2

& POL/
S
~ H{%

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Analysis and optimization of synchronization algorithms for multicore architectures

Original

Analysis and optimization of synchronization algorithms for multicore architectures / Hemmatpour, Masoud; Ferrero,
Renato; Montrucchio, Bartolomeo; Rebaudengo, Maurizio. - ELETTRONICO. - (2016). ((Intervento presentato al
convegno 1st International Workshop on Resilience in Nanoelectronics Systems (RENS'16) tenutosi a Tallin, Estonia nel
28-29 September 2016.

Availability:
This version is available at: 11583/2651544 since: 2020-06-26T16:40:09Z

Publisher:
IFIP/IEEE

Published
DOI:

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
ieee

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

04 August 2020



Analysis and optimization of Synchronization Algorithms for Multicore Architectures
Masoud Hemmatpour, Renato Ferrero, Bartolomeo Montrucchio, Maurizio Rebaudengo
Dipartimento di Automatica e Informatica, Politecnico di Torino
{masoud.hemmatpour, renato.ferrero, bartolomeo.montrucchio,
maurizio.rebaudengo} @polito.it

Multicore design is a major issue in modern computer architectures. Programmers are urged to design
innovative algorithms by exploiting multicore facilities. Since synchronization affects the performance of
multithread algorithms, the selection of an effective synchronization mechanism is critical for multicore
environments. Modern computers provide special hardware instructions that allow to atomically read and
modify the content of a word (e.g., the empzchg instruction in Intel x86 CPUs), so they can be used for
synchronization of threads. Moreover, software techniques can synchronize threads without any dependency
on hardware instructions [1]. This study considers the main synchronization techniques [1, 2], such as Ticket
lock, which guarantees fairness execution to all threads, Filter lock, which is intended for multiple threads,
Readers-writer lock, which aims to solve the readers-writers problem and Read-Copy Update (RCU), which
reduces the overhead in readers-writer lock. The first contribution of this study is to evaluate the costs of
the mentioned synchronization techniques, due for example to memory access, system call, and spinning,
i.e., the act of querying (or in some cases modifying) an object in memory and waiting for its content. In
order to reduce the costs of the mentioned synchronization mechanisms, state-of-the-art approaches exploit
hardware or software techniques. The second contribution of this study is the analysis of both hardware and
software solutions to reduce the synchronization costs. Moreover, a comparative study to highlight benefits
and drawbacks of the different synchronization mechanisms has been performed.

Different software solutions such as backoff, a waiting time to reduce the bus traffic, non blocking algorithm,
a synchronization mechanism without blocking primitives, and compiler barrier, a compiler directive to avoid
reordering of the instructions, are well-known techniques which are investigated in this study.

Beside software solutions, hardware manufacturers introduce various facilities in shared memory or dis-
tributed environment to enhance the performance of synchronization mechanisms. Examples of hardware
solutions are hardware message passing and different layer of caches in the shared memory environment,
and Remote Direct Memory Access (RDMA) in distributed environment.

Experimental benchmarks have been executed on a node of cluster (Opteron 6276 2.3 GHz CPU with 16
cores and running CentOS 6.3 Operating System?2). The experiments, which are intended to represent a
useful aid for researchers and practitioners interested in optimization of parallel algorithms, show that:

The update rate directly impacts on performance, even if a non blocking algorithm is exploited.
The cost of keeping data locality should not exceed the cost of cache misses.

Exploiting a non blocking synchronization algorithm (i.e., RCU) leads to a better performance.
Critical section length should be reduced as much as possible in order to increase the performance.
In order to reduce the bus traffic, it is better to avoid spinning.

Hardware message passing can increase the performance of shared memory synchronization model.

NS e WD =

Synchronization methods with heavy instructions should be avoided.

References

[1] Herlihy and Shavit. " The art of multiprocessor programming.” Elsevier, 2008.

[2] Is Parallel Programming Hard, And, If So, What Can You Do About It? https://www.kernel.org
/pub/linux/kernel/people/paulmck/pertbook/perfbook-el.pdf: Accessed: 2016-07-25.



