraints, specific of the considered scenario.

For example, in the wireless scenario, different radio nodes
can transfer packets simultaneously, if a proper diversity
scheme for the communication is adopted to avoid/reduce in-
terference among simultaneously transmitting nodes. In partic-
ular, for a FDM (or TDM, or CDMA) diversity scheme, each
receiver is associated with one frequency (or, respectively, one
timeslot within the frame, or one code) and the scheduler com-
putes the packets to transmit. Packets are chosen such that at
most one packet can be transferred at the same time using the
same resource (frequency, temporal position, or code). Queues
are placed to solve contentions for any shared resource, by stor-
ing packets waiting for their opportunity to be transmitted. Note
that, in a generic packet network, the switching constraints
among the queues may be more complex than the ones pre-
sented above.

Pioneering work in [21] has devised the optimal scheduling
policy in generic constrained queueing networks. Such a pol-
icy, called “max-pressure”, is provably optimal and it achieves
the maximum throughput under any admissible i.i.d. Bernoulli
traffic. Results of [21] are universal and have stimulated a huge
interest in the research community, which has devoted many

efforts to apply/extend these results in many contexts regarding
wireless and wired networks. One, extensively studied, sce-
nario is the scheduling problem in an IQ switch considered in
our work. This scenario can be seen as a one-hop constrained
queueing network, in which the optimal max-pressure policy
degenerates into the Maximum Weight Matching (MWM) pol-
icy. The latter, proved to be optimal also in [12], is not prac-
tically implementable, but it has inspired the design of a huge
number of scheduling algorithms.

However, results in [12, 21] only refer to unicast traffic.
So far, few results have been obtained regarding the optimal
scheduling policy for multicast traffic in the context of con-
strained queueing systems. Notably, in the generic context of
multihop networks of queues, [17] describes how to schedule
optimally the multicast traffic generated by a set of multicast
sessions across a given set of multicast trees. At odds with
our scenario, a packet can only be transferred from each node
to a new one, but it cannot be re-enqueued within the same
node. The latter feature does not allow one to achieve max-
imum throughput in the specific single-hop queueing system
represented by an IQ switch. The work [17] defines a weight
for each tree, corresponding to the state of “congestion” associ-
ated to it. The scheduler chooses the tree to be served based on
its weight, computed similarly to the max-pressure policy.

In the context of IQ switches, many papers have addressed
the problem of scheduling multicast traffic, but without any fla-
vor of optimality. Most of the previous work has focused on
architectures with just one queue per input, which is obviously
non-optimal (even in the unicast case), because of the heavy
head-of-line blocking experienced by the traffic. For example,
[15] has investigated the tradeoff achievable among concentra-
tion of residual fanout set, fairness and implementation com-
plexity for scheduling algorithms based on one single queue
per input. These results were extended to variable size multi-
cast packets in [22].

Adopting a possibly large number of queues per input (i.e.,
one for each possible fanout set) [1] has proposed the opti-
mal policy maximizing the throughput under multicast traffic;
furthermore, it has highlighted the intrinsic performance lim-
itations of IQ switches under multicast traffic. However, the
proposed algorithm for optimal multicast scheduling requires
to solve a very complex combinatorial optimization problem,
which cannot be solved in practice. Our contribution is to show
how to approximate efficiently the optimal scheduling algo-
rithm of [1].

Notably, [19] considers a completely different approach,
based on the standard VOQ architecture designed for unicast
traffic and on a classical scheduler for unicast traffic. The
scheme works as follows. Whenever a multicast packet ar-
rives, it is enqueued in the VOQ corresponding to one desti-
nation in its fanout set. The scheduler chooses the VOQs to
serve as if the traffic was unicast. When the packet is served,
just one copy is sent to the output corresponding to the VOQ.
If some residual fanout is left, the packet is re-enqueued in one
VOQ corresponding to any of its residual fanout. Thanks to
the induced load-balancing across all the VOQs, the proposed
scheme is able to achieve maximum throughput, at the expense

3



of possible out-of-sequence problems. Note that the proposed
approach, even though very promising and practically relevant,
does not exploit the multicast capabilities of the switching fab-
ric, which is instead considered in our work.

A preliminary version of our work appeared in [6] and
in [20], where we proposed our novel approach based on Belief
Propagation (BP), investigated its performance and proposed
an efficient implementation. BP is a well-established method-
ology to solve combinatorial optimization problems. As shown
in [10], by constructing a proper factor graph (like the one tai-
lored to our scheduling problem, described in Sec. 4), it is in
principle possible to compute the solution of the problem by a
distributed message-passing algorithm. The nodes in the factor
graph exchange real-valued messages (intuitively, representing
the local “belief” of the optimal solution), based on “propaga-
tion equations” that are specific to the problem considered. The
construction of BP equations is conceptually a well-established
issue, even though non-trivial manipulations are often required
to put them in a conveniently simple form. Note that, even
though we generically speak of BP, our proposed algorithm is
of the min-sum type [10], which can be regarded as a special
case, specifically suited for computing MAP (maximum a pos-
teriori probability) estimates. Quite recently, [16] highlighted
the relevance of methods borrowed from statistical physics to
solve complex combinatorial optimization problems in the field
of networking. Our BP-inspired approach is an example of such
methods.

4. Belief Propagation (BP) approach

Our BP-based scheduling algorithm runs at each timeslot and
solves (5) based on the current state of the queues. For the sake
of simplicity, we will omit the time index t from the following
notation. We can observe that a service matrix D ∈ D can be
equivalently represented by N pairs of fanout sets σi, τi ∈ S ,
one for each input i ∈ I, as follows:

D ⇔ [σi, τi]i∈I (6)

In particular, σi (if nonempty) represents the served queue, τi

the subset of outputs to which the packet is actually transmit-
ted (transmission fanout set), and σi \ τi the queue in which the
packet is possibly re-enqueued (residual fanout set). By con-
struction,

σi ⊇ τi ∀i ∈ I (7)

Note that σi = ∅ (empty fanout set), whence τi = ∅, means
that no queue is served and the input port i does not transmit
anything. We can attribute the same meaning of no transmis-
sion at input i even to degenerate configurations withσi , ∅ and
τi = ∅, so that σi \ τi = σi (i.e., the packet is re-enqueued in the
served queue). Apart from the latter degenerate case, which is
avoided by the scheduler, we can reconstruct the service matrix
from [σi, τi] as

diq =


1 if q = σi

−1 if q = σi \ τi

0 otherwise
(8)

Moreover, to complete the feasibility constraints, we must
avoid conflicting packets at each output, namely, we have to
impose the following service constraints:∑

i∈I

χ{τi 3 j} ≤ 1 ∀ j ∈ O (9)

where χ{·} denotes a characteristic function, equal to 1 if the
condition denoted by the argument is verified (i.e., input i trans-
mits to output j), and 0 otherwise.

To clarify this alternative notation, the service matrix (1)
of the toy example introduced above admits the fanout vari-
able representation [σ1, τ1, σ2, τ2], defined as follows: σ1 =

τ1 = {1} (i.e., one packet from input 1 to output 1, without
re-enqueueing), σ2 = {1, 2} (i.e., one packet from input 2 to
outputs 1 and 2) and τ2 = {2} (i.e. the packet in σ2 is actually
transferred only to output 2, due to the conflict with σ1, and a
copy is re-enqueued in the queue towards output σ1 \ τ1 = {1}).

We can conveniently adapt the queue length matrix definition
to the new notation. Let yis be the length of the queue associ-
ated to the fanout set s ∈ S at input i ∈ I. We assume yi,∅ = 0.
Now, thanks to (8), it is possible to rewrite the cost function
(4) as a function of the fanout set variables σi, τi and claim the
following:

Lemma 1. In an IQ switch with MC-VOQ, the throughput-
optimal scheduling policy computes the service matrix at time t
as

D̂ = arg max
D∈D

∑
i∈I

(
yiσi − yi(σi\τi)

)
(10)

Lemma 1 provides an important insight in the optimal schedul-
ing policy: the adopted cost function represents the difference
between the length of the served queue and the length of the
queue where the residual fanout set is eventually re-enqueued.
This difference will be denoted as max-pressure weight of a
queue, because it clearly turns out to be an extension of the
aforementioned universal max-pressure policy [21], in which
the weight of serving one queue is computed as the local queue
length minus the (downstream) queue length where the packet
is sent. In our specific case, the downstream queue corresponds
to the queue where the residual fanout set is re-enqueued.

When considering the cost function in (10), it is worth not-
ing that, for some given service matrix D ∈ D, the elementary
contribution yiσi − yi(σi\τi) to the cost function may be negative
for some input i, if the queue in which the packet would be
re-enqueued is longer than the served queue. In this case, it
is possible to improve the overall cost function w(D,Y) by not
serving the packet from input i in D. Thus, we can argue that the
throughput optimal scheduling policy avoids serving a queue
whose occupancy is smaller than that of the queue where the
packet would be re-enqueued. This behavior may imply some
delay impairment at low loads, due to the missed opportunity
of transmitting a packet.

Now, it is important to observe that the service constraints (9)
involve variables τi associated to different inputs, whereas, for a
given input i, the variable σi is only coupled to the correspond-
ing τi, by the condition (7). As a consequence of Lemma 1, the
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optimal σi for a given choice τi = τ, which we shall denote as
σ̂iτ, can be determined by a local maximization at each input i,

σ̂iτ = arg max
σ∈S |σ⊇τ

{
yiσ − yi(σ\τ)

}
(11)

We define also the optimized “local” weights

wiτ , max
σ∈S |σ⊇τ

{
yiσ − yi(σ\τ)

}
(12)

Note that (11) identifies, for each input, the best candidate
queue (σ̂iτ) to transmit towards each set of destinations τ, and
(12) evaluates the corresponding weight. The original optimiza-
tion problem in Lemma 1 is then reduced to a (constrained) op-
timization over the sole τi variables (transmission fanout sets).
The optimal solution can be written as

[τ̂i]i∈I = arg
X

max
[τi]i∈I

∑
i∈I

wiτi (13)

where the check mark recalls that the optimization is con-
strained by (9).

4.1. The construction of the factor graph

Thanks to (13), the combinatorial optimization problem can
be solved using a factor graph [10]. The latter is a bipartite
graph, whose two species of nodes (called variable nodes and
function nodes) are associated respectively to the decision vari-
ables and to the couplings among them. An arc between a
function node and a variable node means that the corresponding
variable is involved in the corresponding coupling.

In our problem, a convenient set of decision variables for the
factor graph is defining xi j = 1 if τi 3 j (i.e. the fanout set τi

comprises output j) and 0 otherwise. This allows us to write
xi j , χ{τi 3 j} in the service constraints (9), which completely
specify any transmission fanout set as τi = { j ∈ O | xi j = 1}. In
terms of these variables, we can identify two different kinds of
couplings, namely, the local weights wiτi , appearing in (13), and
the constraints (9) themselves. Each local weight is associated
to an input i and involves variables xi1, . . . , xiM , whereas each
service constraint is associated to an output j and involves vari-
ables x1 j, . . . , xN j.

The factor graph associated to our problem can be obtained
by constructing a fully connected N ×M bipartite graph, whose
N left-most nodes correspond to the inputs and M right-most
node correspond to the outputs, and each left node is connected
to all the output nodes and vice versa. Then, we “cut” each arc
(i j) and connect each pair of “dangling bonds” to a new (vari-
able) node, while the original nodes (i ∈ I and j ∈ O) become
the function nodes of the factor graph. As an example, Fig. 2
shows the factor graph for a 2 × 3 switch. The right-most nodes
represent the coupling due the service constraints. The mid-
dle nodes represent the decision variables xi j. Finally, the left-
most nodes represent the local weight associated to the chosen
transmission fanout τi at input i, computed based on the inci-
dent decision variables xi j, ∀ j ∈ O. For example, let us assume
σ1 = τ1 = {1, 2}, σ2 = {1, 2, 3} and τ2 = {3}. In the factor graph,
we would have x11 = x12 = x23 = 1 and x13 = x21 = x22 = 0. In

x11 + x21 ≤ 1

x12 + x22 ≤ 1

x13 + x23 ≤ 1w2(τ2)

w1(τ1)

x23

x21

x11

x12

x22

x13

Figure 2: Factor graph for a 2 × 3 multicast switch. Circles and rectangles
denote variable and function nodes, respectively.

Figure 3: Messages exchange in BP algorithm among input and output nodes.

conclusion, the factor graph associated to our problem is of the
type sketched in Fig. 2 with N +M function nodes, NM variable
nodes and 2NM edges. This guarantees the scalability of the
proposed approach, since the factor graph size does not scale
with the number of the queues (growing as N2M).

Using the BP algorithm, the solution is obtained throughout
a distributed message-passing algorithm running among the in-
put function nodes and the output function nodes of the factor
graph. “Forward” messages ( fi→ j) are sent from the inputs to
the outputs and “backward” messages (b j→i) from the outputs
to the inputs, as depicted in Fig. 3. Notably, the forward mes-
sages are computed based on the backward messages, and vice
versa, in an iterative and distributed way. When the values of
the messages converge, the final service configuration is com-
puted locally at the nodes.

In the following we report the final BP equations, whose
derivation is rather technical [6]. We can define the beliefs,
associated to each transmission fanout set variable τi, as

miτ = wiτ −
∑
j∈τ

b j→i (14)

These quantities represent, apart from an irrelevant additive
constant, an estimate of the weight that can be obtained by
choosing a specific value τi = τ. Moreover, the backward mes-
sages b j→i are an estimate of the weight degradation due to pos-
sible conflicts generated at output j by the choice xi j = 1, i.e.,
j ∈ τi (transmission from i to j). These messages are defined
by suitable self-consistency equations, namely

b j→i = max
i′∈I\i

fi′→ j (15)

fi→ j = max
{
0 , max

τ∈S | τ3 j
miτ + b j→i − max

τ∈S | τ/3 j
miτ

}
(16)

where the “forward” messages fi→ j can be finally regarded as
an estimate of the weight gain that can be obtained by the sin-
gle choice xi j = 1 (rather than 0). The solution of these self-
consistency equations by iterative refinement involves message
passing from input to output ports (forward messages) and vice
versa (backward messages). It is a well known fact that BP
likely converges, if the underlying factor graph is treelike (no-
tably, equations are exact if the graph is rigorously a tree). In

5



DEC-BPn (input: [yiσ]i∈I,σ∈S ; output: [σi, τi]i∈I)

0. for i ∈ I and τ ∈ S, compute wiτ and σ̂iτ by (12) and (11)
1. set Ĩ = I and Õ = O
2. while Ĩ , ∅
3. for i ∈ Ĩ and j ∈ Õ, set b j→i = 0
4. repeat n times

for i ∈ Ĩ and j ∈ Õ, compute fi→ j by (16) and (14)
for i ∈ Ĩ and j ∈ Õ, compute b j→i by (15)

5. for i ∈ Ĩ and τ ∈ S | τ ⊆ Õ, compute miτ by (14)
6. choose i ∈ Ĩ and τ ∈ S | τ ⊆ Õ that maximize miτ

7. if miτ = 0, set τ = ∅

8. set τi = τ and σi = σ̂iτ

9. set Ĩ = Ĩ\i and Õ = Õ\τi

10. return [σi, τi]i∈I

Figure 4: DEC-BPn algorithm (decimation with n BP iterations).

our case, the factor graph is densely connected, and, consis-
tently, we find several instances of the problem in which BP
does not converge. Because of this problem, it is not possible
to use directly the beliefs (14) to fix the decision variables, since
this may lead to unsatisfied service constraints. This is why we
have resorted to use BP with a fixed number of iterations, in
conjunction with a simple decimation algorithm, which at each
iteration fixes a given variable τi = τ with the maximum belief
miτ, simplifies the equations to be compatible with the choice
taken, and then reruns BP. The resulting algorithm is described
by the pseudocode reported in Fig. 4.

The proposed algorithm, denoted as DEC-BPn, takes as input
the queue length matrix Y at timeslot t and returns the schedul-
ing decision, in terms of the fanout set variables σi, τi for each
input i. Referring to the pseudocode in Fig. 4, step 0 performs
the local optimization procedure, defined by (11) and (12),
obliviously of the feasibility constraints of the service matrix.
These constraints are considered instead in the following steps.
The “sets” Ĩ and Õ of “unreserved” inputs and outputs, respec-
tively, are initialized at step 1, assuming that all the ports are
initially available. Step 2 begins the decimation loop, which
continues until every input has taken a decision, i.e., as far as
Ĩ is not empty. Steps 3–5 represent three different phases of
BP, namely, initialization of backward messages, computation
of forward messages as a function of backward messages and
vice versa (with n iterations), and computation of beliefs (as a
function of backward messages). Step 6 chooses an input i and
a transmission fanout set τ, such that i is available and τ con-
tains only available outputs, maximizing the belief miτ (when
the maximum is not unique, we randomly solve the tie, also to
improve the scheduling fairness). Step 7 states that, if the max-
imum belief found is zero, the algorithm assigns a null trans-
mission fanout set (which corresponds to a vanishing belief as
well). The transmission fanout set at input i and the correspond-
ing optimal queue to be served are fixed at step 8. Step 9 up-
dates the lists of available inputs and outputs. Finally, when the
decimation loop is over, the current values of the fanout set vari-
ables define univocally a feasible service matrix D, computed
as (8), which is used to configure the switching fabric.

GR-LQF (input: [yiσ]i∈I,σ∈S ; output: [σi, τi]i∈I)

1. set Ĩ = I, Õ = O, and σi = τi = ∅ for i ∈ I
2. while Ĩ , ∅
6. choose i ∈ Ĩ and σ ∈ S |σ ∩ Õ , ∅ that maximize yiσ

7. if not found or yiσ = 0, break

8. set σi = σ and τi = σ ∩ Õ
9. set Ĩ = Ĩ\i and Õ = Õ\τi

GR-RND (input: [yiσ]i∈I,σ∈S ; output: [σi, τi]i∈I)

(...)

6. choose random i ∈ Ĩ and σ ∈ S |σ ∩ Õ , ∅ such that yiσ > 0
7. if not found, break

(...)

Figure 5: Greedy algorithms GR-LQF (longest queue first) and GR-RND (ran-
domly chosen queue). Dots denote that some steps of the latter algorithm are
fully equivalent to those of the former.

5. DEC-BPn performance by simulation

In this section, we evaluate the performance of DEC-BPn by
means of simulations obtained by an ad-hoc event-driven sim-
ulator written in C++. We compare the results obtained for
our algorithm against other centralized scheduling algorithms,
designed to support multicast traffic, under different traffic con-
ditions. The latter algorithms are greedy approaches, operating
two slightly different strategies, described by the pseudo-codes
in Fig. 5. Note that the overall structure of both algorithms is
similar to that of DEC-BPn, even though the steps typical of
BP (0 and 3–5) are missing. The characterizing step is in fact
only 6: GR-LQF chooses the longest queue, whereas GR-RND
chooses a random queue, provided, in both cases, that the cor-
responding fanout set includes some available outputs.

The input traffic is generated according to a Bernoulli i.i.d.
arrival process, in which ρ is the average input load, or equiva-
lently the probability that a packet arrives at an input port during
a timeslot. The corresponding fanout set is chosen at random in
a possible set of candidate ones, as described below. The traffic
admissibility conditions in (2) and (3) imply ρ ≤ ρmax, where
ρmax = M/(N f ) is the maximum admissible input load and f
is the average fanout (i.e., the average cardinality of the fanout
set).

We consider two different families of candidate fanout sets.
The first one is referred to as uniform traffic and derived
from [15]: The fanout set of each packet is chosen at random
among all possible 2M − 1 ones. For this case, it can be shown
that f = M 2M−1

2M−1 and ρmax = 2M−1
N 2M−1 . Note that, since ρmax ≈

2
N ,

the input load is quite small for large switches, and this fact
prevents the arrival of “critical” traffic patterns. This observa-
tion motivates the other traffic family, which has been devised in
such a way to keep ρmax independent of the switch size. The lat-
ter family is referred to as concentrated traffic and corresponds
to the worst-case traffic model presented in [1]. Such a model
was thoroughly designed to create extensive contention among
inputs and was crucial in [1] to show the intrinsic throughput
limitations of IQ switches under multicast traffic. Without go-
ing into the details of their construction, in Table 1 we describe
three different concentrated traffic scenarios (denoted as “Conc-
1”, “Conc-2”, and “Conc-3”), reporting the corresponding ρmax
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Table 1: Fanout sets for each concentrated traffic scenario.

Traffic ρmax Input 1 Input 2 Input 3
Conc-1 1.00 {1, 2} {1, 3} not used2 × 4 {3, 4} {2, 4}
Conc-2 0.67 {1, 2, 3} {1, 2, 4} not used2 × 4 {2, 3, 4} {1, 3, 4}
Conc-3 1.00 {1, 2, 3, 4} {1, 5, 9, 10} {3, 7, 9, 11}
3 × 12 {5, 6, 7, 8} {2, 6, 11, 12} {4, 8, 10, 12}

Table 2: Maximum throughput under uniform traffic.

Traffic Uniform Uniform Uniform
10 × 10 4 × 10 2 × 10

ρmax 0.20 0.50 1.00
Algorithm Throughput
GR-LQF 1.00 0.86 0.64
GR-RND 1.00 0.92 0.75
DEC-BP0 1.00 0.98 0.95
DEC-BP1 1.00 0.98 0.95
DEC-BP2 1.00 0.97 0.95
DEC-BP4 1.00 0.97 0.95

and the list of all fanout sets for each input.
In order to compare the algorithms, we have evaluated both

the throughput and the average delay. Throughput is evaluated
in terms of maximum sustainable load at the outputs; this is
a value between 0 and 1, representing the maximum fraction
of timeslots exploited to transmit a packet at the outputs. Even
though the traffic is admissible, the throughput may be less than
one, even for the optimal scheduling algorithm, because of the
aforementioned intrinsic throughput limitations [1]. The delay
is evaluated as the average time interval between the timeslot
when a packet enters the switch and the one when all its copies
leave the switch. All the reported results have been obtained
with a minimum 5% of accuracy computed on a 95% confi-
dence interval.

5.1. Simulation results
Let us start by comparing the performances under uniform

traffic. Table 2 shows the maximum achievable throughput un-
der three uniform scenarios. When considering the symmetric
traffic scenario (second column), all the algorithms behave ex-
actly in the same way and achieve maximum throughput. This
is due to the low input load (always less than ρmax, to be admis-
sible), which does not generate “critical” loading conditions,
as already observed in the previous section. Conversely, when
concentrating the traffic on few inputs (4 and 2), performances
are different, and, in both scenarios, DEC-BP outperforms the
other two centralized greedy approaches, independently of the
number of iterations, whose actual value does not really affect
the final performance. Thus, in the following we will consider
DEC-BP0 as the best candidate algorithm for multicast schedul-
ing.

Fig. 6 shows the average delays under the three uniform sce-
narios. Here, we do not report the curves for DEC-BPn for
n ≥ 1, as they turn out to be fully overlapped with that of DEC-
BP0. Fig. 6(a) shows that, under symmetric traffic, all the al-
gorithms achieve maximum throughput (for ρ = ρmax) but the
delay in the low load regime is worst for DEC-BP0. This ef-
fect is to be ascribed to the specific form of the cost function

Table 3: Maximum throughput under concentrated traffic.

Traffic Conc-1 Conc-2 Conc-3
2 × 4 2 × 4 3 × 12

ρmax 1.0 0.67 1.0
Algorithm Throughput
OPTIMAL 0.75 0.99 -
GR-LQF 0.70 0.91 0.63
GR-RND 0.69 0.89 0.61
DEC-BP0 0.75 0.97 0.66
DEC-BP1 0.75 0.97 0.66
DEC-BP2 0.75 0.97 0.66
DEC-BP4 0.75 0.98 0.66

in Lemma 1, which does not directly minimize the queue sizes
(at odds with the maximum weight matching for unicast traf-
fic), and trades higher delays at low load with higher through-
put at high loads. Note however that the delays for low load
experienced by DEC-BP0 are negligible in absolute terms. The
other two uniform scenarios point out some relevant differences
among the three algorithms, especially in terms of throughput.
Table 2 shows that DEC-BP0 always outperforms both greedy
approaches, with a gain between 6% and up to 48%. In terms
of delays, Figs. 6(b)-(c) display a behavior similar to Fig. 6(a)
for low load, but different when the load is higher, due to the
different maximum throughput. Let us finally note that, when
the traffic is no longer sustainable, the delays appear still finite
because of the finite queues; otherwise, they would have grown
to infinity.

We now consider the concentrated traffic scenarios. Table 3
displays the achievable throughput for all the policies consid-
ered so far, with the addition of OPTIMAL algorithm, which
simply finds the optimal solution of (10) by an exhaustive
search over the whole solution space D. We could not simu-
late OPTIMAL for M > 4, due to the large computational ef-
fort required. Recall now that OPTIMAL is the only provably-
optimal scheduling policy that maximizes throughput for multi-
cast traffic. Our results show that, even in this case, the effect of
the number of iterations in DEC-BPn is negligible, which again
promotes DEC-BP0 as the best scheduling algorithm. Notably,
in both Conc-1 and Conc-2 traffic scenarios, DEC-BP0 achieves
the same performance as OPTIMAL. As in the previous scenar-
ios, DEC-BP0 outperforms the other greedy approaches, with
throughput gains between 5% and 10%.

Fig. 7 shows the delays under concentrated traffic. All the
curves exhibit a similar behavior, coherent with the achieved
maximum throughput. Furthermore, we can observe an inter-
esting property of OPTMAL policy: In the low load regime,
the delay is larger than for the other policies, as observed for
DEC-BP0 for uniform traffic. Indeed, OPTIMAL maximizes
the throughput, but does not always minimize delays. As al-
ready observed when discussing uniform traffic, this is due to
the cost function in (10) which does not minimize the queue
lengths. The latter observation corroborates our previous argu-
ment, namely, that the higher delays experienced by DEC-BP0
are mainly due to the fact that this algorithm approximates the
optimal policy.
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Figure 6: Average delay under uniform traffic: (a) 10 × 10, (b) 4 × 10, (c) 2 × 10.
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Figure 7: Average delay under concentrated traffic: (a) Conc-1, (b) Conc-2, (c) Conc-3.

5.2. Results under random queue-length matrices
From the simulation results reported so far, increasing the

number of iterations n in DEC-BPn does not appear to provide
a meaningful performance improvement. For this reason, we
also investigate the effect of n on the efficiency of DEC-BPn in
a slightly different setting, namely, on uncorrelated instances of
the optimization problem defined in (10). As a term of compar-
ison, we consider GR-LQF, which was previously shown to be
the best competing algorithm.

We take a random queue-length matrix Y = [yiq], where yiq

is generated according to a geometric distribution with average
100 (i.e., the queues are loaded with 100 packets on average).
We run both DEC-BPn and GR-LQF on Y . Let DBP be the
service matrix computed by DEC-BPn and let DLQF be the one
computed by GR-LQF, defined as:

DBP ⇔ [σBP
i , τBP

i ]i∈I DLQF ⇔ [σLQF
i , τLQF

i ]i∈I

We define the cost-gain factor g as the ratio between the corre-
sponding cost functions in (10):

g =

∑
i∈I

(
yiσBP

i
− yi(σBP

i \τ
BP
i )

)
∑

i∈I

(
yiσLQF

i
− yi(σLQF

i \τLQF
i )

)
We expect on average g > 1, since, from the results in Sec. 5.1,
DEC-BPn always achieves higher throughput than GR-LQF,
which means that it finds on average a better solution to (10)
with respect to GR-LQF.

Fig. 8 shows the average value of g obtained for DEC-BPn
when the number of iterations n grows from 0 to 32, for differ-
ent switch sizes. These results have been obtained by averaging
g on a number of random matrices varying between 100 and
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Figure 8: Average cost gain of DEC-BPn with respect to GR-LQF

10,000, in order to guarantee that a minimum 5% of accuracy
was achieved with a 95% confidence interval. The consider-
able performance improvement of DEC-BPn upon increasing
n is now evident, as g reaches 1.5 (for small switches) up to
3.5 (for large switches) when the number of iterations is large
enough. These results also imply that, at least theoretically, the
stability region of DEC-BPn, even though not optimal, may be
larger than GR-LQF by a factor g. In other words, for some (un-
known) worst-case scenario, the expected throughput of DEC-
BPn might be 50% (for small switches) or 300% (for large
switches) larger than that achieved by GR-LQF. Furthermore,
only few iterations (up to 5) are sufficient to achieve almost the
maximum cost gain in DEC-BPn. Notably, with no iteration,
DEC-BP0 achieves an average cost gain between 1.2 and 1.7
for switches strictly larger than 4 × 4, thus we expect a possi-
ble throughput increase between 20% and 70% with respect to
GR-LQF.

In conclusion, DEC-BPn appears to be more robust with a
number of iterations slightly larger than 0. This shows that the
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BP messages updates in step 4 of DEC-BPn (Fig. 4) play a rel-
evant role to optimize the performance of the scheduling algo-
rithm, at the price of a negligible increase of complexity with
respect to DEC-BP0.

6. A DEC-BPn scheduler system design

The simulation results, reported in the previous section,
demonstrate that DEC-BPn scheduler achieves better through-
put than standard greedy approaches that are expected to be
commonly used in practical implementations [7, 11, 14]. On
the other hand, such simulations do not provide any insight
about the actual execution performance, the integration, and the
resource utilization of an implementation that must operate at
linespeed. In order to further assess the algorithm performance,
we have designed and implemented (i) a software library ver-
sion of the scheduler, that can be integrated in software routers
or software packet processors, and (ii) a hardware description
language library version, referred to as gateware version, which
can be directly integrated in the hardware implementation of
high performance switches. We have evaluated the performance
for both versions. For the gateware version, we have evaluated
also the required hardware resources.

In Sec. 6.1 we describe the general design of the scheduler,
and in Secs. 6.2 and 6.3 we discuss the implementation in soft-
ware and in gateware, respectively.

6.1. DEC-BPn processing components

The scheduler processing components are depicted in Fig. 9.
The scheduler takes as input the length of all MC-VOQ queues
and computes: i) the best candidate queue to serve at each input
and the corresponding max-pressure weight (step 0 in the pseu-
docode of Fig. 4) and ii) the final service matrix produced from
the BP iterations (steps 1 - 9 in Fig. 4). The processing has been
therefore separated in two sequential steps presented with sep-
arated boxes in Fig. 9. Initially, the max-pressure weight cal-
culations (i.e. computing all the differences yiσ − yi(σ\τ) in (11))
and comparisons take place, and in the sequel the BP forward
and backward message exchange iterations are executed. The
max-pressure calculations can be performed independently for
each input port and thus the available level of parallelism can be
fully exploited at this step. On the other hand, the BP iterations
need the generalized weight results at the beginning (step 2 in
Fig. 4) so they have to start after the first step has finished. For-
ward and backward message exchange is performed in loops,
where, in addition, the result of each iteration is used as feed-
back for the next one. Thanks to the high level of parallelism of
the message exchange, also this step can be parallelized.

The scheduler needs to be tightly integrated with the datapath
of the switch because it has to be invoked at every new packet
arrival, to support the linespeed forwarding. Also the MC-VOQ
queueing architecture must be managed at linespeed. This im-
plies that each queue must be able to support at each times-
lot two writes (one arrival and possibly one re-enqueueing) and
one read (one packet departure due the scheduler decision). We
have implemented a software version of the overall datapath of
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Figure 9: DEC-BPn processing components, exploiting both temporal and spa-
tial parallelism
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Figure 10: A high-level schematic of DEC-BPn scheduler integrated with the
forwarding datapath of the software router

a 4 × 4 switch in the Linux kernel of a server using the “click
modular router” packet processor framework [9]. In our sce-
nario, a maximum of 4 × (24 − 1) = 60 queues are required
to implement MC-VOQ for all the inputs. The scheduler has
been implemented in two versions: a software version running
on the same Linux server and a gateware version running on
a hardware accelerator integrated in the same server. A whole
schematic of the integrated datapath is depicted in Fig. 10, de-
scribed in details in the following sections.

In order to validate the two implemented versions, we have
developed a traffic generator residing in the Linux kernel to
avoid system calls and packet memory copy overheads. This
software module generates 1500-byte Ethernet packets for each
input and each packet gets annotated with the fanout set bit-
mask. The arrival process is generated using the same sequence
of packets used to simulate DEC-BPn in Sec. 5.

6.2. DEC-BPn software version

We have devised a special encoding scheme, based on
bitwise-operations (typically used in hardware designs), to de-
scribe the fanout set of packet and to index queues; this al-
lowed us to perform very efficiently operations on fanout sets
and queues, enabling linespeed performance. More specifically,
bitmasks have been used to represent the fanout set of a packet
and the corresponding queue. In each bitmask, each bit posi-
tion is reserved for a respective port (e.g. the most significant
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bit is reserved for port 0). A bit value equal to 1 indicates that
the respective port belongs to the set represented by the current
bitmask. As a result, a few bitwise operations can determine
whereas a port belongs to a set or not, and queue-head pointers
are directly indexed by the respective bitmask values, thus en-
abling instant retrieval. The same encoding scheme is used for
the scheduler decision, so that the switching fabric can exploit
bitwise operations to identify the path for the desired output
destinations of a transmitted packet. Moreover, the DEC-BPn
software version spawns a separate thread for each input port
that calculates the max-pressure (step 0 in Fig. 4). All these
threads need to join at the beginning of the BP calculations
(steps 1 - 9 in Fig. 4).

The sequence of the operations is depicted in Fig. 11, show-
ing also the time interval corresponding to a timeslot. During
each timeslot, the traffic generator sends the packet to the desig-
nated inputs. The arriving packets are enqueued into the proper
queue in the MC-VOQ system and the scheduler is triggered.
Thus, the max-pressure weight is computed for each queue, and
this process runs in parallel for each input port, coherently with
Fig. 10. During the final execution of the scheduler decision,
the packets are forwarded to their destination and, in the case of
fanout splitting, the packet is re-enqueued in the correct queue.

A simple profiling on the software scheduler, running on
the hardware system described in Sec. 7.1, revealed that the
scheduler execution occupies 94% of the timeslot, while actual
packet switching operation and queue manipulation operations
account for 6%. This was expected because all the packet en-
queue/dequeue operations rely only on pointer arithmetic oper-
ations which take place very efficiently on instruction set pro-
cessors.

6.3. DEC-BPn gateware version

Motivated by the large execution time of the software version
of the scheduler, highlighted above, we decided to explore the
potential of a hardware design of the scheduler, that could be
integrated in the datapath of a real switch. Therefore, we have
designed and implemented a gateware version of the scheduler,
using the Verilog hardware description language. The gateware
DEC-BPn is a state machine tailored to a 4 × 4 switch.

6.3.1. Scheduler communication interface
The gateware DEC-BPn scheduler exports 61 16-bit registers

at the input. The first 60 registers are used for passing all the
MC-VOQ queue lengths. The last register acts as the control
register and is used to initiate calculation and indicate when the
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Figure 12: Implementation of the datapath for 4 × 4 software router on a Linux
server

decision is ready. At the output, 8 4-bit registers are used to
represent the scheduler decision D = [σi, τi]4

i=1 (i.e. the queue
to serve σi and the corresponding destinations τi, for any in-
put i), using the same representation as (6). Note that 4 bits
are required to represent each σi and τi, thanks to the bit-wise
encoding scheme described in Sec. 6.2.

The sequence of operations in the gateware scheduler is as
follows. The input registers of the scheduler are updated with
the lengths of all 60 MC-VOQ queues. Then the control reg-
ister is set at 0x1 to initiate execution. As soon as the result is
ready, the control register value changes to 0x2. It is expected
that the external logic hooks an interrupt line to the respective
register bit to get notified or just poll for the result. The result
can be read from the output registers and the appropriate for-
warding operations as well as MC-VOQ re-enqueueing have to
be performed by the datapath logic.

6.3.2. Scheduler state machine
The software version of the scheduler has been heavily re-

structured to be mapped to gateware. All the iterative loops
appearing in the pseudocode of Fig. 4 have been transformed as
follows: i) the loops performing independent operations on dis-
tinct data have been “unrolled”, so that hardware may execute
all operations on a single cycle; ii) the loops that use the feed-
back from the previous cycle for the calculations during the cur-
rent cycle have been converted to state machines. As a result,
the gateware scheduler design features 81 states that compute
the max-pressure weights for all 4 inputs, with each state per-
forming in parallel the required operations for all 4 input ports.
Additional 68 states compute the forward messages and addi-
tional 53 states compute the backward messages, during each
BP iteration. Finally, additional 71 states perform all the nec-
essary matching and comparison operations to reach the final
decision. In total, for 3 hardcoded BP iterations (i.e. n = 3) the
gateware scheduler needs 515 cycles to produce the final deci-
sion. The combinatorial logic within each state has been care-
fully placed to minimize critical path delay, so that the overall
design can operate at high clock rates.

7. DEC-BPn experimental evaluation

In order to test the implementation in a real system setup,
we have integrated both the software and gateware versions
of the DEC-BPn scheduler with a software switching datap-
ath developed in the Linux kernel, according to the scheme in
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Fig. 12. The software version runs on the same computation
resources (CPU) of the server, whereas the gateware version
runs on an external FPGA card, which acts as a hardware ac-
celerator for the scheduling algorithm. The latter configuration
allows a hardware/software co-designed approach for demon-
stration, where the forwarding datapath runs in software and
the DEC-BPn runs in hardware. This deployment decision was
motivated by the lack of enough resources in the NetFPGA 1G
card to fully accommodate the datapath in hardware. Indeed,
the number of MC-VOQ queues grows very fast with the num-
ber of input and output ports, thus it is convenient to manage
the queues directly in the server.

In the following we describe the experimental deployment
for the software and gateware versions of a 4 × 4 DEC-BPn
scheduler. Our goal is to assess the performance of a full-
fledged forwarding system controlled by DEC-BPn in terms of
resource usage and power consumption.

7.1. Experimental deployment of 4 × 4 DEC-BPn

We have used a server with a 3.06 GHz Intel Core i7 proces-
sor and 12 GB of RAM in order to compare the gateware and
the software versions of the 4× 4 DEC-BPn scheduler. The op-
erating system was Fedora 14 32-bit version, with Linux kernel
2.6.36 for an x86 architecture.

To evaluate the gateware version of DEC-BPn, we installed a
NetFPGA 1G [23] card on the PCI bus of the server. This card
features 4 Gigabit-Ethernet ports, tightly coupled with a Xilinx
Virtex-II-pro FPGA. Note that the choice of the operating sys-
tem was dictated by the full compatibility with the NetFPGA
card.

The off-the-shelf reference gateware NetFPGA design per-
forms packet forwarding between the 4 Ethernet ports and the
PCI-bus. The reference processing datapath is pipelined, 64-
bit wide and operates at the Ethernet MAC clock frequency of
125 MHz which allows for 8 Gbit/s processing. The FPGA
on-chip memory is a BRAM (block RAM); it is a very scarce
resource (few kbytes) and can be directly interfaced in the de-
sign. Other than that, as is the case for the CPUs, an external
SDRAM controller should be driven by the developed gateware
to access data stored on off-chip SDRAM. The overall NetF-
PGA design approach considerably boosts packet processing
operations and fast lookups (by exploiting Content Addressable
Memory implementations). Typically NetFPGA is used to ac-
celerate novel routing implementations (where many lookups
are required), heavy packet processing operations (e.g., encryp-
tion) and projects that aim at satisfying real time constraints.
The most well-known application is the reference architecture
of an OpenFlow switch [13].

NetFPGA features two different communication mechanisms
to exchange data with the host computer:

• The network packet I/O interface. It is used to exchange
network packets with the host network stack via an appro-
priate Linux driver. This is a high performance interface
that exploits DMA burst transfers and achieves low latency
and high bandwidth communication. Its only drawback is

that it consumes significant FPGA resources and, as a re-
sult, user logic needs to be implemented in the space left
by the gateware managing packet I/O. Nevertheless, this
interface is the most appropriate for accelerating datapath
operations.

• The memory-mapped register interface. It is a higher la-
tency interface that occupies the CPU for the data trans-
fers with significantly less FPGA resource requirements.
In typical NetFPGA designs this interface is used to im-
plement control plane operations.

In our case we have heavily modified the NetFPGA framework
to implement the scheduler. Due to the required scheduler logic
size, we were forced to use memory-mapped register interface
for communication. In Sec. 7.3 we will evaluate the latency
introduced by this communication approach.

7.2. Mapping gateware DEC-BPn to NetFPGA
We have developed the scheduler Verilog gateware library

state machine, which has been integrated in the NetFPGA refer-
ence design as a logic block. The scheduler input registers have
been connected to software register infrastructure of the NetF-
PGA. A total of 31 NetFPGA 32-bit software registers were
needed. The first 30 registers are used as input for 60 16-bit
MC-VOQ weights and 1 register is used as the control register.
The output of the scheduler is connected to 1 NetFPGA 32-bit
hardware register to accommodate all the 8 4-bit registers de-
scribed in Sec. 6.3.1

The Xilinx synthesis tools utilized 16,265 reconfigurable
logic units (also known as slices) to map the gateware sched-
uler to reconfigurable resources of the particular Virtex-II Pro
FPGA. This equals to 68% of the total available reconfigurable
resources on this particular platform (23,616 slices) and, as a
result, the standard Ethernet forwarding datapath had to be re-
moved from the NetFPGA. This eliminated the possibility to
use Ethernet packets for I/O communication between hardware
scheduler and software datapath, which would provide much
faster I/O performance than the register interface, as we ex-
plained earlier in this section. Nevertheless, a slightly larger
FPGA can facilitate both the datapath and the DEC-BPn gate-
ware. The deployment of the design on this platform is clocked
at 72.9 MHz, which is an acceptable result if we consider the
available reconfigurable resources and the design size require-
ments. Notably, the Xilinx synthesis tools required 3 hours on
a high-end server to place and route the design. They were con-
figured to optimize for space rather than clock speed.

In Fig. 13 the deployment of the gateware DEC-BPn is de-
picted. In order to drive the gateware DEC-BPn in this exper-
imental deployment, we coupled it with the software datapath
which was also used for the evaluation of the software version
of the scheduler. The gateware runs on the NetFPGA in the
figure and all the software modules run on Intel Core i7 proces-
sor. The integration of software and gateware requires to add
NetFPGA driver support to Click modular router software and
use the NetFPGA register API to push MC-VOQ lengths into
the input registers and to read back the service matrix from the
output registers.
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Figure 13: A hardware/software co-design schematic of DEC-BPn imple-
mented on NetFPGA attached to the PCI bus of an Intel Core i7 motherboard

Table 4: Execution time of the software version on Intel Core i7 platform.

BP iterations (n)
Task 0 1 2

DEC-BPn execution 10µs 13.5µs 17µs
Datapath execution 1µs 1µs 1µs
Timeslot duration 11µs 14.5µs 18µs

7.3. Experimental performance evaluation
In these experiments we used the same uniform and concen-

trated traffic scenarios defined in Sec. 5. To validate both soft-
ware and hardware implementations, we have compared the
achieved throughput with the one obtained with the simulator
and we have verified the exact functional equivalence among
the different versions (software, gateware and simulator) of the
scheduler. The validation has been obtained by feeding exactly
the same sequence of packets generated during the simulation.

Referring to Fig. 11, we group the implementation steps into
two main tasks: datapath execution (comprising the traffic gen-
eration and the execution of the scheduling decision) and sched-
uler execution (comprising the max-pressure weight compu-
tation and the BP iterations). All measurements of the exe-
cution time in software have been acquired using the Linux
gettimeofday time system calls. These calls are implemented
using the latest Linux kernel support available and use the x86
architecture TSC (Timestamp Counter) obtained from the same
processing core to achieve µs accuracy. Conversely, the execu-
tion times in hardware have been measured by the number of
clock cycles in the NetFPGA and are therefore very accurate
(around tens of ns).

Table 4 shows the experimental execution times for the soft-
ware version of the scheduler. As expected, the timeslot dura-
tion is affected by the number n of BP iterations. The results
prove that the scheduler execution is by far the most resource
demanding task, occupying almost all of the timeslot duration.
The datapath execution is almost negligible, and this is achieved
thanks to the fact that the movements of the packets across the
queues have been implemented by moving pointers, instead of
the actual data.

Table 5 reports the execution time for the gateware version
of the scheduler. This version includes the additional step of
exchanging data via the register interface: recall that the datap-

Table 5: Execution time of the gateware version of the scheduler running on
NetFPGA hosted on Intel Core i7 platform.

BP iterations (n)
Task 0 1 2

Push data to input registers 23µs 23µs 23µs
DEC-BPn execution 3.77µs 5.44µs 7.12µs

Get data from output registers 13µs 13µs 13µs
Datapath execution 1µs 1µs 1µs
Timeslot duration 40.77µs 42.44µs 44.12µs

ath execution runs in software on Intel Core i7 processor, which
at each timeslot pushes queue lengths to the NetFPGA over the
PCI bus and retrieves the results. Register I/O is slow compared
to the rest of the tasks and has a significant impact on timeslot
duration. Notably, NetFPGA computes DEC-BPn around 2.4
times faster than the software version. Nevertheless, the over-
all duration of the timeslot for the gateware version is much
worse due to the delay introduced by the input and output reg-
isters. Note that NetFPGA data exchange could be significantly
improved if one uses the packet I/O interface instead of the reg-
isters. As we have explained in Sec. 6, such an interface has
been removed to leave enough resources for the scheduler. Fur-
thermore, improving the hardware interface speed is out of the
scope of our proof-of-concept hardware implementation.

When comparing the software and the gateware version,it
should be noted that the actual number of clock cycles is com-
pletely different, due to the different clock (3.06 GHz for In-
tel Core i7 processor and 72.9 MHz for NetFPGA). Actually,
DEC-BP2 scheduler execution requires around 52, 000 cycles
on the x86 processor, whereas the gateware version state ma-
chine needs 515 cycles to carry out the same computations.
This implies a huge potential performance gain due to an im-
plementation of the same gateware logic in a dedicated ASIC.

7.4. Power consumption

When comparing the software and gateware version, it is
worth investigating the power consumption. The adopted In-
tel Core i7 processor has a Thermal Design Power (TDP) of
130 W, which is the theoretical maximum that a cooling system
is required to dissipate with all internal cores operating at full
speed. Instead, under full load, the NetFPGA platform requires
around 10 W with all Ethernet ports connected [18]. It was
not possible to measure the specific power contribution due to
the execution of the two versions of the scheduler, because the
server platform, common to both versions, is equipped with 2
mechanical disks and many other peripherals that cause a wide
range of fluctuation (up to 5 W at idle). Thus, we used a differ-
ent, low-power CPU platform to run both versions.

We adopted the power measurement system presented in [8],
which monitors, at 63 kHz sampling rate, the power consump-
tion on all the subsystems of an Intel Atom D525 ultra-low
power platform. Note that Intel Atom is targeted at embedded
computers and is typically expected to run on batteries. The
evaluation platform comprises now the Intel Atom D525 plat-
form (with a TDP of 13 W), an ultra low power SSD disk and
the NetFPGA. The power supply was modified to use the Nitos
EMF unit [8]. We measured the power of the platform for hours
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Table 6: Power consumption on D525 Intel Atom Platform and NetFPGA 1G

Scheduler contribution
Idle State NetFPGA Atom processor
23.8 W 2.3 W 3.6 W

when idling and then we repeated many times the execution of
the DEC-BPn scheduler. The results are presented in Table 6.
In order to be fair we also measured execution time of both
versions on this platform to check if they have the same for-
warding performance. Intel Atom achieves a timeslot duration
of 38µs executing the software version, while 52µs executing
the gateware version of DEC-BP2 on NetFPGA. Furthermore,
the software version is 36% faster at forwarding than NetFPGA
but the latter is also 36% less power hungry. Thus, the two ver-
sions offer a different performance power tradeoff. We remark
that the performance of the considered NetFPGA version is a
worst case, since its execution has been severely delayed by the
register I/O interface.

8. Conclusion

We have proposed a new scheduling algorithm, denoted as
DEC-BPn, aimed at approximating the optimal policy for the
transmission of multicast packets in IQ switches. Our algorithm
has two main advantages. First, the proposed message-passing
approach is amenable to an efficient parallel hardware imple-
mentation. Second, we have shown that it outperforms other
greedy approaches, even when the number of iterations is very
small. These encouraging findings allow us to conclude that
our approach provides a very convenient tradeoff between im-
plementation complexity and performance. We have also pre-
sented both hardware and software implementations of DEC-
BPn, and integrated them in the standard datapath of a software
switch. This allowed us to evaluate the required area logic, the
execution time and the power consumption.
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