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Abstract

This paper discusses classical and refined beam and plate theories based on the Carrera Unified

Formulation (CUF). Attention is focussed on (but not limited to) a new refined beam element

with enhanced kinematics based on Legendre polynomial expansions of the primary mechanical

variables. By employing CUF, the governing equations and the related finite element arrays

are written in a hierarchical, compact and general manner. Readily, these characteristics are

used to arbitrarily tune the finite element model at the cross-sectional level, by locally enriching

the theory kinematics up to the desired accuracy. The uncompromising accuracy of the present

beam model is demonstrated by considering various numerical examples, including solid and

thin-walled beams with open and close cross-sections as well as plate structures. The results are

compared with those from classical and already established refined CUF models. Eventually,

three-dimensional elasticity solutions by the commercial tool MSC Nastran are also given to

underline the high accuracy of the present methodology. The numerical efficiency and the

capabilities of the Legendre-based CUF beam models to deal with complex structures with no

geometrical approximations result clear from the analyses conducted.

Keywords: Refined beam theories, Refined plate theories, Finite elements, Carrera Unified

Formulation, Hierarchical Legendre expansion, Thin-walled beam.
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1 Introduction

Beam theories have become an important tool for the analysis of structural problems. One-

dimensional (1D) models, or beam models, are used mainly for the analysis of slender struc-

tural bodies, commonly employed in several construction fields such as aerospace or civil

engineering. These models result very effective because of their low computational costs in

comparison with 2D and 3D ones. Classical beam theories, introduced by Euler [1] and then

by Timoshenko [2], have several limitations because they have a-priori fixed kinematics and

are only suitable for a limited class of problems (e.g., long beams subjected to bending, homo-

geneous structures, etc.). In order to take into account other effects, such as torsion, warping

or cross-sectional deformations, more sophisticated kinematics shall be employed.

Many refined beam models have been developed to enhance the capabilities of the clas-

sical theories in order to describe higher-order effects while keeping the computational costs

as low as possible. A discussion of various theories for plates and beams was carried out by

Kapania and Raciti [3] [4], who laid emphasis on shear effects, vibrations and wave propa-

gation. A locking-free finite element model based on the exact solution of the Timoshenko

beam theory was developed by Reddy [5]. Vinayak et al. [6] discussed beam elements based

on higher-order theories. In this work, particular attention was given to flexure of beams

and plates, approached through finite element formulations developed starting from the Lo-

Christensen-Wo theory. An approximation of shear stresses in prismatic beams was provided

by Gruttmann et al. [7] by considering the Saint-Venànt torsion and bending. The same

model was then applied to the study of thin-walled beams by Gruttmann and Wagner [8].

Petrolito [9] studied the effects of higher-order shear deformation theory on the element stiff-

ness matrix in comparison with classic beam theories. The stiffness terms were obtained by

Eisenberger [10] directly from the governing differential equations that describe the deforma-

tions of the cross-section for higher-order theories. The Generalized Beam Theory (GBT) was

employed by Silvestre [11] and Rendek and Baláž [12]. The former used GBT for the analysis

of the elastic buckling behaviour of circular hollow-section beams, whereas the latter work

was focused on the study of prismatic thin-walled steel beams providing also a comparison

with experimental results. De Miranda et al. [13] presented a recovery of classical and non-

classical beam theories within the framework of the GBT, introducing a new formulation with

shear deformation. An analytical deflection trial function was used to describe the modes for

dynamic analysis by Cao et al. [14], showing that the accuracy of the analytical trial function

is almost identical to that of dynamic stiffness matrix method, whose applications in engi-

neering are limited. Another work on the beam problem was recently carried out by Genoese

et al. [15]. In this study, the authors used a mixed formulation based on the HellingerReiss-

ner principle, in which the kinematics are constituted by a rigid section with non uniform

out-of-plane warping and the stresses are described by means of the Saint-Venànt solution.

It is clear that many different refined beam theories have been developed in the past years

to provide more sophisticated and efficient models to solve one-dimensional structural prob-
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lems. The present work presents a 1D higher-order beam model based on the Carrera Unified

Formulation (CUF), which has been developed by Carrera and his co-workers in the past few

years. CUF was devised to overcome the limitations of the classical models by describing the

kinematics of structural theories and related governing equations in a hierarchical, unified and

compact manner. Initially, Carrera [16, 17] proposed CUF for two-dimensional (2D) analy-

ses. Subsequently, various authors employed CUF to formulate plate and shell theories for

structural and multi-field problems, see for example [18, 19, 20, 21]. The extension of CUF

to beam modelling was carried out by Carrera and Giunta [22], who adopted hierarchical

N-order approximations of the primary mechanical variables based on Mclaurin polynomial

series. This class of 1D CUF models, which are known as TE (Taylor Expansion) models in

the literature, have been used in various works (see for example [23, 24, 25, 26, 27]). A review

of the most significant beam models developed within the framework of CUF was recently

done by Carrera et al. [28]

By employing Lagrange polynomials to develop beam theories, a new CUF model was

introduced by Carrera and Petrolo [29]. In that paper, the enhanced capabilities of the LE

(Lagrange Expansion) CUF models were discussed and particular attention was focused on

the capability of LE to deal with 3D-elasticity solutions of simple to complex structures with

very low computational efforts. In recent works, LE was employed and extended to deal with

the analysis of multi-component structures [30, 31, 32].

In this paper, a new class of 1D CUF beam models is devised by adopting Legendre-like

polynomial expansions to develop theories of structures. The one-dimensional Hierarchical

Legendre Expansion models (hereinafter referred to as HLE models) are, in fact, formulated

by expressing the 3D displacement field as a Legendre-based expansion of the generalized

displacements along the beam axis. As it will be clear later in this manuscript, HLE combines

the main advantages of TE (e.g., the hierarchy of the higher-order terms) and LE (e.g., exact

geometrical description of the beam physical surfaces). The Legendre polynomials that are

utilized in this work are not new in solid mechanics. Those polynomials were widely exploited

by Babǔska and his co-authors to develop the p-version of Finite Element Method (FEM). In

[33], for example, they underlined the high rates of convergence for properly designed meshes,

relying on the possibility of increasing the p-order of the polynomial approximation up to

some required level of precision. Szabó et al. [34] used a Legendre-type basis to develop the

p-FEM for one-dimensional, quadrilateral and hexahedral elements. A wide variety of linear

and non-linear examples was also provided, showing that for well defined meshes, the rates of

convergence are exponential. The characteristics of a finite element space were established by

Szabó and Babǔska in [35]. Lagrange-type and hierarchial shape functions were also described

and then applied to the definition of many types of element’s geometries in the same work.

However, it is important to underline that the main novelty of the present work is that

Legendre polynomials are used to develop theories of structures and not numerical methods.

The structure of the paper is the following: a brief introduction to classical beam and

plate theories is given in Section 2, followed by the description of refined models based on
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the CUF (Section 3). Here, considerable attention is given to HLE. The constitutive law

and the geometrical relations are provided in Section 4.1. The introduction to FEM and the

development of the stiffness matrix by means of the principle of virtual displacements are

included in Sections 4.2 and 4.3. The numerical results obtained from the different cases of

study considered are included in Section 5, whereas the conclusions extracted from this work

can be found in Section 6.

2 From classic to refined kinematics

2.1 Beam theories

Classical beam models have demonstrated to be a useful tool for the analysis of slender

isotropic structures on bending-dominant cases. The most well-known beam theories are the

Euler-Bernoulli Beam Theory [1] (hereinafter referred to as EBBT) and the Timoshenko Beam

Theory [2] (hereinafter referred to as TBT). Although they perform well within their limiting

hypotheses, they lack in representing correctly non-classical effects such as the transverse

shear stresses or the rotatory inertia. The EBBT does not account for them, whereas the

TBT assumes a uniform shear distribution along the cross-section.

Let us consider a generic beam structure whose longitudinal axis, with respect to a Carte-

sian coordinate system, lays on the coordinate y, being its cross-section defined in the xz-plane.

The kinematic field of EBBT according to this coordinate system reads:

ux(x, y, z) =ux1(y)

uy(x, y, z) =uy1(y)− x∂ux1(y)

∂y
− z∂uz1(y)

∂y

uz(x, y, z) =uz1(y)

(1)

where ux, uy and uz are the components of the 3D displacement field vector and ux1 , uy1
and uz1 represent the displacements of the beam axis. According to Eq. (1), the cross-

section always remains rigid, plane and normal to the deformed axis of the beam. As a

consequence, the EEBT does not account for transverse shear stresses, which, in many cases,

play a major role in the behaviour of the structure. The TBT overcomes this fact by relaxing

the assumption of the orthogonality of the cross-section to the deformed axis, resulting in the

following kinematics:

ux(x, y, z) =ux1(y)

uy(x, y, z) =uy1(y) + xφz(y)− zφx(y)

uz(x, y, z) =uz1(y)

(2)

where the number of unknowns have been increased by two with respect to the EBBT kine-

matics: the rotations φz around the z-axis and φx around the x-axis.

When it comes to short, thin-walled, non-homogeneous and/or open section beams, the

classic models cannot provide proper results and more sophisticated theories are required. One
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problem of TBT is that it does not satisfy the stress-free condition at the section borders, since

it assumes a constant distribution of the shear stresses on the cross-section; i.e., σyz = σyz(y)

and σxy = σxy(y) are independent of the cross-section coordinates x and z. A possible solution

can be to use a third order displacement field that allows the shear stress distribution to return

to zero at the borders (see the Vlasov beam theory [36]):

ux(x, y, z) =ux1(y)

uy(x, y, z) =uy1(y) + f1(x)φz(y) + g1(x)
∂ux1(y)

∂y
+ f2(z)φx(y) + g2(z)

∂uz1(y)

∂y

uz(x, y, z) =uz1(y)

(3)

where f1, g1, f2 and g2 are cubic functions of the x and z-coordinates. According to this latter

kinematics, the transverse shear stresses follow a quadratic distribution on the cross-section

and the homogeneous conditions are fulfilled, while the number of degrees of freedom remains

the same as for the TBT. Moreover, the Vlasov model overcomes the hypothesis of constant

shear by assuming a refined approximation of the mechanical variables. A step further can

be to include the effects due to the application of torsional moments. This can be achieved

by adding a rigid rotation of the cross-section around the y-axis, resulting in the following

kinematic field:

ux(x, y, z) =ux1(y) + zφy(y)

uy(x, y, z) =uy1(y) + f1(x)φz(y) + g1(x)
∂ux1(y)

∂y
+ f2(z)φx(y) + g2(z)

∂uz1(y)

∂y

uz(x, y, z) =uz1(y)− xφy(y)

(4)

being the new term φy the rotation around the beam axis. Although each model presented

in this section improves the performance of the former ones, higher-order effects such as the

second-order cross-sectional deformations or shear stress distributions on thin-walled beams

require the use of even more sophisticated theories in which the kinematic field is enriched

appropriately (see [28]).

2.2 Plate theories

From the conceptual but not chronological standpoint, plate theories have followed mostly

the same evolution as beam theories during their earlier developments. The classical plate

model is based on the well-known Kirchoff-Love hypotheses [37]. Analogous to EBBT, the

classical plate model assumes that straight lines normal to the mid-surface remain straight

and normal to the mid-surface after deformation. Moreover, the thickness of the plate does

not change during the deformation. Thus, by considering the mid-plane of the plate laying

in the xy-plane, the kinematic field of the Kirchoff-Love plate model can be formulated as

ux(x, y, z) =ux1(x, y)− z∂uz1(x, y)

∂x

uy(x, y, z) =uy1(x, y)− z∂uz1(x, y)

∂y

uz(x, y, z) =uz1(x, y)

(5)
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where ux1 , uy1 and uz1 are the displacements of the mid-plane. φy(x, y) = −∂uz1
∂x

and φx(x, y) =

−∂uz1
∂y

, being φx and φy the angles that the normal to the mid-surface makes with the z-axis.

By assuming the angles φx and φy to not be equal to the partial derivatives of the transverse

displacements with respect to the cross-sectional coordinates, it is possible to include the first-

order shear effects. The resulting kinematics is known as the plate model introduced in the

works by Reissnerr [38] and Mindlin [39].

ux(x, y, z) =ux1(x, y) + zφy(x, y)

uy(x, y, z) =uy1(x, y) + zφx(x, y)

uz(x, y, z) =uz1(x, y)

(6)

The Reissnerr-Mindlin plate model does not account for the effects due to thickness stretching

and, analogously to TBT, it does not satisfy the stress-free condition at the bottom and top

faces of the plate.

In order to accommodate the second-order shear effects, it is now clear that at least a

third-order displacement field is needed. The most famous plate theory based on third-order

kinematic assumptions is perhaps the Reddy plate model [40], which is not reported here for

the sake of brevity. However, like the Vlasov model in Eq. (4), it assumes a cubic expansion

of the generalized displacement variables through the thickness of the plate. With the advent

of advanced materials and structures, plate theories have been extensively developed in the

literature and several higher-order models have been formulated from the second half of the

last century. The review of higher-order plate models is out of the scope of the present section,

whose aim is to demonstrate that higher-order effects demand for refined expansions and,

eventually, for the increase of the degrees of freedom involved in the mechanical kinematics.

For a more comprehensive review about plate theories the readers are referred to other works,

such as [41, 42].

3 Refined CUF models

As explained in the previous section, classical theories have several limitations. The main

point is that, in order to predict higher order effects and overcome the physical inconsisten-

cies, the kinematics should be theoretically enriched with an infinite number of terms (see

Washizu [43]). This is obviously not possible from a practical point of view and the theories

of structure are generally formulated by truncating the expansion of the primary mechanical

variables (along the smallest dimensions of the structure domain) to a given order. Never-

theless, the more the terms in the kinematics, the more the complexity of the formulation

and resolution of the problem is. The Carrera Unified Formulation (CUF, see [23, 44]) solves

this issues by describing the kinematic field in a unified manner that will be then exploited to

derive the governing equations in a compact way. The displacement field of one-dimensional

models in CUF framework is, in fact, described as a generic expansion of the generalized
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displacements (in the case of displacement-based theories) by arbitrary functions of the cross-

section coordinates:

u(x, y, z) = Fτ (x, z)uτ (y) τ = 1, 2, ...,M (7)

where uτ (y) is the vector of general displacements, M is the number of terms in the expansion,

τ denotes summation and Fτ (x, z) defines the 1D model to be used. In fact, depending on

the choice of Fτ (x, z) functions, different classes of beam theories can be implemented.

In the framework of plate theories, CUF can be formulated in an analogous manner (see

[17]).

u(x, y, z) = Fτ (z)uτ (x, y) τ = 1, 2, ...,M (8)

In the equation above, the generalized displacements are obviously function of the mid-plane

coordinates of the plate and the expansion is conducted in the thickness direction. Again,

depending on the choice of the Fτ expanding functions, various theories can be formulated.

A few examples are given in the following sections. Attention is mainly devoted to beam

modelling, which represents the main subject of this paper.

3.1 Taylor Expansions

Taylor Expansion (TE) beam models make use of a hierarchical 2D polynomial set of the

type xizj as Fτ (x, z). For example, the third-order model, N = 3, leads to the following

displacement field, where constant, linear, quadratic and cubic functions are used:

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6 + x3 ux7 + x2z ux8 + xz2 ux9 + z3 ux10
uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6 + x3 uy7 + x2z uy8 + xz2 uy9 + z3 uy10
uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6 + x3 uz7 + x2z uz8 + xz2 uz9 + z3 uz10

(9)

It is important to underline that the kinematic fields of the classical beam theories (see Eqs.

(1) and (2)) are particular cases of the first order TE model (N=1), which includes just the

constant and the linear terms of Eq. (9). A more detailed description of TE models can be

found in [23, 45, 28].

Refined models based on Mclaurin polynomials series have been extensively used in the

literature to formulate CUF plate models. A third-order plate model is given below for

completeness purpose.

ux = ux1 + z ux2 + z2 ux3 + z3 ux4
uy = uy1 + z uy2 + z2 uy3 + z3 uy4
uz = uz1 + z uz2 + z2 uz3 + z3 uz4

(10)

It should be clear that the Vlasov beam theory (Eq. (4)) and the third-order Reddy plate

theory [40] are particular cases of the models described in Eqs. (9) and (10), respectively

3.2 Lagrange Expansions

Lagrange Expansions (LE) beam theories are based on the use Lagrange-type polynomials as

generic functions over the cross-section. The cross-section is therefore divided into a number
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of local expansion sub-domains, whose polynomial degree depends on the type of Lagrange

expansion employed. Three-node linear L3, four-node bilinear L4, nine-node cubic L9, and

sixteen-node quartic L16 polynomials can be used to formulate refined beam theories (see

Carrera and Petrolo [29]). For example, the interpolation functions of a L9 expansion are

defined as:

Fτ = 1
4
(r2 + r rτ )(s

2 + s sτ ) τ = 1, 3, 5, 7

Fτ = 1
2
s2
τ (s

2 + s sτ )(1− r2) + 1
2
r2
τ (r

2 + r rτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2) τ = 9

(11)

where r and s vary over the cross-section between −1 and +1, and rτ and sτ represent the

locations of the roots in the natural plane. The kinematic field of the single-L9 beam theory

is therefore
ux = F1 ux1 + F2 ux2 + F3 ux3 + ...+ F9 ux9
uy = F1 uy1 + F2 uy2 + F3 uy3 + ...+ F9 uy9
uz = F1 uz1 + F2 uz2 + F3 uz3 + ...+ F9 uz9

(12)

Refined beam models can be obtained by adopting higher order Lagrange polynomials or by

using a combination of Lagrange polynomials on multi-domain cross-sections. More details

about Lagrange-class beam models can be found in [46, 29, 45, 28].

Lagrange polynomials have been extensively employed in the formulation of variable

kinematics plate and shell theories in a unified framework by Kulikov and his co-workers.

The readers are referred to the original papers for more details about 2D models based on

Lagrange-type expansions, see for example [47, 48].

3.3 Hierarchical Legendre Expansions

3.3.1 HLE beam theories

HLE (Hierarchical Legendre Expansion) beam models represent the object of the study of

the present work. The theoretical basis of the Legendre-like functions that are adopted in

this paper were presented by Szabó et al. [34, 35]. In those papers, the authors introduced

how to use these polynomials to create sets of finite element shape functions, which will be

here applied to develop hierarchical refined structural theories. The one-dimensional Legen-

dre polynomials can be defined in several ways, being the most useful for our purposes the

recurrent definition:

L0 =1

L1 =x

Lk =
2k − 1

k
xLk−1(x)− k − 1

k
Lk−2(x), k = 2, 3, ...

(13)

This set of polynomials represents an orthonormal basis, and their roots are identical with

integration points of Gauss quadrature rules. They also satisfy the Legendre differential
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equation. A set of 1D functions can be defined from these polynomials as:

L̃1(r) =
1

2
(1− r) (14)

L̃2(r) =
1

2
(1 + r) (15)

L̃i(r) = φi−1(r), i = 3, 4, ..., p+ 1 (16)

being r the local coordinate in the natural domain [-1, 1], and φj(r):

φj(r) =

√
2j − 1

j

∫ r

−1

Lj−1(x) dx, j = 2, 3, 4, ... (17)

The first two functions, i.e. Eqs. (14) and (15), are the nodal modes and they correspond

to the linear Lagrange 1D polynomials. Equation (16) includes all the internal modes. This

Legendre-based set of functions maintains the orthogonal properties of the Legendre polyno-

mials, in fact, ∫ 1

−1

dL̃i
dr

dL̃j
dr

dx = δij, for i ≥ 3 and j ≥ 1 or i ≥ 3 and j ≥ 1 (18)

where δij is the Kronecker’s delta.

[Figure 1 about here.]

Two-dimensional polynomial expansions can be then defined by extending the above pro-

cedure to quadrilateral domains on the beam cross-section. In this case, nodal, edge and

internal polynomials are used as interpolation functions over the section. They are all in-

cluded in Fig. 1 until the 7th order. The vertex modes are four in total, one per vertex, and

they vanish at all nodes but one. Secondly, the edge modes vanish for all sides of the domain

but one. Finally, the internal modes vanish at all sides, and they are just included from the

fourth order expansion and higher.

Vertex expansions The nodal or vertex modes correspond to the first-order, quadrilateral

Lagrange polynomials:

Fτ =
1

4
(1− rir)(1− sis) τ = 1, 2, 3, 4 (19)

where, as for LE models, r and s vary above the domain between −1 and +1, and rτ and

sτ represent the vertex coordinates in the natural plane. In fact, the same cross-sectional

functions were used to develop bilinear, LE beam theories in [29], referred to as L4.
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Side expansions The side modes are defined for p ≥ 2 and they are defined in the natural

plane as follows

Fτ (r, s) =
1

2
(1− s)φp(r) τ = 5, 9, 13, 18, ... (20)

Fτ (r, s) =
1

2
(1 + r)φp(s) τ = 6, 10, 14, 19, ... (21)

Fτ (r, s) =
1

2
(1 + s)φp(r) τ = 7, 11, 15, 20, ... (22)

Fτ (r, s) =
1

2
(1− r)φp(s) τ = 8, 14, 16, 21, ... (23)

where p represents the polynomial degree (see Fig. 1). It is possible to note that the above

functions are expressed in such a way that they satisfy the side-continuity in multi-domain

beam theories.

Internal expansions Fτ internal expansions are built by multiplying 1D internal modes.

There are (p − 2)(p − 3)/2 internal polynomials for p ≥ 4 and they vanish at all the edges

of the quadrilateral. As an example, the set of sixth-order polynomials contains 3 internal

expansions (see Fig. 1), which are

F28(r, s) = φ4(r)φ2(s) (24)

F29(r, s) = φ3(r)φ3(s) (25)

F30(r, s) = φ2(r)φ4(s) (26)

It is important to note that the hierarchical properties of this model are related to the

fact that the set of functions of a particular order contains all the polynomials of the lower

degrees. As far as the sixth-order HLE beam model is concerned, for example, the set of

functions used to define the kinematic terms of expansion includes the internal polynomials

introduced in Eqs. (25), (26) and (26), and all the other internal, side and vertex functions

of the same polynomial order and below, i.e τ = 1, ..., 30.

3.3.2 HLE plate theories

Plate theories based on Legendre-like kinematics are formulated by adopting the polynomials

in Eqs. (14) to (16) as Fτ thickness functions up to the desired order p:

ux = L̃1(z) ux1 + L̃2(z) ux2 + L̃i(z) uxi
uy = L̃1(z) uy1 + L̃2(z) uy2 + L̃i(z) uyi
uz = L̃1(z) uz1 + L̃2(z) uz2 + L̃i(z) uzi

(27)

where i denotes a summation and ranges from 3 to p+ 1. It is clear that ux1 , uy1 and uz1 are

the displacement components of bottom face of the plate, whereas ux2 , uy2 and uz2 are the

displacement components of top face. Within the framework of 2D CUF theories, displace-

ment fields like the one depicted in Eq. (10) have been mainly used for the implementation

of layer-wise models for laminated structures (see for example [18, 19, 44]).
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4 Finite element formulation

The main advantage of CUF is that it allows to write the governing equations and the re-

lated finite element arrays in a compact and unified manner, which is formally an invariant

with respect to the Fτ functions. In the sections below, the mathematical derivation of the

fundamental nucleus (the invariant) of the stiffness matrix in the case of CUF beam models

is provided in detail. Although analogous, the derivation of the stiffness matrix for the plate

CUF element is not derived here, but it can be found in [44].

4.1 Geometrical relations and constitutive equations

In this section, the same notation and reference system as defined in Section 2 are adopted.

Let the 3D displacement vector be defined as:

u(x, y, z) =


ux(x, y, z)
uy(x, y, z)
uz(x, y, z)

 (28)

According to classical elasticity, stress and strain tensors can be organized in six-term

vectors with no lack of generality. They read, respectively:

σσσT =
{
σyy σxx σzz σxz σyz σxy

}
εεεT =

{
εyy εxx εzz εxz εyz εxy

} (29)

Regarding to this expression, the geometrical relations between strains and displacements

with the compact vectorial notation can be defined as:

εεε = D u (30)

where, in the case of small deformations and angles of rotations, D is the following linear

differential operator:

D =



0 ∂
∂y

0
∂
∂x

0 0
0 0 ∂

∂z
∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y

∂
∂y

∂
∂x

0


(31)

On the other hand, for isotropic materials the relation between stresses and strains is

obtained through the well-known Hooke’s law:

σσσ = Cεεε (32)

where C is the isotropic stiffness matrix

C =


C33 C23 C13 0 0 0
C23 C22 C12 0 0 0
C13 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (33)
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The coefficients of the stiffness matrix depend only on the Young’s modulus, E, and the

Poisson ratio, ν, and they are:

C11 = C22 = C33 = (1−ν)E
(1+ν)(1−2ν)

C12 = C13 = C23 = νE
(1+ν)(1−2ν)

C44 = C55 = C66 = E
2(1+ν)

(34)

4.2 Interpolation of the generalized displacements

The discretization along the longitudinal axis of the beam is made by means of the finite

element method. The generalized displacements are in this way described as functions of the

unknown nodal vector, qτi, and the 1D shape functions, Ni.

uτ (y) = Ni(y)qτi, i = 1, 2, ..., nelem (35)

where nelem is the number of nodes per element and the unknown nodal vector is defined as

qτi =
{
quxτi quyτi quzτi

}T
(36)

Different sets of polynomials can be used to define FEM elements. Lagrange interpolating

polynomials have been chosen in this work to generate cubic one-dimensional elements. For

the sake of brevity, their expression is not provided, but it can be found in the book by

Carrera et. al [23], in which two-node (B2), three-node (B3) and four-node (B4) elements are

described.

4.3 Fundamental nucleus of the unified beam element

The governing equations are obtained via the principle of virtual displacements. This varia-

tional statement sets as a necessary condition for the equilibrium of a structure that the virtual

variation of the internal work has to be the same as the virtual variation of the external work,

or:

δLint = δLext (37)

The internal work is equivalent to the elastic strain energy

δLint =

∫
l

∫
Ω

δεεεTσσσ dΩ dy (38)

where l stands for the length of the beam and Ω is the cross-section domain. By adopting

the geometrical relation (Eq. (30)), the constitutive law (Eq. (32)), the CUF kinematic field

(Eq. (7)) and the FEM discretization (Eq. (35)), the internal work can be rewritten as:

δLint = δqTτiK
τsijqsj (39)

where Kτsij is the 3× 3 fundamental nucleus of the stiffness matrix. The nine terms of this

matrix are given in the following:
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K τ sij
xx = C22

∫
l

NiNj dy

∫
Ω

Fτ,xFs,x dΩ + C44

∫
l

NiNj dy

∫
Ω

Fτ,zFs,z dΩ +

+C66

∫
l

Ni,yNj,y dy

∫
Ω

FτFs dΩ

K τ sij
xy = C23

∫
l

NiNj,y dy

∫
Ω

FτFs,x dΩ + C66

∫
l

Ni,yNj dy

∫
Ω

Fτ,xFs dΩ

K τ sij
xz = C12

∫
l

NiNj dy

∫
Ω

Fτ,zFs,x dΩ + C44

∫
l

NiNj dy

∫
Ω

Fτ,xFs,z dΩ

K τ sij
yx = C23

∫
l

Ni,yNj dy

∫
Ω

Fτ,xFs dΩ + C66

∫
l

NiNj,y dy

∫
Ω

FτFs,x dΩ

K τ sij
yy = C33

∫
l

Ni,yNj,y dy

∫
Ω

FτFs dΩ + C55

∫
l

NiNj dy

∫
Ω

Fτ,zFs,z dΩ +

+C66

∫
l

NiNj dy

∫
Ω

Fτ,xFs,x dΩ

K τ sij
yz = C13

∫
l

Ni,yNj dy

∫
Ω

Fτ,zFs dΩ + C55

∫
l

NiNj,y dy

∫
Ω

FτFs,z dΩ

K τ sij
zx = C12

∫
l

NiNj dy

∫
Ω

Fτ,xFs,z dΩ + C44

∫
l

NiNj dy

∫
Ω

Fτ,zFs,x dΩ

K τ sij
zy = C13

∫
l

NiNj,y dy

∫
Ω

FτFs,z dΩ + C55

∫
l

Ni,yNj dy

∫
Ω

Fτ,zFs dΩ

K τ sij
zz = C11

∫
l

NiNj dy

∫
Ω

Fτ,zFs,z dΩ + C44

∫
l

NiNj dy

∫
Ω

Fτ,xFs,x dΩ +

+C55

∫
l

Ni,yNj,y dy

∫
Ω

FτFs dΩ

(40)

The derivation of the fundamental nucleus of the loading vector from the virtual variation

of the external load is not reported here for the sake of brevity. It can be found in [23].

[Figure 2 about here.]

It should be noted that the formal expressions of the components of the fundamental

nucleus of the stiffness matrix are independent on the choice of the cross-sectional functions

Fτ , which determine the theory of structure, and shape functions Ni, which determine the

numerical accuracy of the FEM approximation (see Fig. 2). This means that any classical to

higher-order beam element can be automatically formulated by appropriately expanding the

fundamental nuclei according to the indexes τ , s, i, and j.

In this paper, cubic Lagrange-type shape functions are used as Ni, whereas TE, LE and

HLE expansions are used to formulate 1D theories of structures. For the sake of clarity, the

differences between TE, LE and HLE finite elements are outlined in Fig. 2. These differences

are also briefly discussed hereinafter.

Using TE models, the generalized displacement unknowns (displacements and their deriva-

tives) are expanded on the cross-section surface from the reference axis, and the polynomial
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order of the model is increased in a hierarchical manner by adding new terms to the kinematic

field. On the other hand, LE models are based on local expansions of pure displacement un-

knowns within each of the sub-domains in which the surface is divided. According to these

definitions, HLE performs as a combination of TE and LE. In fact, the unknowns of the HLE

models are generalized displacements (displacements and derivatives) as for TE, and the ex-

pansion order is also increased in a hierarchical manner. Moreover, Legendre-like expansions

can be enriched locally over the physical surface of the cross-section, as for LE models. Ac-

cording to these characteristics, the expansion order is set as a free input of the model that

determines the number of unknowns to be solved. At the same time, the kinematic field can be

enriched in particular zones of interest through the definition of multi-domain cross-sections.

5 Numerical results

5.1 Square cross-section beam

In order to assess the novel HLE theory, a clamped-free square section beam is considered.

The geometry of the cross-section is shown in Fig. 3. The height, h, and the width, b, are

both equal to 0.2 m. The slenderness ratio, L/h, is equal to 10, resulting the length equal

to 2 m. Ten four-node Lagrange-type B4 elements are employed for the longitudinal mesh, a

number that, according to [29], ensure convergent results. Two point loads with magnitude

equal to −25 N are applied at the lower corners of the cross-section, in [±b/2, L,−h/2]. An

isotropic Aluminium alloy is employed in all the assessments carried out in this work, being

its mechanical characteristics the following: Young modulus, E, equal to 75 GPa and the

Poisson ratio, ν, equal to 0.33.

[Figure 3 about here.]

In the first analysis, HLE models are developed by adopting a single quadrilateral domain

over the cross-section. The first 8 degrees of the Legendre-like polynomial expansions are

accounted for and compared with the results from [29] for the same assessment, in which TE

and LE models were used. A solid model has also been created with the commercial software

MSC Nastran to serve as a reference for the results. For this and the remaining numerical

examples, six-sided Nastran brick elements (CHEXA) have been used to build the reference

solid models, which are the results of convergence analyses to ensure fair comparison with

the proposed higher-order methodologies. Table 1 shows the number of degrees of freedom,

DOFs, and the number expansion terms, M, for each model considered.

[Table 1 about here.]

Figure 4 shows the vertical displacement (uz) distribution along the lower edge of the

loaded section for the Solid, L9 and HLE models. The normal stresses, σyy, and shear stresses,

σyz, are measured along the z-axis at the mid-span section and they are shown in Figs. 5 (a)
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and (b), respectively. Table 2 shows the values of these parameters in some representative

points of the beam. The displacements at the left bottom vertex of the tip are compared with

classic models (EBBT and TBT), TE (from N=1 to N=4 orders) and LE models (see [29]).

L9 and Solid solutions are also included for both normal and shear stresses. Two conclusions

can be extracted from these results:

• The displacements distribution calculated with HLE models gets closer to the Solid

solution as the polynomial order is increased. For instance, the HL8 model is able to

account for localized effects due to the point loads. The results obtained with the first

expansion order (HL1) are not plotted since this linear-polynomial expansion provides

much lower absolute values, having a constant value of −1, 115×10−5 m along the edge.

• Neither the first two expansion orders of the HLE nor the L9 model are able to represent

correctly the shear stresses (σyz), which should be zero at both free borders according

to the stress-free conditions for the edges. Instead, HLE models above the third order

provide more accurate values, getting closer to zero as the order increases. It should

be noted that the Solid model, whose mesh has not been refined in the vicinities of the

free-borders, lacks also in representing correctly the stress-free conditions.

[Figure 4 about here.]

[Figure 5 about here.]

[Table 2 about here.]

In the subsequent assessment, the cross-section domain is divided in several local expan-

sions, as it has been introduced for the development of LE and HLE models. Again, the

slenderness ratio, L/h, is equal to 10, the length, L, is 2 m, and the height, h, is 0.2 m. Four

different section configurations are studied: single, two (1×2 and 2×1) and four sub-domain

distributions (2 × 2). Figure 6 shows the multi-domain cross-sections used to develop the

present beam theories. The same loads as in the previous case are applied at the bottom

corners of the tip section. Table 3 shows the vertical displacements, uz, at one of the loaded

points for the different expansion configurations. The results obtained by using Lagrange-class

L4 models and the analytical solution calculated by means of the EBBT are also referred here.

It is possible to see that the first order HLE model provides the same displacement values as

the L4 model, since these models use the same expansion functions. Also, it should be noted

that multi-domain models converge faster to the same solution.

[Figure 6 about here.]

[Table 3 about here.]
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5.2 Plate structures and comparisons between 1D and 2D models

In this section the performances of the present 1D refined models for the analysis of thin

to thick plate structures subjected to various boundary conditions are compared to those of

already established 2D CUF theories. The utilized 2D CUF models make use of a 9-node

MITC (Mixed Interpolation of Tensorial Components) element to eliminate shear locking,

whereas Legendre polynomials are adopted as thickness functions (see Eq. (27)). The sides

of the plate under consideration are equal to 1 m and three different thicknesses (h) are

considered: 0.1, 0.01 and 0.001 m. The same Aluminium alloy as in the previous assessment

(E = 75 GPa and ν = 0.33) is employed and a pressure load of p = 1 Pa is applied on the

upper face of the plate. As far as the 1D models are concerned, 10 B4 elements are used along

the beam axis, whereas a mesh of 10 × 10 MITC elements are adopted for the 2D models.

Figure 7 shows the finite element discretization of both 2D and 1D models employed in this

section. In particular, Fig. 7b also shows the cross-section of the beam in the xz-plane to

readily underline that six domain expansions for the HLE approximation are adopted.

[Figure 7 about here.]

Four different cases of boundary conditions are considered. Namely, plates with two

opposite sides clamped, simply-supported on two opposite sides, all the sides clamped, and

with simply-supported on all the sides are analysed. Table 4 quotes the results in terms of

displacement and stress components for the clamped-clamped case and various thickness-to-

side ratio. A fourth-order expansion order along the thickness is considered for the plate

model (LD4), whereas fourth- and eight-order polynomial expansions are used in the beam

analysis. Tables 5, 6 and 7 show the analogous results for all the other boundary conditions

considered. For the sake of completeness, solid Nastran solutions have also been included for

h/a = 0.1 and 0.01 in the double clamped case (see Table 4). All the solutions are presented

in a dimensionless manner by using the following relations:

u∗z =
Eh3uz
a4p

σ∗
ii =

h2σii
a2p

σ∗
ij =

hσij
ap

(41)

being a the length of the side, h the thickness, E the Young modulus and p the pressure.

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

It is clear that, due to the refined capabilities of the present HLE and the possibility to

apply boundary conditions at any point of the 3D geometry and, thus, on the physical sides

laying along the beam axis (which is not possible in conventional beam theories), the proposed

refined beam model can be successfully applied to the analysis of plate-like structures. Some

further aspects can be observed from the results:
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• In terms of displacements, the maximum difference between the HLE beam model and

the Nastran solid solutions results is 0.95 % for the case h/a = 0.1. The worst per-

formance of the proposed beam model corresponds to the stresses in the transverse

direction, σxx, being 10.08 % and 6.02 % the major differences of the HL4 and HL8

beam models in comparison with the solid solution. However, a remarkable fact is that

the HLE models provide shear stresses σyz that are closer to the 3D solution than the

LD4 plate model.

• The maximum relative error in terms of displacements (8.59 %) between plate and beam

models occurs for h/a = 0.1 and all sides clamped, see Table 6.

• In most cases considered, the fourth-order HLE model provide convergent results. To

maintain the accuracy, it would be possible to reduce the number of domain expansions

within the cross-section and increase the polynomial order, or reduce the polynomial

order and use more domain expansions.

• In the case of symmetric boundary conditions (Tables 6 and 7), the in-plane normal

stresses σxx and σyy should be equal each other. Obviously, the plate model perfectly

satisfy this statement since the finite element space is the same in both x and y di-

rections. On the other hand, the present beam model accomplish fairly good results

for this parameters, showing the enhanced capabilities of HLE high-order expansion to

capture shell-like solutions.

This is not perfectly true in the case of HLE, because the finite element approximation

along y has a different order with respect to the HLE expansion along the cross-sectional

direction x.

5.3 C-section beam

[Figure 8 about here.]

More complex geometries of beams are hereinafter accounted for in order to show the

enhanced capabilities of the HLE beam models. A cantilever C-section beam is considered

first (see Fig. 8). Its dimensions are the following: height, h, and upper flange width, b2, are

equal to 1 m; lower flange width, b1, is equal to 0.5 m, with the thickness, t, equal to 0.1

m. The slenderness ratio, L/h, is equal to 20. Regarding LE and HLE models, two different

multi-domain cross-sections are considered: (a) 6 and (b) 9 expansion sub-domains (see Fig.

9). Two opposite vertical point forces are applied at [0, L,±0.4]: one at the middle of the

upper flange and the other one at the edge of the lower one. Its magnitudes are −1 N for

the first one and +1 N for the lower one. The vertical displacements, uz, obtained at the

upper free edge of the top flange, [0, L,+0.4], are displayed in Table 8. As for the previous

assessment, both Taylor-type and Lagrange-type models are also considered, together with
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an MSC Nastran solid model. Figure 10 shows a scaled representation of the displacements

at the tip. Some remarks can be pointed out from these results:

• Again, LE solutions fall between the second and third expansion order of the HLE,

whose values for higher orders result to be in good agreement with the ones obtained

with the Nastran solid model.

• On the other hand, the classical model is not capable of representing the effects of this

load case, and Taylor-type models result to be not very accurate for the study of this

type of problems. For instance, the eleventh-order TE model has more than 15 % of

error in comparison with the solid model, being its computational costs even higher

than the 6HL4 model, whose error is less than 2 %. The reason is that, as it has been

explained before, LE and HLE models make use of localized expansions at the cross-

section level, whereas TE are built by expanding the generalized displacements from

the beam axis.

[Figure 9 about here.]

[Figure 10 about here.]

[Table 8 about here.]

A second load case is considered for the same C-section beam (see Fig. 8). In this case,

a flexural-torsional load case is analysed by using a vertical force of −1 N applied at the

lower right corner of the tip, at [b1, L,−h/2]. The vertical displacements, uz, measured at

the edge of the upper flange are displayed in Table 9. The first column shows the different

models considered, whereas the second and the third columns include the displacements and

the number of degrees of freedom for each model, respectively. The displacement solutions

obtained with HLE models converge to the ones obtained with the solid case. Figure 11

shows the normal σyy (a) and shear σyz (b) stresses along the web. A 40 B4 mesh along the

y-axis has been employed to obtain both stress distributions. This discretization has been

chosen on the basis of the convergence analysis shown in Table 10, in which the different

solutions are obtained for a increasing number of B4 FEM elements along the longitudinal

axis. Out of this study, it is possible to see that the displacement and normal stress solutions,

uz and σyy, are accurate enough with the minimum number of FEM elements tested. On the

other hand, shear stresses, σyz, measured at the top of the flange, return to values close to

zero as the number of FEM elements grows, satisfying the stress-free conditions at the edge.

Moreover, the convergence of these solutions depend also on the polynomial order of the

model, being necessary to use more beam elements as the expansion order increases. Finally,

the tip displacements of the C-section beam under the proposed load condition is shown in

Fig. 12.

[Table 9 about here.]
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[Figure 11 about here.]

[Table 10 about here.]

[Figure 12 about here.]

5.4 Hollow square cross-section

[Figure 13 about here.]

Let us consider now a hollow square beam whose geometry is shown in Fig. 13. The

length-to-height ratio, L/h, is equal to 20, the height-to-thickness ratio, h/t , is equal to 10

with h as high as 1 m, being t equal to 0.1 m and the width, b, is the same as h. The beam is

clamped at both ends and a vertical point load of magnitude 1 N is applied at the center of the

lower edge at mid-span, at [0, L/2, h/2]. Two different cross-section domain configurations

are considered for the development of LE and HLE theories: (a) 9 sub-domains, and (b) 11

sub-domains. As shown in Fig. 14, the refinement of the cross-section expansion domain of

the second case is concentrated around the loaded point. In this case, 10 B4 elements are

used for the longitudinal beam element distribution. The displacements, measured at the

loaded point, can be found in Table 11. It includes also other solutions obtained by means of

EBBM, TE and LE theories. A solid MSC Nastran model is also used as a reference. Two

conclusions come out from this study:

• HLE models result more accurate for the study of thin-walled beams than TE and LE. In

fact, the solutions obtained by using high-order HLE models tend to the MSC Nastran

Solid value while reducing in great manner the computational costs.

• As expected, the HL2 models show similar behaviour of L9 models when the same cross-

section domain configuration is employed, because both HL2 and L9 models employ

second order polynomials for the cross-section expansions. The third order model, HL3,

is refined enough to overcome the performance of LE models. In fact, as it is clear

from the results (see Table 11), the accuracy of the solutions in terms of displacements

increases continuously with higher polynomial orders of the expansions.

[Figure 14 about here.]

[Table 11 about here.]

5.5 Open hollow square cross-section

[Figure 15 about here.]
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The last example deals with the case of a hollow square beam with a cut. The section is

forced to open at the cut, but no flexural loads are applied, so just cross-sectional effects are

expected. The cross-section geometry is the same as the hollow square section without cut,

shown in Fig. 13. The length-to-height ratio, L/h, is equal to 20. The height-to-thickness

ratio, h/t , is equal to 10 with h as high as 1 m, being t equal to 0.1 m. The width, b, is the

same as h. Three different cross-section configurations are considered now for the development

of multi-domain theories: 9 divisions, 11 divisions with the refinement around the cut, and 11

divisions with the webs divided in 2 sub-domains (see Fig. 15). The beam is clamped at one

end and free at the opposite end, where four point loads are applied in correspondence of the

cut. Two of them at [0, L,−0.4] with magnitudes of ±0.5 N and the other two [0, L,−0.5] also

with magnitudes of ±0.5 N. The horizontal displacements, ux, are measured at the right side

of the cut at the lower vertex, and they are displayed in Table 12. Although the three cross-

section distributions provide similar results, it is possible to see that the 11HLb models provide

higher values than the other two. This is due to the bending effects that appear on the webs,

that can be better represented with 2 expansion sub-domains instead of a single one. Finally,

Fig. 16 shows the deformed configuration of the tip section. It is worth mentioning that,

for this analysis case, the present HLE models provide displacements results which are larger

then those from Nastran solid models if sufficiently higher-order expansions are adopted.

[Table 12 about here.]

[Figure 16 about here.]

6 Conclusions

In this paper, refined beam and plate models have been discussed. Particular attention has

been given to a novel refined beam finite element based on the Carrera Unified Formulation

(CUF). CUF is an advanced tool that enables to formulate theories of structure in a unified

manner. In the case of one-dimensional models, for example, CUF expresses the displacement

field as an arbitrary expansion of the generalized unknowns that are functions of the beam axis.

The expansion is made by adopting generic functions of the beam cross-section coordinates,

Fτ . Depending on the choice of those functions, different beam models can be implemented.

For example, TE (Taylor Expansion) models employ Taylor-like polynomials of order N as

Fτ , being classical beam theories particular cases of lower-order TE. Lagrange polynomials

are, on the other hand, adopted in the case of LE (Lagrange Expansion) models, and they

have only pure displacement unknowns.

In the present work, a new class of CUF beam models has been proposed by employing

Hierarchical Legendre-like Expansions (HLE). HLE beam models have the advantages of both

TE and LE models, but without retaining any of their disadvantages. For example, due to

the hierarchy of the cross-sectional functions, the beam theory order is a pure scalar input

parameter if HLE or TE are used. On the other hand, increasing the theory order in LE models
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requires the re-collocation of the cross-sectional sub-domains. This aspect is of fundamental

importance as far as the burden related to the model building and refinement is concerned.

Moreover, in HLE as well as in LE approaches, the physical surfaces of the structures are

used in the formulation of the mathematical modelling with no geometry approximation loss.

Furthermore, HLE methodology allows one to refine the beam model kinematics locally, at

the cross-section level. The main advantage of LE models that still is of primary importance is

that only pure displacement variables are involved as fundamental unknowns. This aspect may

result in a considerable advantage in the formulation of geometrically non-linear formulations,

in which rotations and high-order unknowns can be difficult to handle.

Nevertheless, the accuracy of the novel HLE 1D finite beam element has been widely

discussed and validated. The enhanced capabilities and the low computational costs of the

proposed technique when applied to short, thin-walled and open cross-section beams as well

as to plate structures are evident from the analyses conducted. Undoubtedly, HLE results in

the best compromise among CUF beam theories as far as accuracy, computational efforts and

ease in model building are concerned.
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Figure 6: Cross-section expansion domains for the square beam.
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(a) 6 sub-domains (b) 9 sub-domains

Figure 9: Cross-section domain distributions for the C-section beam.
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Figure 10: Displacements at the tip of the C-section beam for the 9HL8 model.

36



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.4 -0.2  0  0.2  0.4

σ y
y 

x 
10

-2

z

SOLID
HL1
HL2
HL3
HL4
HL5
HL6
HL7
HL8

(a) σyy

-1.5

-1

-0.5

 0

 0.5

-0.4 -0.2  0  0.2  0.4

σ y
z 

x 
10

-1

z

SOLID
HL1
HL2
HL3
HL4
HL5
HL6
HL7
HL8

(b) σyz

Figure 11: Normal, σyy, and shear, σyz, stresses of the C-section beam under flexural-torsional
load at [0.45, L/2, :].

37



Figure 12: Displacements at the tip of the C-section beam under flexural-torsional loads for
the 9HL8 model.

38



z

xy

b

h

t
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(a) 9 sub-domains (b) 11 sub-domains

Figure 14: Cross-section expansion domains for the hollow square beam.
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domains(a)

(c) 11b sub-domains

Figure 15: Cross-section domain distributions for the open hollow square beam.
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Figure 16: Displacements at the tip of the hollow opened beam for the 11HL8b model.
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model DOFs M
SOLID [29] 18150 −

TE models [29]
N=1 279 3
N=2 558 6
N=3 930 10
N=4 1395 15

LE models [29]
L4 372 4
L9 837 9

present HLE models
HL1 372 4
HL2 744 8
HL3 1116 12
HL4 1581 17
HL5 2139 23
HL6 2790 30
HL7 3534 38
HL8 4371 47

Table 1: Degrees of freedom for each model of the square cross-section beam.
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model uz × 105 σyy × 10−4 σyz × 10−3

[−b/2, L,−h/2] [0, L/2, h/2] [0, L/2, 0]
uz × 105, uzb × 105 = −1.333

SOLID[29] −1.340 3.750 −1.708
Classical and refined models based on TE [29]

EBBT −1.333 - -
TBT −1.343 - -
N=1 −1.343 - -
N=2 −1.327 - -
N=3 −1.329 - -
N=4 −1.330 - -

LE models
L4[29] −1.115 - -
L9 −1.331 3.750 −1.198

present HLE models
HL1 −1.115 3.750 −1.250
HL2 −1.329 3.750 −1.198
HL3 −1.332 3.750 −1.746
HL4 −1.335 3.750 −1.761
HL5 −1.336 3.750 −1.734
HL6 −1.337 3.751 −1.734
HL7 −1.339 3.743 −1.741
HL8 −1.340 3.745 −1.738

Table 2: Displacements and stresses of the square beam (L/h = 10).
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model 1 sub-domain 1× 2 sub-domains 2× 1 sub-domains 2× 2 sub-domains
uz × 105, uzb × 105 = −1.333

L4[29] −1.115 −1.229 −1.160 −1.262
HL1 −1.115 −1.229 −1.160 −1.262
HL2 −1.329 −1.324 −1.324 −1.324
HL3 −1.332 −1.323 −1.324 −1.324
HL4 −1.335 −1.323 −1.324 −1.324
HL5 −1.336 −1.323 −1.324 −1.324
HL6 −1.337 −1.323 −1.324 −1.324
HL7 −1.339 −1.324 −1.324 −1.324
HL8 −1.340 −1.324 −1.324 −1.324

Table 3: Vertical displacement, uz × 105, for different cross-section domain configurations.
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Model h/a Expansion u∗z × 102 σ∗
xx × 102 σ∗

yy × 10 σ∗
yz × 10 DOFs

[0.5,0.5,h/2] [0.5,0.5,h/2] [0.5,0.5,h/2] [0.5,0.25,0.0]
Solid 0.1 - 3.060 7.108 2.471 3.574 329967
Plate LD4 3.022 7.297 2.507 4.962 6615
Beam 6HL4 3.050 6.391 2.401 3.625 7161

6HL8 3.052 7.536 2.464 3.641 22041
Solid 0.01 - 2.728 7.132 2.424 3.578 742467
Plate LD4 2.669 7.281 2.449 5.073 6615
Beam 6HL4 2.702 6.778 2.405 3.699 7161

6HL8 2.702 6.842 2.403 3.697 22041
Plate 0.001 LD4 2.665 7.285 2.448 5.072 6615
Beam 6HL4 2.698 6.502 2.392 3.725 7161

6HL8 2.698 6.833 2.403 3.727 22041

Table 4: Displacement and stress components of the plate clamped at two opposite sides.
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Model h/a Expansion u∗z × 10 σ∗
xx × 10 σ∗

yy × 10 σ∗
yz × 10 DOFs

[0.5,0.5,h/2] [0.5,0.5,h/2] [0.5,0.5,h/2] [0.5,0.25,0.0]
Plate 0.1 LD4 1.438 1.724 7.421 4.743 6615
Beam 6HL4 1.435 1.625 7.284 3.335 7161

6HL8 1.435 1.737 7.347 3.355 22041
Plate 0.01 LD4 1.409 1.795 7.401 4.812 6615
Beam 6HL4 1.406 1.660 7.301 3.367 7161

6HL8 1.406 1.693 7.312 3.385 22041
Plate 0.001 LD4 1.408 1.797 7.401 4.822 6615
Beam 6HL4 1.406 1.710 7.318 3.380 7161

6HL8 1.406 1.744 7.329 3.400 22041

Table 5: Displacement and stress components of the plate simply-supported at two opposite
sides.
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Model h/a Expansion u∗z × 102 σ∗
xx × 10 σ∗

yy × 10 σ∗
yz × 10 DOFs

[0.5,0.5,h/2] [0.5,0.5,h/2] [0.5,0.5,h/2] [0.5,0.25,0.0]
Plate 0.1 LD4 1.560 1.486 1.486 3.500 6615
Beam 6HL4 1.571 1.401 1.419 2.249 7161

6HL8 1.694 1.534 1.568 2.386 22041
Plate 0.01 LD4 1.322 1.406 1.406 3.651 6615
Beam 6HL4 1.342 1.271 1.360 2.330 7161

6HL8 1.347 1.310 1.376 2.306 22041
Plate 0.001 LD4 1.320 1.404 1.404 3.661 6615
Beam 6HL4 1.340 1.323 1.377 2.343 7161

6HL8 1.340 1.359 1.389 2.315 22041

Table 6: Displacement and stress components of the plate clamped at all the sides.
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Model h/a Expansion u∗z × 102 σ∗
xx × 10 σ∗

yy × 10 σ∗
yz × 10 DOFs

[0.5,0.5,h/2] [0.5,0.5,h/2] [0.5,0.5,h/2] [0.5,0.25,0.0]
Plate 0.1 LD4 4.505 2.980 2.980 3.096 6615
Beam 6HL4 4.894 3.059 3.084 2.081 7161

6HL8 4.932 3.172 3.170 2.053 22041
Plate 0.01 LD4 4.346 2.950 2.950 3.104 6615
Beam 6HL4 4.392 2.835 2.926 2.105 7161

6HL8 4.402 2.876 2.943 2.074 22041
Plate 0.001 LD4 4.344 2.950 2.950 3.104 6615
Beam 6HL4 4.362 2.875 2.927 2.083 7161

6HL8 4.363 2.909 2.939 2.048 22041

Table 7: Displacement and stress components of the plate simply-supported on all the sides.
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model uz × 108 m DOF
SOLID[29] −3.067 84600
Classical and refined models based on TE [29]
EBBM 0.0 155
N=4 −0.245 1395
N=8 −2.161 4185
N=11 −2.565 7254

LE models [29]
6L9 −2.930 3627
9L9 −2.982 5301

present HLE models
6HL1 −0.888 1302
6HL2 −2.897 3069
6HL3 −2.963 4836
6HL4 −3.007 7161
6HL5 −3.033 10044
6HL6 −3.057 13485
6HL7 −3.067 17484
6HL8 −3.079 22041
9HL1 −1.071 1860
9HL2 −2.952 4469
9HL3 −2.984 7068
9HL4 −3.029 10509
9HL5 −3.047 14787
9HL6 −3.068 19902
9HL7 −3.075 25854
9HL8 −3.084 32643

Table 8: Vertical displacement, uz, at the upper free edge of the C-section beam, [0, L, 0.4].
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model uz × 106 m DOF
SOLID[29] −1.467 84600
9L9 [29] −1.457 5301
9HL1 −1.419 1860
9HL2 −1.457 4464
9HL3 −1.459 7068
9HL4 −1.460 10509
9HL5 −1.461 14787
9HL6 −1.461 19902
9HL7 −1.461 25854
9HL8 −1.461 32643

Table 9: Displacements, uz, of the C-section beam under flexural-torsional load at
[−b2/2, L,+h/2].
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model n elements uz × 106 m σyy × 10−2 Pa σyz × 10−1 Pa σyz × 10−1 Pa
[−b2/2, L, h/2] [0.45, L/2, h/2] [0.45, L/2, 0] [0.45, L/2, h/2]

9HL2 10 -1.457 1.998 -1.117 0.464
20 -1.462 2.004 -1.133 0.104
30 -1.463 2.004 -1.133 0.105
40 -1.463 2.004 -1.133 0.105

9HL5 10 -1.460 1.956 -1.240 2.951
20 -1.465 2.025 -1.236 -0.944
30 -1.466 2.001 -1.236 0.044
40 -1.467 2.004 -1.236 -0.045

9HL8 10 -1.461 1.956 -1.224 3.936
20 -1.466 2.043 -1.218 -3.325
30 -1.467 1.985 -1.218 1.298
40 -1.468 2.009 -1.218 -0.260

Table 10: Various solutions of displacements and stresses for different numbers of beam
elements.
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model uz × 108 m DOF
SOLID[29] 1.374 128952
Classical and refined models based on TE [29]
EBBM 1.129 155
N=4 1.209 1395
N=8 1.291 4185
N=11 1.309 7254

LE models [29]
8L9 1.277 4464
9L9 1.308 5022
11L9 1.326 6138

present HLE models
9HL1 1.210 1674
9HL2 1.307 4185
9HL3 1.337 6696
9HL4 1.340 10044
9HL5 1.348 14229
9HL6 1.345 19251
9HL7 1.347 25110
9HL8 1.348 31806
11HL1 1.231 2046
11HL2 1.324 5115
11HL3 1.340 8184
11HL4 1.343 12276
11HL5 1.345 17391
11HL6 1.347 23529
11HL7 1.348 30690
11HL8 1.349 38874

Table 11: Vertical displacement, uz, at the loaded point of the hollow cross-section square
beam.
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model ux × 108 m DOF
SOLID[29] 5.292 131400

LE models [29]
9 L9 4.884 5301
11L9a 4.888 6417
11L9b 5.116 6417

present HLE models
9HL1 1.002 1860
9HL2 4.838 4464
9HL3 5.123 7068
9HL4 5.214 10509
9HL5 5.260 14787
9HL6 5.304 19902
9HL7 5.329 25854
9HL8 5.375 32643
11HL1a 1.011 2232
11HL2a 4.851 5394
11HL3a 5.133 8556
11HL4a 5.223 12741
11HL5a 5.267 17949
11HL6a 5.309 24180
11HL7a 5.332 31434
11HL8a 5.355 39711
11HL1b 1.305 2232
11HL2b 5.061 5394
11HL3b 5.154 8556
11HL4b 5.244 12741
11HL5b 5.285 17949
11HL6b 5.327 24180
11HL7b 5.345 31434
11HL8b 5.364 39711

Table 12: Horizontal displacement, ux, at [0, L,−h/2] of the open hollow square beam.
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