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Abstract— This paper explores an approach trying to 
recognize the presence of electromagnetic attacks on an 
equipment. Wireless communications are widely used in railway 
traffic management systems. Such systems are probably 
susceptible to be disturbed by malicious actions involving 
jammers.  The general objective of this work is to develop a 
specific method enabling to detect and to recognize these types of 
interfering signals. This method could be used to involve 
adequate reactions in order to reduce the impact on the railway 
network. This paper focuses on the recognition method. It is 
based on accurate statistical models of signals generated by 
jammers. This work is carried out in the framework of the 
European project “SECRET” for SECurity of Railways against 
Electromagnetic aTtacks. 
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I.  INTRODUCTION 

Nowadays, on the shelf jamming devices are becoming 
easier to obtain and they could be used for malicious attacks 
aiming to disturb radio communication dedicated to 
operational purposes. 

The impact that could have these jamming devices on radio 
communication is also studied in the railway domain. Indeed, 
the European Rail Traffic Management System (ERTMS), 
answering to the strong need for railway interoperability 
throughout the European Rail Network, and designing a 
unique European Train Control System (ETCS), makes use of 
a large wireless telecommunication network. Such a system 
needs to be resilient to electromagnetic jamming devices.  

The ETCS system considers two important components. 
The “Eurobalise” system is used for spot communication as 
well as train localization [1]. The digital radio system 
“Euroradio” is based on the Global System for Mobile 
communication – Railways (GSM-R). It allows the exchange 
of voice as well as railway signalling data between trains and 
control centers [2]. 

Our study focuses on the GSM-Railway communication 
system using the European frequency band 876 MHz to 

915 MHz for the uplink and 921 MHz to 960 MHz for the 
downlink. The final goal is to evaluate the GSM-R resilience 
against potential attacks from jamming radio signals. One 
particular class of jammers consists in devices able to disturb 
radio communication by transmitting EM signals and sharing 
the same frequency band. They generate RF signals at 
sufficient power levels to be of the order of magnitude of the 
useful signals. Knowing that the received power at the train 
antenna ranges between -20 dBm and -90 dBm [3], it becomes 
therefore realistic to achieve this situation with sufficiently 
close, limited power jammers. The detection and recognition 
of such disturbing signals require adapted approaches [4]. 

This paper proposes a specific approach based on statistical 
study. This study considers that the power spectral density 
(psd) of the signal jammers can be modelled by a probabilistic 
density function (pdf). In this way, we obtain different kinds 
of pdf, allowing us a possible robust classification of the 
different available jammers.  

This paper is organised the following way. A brief 
presentation of the existing jammer classes is recalled.  Then, 
to facilitate the identification of an effective theoretical tool 
able to solve this recognition problem, a preliminary 
laboratory experiment is presented and its results are analysed. 
The following section is dedicated to the presentation and the 
developments related to the considered theoretical recognition 
tool. The next section explores the effectiveness of this tool 
using experimental results obtained from a dedicated test 
bench. Finally, conclusions and future works are provided 
concerning the project. 

II. JAMMERS CLASSES

A study was carried out regarding the existing jammers. 
Five classes of scrambling jammers were identified noted A 
to E  [5]:  

Type ‘A’ devices ‘jammers’: These devices hold several 
independent oscillators transmitting ‘jamming signals’ 
disturbing and making impossible the establishment of the 
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communications, blocking the frequencies used by mobile 
communication equipment. 

 Type ‘B’ devices ‘intelligent cellular disablers’: These 
devices do not transmit interfering signals but work as 
detectors. So, when they detect signals in quiet areas, they send 
a signal to inform the base station to interrupt the 
communication. 

Type ‘C’ devices ‘intelligent beacon disablers’ : These 
devices work on the control channels as ‘beacons’, they control 
mobile devices located in a quiet area by sending instructions 
to disable ringer or disable its operation. 

Type ‘D’ devices ‘Direct Receive and Transmit Jammers’: 
These devices operate as a small independent base station. The 
jammer is predominantly in receiving mode and will choose 
intelligently interaction and blocking the cell phone if it is 
within close proximity of the jammer. 

Type ‘E’ devices ‘EMI Shield – Passive Jamming’: These 
jamming solutions consist in the suppression of 
electromagnetic signals by using the properties of the Faraday 
cages. The Faraday cage essentially blocks, or greatly 
attenuates, all electromagnetic signals entering or leaving the 
cage. 

In this paper, we consider type ‘A’ of jammers. 

III. PRELIMINARY EXPERIMENTAL ANALYSIS

Jammer signal ratio (JSR) is used to evaluate the impact of 
a jammer on a system. A conventionally rule of thumb used for 
FM voice as well as for data systems, not protected by spread 
spectrum techniques, is that a jammer signal ratio (JSR) of 1 
leads to significant degradation of performance and that a JSR 
greater than 2 leads to an almost total loss of performance [6]. 

Considering this JSR scale, we study the immunity of the 
GSM-R by testing the quality of the communication affected 
by the disturbance attacks. Type ‘A’ jammers used in our study 
are continuous wave (CW) transmitters sweeping very fast the 
whole targeted frequency range.  

The impact of such a jammer depends on the relative signal 
strengths provided by the jammers and from the distant useful 
communication transmitter present at the input of the receiver 
[7]. This power depends on the effective radiated power 
generated by the transmitters and of their relative distance. The 
effects of the jamming affect the quality of the communication 
in terms of bit error rate (BER) and, as a consequence, the level 
of the corresponding JSR [8]. 

Experiments performed in laboratory have shown that the 
jamming signal ‘A’ is typically generated by modulating the 
transmitter voltage control oscillator (VCO) of a transmitter 
using a ramp signal to sweep the full targeted frequency band 
[9]. It also appears that these devices do not implement any 
stability frequency control system like a phase locked loop 
(PLL). Therefore, the frequency stability of these devices is 
limited and, as a consequence, the overall output spectrum is 
also not very stable along time and temperature [6].  

Using these inputs, we consider different interfering signals 
and we evaluate their effects on the BER, varying their JSR. 

Using the laboratory test bench presented in Fig. 1, we consider 
a GSM-R communication established on a specific channel, at 
a frequency ( f1 ). We then add different interfering CW signals 
coming from a signal generator and evaluate their impact using 
a GSM-R protocol emulator and analyser noted CMU in Fig. 1. 

In this paper, we consider two interfering signals. The first 
one is a pure CW sinusoidal signal centred in the used GSM-R 
channel. The second interfering signal is a FM modulated 
sinusoidal signal whose excursion is set to 75 kHz, also centred 
on the used 200 kHz wide GSM-R channel. In Fig. 2, we 
represent the spectral power density of these different signals 
centred at 924.8MHz. 

The simulation results are regrouped in table 1. The used 
power levels delivered by the GSM-R transmitter and the 
jammer are respectively indicated in columns 1 and 2. The 
resulting JSR is indicated in column 3 and the corresponding 
BER for the pure CW jammer and the FM modulated jammer 
are respectively indicated in columns 4 and 5. 

 “Loss of communication” (Loss of com. in table I) means 
that the communication is lost after applying the disturbing 
signal. No connection (No con.) means that no GSM-R 
connection at all can be established when the jammer signal is 
applied.  

In these experimental conditions, we obtain that using 
almost equivalent received powers between the useful GSM-R 
signal and the jammer signal lead to severe problems for the 
communication; a pure CW signal is less critical than a FM 
modulated signal. We specified that without jamming the BER 
of the communication is equal to 0. 
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Fig. 2. GMSK transmitted PSD representations of generated signal to 
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TABLE I. 

P_GSM-R 
(dBm) 

P_JAM 
(dBm) 

JSR 
(dB) 

BER_f1 BER_FM 75

-38 -36 2 Loss com No con

-38 -37 1 12,585 No con

-38 -38 0 5,564 No con

-38 -40 -2 2,126 14,662

-38 -42 -4 0,771 7,814

-38 -44 -6 0,256 2,719

-38 -46 -8 0,114 0,588

-38 -48 -10 0,06 0,155

-38 -50 -12 0,023 0,038

Therefore, to conclude on this preliminary phase, an 
effective recognition model cannot easily be developed using 
only the received power information. A more sophisticated 
approach based, for example, on the power spectral density 
(psd) of the signal jammers could be necessary. This theoretical 
approach is now presented in the following section. 

IV. STATISTICAL MODEL AND RECOGNITION 

A. Statistical model definition 
We propose to model the spectrum of jammer by a 

probabilistic model. Considering that spectral components are 
independent, the pdf of the spectrum associated to a jammer Jk 
is defined as following:  

( )∏
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N
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knk JfSp=Jp

1
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S

(1) 

where S represent a vector of N spectral components S(fn)  of 

psd expressed in dBm, n∈ [1, N] and )/)((
nf kn JfSp is the

marginal pdf of each component S(fn). At first, we consider a 
basic theoretical issue assuming S(fn) follows a Gaussian 
statistical law:   
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where µ and σ represent respectively the mean and the 
standard deviation of the Gaussian random variable x [10]. In 
order to improve the model, we propose to use a more complex 
model using a Gaussian mixture distribution: 
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where G is the number of Gaussian kernels and  pg  is the 
weight of the g Gaussian kernel in the mixture (pg>0 for all g 
and 1

1
=∑ =

G

g gp ). 

For each kind of EM Attack, a statistical model defined by 
(2) or (4) is learning and then used in the recognition 
procedure. 

B. EM attack recognition 
This work adopts the framework of supervised pattern 

recognition. In this way, a principle of Bayesian classifier is 
used: Considering K (K = 3) kinds of EM attack, p(S/Jk) 
represents the statistic model of the EM attack k (k∈ [1, K], 
k=1 for jammer1, k=2 for jammer2 k=3 for jammer3).  

From the Bayes theorem [10]: 
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and knowing that dJJpp
J
∫= ),()( SS , the a posteriori 

probability that the realization S belongs to the class Jk from 
the total existing K class is: 

∑ =

K

l ll

kk
k

JpJp
JpJp=Jp

1
)/()(

)/()()/(
S

SS (6) 

Considering that each EM attack k is equiprobable, (i.e. 
p(Jk) = 1/K, for all k), the “recognized” EM attack for a spectral 
observation S maximizes the following relation: 
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In (7) the maximized function varies between 0 and 1; it is 
equivalent to the Maximum a posteriori (MAP), equal, in this 
case to the Maximum Likelihood (ML).  

V. EXPERIMENTATIONS 

A. Data Base 
The scheme on Fig. 3 represents the test bench used for the 

acquisition of the databases necessary for the learning and test 
phases. This test bench is similar to those presented in section 
III, where all of the connections are wired, except that the 
signal generator is replaced by a real jamming device as the 
interference signal.  
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The data base is constituted of the observations of the 
frequency spectrum in different contexts. The first context (C1) 
considers the presence of jamming signals only. The 
acquisition is realized in two steps, the first step for the 
learning phase and the second step for the test phase. Three 
widespread representative jammer devices are used. 

 The second context (C2) considers the observations of a 
GSM-R signal and an added jamming signal, using also the 
three available devices.  

Every data is recording during 30 sec with a sample 
frequency of 100 ms. For each type of signal used for learning 
or for testing, we get 300 observations. This means that each 
frequency contained on the PSD has 300 observations. We 
evaluate the spectrum of the different signals on a frequency 
band going from 850 MHz to 1 GHz and with a sampling 
frequency of 0.1 MHz, we obtain 1501 frequency points. 
Fig. 4 presents an example of spectrum realisation for the three 
used devices, K = 3.   

B. Learning Phase 
The learning phase consists in estimating the different 

parameters of the statistic model p(S/Jk) defined by (2) or by 
(4) for three jammers (1≤ k ≤K) and, using a database C1. 

 For the Gaussian model (2), we estimate the mean µfn and 
the σfn for each N=1501 frequency (f1=850 MHz … fN =1GHz). 
For the statistic model using the Gaussian mixture model 
(GMM) (4) we estimate for all the N frequency, the parameters 
of each G Gaussian kernel: pg,fn, µg,fn and σg,fn. This estimation 
is realised by the implementation of the Expectation-

Maximisation algorithm (EM) [11]. We consider in this work 
several GMM, i.e. G = 2, 3 and 4. 

In order to evaluate the matching fit of these different 
models, we use the X2 test of goodness of fit [12]. It consists in 
estimating: 

∑
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where hi(x) is the observed distribution (histogram of x) 
decomposed in I intervals and pi(x) is the estimated distribution 
evaluated for x evolved in the interval i. Expression (8) implies 
that the more 2X is small, the more the pi(x) matching fits with 
the distribution of the variable x. A critical threshold can be 
used to reject or accept the hypothesis that x follows the tested 
law, see [12] for more details. 

 Fig. 5 and Fig. 6 present results of the estimated models for 
one jamming device (k=1) and respectively for the frequency 
f1= 861.9 MHz and the frequency f2=924.8 MHz. For both 
frequencies we can observed that the Gaussian model is not 
adapted to fit correctly the distribution of the data. This is more 
significant for the frequency f1= 861.9 MHz: the Gaussian 
model being symmetric, it cannot model the dissymmetry of 
data distribution, being generally the case for spectral 
components in dBm. 
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Fig. 3. GSM-R Test bench with GSM jammer. 

Fig. 4. PSD representation of the Jammers signals. 
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 Fig. 7 presents the results of 2X test carried out on the N 
marginal distributions of (1). The results are presented in 
ascending order. Fig. 7 shows the errors are more significant 
for the Gaussian model than the GMM model. However, none 
model has been rejected for a test realized with a 5% 
confidence level, due to the large number of considered 
frequencies. In this test, we can see that the best model is 
described by the GMM model with G = 4 Gaussian kernels.  

C. Recognition EM attack test 
 Considering the equation (7), we tested the capability of our 
models to recognize the EM attack. All the observation tests 
(300 for each tested jammer) are preliminary evaluated by (7) 
to estimate the jammer used. We considered two spectral 
condition experiments: the first one considers the spectral 
observations from f1=850 MHz to fN =1GHz and the second one 
considers a shorter frequency band corresponding to the 
GSM-R downlink frequency band: f1= 921MHz to 
fN = 925MHz. The results obtained with the Gaussian model 
are presented in Table 2 and the results given by the GMM 
model with G = 4, which is the best one according to 2X test, 
are given in Table 3, for the contest C1. Tables 4 and 5 present 
the results for both models in the context C2. In the tables, the 
lines represent respectively the kth jammer used (k = 1,2,3), 
whereas the columns indicate the identification rate for each 
jammer. Note that recognition is perfect when the “matrix” is 
diagonal. 

TABLE II. TEST RESULTS (IN %) FOR THE CONTEXT C1 WITH GAUSSIAN 
MODEL, (A) FOR THE FREQUENCY BAND: F1=850 MHZ TO FN =1GHZ, (B) 

FREQUENCY BAND: F1= 921MHZ TO FN = 925MHZ. 

k=1 k=2 k=2 k=1 k=2 k=2 

k=1 100 0 0 k=1 100 0 0 

k=2 0 100 0 k=2 0 100 0 

k=3 0 0 100 k=3 0 0 100 

 a b 

TABLE III.  TEST RESULTS (IN %) FOR THE CONTEXT C1 WITH GAUSSIAN 
MIXTURE MODEL, (A) FOR THE FREQUENCY BAND: F1=850 MHZ TO FN =1GHZ, 

(B) FREQUENCY BAND: F1= 921MHZ TO FN = 925MHZ. 

k=1 k=2 k=2 k=1 k=2 k=2 

k=1 100 0 0 k=1 100 0 0 

k=2 0 100 0 k=2 0 100 0 

k=3 0 0 100 k=3 0 0 100 

 a b 

TABLE IV. TEST RESULTS (IN %) FOR THE CONTEXT C2 WITH GAUSSIAN 
MODEL, (A) FOR THE FREQUENCY BAND: F1=850 MHZ TO FN =1GHZ, (B) 

FREQUENCY BAND: F1= 921MHZ TO FN = 925MHZ. 

k=1 k=2 k=2 k=1 k=2 k=2 

k=1 100 0 0 k=1 34 66 0 

k=2 0 100 0 k=2 0 100 0 

k=3 0 0 100 k=3 0 31.7 68.3 
 a b 

TABLE V.  TEST RESULTS (IN %) FOR THE CONTEXT C2 WITH GAUSSIAN 
MIXTURE MODEL, (A) FOR THE FREQUENCY BAND: F1=850 MHZ TO FN =1GHZ, 

(B) FREQUENCY BAND: F1= 921MHZ TO FN = 925MHZ. 

k=1 k=2 k=2 k=1 k=2 k=2 

k=1 100 0 0 k=1 60 40 0 

k=2 0 100 0 k=2 0 100 0 

k=3 0 0 100 k=3 0 50.3 49.7 
 a b 
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 Tables 2 and 3 show excellent results obtained by the 
recognition function (7) when we use a signal only composed 
by jamming signal at each observation tested (“test” database 
C1). This success is verified for all statistical models (i.e., (2) 
and (4) for G = 4) and for both widths of frequency band. This 
is explained by the significant differences between the 
spectrums of jamming signals. For example, in Fig. 4, although 
the spectrums of the jammers 2 and 3 are similar in the 
920 MHz-970 MHz frequency band, there are significantly 
different over the other frequencies. When the width of the 
observation frequency band is reduced (Table 2 (b) and 3(b)), 
Fig. 4 shows that the spectrums of jamming signals are also 
sufficiently different to obtain a high discrimination between 
the different jammers. 

The results of the test recognition carried out in presence of 
communication signal superimposed to the jamming signal 
(“case the most natural”) are presented in tables 4 and 5. Once 
again, the performances between both models are equivalent. 
The table 4(a) and 5(a) present excellent results which can be 
explained by the narrow frequency band of the communication 
signal in relation to the observation frequency band taking into 
account in the model of jamming signals. However, the results 
are less satisfying in the tables 4(b) and 5(b), for which the 
observation frequency band is significantly covered by the 
communication signal. In consequences, the recognition of the 
jamming device is seriously affected. 

VI. CONCLUSION 

This paper studied an approach trying to recognize the 
presence of electromagnetic attacks on communication 
equipment. Starting by the presentation of the different existing 
classes of jammers, it has then focused on CW wideband 
jammers. We obtained that, using almost equivalent received 
powers for a useful GSM-R signal and for the jammer, severe 
problems are encountered by the communication. Therefore, an 
effective recognition model could be hardly established based 
only on the discrimination of the received power levels and, a 
more sophisticated approach based on the power spectral 
density of the signal jammers was presented. By its supervised 
nature, this recognition processing has been decomposed in 
two steps: one for the learning models able to represent the 
distribution of different EM attacks, and a second one for the 
phase of recognition based on the learned model. We have 
tested different kinds of statistical models, which provided 
excellent results in terms of recognition if they are estimated on 
a relatively large frequency band and not only on the down-link 
GSM-R frequency band. 

This work carried out in controlled and simplified 
conditions (no reflections, no environmental EM noise) was a 
necessary preliminary study to characterise the jammer signals 
and their impact on communication systems. It allowed 
building fundamental bases for the problem of the EM Attacks 
recognition. Future works will consist in completing this 
recognition process as well as working on the detection 
method. Naturally, the perspective of EM attacks recognition 

study will be to consider more realistic conditions and a larger 
database of EM attacks kinds. In these conditions, the 
processing procedure will be more sophisticated and should 
consider the possible variations of the EM environment in 
which the GSM-R communication system evolves.  
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