
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Definitions of Demand Flexibility for Aggregate Residential Loads / Sajjad, Intisar A.; Chicco, Gianfranco; Napoli,
Roberto. - In: IEEE TRANSACTIONS ON SMART GRID. - ISSN 1949-3053. - STAMPA. - Vol. 7:No. 6, November
2016(2016), pp. 2633-2643.

Original

Definitions of Demand Flexibility for Aggregate Residential Loads

Publisher:

Published
DOI:10.1109/TSG.2016.2522961

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2666870 since: 2017-03-13T16:23:22Z

IEEE, Piscataway, NJ, USA



IEEE TRANSACTIONS ON SMART GRID, VOL. 7, NO. 6, NOVEMBER 2016 2633

Definitions of Demand Flexibility
for Aggregate Residential Loads

Intisar Ali Sajjad, Member, IEEE, Gianfranco Chicco, Senior Member, IEEE,
and Roberto Napoli, Member, IEEE

Abstract—Nowadays, enhanced knowledge of the nature of the
electricity demand is achieved through the progressively increas-
ing deployment of smart meters and advanced data analysis
techniques. One of the major challenges is to exploit this knowl-
edge to support the introduction of strategies to modify the
demand according to relevant objectives to be achieved, like
users’ participation in demand response programmes. A key
point for facing this challenge is to characterize the demand
flexibility. In spite of many discussions about the concept of
flexibility, the few mathematical definitions of flexibility avail-
able do not address the variation in time of the overall demand
aggregation. This paper starts from the analysis of time-variable
patterns of aggregate residential customers, ending up with suit-
able definitions of expected flexibility for aggregate demand.
These definitions are based on assessing positive and negative
pattern variations and are identified from the analysis of the
collective behavior of the aggregate users. A set of results is
shown for different numbers of aggregate customers, by consid-
ering different values of the averaging time step for load pattern
representation.

Index Terms—Aggregate demand, binomial probability, cus-
tomers, electrical load, demand flexibility, demand response, load
variation pattern, maximum likelihood estimation.

NOMENCLATURE

ADT Acceptable Delay Time
AFI Appliance Flexibility Index
CDF Cumulative Distribution Function
CI Confidence Interval
DR Demand Response
FIAD Flexibility Index of Aggregate Demand
MLE Maximum Likelihood Estimation
PFL Percentage Flexibility Level
RES Renewable Energy Sources
a Number of aggregate customers
k Observation number
ns Total number of points in the load pat-

tern data with time step duration !ts
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p(a)
k,x!ts

Aggregate demand at time instant x!ts
for observation number k

p̄(a)
x!ts Average value of p(a)

x!ts
u(a)

k,x!ts
Outcome of a Bernoulli trial

T Time interval of observation (minutes)
Zα/2 Critical value of the normal distribution

at significance level α

!p(a)
k,x!ts

Change in demand at time instant x!ts
between two successive time intervals

!p
(a)
x!ts Average value of !p(a)

x!ts
+!p

(a)
x!ts,

− !p
(a)
x!ts Mean load variations for increasing

demand and non-increasing demand,
respectively

!ts Time step duration (minutes)
α Defines CI width, i.e., 100(1 − α)%
ω

(a)
x!ts Probability of binomial discrete random

variable
ω̂

(a)
x!ts Estimated value of ω

(a)
x!ts using MLE

ω̂
(a)
x!ts, ω̂

(a)
x!ts Upper and lower bounds of the Wilson

Score Interval
ω̂′(a)

x!ts, σ
′(a)

x!ts Relocated mean and standard deviation
for the Wilson Score Interval

p(a)
x!ts Vector of aggregate demand for all k at

time instant x!ts
p̄(a)
!ts Mean aggregate demand pattern

u(a)
x!ts Binomial discrete random variable

!p(a)
x!ts Vector of change in demand for all k at

time instant x!ts
ψ

(a)
!ts%

Percentage flexibility level (PFL)

ϕ
(a)
!ts Flexibility index of aggregate demand

(FIAD)
ϕ

(a)
!ts ,ϕ

(a)
!ts Upper and lower bounds of FIAD.

I. INTRODUCTION

THE INTEGRATION of renewable energy sources (RES)
with intermittent nature in the electric power grid tends

to introduce mismatch between demand and supply. Using
different means, e.g., conventional generation and demand
response (DR) resources including storage, can level this
mismatch [1]. The use of conventional plants has different
drawbacks over the DR alternatives, such as environmental
effects, high generation costs and high ramp rates. On the
other hand, the uncertainty associated with the operating points
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of conventional generation is lower. The DR resources have
fast response time, but they are typically small and need
to be aggregated to balance the mismatch. In addition, DR
uncertainties are hard to model due to different factors like
customers’ behaviour, weather conditions, etc. Furthermore,
the coordination of DR resources is challenging due to the lack
of two-way communication with each individual load. These
are some important challenges being addressed in different
perspectives in the literature.

The current terminology has adopted the term flexibility
to indicate the capacity to adapt across time, circumstances
(foreseeable or not), intention (positive or negative reactions)
and area of application [2]. For the applications to the elec-
trical system, flexibility refers to the possibility of deploying
the available resources to respond in an adequate and reli-
able way to the load and generation variations during time at
acceptable costs.

One of the current challenges is to define and quantify flex-
ibility in specific contexts. A number of recent contributions
deal with obtaining flexibility from the generation side. Some
examples include addressing generation variability through
the insufficient ramping resource expectation metric [3] and
quantifying the technical flexibility level of both individ-
ual generators and the whole generation system [4]. In other
cases, both generation and loads are taken into account, e.g.,
quantifying operational flexibility by using power capacity,
energy capacity and ramp-rate capacity [5], or applying the
unit commitment optimization approach to compare flexibility
from demand-side resources with the one from fast ramp-
ing generation [6]. Moreover, the decentralized participation
of flexible demand from heat pumps and electric vehicles is
addressed in [7], the balancing in time of heat and power
demand in multiple areas in [8], and the use of a stochas-
tic unit commitment model accounting for RES fluctuations
and DR benefits to absorb these fluctuations in [9].

On the demand side, the definitions of flexibility depend on
evaluations carried out at the level of individual appliances or
for a load aggregation.

For individual appliances, definitions from the cur-
rent literature include the consumers’ Acceptable Delay
Time (ADT) [10], that is, the maximum period of time
to postpone the operation of an appliance without sacrific-
ing the consumers’ comfort, and the Appliance Flexibility
Index (AFI) [11] measuring the adjustable range of time of the
appliances. In both cases, the data needed to calculate these
indices depend on the consumers’ preferences and are gath-
ered from questionnaires and surveys. The ADT is also used
in [12] together with the penetration level of active consumers,
depending on the number of active consumers (i.e., those able
to modify the operation of controllable appliances on the basis
of a signal received from the service provider) with respect to
the total number of consumers. The model presented in [13]
addresses delay-averse flexible loads by introducing cost-delay
trade-offs and assessing the value of time flexibility.

For the aggregate load, various approaches have been
followed, among which the use of sensitivity functions indi-
cating each user’s probability of shifting each device type
usage by a certain time, given the reward in the new

period of usage [14], an agent-based approach based on the
Q-learning algorithm, obtaining flexibility factors used to sim-
ulate demand elasticity [15], and the application of flexibility
criteria to partition the types of loads into sheddable, control-
lable and acceptable, in order to assess the total DR resource
potential [4]. Furthermore, an approach with identification of
the flexible loads and an optimal load control strategy based
on a reference demand profile is presented in [16]. Other
contributions specifically address the aggregate flexibility of
thermostatically-controlled loads, to represent the dynamics
in the collective response [17], the model and control of
a comfort-constrained virtual generator [18], and the charac-
terization of the load aggregation with a generalized battery
model [19]. A recent work [20] refers to a population of appli-
ances and introduces load plasticity as the potential of the load
pattern of an appliance to be modified by control actions.

None of the above references address the quantification of
the flexible amount of the aggregate demand by investigating
on the uncertainty of the time-variable shape of the demand
patterns belonging to residential customer groups. In partic-
ular, a practical formulation of flexibility depending on the
collective behaviour of a population of consumers has not been
provided yet. Introducing proper expressions of the aggregate
demand flexibility is a key aspect to effectively assess the con-
tribution of responsive demand, enabling better management of
DR resources and most effective utilization of RES [1]. The
uncertainty associated with the aggregate demand flexibility
also depends on the aggregation size and the averaging time
step with which the evolution in time of the average power is
represented [21]–[23].

This paper provides new mathematical definitions of flexibil-
ity for an aggregate demand. These definitions are based on the
statistical properties of the aggregate demand variations and
originate from some studies carried out on the time-variable
patterns of a number of aggregate residential customers. The
rationale of the new flexibility definitions is based on assessing
the positive and negative variations occurring during time in
the aggregate load pattern. Flexibility is identified in terms of
probability to change the collective behaviour of the aggregate
users. The definitions are presented with reference to residen-
tial aggregate patterns, but may be generally valid for different
types of load aggregations in which the individuals have a rel-
atively similar size, providing a comparable impact on the
aggregate pattern. The available data are the measurable load
patterns characterizing the customers and their aggregation
seen from their grid connection terminals. In this context, the
information on the appliances located inside the households
is not accessible, and the inclusion of entries referring to the
real-time control of the specific appliances is not applicable.

The next sections of this paper are organized as follows.
Section II illustrates the structure of the data used for the
analysis. Section III introduces the categorical data analysis
approach used to establish the statistical properties of the
data set. Section IV defines the proposed flexibility indica-
tors and illustrates different case study applications from the
extra-urban residential sector with different aggregation lev-
els and time step durations, to demonstrate the effectiveness
of the proposed definitions. Section V provides further results
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Fig. 1. Daily aggregate demand patterns for a group of 50 houses and time
step 15 min, with 100 observations.

showing the variations of the flexibility indicators for differ-
ent aggregations of users and duration of the time step used
to represent the load patterns. The last section contains the
concluding remarks.

II. DATA ORGANIZATION FOR RESIDENTIAL CUSTOMERS

Measuring devices like smart meters log data about con-
sumption in a discrete fashion with a given time step duration
!ts. Let us consider a time interval T multiple of !ts, in which
the total number of time steps is ns = T/!ts.

Let us then consider a group of customers consisting of
the aggregation of a number a of individual customers, with
the number a identifying the customer aggregation level.
For a given aggregation level and time step duration, let
us assume that K observations are available, for example
obtained from the Monte Carlo repetitions calculated on the
basis of a bottom-up statistical model of aggregate residen-
tial loads [24]. Each observation provides an aggregate load
pattern containing the sequence of average power values
calculated for each successive time step.

The load pattern data used in this paper have been gen-
erated for extra-urban residential consumers by using Monte
Carlo simulations, on the basis of information about the fam-
ily composition and lifestyle, house characterization, usage
of electrical appliances inside each type of house, directly
collected from the residents [25], [26].

As an example, for the aggregation of a = 50 houses,
Fig. 1 shows the daily aggregate demand patterns for a typi-
cal winter weekday (T = 1440 min) resulting from K = 100
Monte Carlo repetitions with time step !ts = 10 min.

For customer aggregation level a and time step duration !ts,
the load pattern data is organized in matrix form as follows:

P(a)
!ts =





p(a)
1,1!ts

p(a)
1,2!ts

· · · p(a)
1,ns!ts

p(a)
2,1!ts

p(a)
2,2!ts

· · · p(a)
2,ns!ts

...
...

...
...

p(a)
K,1!ts

p(a)
K,2!ts

· · · p(a)
K,ns!ts




∈ RK,ns (1)

We further consider the load variations referring to load
increase or decrease from one time step to the next one.

Fig. 2. Time evolution of the daily aggregate demand variations for 50 houses
and time step 15 min, with 100 observations.

For customer aggregation level a and time step duration
!ts, the kth load variation pattern, for k = 1, . . . , K, is
represented as:

!p(a)
k,x!ts

= p(a)
k,x!ts

− p(a)
k,(x−1)!ts

for x = 2, 3, . . . , ns (2)

The load variation patterns are included in the rows of the
matrix

!P(a)
!ts =





!p(a)
1,2!ts

!p(a)
1,3!ts

· · · !p(a)
1,ns!ts

!p(a)
2,2!ts

!p(a)
2,3!ts

· · · !p(a)
2,ns!ts

...
...

...
...

!p(a)
K,2!ts

!p(a)
K,3!ts

· · · !p(a)
K,ns!ts




∈ RK,ns−1

(3)

Fig. 2 shows the time evolution of the demand variation
during a day, for the aggregation of 50 houses and time step
of 15 minutes indicated in Fig. 1.

Each column of (3) is a set of observations for a particular
time step and is calculated using (2). We can represent the
demand and its variation in terms of column vectors as:

P(a)
!ts =

[
p(a)

1!ts
p(a)

2!ts
· · · p(a)

ns!ts

]
(4)

!P(a)
!ts =

[
!p(a)

2!ts
!p(a)

3!ts
· · · !p(a)

ns!ts

]
. (5)

III. CATEGORICAL DATA ANALYSIS

Different methods are used in statistics to analyse data with
different characteristics. Categorical data analysis is one of
the statistical approaches to analyse data for data clustering,
correlation analysis, system modelling etc., and has wide appli-
cations in different fields of science and technology [27]–[29].
The British statistician Pearson worked in this field around
1900, then very little development was noticed until 1960’s.
From 1960 till now, several studies have been done for method
development related to categorical data analysis [30].
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For the particular problem addressed in this paper, we
consider that load variations may be positive or negative.1

A. Binomial Representation

There are three basic probability distributions used for cate-
gorical data analysis, i.e., Binomial, Poisson and Multinomial
distributions. The binomial distribution is the special case of
multinomial distribution with only two categories. The demand
variations are modelled here using the binomial distribution,
with two response variables:

1. Increasing demand.
2. Non-increasing demand, including demand decrease and

stationary demand.
Each observation is a Bernoulli trial with only two out-

comes. The total number of observations is fixed to K. Let us
define the outcome of each Bernoulli trial for k = 1, 2, . . . , K
at the particular time step x!ts as:

u(a)
k,x!ts

=
{

1, !pk,x!ts > 0
0, otherwise

(6)

For a particular aggregation level a and time step x!ts
with x = 2, 3, . . . , ns, let u(a)

x!ts be a binomial discrete random
variable, defined as:

u(a)
x!ts ∼ Bin

(
K,ω

(a)
x!ts

)
(7)

u(a)
x!ts =

K∑

k=1

u(a)
k,x!ts

with u(a)
x!ts ∈ {0, 1, 2, . . . , K} (8)

ω
(a)
x!ts = prob

(
u = u(a)

x!ts

)
(9)

For example, if there are K = 100 observations for aggre-
gation level a and time step x!ts, then ω

(a)
x!ts is the probability

to get load increase !pk,x!ts > 0 for u(a)
x!ts times.

B. Maximum Likelihood Estimation

For the binomial model presented in Section III-A, the prob-
ability ω

(a)
x!ts is unknown and needs to be determined using

some suitable estimation technique. The Maximum likelihood
estimation (MLE) method [31], [32] is used for this purpose,
with the formulation indicated in [33] and recalled here in the
Appendix.

The result of MLE becomes:

ω̂
(a)
x!ts = u(a)

x!ts

/
K (10)

The term ω̂
(a)
x!ts is computable because all the parameters are

known, and is also an unbiased estimator because the expected
value is E(ω̂

(a)
x!ts) = ω

(a)
x!ts and the variance is Var(ω̂(a)

x!ts) =
ω

(a)
x!ts(1 − ω

(a)
x!ts)/K.

1A third possibility is to have no load variation, meaning that the possible
load variation in two consecutive demand values is lower than the amplitude
resolution of the meter. This is more likely to occur when the meter resolution
is relatively poor. This possibility is excluded in this paper, leading to the
binomial representation introduced in Section III.A. In order to guarantee
generality and preserve the nature of the binomial model, possible situations
with no demand variation can be associated with either positive or negative
variations. The latter case is used in this paper.

Using the results of MLE in (10) we can write, for all
the numbers of points in the load pattern data with time step
duration !ts, the probability vector in the following form:

ω̂
(a)
!ts =

[
ω̂

(a)
2!ts

ω̂
(a)
3!ts

· · · ω̂
(a)
ns!ts

]
∈ Rns−1. (11)

C. Confidence Interval for Binomial Proportions

The entry ω̂
(a)
x!ts is directly related to u(a)

x!ts and is calculated
based on the outcomes of each trial, uk,x!ts . The probability of
success is the same for each trial, and the trials are statistically
independent of each other. If in one experiment ωx!ts is equal
to 0.6, it may happen that in a second experiment for the same
environment this may be 0.61. We cannot predict the binomial
parameters with 100% accuracy, because the calculations are
not based on the whole population. For this reason, different
methods are formulated to find the confidence intervals (CIs)
for binomial parameters.

The CIs are very informative, because they indicate the level
of uncertainty or randomness of the load increase or decrease.
If in a given time period one scenario has lower CI in com-
parison with another, it means that the former scenario has
a more regular trend about increasing or decreasing the load
in that time period.

There are many established methods in the literature to
calculate CIs [33]. The most simple and basic method is nor-
mal approximation using central limit theorem [34], [35]. This
approximation fails when the trial entries are too low or ω̂

(a)
x!ts

is very close to 0 or 1. These bottlenecks were addressed by
Bidwell Wilson who developed the Wilson score interval in
1927 [36]. For this method, the actual coverage probability
of confidence interval is approximately equal to the nominal
one, even for small number of trials or ω̂

(a)
x!ts closer or equal

to 0.1. This method has advantages in terms of good average
coverage probability, less average expected length and smaller
mean absolute error [33], [35], [37]. Using the modified ver-
sion of the Wilson Score Interval method described in [35],
the upper limit ω̂

(a)
x!ts and the lower limit ω̂

(a)
x!ts for our problem

are calculated as:
(

ω̂
(a)
x!ts, ω̂

(a)
x!ts

)
= ω̂′(a)

x!ts ± Zα/2.σ
′(a)

x!ts (12)

where

ω̂′(a)

x!ts =
(

ω̂
(a)
x!ts +

Z2
α/2

2K

)/(

1 +
Z2

α/2

K

)

(13)

σ ′(a)

x!ts =

√√√√ ω̂
(a)
x!ts

(
1 − ω̂

(a)
x!ts

)

K
+ Z2

α/2

4K2

(

1 +
Z2

α/2

K

) (14)

By using the results of Eq. (12) to (14), we can rewrite (11)
as follows:

ω̂′(a)

!ts =
[
ω̂′(a)

2!ts
ω̂′(a)

3!ts
· · · ω̂′(a)

ns!ts

]
∈ Rns−1 (15)
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Fig. 3. Mean demand variations per customer for different aggregation levels.

The vectors containing the upper and lower limits are,
respectively:

ω̂
(a)
!ts =

[
ω̂

(a)
2!ts

ω̂
(a)
3!ts

· · · ω̂
(a)
ns!ts

]
∈ Rns−1 (16)

ω̂
(a)
!ts =

[
ω̂

(a)
2!ts

ω̂
(a)
3!ts

· · · ω̂
(a)
ns!ts

]
∈ Rns−1 (17)

The binomial probabilities calculated in this section are used
in the next section to define the demand flexibility indicators.

IV. DEFINITION OF DEMAND FLEXIBILITY INDICATORS

A. Conceptual Deduction of the Demand Flexibility Index

Let p̄(a)
x!ts and !p

(a)
x!ts be the mean values of p(a)

x!ts and
!p(a)

x!ts , respectively. Then, from the basic definition of load
variations presented in Section III, we can rewrite (2) as:

p̄(a)
x!ts = p̄(a)

(x−1)!ts
+ !p

(a)
x!ts (18)

The load variations for increase and decrease are separated
for each !p(a)

x!ts . Let +!p
(a)
x!ts and −!p

(a)
x!ts be the mean values

of the load variations for increase in demand and non-increase
in demand. Then, from the definition of weighted arithmetic
mean, we can express !p

(a)
x!ts in terms of the mean values of

load increase or decrease:

!p
(a)
x!ts =

(
u(a)

x!ts

K

)
+!p

(a)
x!ts +

(
1 − u(a)

x!ts

K

)
−!p

(a)
x!ts (19)

By definition, from the MLE of binomial proportions pre-
sented in (10) and (13), u(a)

x!ts/K is the estimated binomial

probability of increase in demand ω̂′(a)

x!ts . Eq. (19) can be
rewritten as:

!p
(a)
x!ts =

(
ω̂′(a)

x!ts

)
+!p

(a)
x!ts +

(
1 − ω̂′(a)

x!ts

)
−!p

(a)
x!ts (20)

where (1 − ω̂′(a)

x!ts) is the binomial probability of non-increase
in demand.

Let us now make the assumption that the mean behaviour
for demand variations (increase and decrease) does not change
with respect to ω̂′(a)

x!ts . Then, !p
(a)
x!ts only depends on ω̂′(a)

x!ts .
To support this assumption, Fig. 3 shows that the cumulative
distribution function (CDF) of the mean demand variations
(divided by the number of customers) is very similar for
different sizes of customer aggregations.

The maximum and minimum ranges of variation of !p
(a)
x!ts

determine the flexibility margins of the actual demand p̄(a)
x!ts

Fig. 4. Comparison of, ω̂′(a)

!ts , 1 − ω̂′(a)

!ts and π (a)
!ts

with a = 50 houses and
!ts = 15 minutes.

at any time step x!ts. The second part of (20) is always neg-
ative or equal to zero, because the mean load variation for the
binomial category of non-increase in demand is either nega-
tive or equal to zero. The actual mean demand p̄(a)

x!ts can be

reduced to its minimum possible value when ω̂′(a)

x!ts is zero and

conversely can be increased at its maximum value when ω̂′(a)

x!ts
is equal to 1.

Let p̄(a)∗
x!ts be the mean aggregate demand with binomial

probability of increase in demand ω̂′(a)∗
x!ts . Then, the amount

of flexible mean aggregate demand can be calculated by
using (18) to (20) as:

p̄(a)
x!ts − p̄(a)∗

x!ts =
(
ω̂′(a)

x!ts − ω̂′(a)∗
x!ts

)
+!p

(a)
x!ts

+
(
ω̂′(a)∗

x!ts − ω̂′(a)

x!ts

)
−!p

(a)
x!ts (21)

Let us now calculate the minimum between the current
probability of demand increase and the complementary prob-
ability, in vector terms:

π
(a)
!ts = min

∀ω̂′(a)
x!ts

(
ω̂′(a)

!ts , 1 − ω̂′(a)

!ts

)
(22)

By definition, the value of each entry π
(a)
x!ts , for x =

2, 3, . . . , ns, belongs to the range [0, 0.5]. In fact, the mini-
mum value of the complementary entries ω̂′(a)

x!ts and (1−ω̂′(a)

x!ts)

is equal to 0.5 for ω̂′(a)

x!ts = 0.5, and is equal to zero when

ω̂′(a)

x!ts = 0 or ω̂′(a)

x!ts = 1. In order to obtain the formulation
of the proposed flexibility index of aggregate demand (FIAD)
(denoted in vector form as ϕ(a)

!ts ) whose entries are defined
in the more intuitive range [0,1] in line with the probabilistic
limits, the probabilities π (a)

!ts are multiplied it by 2 (that is, the
number of categories of the binomial probability distribution
in this case), such that:

FIAD = ϕ
(a)
!ts = 2 × π

(a)
!ts , with ϕ

(a)
x!ts ∈ [0, 1] (23)

The binomial probabilities ω̂′(a)

!ts and 1−ω̂′(a)

!ts with their min-
imum π

(a)
!ts for an aggregation of a = 50 houses and time step

duration !ts = 15 minutes are shown in Fig. 4. It can be noted
that π (a)

!ts gives information about the possible probabilistic
change to the nearest optimum (0 or 1) for each binomial cat-
egory (demand increase or decrease). The entries π

(a)
x!ts are

by definition symmetrical with respect to the level 0.5. In
other terms, any change in ω̂′(a)

x!ts determines opposite changes
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in −!p
(a)
x!ts and in +!p

(a)
x!ts . The overall effect on changing

the aggregate demand will be doubled, as −!p
(a)
x!ts is always

negative or zero (Eq. (21)). For example, if ω̂′(a)

x!ts − ω̂′(a)∗
x!ts is

equal to 0.2, the second term of (21) is positive because both
(ω̂′(a)∗

x!ts − ω̂′(a)

x!ts) and −!p
(a)
x!ts are negative; in this case, the

overall effect will be 0.2 times the first term plus 0.2 times
the second term. This is also true for the opposite case and
provides a further justification to use the multiplier 2 in (23).

From Fig. 4, the region between π (a)
!ts and 0 probability, and

the region between max(ω̂′(a)

!ts , 1 − ω̂′(a)

!ts) and 1 probability are
the regions in which flexibility of aggregate demand does exist.

From (23), if the value of ϕ
(a)
x!ts is very close to 1, then

in terms of load variations we can say that most of the time
there is almost an equal probability of increase or decrease
in demand. This equal probability can be due to two rea-
sons. Firstly, if ϕ

(a)
x!ts is very close to 1 and the aggregate

mean load variations +!p
(a)
x!ts and −!p

(a)
x!ts are very small,

then p̄(a)
x!ts − p̄(a)∗

x!ts will be very small and consequently possi-
ble DR benefits will also be very small. Secondly, if one of
the terms +!p

(a)
x!ts and −!p

(a)
x!ts (or both of them) are reason-

ably high and FIAD is very close to 1, then this information
indicates that the individual customers behave very randomly
in the corresponding time step, and hence there is a chance
to get a reasonable amount of DR benefits. This information
is very helpful for an operator or aggregator, to improve the
economic operation of the system by managing supply and
demand side flexibilities. Further implications on how to pass
from probability values to the amount of flexible demand are
explained in the following subsections.

B. Confidence Bounds for the FIAD

Since the binomial probabilities are calculated from a lim-
ited number of observations, there is an uncertainty associated
with the binomial probabilities, as calculated in Section III-C.
The calculated confidence limits also introduce uncertainty in
the FIAD. This subsection explains the CIs that are associated
with FIAD.

Let π (a)
!ts and π (a)

!ts be the upper and lower bounds of the
CIs for the minimum selected in (22). Then, the confidence
limits associated with the FIAD, ϕ(a)

!ts , can be calculated by
using (24) and (25).

ϕ
(a)
!ts = 2 × min

(
0.5,π

(a)
!ts

)
(24)

ϕ
(a)
!ts = 2 × π

(a)
!ts (25)

The reason for using the multiplier 2 in (24) and (25) is the
same as the one mentioned for (23). The upper limits of one
or more entries of π (a)

!ts may exceed 0.5, and in that case the

corresponding lower bound of max(ω̂′(a)

!ts , 1 − ω̂′(a)

!ts) becomes
a minimum. This is the reason why 0.5 is used in (24) as the
maximum possible upper limit. This kind of situation can be
observed from Fig. 5.

At the time step corresponding with hour 9:00, the minimum
π

(a)
!ts is 1− ω̂′(a)

!ts but the lower bound of ω̂′(a)

!ts is lower than the

Fig. 5. Zoomed view of ω̂′(a)

!ts , 1 − ω̂′(a)

!ts and π (a)
!ts

with their confidence
limits between hour 8:00 and hour 12:00.

Fig. 6. FIAD with its confidence limits (ϕ(a)
!ts

,ϕ
(a)
!ts

) with a = 50 houses
and !ts = 15 minutes.

upper bound of 1−ω̂′(a)

!ts , so there is a possibility that ω̂′(a)

!ts may

become a minimum. On the other hand, if 1 − ω̂′(a)

!ts or ω̂′(a)

!ts
is the minimum for (22), then its lower bound always holds.

The flexibility index FIAD with its confidence limits for
an aggregation of a = 50 houses with !ts = 15 minutes is
shown in Fig. 6. It can be noted that the lower FIAD values
appear during the morning ramp-up and during the evening
peak, that is, in the periods in which there is a consistent
collective behaviour and the aggregate demand becomes more
“rigid” to accept changes.

The above indications give a further input to interpret
the FIAD indicator. The flexibility meant by FIAD is not
a quantitative margin (expressed for instance in kW), but has
a behavioural interpretation in terms of collective trend of
the load aggregation. This definition incorporates both the
possibility of increasing or decreasing the aggregate load,
accepting variations on the basis of the confidence limits
reported in Fig. 6.

For example, a FIAD number close to 100% means that in
the corresponding time period the customers are behaving in
a very random way, so that no collective trend emerges, and
the flexibility to change is high because any external input to
change behaviour could find the consumers “free” to accept
changes without specific conditioning. Conversely, low flexi-
bility values mean that the collective trend is biased enough
to limit the possibility to induce changes in the collective
consumer’s behaviour.

C. Percentage Flexibility Level (PFL)

Let us now introduce a new indicator called percentage
flexibility level (PFL) and denoted as ψ (a)

!ts%
, expressing the

percentage of flexible demand associated with the demand
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flexibility index and defined as:

PFL = ψ
(a)
!ts%

=
+!p(a)

!ts −− !p(a)
!ts

p̄(a)
!ts

(
ϕ

(a)
!ts

2

)

× 100 (26)

This indicator represents what percentage of the aggregate
demand can be reduced or increased without affecting the
average change in demand of the group of customers.

The PFL can be increased if all the customers change
their behaviour from increase in demand towards decrease in
demand or vice versa. This is very difficult when aggregate
customers follow a trend (i.e., ω̂′(a)

!ts is close to 0 or 1) and the
probability to obtain a high PFL is very low. For example, if
an entry of ω̂′(a)

!ts is equal to 0.9 it is very difficult to turn it
into 0; on the other hand, if it is equal to 0.1 it would be easier
to reduce it to about 0. This has been also the reason to define
flexibility as the minimum of the two binomial probabilities
in (22).

The definition of PFL is applicable by taking into account
increase and decrease in demand together. In order to obtain
separate information for demand increase and decrease, it is
possible to consider the maximum PFL for increase in aggre-
gate demand (i.e., !p

(a)
x!ts = +!p

(a)
x!ts) or decrease in aggregate

demand (i.e., !p
(a)
x!ts = −!p

(a)
x!ts , which can only be achieved

with ω̂′(a)∗
x!ts = 1 or 0, respectively (see Eq. (20)). Otherwise,

in order to achieve !p
(a)
x!ts = +!p

(a)
x!ts the probability ω̂′(a)

x!ts
should be increased to 1, with the change equal to 1 − ω̂′(a)

x!ts .

On the other hand, to achieve !p
(a)
x!ts = −!p

(a)
x!ts the probabil-

ity ω̂′(a)

x!ts should decrease to 0. The change required is simply

ω̂′(a)

x!ts . The corresponding values of change in probability can
replace ϕ(a)

!ts/2 in (26) to get maximum flexibility levels with
respect to the binomial categories.

Let +ψ (a)
!ts%

and −ψ (a)
!ts%

be the maximum percentage flex-
ibility levels for increase and decrease in aggregate demand,
respectively. These indicators are defined as shown in (27)
and (28).

+ψ (a)
!ts%

=
+!p(a)

!ts −− !p(a)
!ts

p̄(a)
!ts

(
1 − ω̂′(a)

!ts

)
× 100 (27)

−ψ (a)
!ts%

=
+!p(a)

!ts −− !p(a)
!ts

p̄(a)
!ts

(
ω̂′(a)

!ts

)
× 100 (28)

These indicators represent the maximum demand variation
(in per cent) that may be obtained in the ideal case in which all
the increasing demand changes to decreasing demand, and vice
versa. However, this information refers to load variability but
not to the flexibility that can be obtained from the aggregate
load due to the collective behaviour of the consumers.

A comparison of ψ (a)
!ts%

and −ψ (a)
!ts%

with other related indi-
cators is shown in Fig. 7a and Fig. 7b. The effect of these
indicators for aggregate demand can be seen in Fig. 7c. In
the morning, between hour 6:00 to hour 8:00, there is a large

Fig. 7. PFL, flexible demand and aggregate demand comparisons with a = 50
houses and !ts = 15 minutes.

amount of possible load decrease (since most of the load is
increasing), but this does not correspond to high flexibility
because of the “rigid” collective trend. As such, the FIAD is
close to zero (Fig. 6).

The same effect can be observed between hour 18:00 and
hour 19:00. The PFL and the amount of flexible demand dur-
ing these time slots are very small and can be seen in Fig. 7.
From Fig. 6, the values of FIAD during the day between hour
9:00 and hour 17:00 are varying above 0.5, so a certain flexible
demand is available (Fig. 7b).

During the night, between hour 2:00 and hour 5:00,
the FIAD values are relatively high. These FIAD values
are induced by the load diversity mainly due to the non-
synchronized duty-cycles of the refrigerators that create load
variations during the night period. This effect becomes less rel-
evant when the averaging time step increases, as the patterns
during the night become smoother (see Section V).

D. Confidence Bounds for PFL, +ψ (a)
∆ts%

and −ψ (a)
∆ts%

Since there are confidence limits associated with ϕ(a)
!ts , the

uncertainty associated with ψ
(a)
!ts%

+ψ (a)
!ts%

and −ψ (a)
!ts%

can

be calculated by substituting the confidence limits of ϕ(a)
!ts ,

defined in (24) and (25), into (26) to (28).
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Fig. 8. Comparison of percentage flexibility level ψ(a)
!ts%

for a = 50 and 150 houses.

E. Operational Implications of the PFL Definition

For the system operator, the aggregate residential load is just
one of the contributors to the overall load pattern of a distri-
bution feeder or substation. The possibility of changing the
shape of the overall load pattern depends on how flexible the
different contributors can be. The indicators defined in this
paper for aggregate residential demand may be useful for the
operator’s decision-making to establish whether selected time
periods are feasible to initiate DR programmes involving res-
idential customers. These data are also useful to identify the
statistical properties of baseline patterns considered for testing
the effectiveness of demand response programmes.2

For example, higher values of PFL in some time periods
suggest that a reasonable reduction or increment in aggregate
demand can be achieved in these time periods. To improve
the decision-making effectiveness, the operator may consider
the PFL indicator together with other inputs (e.g., electricity
price). If during a specific time period the electricity price
is high and the PFL is comparatively high with respect to
other time periods with the same electricity price, then ini-
tiating a DR programme to reduce the demand in that time
period may be effective. Likewise, higher values of PFL in
time periods with low electricity price may suggest initiating
a DR programme for increasing demand.

2The formulation of demand response programmes is outside the scope of
this paper.

V. EFFECTS OF AGGREGATION LEVEL AND

TIME STEP DURATION

In the case study applications, K = 100 observations have
been executed for different combinations of a and !ts. For
space reasons, some results are presented here with refer-
ence to load pattern data sets of two different aggregations
(a = 50 and a = 150 houses), with three different time
step durations (!ts = 10, 15, 30 minutes) for each aggregation
level a. The load variations are calculated for each data set by
using (2) to (5). The binomial probability model explained in
Section III-A is used to calculate the random variable u(a)

x!ts for
each combination of a and !ts by using the equations from (6)
to (8). The binomial probabilities ω̂

(a)
x!ts are estimated by using

the MLE estimator explained in Section III-B. To overcome the
limiting cases described in Section III-C, the relocated mean
for binomial proportions and their CIs are calculated using the
methodology presented in [35] by using (12) to (17).

For the different combinations of a and !ts, the indica-
tors FIAD and PFL are calculated by using (23) and (26),
respectively. The PFL provides information about the avail-
able amount of percentage flexible power with respect to
the aggregate demand. The comparison of PFL with differ-
ent aggregation levels and averaging time step durations is
shown in Fig. 8. As discussed in Section IV-C, during the
night the random variations in demand with small amplitudes
are due for example to the non-synchronized duty-cycles of
the refrigerators, and by increasing the averaging time step
duration their effect becomes less prominent. From Fig. 8, for
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the same aggregation level, with the increase in time step dura-
tion a noticeable reduction in PFL can be seen during the time
slot between hour 00:00 and hour 6:00. Conversely, from hour
08:00 to hour 18:00 the change in the PFL level is generally
much lower. A remarkable reduction can be observed in par-
ticular between hour 06:00 and hour 08:00 and between hour
18:00 and 19:00, when the aggregate demand follows a strict
trend towards increase or decrease in demand (see Fig. 4).

VI. CONCLUDING REMARKS

The focus of this paper has been set on the aggregate
demand representing the collective behaviour of the cus-
tomers, in order to quantify the flexibility achievable from the
aggregate load in different time periods. Two novel demand
flexibility indicators referring to residential demand aggrega-
tions have been formulated by using the binomial probability
model of demand variations. The FIAD indicates the flexibil-
ity of aggregate customers in terms of probability of demand
increase and decrease, and the PFL quantifies the per cent
amount of flexible demand available for DSM purposes. These
indicators extract information from demand variations and are
useful for the system operator to select suitable time slots of
the day to initiate DR programmes.

Using aggregate load patterns, the data handled do not
require the knowledge of individual user details. This is
a specific feature of the proposed approach, in which the cal-
culations can be carried out by aggregating the patterns to
discover their collective behaviour from statistical analysis,
without interacting directly with the individual consumer and
the related data. Thereby, in this approach privacy concerns
are not an issue.

Furthermore, the proposed framework does not operate in
real time. As such, possible effects of controls taking place at
a given moment in time on specific appliances are not imme-
diately affecting the outcomes of the statistical analysis that
will consider the overall demand pattern resulting in the time
period of analysis.

A specific analysis has been carried out by considering
different averaging time step durations and different aggrega-
tion levels. The smaller averaging time step duration provides
more granular information about the flexibility in change in
demand behaviour but, particularly for the time slots with
very low aggregate demand, this information is affected by
the inherent randomness in the operation of appliances with
non-synchronous duty cycles. Using variable averaging time
step duration in different time slots of the day (e.g., with longer
duration in the night period) can be a reasonable solution to
mitigate this issue.

The effect of the aggregation level is also significant. When
the aggregation level increases, the aggregate demand pattern
represents more generalized system trend towards change in
demand and is affected by the compensation of the load vari-
ations among the individual users. This compensation makes
the overall demand appearing as more regular in time (with
fewer variations), thus reducing the PFL.

The PFL indicates that the flexibility of the aggregate res-
idential customers studied range from few per cents to about

7% for 150 houses. The maximum value of PFL for demand
decrease could ideally represent the maximum level of flexibil-
ity that can be obtained by introducing incentives for demand
reduction, e.g., within a DR programme. However, during the
time steps when FIAD is close to zero, that is, when the aggre-
gate demand follows a strict trend of increase or decrease, the
difference between the values of −ψ (a)

!ts%
and ψ (a)

!ts%
is rela-

tively high. Hence, in practice when FIAD is close to zero
it is unlikely to succeed in proposing relatively large demand
reductions.

The approach followed in this paper is useful for the oper-
ator to identify how flexible can be the aggregate residential
load in different periods of time. In this way, the operator
can decide whether or not it can be viable to incentivize res-
idential customers to change their demand patterns, taking
into account the flexibility information identified in this paper
to represent the collective behaviour of the residential cus-
tomer aggregation. On the basis of the flexibility indices, the
expected customer response to the incentives can be higher in
some time periods and lower in other time periods, so that
it may be useless for the operator to propose incentives to
residential customers in time periods in which their aggregate
demand is poorly flexible. In particular, in the time periods in
which the values of the FIAD and PFL indicators are low, the
proposal of actions aiming to re-shape the aggregate demand,
even through specific incentives, could be poorly effective,
for example because most consumers would be unavailable to
change their lifestyle in these time periods. This fact limits
the overall demand flexibility. The same actions proposed in
other time periods in which the FIAD and PFL values are
higher (that is, the collective behaviour of the consumers indi-
cates no clear trend towards changing the demand in the same
direction) could find in the set of consumers more candidates
available to accept changes, leading to better ability to re-shape
the aggregate demand under appropriate incentives.

The results presented in this paper have been found by
applying a statistical model of the customers. However, today
the companies managing the customer data have the capability
of gathering simultaneously a sufficient amount of real resi-
dential load data to reproduce data sets similar to the ones
indicated in this paper. For example, let us refer to Fig. 1,
drawn for 100 aggregations of 50 customers each. The same
situation can be constructed by gathering 5,000 simultaneous
real load patterns at 15 min time step duration.

The definition of the flexibility indicators can be applied
to other types of customer aggregations, in particular when
the individual customers within the aggregation have a similar
size, in order to maintain a similar meaning among the entries
used to form the binomial distributions.

The way to exploit flexibility depends of many factors
referring to the customers (including delays, energy payback,
economic incentives, etc.). The indicators developed can be
directly recalculated in case of changing behaviour of the
consumers. The variation of these indicators can be seen
as a further input for specific analyses referring to demand
response. Further studies are in progress to assess the formu-
lation of DR strategies that may use the information given by
the flexibility indicators introduced in this paper.



2642 IEEE TRANSACTIONS ON SMART GRID, VOL. 7, NO. 6, NOVEMBER 2016

APPENDIX

DEDUCTION OF FORMULA (10)

The MLE for the binomial proportions is calculated by using
the following expression, based on the likelihood function L(.):

ω̂
(a)
x!ts = arg max

[
L
(

prob
(

u = u(a)
x!ts

))]
(29)

Eq. (29) can be rewritten by using (9):

ω̂
(a)
x!ts = arg max

[
L
(
ω

(a)
x!ts

)]
(30)

where the term L(ω
(a)
x!ts) is the likelihood function for ω

(a)
x!ts

and for binomial probability distributions it can be defined as:

L
(
ω

(a)
x!ts

)
=
(

K
u(a)

x!ts

)(
ω

(a)
x!ts

)u(a)
x!ts
(

1 − ω
(a)
x!ts

)K−u(a)
x!ts (31)

The log likelihood function is used to estimate ω
(a)
x!ts . Then,

the right hand side of (30) can be written as:

d

dω
(a)
x!ts

[
ln
(

L
(
ω

(a)
x!ts

))]
= 0 (32)

By solving (32):

d

dω
(a)
x!ts

[
u(a)

x!ts ln
(
ω

(a)
x!ts

)
+
(

K − u(a)
x!ts

)
ln
(

1 − ω
(a)
x!ts

)]
= 0

(33)

the derivative yields:

u(a)
x!ts

ω
(a)
x!ts

−
K − u(a)

x!ts

1 − ω
(a)
x!ts

= 0 (34)

Finally, solving (34) with respect to ω
(a)
x!ts gives the esti-

mated probability ω̂
(a)
x!ts in equation (10).
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[15] B. Kladnik, A. Gubina, G. Artač, K. Nagode, and I. Kockar, “Agent-
based modeling of the demand-side flexibility,” in Proc. IEEE Power
Energy Soc. Gen. Meeting, San Diego, CA, USA, 2011, pp. 1–8.

[16] J. A. F. Moreno, A. M. Garcia, A. G. Marin, E. G. Lázaro, and C. A. Bel,
“An integrated tool for assessing the demand profile flexibility,” IEEE
Trans. Power Syst., vol. 19, no. 1, pp. 668–675, Feb. 2004.

[17] W. Zhang, K. Kalsi, J. Fuller, M. Elizondo, and D. Chassin, “Aggregate
model for heterogeneous thermostatically controlled loads with demand
response,” in Proc. IEEE Power Energy Soc. Gen. Meeting, San Diego,
CA, USA, 2012, pp. 1–8.

[18] D. Wang et al., “Performance evaluation of controlling thermostatically
controlled appliances as virtual generators using comfort-constrained
state-queueing models,” IET Gener. Transm. Distrib., vol. 8, no. 4,
pp. 591–599, Apr. 2014.

[19] H. Hao, B. M. Sanandaji, K. Poolla, and T. L. Vincent, “Aggregate
flexibility of thermostatically controlled loads,” IEEE Trans. Power Syst.,
vol. 30, no. 1, pp. 189–198, Jan. 2015.

[20] M. Alizadeh, A. Scaglione, A. Applebaum, G. Kesidis, and K. Levitt,
“Reduced-order load models for large populations of flexible appli-
ances,” IEEE Trans. Power Syst., vol. 30, no. 4, pp. 1758–1774,
Jul. 2015.

[21] J. L. Mathieu, M. G. Vayá, and G. Andersson, “Uncertainty in the flex-
ibility of aggregations of demand response resources,” in Proc. 39th
Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Vienna, Austria, 2013,
pp. 8052–8057.

[22] I. A. Sajjad, G. Chicco, and R. Napoli, “Effect of aggregation level and
sampling time on load variation profile—A statistical analysis,” in Proc.
17th IEEE Mediterr. Electrotech. Conf. (MELECON), Beirut, Lebanon,
2014, pp. 208–212.

[23] I. A. Sajjad, G. Chicco, and R. Napoli, “A probabilistic approach to study
the load variations in aggregated residential load patterns,” in Proc. 18th
Power Syst. Comput. Conf. (PSCC), Wrocław, Poland, 2014, pp. 1–7.

[24] A. Capasso, W. Grattieri, R. Lamedica, and A. Prudenzi, “A bottom-up
approach to residential load modeling,” IEEE Trans. Power Syst., vol. 9,
no. 2, pp. 957–964, May 1994.

[25] A. Cagni, E. Carpaneto, G. Chicco, and R. Napoli, “Characterisation
of the aggregated load patterns for extraurban residential customer
groups,” in Proc. 12th IEEE Mediterr. Electrotech. Conf. (MELECON),
Dubrovnik, Croatia, 2004, pp. 951–954.

[26] E. Carpaneto and G. Chicco, “Probabilistic characterisation of the aggre-
gated residential load patterns,” IET Gener. Transm. Distrib., vol. 2,
no. 3, pp. 373–382, May 2008.

[27] G. C. Simbahan and A. Dobermann, “An algorithm for spatially con-
strained classification of categorical and continuous soil properties,”
Geoderma, vol. 136, nos. 3–4, pp. 504–523, 2006.

[28] N. Sourial et al., “Correspondence analysis is a useful tool to uncover the
relationships among categorical variables,” J. Clin. Epidemiol., vol. 63,
no. 6, pp. 638–646, 2010.

[29] B. Xu, X. Feng, and R. D. Burdine, “Categorical data analysis in
experimental biology,” Develop. Biol., vol. 348, no. 1, pp. 3–11, 2010.

[30] A. Agresti, An Introduction to Categorical Data Analysis (Series in
Probability and Mathematical Statistics). Hoboken, NJ, USA: Wiley,
2007.

[31] A. DasGupta and H. Rubin, “Estimation of binomial parameters when
both n, p are unknown,” J. Stat. Plan. Infer., vol. 130, nos. 1–2,
pp. 391–404, 2005.

[32] B. J. Oommen, S.-W. Kim, and G. Horn, “On the estimation of inde-
pendent binomial random variables using occurrence and sequential
information,” Pattern Recognit., vol. 40, no. 11, pp. 3263–3276, 2007.

[33] R. G. Newcombe, “Two-sided confidence intervals for the single pro-
portion: Comparison of seven methods,” Stat. Med., vol. 17, no. 8,
pp. 857–872, 1998.



SAJJAD et al.: DEFINITIONS OF DEMAND FLEXIBILITY FOR AGGREGATE RESIDENTIAL LOADS 2643

[34] I. Bárány and V. Vu, “Central limit theorems for Gaussian polytopes,”
Ann. Probab., vol. 35, no. 4, pp. 1593–1621, 2007.

[35] L. D. Brown, T. T. Cai, and A. DasGupta, “Interval estimation for
a binomial proportion,” Stat. Sci., vol. 16, no. 2, pp. 101–117, 2001.

[36] E. B. Wilson, “Probable inference, the law of succession, and statistical
inference,” J. Amer. Stat. Assoc., vol. 22, no. 158, pp. 209–212, 1927.

[37] Y. Guan, “A generalized score confidence interval for a binomial
proportion,” J. Stat. Plan. Infer., vol. 142, no. 4, pp. 785–793, 2012.

Intisar Ali Sajjad (S’06–M’16) received the Ph.D.
degree in electrical engineering from Politecnico
di Torino, Turin, Italy, in 2015. He is cur-
rently an Assistant Professor with the Electrical
Engineering Department, University of Engineering
and Technology, Taxila, Pakistan. His current
research interests include smart buildings, power
system analysis, and load management.

Gianfranco Chicco (M’98–SM’08) received the
Ph.D. degree in electrotechnics engineering from
Politecnico di Torino (PdT), Turin, Italy, in 1992.
He is currently a Professor of Electrical Energy
Systems, Energy Department, PdT. His current
research interests include power system and dis-
tribution system analysis, energy efficiency, multi-
generation, load management, artificial intelligence
applications, and power quality. He is a member of
the Italian Association of Electrical, Electronics, and
Telecommunications Engineers.

Roberto Napoli (M’74) received the master’s
degree in electrical engineering from Politecnico di
Torino (PdT), Turin, Italy, in 1969. He is a Full
Professor of Power Systems with PdT. His research
interests include operation, planning, economics, and
security of electric energy systems, domotics, energy
efficiency controls, and electrical safety.


