
08 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Online and offline security policy assessment / Valenza, Fulvio; Vallini, Marco; Lioy, Antonio. - STAMPA. - (2016), pp.
101-104. ((Intervento presentato al convegno MIST’16: 8th ACM CCS international workshop on Managing Insider
Security Threats tenutosi a Vienna (Austria) nel October 28, 2016 [10.1145/2995959.2995970].

Original

Online and offline security policy assessment

Publisher:

Published
DOI:10.1145/2995959.2995970

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2650400 since: 2021-01-28T18:45:06Z

ACM

Online and offline security policy assessment

Fulvio Valenza
Politecnico di Torino

Dip. Automatica e Informatica
Torino, Italy

fulvio.valenza@polito.it

Marco Vallini
Politecnico di Torino

Dip. Automatica e Informatica
Torino, Italy

marco.vallini@polito.it

Antonio Lioy
Politecnico di Torino

Dip. Automatica e Informatica
Torino, Italy

antonio.lioy@polito.it

ABSTRACT
Network architectures and applications are becoming increasingly
complex. Several approaches to automatically enforce configura-
tions on devices, applications and services have been proposed,
such as Policy-Based Network Management (PBNM). However,
the management of enforced configurations in production environ-
ments (e.g. data center) is a crucial and complex task. For example,
updates on firewall configuration to change a set of rules. Although
this task is fundamental for complex systems, few effective solu-
tions have been proposed for monitoring and managing enforced
configurations. This work proposes a novel approach to monitor
and manage enforced configurations in production environments.
The main contributions of this paper are a formal model to identi-
fy/generate traffic flows and to verify the enforced configurations;
and a slim and transparent framework to perform the policy as-
sessment. We have implemented and validated our approach in a
virtual environment in order to evaluate different scenarios. The re-
sults demonstrate that the prototype is effective and has good per-
formance, therefore our model can be effectively used to analyse
several types of IT infrastructures. A further interesting result is
that our approach is complementary to PBNM.

Keywords
policy verification, policy assessment, configuration analysis

1. INTRODUCTION
In recent years network architectures and applications have be-

come increasingly complex. Virtualization and Network Function
Virtualization (NFV) techniques reduce hardware cost but increase
management complexity.

Several approaches to automatically configure devices, applica-
tion and services have been proposed in the field of Policy-Based
Network Management (PBNM). These typically perform automatic
configuration of devices and services from scratch, by defining
high-level policies and hiding refinement process details.

However, the management of enforced configurations in produc-
tion environments (e.g. data center) is a crucial and complex task.

ACM ISBN XXX.

DOI: XXX

Think, for example, of updates to a firewall configuration. In partic-
ular, the problem is twofold: it requires high accuracy (e.g. to iden-
tify and perform precise modification on configuration settings) and
it must limit service downtime. The management task also requires
high skills and is typically expensive. For these reasons this oper-
ation should be automated. Although this task is fundamental for
complex systems, few effective solutions have been proposed.

This work introduces a novel approach to handle configurations
in a production environment based on (1) a formal model to iden-
tify/generate the traffic flow and to verify the enforced configu-
rations, and (2) a slim and transparent framework to perform the
policy assessment. An additional benefit is that this approach is
complementary to PBNM.

2. MOTIVATION
The automatic deployment of an application instance is a com-

mon feature of recent virtualization platforms (e.g. OpenMano), on
the other side, the verification and management of its configuration
are currently not well addressed. A typical provisioning system
does not periodically check the configuration settings of a instance.
Often, this operation is performed manually, by an administrator,
in case of failure or misbehaviour.

This approach has at least two drawbacks. First of all, it is error-
prone and expensive task because it is performed by humans. Sec-
ond, it does not address misconfigurations that do not affect service
operation. For example, an attacker could add a rule on a firewall
to mirror traffic to another system. In this case, the service op-
erates correctly but its configuration is altered and the attack suc-
ceeded. Therefore, to avoid these situations, automatic and contin-
uous monitoring of service configurations is mandatory.

The most simple approach is to periodically verify the integrity
of enforced configurations, and in case of changes, redeploy the
correct configuration. However, this is not effective solution be-
cause it does not detect which part of the configuration is changed
(e.g. rules or part of them). On the contrary, our solution performs
an accurate identification of altered settings and supports the rede-
ployment of them.

This work proposes online and offline analysis in order to detect
when high-level policies are not correctly enforced into deployed
configuration. This approach introduces into the PBNM the man-
agement of deployed configurations. The provided solution also
permit the detection of configuration errors and attacks (e.g. rule
modifications due to human error or malicious manipulation).

Figure 1: Verification workflow.

3. APPROACH
The goal of our work is to verify the implementation of poli-

cies in the network and, in case of failure, performing a detection
of the causes, identifying mistakes and anomalies in the network
configuration. To achieve this goal, first of all, we have defined a
High Level Security Policy Language (HSPL), useful to define po-
lices of different security controls (such as packet filter, application
layer firewall, content inspection) by using an abstract and high-
level approach. This clearly simplifies the policy authoring task for
network administrators.

Starting from a set of HSPL statements, defined by an adminis-
trator, we designed a workflow to verify the correct enforcement of
configurations for the security controls in the network. The wrok-
flow consists of several phases and involves different components.
As depicted in Figure 1 some phases are performed online (i.e. dy-
namic generation of network packets) and others offline (i.e. static
analysis of policies and configurations). Briefly, the main steps of
the verification process are:

1. the Verifier receives the security policies (expressed in the
high-level language) and computes the set of network pack-
ets that has to be generated in order to verify the policies
correctness;

2. the Verifier configures the Sender nodes by delegating to them
a sub-set of the packets; each packet will be generated to
check the correctness of a security control;

3. a Sender node generates the set of packets for a specific se-
curity control;

4. a Receiver node collects the outgoing packets of a security
control to send a summary to the Verifier and forwards these
packets to the next hop of the chain;

5. the Verifier collects the summaries from all the Receivers and
analyses those to check the policy correctness;

6. the Verifier generates a report and sends it to the administra-
tors and to the components in charge of detecting the causes
of the misconfiguration (namely Configuration Analyser and
Conflict Analyser).

The next paragraphs describe the components involved in the
process.

High Level Security Policy Language.
Although the full specification of the HSPL is out of the scope

of this paper, here we provide a brief introduction to this language.
As discussed before, the administrator specifies the security re-

quirements with the HSPL. Starting from previous works [1], we

designed HSPL as an authorization language that follows the subject-
action-object-attribute paradigm (also referred to as target-effect-
condition) [2]. More precisely, a HSPL policy is a statement in the
following form:

[sbj] action obj {(field_type,value),...}

A security requirement is expressed as a set of sentences close
to natural language, e.g. “do not access gambling sites”, “allow
Internet traffic from 8:30 to 20:00 for employees”. The elements
of a sentence (subject, object, etc.) are chosen by the administrator
from a predefined set and implemented in a editor as different lists,
i.e. a list for each element (e.g. action, subject). This approach is
transparent for administrators (avoiding them to learn a new lan-
guage) and makes it possible to map each element of a sentence
to the related HSPL component. It is clear that, an administrator
can customize some elements of a sentence, for example to define
timing constraints or specify a particular URL. The simplicity and
completeness of this language help unskilled users (such as a busi-
ness manager) to define the set of security policies.

Verifier.
This is the core component in the workflow and it performs two

tasks: (1) computes the set of network packets in order to verify
the policy correctness, and (2) analyses the summary generated by
Receiver nodes in order to identify when a policy is not correctly
enforced for a security control.

The definition of the required network packets is based on a for-
mal model that adopts the same approach of refinement techniques.
The input of this process are the HSPLs and the output are the type
of traffic that each Sender nodes must generate.

More precisely, for each receiver node the Verifier produces two
tables: the former contains (a) the set of packets that must pass
through the receiver nodes and (b) the relative HSPLs, while the lat-
ter contains (c) the set of packets that must be blocked before reach-
ing the received node and (d) the relative HSPLs. When the Verifier
receives the summary, by the sender nodes, it analyses whether a
HSPLs is correctly enforced.

Sender nodes.
Periodically, the sender nodes receive a set of packet parame-

ters from the Verifier and generate the network traffic for a specific
security control. Depending on the type of security control, the
sender can generate different types of traffic (e.g. HTTP, SMTP,
FTP). A sender node does not require particular hardware resources
(CPU, memory), it only must support a traffic generator tool (such
as Scapy, netsniff-ng, packet sender).

Receiver nodes.
The receiver nodes are transparent to the traffic flows. These

nodes only observe the outgoing packets of a security control and
produce a summary for the Verifier. For this reason it possible to
place a receiver node directly into a security control or external to
it. Similarly to the senders, a receiver node does not require partic-
ular hardware resources. These nodes only summarize the received
traffic by using specific tools (such as wireshark, packetyzer, osti-
nato).

Report.
The Verifier summarizes the traffic information collected from

the receiver nodes and produces two reports: the former, it is ma-
chine readable and the latter is human readable and it is intended
for administrators.

Both reports contain for each packet (generated by a Sender node)
three sets: the traversed receiver nodes, the correctly enforced HSPLs
and the violated HSPLs.

The machine readable report is useful for correlating the analysis
of Verifier with the analysis executed by the Configuration Anal-
yser and Conflict Analyser. In addition can be used by a process
that reads the report and, whether a policy has not been correctly
enforced, sends an alert (e.g. by email) to administrator.

Conflict Analyser.
The Verifier also performs conflict analysis, a technique (applied

to different types of policies) that identifies anomalies within a sin-
gle policy (intra-policy) or between multiple policies (inter-policy).
Policy anomalies are not always errors but can lead to misbehaviour
of the policy enforcement. Policy anomaly can be compared with
compilation warnings of computer programs, where a program is
correctly compiled and it can run normally in most cases, but for
some execution stages, the program could fail. This analysis is
performed offline, i.e. directly evaluating configuration settings,
without sending packets.

Policy anomalies are studied for filtering and IPsec policies. In
particular filtering anomalies are well studied in literature. The def-
inition of Conflict Analyser is out of the scope of this paper, there-
fore we refer to our existing works [3, 4, 5].

Configuration Analyser.
Once the Verifier detects which security control is not correctly

configured, the goal of Configuration Analyser is to identify which
rule(s) are added, deleted or modified. Similarly to Conflict Anal-
yser this analysis is performed offline. In practice, our approach
compares the trusted rules (which express the expected behaviour
of the system) with the enforced rules deployed into security con-
trols. Trusted rules are stored into Trusted configuration DB (de-
picted in Figure 1) and could be generated automatically, by a re-
finement process, or manually, by an administrator. Clearly, before
updating the database with trusted rules, these must be tested on the
system by using the proposed approach. As discussed before, se-
curity policies are described by using a high-level format, however
security controls typically have low-level specific format. There-
fore, in order to compare trusted with enforced configurations the
Configuration analyser transforms security rules into an interme-
diate format. The main steps of the Configuration Analyser are:
1. collect the configuration rules of the security control to analyse
2. transform these rules into a intermediate model built upon a ma-
trix based format 3. compare trusted rules with the ones collected
from security control (enforced rules) and identify which of them
are added, deleted or modified 4. notify the results to the user and

suggest to him a possible remediation (e.g. re-deploy the trusted
configuration into the security control)

4. IMPLEMENTATION
In order to obtain performance and scalability tests we imple-

ment our approach by using a virtual environment. As widely dis-
cussed in several works the adoption of a virtual environment has
many advantages. In particular planning, management and deploy-
ment tasks are more simple than in a physical environment. An-
other important benefit is that each operation (e.g. deployment of a
new virtual machine) can be performed on demand with very lim-
ited effort (e.g. starting from a virtual machine template).

For the definition and management of the virtual environment we
use KVM1 and Libvirt2. KVM (Kernel-based Virtual Machine) is
a open source visualization solution native for Linux kernel. KVM
framework allows to virtualise the physical hardware to run mul-
tiple virtual machines, each of them with specific configuration.
Libvirt is a toolkit to interact with the virtualization capabilities of
recent versions of Linux (and other OSes). Libvirt includes several
commands to create, run or pause a virtual machine in different
virtualization solution (KVM, Xen, VMware, ESX, QEMU).

We implement the sender and receiver node by using Scapy3, a
tool to generate network packets. More precisely, the verifier in-
structs each Sender node by passing the Scapy commands to gen-
erate the required packets. Then, each Receiver node sends to the
verifier the summary of the received packets (these are captured by
using Scapy). Finally, the models in the verifier module are de-
veloped by using Java 1.7 and two Java-based open-source frame-
works: Drools4 and MOEA5.

Drools is a Rule Engine that uses a rule-based approach to imple-
ment a expert system. A rule is composed by a condition and a con-
sequential action (that is triggered when the condition is matched).
At system runtime, the conditions are evaluated following the pro-
cessed data (i.e. facts) and the consequential actions are executed.
In particular, we adopt the Drools engine to infer the set of packets
that matches (i.e. verifies) each HSPL policy.

The MOEA framework is an open source Java library for devel-
oping multi-objective evolutionary algorithms. MOEA has been
used to develop the optimization model.

Finally, our prototype uses the Apache Commons Mathematics
Library6 to implement the other parts of the verification model.

5. RELATED WORK
This section gives a short description of the current state of the

art for firewall analysis. This description may help the reader for
better understanding the proposed solution. In literature this topic
is divided into three major groups: firewall testing and firewall ver-
ification.

5.1 Firewall Testing
The firewall testing approach consists on generating a set of pack-

ets to evaluate firewall decisions that are known a priori. If the fire-
wall decision for each packet is the same as expected decision the
firewall configuration is correct, otherwise there are some errors. In
literature many works are based on a firewall testing approach with
different testing methods.
1http://www.linux-kvm.org/
2http://libvirt.org/
3http://www.secdev.org/projects/scapy/
4http://www.drools.org/
5http://moeaframework.org/
6http://commons.apache.org/proper/commons-math/

Hoffman [6] presented a framework to generate packet streams
by using covering arrays, production grammars, and replay of cap-
tured TCP traffic. This framework, namely “Blowtorch” also sup-
ports packet timing, traffic capture and replay and it is useful to
check handshaking.

Jürjens [7] proposed a method for specification-based testing, en-
abling to formally model a firewall, surrounding network and to
mechanically derive test cases to check for vulnerabilities.

El-Atawy [8] introduces a firewall testing technique by using
policy-based segmentation of the traffic address space. This can
adapt the traffic generation test considering potential erroneous re-
gions in the firewall input space.

Senn [9] presents an approach to test the conformance of fire-
walls to a given security policy. The main contributions are: a lan-
guage for the formal specification of network security policies, the
combination of different methods for generating abstract test cases,
and an algorithm for generating concrete test cases from the policy.

5.2 Firewall Verification
Firewall verification method evaluates whether a set of given

properties are satisfied in a firewall.
Mayer et al. present “Fang” a firewall analysis engine useful to

discover and test the global firewall policy (either a deployed policy
or a planned one), allowing user queries for the purpose of analysis
and management [10].

Lui et al. in their work face two problems: how to describe a
firewall query and how to process a firewall query in order to make
firewall queries practically useful. In [11] they introduce a sim-
ple SQL-like query language for describing firewall queries and
present a query processing algorithm that uses firewall decision di-
agrams as data structure.

Finally, recent literature has extended the firewall analysis to-
wards the verification of middleboxes. Middleboxes are stateful
network functions that process traffic based on their configurations
and internal states, like a learning firewall. Under this umbrella,
Spinoso et al. [12] model middleboxes and networks as a set of
logic formulas and use a solver to verify a set of policies in the
network model.

6. CONCLUSIONS
This paper presents a novel approach to monitor and manage

enforced configurations in a production environment. The method-
ology is extremely useful in many ways: for example, it can be
used to detect errors both in the firewall implementation and fire-
wall management. Our contributions are: (1) a formal model to
identify/generate the traffic flow and to verify the enforced configu-
rations; (2) a slim and transparent framework to perform the policy
assessment. We have implemented and validated our approach in
a virtual environment to evaluate different scenarios. The experi-
mental results demonstrate that the prototype is effective and has
good performance, therefore our model can be effectively used to
analyses several types of IT infrastructures. Currently, the method-
ology has been implemented only for a limited set of HSPL poli-
cies, mainly related to filtering requirements (stateful packet filters
and L7 filters). However, the proposed approach can be easily ex-
tended, by adding new security feature and/or VNFs. Therefore,
as future work, we will extend it by adding other types of secu-
rity functions (e.g. VPN, proxy, IPS/IDS). Finally, this work is
clearly useful do detect changes in configurations settings of secu-
rity controls. Therefore, this approach cannot be directly adopted
for detecting the attacks that modify software code, e.g. to change
the behaviour of an application. However, this type of attack can
be identified by using trusted computing techniques, for example

by performing remote attestation of the running software on a plat-
form equipped with the Trusted Platform Module (TPM) or a vir-
tual version of it (virtual TPM). Therefore, trusted computing tech-
niques will be investigated in future work to manage attacks related
to software modification.

Acknowledgment
The research described in this paper is part of the SHIELD project,
co-funded by the European Commission (H2020 grant agreement
no. 700199).

7. REFERENCES
[1] C. Basile, A. Lioy, C. Pitscheider, F. Valenza, and M. Vallini,

“A novel approach for integrating security policy
enforcement with dynamic network virtualization,” in
Netsoft-2015: 1st IEEE Conf. on Network Softwarization,
April 2015, pp. 1–5.

[2] S. Godik, A. Anderson, B. Parducci, E. Damiani,
P. Samarati, P. Humenn, and S. Vajjhala, “eXtensible Access
Control Markup Language (XACML) Version 3.0,” OASIS,
Tech. Rep., January 2013.

[3] C. Basile, D. Canavese, A. Lioy, C. Pitscheider, and
F. Valenza, “Inter-function anomaly analysis for correct
sdn/nfv deployment,” International Journal of Network
Management, vol. 26, no. 1, pp. 25–43, 2016.

[4] C. Basile, D. Canavese, A. Lioy, and F. Valenza,
“Inter-technology conflict analysis for communication
protection policies,” in CRiSIS-2014: 9th International
Conference on Risks and Security of Internet and Systems,
August 2014, pp. 148–163.

[5] F. Valenza, S. Spinoso, C. Basile, R. Sisto, and A. Lioy, “A
formal model of network policy analysis,” in RTSI-2015: 1st
IEEE International Forum on Research and Technologies for
Society and Industry, September 2015, pp. 516–522.

[6] D. Hoffman and K. Yoo, “Blowtorch: A framework for
firewall test automation,” in ASE’05: 20th IEEE/ACM
International Conference on Automated Software
Engineering, November 2005, pp. 96–103.

[7] J. Jürjens and G. Wimmel, “Specification-based testing of
firewalls,” in 4th International A.Ershov Memorial
Conference, July 2001, pp. 308–316.

[8] A. El-Atawy, K. Ibrahim, H. Hamed, and E. Al-Shaer,
“Policy segmentation for intelligent firewall testing,” in
NPSEC’05: 1st International Conference on Secure Network
Protocols, November 2005, pp. 67–72.

[9] D. Senn, D. Basin, and G. Caronni, “Firewall conformance
testing,” in TestCom 2005: 17th IFIP TC6/WG 6.1
International Conferencen on Testing of Communicating
Systems, June 2005, pp. 226–241.

[10] A. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall
analysis engine,” in S&P 2000: IEEE Symposium on Security
and Privacy, May 2000, pp. 177–187.

[11] A. X. Liu and M. G. Gouda, “Firewall policy queries,” IEEE
Transactions on Parallel and Distributed Systems, vol. 20,
no. 6, pp. 766–777, June 2009.

[12] S. Spinoso, M. Virgilio, W. John, A. Manzalini,
G. Marchetto, and R. Sisto, “Formal verification of Virtual
Network Function graphs in an SP-DevOps context,” in
ESOCC: European Conference on Service-Oriented and
Cloud Computing, September 2015, pp. 253–262.

