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Constant SNR, Rate Control, and Entropy Coding for
Predictive Lossy Hyperspectral Image Compression

Marco Conoscenti, Riccardo Coppola, and Enrico Magli, Senior Member, IEEE

Abstract—Predictive lossy compression has been shown to rep-
resent a very flexible framework for lossless and lossy onboard
compression of multispectral and hyperspectral images with qual-
ity and rate control. In this paper, we improve predictive lossy
compression in several ways, using a standard issued by the Con-
sultative Committee on Space Data Systems, namely CCSDS-123,
as an example of application. First, exploiting the flexibility in the
error control process, we propose a constant-signal-to-noise-ratio
algorithm that bounds the maximum relative error between each
pixel of the reconstructed image and the corresponding pixel of
the original image. This is very useful to avoid low-energy areas
of the image being affected by large errors. Second, we propose
a new rate control algorithm that has very low complexity and
provides performance equal to or better than existing work. Third,
we investigate several entropy coding schemes that can speed up
the hardware implementation of the algorithm and, at the same
time, improve coding efficiency. These advances make predictive
lossy compression an extremely appealing framework for onboard
systems due to its simplicity, flexibility, and coding efficiency.

Index Terms—Hyperspectral image coding, lossy compression
predictive coding, multispectral image compression, rate control.

I. INTRODUCTION

COMPRESSION of multispectral and hyperspectral im-
ages has gained increasing interest as new sensors are

acquiring large amounts of spatial and spectral information.
Since the communication capacity of downlink channels be-
tween remote platforms and ground stations is not increasing
accordingly, compression plays a crucial role in reducing the
amount of data to be transmitted and maximizing the scientific
return of a given remote sensing mission.

Compression can be of different types, namely lossless and
lossy. Lossless compression is often based on a mathematical
model to predict pixel values and encode only their prediction
residuals. Adaptive linear prediction is often used [2]–[9]. An
effective technique relies on the least mean squares filter [10]
with the sign algorithm [11] for weight update; this has been
employed in [12] for hyperspectral image compression, as well
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as in the recent standard issued by the Consultative Committee
on Space Data Systems (CCSCS), namely CCSDS-123 [13].
Other methods have also been devised, based on edge detection
[14], clustering [15], [16], or vector quantization [17]. Recently,
the distributed source coding paradigm has also been used to
achieve low-complexity lossless and near-lossless compression
[18], [19].

Lossy compression has traditionally been performed follow-
ing the transform coding paradigm, whereby a linear trans-
form of the data is used to achieve energy compaction and
hence transmit few carefully chosen transform coefficients, see,
e.g., [20]–[29]. Predictive compression also lends itself well
to lossy compression, where the prediction residuals are fed
into a quantization feedback loop before entropy coding. The
quantization step size determines the amount of information
losses with respect to the original image. Choosing a different
quantization step size for each pixel enables more general and
flexible quality policies that may suit specific mission require-
ments, whereas transform coding typically controls only the
average error over the whole image. Near-lossless compression
can also be obtained using transform coding, although this
requires onboard decoding [30], [31]. Transform coding allows
to accurately control the rate in a simple manner due to the sim-
ple relation between rate and quantized transform coefficients
[20], [32]. Rate control is harder to achieve using predictive
compression because of the intricate mathematical relations
between the rate and the quantized prediction residuals.

In [1], it is shown that predictive compression enables both
rate and quality control in an efficient way. In [1] and [33],
this paradigm has been applied to the CCSDS-123 recommen-
dation, taking a first step toward a very flexible compression
algorithm that can accommodate a wide range of requirements,
from lossless up to several different modes of lossy com-
pression. However, the framework in [1] still has a few open
problems. This paper advances the state of the art by providing
innovative quality control, rate control, and entropy coding
techniques that significantly upgrade [1], yielding a simple and
fully fledged solution for onboard compression of multispectral
and hyperspectral images. It is worth noting that, while these
concepts are applied to the CCSDS-123 framework, the basic
ideas are very general and can be applied to any predictive
scheme with little or no modifications.

Quality control: While near-lossless compression bounds the
maximum absolute reconstruction error on any pixel of the
image, in many cases, a much sought after feature is the ability
of bounding the relative error. This is because a fixed max-
imum absolute error will yield a signal-to-noise ratio (SNR)
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that varies over the image and is small in low-energy areas.
Conversely, bounding the relative error leads to a constant-
SNR approach, which is more desirable in many applications,
see, e.g., [34]. However, bounding the relative error is more
difficult because the relative error depends on the value of
the original pixel, which is not known at the decoder in case
of lossy compression. In this paper, we introduce an algo-
rithm for choosing quantization step sizes in a predictive lossy
compression scheme, which can achieve approximate or exact
bounding of the relative error, leading to effective constant-
SNR compression.

Rate control: The rate control algorithm in [1] solves a mul-
tivariate optimization problem to find the optimal quantization
step sizes for a set of spatial/spectral image blocks minimizing
reconstruction distortion for a given target rate. While the
number of operations needed by the algorithm is not very
large, the iterative nature of the optimization process makes it
difficult to implement in hardware. In this paper, we propose
a new simplified rate control algorithm that employs univariate
optimization. The resulting algorithm does not require iterative
optimization, thereby providing lower complexity and also
improved coding efficiency with respect to [1].

Entropy coding: Range encoding [35] has been shown in
[1] to provide improved performance with respect to Golomb
coding, even when splitting the prediction residuals into sub-
alphabets as in [36]. Moreover, in [37], a field-programmable
gate array implementation of a range encoder on space-qualified
hardware has been reported, whose throughput exceeds 40 MB/s
and is hence to be considered suitable for onboard compression.
In this paper, we investigate different setups for the entropy
coding stage. First, we consider a range encoder that is applied
to bit planes of the prediction residuals; a bit-plane encoder
neglects correlation between adjacent bit planes but is fast at
learning the probability model for each bit plane. We show that
the resulting encoder is simpler than and outperforms the range
encoder in [1]. Second, we investigate a simple scheme where a
Golomb code is initially used, and a single binary range encoder
is employed to further compress the concatenated Golomb
codewords. The motivation of this scheme is as follows. As is
known, the Golomb code does not work well at bit rates below
2 bits per pixel per band (bpppb) since its minimum codeword
length is 1 bit. At those bit rates, therefore, the distribution
of 0’s and 1’s in the output stream is expected to be different
from 0.5; therefore, a binary range encoder can take advantage
of this and partially compensate for the suboptimality of the
first encoder. This is not the only possible solution as a more
conventional approach employs a run-length mode to achieve
the lower bit rates, e.g., in [38]. However, a run-length mode
is undesirable in hardware as it requires stopping the Golomb
encoder and entering/exiting a specific run mode. On the other
hand, in a hardware implementation, a Golomb and range
encoder can be effectively pipelined, thereby streamlining the
algorithm operation flow and achieving a higher throughput
than a fully sequential solution.

This paper is organized as follows. In Section II, we review
some background material, particularly the CCSDS-123 stan-
dard and its extension to lossy compression with rate control.
In Section III, we describe the proposed constant-SNR com-

pression scheme. In Section IV, we propose the new simplified
rate control algorithm. In Section V, we discuss the entropy
coding approaches based on bit-plane range encoder and cas-
caded Golomb–range encoder. Finally, in Section VI, we draw
some conclusions.

II. REVIEW

In the following, we briefly review the CCSDS-123 lossless
compression recommendation, its extension to lossy compres-
sion, and the rate control algorithm proposed in [1]. More
details can be found in the tutorial paper [39] as well as in [13].

A. CCSDS-123 Standard

As is the case of many lossless compression schemes,
CCSDS-123 is based on a predictor followed by an encoder of
the prediction residuals. Given the original pixel xi,j,k (row i ∈
[1, Nrows], column j ∈ [1, Ncolumns], band k ∈ [1, Nbands]), a
predicted pixel value x̃i,j,k is first computed as a function of
neighboring pixel values. In the following, we will also use the
notation l = (i, j, k) and denote a pixel value as xl to simplify
the notation when appropriate.

The predicted pixel x̃i,j,k is computed based on neighboring
pixels, both in a spatial or in a spectral sense. These neighboring
pixels are combined to produce a local sum σi,j,k. Normally,
four spatial neighbors are used to compute the local sum, i.e.,
σi,j,k = xi−1,j−1,k + xi−1,j,k + xi−1,j+1,k + xi,j−1,k . This lo-
cal sum is then scaled and used to predict xi,j,k. In particular,
the difference between the local sum and the corresponding
scaled original pixels is tracked and stored in a local difference
vector Ui,j,k for some samples. In the full prediction mode
Ui,j,k is expressed as

Ui,j,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 · xi−1,j,k − σi,j,k

4 · xi,j−1,k − σi,j,k

4 · xi−1,j−1,k − σi,j,k

4 · xi,j,k−1 − σi,j,k−1

4 · xi,j,k−2 − σi,j,k−2

...
4 · xi,j,k−P − σi,j,k−P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the first three components represent spatial directional
local differences, and the other components represent spectral
local differences. An inner product is then taken between
the local difference vector Ui,j,k and a weight vector Wi,j,k,
yielding an estimation of the local differences Ŝi,j,k =
WT

i,j,kUi,j,k . This estimation is used to generate the predicted
value and hence the prediction residual. The sign algorithm up-
dates the weight vector to be used for the next pixel, attempting
to adaptively learn the image statistics to minimize the energy
of the prediction residual. Other prediction modes are also
available (see [13]). A prediction residual is computed and then
mapped to a nonnegative integer that is passed on to the entropy
coding stage. This stage can be carried out on a sample-adaptive
or block-adaptive basis. The sample-adaptive Golomb coding
stage employs a Golomb code, whose parameter is computed
adaptively; this typically provides better coding efficiency than
the legacy block-adaptive stage.
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B. Extension to Lossy Compression and Rate Control

Extending the algorithm above to near-lossless compression
is very simple as the addition of a quantization feedback loop
allows obtaining an algorithm that is able to provide bounded
absolute maximum error between any original pixel and the
reconstructed one. In particular, we use the following notation:
x̃l is the predicted pixel value; el = xl − x̃l is the prediction
residual; ql is the quantization step size applied to that residual;
ml is the mapped quantized prediction residual; and xR

l is
the reconstructed pixel. When it is appropriate and it does
not cause confusion, we also use the notation qi to denote a
quantization step size to be employed to all pixels of data unit i,
which can be a block (as is the case later in this section) or a
slice (see Section IV).

Near-lossless compression, however, is unable to provide
rate control. In [1], a solution to this problem has been
proposed, which performs greedy allocation of quantizers to
achieve the desired target rate RT . Rate control works on a
slice-by-slice basis, where a “slice” is defined as a predefined
number of lines (e.g., 16) with all their spectral channels.
Each slice is divided into nonoverlapping 16 × 16 blocks
(except for blocks at image boundaries, which are allowed to
be smaller). An individual quantization step size is computed
for each block in each spectral channel, to achieve a rate as
close as possible to RT . The rate control algorithm performs
the following steps.

1) Training stage: a rate–distortion model is computed for
each block i in each spectral channel of the slice as a
function of the quantization step size qi to be used for the
block and of parameter Λi =

√
2/σ2

i depending on the
variance σ2

i of the unquantized prediction residuals of
the block. The latter is estimated by running the lossless
predictor on a small number of lines in the slice. This
process defines rate–distortion functions R(qi,Λi) and
D(qi,Λi) which, given a quantization step size qi chosen
for block i and the variance σ2

i , provide an estimate of
the rate needed to code the block and the incurred distor-
tion. The rate–distortion function of a Laplacian source
is employed since the Laplacian distribution is a good
model for prediction residuals, and the corresponding
rate–distortion function is known in closed form. Then,
the final quantization step sizes qi are obtained as follows.

2) Optimization stage—step 1: An initial set of quantization
step sizes qi are calculated, which achieve the target
rate but are suboptimal in terms of distortion. This can
be done considering first the lossless compression case,
i.e., qi = 1 for i = 1, . . . , N , being N the number of
blocks belonging to a slice and the corresponding rates
R(1,Λi) for each block. This rate–distortion point is then
“projected” onto the set of points that achieve the desired
target rate, namely

∑N
i=1 R(qi,Λi) = RT . The unknown

terms qi can be calculated using standard optimization
techniques. The obtained qi’s achieve the target rate but
are not necessarily very good in terms of minimizing
distortion.

3) Optimization stage—step 2: When the target rate has been
achieved, the algorithm makes changes to the qi’s to solve

TABLE I
TEST IMAGES

the constrained problem, i.e.,

min

N∑
i=1

D(qi,Λi) subject to
N∑
i=1

R(qi,Λi) ≤ RT .

In particular, a greedy algorithm makes local adjustments
to qi’s aimed at promoting low-distortion allocations of
the quantization step sizes, employing the rate–distortion
models of all blocks in the slice. This procedure employs
an iterative perturbation of quantization step sizes, which
is terminated when no further improvement is achieved.
More details can be found in [1].

Finally, the algorithm employs feedback from one slice to the
next, using information on the actual rate produced encoding
a slice to update the target rate for future slices, thereby
compensating for inaccuracies of the rate control process.

C. Test Images

The test images used in this paper are a subset of the data
employed by CCSDS for the performance assessment of lossy
compression algorithms. They encompass multispectral, hyper-
spectral, and ultraspectral images, showing that the proposed
techniques are able to operate in a variety of different condi-
tions. In particular, we consider ultraspectral images captured
by Infrared Atmospheric Sounding Interferometer and AIRS
sensors, hyperspectral images captured by Compact Airborne
Spectrographic Imager, AVIRIS and Hyperion sensors, and
multispectral images captured by MODIS, Landsat, Meteosat
Second Generation, and Pleiades sensors. The images and their
sizes are listed in Table I.

III. QUALITY CONTROL

This section describes the proposed constant-SNR coding
scheme and shows the advantages of such a technique.

Examining the behavior of a near-lossless encoder, it can be
seen that, in the case of small sample values, a simple upper
bound to the absolute reconstruction error may be unsatisfac-
tory as it may result in the reconstruction error being very large
with respect to the sample itself, or even bigger.

The new approach proposed in the following computes an
adaptive quantization step size that depends on the value of
each sample, in order to upper-bound the reconstruction error to
a user-defined maximum percentage of the sample value itself.
Since the original sample is not available at the decoder side, the
predicted value is utilized for the computations. A parameter
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W ≥ 0 is passed as user input to the algorithm, representing the
maximum relative reconstruction error accepted. The quantiza-
tion step size for pixel l with coordinates i, j, k is thus obtained
using the following:

ql = 2 ∗ �W ∗ |x̃l|�+ 1.

A. Enhancements to the Basic Algorithm

The simple aforementioned operations are not sufficient to
guarantee a bounded relative reconstruction error for any pixel l,
defined as El = |xR

l − xl|/|xl|, since the use of the predictions
introduces some suboptimalities. Essentially, because the pre-
dicted value is close but not generally identical to the original
sample value, a certain number of samples will be affected
by a relative reconstruction error bigger than the acceptable
threshold. To address this problem, some improvements have
been added to the basic approach.

• We take some “safety margin,” i.e., we set the algorithm to
provide a smaller relative error than is actually requested
by the user. In practice, this is obtained by multiplying
W by another constant, 0 ≤ P ≤ 1. This has the effect
of shrinking the quantization step size for all the pixels,
reducing significantly the amount of samples exceeding
the reconstruction error threshold. Since taking a safety
margin indeed increases the bit rate, one has to be careful
to not overdo it; in practice, P = 0.9 has been found to be
a good compromise.

• Lossless coding of the first row of each band of the image
has proved to be a good way to reduce considerably the
number of outliers, at the price of an acceptable increase
in the size of the compressed image. This is because, on
the first row, the predictor is less precise due to the lack
of samples on the row above, leading to larger prediction
errors. Performing lossless compression of these samples
nullifies this effect.

• Finally, we have found that a high increase in the recon-
struction error occurs when the predictor is significantly
bigger than the corresponding original sample. To reduce
the effect of erroneous estimates, it is worth using a loss-
less coding for those samples whose current predictor is
bigger than twice the value of the previous reconstructed
sample. Note that, since the value of the reconstructed
sample depends on this condition, the condition is eval-
uated using the previous reconstructed sample, so that the
decoder can perform the same calculations.

Note that all these modifications to the algorithm do not require
any signaling since the decoder can apply the same algorithm
to calculate the correct quantization step used at the encoder.

B. Reconstruction Error Compensation

To cope with the unavoidable presence of reconstruction
errors bigger than the imposed threshold, an explicit correction
step can be inserted in the algorithm in case the user wants
to enforce a strict constraint that no sample at all must have
a relative error above the threshold. To this end, for each
pixel whose reconstruction error still exceeds the threshold, the

encoder can calculate the smallest offset that has to be added to
the reconstructed sample to bring the reconstruction error below
the threshold.

For each sample to be adjusted, two values have to be
communicated to the decoder: its position inside the image in
the form of an unsigned integer, and the correction offset in the
form of a short integer. These six-byte data records are stored
by the encoder in an auxiliary repair file, which is then read by
the decoder at the end of its operations, and used to adjust the
reconstructed samples.

The repair file itself can be subject to lossless compression as
it indeed shows some redundancy. In particular, it can be seen
that the offsets follow a Laplacian distribution, deprived of the
zero value: a binary bit-plane coder can therefore be applied to
the offset values after subtracting one from the positive values.
To encode the indexes, we apply a binary range coder to the
difference between the current index and the previous one.

With a coefficient P = 0.9 and a reasonable reconstruction
error threshold (above 1%), we have found that the number of
samples exceeding the threshold is relatively small, so that the
repair file has a small incidence on the overall bit rate generated
by the encoder.

The full set of operations done at encoder side is shown in
Algorithm 1.

Algorithm 1 Quality control algorithm for sample l (coordi-
nates i, j, k)

1: if i = 1 or x̃l ≥ 2|xR
l−1| then

2: Set ql = 1
3: else
4: Set ql = 2 ∗ �W ∗ |x̃l|�+ 1
5: end if
6: Compute mapped quantized residual ml using ql
7: Encode ml

8: Set El = |xR
l − xl|/|xl|

9: if El > W then
10: if xR

l > xl then
11: Set Ol = �xl ∗ (1 +W )� − xR

l

12: else
13: Set Ol = �xl ∗ (1−W )	 − xR

l

14: end if
15: Append l and Ol to repair file
16: end if

C. Error Analysis

In the following, we show that the proposed algorithm can
indeed bound the relative error between original and recon-
structed pixels, i.e., El ≤ W ; for this analysis, we set P = 1,
i.e., we do not employ any safety margin. This is equivalent to
verifying that |xR

l − xl| ≤ W |xl|. We note that, in a differential
pulse-code modulation scheme, the reconstruction error on xl is
exactly the same as the reconstruction error on the prediction
residual, which is quantized with step size ql, and that if ql
is an odd number, then ql = 2MADl + 1, where MADl is the
maximum absolute difference (MAD) between the original
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TABLE II
QUALITY CONTROL ALGORITHM—RESULTS

and reconstructed pixel l. Then, one can easily show that
|xR

l − xl| ≤ (ql − 1)/2 = �W ∗ |x̃l|� ≤ W |x̃l|. If |x̃l| ≤ |xl|,
then |xR

l − xl| ≤ W |xl| and the error satisfies the bound. If this
does not happen, the reconstruction error compensation stage
kicks in. For example, if El > W and xR

l > xl, then the recon-
structed value after compensation is x′Rl = xR

l +Ol = xR
l +

�xl ∗ (1 +W )� − xR
l = �xl ∗ (1 +W )�. Hence, |x′Rl − xl| =

|�xl ∗ (1 +W )� − xl| ≤ |xl ∗ (1 +W )− xl| = W |xl|, which
proves the bound on the relative error. An analogous calculation
can be made if El > W and xR

l < xl.

D. Results

The results collected over the CCSDS image test set1 show
that the constant-SNR approach satisfies the needs highlighted
in the introduction and provides very good performance. The
number of samples whose error is above the threshold is rather
small for the majority of the images of the set, even without the
repair file. It has been found that a significant reduction of the
size of the repair file can be obtained after the application of a
compression step, which makes the size essentially negligible.
In Table II, the results are shown for a few images of the test set.
Different values of the threshold have been used, ranging from
W = 0.005 to W = 0.5. The table also shows the percentage
of samples above the error threshold and the average relative
error, before the application of the repair file.

1The test set can be found at http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-
Info/TestData.

Fig. 1. Maximum relative error with respect to bit rate for MONTPELLIER.

A natural term of comparison for the results of the developed
algorithm is a simple near-lossless extension of the CCSDS-123
encoder, obtained by using the same quantization step size for
all pixels of the image in the feedback loop, which bounds the
absolute instead of the relative error. The graph in Fig. 1, ob-
tained by applying the two algorithms to the MONTPELLIER
image, shows that, for the same bit rate, the maximum relative
error is significantly smaller if the constant-SNR algorithm is
used. Note that, throughout this paper, the SNR is defined as
10 log10(

∑
i,j,k x

2
i,j,k/

∑
i,j,k (xi,j,k − xR

i,j,k)
2
).

http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData
http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData
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Fig. 2. Rate–distortion curves comparison for AIRS-GRAN9.

While imposing the new constraint of a limited relative
reconstruction error, the constant-SNR algorithm shows a com-
petitive rate–distortion curve. For some images of the test set
and for certain bit rates, the new algorithm outperforms the
near-lossless one; this is remarkable as near-lossless compres-
sion typically obtains very high SNR since SNR is based
on the mean square error, which directly depends on the ab-
solute and not the relative error. The comparison between the
rate–distortion curve for near-lossless and quality control coder
is shown in Fig. 2, relatively to AIRS-GRAN9 (including the bit
rate of the repair file). As shown, the constant-SNR algorithm,
even if it does not aim at maximizing the SNR for a given
bit rate, achieves rate–distortion performance very close and
occasionally better than that of the near-lossless algorithm.

IV. RATE CONTROL

Here, we propose a new rate control algorithm that aims
to simplify the algorithm in [1] in terms of computational
complexity and memory usage.

A. Proposed Rate Control Algorithm

In the rate control algorithm described in [1], the image
is subdivided into blocks, and a rate–distortion model is em-
ployed, described by functions R(qi,Λi) and D(qi,Λi) that
return the rate and the distortion of block i, respectively, for
a given value of the quantization step qi applied to all pixels of
the block and the parameterΛi depending on the variance of the
unquantized prediction residuals of the block. For each spectral
slice, the set of qi’s yielding the target rate RT with minimum
distortion are found as the solution to a multivariate optimiza-
tion problem using an iterative method. A feedback-based mode
adjusts the target rate for subsequent slices to compensate for
inaccuracies of the rate control procedure; we call rt[i] the ac-
tual target rate that the feedback-based mode targets for slice i.

Unlike [1], in the rate control algorithm proposed here, the
subdivision of the image into blocks has been removed, and the

variance of prediction residuals is computed for each spatial
line of the image in a given spectral band, using all the un-
quantized prediction residuals of the line. The key aspect of the
proposed algorithm is that the same quantization step is applied
to all the pixels of a spectral slice. The rationale of this design
choice is that this leads to a remarkably lower computational
cost than [1]. In fact, since the quantization steps are constant
along the spectral slices, finding the optimal step for each slice
does not require to solve a multivariate optimization problem
nor to run the subsequent greedy optimization. The proposed
algorithm simply inverts the rate–distortion function to find the
desired quantization step q to be used for all pixels and all bands
of the current spectral slice. For the same goal of reducing the
computational complexity, the feedback-based rate update algo-
rithm does not employ the mathematical model of [1] but sim-
ply tracks the number of bits used for the already coded slices.

The proposed rate control algorithm is detailed in
Algorithm 2. It is executed for each slice i ∈ [1, Nrows], and its
goal is to find the quantization step size qi, to be applied to all
pixels of slice i, which produces the rate nearest to the target for
that slice. As we process a given slice i, for each possible quan-
tization step q, we exploit the rate–distortion model R(q,Λi,z)
to compute the expected rate that would be obtained by apply-
ing q to all pixels of the spectral slice. In particular, Λi,z corre-
sponds to the variance of the unquantized residuals for all pixels
in band z belonging to row i. We start with q = 1 (lossless
coding) and check whether the corresponding rate r is lower
than the target rt[i]. If it is not, then we increase q until r <
rt[i], and we pick the value of q, yielding the rate nearest to rt[i]
(when this happens, Boolean variable found becomes TRUE).
This value, denoted qi, is used to quantize all samples in the
current spectral slice. The algorithm also employs variables
ri−1 and qi−1, which are, respectively, the rate used to encode
the previous slice and the corresponding quantization step size.

Algorithm 2 Proposed rate control algorithm for spectral slice
with row index i.

1: for q = 1 : Qmax do
2: r = 0; found = FALSE
3: for k = 1 : Nbands do
4: r = r +R(q,Λi,k)
5: end for
6: if r ≤ rt[i] AND found = FALSE then
7: if q = 1 then
8: Break for at line 1
9: else

10: found = TRUE
11: end if
12: end if
13: if found = TRUE then
14: if |r − rt[i]| > |ri−1 − rt[i]| then
15: q = qi−1

16: Break for at line 1
17: end if
18: end if
19: qi = q; ri = r
20: end for
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Fig. 3. Rate–distortion curves for AIRS-GRAN9 in mode B.

Now, we describe the feedback-based mode of the com-
pressor. The main idea behind this algorithm is to adapt the
target rate for the new slices according to the number of bits
actually used for coding the previous slices. In particular, as
shown in detail in Algorithm 3, ra (which is initialized to zero)
accumulates the differences between the original target rate RT ,
given as input to the compressor, and the actual rate ru of the
already coded slices; therefore, its value will be negative if
fewer bits than the target have been employed for the previous
slices, and positive otherwise. The new target rate rt to be used
for S following slices is computed as the original target rate
plus ra; thus, it will be higher than the original target if the
previous slices have been coded by fewer bits than the target,
and lower otherwise.

Algorithm 3 Feedback-based mode algorithm to compute rate
for slice i+ 1 after coding slice i.

1: update ru
2: ra = ra + (RT − ru)/S
3: rt[i+ 1] = RT + ra
4: if rt[i+ 1] < 0 then
5: rt[i+ 1] = RT

6: ra = 0
7: end if

B. Results

The results are reported in terms of SNR and MAD. The
algorithm is assessed in two operating modes: mode A does not
use rate feedback and is hence less accurate at achieving the
target bit rate, whereas mode B usually achieves better results
employing the feedback mode. Fig. 3 reports the rate–distortion
curves for the image AIRS-GRAN9 in mode B. It can be
noticed that, for this specific image, the algorithm provides
better rate–distortion performance than [1], although it is much
less computationally expensive. This aspect is more evident at
higher bit rates.

In Table III, the results of the proposed algorithm are com-
pared with [1] for some images of the test set. In mode A,
in almost all cases, the proposed algorithm produced bit rates
more similar to the target than [1]. For instance, this is very
obvious for AGRICULTURE at 1 bpppb target, when [1] yields
0.797 bpppb, and the proposed algorithm 1.016 bpppb. In
mode B, where the new feedback-based mode algorithm is
activated, the bit rate produced is as close to the target as [1]. In
terms of SNR, the proposed algorithm almost always reached
higher values than [1]. To see this, one can look at CRISM-
SC214-NUC at 4 bpppb target in mode A, where the proposed
algorithm produced 78.52 dB of SNR, against 68.68 dB [1],
where the improvement is also due to the ability to achieve a
rate closer to the target (4.03 versus 3.86 bpp).

We note that for some images of the set, in mode A, the
proposed algorithm has obtained bitrates below the target,
especially at high bitrates. This imprecision is then overcome
in mode B, when the feedback-based mode is activated and the
final rate is very close to the target.

Finally, we provide software timing results for the new rate
control algorithm in comparison with [1]. In particular, on an
Intel Core i5-3230M CPU at 2.60 GHz, the compression algo-
rithm in [1] with rate control in mode B takes 30.25 s to encode
the AVIRIS-SC0 image, whereas the new rate control algorithm
takes 28 s. Because of its much simpler structure, the new algo-
rithm is expected to be a lot faster in hardware implementation.

C. Variance Estimation

As mentioned in Section IV-A, the variance of the predic-
tion residuals for the pixels of a line is computed by using
all the pixels of the line. This is computationally expensive
since it requires double execution of the prediction part of the
compression algorithm; indeed, a first execution is necessary
to compute the unquantized prediction residuals employed for
variance computation.

To cope with this, we show that it is possible to estimate the
variance of a line by using only a fraction of pixels of the line.
To show this, we have reported some results in Table IV, where
Ne stands for the number of pixels used for variance estimation.
One may notice that, even if we use just half of the pixels to
estimate the variance—which in this case corresponds to every
other pixel of the line—we obtain almost the same performance
as in the case of using all the pixels.

V. ENTROPY CODING METHODS

For onboard implementation, entropy coding has proven to
be the most critical bottleneck in terms of achievable through-
put. In this section, we propose some alternatives to the range
coder used in [1], which provides very good compression
performance but has larger computational and memory require-
ments with respect to the Golomb coder used in [13]. Two
different techniques have been tried: The first one is a bit-plane
entropy coder, implemented with a binary range coder for each
of the bit planes composing the original set of mapped resid-
uals; the second one is a cascaded combination of a Golomb
coder (the same used in the original CCSDS-123 coder) and a
simple binary range coder.
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TABLE III
COMPARISONS BETWEEN PROPOSED ALGORITHM AND [1]

TABLE IV
RESULTS FOR SIMPLIFIED VARIANCE ESTIMATION.
LEFT: Ne = Ncolumns/2; RIGHT: Ne = Ncolumns

A. Bit-Plane Coding

A bit-plane coder subdivides its set of input samples in a num-
ber of binary sources, the so-called bit planes. Over a set of M
consecutive samples of the mapped prediction residuals, each
described with precision of D bits, a bit plane is the ordered
sequence of all the M bits with the same significance. In the
case of a hyperspectral image, the entropy coder will thus con-
sist of a number of binary range coders, each one dedicated to a
specific bit plane of the mapped prediction residuals [40], [41].

The implemented coder is based on a single binary range
coder that exploits a binary model for the most significant bit
plane (ms_bp) and two binary models for each of the other
bit planes, i.e., bp0[b] and bp1[b] for bit plane b. Each binary
model counts the occurrences of bits with value 0 and 1 in the

appropriate bit plane. In particular, for models bp0[b] and bp1[b]
the counts are conditioned to the value of the bit in the same
position in the previous bit plane b− 1, i.e., bp0[b] counts the
numbers of zeros and ones in bit plane b when the colocated bit
in bit plane b− 1 is equal to zero, and analogously for bp1[b].
This allows exploiting the correlation between adjacent bit
planes, which would otherwise be lost. The statistical models
are reset at the beginning of each new line of the image.
The operations performed by the encoder are summarized in
Algorithm 4. The bit-plane coding stage is fed with the value of
the mapped quantized prediction residual of the current sample
mi,j,k, from which the current bit to be encoded (current_bit)
is extracted for the bit plane b currently being processed.

Algorithm 4 Bit-Plane Coding

1: for k = 1 : Nbands do
2: Initialize binary models
3: for i = 1 : Ncolumns do

Compute mi,j,k

4: for b = 0 : D − 1 do
Set current_bit=mi,j,k�((D−b−1)) & 0 × 01)

5: if b == 0 then
Encode current_bit with ms_bp

6: else if mi,j,k � ((D − b)) & 0 × 01 then
Encode current_bit with bp1[b]

7: else
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TABLE V
COMPARISON OF ENTROPY CODERS IN MODE B

Encode current_bit with bp0[b]
8: end if
9: end for

10: end for
11: end for

B. Cascaded Golomb + Range Encoder

In an alternative approach, a cascaded combination of a
Golomb coder and a binary range coder is employed. The
encoding is first done with the sample-adaptive Golomb coder
used in the CCSDS-123 standard. The Golomb coder outputs

its codewords into a temporary array every time an output byte
is completed. The array is periodically checked for the presence
of a new byte: If so, the eight bits are taken as a serial input for
a binary adaptive range coder.

C. Results

Both the bit-plane range encoder and the cascaded Golomb/
range encoder have been tested over the whole set of test images.
The results provided by both algorithms in the rate control
mode B are shown in Table V, along with a comparison with
those obtained using the original encoder [1] in mode B.
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Fig. 4. Entropy Coders—Comparison for AVIRIS-SC0 Rate Control in Mode B.

For what concerns near-lossless coding, the bit-plane en-
coder has shown the best performance (i.e., a smaller bitrate
for the same quality) for a vast majority of the images of the
set. The use of binary sources makes the probability models
easy to train. With respect to the original range encoder, the bit-
plane-based one has a short adaptation time and almost always
works with up-to-date probabilities. In our tests, this effect
outweighed the loss of performance from neglecting bit-plane
correlations, making the bit-plane encoder the most effective
solution in terms of both performance and speed. The cascaded
Golomb/range coder has shown competitive performance for
some images of the set; it has however provided worse results in
some cases (e.g., on the image AIRS-GRAN9) with respect to
both the bit-plane coder and the original range coder, especially
when very small bit rates are requested.

With very few exceptions, the bit-plane coder has shown to
be preferable if rate control is desired: In Mode A, given a fixed
SNR, it provides a lower bit rate; in Mode B, it achieves a
smaller deviation from the desired target, still obtaining good
results in terms of distortion. The Golomb + Range combined
coder is not always preferrable to the other two ones if a rate
control is needed: its performance is poorer at low bit rates, and
it never outperforms the bit plane coder.

Fig. 4 shows a comparison between the rate–distortion curves
obtained by the three algorithms, when applied to the image
AVIRIS-SC0 in rate control Mode B.

VI. CONCLUSION

In this paper, we have presented several improvements over
basic predictive lossy compression schemes. First, we have pro-
posed an algorithm that allows performing lossy compression
with bounded relative error between any pixel of the original
and reconstructed images. The algorithm is very simple, and
it allows approximately or exactly enforcing the user-provided
bound on relative error. Second, we have proposed a simple and
effective rate control algorithm, which improves significantly
on the state of the art, by reducing the complexity and im-
proving the performance with respect to [1]. Third, we have in-
vestigated several solutions for entropy coding, demonstrating
the advantages of bit-plane-based entropy coding with respect
to other solutions. These improvements make predictive lossy
compression a very attractive solution for onboard compression
in terms of both complexity and performance.
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