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Abstract

T -stress effects on crack deflection in notched brittle materials are investigated by

means of an average stress approach. It is shown that the crack advance always

reveals to be straight if the T contribution is negligible. On the contrary, if T is

different from zero, the trajectory tends to curve: the higher is |T |, the larger is the

curvature parameter, its value being either positive or negative depending on the

sign of T . Analogies and differences with respect to straight crack propagation

are quantified in terms of the fracture loci and of the critical kinking angle. The

investigation on the stability of crack deflection under mode I loading conditions

concludes the paper, together with a discussion on experimental observations.
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1. Introduction

The classical stress intensity factors (SIFs) govern the singular stress field

in the neighborhood of the notch root, whereas higher order terms in William’s

asymptotic expansion affect the stress solution only at a certain distance from the

crack tip. The first non-singular term is known as T -stress, which represents the

constant term parallel to the crack plane. Indeed, its effects on crack deflection in

homogenous brittle materials have been widely investigated since the beginning of

sixties. Several different models were proposed by imposing either a strain state-

ment, a stress threshold, an energy condition, or by coupling both a stress require-

ment and the energy balance (Erdogan and Sih, 1963; Cotterell, 1972; Williams

and Ewing, 1972; Finnie and Saith, 1973; Carpinteri et al., 1979; He et al., 1991;

Becker et al., 2001; Smith et al., 2001, 2006; Leguillon and Murer, 2008; Cor-

netti et al., 2014; Gupta et al., 2015; Sapora and Mantič, 2016). From the above

studies, it emerges clearly that T -stress affects both the apparent fracture tough-

ness and the critical kinking angle. Furthermore, T -influence reveals to be more

significant for prevailing mode II conditions and as less brittle materials are con-

sidered. A special mention deserve geometries where the SIFs are both null, e.g.

large plane slabs under remote uniaxial traction with a central through thickness

crack collinear to the force direction (Williams and Ewing, 1972; Carpinteri et al.,

1979), where T governs the whole stress solution.

As concerns the case of pure mode I cracks under biaxial loading, Cotterell

and Rice (1980) proposed in their pioneering work, by a first-order perturbation

scheme of complex potentials, that for T < 0 the crack path is always stable,

whereas for T > 0 the propagation reveals to be unstable. Indeed, similar re-

sults had been obtained even before by Banichuk (1970); Goldstein and Salganik
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(1970) through an analogous procedure. The dependence of the crack path sta-

bility only upon the sign of T -stress was object of a heated scientific discussion,

rising from experimental tests showing the presence of a positive threshold Tth > 0

above which instability occurs (Sumi et al., 1985; Selvarathinam and Goree, 1998;

Chao et al., 2001). The problem was investigated by several studies: the point

stress method was firstly exploited to evaluate Tth by Smith et al. (2001). On the

basis of the studies presented in Broberg (1999), Melin (2002) pointed out that

a critical role of the sign of the T -stress applies only to the situation of a sin-

gle crack growing in a large plate and cannot be transferred to other situations

directly. Leguillon and Murer (2008) evaluated Tth on the basis of the coupled

criterion by Leguillon (2002). Focusing the attention on the T -stress variation

after a small extension of the main crack (Li and Xu, 2007), Li et al. (2010) as-

sumed that for positive T the crack firstly propagates in a stable manner until a

critical crack growth distance, and then unstable propagation occurs. The esti-

mate of Tth according to Finite Fracture Mechanics (FFM, Cornetti et al. (2014);

Sapora and Mantič (2016)) differs somewhat from that by Leguillon and Murer

(2008), although the two approaches provide a similar qualitative behavior. The

strain energy density criterion predicts a value of Tth dependent also on the mate-

rial Poisson’s ratio (Ayatollahi et al., 2016). Finally, the role of T -stress on crack

path is still object of investigation in the framework of dynamic propagation and

of thermally driven fracture processes in quenched glass plates, although it seems

unable to predict stability (Jayadevan et al., 2001; Yang and Ravi-Chandar, 2001).

Most of the approaches cited above refer to kinked or slightly curved cracks,

which however were treated as perturbed straight cracks. Nevertheless, the pres-

ence of the curvature of the fracture plane was often detected experimentally,
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even under mode I loading conditions(Radon et al., 1977; Ayatollahi et al., 2016):

Radon et al. (1977) observed that ignoring the crack curvature for kinking angles

up to 30◦ introduces errors of about 7% on the related failure load. The deviation

increases up to 20% for angles close to 50◦. Among the few (at least theoretical)

attempts that were made to take the curvature into account, let us mention that by

Karihaloo et al. (1981), who extended the first order perturbation scheme men-

tioned above to the second order perturbation approach, coming yet to the same

conclusions by Cotterell and Rice (1980) on crack growth stability, and the sub-

sequent works by Kariahaloo (1982); Sumi et al. (1985); Amestoy and Leblond

(1992); Broberg (1999); Salvadori (2008).

In the present paper, all these concepts will be revisited through the average

stress criterion proposed by Seweryn (1998). The approach lies in the framework

of the Theory of Critical Distances (Taylor, 2007), stating that failure takes place

when a mechanical quantity (in this case the average circumferential stress) at a

finite distance from the crack tip reaches a critical value. The finite distance (also

known as crack extension or crack advance) results to be a material function,

depending on the tensile strength σu and the fracture toughness KIc. For the sake

of simplicity, the crack advance will be assumed of type y1 ∼ x3/2
1 , (x1,y1) being

the frame of reference obtained by rotating the cartesian system (x,y) by an angle

γ (Fig. 1). The above function represents a simplified form of the one considered

by Amestoy and Leblond (1992) (see also (Kariahaloo, 1982; Sumi et al., 1985)),

where it was stated that this shape must be necessarily assumed if the extensions

are to be obtainable by crack propagation and not by arbitrary machining of the

body. Before proceeding, it is important to underline that the present analysis

will focus on the first crack advance stemming from the notch tip and it will not
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describe the complete crack path.

2. Average stress criterion

According to the average stress criterion, failure takes place when the average

circumferential stress σθθ over a segment of length ∆ equals the tensile strength

σu. Differently from FFM (Carpinteri et al., 2011), where the crack advance de-

pends also on the geometrical features thus resulting to be a structural parameter,

here ∆ depends merely on the material properties and it can be expressed as:

∆ =
2
π

(
KIc

σu

)2

=
2
π

lch, (1)

lch being the well-known Irwin’s length. The value of ∆ expressed by Eq.(1) is not

arbitrary, but it must be necessarily assumed in order to provide the Linear Elas-

tic Fracture Mechanics (or Griffith) relationship KI = KIc for a mode I specimen

containing a sufficiently large crack. On the other hand, when comparing theoret-

ical predictions with experimental results, the value of σu (and thus of ∆) is often

fitted for some materials, such as polymers and metals. As a matter of fact, the

experimental estimation on σu when testing plain specimens is strongly affected

by the presence of micro-cracks/defects, and by crazing or plasticity phenomena

(see, for instance, Taylor (2007)).

Although the stress criterion dates back to Neuber (1958) and Novozhilov

(1969), it was formalized to V-notched elements under mode I loading condi-

tions by Seweryn (1994), who later extended the approach to take T -stress effects

and mixed-mode loading conditions into account (Seweryn, 1998; Seweryn and

Lukaszewicz, 2002). Afterwards, several researchers applied this criterion over

a wide range of geometries and materials (Taylor et al., 2004; Priel et al., 2007;
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Ayatollahi and Torabi, 2010; Carpinteri et al., 2012; Sapora et al., 2013, 2014;

Ayatollahi et al., 2015).

Let us recall the expression for the circumferential stress field in polar coordi-

nates:

σθθ (r,θ) =
KI√
2πr

f I
θθ (θ)+

KII√
2πr

f II
θθ (θ)+T sin2θ , (2)

where KI and KII are the SIFs related to the parent (or mother) crack, f I
θθ and f II

θθ

are the corresponding angular functions

f I
θθ (θ) = cos3(θ/2) f II

θθ (θ) =−3sin(θ/2)cos2(θ/2), (3)

whereas the last term represents the T -stress contribution.

It is important also to remind that the relationships linking the cartesian frame

of reference (x,y) to the polar frame of reference (r,θ) can be expressed as


θ = arctan

(y
x

)
r =

√
x2 + y2

(4)

.

The rotated frame of reference (x1,y1) is related to the cartesian frame of ref-

erence (x,y) by means of

x = x1 cos(γ)− y1 sin(γ)

y = x1 sin(γ)+ y1 cos(γ)
(5)

2.1. Straight crack propagation

Let us firstly assume that the kinked crack propagates (at least at the first step)

straightly. By referring to Fig. 1 and imposing a = 0, the following conditions are
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satisfied: θ ≡ γ , r ≡ x1, y1 = 0. The average stress criterion can be expressed as:

1
∆

∫ ∆

0
σθθ (r,θ)dr = σu (6)

Substituting Eqs. (1) and (2) into (6) and supposing that failure takes place

when KI reaches its critical value KI f , yields:

KI f

KIc
=

1

f I
θθ + f II

θθ tanψ + τsin2θ
√

1+ tan2ψ
, (7)

where the mode mixity ψ is defined as tanψ = KII/KI and τ represents the dimen-

sionless T -stress τ = T
√

lch/
√

K2
I +K2

II (also known as biaxiality ratio, (Leevers

and Radon, 1982; Smith et al., 2001)). Once the loading conditions and the struc-

tural properties (i.e., the geometry and the material) are given, the θ -value which

maximizes the denominator at the right-hand side of Eq. (7) represents the critical

kinking angle θc. The corresponding value provides the critical mode I SIF KI f .

Results are presented in Figs. 2 and 3 as concerns the critical kinking angle and

the fracture loci, respectively. As it is expected, negative T -values decrease the

circumferential stress σθθ : both the failure load and the negative kinking angle

increase. An opposite trend is recovered for positive T -stresses. Observe that for

sufficiently high T > 0, the crack ceases to propagate collinearly under mode I

loading conditions (ψ = 0◦) and the corresponding critical mode I SIF deviates

from the fracture toughness KIc. This point will be discussed in details in Section

3.

Similar curves to those depicted in Fig. 2 and 3 were obtained by implement-

ing different fracture criteria, from the point stress model (Smith et al., 2001),

which in this case provides identical predictions to those by the present average

approach, to FFM (Cornetti et al., 2014), where a different definition of τ was

7



adopted.

2.2. Curved crack propagation

Let us now suppose that fracture propagates (at least at the first step) by a

curved crack advance described by the function y1 = ax
3
2
1 (Fig. 1), a being a

curvature parameter. The crack path can be described in parametric form as Γ(t)=

(t,at
3
2 ), and the average stress criterion (6) can be recast as:

1
∆

∫
Γ

σθθ ds =
1
∆

∫ t1

0
σθθ (r(t),θ(t))

√
1+

9
4

a2tdt = σu (8)

with

t1 =
4

9a2

[(
27
8

a2∆+1
) 2

3

−1

]
(9)

Upon substitution of Eqs. (4) and (5) into the stress field (2), and of the corre-

sponding expression into Eq. (8) it is possible to get a solution for the problem

under investigation. The procedure consists in looking for the couple of critical

parameters (ac,γc) which minimizes the fracture load (i.e., KI f ). Equation (8)

together with (9) were solved numerically and results were then interpolated by

means of spline functions.

From Fig.3 it can be seen that if T is different from zero, the curved crack

always corresponds to a lower failure load with respect to the straight case. The

difference is more appreciable for higher |τ|. As concerns the curvature parameter

a, it is a monotonic function in |τ| and the dimensionless curves in Fig.4 show

that: i) for negative T -stress, a is always positive. As a function of ψ , it increases

from zero to a maximum (represented by circles in Fig.4), and then it decreases

smoothly; ii) a is always negative for positive T -values. It attains a minimum in

the neighborhood of mode I (ψ ≤ 10◦) and then it increases monotonically. As
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mode II loading conditions are approached (ψ → 90◦), the difference between

τ-curves decreases. Thus, positive T -stresses influence more the curvature under

prevailing mode I conditions (0◦ ≤ ψ ≤ 45◦), whereas it can be generally said that

negative T affect more the curvature under prevailing mode II loading conditions

(45◦ ≤ ψ ≤ 90◦).

Finally, the critical kinking angle for various ψ and τ is represented in Fig. 5.

The difference observed for both positive and negative T -values is not so signif-

icant when compared to the null T -stress. Indeed, the following explanation can

be provided: the angle is governed by the parent mode mixity, as the T stress is

negligible in comparison with singular stresses of the parent crack. On the other

hand, as commented above, the kink curvature is strongly controlled by T stress

which has influence on the kink-part more distant from the parent crack tip. Note

also that the crack advance tends to curve (but not to kink, γc = 0◦) for sufficiently

high τ even under mode I loading conditions (ψ = 0◦).

In Table 1 the dimensionless d/lch distance between the end points of the crack

advance related to straight and curved trajectories is reported for different τ and

ψ . The values of d keep always lower than the length of the crack advance ∆

(Eq.(1)), the condition d/∆ < 0.25 being always satisfied except for high positive

τ . Note also that when passing from τ = 0.3 to τ = 0.4 for mode I loading condi-

tions (ψ = 0◦), d diminishes due to the fact that for τ = 0.3 the extension tends to

curve (Fig. 4) but not to kink (according to both straight and curved extensions),

whereas for τ = 0.4 the straight extension assumption predicts θc ̸= 0◦ (Fig.2).
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3. Mode I loading conditions

Let us now focus our attention on pure mode I loading conditions (KII = 0).

For a kinked crack, if T is sufficiently large, T ≥ Tth > 0, the crack ceases to

propagate collinearly and the critical SIF deviates from the fracture toughness.

Predictions according to the average stress criterion are depicted in Figs. 6 and

7. The threshold τth was estimated to be equal to 0.375, coherently with what

found in Smith et al. (2001). The value differs from that obtained through FFM

τth = 0.420 (Cornetti et al., 2014) and that provided by Leguillon’s approach τth =

0.704 (Leguillon and Murer, 2008).

On the other hand, by assuming a curved crack, the critical SIF starts to de-

viate from the fracture toughness at a critical threshold τa
th = 0.229 < τth (Fig.6).

Thus, once again, the failure load related to a curved crack propagation reveals to

be lower (or equal) than that corresponding to a straight trajectory. The maximum

percent deviation can be quantified in nearly 6% over the whole range of analyzed

τ . Furthermore, the trajectory starts to curve (with a null kinking angle, Fig. 7)

for τ ≥ τa
th (Fig. 8). The curvature parameter can assume either positive or nega-

tive values, so that τa
th represents a bifurcation point. Note that a is a monotonic

increasing function in τ . Finally, the angle γc deviates from 0◦ at τγ
th = 0.485:

this threshold influences also the behavior of a (Fig. 8). Due to symmetry, both

positive or negative kinking angles are possible, corresponding to positive and

negative curvatures, respectively.

4. Conclusions and discussion of results

The influence of T -stress on predictions by the average circumferential stress

criterion was analyzed by considering a curved crack advance. It was shown that
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for T ̸= 0 a curved extension is always to be preferred than a straight one, since

it corresponds to a lower failure load. Positive T -stresses originate a negative

curvature parameter a, whereas negative T -stresses imply positive a. On the other

hand, the variation of the kinking angle for curved cracks is less significant than

for straight cracks: whereas (KI,KII) govern the singular stress field in front of

the notch tip and thus the kinking angle as a local parameter, the contribution of

T allows to describe the situation far from the notch root, outlining the effect on

the curvature behavior. Besides τ , the curvature is also a function of the mode

mixity and of the material. For mode I loading conditions and sufficiently high

T (τ ≥ τa
th = 0.229), the critical SIF deviates from the fracture toughness and the

trajectory starts to curve, but not to kink yet. Only for higher τ (τ ≥ τγ
th=0.485),

the critical kinking angle assumes values different from 0◦. These results differ

from those related to a straight extension, which provides a higher failure load

(the mean percent deviation being around 4−5%) and a unique bifurcation point

(τth = 0.375).

In order to corroborate the present results, a comparison with experimental re-

sults would be suitable. Indeed, the task is not trivial due to many reasons. First of

all, our analysis was limited to the propagation at the first step (the crack advance)

and it did not cover a complete crack path. Secondly, most of the experimental

works presented in the Literature considered the fracture load and the kinking an-

gle, not measuring (although observed) the curvature. As a matter of fact, the

distinction between the kinking angle and the curvature may be not a trivial task

in the close vicinity of the crack tip. Eventually, the specific function chosen to

model the present crack extension can be a limiting assumption.

Despite this, some general observations can be made. The function y = axb
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represents the typical shape of mode II cracks under compression (KI = 0), as

described by Isaksson and Ståhle (2002). The investigation carried out in (Isaks-

son and Ståhle, 2002) on different tests on brittle rock-like materials (Shen et al.,

1995; Bobet and Einstein, 1998) revealed an exponent b belonging to the range

(1.43-1.58), and a curvature parameter comprised between 0.052 and 0.147. Since

τ is negative, this is in fair agreement with what depicted in Fig. 4. Indeed, a com-

plete analysis would require the inclusion of two components of T -stress (parallel

and perpendicular to the crack plane, respectively), the interaction between the

crack faces in contact and friction (see (Li et al., 2009; Tang, 2015)). In Smith

et al. (2006) specific tests under mode II loading conditions were performed to

investigate T -stress effects: PMMA specimens were broken under a positive T

corresponding to τc ≈ 0.26 and negative T related to τc ≈−0.4. The former spec-

imens presented a slightly curved fracture, whereas in the second samples, the

curvature was noteworthy. This is again described qualitatively by Fig. 4.

As concerns mode I loading conditions, Radon et al. (1977) preformed ex-

periments on biaxially stressed PMMA sheets, observing that the curvature is an

increasing function of τ , whereas the crack angle deviates from zero only above a

threshold. Both positive or negative curvatures were measured, in correspondence

to positive and negative kinking angles, respectively. These results agree with

the present analysis (Section 3). Moreover, studies carried out in Selvarathinam

and Goree (1998) and Chao et al. (2001) on PMMA specimens, showed very low

thresholds for τth (τth ≈ 0.07 in Chao et al. (2001) assuming σu = 70Mpa, which

differs significantly from that by the present criterion, and even more from those

by the coupled criteria cited in Section 3). The curvature was not measured, but

the observed initiation angles did not exceed the value of 30◦. More recently, Ay-
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atollahi et al. (2016) investigated the fracture trajectory of PMMA samples under

pure mode I loading conditions. Five PMMA specimens of different shapes were

tested, corresponding to τ=0.06, 0.1, 0.22, 0.24, and 0.25. The experimental crit-

ical kinking angle was zero for the former two geometries, and then it started to

decrease. Note that τ=0.22 nearly coincides with the threshold τa
th computed in

Section 3. Indeed, the curvature of the crack advance was not analyzed, but that

related to the whole crack path was found to increase starting again from τ = 0.22.

Finally, note that the present methodology can also be applied to predict onset

of small curved cracks at singular points like single material and multi-material

corners, an example being such cracks observed in experiments with bimaterial

Brazilian disk specimens by Vicentini et al. (2012).
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Figure 1: Cracked element with a kinked curvilinear crack of length ∆.
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Figure 2: Straight crack propagation: effects of the dimensionless T -stress, ranging from -0.4 to
0.4 with a step equal to 0.1, on the critical kinking angle θc (deg). The dashed line refers to the
case τ = 0.
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Figure 3: Effects of the dimensionless T -stress, ranging from -0.4 to 0.4 with a step equal to 0.1,
on the fracture loci: straight crack propagation (continuous lines) and curved crack propagation
(dashed lines). The thick dashed line refers to the case τ = 0.
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Figure 4: Effects of the dimensionless T -stress, ranging from -0.4 to 0.4 with a step equal to 0.1, on
the dimensionless critical curvature parameter. The dashed line refers to the case τ = 0, whereas
the circles represent the stationary points.
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Figure 5: Effects of the dimensionless T -stress on the critical kinking angle γc (deg). The dashed
line refers to the case τ = 0.
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Figure 6: Average stress predictions for mode I loading conditions : T -stress effects on the critical
the failure load according to a straight crack advance (continuous line) and a curved crack advance
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Figure 7: Average stress predictions for mode I loading conditions : T -stress effects on the critical
kinking angle (deg) according to a straight crack advance (continuous line) and a curved crack
advance (thick continuous line).
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Figure 8: Average stress predictions for mode I loading conditions : T -stress effects on the dimen-
sionless critical curvature parameter.
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ψ \ τ −0.4 −0.3 −0.2 −0.1 0.1 0.2 0.3 0.4
0◦ 0.000 0.000 0.000 0.000 0.000 0.000 0.419 0.337

30◦ 0.128 0.121 0.101 0.063 0.069 0.112 0.133 0.140
60◦ 0.152 0.129 0.092 0.048 0.035 0.059 0.075 0.081
90◦ 0.159 0.122 0.078 0.035 0.021 0.035 0.044 0.049

Table 1: Dimensionless distance d/lch between the end points of curved and straight crack ad-
vances.
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