
08 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A drone-based image processing system for car detection in a smart transport infrastructure / Maria, Gabriele;
Baccaglini, Enrico; Brevi, D.; Gavelli, M.; Scopigno, Riccardo. - ELETTRONICO. - (2016), pp. 1-5. ((Intervento
presentato al convegno IEEE 18th Mediterranean Electrotechnical Conference (MELECON) tenutosi a Cyprus nel 18-20
April 2016 [10.1109/MELCON.2016.7495454].

Original

A drone-based image processing system for car detection in a smart transport infrastructure

Publisher:

Published
DOI:10.1109/MELCON.2016.7495454

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2644953 since: 2016-07-12T08:57:02Z

IEEE

978-1-5090-0058-6/16/$31.00 ©2016 IEEE

A drone-based image processing system for car
detection in a smart transport infrastructure

G.Maria, E.Baccaglini, D.Brevi, M.Gavelli, R.Scopigno
Multi-Layer Wireless Solutions
Istituto Superiore Mario Boella

Turin, Italy

Abstract—In this paper we present a car detection system
prototyped within an experimental project. It analyzes video
streams recorded by drones flying over an urban environment.
The intended final goal is the automatic provision of helpful
information, such as the available parking spaces and the level of
congestion of the streets. The system has been tested both in a
desktop PC and on an embedded system. The experimental
results show a significant accuracy and prove the feasibility of
novel on-board services.

Keywords—car detection; drone-based architectures; smart
transport systems

I. INTRODUCTION

A. Motivation
In the last decades, the growth of traffic has been

impressive. Due to the huge number of cars, traffic congestion
has become a big problem in many cities all over the world, so
much that often people lose non negligible time while locked
in jams. A smart service able to provide the best path to the
destination not only based on distance but also on current
traffic situation, might mitigate this problem. While some
solutions based on mobile sampling are already available over
Internet (e.g. Google Maps [10], Waze [11]), they rely on the
availability of sampling nodes (subscribed to that specific
services) in the congested area: additionally, they cannot
provide details on the situation and on the causes.

In addition, also the identification of empty parking
spaces, over multiple and wide parking lots, is a common
problem in densely populated areas: searching, without
information on the parking status, may take an excessive time,
waste petrol and increase pollution. A smart and automatic
system capable to detect empty parking lots would reduce the
searching time, by finding whether and where a parking space
is available and, in principle, communicating this information
to drivers. For this purpose, a car detection technique is
required in order to obtain information such as the number and
position of unoccupied parking lots.

Image processing can be used to realize both the services.
Still in the area of visual traffic detection, the legacy systems
analyze video streams recorded by fixed cameras installed
along the main streets. This has the advantage to exploit the
knowledge of the background image (the road without cars)
and, consequently, to leverage techniques of background
subtraction for detecting cars – which makes the detection

more robust and easier. However, by using fixed cameras, it
would be necessary installing many cameras to cover a large
monitored road area, due to the limited field of view.
Conversely, by adopting visual sensors in the payload of
UAVs, the traffic information might be easily collected from
aerial videos and, importantly, the mobility of UAV would
permit to monitor a large area; additionally, visual sensors for
UAVs could range from commercial cameras to hyper-spectral
sensors or near-infrared (NIR) ones. Unlike the case of fixed
cameras in traditional monitoring systems, the background in
the UAV imagery changes frequently because of the drone's
motion, thus introducing some new challenges.

B. Related works
Several solutions have been proposed in the last years in

order to develop UAV-based intelligent transport systems. In
[1] authors use a Harris corner detector to extract features of
an image and the features density is used as a rule by a binary
classifier that establishes if a window of the image is a car or a
background area. An algorithm for vehicle detection in aerial
imagery is proposed in [2]. First, the search is limited to a
Region of Interest (ROI) by using color information; then
vehicle detection is performed by using of HoG (Histogram of
Oriented Gradients) features and its application over two
subsequent frames. In [3] a Canny edge detection system and
the classification of extracted edges with K-means algorithm
is proposed, in order to separate cars from background.
Merging of regions very close is made when they can
correspond to different parts of the same vehicle. In the
method presented in [4] the detection is performed on a ROI
using four shaped edge filters that model all possible edges of
a car. If necessary, they can be rotated and lengthened
according to the point of view and the scale of the image. The
method in [5] is able to distinguish stationary cars from those
moving. Here the process is quite complex. Firstly, key-points
are extracted with SIFT (Scale Invariant Feature Transform)
and then tracked in successive frames with a Lucas-Kanade
algorithm. Then, a clustering method is used to classify the
key-points as belonging to the background or moving cars,
based on their speed. Afterwards: in order to identify the
stationary cars, information about edges and colors are used
for the road extraction; cars are separated from the road with a
color analysis. Therefore, the stationary cars are determined
by subtracting those moving, detected in the previous phase.
Finally, it is worth mentioning the algorithm proposed in [6]
for counting cars in parking spaces from aerial images. In this

Project funded by Regione Piemonte under the POR FESR 2007/2013
framework with the participation of EU and Italian state fundings.

Proceedings of the 18th Mediterranean Electrotechnical Conference
MELECON 2016, Limassol, Cyprus, 18-20 April 2016

case, SIFT is used to extract features and a Support Vector
Machine is adopted for classification in order to discard those
belonging to the background. The main issue of the solution
consists in dealing with very shadowed areas. Moreover, false
positives are detected in correspondence of objects rich in
features similar to those of cars, such as fences that have high
density of edges. The algorithm can be quite effective in
determining how many vacancies there are in a parking space,
based on the knowledge of the total number of available slots.

In our work we tried not to miss the advantages of the state
of the art, while making the detection process as
straightforward as possible. The paper is organized as follows.
In Sect.2 we describe the proposed method for car detection in
aerial imagery, as needed both for traffic detection and
parking monitoring. The experimental results, set on an urban
area, are shown in Sect.3. Finally, in Sect.4 the conclusions of
the presented approach are discussed with some insights into
our current and future work.

II. PROPOSED APPROACH
The proposed image processing system analyzes a video
stream taken by a drone, looking for cars and returning some
quantitative measurements. The architecture of the system is
shown in Fig.1 and encompasses several modules. The
objective is to locate the position of cars in the input image so
to be able to count them.
The system receives as an input a video frame which feeds a
frame extraction block. Each frame is then preprocessed to
reduce the computational complexity. This stage is followed
by a car detection algorithm and by a routine which merges
nearby blobs into a single one. The output of the proposed
framework is the number of detected cars and their position.

A. Preprocessing
The first step of the algorithm consists in the frame

extraction from the input video, when necessary and according
to the time constraints (sampling period) of the application.
The processed portion of the frame is a sub-region of the
whole frame for two main reasons. First, this improves the
accuracy of the successive step of car detection: it reduces the
occurrence of false positives which may arise when the
detection is performed on the whole image; in fact it is less
likely that something outside the road that can be
misrecognized as a car. Secondly, analyzing a reduced area of
the image, the required processing time is lower.

In the case of a fixed camera, a ROI can be defined once
and for all to describe the portion to be processed. Instead, for
video streams taken by a drone, the point of view changes
frame by frame, due to the movement of the drone. Hence, for
every input image a ROI has to be automatically determined.
This task can be achieved in two different ways. The first
possibility consists in the ROI definition using information of
position and altitude of the drone, through the integration of
the proposed scheme with a georeferencing system and
knowing crucial parameters e.g. the focal length of the camera
and the flight altitude. An alternative way is to automatically
extract the road limits through an image processing routing
able to detect the edges delimiting the road lanes. Once the

image has been reduced to a ROI, it is preprocessed to convert
it into a grayscale image in order to further reduce the amount
of data to be analyzed. This is feasible because in the proposed
approach the car detection is based on edge and corner
features, extracted using information on the image gradient.
Finally, contrast enhancement is applied to the obtained
greyscale image to improve its aspect.

B. Car detection
The adopted technique for car detection is a cascade

classification as discussed in [7]. It consists in the sub-
sequential application of several sub-classifiers to an input

Figure 1: Block diagram of the system architecture.

image. Every single classifier fetches a specific object,
moving the search window across the image. Several
classifiers are applied until the candidate is rejected at some
stage or all the stages are successfully completed. Moreover, a
cascade classifier uses a pyramid approach so that the image is
resized in order to find the objects of interest at different scale
levels. In fact, by rescaling the input image, in our approach
larger cars are resized to smaller ones, making them still
detectable.

The first step to perform in order to run a cascade classifier
is the training of the classifier itself. This is a preliminary step
and it is usually complex and very time-consuming, since a set
of samples with high cardinality is required as a reference.
Both negative and positive samples are loaded during the
training stage: positive samples correspond to images which
contain the objects of interest, cars in this case; negative ones
correspond to images that contain no relevant objects.

The input image is then analyzed through a sliding search
window that is shifted throughout the image at each scale
level. The window size is the same as used in the training step.
In the proposed framework, the so-called local binary patterns
(LBP) [8] are extracted and then compared to the sample
features in the classifier file.

Detection can be tuned by two parameters, i.e. the
scaleFactor and the minNeighbors. The scaleFactor parameter
specifies how much the image size is reduced at each image
scale using the pyramid approach. In fact, the model has a
fixed size, defined during the training of the classifier.
However, by rescaling the input image, a large car can be
resized to a smaller one, making it detectable by the algorithm.
The minNeighbors parameter, instead, sets the minimum
threshold value of neighbors that each candidate must have to
retain it. If the number of neighbors is under a threshold, then
the candidate is rejected. These parameters affect the
performance of the detector. A low value of scaleFactor leads

PRE-PROCESSING

Frame extraction ROI definition
Grayscale

conversion and
enhancement

Feature
detection ClassificationOverlap check

Video
input

Number
and position

of cars

CAR DETECTION

to a higher detection rate (even with more false positives) and
implies high processing time; conversely, fewer detections
result from the increase of the, but taking less time. As
minNeighbors is concerned, a higher value results in less
detections but with higher accuracy, which means that less
cars present in the image are recalled but also fewer false
positives are returned.

The detection task returns a vector of rectangles,
representing the candidate areas of the image in which cars
should be present. Some false positives may still be returned
by the algorithm.

C. Overlap check
An overlap/inclusion check among candidate rectangles is

eventually carried out, so as to further reduce the occurrence
of false positives due to cars partially overlapped and multiple
detections of a car. Rectangles are pairwise compared to
compute which is the biggest and the smallest, and then their
overlap is computed. If they overlap so much to exceed a
given threshold, then the rectangle with maximum area is
discarded. Also an inclusion may occur, when the overlapping
is complete. Finally, the rectangles which pass the filtering
steps are drawn on the image and the number of detected cars
is returned.

III. EXPERIMENTAL RESULTS
Several tests have been carried out in order to evaluate the

accuracy of the proposed image processing framework for
drone-based car detection. The performance has been tested
both on a desktop environment and on an embedded system to
check the feasibility of the system on small-scale systems. The
test set is made of 300 images, most of them with a 1280x720
resolution, but also with some at 1024x600 pixels. The system
has been implemented in C++, using the OpenCV library.

A. Training
Both positive and negative samples are collected from

different sources:

1) Videos recorded by four fixed cameras installed over an
urban overpass. Although fixed cameras have been used, they
are placed at elevated locations, with an angle similar to the
one that could have a camera mounted on the payload of a
drone flying over the same area. Videos have been recorded at
different hours and in different days in order to consider
varied illumination conditions. Several frames have been
extracted.

2) Satellite orthophotos of an urban environment obtained
through the Google Static Maps API and from Google Earth.
Satellite imagery have been used because of their typical
nadir-looking, equal to the one of a camera that captures
pictures with an orthogonal point of view from a drone.

3) Frames extracted from YouTube videos actually
recorded by drones flying over urban scenarios in cities
throughout the world.

The positive samples have been extracted manually by
cropping cars from source images, while negative samples
have been automatically extracted through a program that

subdivides source images in 200x150 pixels areas. The
training dataset has been built by 2000 negative samples and
3695 positive samples (e.g. in Fig. 2).

Training has been performed using a window size of
20x20 pixels. Although this does not match the typical

Figure 2: Some positive samples.

aspect ratio of a car, it can achieve better results than
rectangular windows, being independent of the direction and
simplifies the detection of cars regardless their orientation
inside the image.

B. Adopted metrics
Precision and recall have been used as quality metrics to

evaluate the performance of the car detection task, defined
respectively as:

Precision = , (1)

Recall = , (2)

The precision metric measures the correctness of the
algorithm, i.e. the percentage of detected cars out of the total
number of detected objects. The recall represents the
capability of the classifier to “find” all the cars in the frame.
Therefore, it is a measure of completeness.

C. Tests on a desktop environment
The tests on a desktop environment have been conducted

on an Intel Core 2 Duo T6400 processor at 2.0 GHz and 4 GB
RAM with Windows 7 32-bit operating system.

The results achieved do not differ much in the four cases
(fixed cameras, Google Earth, Google Static Maps, drones), as
shown in Table 1. On average, tests resulted in a precision
equal to 83.7% and a recall of 51.3%. An example is shown
in Fig. 3.

Source Precision (%) Recall (%)
Google Earth 85.7 51
Google Static

Maps
81.2 52.3

Fixed cameras 83.7 52.8
Drones 86 50.6
Table 1: Precision and recall for the different sources.

Figure 3: In this image, 5 TPs (true positives), 1 FP (false positive) and 4 FNs

(false negatives) can be found. The precision is 83% and the recall is 55%.

The accuracy achieved is considered good, since the precision
is more than 80%; the recall, instead, is not satisfactory yet: a
mean recall value of 51.3% means that on average half of the
cars present in an image are not detected. This is ascribed to
the heterogeneous contents in the training dataset, because
images were extracted from very different sources. A way to
enhance the recall is to increase the number of positive
samples feeding the training process or by better tuning the
classifier with positive samples cropped by the same source.

Precision can be also increased by limiting the car
detection task to a ROI which does not trespass road lanes,
thus avoiding the false positives outside the road. Therefore,
some tests using the same setting of the parameters as before,
have been performed within a rectangular ROI of the input
image, in order to estimate the improvement of accuracy.
Precision increased from 83.7% to 88%. The exclusion of
false positives outside the road lanes is highlighted by the
comparison between Fig. 4 and 5.

The most challenging open issues in car detection are
related to the shadows and light reflections, because they
hamper the recognition of cars in pictures. In particular, the
shadow of a car may be detected as a false positive, thus
affecting the precision metric, while a car may not be detected
due to the brightness of a part of it, with impact on the recall.
In some other cases, cars are not detected due to poor
illumination, because a car of a dark color is not distinguished
by the road surface, or a false positive is returned
corresponding to two cars detected as just one, because of
occlusions since they are very close. All these cases still
deserve additional improvements.

As far as performance is concerned, the average time
required to process a search window has been computed, in
order to have a measurement independent of the image
resolution. The average processing time of a 20x20-sized
window is equal to 7.57 ms.

Finally, a classifier specialized in a specific group of
images has been trained. The chosen imagery is taken from
Google Static Maps, due to the availability of a great number
of samples from this source. In particular 3000 positive
samples and 2500 negative samples were adopted to train the
specialized cascade classifier. This was tested on 57 images
taken from the Google Static Maps test set. Results are

Figure 4: Car detection over an entire input image.

Figure 5: Car detection on a ROI (bounded by yellow lines). It can be noticed

that the false positives on the right of Figure 4 have been avoided.

characterized by a precision equal to 87.5% and a recall equal
to 57.4%. Thus an improvement of 6.3% on precision and
4.1% on recall can be achieved with respect to the previous
tests (before the better definition of ROIs).

D. Tests on embedded system
The proposed car detection system has been ported on an

embedded system in order to evaluate the power consumption
in the case of on-board running. The objective was to study
the feasibility of a real implementation of the system, able to
perform the required tasks and elaborate the resulting data on-
board, so that usable information can be transmitted on
ground, without any further processing. The embedded system
consists in a SECO i.MX6 Quad-core board up to 1.2 GHz per
core. The board is equipped with 2 GB DDR3L memory and a
Unix-like operating system. The processor integrates three
separated accelerators for applications requiring multimedia
capabilities and high levels of parallel computing. In addition,
the board has an embedded additional RTC circuitry for
lowest power consumption.

First of all, the performance of the algorithm on the
embedded system has to meet some time constraints in order
to work in an almost real-time way, since the availability of
empty parking spaces or the detection traffic situation should
not be delayed too much to be effective. Therefore, the same
previous tests have been carried out also on the embedded
platform to measure only the processing - the results in terms

of precision and recall are the same as on the desktop
environment. The average processing time of a 20x20-sized
window is 13.5 ms which can be marked as a very positive
result.

Power consumption was measured as well, so to assess the
charge capacity required for on-board running of the proposed
car detection framework hence for the correct sizing of the
drone's battery. Several measurements of voltage and current
have been collected both in idle state and during the execution
of the algorithm. The embedded system draws 60 to 70 mA
and approximately consumes 3.1 W on average in its idle
state. Instead, while running the visual task it consumes 70 to
80 mA, corresponding to 4.5 W. Therefore, the current
implementation of the system requires approximately 10mA
and 1.3W. This proves the low power consumption of the
algorithm and hence the feasibility to load the embedded
system over a drone. This permits to draw some positive
conclusions and design about the battery of the system. From
previous tests it is known that the average time for processing
a 20x20-sized window is approximately 13.5 ms and the
algorithm requires an amount of current equals to
approximately 10 mA. Assuming to work on imagery of
1280x720 pixels resolution, the required charge to process a
single image is approximately 0.086 mAh, since the mean
processing time for a picture is equal to 31.1 s. A charge of
approximately 10 mAh is then required in order to process
data for an hour.

IV. CONCLUSIONS AND FUTURE WORK
The work here presented focused on the detection of cars

in aerial images taken by drones. The information obtained by
this image processing system, i.e. the number of cars and their
positions, can be used to support drivers with helpful tools, as
instance, for the searching of empty spaces in parking lots.

The proposed approach achieves competitive results both
in terms of complexity and performance. In particular, good
results have been obtained in terms of correctness.
Nevertheless, precision of the detection task can be further
improved by limiting the search of cars only in a sub-region of
the input image corresponding to the road lanes. Since it may
be complex to correctly identify a ROI, due to the changes in
point of view among different images, future works will focus
on smart modules able to extract ROIs either by image
processing techniques or by integrating a geo-referencing
system.

The completeness of the system still needs to be improved,
since today it is able to detect just an half about of total
number of cars in an image. The main cause is identified in the
poor quality of the training set: most of images in the dataset

are satellite orthophotos, thus the resolution of images makes
hard to recognize small details. In addition, satellite imagery
are focused on a large area, hence are characterized by sharp
light transitions which hinder the detection. Another issue is
the heterogeneity of the sample images of the dataset,
collected from different sources. In this way, the classifier is
trained with positive samples characterized by significantly
different orientation, illumination, size, and aspect ratio.
Hence, the key to solve this aspect consists in improving the
training step by enriching the training dataset. The preferred
situation would be to get videos recorded by a drone and
focused on an area with uniform lighting conditions. In the
next years, hopefully more permissive rules on drones flights
would facilitate the collection of appropriate datasets for
training a classifier cut for aerial view from drones.

The car detection algorithm has also been ported onto an
embedded system: the computing time and the power
consumption on the embedded system were measured, so to
evaluate the viability and the energy requirements for a real
implementation of the system on a drone. Results proved the
feasibility both in terms of power consumption and of
performance.

REFERENCES
[1] C.N.Savithri and C.L.Vijai Kumar, “Vehicle Detection From Aerial

Imagery”. International Journal of Advanced Trends in Computer
Science and Engineering, Vol.2 , No.2, pp. 7-13, February 2013

[2] S. Tuermer, J. Leitloff, P. Reinartz, and U. Stilla, “Automatic Vehicle
Detection In Aerial Image Sequences Of Urban Areas Using 3D Hog
Features”. IAPRS, Vol. XXXVIII, Part 3B, September 2010

[3] D. Rosenbaum, B. Charmette, F. Kurz, S. Suri, U. Thomas, and P.
Reinartz, “Automatic Traffic Monitoring From An Airborne Wide Angle
Camera System”. The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, Vol. XXXVII, Part
B3b, pp. 557-562, 2008

[4] K. Kozempel and R. Reulke, “Fast Vehicle Detection And Tracking In
Aerial Image Bursts”. Object Extraction for 3D City Models, Road
Databases and Traffic Monitoring, IAPRS, Vol. XXXVIII, Part 3/W4,
pp. 175-180, September 2009

[5] Y. Yang, F. Liu, P. Wang, P. Luo, and X. Liu, “Vehicle detection
methods from an unmanned aerial vehicle platform”. IEEE International
Conference on Vehicular Electronics and Safety, pp. 411-415, July 2012

[6] T. Moranduzzo, F. Melgani, and A. Daamouche, “An object detection
technique for very high resolution remote sensing images”. 8th
International Workshop on Systems, Signal Processing and their
Applications, pp. 79-83, May 2013

[7] P. Viola and M. Jones, “Robust Real Time Object Detection”. IEEE
ICCV Workshop Statistical and Computational Theories of Vision, July
2001

[8] S. Liao, X. Zhu, Z. Lei, L. Zhang and S.Z. Li, “Learning Multi-scale
Block Local Binary Patterns for Face Recognition”. International
Conference on Biometrics (ICB), pp. 828-837, 2007

[9] Google Maps, https://www.google.it/maps
[10] Waze, https://www.waze.com

