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Abstract—In this paper we present a car detection system 
prototyped within an experimental project. It analyzes video 
streams recorded by drones flying over an urban environment. 
The intended final goal is the automatic provision of helpful 
information, such as the available parking spaces and the level of 
congestion of the streets. The system has been tested both in a 
desktop PC and on an embedded system. The experimental 
results show a significant accuracy and prove the feasibility of 
novel on-board services. 
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I.  INTRODUCTION 

A. Motivation 
In the last decades, the growth of traffic has been 

impressive. Due to the huge number of cars, traffic congestion 
has become a big problem in many cities all over the world, so 
much that often people lose non negligible time while locked 
in jams. A smart service able to provide the best path to the 
destination not only based on distance but also on current 
traffic situation, might mitigate this problem. While some 
solutions based on mobile sampling are already available over 
Internet (e.g. Google Maps [10], Waze [11]), they rely on the 
availability of sampling nodes (subscribed to that specific 
services) in the congested area: additionally, they cannot 
provide details on the situation and on the causes. 

In addition, also the identification of empty parking 
spaces, over multiple and wide parking lots, is a common 
problem in densely populated areas: searching, without 
information on the parking status, may take an excessive time, 
waste petrol and increase pollution. A smart and automatic 
system capable to detect empty parking lots would reduce the 
searching time, by finding whether and where a parking space 
is available and, in principle, communicating this information 
to drivers. For this purpose, a car detection technique is 
required in order to obtain information such as the number and 
position of unoccupied parking lots. 

Image processing can be used to realize both the services. 
Still in the area of visual traffic detection, the legacy systems 
analyze video streams recorded by fixed cameras installed 
along the main streets. This has the advantage to exploit the 
knowledge of the background image (the road without cars) 
and, consequently, to leverage techniques of background 
subtraction for detecting cars – which makes the detection 

more robust and easier. However, by using fixed cameras, it 
would be necessary installing many cameras to cover a large 
monitored road area, due to the limited field of view. 
Conversely, by adopting visual sensors in the payload of 
UAVs, the traffic information might be easily collected from 
aerial videos and, importantly, the mobility of UAV would 
permit to monitor a large area; additionally, visual sensors for 
UAVs could range from commercial cameras to hyper-spectral 
sensors or near-infrared (NIR) ones. Unlike the case of fixed 
cameras in traditional monitoring systems, the background in 
the UAV imagery changes frequently because of the drone's 
motion, thus introducing some new challenges. 

B. Related works 
Several solutions have been proposed in the last years in 

order to develop UAV-based intelligent transport systems. In 
[1] authors use a Harris corner detector to extract features of 
an image and the features density is used as a rule by a binary 
classifier that establishes if a window of the image is a car or a 
background area. An algorithm for vehicle detection in aerial 
imagery is proposed in [2]. First, the search is limited to a 
Region of Interest (ROI) by using color information; then 
vehicle detection is performed by using of HoG (Histogram of 
Oriented Gradients) features and its application over two 
subsequent frames. In [3] a Canny edge detection system and 
the classification of extracted edges with K-means algorithm 
is proposed, in order to separate cars from background. 
Merging of regions very close is made when they can 
correspond to different parts of the same vehicle. In the 
method presented in [4] the detection is performed on a ROI 
using four shaped edge filters that model all possible edges of 
a car. If necessary, they can be rotated and lengthened 
according to the point of view and the scale of the image. The 
method in [5] is able to distinguish stationary cars from those 
moving. Here the process is quite complex. Firstly, key-points 
are extracted with SIFT (Scale Invariant Feature Transform) 
and then tracked in successive frames with a Lucas-Kanade 
algorithm. Then, a clustering method is used to classify the 
key-points as belonging to the background or moving cars, 
based on their speed. Afterwards: in order to identify the 
stationary cars, information about edges and colors are used 
for the road extraction; cars are separated from the road with a 
color analysis. Therefore, the stationary cars are determined 
by subtracting those moving, detected in the previous phase. 
Finally, it is worth mentioning the algorithm proposed in [6] 
for counting cars in parking spaces from aerial images. In this 
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case, SIFT is used to extract features and a Support Vector 
Machine is adopted for classification in order to discard those 
belonging to the background. The main issue of the solution 
consists in dealing with very shadowed areas. Moreover, false 
positives are detected in correspondence of objects rich in 
features similar to those of cars, such as fences that have high 
density of edges. The algorithm can be quite effective in 
determining how many vacancies there are in a parking space, 
based on the knowledge of the total number of available slots. 

In our work we tried not to miss the advantages of the state 
of the art, while making the detection process as 
straightforward as possible. The paper is organized as follows. 
In Sect.2 we describe the proposed method for car detection in 
aerial imagery, as needed both for traffic detection and 
parking monitoring. The experimental results, set on an urban 
area, are shown in Sect.3. Finally, in Sect.4 the conclusions of 
the presented approach are discussed with some insights into 
our current and future work. 

II. PROPOSED APPROACH  
The proposed image processing system analyzes a video 
stream taken by a drone, looking for cars and returning some 
quantitative measurements. The architecture of the system is 
shown in Fig.1 and encompasses several modules. The 
objective is to locate the position of cars in the input image so 
to be able to count them. 
The system receives as an input a video frame which feeds a 
frame extraction block. Each frame is then preprocessed to 
reduce the computational complexity. This stage is followed 
by a car detection algorithm and by a routine which merges 
nearby blobs into a single one. The output of the proposed 
framework is the number of detected cars and their position.  
 

A. Preprocessing 
The first step of the algorithm consists in the frame 

extraction from the input video, when necessary and according 
to the time constraints (sampling period) of the application. 
The processed portion of the frame is a sub-region of the 
whole frame for two main reasons. First, this improves the 
accuracy of the successive step of car detection: it reduces the 
occurrence of false positives which may arise when the 
detection is performed on the whole image; in fact it is less 
likely that something outside the road that can be 
misrecognized as a car. Secondly, analyzing a reduced area of 
the image, the required processing time is lower. 

In the case of a fixed camera, a ROI can be defined once 
and for all to describe the portion to be processed. Instead, for 
video streams taken by a drone, the point of view changes 
frame by frame, due to the movement of the drone. Hence, for 
every input image a ROI has to be automatically determined. 
This task can be achieved in two different ways. The first 
possibility consists in the ROI definition using information of 
position and altitude of the drone, through the integration of 
the proposed scheme with a georeferencing system and 
knowing crucial parameters e.g. the focal length of the camera 
and the flight altitude. An alternative way is to automatically 
extract the road limits through an image processing routing 
able to detect the edges delimiting the road lanes. Once the 

image has been reduced to a ROI, it is preprocessed to convert 
it into a grayscale image in order to further reduce the amount 
of data to be analyzed. This is feasible because in the proposed 
approach the car detection is based on edge and corner 
features, extracted using information on the image gradient. 
Finally, contrast enhancement is applied to the obtained 
greyscale image to improve its aspect. 

 

B. Car detection 
The adopted technique for car detection is a cascade 

classification as discussed in [7]. It consists in the sub- 
sequential application of several sub-classifiers to an input 

 
Figure 1: Block diagram of the system architecture. 

image. Every single classifier fetches a specific object, 
moving the search window across the image. Several 
classifiers are applied until the candidate is rejected at some 
stage or all the stages are successfully completed. Moreover, a 
cascade classifier uses a pyramid approach so that the image is 
resized in order to find the objects of interest at different scale 
levels. In fact, by rescaling the input image, in our approach 
larger cars are resized to smaller ones, making them still 
detectable. 

The first step to perform in order to run a cascade classifier 
is the training of the classifier itself. This is a preliminary step 
and it is usually complex and very time-consuming, since a set 
of samples with high cardinality is required as a reference. 
Both negative and positive samples are loaded during the 
training stage: positive samples correspond to images which 
contain the objects of interest, cars in this case; negative ones 
correspond to images that contain no relevant objects. 

The input image is then analyzed through a sliding search 
window that is shifted throughout the image at each scale 
level. The window size is the same as used in the training step. 
In the proposed framework, the so-called local binary patterns 
(LBP) [8] are extracted and then compared to the sample 
features in the classifier file. 

Detection can be tuned by two parameters, i.e. the 
scaleFactor and the minNeighbors. The scaleFactor parameter 
specifies how much the image size is reduced at each image 
scale using the pyramid approach. In fact, the model has a 
fixed size, defined during the training of the classifier. 
However, by rescaling the input image, a large car can be 
resized to a smaller one, making it detectable by the algorithm. 
The minNeighbors parameter, instead, sets the minimum 
threshold value of neighbors that each candidate must have to 
retain it. If the number of neighbors is under a threshold, then 
the candidate is rejected. These parameters affect the 
performance of the detector. A low value of scaleFactor leads 
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to a  higher detection rate (even with more false positives) and 
implies high processing time; conversely, fewer detections 
result from the increase of the, but taking less time. As 
minNeighbors is concerned, a higher value results in less 
detections but with higher accuracy, which means that less 
cars present in the image are recalled but also fewer false 
positives are returned.  

The detection task returns a vector of rectangles, 
representing the candidate areas of the image in which cars 
should be present. Some false positives may still be returned 
by the algorithm.  

C. Overlap check 
An overlap/inclusion check among candidate rectangles is 

eventually carried out, so as to further reduce the occurrence 
of false positives due to cars partially overlapped and multiple 
detections of a car. Rectangles are pairwise compared to 
compute which is the biggest and the smallest, and then their 
overlap is computed. If they overlap so much to exceed a 
given threshold, then the rectangle with maximum area is 
discarded. Also an inclusion may occur, when the overlapping 
is complete. Finally, the rectangles which pass the filtering 
steps are drawn on the image and the number of detected cars 
is returned. 

III. EXPERIMENTAL RESULTS 
Several tests have been carried out in order to evaluate the 

accuracy of the proposed image processing framework for 
drone-based car detection. The performance has been tested 
both on a desktop environment and on an embedded system to 
check the feasibility of the system on small-scale systems. The 
test set is made of 300 images, most of them with a 1280x720 
resolution, but also with some at 1024x600 pixels. The system 
has been implemented in C++, using the OpenCV library. 

A. Training 
Both positive and negative samples are collected from 

different sources: 

1) Videos recorded by four fixed cameras installed over an 
urban overpass. Although fixed cameras have been used, they 
are placed at elevated locations, with an angle similar to the 
one that could have a camera mounted on the payload of a 
drone flying over the same area. Videos have been recorded at 
different hours and in different days in order to consider 
varied illumination conditions. Several frames have been 
extracted. 

2) Satellite orthophotos of an urban environment obtained 
through the Google Static Maps API and from Google Earth. 
Satellite imagery have been used because of their typical 
nadir-looking, equal to the one of a camera that captures 
pictures with an orthogonal point of view from a drone. 

3) Frames extracted from YouTube videos actually 
recorded by drones flying over urban scenarios in cities 
throughout the world. 

The positive samples have been extracted manually by 
cropping cars from source images, while negative samples 
have been automatically extracted through a program that 

subdivides source images in 200x150 pixels areas. The 
training dataset has been built by 2000 negative samples and 
3695 positive samples (e.g. in Fig. 2). 

Training has been performed using a window size of 
20x20 pixels. Although this does not match the typical  

    
Figure 2: Some positive samples.  

aspect ratio of a car, it can achieve better results than 
rectangular windows, being independent of the direction and 
simplifies the detection of cars regardless their orientation 
inside the image. 

 

B. Adopted metrics 
Precision and recall have been used as quality metrics to 

evaluate the performance of the car detection task, defined 
respectively as: 

 

Precision =       ,      (1) 

 

Recall =       ,      (2) 

 

The precision metric measures the correctness of the 
algorithm, i.e. the percentage of detected cars out of the total 
number of detected objects. The recall represents the 
capability of the classifier to “find” all the cars in the frame. 
Therefore, it is a measure of completeness. 

 

C. Tests on a desktop environment 
The tests on a desktop environment have been conducted 

on an Intel Core 2 Duo T6400 processor at 2.0 GHz and 4 GB 
RAM with Windows 7 32-bit operating system. 

The results achieved do not differ much in the four cases 
(fixed cameras, Google Earth, Google Static Maps, drones), as 
shown in Table 1. On average, tests resulted in a precision 
equal to 83.7% and a  recall of 51.3%. An example is shown 
in Fig. 3.  

Source Precision (%) Recall (%) 
Google Earth 85.7 51 
Google Static 

Maps 
81.2 52.3 

Fixed cameras 83.7 52.8 
Drones 86 50.6 
Table 1: Precision and recall for the different sources. 

 



 

 
Figure 3: In this image, 5 TPs (true positives), 1 FP (false positive) and 4 FNs 

(false negatives) can be found. The precision is 83% and the recall is 55%. 
 

The accuracy achieved is considered good, since the precision 
is more than 80%; the recall, instead, is not satisfactory yet: a 
mean recall value of 51.3% means that on average half of the 
cars present in an image are not detected. This is ascribed to 
the heterogeneous contents in the training dataset, because 
images were extracted from very different sources. A way to 
enhance the recall is to increase the number of positive 
samples feeding the training process or by better tuning the 
classifier with positive samples cropped by the same source. 

Precision can be also increased by limiting the car 
detection task to a ROI which does not trespass road lanes, 
thus avoiding the false positives outside the road. Therefore, 
some tests using the same setting of the parameters as before, 
have been performed within a rectangular ROI of the input 
image, in order to estimate the improvement of accuracy. 
Precision increased from 83.7% to 88%. The exclusion of 
false positives outside the road lanes is highlighted by the 
comparison between Fig. 4 and 5. 

The most challenging open issues in car detection are 
related to the shadows and light reflections, because they 
hamper the recognition of cars in pictures. In particular, the 
shadow of a car may be detected as a false positive, thus 
affecting the precision metric, while a car may not be detected 
due to the brightness of a part of it, with impact on the recall. 
In some other cases, cars are not detected due to poor 
illumination, because a car of a dark color is not distinguished 
by the road surface, or a false positive is returned 
corresponding to two cars detected as just one, because of 
occlusions since they are very close. All these cases still 
deserve additional improvements. 

As far as performance is concerned, the average time 
required to process a search window has been computed, in 
order to have a measurement independent of the image 
resolution. The average processing time of a 20x20-sized 
window is equal to 7.57 ms. 

Finally, a classifier specialized in a specific group of 
images has been trained. The chosen imagery is taken from 
Google Static Maps, due to the availability of a great number 
of samples from this source. In particular 3000 positive 
samples and 2500 negative samples were adopted to train the 
specialized cascade classifier. This was tested on 57 images 
taken from the Google Static Maps test set. Results are  

 
Figure 4: Car detection over an entire input image. 

 

 
Figure 5: Car detection on a ROI (bounded by yellow lines). It can be noticed 

that the false positives on the right of Figure 4 have been avoided. 
 

characterized by a precision equal to 87.5% and a recall equal 
to 57.4%. Thus an improvement of 6.3% on precision and 
4.1% on recall can be achieved with respect to the previous 
tests (before the better definition of ROIs). 

D. Tests on embedded system 
The proposed car detection system has been ported on an 

embedded system in order to evaluate the power consumption 
in the case of on-board running. The objective was to study 
the feasibility of a real implementation of the system, able to 
perform the required tasks and elaborate the resulting data on-
board, so that usable information can be transmitted on 
ground, without any further processing. The embedded system 
consists in a SECO i.MX6 Quad-core board up to 1.2 GHz per 
core. The board is equipped with 2 GB DDR3L memory and a 
Unix-like operating system. The processor integrates three 
separated accelerators for applications requiring multimedia 
capabilities and high levels of parallel computing. In addition, 
the board has an embedded additional RTC circuitry for 
lowest power consumption. 

First of all, the performance of the algorithm on the 
embedded system has to meet some time constraints in order 
to work in an almost real-time way, since the availability of 
empty parking spaces or the detection traffic situation should 
not be delayed too much to be effective. Therefore, the same 
previous tests have been carried out also on the embedded 
platform to measure only the processing - the results in terms 



 

of precision and recall are the same as on the desktop 
environment. The average processing time of a 20x20-sized 
window is 13.5 ms which can be marked as a very positive 
result. 

Power consumption was measured as well, so to assess the 
charge capacity required for on-board running of the proposed 
car detection framework hence for the correct sizing of the 
drone's battery. Several measurements of voltage and current 
have been collected both in idle state and during the execution 
of the algorithm. The embedded system draws 60 to 70 mA 
and approximately consumes 3.1 W on average in its idle 
state.  Instead, while running the visual task it consumes 70 to 
80 mA, corresponding to 4.5 W. Therefore, the current 
implementation of the system requires approximately 10mA 
and 1.3W. This proves the low power consumption of the 
algorithm and hence the feasibility to load the embedded 
system over a drone. This permits to draw some positive 
conclusions and design about the battery of the system. From 
previous tests it is known that the average time for processing 
a 20x20-sized window is approximately 13.5 ms and the 
algorithm requires an amount of current equals to 
approximately 10 mA. Assuming to work on imagery of 
1280x720 pixels resolution, the required charge to process a 
single image is approximately 0.086 mAh, since the mean 
processing time for a picture is equal to 31.1 s. A charge of 
approximately 10 mAh is then required in order to process 
data for an hour. 

 

IV. CONCLUSIONS AND FUTURE WORK 
The work here presented focused on the detection of cars 

in aerial images taken by drones. The information obtained by 
this image processing system, i.e. the number of cars and their 
positions, can be used to support drivers with helpful tools, as 
instance, for the searching of empty spaces in parking lots. 

The proposed approach achieves competitive results both 
in terms of complexity and performance. In particular, good 
results have been obtained in terms of correctness. 
Nevertheless, precision of the detection task can be further 
improved by limiting the search of cars only in a sub-region of 
the input image corresponding to the road lanes. Since it may 
be complex to correctly identify a ROI, due to the changes in 
point of view among different images, future works will focus 
on smart modules able to extract ROIs either by image 
processing techniques or by integrating a geo-referencing 
system.  

The completeness of the system still needs to be improved, 
since today it is able to detect just an half about of total 
number of cars in an image. The main cause is identified in the 
poor quality of the training set: most of images in the dataset 

are satellite orthophotos, thus the resolution of images makes 
hard to recognize small details. In addition, satellite imagery 
are focused on a large area, hence are characterized by sharp 
light transitions which hinder the detection. Another issue is 
the heterogeneity of the sample images of the dataset, 
collected from different sources. In this way, the classifier is 
trained with positive samples characterized by significantly 
different orientation, illumination, size, and aspect ratio. 
Hence, the key to solve this aspect consists in improving the 
training step by enriching the training dataset. The preferred 
situation would be to get videos recorded by a drone and 
focused on an area with uniform lighting conditions. In the 
next years,  hopefully more permissive rules on drones flights 
would facilitate the collection of appropriate datasets for 
training a classifier cut for aerial view from drones.  

The car detection algorithm has also been ported onto an 
embedded system: the computing time and the power 
consumption on the embedded system were measured, so to 
evaluate the viability and the energy requirements for a real 
implementation of the system on a drone. Results proved the 
feasibility both in terms of power consumption and of 
performance. 
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