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Understanding Uncertainty

What is the value of obtaining additional information for any project you plan? How

likely is the project to succeed with or without the new data? This article describes

a way to assess how new information decreases uncertainty and project risk.

Incorporating the method into real-time evaluation programs allows continual updat-

ing of prognoses, such as the distance to a drilling target.

Risk is good. Risk is bad. Companies are driven by
a profit motive and in a competitive business
climate, making a profit is usually impossible with-
out some exposure to risk. What is the boundary
of acceptable risk? Accurately judging when risk
becomes recklessness is imperative. Finding
ways to reduce exposure to risk is a difficult but
essential business practice; quantifying risk and
assessing the value of information designed to
reduce risk can be even more problematic.

Finding and developing oil and gas assets has
always been a risky business. The industry has a
history of technological advances that dimin-
ished risk, even as reservoirs and the way they
are produced have grown in complexity. An early
development, the use of wireline logging in an oil
well by Conrad and Marcel Schlumberger, had its
75th anniversary September 5, 2002. Over the
past decade, three-dimensional (3D) seismic sur-
veys have significantly reduced uncertainty about
structures, identified bypassed zones and
improved project economics.’

Economic evaluation also has improved.
Simple deterministic modeling outputs a single
value that may be augmented with a few sen-
sitivity cases. Slightly more sophisticated
evaluation uses ranges of values and can deter-
mine which parameters have the greatest impact
on a result. The next improvement assigns
probability density functions to the ranges of
parameters and results in an expectation curve of
economic parameters, such as net present value

(NPV) or reserves produced. A fully integrated,
multidisciplinary, probabilistic approach, known
as decision and risk analysis, incorporates many
more base parameters and propagates uncer-
tainty.? A study of operators on the Norwegian
continental shelf indicated that corporate
financial performance improved after companies
integrated decision and risk analysis into
their workflows.?

Sophisticated risk analysis can indicate
which unknown factors have the greatest impact
on project economics, and technology may exist
to obtain that information, but a question
remains: is the value of additional information
worth the cost to obtain it? To answer the ques-
tion for any specific case, a company first must
evaluate the degree of project uncertainty with
and without the new information.

In this article, we investigate sources of
uncertainty and a method to propagate uncer-
tainty throughout a project analysis. Propagating
uncertainty allows the impact of adding informa-
tion about an input parameter to carry through to
the result. A probabilistic model that explicitly
includes probability distributions for parameters
can indicate the degree of uncertainty reduction
to be expected by obtaining more information.
Three case studies show uncertainty analysis for
geosteering into a thin pay section, a shaly-sand
petrophysical analysis and a walkaway vertical
seismic profile (VSP).
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The Probability of Error

A fundamental driver for risk analysis is the
amount of uncertainty remaining when a decision
must be made. If all information were known
precisely, there would be no risk in making deci-
sions; the outcome could be predicted with
certainty. The quality of measurements available
to the exploration and production (E&P) industry
is high, but logging samples a small volume of
the reservoir, and coring wells returns an even
smaller fraction of the reservoir for study.

Autumn 2002

Although a 3D seismic survey samples the entire
reservoir, the vertical resolution is low.
Fundamental limitations imposed by physics and
geometry restrict the amount and quality of
information available. Reservoir information is
interpreted through models, which are rarely
exact for every possible case (see “Cataloging
Errors,” page 4).

There is one true value that describes a phys-
ical quantity at a specific point in space and time.
For example, the strength of a given block of

cement under a given set of conditions has a
single value. Errors involved in measuring pre-
vent exact determination of that value and

1. Head K: “Predicting the Value of 3-D Seismic Before It Is
Shot,” World 0il 219, no.10 (October 1998): 97-100.

. Coopersmith E, Dean G, McVean J and Storaune E:
“Making Decisions in the Oil and Gas Industry,” Oilfield
Review 12, no. 4 (Winter 2000/2001): 2-9.

. Jonkman RM, Bos CFM, Breunese JN, Morgan DTK,
Spencer JA and Sgndend E: “Best Practices and
Methods in Hydrocarbon Resource Estimation,
Production and Emissions Forecasting, Uncertainty
Evaluation and Decision Making,” paper SPE 65144,
presented at the SPE European Petroleum Conference,
Paris, France, October 24-25, 2000.




Cataloging Errors

Measurement devices, ranging from simple
rulers to complex logging sondes, make errors.
For example, if an object’s length is exactly
5.780 units—such as inches or centimeters—
and the ruler being used is graduated to tenths
of a unit, the measurement must be interpo-
lated to determine the digit in the hundredth’s
place. Precision can be improved and uncer-
tainty reduced, for example by investing in

a better ruler or improved sonde technology.
However, improvement will be limited by cur-
rent technology and cost.

Normally, inaccuracy results in larger mea-
surement errors than does imprecision. If the
quantity is 5.780 and a device is capable of
measuring to at least two decimal places, an
inaccurate device would give some number
other than 5.78. This could be due to a system-
atic error, such as a warped ruler that always
measures too long, or it could be due to a ran-
dom error associated with the measurement
process. Known systematic errors can be
accounted for; many logging measurements
include environmental corrections, such as
borehole size and borehole-fluid salinity correc-
tions used with resistivity and nuclear tools.

If repeated measurements of the same quan-
tity using the same device yield different values,
the cause is random errors. The causes of such
errors are usually beyond our control, and often
beyond our understanding. Natural variations in
the earth cause random variation in measured
quantities, such as seismic reflections from
close but not identical wave paths or core
analysis results from adjacent and seemingly
identical samples. The influence of random
errors can be reduced by repeated measure-
ments, or in some cases by spending more time
taking a measurement.

The user of information from a sophisticated
tool often is not interested in the value of
a direct measurement. The measurement may
be a voltage drop or optical density, while the
quantity of interest is formation resistivity
or oil gravity. Either within the tool software or

Information Model Parameters
B | Structure (geophysics) Reflection, migration Velocity (log, stacking)
2 | Facies distribution (geology) Depositional analogs Field examples
-2 | Rock parameters (petrophysics)  Porosity, permeability ~ Empirical, statistical
ﬁ Volumetric computation Distribution Geostatistical
E Pressure, volume Darcy, displacement Flow rate
2 | Fluid characteristics Darcy Content mix, viscosity
.2 | Phase relationships PVT Physical, empirical
§ Permeability model Reservoir Static model, flow model
& | Material balance* Flow * Validation test

/ Uncertainties in the reservoir-modeling process. Static reservoir models, describ-
ing the geometric properties of the reservoir, are subject to interpretation errors
in the model and data errors in the parameters. Dynamic models, describing fluid
flow, have similar error sources, but material balance provides a validation test.

in post-processing, the measurement is analyzed
using a model (above). Models are representa-
tions of reality—simplifications or generaliza-
tions of our understanding of the way the world
works—but they are not reality. The Archie
equation is not exactly correct, nor are the vari-
ous modifications to it. Petrophysicists try to
understand the model’s limitations and the
errors associated with using it, but they still

use it for formation evaluation.

Laboratory and field measurements are sub-
ject to quality-control problems, which can be
systematic, equipment or human error. A qual-
ity-assurance study on density, porosity and air
permeability conducted by Amoco, now BP,
between 1978 and 1989 involved repeated mea-
surements on stable cores by many laboratories.
At the beginning of the study, Amoco followed
general guidelines for accuracy, but the
database grew large enough to tighten the stan-
dards on acceptable error for these measure-
ments. The company was able to say with
confidence which of the laboratory results were
beyond acceptable limits.!

Human blunders are an important source of
error, and they are hard to handle in error anal-
ysis. Measurement errors of a few percent pale
in comparison to the result of transposing the

first two digits of a five-digit number, or losing
the only copy of a set of data. Data- and infor-
mation-management systems seek to reduce the
chance of human error by designing processes
that do not require data to be input more than
one time. Real-time data transfers put the infor-
mation on the computer desktops of users, with
minimal human intervention.

More subtle human errors also exist. Bias can
influence interpretations. A strong desire to go
forward with a prospect, or conversely to fulfill
an obligation and then get out of a contract, can
lead to overly optimistic or pessimistic evalua-
tions of information. As another example, finan-
cial incentives to drillers to avoid doglegs in
a well can lead to the undesired result of under-
reporting of drilling problems. These subtle
human errors can be difficult to discover. The
best solution is transparency. All steps of a pro-
cess need to be traceable, with a catalog of all
assumptions made. While this might not stop
bias from entering the analysis, it can be discov-
ered and corrected at a later time.

1. Thomas DC and Pugh VJ: “A Statistical Analysis of the
Accuracy and Reproducibility of Standard Core Analysis,”
The Log Analyst 30, no. 2 (March-April 1989): 71-77.
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require a distribution of possible answers to rep-
resent uncertainty. Analysis has to rely on these
probahility distributions.

The term “probability” has two common
meanings. One sense relates to a relative
frequency of an event in repeat trials, such as
flipping a coin many times. If the coin is balanced
and fair, and the coin-flipping process also is fair,
then about half of the results will be “heads.”
The more times the coin is flipped, the closer the
outcome will be to 50% (below).

The other use of the word relates to a belief
or degree of confidence in an uncertain propo-
sition. For example, flip a coin but do not look
at how it lands. The result is already determined;
either it is heads or it is “tails.” Yet, we still talk
about the probability of getting heads as being
50% because that is the degree of belief in
that outcome.

Both meanings are used in the E&P industry.
Well-logging tools that rely on radioactive pro-
cesses either sample at one station for a period
of time or log at a slow speed to increase the
counting statistics. Counting involves the relative
frequency of an event, the first sense of probabil-
ity. An example of probability as belief is the
common use of probabilities Pqg, Psg and Pgg to
describe the range of NPV results from a large
number of reservoir-economics evaluations
obtained by varying input parameters with each
trial. The NPV of an actual reservoir under the
development conditions modeled is a set, but
unknown, value. Probabilities expressed as
degrees of belief always depend on the available

information. Based on what is known about the
reservoir, that NPV has a 10% probability of
being at the P1g model result or less, an equal
chance of being greater or less than the P
median and a 90% probability of being a value
less than or equal to the Pgq prediction.*

A proper analysis of data follows a logical
process, meaning we start with premises and
create logical arguments to lead to conclusions.
Both the premises and the conclusions are state-
ments, or propositions, that can be either true or
false. Deductive logic takes the classic form of:

Premise 1: If Ais true, then Bis true.

Premise 2. Als true.

Conclusion: Therefore, Bis true.

As an example, substitute the statement that
the water cut of this well exceeds 99% for A, and
substitute the statement that this well is not eco-
nomic for B. The statements become:

Premise 1: If the water cut of this well
exceeds 99%, then this well is
not economic.

Premise 2:  The water cut of this well

exceeds 99%.

Conclusion: Therefore, this well

economic.

However, just because an argument is cast
into a logical form, it may not be valid. Even this
simple argument can be wrong if the premises
are false—the water cut may not exceed 99%
after all. Logical arguments usually are not as
straightforward as this, and if the conclusions do
not derive from the premises, the argument also
can be wrong.
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 Frequency of heads from a fair coin toss. After one coin toss, either zero
or one result will be heads, with the two results having equal probability (dot
size indicates probability). The most likely result of two tosses is that half the
results are heads. After three tosses, either one or two heads is most likely,
giving fractional results of % or %. The probability of obtaining all heads or all
tails decreases with each additional toss. A one-sigma standard deviation
(curves) from the mean of the result indicates the most likely fractional num-
ber of heads approaches 0.5 as the number of coin flips increases.
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Arguments involving uncertain propositions
fall into a branch called inductive logic, which
uses probability rather than certainty in the argu-
ment. Some of the probabilities to be used are
termed conditional probabilities: the probability
of one event being true when another is known to
be true. For example, in a given area, there may
be an equal probability of a rock encountered at
a given depth being either sandstone or lime-
stone. However, given a log indicating that the
formation has a density of 2.3 g/cm?, the proba-
bility is very high that it is a sandstone formation.

Including probability statements in a general-
ized inductive argument gives:

Premise 1: If Bis true, then the probabhility
that Ais true is P(A|B)*

Premise 2:  The probability that A is true
is PIA).

Premise 3:  The probability that B is true
is P(B).

Conclusion: There is a probability P(B|A) that

Bis true given A s true.

Premise 3 may seem odd, since the objective
is to reach a conclusion about B. The third
premise is a statement about the probability of B
occurring in general, while the conclusion is a
conditional statement about B given that A is
true. The importance of this distinction becomes
more apparent using a specific case.

Suppose a person is tested for a rare virus.
The test is not always correct. In 5% of the
cases, the test is positive when the person is not
infected, termed a false positive. False nega-
tives—the test result is negative when the per-
son is infected—occur in 10% of the cases.
Represent the statement that the person is
infected as Infected, and represent the statement
that the test is positive by Yes.

The test result on a specific person is posi-
tive: according to the test that person is infected.
How likely is it that the person actually has
the virus?

The answer is not 90%; that is
P(Yes|Infected), the probability the result is posi-
tive if the person is infected. Nor is the answer
5%; that is the probability the test is positive if
the person is not infected, F(Yes|not Infected).
The result desired is Plinfected| Yes), the proba-
bility that the person is infected when the test is
positive. That answer relies critically on how rare
the virus is in the general population, Pfinfected).

4. Some companies use the reverse of this nomenclature.
For example, if the Py as defined in the text represented
an NPV of $1 million, there would be a 10% chance the
uncertain NPV is $1 million or /ess. Some companies
would describe that $1 million NPV value as Py, indicat-
ing a 90% chance of a $1 million NPV or more.

The vertical bar indicates a conditional probability, and is
read “given,” so P(A|B)is the probability of A given B.
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In this case, assume that rare means 10 people
are infected for each 1,000,000 of the population
not infected, about 0.001%. Testing a random
selection of 1,000,010 people results in 50,000
uninfected people obtaining a positive result,
since the test gives 5% false positives, and nine
true positives. The probability that a person is
infected if the test is positive is 0.018%—much
higher than the rate in the general population.
The test is not definitive because the infection is
rare, so false positives still greatly outnumber
true positives. A positive test result suggests a
second, independent test should be performed.

Bayes’ Rule

Conditional results like the preceding example
can be calculated using Bayes' rule for proposi-
tions.® Bayes' rule provides a way to calculate
one conditional probability, P(BJA) when the
opposite conditional probability, P(A|B), is known
(above right). For that reason, it is also known as
the rule of inverse probability. Bayesian statis-
tics starts with general information about the
probability of B, P(B), which is called the prior
probahility because it describes what is known
before the new information is obtained. The /ike-
lihood, P(A|B), contains new information specific
to the instance at hand. From the prior and the
likelihood distributions, Bayes' rule results in the
conditional probability of Bwhen A has occurred,
P(B|A), called the posterior probability. The
denominator is a normalizing factor that involves
only A—the total probability of A occurring.

A simple example demonstrates the use of
Bayesian formalism. A company has to decide
whether to develop a small reservoir in a basin
where 14% of small reservoirs like it have
already proven to be productive and economic.
Interpretation of this particular reservoir, based
on a seismic study and well logs, indicates the
hydrocarbon accumulation is economic. From
past experience, interpretation of this type of
data correctly predicts an economic reservoir
80% of the time, and correctly predicts an uneco-
nomic reservoir 75% of the time. Is this reservoir
likely to be economic?

The prior information, P(Economic), is that
14% of this type of field in this area is economic.
The new information is a test result of Yes, that
is, the analysis indicates this particular reservoir
is economic. This enters in the likelihood,
P(Yes|Economic). P(Yes), which appears in the
denominator of Bayes' rule, is not given but it can
be calculated. The probability can be split into
two parts, the probability that the analysis result
is Yes and the reservoir is Economic and the
probability that the analysis says Yes but the

reservoir is Uneconomic. These two conditions
do not overlap and they include all conditions, so
dividing the probability of Yes into these two
pieces does not affect the total probability. The
combined probability, for example of Yes and
Economic, can be obtained from the conditional
probability of Yes, given that the reservoir is
Economic, times the probability the reservoir is
Economic. Thus, the unknown P(Yes) can be
determined from known quantities.

The result is somewhat surprising. Even
though the analysis is reasonably accurate, with
an 80% rate of successfully predicting economic
reservoirs, the chance this reservoir is economic
is 34% (bottom). The posterior result is driven
down to a low level by the prio—the low
probability of the general population of this
type of field being economic. Intuition can
be wrong, particularly when the probability of
an outcome given a known test result, such

P(B)*PAIB)

P(BIA) = A

where
P(BIA) = Posterior
P(B) = Prior
P(A|B) = Likelihood

P(A) =Normalizing
factor

/ Bayes'’ rule for propositions.

P(Yes|Economic)=80%
|:,\> P(No|Uneconomic)=75%

’

P(Yes) = P(Yes and Economic) + P(Yes and
Uneconomic)

P(Yes and Economic) = P(Yes|Economic)*
P(Economic)

P (Economic)=14% in @ & @
this area

P(Yes|Economic) * P(Economic)

A
N

>
SN

P(Yes)

Uneconomic Economic

P(Economic|Yes) =

0804
080.14 +0.25*0.86

0112

= =034
0.327

P(Yes|Economic) * P(Economic) + P(Yes|Uneconomic) * P(Uneconomic)

/ Bayes'’ rule for a synthetic reservoir case. A test involving log and seismic
interpretation (upper left) provides a test of the economics of a prospect.

It correctly identifies economic prospects 80% of the time and uneconomic
prospects 75% of the time. In this area, 14% of similar fields are economic
(upper right). The numerator in Bayes' rule can be calculated by splitting

the probability that the test gives a Yes indication into the condition that the
Yes indication is correct and the condition that the Yes indication is incorrect
(middle right). Each of those terms can be defined by a mathematical relation
of the probabilities of two independent quantities taken together (middle left).
When the given values are substituted into Bayes’ rule, the result is only

a 34% probability that the new reservoir is economic, even though the test

indicates it is economic (bottom).
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as  P(Economic|Yes), is confused with
P(Yes|Economic), the probability of a test result
given a known outcome. Nonetheless, the value
of the additional information provided by the
analysis is clearly demonstrated by the increase
in the probability of economic success from
14% to 34%.

Probabilistic reasoning logically propagates
uncertainty from premises to a conclusion.
However, even proper use of the probabilistic
formalism does not guarantee the result is
correct. The conclusion is only as good as the
premises and assumptions made at the outset.
The advantage of using a logically sound method
like Bayesian formalism is that incorrect conclu-
sions indicate some premises or assumptions
are unsound—a feedback loop in the interpre-
tation process.

Another term is sometimes explicitly included
in each term of Bayes' rule representing the gen-
eral knowledge and assumptions that go into the
evaluation of probability. In the reservoir exam-
ple, the likelihood term, P(Yes|Economic), may
assume that the latest generation of logging
tools was used and that the seismic section was
interpreted assuming layered formations. The
prior, P(Economic), may assume that all of the
reservoirs are fluvial. All of these assumptions
are summarized as additional information /, so
the likelihood becomes PfYes|Economic, 1) and
the prior becomes P(Economic, ).

Explicitly incorporating known assumptions
and information, /, about the problem into the
Bayesian formalism is a way of indicating the
conditions under which the probabilities were
calculated. The choice of information included in
a scenario reflects analyst bias. Transparency
about all assumptions in the process makes an
effective feedback loop possible.

The probabilities of the prior and likelihood
are not always known precisely. Each parameter
involved may have an uncertainty associated
with it (top right). The simple algebra of Bayes’
rule must be converted to matrix algebra, and if
there are a large number of uncertain parame-
ters, a high-speed computer may be needed to
determine the posterior distribution from the
prior distribution and the likelihood.

Geosteering Through Uncertainty

Team Energy, LLC, operator of the East Mount
Vernon unit, drilled the Simpson No. 22 well, the
first horizontal well in the Lamott Consolidated
field in Posey County, Indiana, USA (bottom
right).” Schlumberger wished to test novel com-
pletion technologies to drain oil from a 13-ft [4-m]
thick oil column in this unit. The project allowed
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Prior distribution
(information prior to data)

Likelihood
(information in the data)

Posterior distribution
(all information)

A Bayes'’ rule constraining layer thickness. Thickness of layers in a reservoir
model may be uncertain. Prior information for layer thickness h for layers
iand jmay be poorly constrained, as indicated by the circle on the crossplot
of layer thickness (/eff). Darker areas correspond to higher values of the
probability distributions, and the dashed lines show bounding values for the
uncertainty. Log data providing likelihood information indicating one layer
gets thinner as the other gets thicker also have some uncertainty (middle).
The product of these two gives the posterior distribution and properly

accounts for all information (right).

Lamott
Consolidated—=
field

© Producing well
o Water injector

< Dry well
o Not drilled

Indiana

East Mount Vernon unit

400 600 m

200
I I ]

500 1000 1500 2000 ft

A Location of the Mount Vernon unit of the Lamott Consolidated field, near Evansville, Indiana, USA.
The outlined area indicates the modeled area for the Simpson 22 horizontal well. Eight offset wells
(labeled) were used to constrain the model around the build section (black) and the 808-ft [246-m]

horizontal section (red) of the well.

6. Thomas Bayes (1702-1761) was an English minister
whose seminal work on probability and induction was
published in 1763 after his death. For further information
and an introduction to Bayesian statistics, see Hacking I:
An Introduction to Probability and Inductive Logic.
Cambridge, England: Cambridge University Press, 2001.

7. Malinverno A, Andrews B, Bennett N, Bryant |, Prange M,
Savundararaj P, Bornemann T, Li A, Raw |, Britton D and
Peters JG: “Real-Time 3D Earth Model Updating While
Drilling a Horizontal Well,” paper SPE 77525, presented
at the SPE Annual Technical Conference and Exhibition,
San Antonio, Texas, USA, September 29-October 3, 2002.
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A Interactive updating. The data-consistent model interface makes updating
the three-dimensional model easy. The layer thicknesses are shown in the
curtain plot (top left). The earth-model view indicates locations of existing
vertical wells, the deviated pilot well and the horizontal well being drilled
(bottom left). The interpreter positions a marker (yellow line) at the measured
depth that is suggested by the logging-while-drilling data on the log viewer
(right). The red arrow indicates the change in interpretation from the prior
information (red line). A depth uncertainty also is input (pop-up box). The
software updates the model automatically, and no further user input is required.

Depth uncertainty

/ Depth uncertainty before and after updating. Before updating (upper left),
the curtain plot indicates the uncertainty in depth of the Cypress is about

8 feet [2.4 m] (orange band). After the 3D model is updated (lower left), the
intersection of the well trajectory with the top of the Cypress formation in the
model is at a measured depth (MD) of 3020 ft [920 m] (red line), and the depth
uncertainty is significantly smaller than before. The vertical axes of the cur-
tain plots (upper and lower left) are true vertical depth.

Schlumberger to test Bayesian uncertainty meth-
ods that were incorporated into a software col-
laboration package. This process successfully
helped to locate and steer a horizontal well in a
thin oil column.

The East Mount Vernon unit is highly devel-
oped with vertical wells drilled on 10-acre
[40,500 m? spacing; most wells are openhole
completions exposing only the upper 2 to 5 ft
[0.6 to 1.5 m] of the oil column. The majority of
cumulative production is from the Mississippian
Cypress sandstone reservoir, although production
also comes from the shallower, Mississippian Tar
Springs reservoir. The existing vertical wells pro-
duce at a very high water cut, about 95%,
because the Cypress reservoir oil column is so
thin. The Simpson No. 22 well was drilled first as
a deviated pilot well, to penetrate the Cypress
sandstone close to the planned heel of the hori-
zontal section, and subsequently drilled along a
smoothly curving trajectory leading into a hori-
zontal section in the reservoir.

Geosteering a wellbore is intrinsically a 3D
problem. Trying to model the process in two
dimensions can lead to inconsistent treatment of
data from other wells. Schlumberger built a
3D earth model that contains the significant
stratigraphic features of the Cypress reservoir.
The model had 72 layers on a grid with five cells
on a side. Gamma ray and resistivity values
were assigned to each cell in the model based on
well-log data.

The parameters defining the geometry of the
earth model, the thickness of each layer at each
grid point, were represented in the model as a
probability distribution. Information from the field
based on well logs defined the mean of each
layer thickness. Combining all these values
defined the mean vector of the model. Layer-
thickness uncertainty and the interrelation
between the uncertainties in thickness at differ-
ent locations define the model covariance matrix.
The mean vector and the covariance matrix
together define the model probability distribu-
tion. A log-normal distribution of thickness pre-
vents layer thickness from becoming negative
and describes the population of thickness values
better than a normal distribution.

The initial model was constrained using hori-
zons picked off logs from eight offset wells. The
initialization procedure accounted for uncertainty
in the measured depth of the harizon pick and
uncertainty in the well trajectory. This prior dis-
tribution in the 3D earth model was the starting
point for drilling the pilot well. Even after the
information obtained from offset wells was
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included, the uncertainty in locating the depth to
the top of the 13-ft target zone was about 10 ft
[3 m], a significant risk for such a narrow target.®

Scientists at the Schlumberger-Doll Research
Center in Ridgefield, Connecticut, USA, created a
user interface to update the 3D earth model
quickly and easily across a secure, global com-
puter network. In collaboration with drillers at
the rig in Indiana, log-interpretation experts in
Ridgefield updated the model while drilling. Later
in the drilling process, other interpreters were
able to monitor the drilling of the horizontal sec-
tion from England and Russia in real time by
accessing the Schlumberger network.

Interpretation experts compared real-time
logging-while-drilling (LWD) measurements of
gamma ray and resistivity with a 3D earth model
that included uncertainty. Using the software, an
interpreter could pick a new horizon location and
assign an uncertainty to that location (previous
page, top). The update procedure automatically
combined this new information with the prior dis-
tribution. Use of the Bayesian statistical proce-
dure ensured that the previous picks and all
offset-well information were still properly
accounted for and the interpretation was prop-
erly constrained (previous page, bottom).

The new model from the posterior distribution
was immediately available through a secure Web
interface so drillers at the rig could update the
drilling plan. The procedure was repeated each
time the drill bit passed another horizon. The pos-
terior distribution from the application of data
from one horizon became the prior distribution
for the next horizon. Uncertainty for horizons yet
to be reached was reduced with each iteration,
decreasing the project risk.

The pilot well provided information to update
the model near the proposed heel of the horizon-
tal well. The logs established that a high-perme-
ability layer, close to the middle of the original oil
column, had been flooded with reinjected pro-
duced water. This narrowed the window for the
horizontal section to the upper half of the reser-
voir interval. The build section of the new well
was drilled at 4° per 100 ft [30 m] to enter the for-
mation close to horizontal. The 3D earth model
was again updated as the well was drilled, and
the wellbore successfully entered the target for-
mation at 89°. The next problem was how to keep
the well path within a narrow pay interval.

LWD resistivity logs transmitted to surface in
real time were critical to staying within the pay.
(above right). Schlumberger is the only company
that can record images while drilling and trans-
mit them to surface in real time, using mud-pulse
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Approximately 20 ft

/ Logging-while-drilling (LWD) logs in a 20-ft [6-m] horizontal section. LWD resistivity images transmit-
ted to surface in real time show the well going downdip (/eff) and parallel to the geological layering
(middle). More detailed images are downloaded from the tool after drilling (right), showing the same
section as in the middle illustration. Interpreted stratigraphic dips (green) and fractures (purple) are
indicated. The straight lines are orientation indicators.

telemetry. Patterns in the RAB Resistivity-at-the-
Bit image clearly showed how well the trajectory
stayed parallel to formation bedding. Using the
3D earth model updated in real time, drillers kept
the 808-ft [246-m] drainhole within a 6-ft [1.8-m]
oil-bearing layer.

The well was instrumented downhole with
pressure sensors and valves that can be opened
or closed in real time.® Valves in three separate
zones can be set to any position between fully
opened and fully closed. These valves allowed
Schlumberger and Team Energy, LLC, to test a
variety of operating conditions. Currently, com-
mingling production from two lower zones
delivers the best output of oil. The 30% water cut
is significantly better than the 95% water cut of
conventional wells in the field.

Although not used on the Simpson No. 22 Well,
a similar analysis is available in the Bit On Seismic
software package. With SeismicVISION informa-
tion obtained during the drilling process, the loca-
tion of markers can be determined while drilling.
Through Bayesian statistics, the uncertainty in the
location of future drilling markers can be evalu-
ated, and the drilling-target window tightened.”

Determining Formation Uncertainty

The geosteering problem used a model with mul-
tivariate normal, or Gaussian, distributions that
can be solved analytically. If the variable distri-
butions cannot be assumed to have a simple,
Gaussian shape, or when errors are not small, a
Monte Carlo approach is more appropriate. In
this method, the probability distribution function
can have an arbitrary form, but the procedure
requires more computing power than does an
analytical approach. In a Monte Carlo simulation,
values for the parameters are randomly selected
from the possible population, and the scenario is
solved. Iterating a random selection followed by
model inversion a large number of times results
in a distribution of scenario outcomes."

8. This is the one-sigma uncertainty, or one standard devi-
ation from the mean.
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In collaboration with researchers at the uni-
versity Politecnico di Torino, Italy, Eni Agip evalu-
ated uncertainty in shale volume, porosity and
water saturation for several shaly-sand forma-
tions.” The study compared the computationally
easy analytic approach, which assumes normal
distributions, with the more complex Monte
Carlo method.

The formations studied had similar litholo-
gies, but each formation had different electrical
properties, porosity ranges and shale content.
Uncertainty was applied only to log measure-
ments, including resistivity, neutron, density,
gamma ray, sonic and the EPT Electromagnetic
Propagation Tool logs. Instrument error was used
to define one standard deviation in the uncer-
tainty distribution (below).

When the shale content was negligible, the
analysis used Archie’'s model to determine water
saturation, S,. The analysis did not factor in
uncertainty related to core-based measurements
of a, mand n. Including error in these core-based
measurements can be done, but for simplicity it
was omitted in this study. There is a hyperbolic
relationship between S, and porosity, which
skews the uncertainty distribution in the analysis
(bottom left). A normal distribution of porosity
error results in a log-normal distribution of S,
error. Since S, cannot exceed 100%, near that
limit the distribution is distorted even more.

The two error-analysis procedures give simi-
lar uncertainty bands for total porosity and effec-
tive porosity, except at low values of porosity
where the error distributions are affected by

2843

Parameter Standard deviation
Gamma ray 15%
Neutron porosity 7%
Resistivity £10%
Sonic AT 5%
Density £0.015 g/cm®
Attenuation £5%
A Instrument error. Standard deviation for density
is constant; all the others are a percentage of the
measured value.
0.30
0.25
0.20 ;
g /\ — £
S015 - oy
£ / S
0.10 /
D‘Z 0‘4 []‘6 08 1.0
Water saturation, fractional
=
g Y
DE_ ]
Water saturation

/ Nonlinear relationship between petrophysical parameters affecting proba-
bility distributions. The Archie relationship (formula) for a given formation

with constant factors a, m, nand R;results in a hyperbolic relationship of
water saturation, Sy, to porosity (blue). This relationship distorts the fre-
quency distributions, which are shown along the axes. A normal uncertainty
distribution about a given porosity value (green) becomes a log-normal distri-
bution for the resulting S,, uncertainty (red). The mean value (dashed yellow)
and three-sigma points (dashed purple) show the skewed S,, distribution. S,,
distributions determined through Monte Carlo modeling are distorted at high
values, since saturation cannot exceed 100% (inset).
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2847

2848

2850
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2852

2853

2854

2855

restrictions on the values of porosity, shale and
matrix volumes to be between zero and one.
Today, the best procedure for determining
shale content uses spectroscopy data from tools
such as the ECS Elemental Capture Spectroscopy
sonde. The data are transformed from elemental
concentration to clay content using SpectroLith
lithology processing. However, such data were
not available for these wells. Several shale-
volume, Vg, indicators have been used by the
industry, including two based on logs run on
these wells. Both the gamma ray and the EPT
logs give reasonable results for Vgyaje under ideal
conditions, but those conditions are different for
each indicator (below). The common industry
practice when using a deterministic approach is
to accept the Vspae indicator having the lowest

Vshale
0 OIZ OI4 Uiﬁ [J|8 1.0
—
N

/ Determination of shale volume from two
indicators. The gamma ray log (red) and EPT
attenuation curve (blue) each provide an indica-
tor of shale volume. The minimum of the two indi-
cators was taken as the estimator of Vgpaje
(shaded purple).
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Porosity
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Gamma Ray, °API Resistivity, ohm-m Bulk Density, g/cm® — Density Porosity —— | Water Saturation (analytical) | Water Saturation (numerical)
1206 0 50 100 15001 1 10 100{2 25 3106 04 0.2 00 02 04 06 08 10 02 04 06 08 1
1208 > ~ —= S
<
g g i i _ = N
1212 ,\/
= L 2| = =
£ 1214 << <=
- ~ —— e~
s > ( J ST 5
& 1218 —— e =
= g 5 & —
1218
- \ i k(k E}{ {{
1222
[ { | N o’ 7
1224

A Uncertainty in petrophysical measurements. The input curves for gamma ray, resistivity and density for a low-porosity, gas-bearing formation are shown
in the first three tracks. An input curve for neutron porosity (green) is compared with porosity derived from the bulk density (blue), which is shown with one
standard deviation error (pink) (Track 4). Water saturation (blue) was calculated from Archie’s equation using an analytical method (Track 5) and a numerical,
Monte Carlo method (Track 6), with uncertainty bands (pink) indicating a one-sigma standard deviation. The lower-bound uncertainty near 1209 m [3967 ft]
and between 1212 and 1214 m [3977 and 3983 ft] is much larger using the analytical method than with the numerical, Monte Carlo method.

Vshale, fraction

. . 0 02 04 06 08 1.0
value at each level.” A Monte Carlo simulation 2846 : : : :

provided uncertainty analysis for the shale
volume using two indicators, one from the

gamma ray log and one from the EPT attenuation 28471
curve (right).
Archie’s model was applied to a low-porosity, 2848 1

gas-bearing sandstone formation. The analytical-
and numerical-uncertainty results differed,
particularly for high water-saturation values 2849 -
(above). The upper bounds on the error were sim-
ilar, but the Monte Carlo procedure indicated
much tighter lower bounds on the result than did 28501
the analytical procedure. The discrepancy
occurred predominantly in the lower-porosity

A Vipale @S minimum
L 4 Vshale(GR)
B Ve (EATT)

0.4

Depth, m

2851 4

12. Verga F, Viberti D and Gonfalini M: “Uncertainty Evaluation 031

in Well Logging: Analytical or Numerical Approach?”
Transactions of the SPWLA 43rd Annual Logging
Symposium, Qiso, Japan, June 2-5, 2002, paper C.

Verga F and Viberti D: “Optimisation of the Conventional
Log Interpretation Process,” Geoingegneria Ambientale
e Mineraria (Geoengineering Environmental and Mining) 2853 -
105, no. 1 (March 2002): 19-26.

Worthington P: “The Evolution of Shaly-Sand Concepts
in Reservoir Evaluation,” The Log Analyst 26, no. 1

2852 0.21

Standard deviation

0 02 0.4 0.6 0.8 1.0
Vshae, fraction

1

w

(January-February 1985): 23-40. Also in Formation 2854
Evaluation Il—Log Interpretation, Treatise of Petroleum
Geology Reprint Series, No. 17. Tulsa, Oklahoma, USA:
American Association of Petroleum Geologists, 1991.

2855

A Uncertainty in shale volume. A Monte Carlo analysis of shale volume used the gamma ray and

EPT attenuation (EATT) curves (/eft). The uncertainty shows a one-sigma standard deviation (dashed
red) around the minimum Vg4 (purple). In a large number of Monte Carlo simulations with uncer-
tainty distributions for the gamma ray and EPT logs, sometimes the gamma ray log will indicate mini-
mum shale, other times the minimum will come from the EPT log. Averaging the realizations yields a
standard deviation of the result (orange) that falls between the gamma ray (purple) and the EPT log
(red) standard deviations (inset).
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High-Porosity Formation

0.25
0.20
B Analytical result
= ¢ Numerical result
£ 015
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Low-Porosity Formation =
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A Water-saturation relative error at various porosity values in gas-bearing shaly sands. The relative
error, or uncertainty, in water saturation is a smooth function for the analytical results (red), which
overestimate error at low porosity in comparison with the numerical results (purple). Both a high-
porosity formation (upper plot) and a low-porosity formation (lower plot) show a similar trend.

regions (above). The uncertainty associated with
water saturation is strongly overestimated by the
analytical method—being as high as
1.6 times the calculated saturation value—
whereas uncertainty calculated using the numer-
ical method is consistently negligible in the
low-porosity formations.

Ahigh-porosity, gas-bearing sandstone forma-
tion also showed some discrepancies between
the methods for evaluating uncertainty, but only
for zones of porosity below 15%. However, the
overall good agreement should be regarded as
particular to this case for the following reasons:

e High porosity ranges—in excess of 33%—
are rarely found in reservoir rocks.

e (Only special combinations of the Archie's
parameters do not amplify error propa-
gated from the porosity log.

e Archie’'s formula does not account for
errors associated with shale volume, but in
formations where shale fraction is not neg-
ligible, the uncertainty associated with
shale-volume determination contributes to
the water-saturation uncertainty.

Water-saturation models more complex
than Archie’s equation were used to analyze
shaly-sand formations. The rock petrophysical
properties provided the basis for selecting the
most suitable model for each formation. The anal-
yses showed that the form of the mathematical
relationship of water saturation to shale volume
impacted the water-saturation uncertainty."

12

Application of the Monte Carlo simulation
allowed a more rigorous evaluation of uncer-
tainty and risk associated with results of a
log-interpretation process, because that method
is not restricted to a normal distribution. Results
from this analysis showed that an appropriate
model must be selected and tailored to each for-
mation to obtain a consistent probability
distribution of hydrocarbon in place and to per-
form reliable field economics (see “Getting the
Right Model,” page 74).

A Random Walk Toward a Solution
Monte Carlo methods also have been used in
inverse problems. The objective of such an analy-
sis is to infer the value of the parameters of a
model from a set of measurements, such as
obtaining seismic velocities in the subsurface from
a seismic survey. A straightforward Monte Carlo
methodology, however, is typically time-consum-
ing because only a small proportion of earth mod-
els chosen at random fits the measurements.
With a large number of parameters, the
Markov chain Monte Carlo (MCMC) simulation is
more efficient. It starts at a random point, or
state, in the space of the parameters, and per-
turbs the parameters, taking a random walk in
parameter space. Each state in parameter space
can be assigned an associated figure of merit
that measures the quality of that particular
choice of parameters. Each step of the random

Walkaway VSP

A Walkaway vertical seismic profile (VSP). The
receiver is fixed in the wellbore and a series of
source shots are fired as the shotpoint location
“walks away” from the rig. In a zero-offset con-
figuration, only one source near the rig is used.

walk is accepted with a probability determined
by the Metropolis rule: if the new state is better
than the old state, the step is always accepted;
otherwise, the step is accepted with a probabil-
ity equal to the ratio of the figures of merit of the
new to the old state.” For example, if the new
state is five times worse than the old state, then
the step will be taken with a 20% probability.
This is like a drunkard doing a random walk in a
hilly field. At each step, the drunkard tests
whether a step in a randomly chosen direction
will be easy or hard. Drunken perception is
flawed, so sometimes the uphill step is taken,
but, over the long term, the path will tend down-
hill. Eventually, the random walk will keep wan-
dering near the bottom of the valley.

Within the Bayesian context, the test involves
the posterior probability, which equals the prod-
uct of the prior probability and the likelihood
function. The figure of merit for making a move is
the ratio of the posterior probabilities of the pro-
posed state to the current state.

Since the initial choice is random, the proce-
dure may begin in a highly unlikely state. There is
a burn-in period, which includes the steps taken
as the Metropolis rule moves toward a state of
likely parameter values. After the burn-in period,
the distribution of states approximates the pos-
terior distribution of the parameters.

Schlumberger used Bayesian analysis with
the MCMC-Metropolis algorithm to evaluate a
walkaway VSP for a well offshore west Africa.
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The operator obtained a walkaway VSP because
of excess pressure encountered in the well.
The walkaway data extended to a maximum off-
set of 2500 m [1.6 miles] from the wellhead (pre-
vious page, right)."®

The data set was used later to investigate
uncertainty associated with the prediction of elas-
tic properties below the bit. The model parameters
in the earth model are the number and thickness
of formation layers, and the compressional
P-wave velocity, the shear S-wave velocity and the
formation density for each layer. Since these quan-
tities are not known before drilling, determining
them from the walkaway VSP data is an inverse
problem, which makes it a candidate for a
Bayesian procedure. The prior information incor-
porates the knowledge of these parameters in the
already-drilled portion of the well (right).
Uncertainty in the parameters increases with
distance away from the known values, that is,
from the current drilled depth. This prior and the
walkaway VSP data were used to develop the
probability function in the MCMC procedure. By
superimposing a few thousand earth models that
fit the VSP data, the probability distribution of the
parameters can be developed (below).

14. Verga and Viberti, reference 12.

15. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH
and Teller E: “Equation of State Calculations by Fast
Computing Machines,” Journal of Chemical Physics 21,
no. 6 (June 1953): 1087-1092.

16. Rutherford J, Schaffner J, Christie P, Dodds K, Ireson D,
Johnston L and Smith N: “Borehole Seismic Data
Sharpen the Reservoir Image,” Oilfield Review 7, no. 4
(Winter 1995): 18-31.
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< Uncertainty in a walkaway VSP. Traveltime
data from a walkaway VSP (middle) were used
in an inverse model to determine velocity and
density parameters. Traveltime data directly
below the wellbore (black box) were used to
mimic a zero-offset VSP, resulting in broad
parameter distributions, converted from time to
depth domain (top). When the complete VSP
data set is used, the uncertainty distribution in
the depth domain (bottom) is much tighter than
for the zero-offset data. Results from logging-
while-drilling measurements (red curves, top
and bottom) compared better with the prediction
from the full set than with the zero-offset portion.

The first analysis was constrained to seismic
reflections near the wellbore. This would be the
information available from a zero-offset seismic
survey (left). The uncertainty band in the pre-
dicted elastic properties is fairly broad. Including
the entire data set makes the uncertainty band
much tighter, with long-wavelength velocity
information coming from the variation in
walkaway reflection time with offset. This
improvement in uncertainty represents the
increased value of information obtained with a
walkaway VSP compared with a zero-offset VSP.
This can be combined with an overall project
financial analysis to determine the decreased risk
based on the new information.

Getting the Right Model

In some cases, the dominant uncertainty may not
be in the parameters of a subsurface model, but
in understanding which scenario to apply.
Available data may not be adequate for differen-
tiating the geologic environment, such as fluvial
or tidal deposition. The presence and number
of faults and fractures may be uncertain, and
the number of layers in or above a formation
may be unclear.

The same Bayesian analysis can be applied to
choosing the proper scenario as has been applied
to determining probabilities within a given
scenario. The possible scenarios are designated
by a series of hypotheses H;, where the subscript
j designates a scenario. The posterior probability
of interest is the probability that a scenario H;
is correct given the data, P(Hd). The denomina-
tor in Bayes’ rule is dependent only on the data,
not the scenario, so it is a constant. To compare
scenarios using Bayes' rule, compare the product
of the prior P(H;) and the likelihood, Pd|Hj), the
probability of measuring the data d when the
scenario H;is true.

Bayesian statistics can be applied to scenar-
ios to determine the right size to make a reservoir
model based on seismic data. Modern seismic
3D imaging can resolve features smaller than
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10 m [33 ft] by 10 m. Reservoir models using such
small cells would be huge, generating computa-
tional and display problems. In addition, even
though the data are processed to that level, there
is noise in the data. The optimal model grid size
should be larger than the data resolution size so
the noise, or error, is not propagated into the
model grid.

The objective is to obtain a model that con-
tains the optimal degree of complexity, balancing
the need to keep the model small with the need
to make the most predictive model possible.
Statistics allow the information in the data to
determine the model size, accounting for mea-
surements, noise and the desired predictions.

To illustrate this, a fractal surface was gener-
ated for numerical modeling (top right).” Seismic
measurements were simulated using vertical
seismic rays from a 16 by 16 regularly sampled
grid on the volume’s surface down to the fractal
surface. Normally distributed noise with a known
standard deviation was added to the measure-
ments. Square model grids ranging from 2 to
16 cells on a side were tested using Bayesian
statistics to find the optimal model grid size
(middle right). For a given noise level, models
with too few cells do not adequately fit the data;
models with too many cells fit both noise and data.

In this case, the prior probability P(H;) will be
the same for all scenarios, since no prior infor-
mation favors one grid size over another. The
scenario with the number of grid cells that opti-
mizes the likelihood is the best. The optimal
number is a function of the amount of noise
in the data (bottom right). When a noise level of
5 msec was applied to the data from the fractal
surface, the optimal grid had 25 cells.

This example uses a simple grid, but the
Bayesian formulation can be applied to models
of arbitrary complexity. This would allow, for
example, an optimal refinement of the grid in the
vicinity of a well where more detailed measure-
ments are available. An optimal grid used
throughout the interpretation workflow delivers
several advantages, such as:

e smaller models that do not compromise

measurements

e variable local resolution to optimize use

of data

e models that intrinsically carry uncertainty

information.

17. The advantage of a fractal surface for this analysis was
that regardless of the density of the model grid, the
model could never match the surface.

18. Bailey W, Mun J and Couét B: “A Stepwise Example of
Real Options Analysis of a Production Enhancement
Project,” paper SPE 78329, presented at the SPE 13th
European Petroleum Conference, Aberdeen, Scotland,
October 29-31, 2002.
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Reducing Future Uncertainty

Bayesian statistics was first developed more
than 200 years ago, but in the exploration and
production industry, as well as many others, its
use has only recently begun to grow. Although
the equation has a simple form, its application
may require complex matrix algebra. Many prob-
lems in our industry involve large numbers of
parameters, resulting in large matrices and a
need for substantial computing power.

Applying Bayesian formalism to some situa-
tions, such as a full reservoir model, may be
beyond current capabilities. However, applying a
rigorous statistical process to accessible parts of
the model allows the more complex models to
build on that foundation, and the assumptions
and known information can be readily observed
at each step. Bayesian statistics provides this
rigorous formalism.

Determining uncertainty in the result of a
multivariate analysis is an important step, but it
is not the whole journey. It can provide a differ-
entiation between paths, such as whether or not
to acquire more information. It is useful for eval-
uating portfolios, where the degree of risk of
developing a set of assets is compared with the
potential reward. Real-options analysis includes
the value of obtaining information in the future,
and Bayesian analysis can help indicate that
value by showing the change in uncertainty.”

The E&P industry has lived with risk since its
inception. These new tools will not eliminate
risk, but by quantifying uncertainty and by
tracing its propagation through an analysis, com-
panies can make better business decisions and
tip the risk-reward balance toward more reward,

A Fractal surface in a simulation model. A syn-
thetic surface, generated using a fractal function,
is sampled on a 16 by 16 grid, assuming seismic
lines traveling vertically from the surface.
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