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1      
Introduction  

 

1.1 Introduction 

The use of computational modeling has become very popular and important in many engineering 

and physical fields, as it is considered a fast and inexpensive technique to support and often 

substitute experimental analysis. In fact system design and analysis can be carried out through 

computational studies instead of  experiments, that are typically demanding in terms of cost and 

technical resources; sometimes the systems characteristics and the technical problems make the 

experiments impossible to perform and the use of computational tools is the only feasible option. 

Demand of resources for realistic simulation is increasing due to the interest in studying complex 

and large systems. Many systems with these characteristics, involving different phenomena, are 

modeled and studied through computational tools. It is possible  for example to think to the 

weather forecast, the prediction of wave surge in areas below the sea levels (Figure 1.1b) (Verlaan 

1998; Booij et al 1999), the crowd dynamic simulation for the achievement of effective 

evacuation strategies (Figure 1.1a)  (Helbing et al 2002 ; Schadschneider et al 2009), and air 

quality model aimed at evaluating the pollutant concentration in the atmosphere when a specific 

scenario takes place (Figure 1.1c)  (Horowitz et al. 2003, Seaman 2000). All these examples show 

that sometimes systems involving large spaces have to be studied with a sufficient level of detail, 
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trough the use of simulation. Clearly to perform these kinds of studies large computational 

resources are required. Not only large systems model require high computational cost, but also 

small domain systems that require an high level of detail. Molecular dynamics studies for the 

analysis of proteins (Figure 1.1d)  (Romo et al 1995) and the design of LCI circuits for processor 

unit (Antoulas 2005) are some examples. 

 

    

               

   

Figure 1.1. Examples of complex systems modeling.  

a) Crowd dynamic Analysis (Narain et al 2009) b) Waves surge Prediction (Dietrich et al 2011),  

c) Air Quality Analysis (Piters et al. 2012) d) Molecular dynamics studies (Karplus and Kuriyan 

2005) 

 

In these framework smart modeling approaches and model reduction techniques play a crucial 

role for making complex and large system suitable for simulations. Moreover, it should be 

considered that often more than one simulation is requested in order to perform an analysis. For 

instance, if a heuristic method is applied to the optimization of a component, the model has to be 

run a certain number of times. The same problem arises when a certain level of uncertainty affect 

the system parameters; in this case also many simulation are required for obtaining the desired 

information. This is the reason why the use of technique that allows to obtain compact model is an 

interesting topic nowadays. Many of the system previously reported, by way of example, are 

d 

b 

c 
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modeled using approaches or reduction techniques able to simplify the used model in order to 

reduce the needed computational resources

transfer are modeled and reduced in order to obtain fast tools for operational purpose.

1.2 Compact model achievement

By technique for compact model achievement

consists in simplifying the full initial model with the goal of performing simulations within an 

acceptable amount of time and limited computational resources, but with reliable results 

(Schilders 2008). This allows to

optimization of the physical systems modeled 

techniques to obtain compact model can be, in the author opinion, gathered in the following three 

groups: 1) the approaches for model simplification and multi

approximation techniques and 3) the physical model reduction techniques (Figure 1.2).

Figure 1.2. Compact model achievement techniques

 

The simplest reduction approach to 

sufficient level of detail that is necessary for the analysis of a particular system, or to chose 

different levels of detail for analyzing the different parts of the studied system. Often, when a 

system is modeled trough the governing equations expressing the physical phenomena, some of 

the aspects are negligible in terms of  effects on the main results which are of interest. Therefore, 

it is often possible to simplify the model excluding some contribu

the results. This approach can be applied to the entire system or only in some parts of it. In the 

first case a simplification of the overall system is performed, in the second case, a multi

multi-scale approach is obtained. The multi

of the system with different levels of detail. An interesting example is that of simulating what 
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modeled using approaches or reduction techniques able to simplify the used model in order to 

needed computational resources. In this thesis, three large systems involving heat 

transfer are modeled and reduced in order to obtain fast tools for operational purpose.

1.2 Compact model achievement 

ompact model achievement it is intended a problem resolution method which 

consists in simplifying the full initial model with the goal of performing simulations within an 

acceptable amount of time and limited computational resources, but with reliable results 

(Schilders 2008). This allows to facilitate or enable simulations for design, control and 

optimization of the physical systems modeled (Benner, Faßbender 2015).  The most common 

techniques to obtain compact model can be, in the author opinion, gathered in the following three 

he approaches for model simplification and multi-level approach, 2) the model 

approximation techniques and 3) the physical model reduction techniques (Figure 1.2).

. Compact model achievement techniques 

The simplest reduction approach to avoid high computational complexity consists in choosing the 
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happens in a tunnel where a fire takes place, as reported in Colella et al 2011 (Figure 1.3a).  In the 

part in the vicinity of operating jet fans or close to the fire source the flow field has a complex 3D 

behaviour with large transversal and longitudinal temperature and velocity differences. In these 

areas a 3D-model has been used. Contrarily at high distances from these regions, temperature and 

velocity gradients become smaller and therefore the flow behaviour can be analyzed trough a 1D 

model. Clearly the main advantages of these kind of approach is mainly related to the 

considerable reduction of computational time compared to the use of a 3D model for the entire 

system. Another example (Quarteroni et al 2003) regards the simulation of the blood flow (Figure 

1.3b). In this work a full 3D model description of blood flow through Navier– Stokes equations is 

used in a particular area of an arterial. The other parts of the circulation system are analyzed 

trough a 1D model. The full 3D model and the 1D model are coupled with the aim of obtaining a 

multi-level model. Results of these studies show that it may not be necessary to calculate all 

details for obtaining an accurate simulation of the considered phenomena. 

 

Figure 1.3. Multi-level approach applied to: a) tunnel ventilation ( Colella et al 

2011 )  

b) blood circulation ( Quarteroni and Veneziani et al 2003) 
 

Another approach to obtain fast simulations consists in using compact models obtained through 

functions able to approximate the system behaviour. In this case a series of experimental data or 

full model results can be used in order to build the compact model. As an example neural 

networks are a modeling tool able to estimate or approximate functions; it has been used in 

different fields, such as system control (Irwin et al 1995), geotechnical engineering (Shahin et al 

2001), medical imaging (Miller and  Blott 1992), business analysis (Wong et al 1997).  

A very effective method for fast fitting is the use Radial Basis Functions (RBFs).  RBFs are not 

used only for data fitting, as for mappings of two- or three-dimensional images (Figure 1.4) (Arad 

T AL 1994)  and  for fire detection (Angayarkkani and Radhakrishnan 2010) but also to for the 

local reconstruction of solutions of algorithms which solve numerically the conservation laws  

(Iske and Sonar 1996, Pollandt 1997).  

b 
a 
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Figure 1.4.Interpolation approach:RBF for image detection and reduction (Samozino et 

al 2006 ) 

 

Another opportunity consists in using some mathematical techniques for capturing the main 

features of the analyzed system. The modeling of physical dynamical systems usually leads to a 

set of partial differential equations (PDEs) or ordinary differential equations (ODEs). However 

after the discretization it is common to obtain a set of ODEs and algebraic equations. In this case, 

model reduction approach consists in finding a smaller set of ODEs that is able to well describe 

the system evolution. The two main families of such model reduction techniques are the Krylov 

methods and SVD related methods. Krylov methods are mainly used in applications such as the 

electronic circuits, when the system complexity becomes really high (Antoulas 2005). Instead, 

SVD methods are characterized by several features that make them suitable to be used in the area 

of computational fluid-dynamic (Schilders 2008).Among these features, it is worth reporting the 

fact that these methods are able to preserve model stability; in addition some of them can be also 

applied to non-linear models. 

A very effective SVD method that can be used for both linear and non-linear system reduction is 

Proper Orthogonal Decomposition (POD). The possibility of using POD for studying non-linear 

partial differential equations is a very powerful option. This method is the most common in the 

area of computational fluid-dynamic. 

In the Chapter 2 an accurate description of the POD technique is provided. In Figure 1.5 the use 

of POD technique for evaluating the main problem eigenfunctions is applied to reactors physics 

(Buchan et al. 2013). 

Further developments of the POD have been obtained through proper generalized decomposition 

(PGD), a technique that allows one to compute a priori, by means of successive enrichment, a 

representation of the unknown field (Chinesta et al 2011). In PGD the obtained model is solved 

once for life, in order to obtain a general solution including the solution for all the possible 

parameter values (Chinesta, et al 2013). 
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Figure 1.5. Model reduction technique: POD eigenfunctions  of  a reactor analysis 

 (Buchan et al. 2013) 

 

In this work the different reduction approaches and strategies have been used in order to analyze 

three energetic systems involving large domain and long time, one for each reduction approach 

categories.  

 

• The first topic analyzed is the analysis of groundwater temperature perturbations due to 

geothermal heat pump installations.  

• The  second system analyzed is the district heating network (DHN), studied from both the 

fluid-dynamic and thermal point of view and applied to the Turin district heating system 

(DHS) 

• The third topic is included in the fire safety field and it is the wildfire propagation 

simulation. 

 

In all the topic considered, a smart model has been adopted and, when data were available, tested 

using experimental data. All the model are characterized by large domain and the time involved in 

the analysis are high in all the cases, therefore a method for compact model achievement is used 

in all the cases. In the next paragraphs the developed tools are presented and then they are 

analyzed in details in the next Chapters. 

 

1.3 Applications 

 For each of the systems analyzed a suitable method for speeding up the model is selected.  

• As regards the groundwater application the system can be easily considered as made up 

of two parts: the first part is the area near the wells where the temperature gradients are 
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larger and fluid flow occurs with three dimensional features; the second part is composed 

by the areas far from the wells, where the occurring gradients are smaller. Therefore a 

multi-level approach is used for the model computational cost reduction. 

• As regards the DHS modeling, the aim is at first obtaining a physical model to be applied 

generically to the network and secondly to produce a fast tool for the operational 

optimization of the Turin DHN. Interpolation method is a good option due to the fact that 

tool has to be applied always to the same network and it has to be sufficiently fast.  

• As regard the wildfire system, the aim is to carry out a physical model to be used for 

different landscape propagations, in different situations, like different meteorological 

conditions, fuel type, orography, landscape dimension, etc. In order to take in account all 

these characteristics and the possibility of using fire retardants and extinguishing 

substances a physical model has been used. The model should be fast even if the 

phenomenon taking place in the system are very complex, and it has to run many times 

for take into account the parameters uncertainty. A multi-level model by itself it is not-

sufficient in order to reduce the computational cost due to the high complexity of the 

system where the combustion takes place; furthermore the use of interpolation approaches 

is less robust then a physical model reduction and it could interfere with the possibility to 

use the model in different landscape. In order to solve this problem, a physical model 

reduction technique is the natural choice for the current system.  

1.3.1 Groundwater analysis  

Geothermal heat pump is a technology that is expected to play a major role in future energy 

scenarios. In the case of groundwater flow, open loop heat pumps can be applied. Their main 

advantage is the very high efficiency that can be reached through the use of groundwater which is 

typically at a temperatures of 15 °C. On the other hand, the proliferation of such systems in urban 

areas may generate problems related to environmental impact on water basins and interactions 

between the various installations. Both these issues are associated with the thermal plume 

produced by the heat pump during operation. This effect is particularly evident in the case of open 

loop systems, because of the large advective heat transfer. The impact of an installation has to be 

calculated through thermo-fluid dynamic models of the subsurface. The groundwater area affected 

to the thermal plume is very wide. The simulation domain has therefore to be large enough to 

include all the involved groundwater area, especially downstream the various heat pump 

installations that are analyzed. Furthermore an unsteady model has to be used because of the 

changes in heat pump operating conditions during the different seasons considered. In fact the 

groundwater velocity is very low (about 10
-4 

m/s) and therefore a very long time should be 

considered to obtain complete information on the groundwater thermal plume. These are the 
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reasons why a full 3D model may become too time consuming for achieving results in a 

reasonable wait.  

In this work, due to the potential large extension of the area which can be affected and the long 

time period to be simulated, a multi-level approach, combining CFD 3D and a 1D models, is 

proposed. This model is coupled with the thermal request of the users and the heat pump 

performances through appropriate boundary conditions imposed at the wells. Various scenarios 

corresponding to different operating modes of the heat pump are considered. This part of the work 

is described in the Chapter 3 of the thesis. 

1.3.2 District heating system applications 

District heating (DH) is considered a very efficient option for providing heating and domestic hot 

water to buildings, particularly when they are located in densely populated areas (Lund  et al. 

2010). The main advantage of DH systems consists in the possibility of utilizing the waste heat 

from industries or waste-to-energy plants or the heat generated by a number of efficient/low 

carbon thermal plants, such as cogeneration plants, and biomass (Roos et al. 2003) , solar 

(Lindenberger et al 2000) and geothermal (Østergaard et al 2010) systems.  

An important aspect to achieve high efficiency in DH is the optimization of the operating 

conditions that the system has to face in order to comply with the household thermal request. In 

the literature, various works deal with the analysis of supply temperature during daily 

(Benonysson et al 1995) and seasonal operations (Pirouti et al 2012) or with the selection of the 

optimal supply and return temperatures (Laajalehto et al. 2014). In (Gustafsson et al 2010) a 

control approach is proposed in order to increase the temperature difference across the substations 

with a consequent increase of overall performances. In (Jiang et al. 2014), the operating 

conditions of a district heating system are optimized acting both on the set-point temperature of 

the boilers and on the water flow of the pumps; the total fuel consumption is considered as the 

objective function to be minimized. In (Verda and Baccino 2014) and (Jokinen et al 2014)  the 

opportunities to modify the thermal request profile of some users are investigated to maximize the 

heat production from cogeneration or renewable plants.  

In order to improve the network performances and select optimal operations and management 

(Aringhieri and Malucelli 2003),  network analysis in different working conditions are important 

subjects. This necessity is related to technical, economical and environmental reasons. In 

particular, investigation on systems responses to configuration variations or user request variation, 

aiming at achieving primary energy reduction, can be achieved using models and simulation tools. 

This is the reason why DHS modeling have been applied in both design (Ancona et al. 2014) and 

management stages (Bojic and Trifunovic 2000). An important detail that DH system model 

aiming at real time operations have to posses is the rapidity. In fact if a model is used for 



 

obtaining information on the best operation in a particular operating condition (of ma

or not), results have to be provided as quickly as possible. Low computational cost becomes more 

important when the DHN analyzed involve large spaces. In this case, the 

obtaining fast models is crucial. 

In this work the minimization of the primary energy consumption in a DHN

two different aspects (Figure 1.6). In the first part of the DHS analysis the pumping cost 

connected with the water distribution along the network is minimized selecting the optima

operating strategy. The second part is instead connected to the minimization of the morning 

thermal peak, since peak reduction allows a better exploitation of the cogenerating systems.

 

Figure 1.6. DHS operation strategy improvement analysis

 

1.3.2.1 District heating system modeling for pumping cost minimization

In DHSs the energy consumption for pumping operation is not negligible because of the 

significant pressure drops that may be registered and the large number of operating hours. This is 

particularly important for large extension networks and for network operating with small 
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significant pressure drops that may be registered and the large number of operating hours. This is 
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operating strategy. The second part is instead connected to the minimization of the morning 

thermal peak, since peak reduction allows a better exploitation of the cogenerating systems. 
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In DHSs the energy consumption for pumping operation is not negligible because of the 

significant pressure drops that may be registered and the large number of operating hours. This is 

larly important for large extension networks and for network operating with small 
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temperatures. Modeling and simulation of DHS pumping system is of a great importance for 

implementing operational improvements. The aim of this part of the work is to find the set of 

pumping pressures that should be applied to the pumps located along the network in order to 

minimize the total electricity consumption for a given operating scenario. In order to perform the 

minimization a physical model has to be used in order to evaluate mass flow rates and pressures 

along the network. Simulation and optimization of DHNs may involve large computational 

resources, particularly in the case of large DHNs and when the number of scenarios to be 

examined is high. This is the reason why optimization is carried out through two different model 

approaches. The first model is a fluid-dynamic model based on mass and momentum conservation 

equations which considers the network topology through a graph approach. The second method is 

a reduced model, which has been derived from the fluid-dynamic model. Model reduction is 

obtained through the combination of proper orthogonal decomposition (POD) and radial basis 

functions (RBF).  Both the full physical model and the POD-RBF model are used in order to find 

the optimal set of pumping pressures that minimizes the mechanical power that should be applied 

to the working fluid (i.e. the efficiency of the pump and the efficiency in the overall energy 

supply chain from primary energy to electricity production have not been considered) to fulfill the 

thermal requests of the various users, once the heat production of each plant is fixed.  In the 

following, this objective function has been indicated as pumping cost, which should be intended 

as a cost expressed in energy units. An analysis with different thermal loads has been performed 

because of the peculiar characteristics of district heating networks which operate for a large 

number of operating hours in off-design conditions because of request variations, possible 

malfunctions, etc. Therefore a careful analysis of optimal operating conditions is necessary to 

achieve high levels of the annual efficiency. The heat flow supplied by each thermal plant is 

provided as an input of the model by setting the water mass flow rates exiting the various plants. 

The optimization of the pumping strategy is deeply analyzed in Chapter 4. 

1.3.2.2  District heating system modeling for thermal peak shaving 

The large amount of thermal power required to the DHS between 5 am and 7 am leads an high 

quantity of heat produced through boilers. In fact only a fraction of the thermal peak request is 

supplied using cogeneration groups with a consequent decrease of the overall system 

performances. In order to reduce this problem, different managements changes can be considered. 

Two of possible options are the installation of storage systems and the variation of user behavioral 

constraints in order to obtain a more flat thermal load profile. The analysis of the effects produced 

by the systems and the operation changes can be studied through proper network modeling. With 

this aim, a method for solving both thermal and hydraulic DHN problems for the analysis of large 

district heating systems (also involving loops) is presented. The model capability to reproduce 

network behavior is tested through some experimental data collected in the Turin district heating 
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system. This is the largest network in Italy as it connects more than 5000 buildings and large 

users. The model predicts the evolution of heat power required during the daily transient. Results 

are compared with real data. The model is reduced in order to obtain a faster tool for the 

operations managements and then it is applied for analyzing possible techniques intended for 

shaving morning peak, with the aim of reducing primary energy consumption. Details about the 

thermal peak shaving analysis are presented in Chapter 5. 

1.3.3 Wildfire fast modeling applications 

Wildfire propagation models have been widely applied to the prediction of fire front evolution, in 

order to obtain useful information for evacuation plans and fire management. A major difficulty 

in treating wildland fires is related to the complexity of the phenomena that are involved. In 

addition, it is difficult to obtain accurate input data for the models, especially in the case of on-

going fire events. Results obtained from models are therefore affected by errors. 

        

Figure 1.7. Wildfire propagation prediction models 

a) Physical model ( WFDS, Mell at al. 2007)  

b) Empirical model (Behave, Burgan and Rothermel 1984 ), 

 

Over the last decades, empirical and physical based models have been proposed (Figure 1.7). 

Physical models of wildfires are of particular interest in fire behaviour research as well as for 

applications to firefighting, rescue and evacuation. They are able to provide information and 

details about the fire propagation which can be used for fire safety management. Furthermore, 

physical models allow one to analyze possible approaches for fire extinction or for fire 

propagation delaying. Nevertheless, physical models present a drawback related to the large 

computational resources that are often necessary, with respect to empirical models. The latter 

models treat the interaction between the physical phenomena in a oversimplified manner but very 

fast.  

The computational time requested by fire propagation models computational time is a very 

important characteristics, for many reasons. At first because the results obtained are used for the 
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rescue operations and they have to be provided  a fast as possible. A second reason is related to 

the fact that a large number of fire propagation simulations is required when risk analysis are 

carried out. In particular, two main important actions in fire safety analysis are the estimation of 

the real time risk analysis and the preventive evaluation of risk.  

• The real time risk analysis covers a primary role when fire is spreading and a prediction 

of the future propagation is required for planning safety measures and rescue actions. In 

this case multiple simulations are requested; it is mainly due to the uncertainties related to 

the input data, such as wind and weather data, available from meteorological stations, fuel 

characteristics and orographic characteristics data, that are often inaccurate. Furthermore, 

predictions related to the change of the input data during the fire event and the 

effectiveness of firefighting actions are necessary. Results obtained from models are 

therefore affected by errors. Multi-simulation approaches are useful in order to determine 

risk probabilities for critical areas, but  this requires the use of suitable models in order to 

perform large number of simulations.  

• The preventive risk analysis has the aims to evaluate the risk related to the occurrence of 

a fire event in a certain area. This kind of analysis allows one to estimate the risk level in 

the various areas, for the following period. This is crucial in order to have troops and 

means prepared to intervene. In order to estimate the preventive risk not only different 

simulations have to be performed to take into account the uncertainties of model 

parameters but also different ignition points have to be considered. The number of 

simulations required in this case is very large and also the area to be considered. 

Therefore only very fast model prediction can be used for preventive risk analysis 

purposes. 

In this framework the objective of this part of the thesis is to present the application of Proper 

Orthogonal Decomposition (POD) to wildfire physical modeling, with the aim of reducing the 

computational time but keeping the main features of the original model. First, a simple full 

physical model is tested with experimental data to check its ability to simulate wildfire behaviour 

and then it is reduced using the POD technique. It is shown that the reduced model is able to 

simulate fire propagation with small deviations with respect to the physical model  with a drastic 

reduction of the computational cost. The results and the potential applicability of POD to more 

complex models are then deeply discussed. A fast 2D model is also implemented in order to 

perform quickly the wildfire landscape propagation. The topic is analyzed in depth in Chapter 6. 
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2      
Compact model achievement: 

selected technique 

2.1 Introduction 

In the present Chapter the methods selected to obtain compact models for the analyzed 

systems are described. In paragraph 2.2 the Multi- Level approach is described. Multi-Level 

technique is applied to the modeling of the groundwater systems, for the evaluation of the thermal 

plume effects on the unperturbed condition (Chapter 3). In paragraph 2.3 the Proper Orthogonal 

Decomposition method is described; at first an introduction based on Principal Component 

Analysis is provided to explain the main idea the method is based on. The POD  method 

demonstration has also been provided. Then the paragraph 2.4 includes a discussion on the POD-

RBF technique. The POD-RBF model has been applied to the Turin DHN for the development of 

a fast tool for the optimization of the operating conditions. In particular it has been applied to a 

model for optimizing the pumping system strategy (Chapter 4) and to a fluid-dynamic model for 

the thermal peak shaving (Chapter 5). In the end, the application of POD to physical model 

reduction technique is explained. This approach has been implemented to show its capability to 

create fast physical models for wildfire propagation prediction. 
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2.2 Multi-Level Approach 

Multi-level is a model reduction technique based on the idea of considering the different parts of a 

systems with different levels of detail. Often it is not worth to consider all parts of a system with 

the same level of detail. In these cases, the use of CFD models for simulating the behaviour in 

these areas produce an high increase of the computational cost without particular improvements in 

terms of accuracy of the results. In these cases it is useful to adopt different models in the 

different parts of the systems for having a good description of the zones where the most important 

phenomena occur. Usually, a full CFD model is used in the areas where quantity of interest show 

a full 3D behavior. On the other hand the reduced model is employed where less detailed analysis 

is required. This method is particularly efficient in reducing computational cost when the full 3D 

model is used only in a small portion of the entire computational domain.  In particular the area 

where the most important phenomena occur, and the variable assume an high variability in more 

than one component,  is called near field. The area where the variable gradient are small is called 

far field.  

As already mentioned in the introduction chapter, many works in literature show the interest in 

such approach. A subject where multi-level approach has been widely used in simulation related 

to human body, like modeling of blood flow (Quarteroni et al 2001, Kerckhoffs et al 2007, 

Blanco et al 2009) and tissue perfusion (D'Angelo and Quarteroni, 2008). More generically a 

fluid flow in compliant vessel is analyzed in Formaggia et al 2001. Another important field where 

this kind of approach has been used is the tunnel ventilation analysis in case of fire (Colella et al 

2011).  

 
In a multi-level model, the full CFD and the reduced parts exchange each other information at the 

interfaces. There are two different coupling types: the 1-way coupling and the 2-way coupling 

(Colella 2010). 

• In the 1-way coupling the information are exchanged in only one direction; one of the 

two models passes its results to the other model but it does not receive any information 

from the other model. This coupling approach can be used when one of the two coupled 

parts of the system does not affect the other. 

• In the 2-way coupling information flows in both the direction. Therefore the most 

detailed model provides its results to the less detailed one; in the same way the less 

detailed model passes its results to the more detailed one. In this case both the parts of the 

system affect the others. When a 2-way coupling is used an iterative approach has usually 

to be applied in order to continuously pass information trough the interface.  

 

In general the information that are passed through the interfaces represents the boundary 

conditions for the receiving part of model, for both coupling approaches. Coupling differs on the 
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basis of the type of boundary conditions that are passed. In case of 1-way coupling, the results of 

a model have to be manipulated in order to make them suitable to be applied as boundary 

conditions of one or more simplified models. In case of 2-way coupling a more detailed work is 

necessary because in both the interface side the boundary conditions have to be imposed. In this 

case there are three kinds of information passage at the interface (Quarteroni and Valli 1999): 

· Dirichlet boundary condition applied at both the sides. 

· Dirichlet boundary condition applied to one side and  Neumann to the other side 

· Neumann boundary condition applied at both sides. 

During the information passage a proper manipulation has to be perform to make the results of a 

model suitable for the use in the receiving  model. This can be obtained through interpolation. 

2.3 Proper Orthogonal Decomposition  

2.3.1 Introduction of POD 

Proper Orthogonal Decomposition (POD) (Pearson 1901) is a reduction method based on the idea 

that the output of a systems at different times contains the essential behaviour of the system. This 

approach is frequently used to reduce many CFD problems. POD method allows one finding, as 

demonstrated in paragraph 2.3.3, among the problem decomposition, the best one, in terms of 

approximation error. The strong point of POD is that it can be applied to both linear and non-

linear problems, described with a system of ordinary equations, and it gives an optimal projection 

of the problems, as detailed in the next paragraph. This method has received much attention for 

the reduction of complex physical systems and it was used in different fields of science and 

engineering, such as the analysis of turbulent fluid flows (Lumley at al. 1967; Holmes P. at al. 

1993), multiphase flow (Brenner at al. 2012), unsteady thermal systems (Buljak et al. 2011), 

structural dynamics (Krysl et al. 2001), images processing (Rosenfeld and Kak 2014), systems 

involving chemical reactions (Shvartsman et al. 2000) and many other fields.  

2.3.2 POD method basic idea 

The mathematical procedure POD is based on has been developed in the last century and applied 

to different fields with different names (Buljak 2011). In 1933 POD theory was developed in the 

statistic field, with the name of Principal Component Analyses (PCA, Hotteling 1933). It is a 

method which aims at reducing the dimensionality of a data set including large numbers of 

correlated variables. Considering n variables for each p observations, they can be gathered in a 

matrix as follows: 

 



 

 

where, xik, gives the value of the k

PCA it is convenient to consider a case where n

with x1 and x2, the set of data can be easily plot as shown in Figure 2.1a. In order to reduce the 

number of variables to 1, losing the smallest amount of information, the best way is to consider, 

as new variable, the one which maximizes the data variance. The variable maximizing the data 

variance, y1,  is reported in Figure 2.1b. The same approach can be extended for large number of 

variables and, more generally, can be applied for model reduction.

 

The POD technique for dimensionality model reduction was presented to Sirovich in 1987. The 

approach is based on the main idea that a function, can be expressed as a linear combination of 

the mode eigenfunctions. In par

write it as a linear combination of eigenfunction b

 

where αi(t) are the amplitudes. The same concept can be written in the matrix form:

 

The problem is therefore projected in a subspace W defined through the basis B; 

coefficients of the subspace projection. 

The representation in (2.2) is

the relation. The selection has to be done in accordance with some criteria. 

At first the eigenfunctions have to be

some related advantages. 
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, gives the value of the k
th
 variable during the j observation. In order to give an idea of 

PCA it is convenient to consider a case where n=2. Supposing to have p sets of data described 

, the set of data can be easily plot as shown in Figure 2.1a. In order to reduce the 

number of variables to 1, losing the smallest amount of information, the best way is to consider, 

ble, the one which maximizes the data variance. The variable maximizing the data 

,  is reported in Figure 2.1b. The same approach can be extended for large number of 

variables and, more generally, can be applied for model reduction. 

Figure 2.1. PCA applied to a bivariate case 

The POD technique for dimensionality model reduction was presented to Sirovich in 1987. The 

approach is based on the main idea that a function, can be expressed as a linear combination of 

the mode eigenfunctions. In particular let U be a function depending on x and t, it is possible to 

write it as a linear combination of eigenfunction b1, b2,.., bk as reported in (2.2):

��, �� ≅ ∑ �������������� 	
  

(t) are the amplitudes. The same concept can be written in the matrix form:

� ≅ �	�
 The problem is therefore projected in a subspace W defined through the basis B; 

nts of the subspace projection.  

The representation in (2.2) is not unique. In fact, many sets of functions and coefficients satisfy 

the relation. The selection has to be done in accordance with some criteria.  

have to be orthonormal, with the property in (2.4), 

� ������������ � 	1	!"	#1 � #2
0	&�'()*!+(,

 

(2.1) 

variable during the j observation. In order to give an idea of 

sets of data described 

, the set of data can be easily plot as shown in Figure 2.1a. In order to reduce the 

number of variables to 1, losing the smallest amount of information, the best way is to consider, 

ble, the one which maximizes the data variance. The variable maximizing the data 

,  is reported in Figure 2.1b. The same approach can be extended for large number of 

 

 

The POD technique for dimensionality model reduction was presented to Sirovich in 1987. The 

approach is based on the main idea that a function, can be expressed as a linear combination of 

be a function depending on x and t, it is possible to 

as reported in (2.2): 

(2.2) 

(t) are the amplitudes. The same concept can be written in the matrix form: 

(2.3) 

The problem is therefore projected in a subspace W defined through the basis B; A includes the 

not unique. In fact, many sets of functions and coefficients satisfy 

, with the property in (2.4),  in order to exploit 

(2.4) 
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Furthermore the basis has to allows to obtain, for any number K, the best approximation of T 

which minimizes the least square error. In other words, POD technique allows one to find the 

sequence of orthonormal functions so that the first two functions give the best possible two-term 

approximation, the first three functions give the best possible three-term approximation and so on 

(Buljak et al. 2011). This is the most interesting property of the POD. Among all possible 

decompositions, POD allows to obtain the most efficient in the sense that for a given number of 

modes, the projection on the subspace used for modeling the random field includes the most 

energy possible (Berkooz et al 1993). Equation (2.2) is called the Proper Orthogonal 

Decomposition.  

 

2.3.3 Theoretical POD derivation from projection 

Considering a function U expressed as a set of vectors (M N-dimensional vector), the goal is to 

find the best set of basis that allows one to approximate the function according the equation (2.2).  

In particular the error can be expressed as the projection error of the function on the new 

subspace. The projection -. of the vector v on B is, according to the definition: 

 -. � �/,0�
�0,0� b

 

(2.5) 

where ( , ) is the inner product and b the eigenfunction describing the space B. The error can 

therefore be expressed as: 

 ())&) � �− ∑ 3�,456
345,456

���� ��
 

(2.6) 

 

and the function U can be expressed as the summation of the approximation and the error 

 � � ∑ 3�,456
345,456

���� �� + 8� − ∑ 39,456
345,456

���� ��: 

 

(2.7) 

 

The ortogonality among approximation and error can be written trough the L
2 
norm ‖∙‖	as: 

 

 ‖‖� � =∑ 3�,456
345,456

���� ��=
�
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(2.8) 

 

The minimization of the error correspond thus to the maximization of the time average 〈∙〉 of the 

approximation: 

 	 〈	∑ 3�,456
345,456

����
�
〉 

 

(2.9) 
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For more details on the development reader can refer to (Freno et al. 2013 and Freno and Cizmas 

2014). The maximization of the quantity in (2.9) corresponds to the eigenvalue problem: 

 �� � @� 

 

(2.10)	

where A is the autocorrelation matrix expressed trough: 

 

 A � BBC  

 

(2.11) 

 

The equation (2.11) allows one to evaluate the best set of eigenfunction defining the subspace W, 

that minimizes the projection error. 

The POD technique can be applied for both interpolation and projection approaches. This two 

methods perform differently under different situation, as discussed in Wang et al 2012. Wang et 

al prove that POD projection method is more robust and adaptive than the interpolation method, 

despite interpolation method allows to reach higher accuracy than to the projection approach in 

some cases. In the following paragraph both approaches have been introduced. The POD 

interpolation method has been applied to the RBF interpolation technique. In particular in 

Chapters 4 and 5 the POD interpolation method has been used for reducing the DHN model 

applied to the specific Turin test case. In Chapter 6 the POD projection method has been used to 

reduce a wildfire propagation model, used to solve a generic problems with a high input data 

variability. 

 

 

2.4 Interpolation approach: POD for fast RBF interpolation models 

2.4.1 Radial Basis function method 

Radial Basis Function are a means to build an approximation of a multivariate functions. The 

necessity of approximating functions can occur for many purposes, among them (Buhmann 2000) 

: 

• if a function cannot be implemented exactly, but only through an infinite expansion; 

• when the function is not known and only a set of data is given; 

• because in some case the use of interpolation approaches reduce the computational cost 

respect on using a known function.  

In all these cases, the aim is to build an interpolation among the existing data. Common methods 

seek for a function through the interpolation of the data in a certain neighborhood. Radial Basis 

Function allows to find a function in all the domain depending on the entire set of data.  
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Considering a set of N multivariate data where S the is data dimension, if Y includes the N set of  

S values (S x N) that the function assumes in the x points, it is possible to build an interpolation as 

a linear combination of N RBFs: 

 D � E ∙ F 

 

(2.12) 

 

where   A is a coefficient matrix S x N, 

 G is the radial basis function matrix N x N. 

In particular the more commonly used types of radial basis functions include: 

Gaussian  G� � eIJ	KLIL5K 

 

(2.13) 

Linear       G� � K� − ��K
 

(2.14) 

Cubic G� � K� − ��KM
 

(2.15) 

If the radial basis function used is a linear spline G assumes the form: 

 G �

��
��
��
‖�� − ��‖ ‖�� − ��‖ … ‖�� − �O‖
‖�� − ��‖ ‖�� − ��‖ … ‖�� − �O‖

… … … …
‖�O − ��‖ ‖�O − ��‖ … ‖�O − �O‖


��
��
�

 

(2.16) 

 The RBF are able to provide an approximation for the entire domain where the data are located. 

This method is characterized by many strengths: 

• it can be applied to almost any dimension; 

• the data distribution has not to be regular (it is just required that they are at distinct 

points); RBF can be effective also with scattered data (Fornberg and Flyer 2005); 

• good convergence properties. 

For any other details refers to Buhmann 2000. 

2.4.2 POD-RBF technique 

The POD-RBF technique for model reduction is a fast method that aims at producing an 

approximate function able to reproduce the behavior of the system. Therefore the main goal is to 

evaluate a certain relation among the system input and the system output that can be used instead 

of the physical simulation. Given some sets of input, collected in the vector p, the POD-RBF 

method looks for a function able to provide the output u: 

 "�P� � Q
 

(2.17) 

 



25 

 

In particular the function it is built starting from a set of data collected during simulations or 

experimental analysis. The set of data includes a certain set of output U and the input data 

collected in p, vector of N relevant physical quantities, used to obtained the collected output. The 

RBF properties allows to perform a continuous approximations in the entire inputs domain. 

Considering the generic RBF matrix equation (2.12), it can be reduced trough the POD approach 

in order to obtain a more compact approximation. In fact the Y matrix, that corresponds to the 

snapshots matrix, can be represented as: 	
	 Q � RS ∙ "T�P�	

 

(2.18) 

where "T�P� represents the approximate function and B the reduced set of eigenfunction 

describing the subspace where the problem is projected on. The function "T�P�	 is therefore built 

in a reduced space with respect to the function f and it is obtained through a RBF approximation: 

 "T�P� � U ∙ 	G�P�
  

(2.19) 

In particular eq. (2.12) becomes: 

 VS � U	 ∙ F
 

(2.20) 

Therefore combining (2.18) and (2.12) it is possible to obtain: 

 "�P� ≅ RS ∙ W ∙ g�p�
 

(2.21) 

where RS is the truncated set of eigenfunctions, obtained by means of the set of snapshots U, ZS is 

the corresponding amplitude matrix and G the radial basis function interpolation matrix. For more 

details related to POD-RBF technique see Buljak 2011. 

2.5 POD Projection approach 

POD projection method allows one converting a physical model applied to N nodes into a reduced 

model of order K<<N, which approximates the original one in an effective way, i.e. without 

losing important information. The best set of eigenfunctions is built using a collection of sampled 

values of the considered field, called the snapshots. The snapshots at M different time frames are 

collected in the so-called snapshot matrix S, which is a N x M matrix. Snapshots can be obtained 

using experiments or simulations. If B ∈ ℝOL]  is a matrix that contains the basis vectors of the 

model, matrix S can be expressed in the basis as: 

 

BαS =

 

(2.17) 

where α∈ ℝ]L]are the coefficients of the expansion.  

The procedure consists in using only a limited set of eigenfunctions, choosing those which 

contain the largest amount of information of the system behaviour. Therefore, a truncated basis 
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matrix �S ∈ ℝOL^ is considered in order to express the snapshots matrix using a coefficient matrix 

_̀ ∈ ℝ^L] characterized by smaller size than α. 

 a ≅ 	�S_̀ (2.18) 

�S contains relevant information since eigenfunctions are chosen in order to provide the best 

approximation of the physical field. The K best modes for system description are evaluated 

solving the eigenvalue problem;  

 vλvR
rr

=
 

(2.19) 

where R is the correlation matrix and v
r

 the eigenvector; 

 

T

SSR =

 

(2.20) 

the basis must in fact describe each snapshot with the minimum error. The larger the eigenvalue, 

the wider the information of the system behaviour provided by the corresponding eigenfunction. 

The K largest eigenvalues and the corresponding eigenvectors (casted in the matrix �S) are 

selected in order to satisfy the constraint on minimal energy collected, ε. This quantity represents 

the amount of information of the system behaviour that is provided by the selected 

eigenfunctions. In the considered model the (2.18) can be used with the aims of obtaining, 

through a substitution of the solved quantity, the reduced model. 

 

In order to obtain an energy value of 1 the complete information must be considered i.e. the full 

model. For details the interested reader can refer to Bialecki at al.2005. 
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Clearly the larger the number of eigenfunctions that are considered, the more detailed the result 

which is obtained, but also the larger the computational time which is necessary to obtain the 

result.  
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3      
Multi-level approach for 

groundwater analysis 

3.1 Introduction 

Among the modern energy-saving technologies heat pumps are expected to reduce significantly 

the primary energy required for heating and cooling with respect to traditional systems. When 

possible, heat pumps are coupled with the groundwater. A main advantage in this coupling is 

related with the fact that water temperature is almost constant during the year. In addition, a larger 

heat transfer coefficient with respect to air is obtained. These two aspects can be exploited in 

order to achieve a higher evaporation temperature in winter and a lower condensing temperature 

in summer, which results in a higher coefficient of performance. The temperature difference 

between the extracted water and the re-injected water causes a perturbation of temperature field of 

the groundwater. This phenomenon may affect the performances of other heat pumps installed in 

the neighborhood especially in the case of densely populated areas. 

This kind of systems are difficult to analyze experimentally, therefore numerical modeling is a 

suitable research approach to get information about energy, economic and environmental aspects. 

Nevertheless the domains involved in such problems are very wide and long times (of the order of 
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years) have to be computed to obtain results. These systems are often studied considered only 

small areas, coarse grid, or steady state conditions; this leads to the exclusion of important 

aspects.  

In this work a multi-level approach  is used for the first time to analyze a real scenario of a 

groundwater heat pump system, considering a large scale domain; it is obtained by coupling a full 

CFD model with a reduced model (Sciacovelli et al. 2014). In particular the full 3D CFD model is 

used to simulate the zone near the wells. This model is coupled with an equivalent network model 

to control the evolution of the thermal plume far from the wells.  

In the followings paragraphs, after a literature overview related to the groundwater thermal plume 

modeling, the considered system and the multi-level physical model are described. In the last part, 

the results of the multi-level model are reported in terms of  pressure, velocity and temperature 

fields. 

3.2 Literature overview 

As introduced in the previous paragraph the use of model simulations is particularly suitable for 

analyzing this kind of systems. Zhou. and Zhou 2009 use a convection-dispersion model to obtain 

the temperature field of the thermal affected zone. The results obtained show that the extension of 

the thermal plume is significantly influenced by the wells distance and by the load variations. It is 

also shown that heat transfer in such problem is dominated by convection. Diao et al. 2004 

studied the conduction-advection problem considering a line heat source in 2D space medium by 

means of Green function. The authors obtained temperature field that illustrate the importance of 

the fluid flow in the phenomena. Molina-Giraldo et al. 2011 developed an analytical model to 

evaluate the effect of conduction on the temperature distribution in the groundwater. Results 

obtained from a complete 2D model and a 1D model without the conductive term illustrate that 

conduction is a relevant contribution. Than it is possible to conclude that a reliable model of heat 

transfer phenomena in subsurface must include both convective and conductive terms.  

To simulate realistic operating conditions and systems, more refined tools have to be used at the 

expense of computational cost. Besides in-house codes several authors carried out numerical 

studies using the software FEFLOW (Diersch 2005) to simulate the temperature distribution of 

groundwater. Nam and Ooka 2010 use FEFLOW to study the temperature behavior on a small 

area near wells to evaluate the maximum performance coefficient for both heating and cooling 

conditions. Lo Russo et al. 2011 studied the temperature distribution in a quite large zone of 

subsurface using FEFLOW. Numerical models implemented in commercial codes such as 

FEFLOW demand high computational costs, since these kind of systems involve large domains 

and long operating time. For this reason such models only consider small zones near wells or 

coarse grid on a large scale geometry. 
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Another common approach adopted to reduce computational cost is to consider only steady state 

conditions. Ni et al. 2011 simulated a single-wells system for both pumping and re-injection of 

the water. They illustrate that the steady state is reached quickly and that the larger thermal plume 

correspond to the maximum load. McKeown et al. 1999 simulated the groundwater temperature 

using a 2D steady state coupled fluid and heat flow simulation code by means of the software 

OILGEN to study a potential site for the location of an underground repository for radioactive 

waste. Freedman et al. 2012 used a steady-state numerical model to investigate the behavior of a 

large-scale groundwater heat pump to understand the impact of the extracted water mass flow 

rates and temperature difference between extracted and re-injected water. The authors indicate 

that a higher mass flow rate with a smaller temperature difference produces less impact respect a 

smaller mass flow rate with an higher temperature difference. Steady state model allows to treat 

more realistic geometries but the physical conditions are not realistic since some operating 

conditions such as thermal load change during  time. 

3.3 System and computational domain description 

Figure 3.1 depicts a portion of the urban area in Turin (Italy) and reports the main groundwater 

heat pump installations. Groundwater flows in the south-east direction toward the river Po, which 

is about 2 km far from the building considered in this paper. Three installations already operate in 

this area while a fourth one has just been installed. The latter is studied in this paper. The system 

considered is the heating (and cooling) system of a new skyscraper fed by three geothermal heat 

pumps with a cooling power of 1250 kW and an heating power of 1400 kW. The groundwater 

system is composed by four different wells for each heat pump, two for the extraction of the water 

used in the cycle and two for the re-injection. The distance between re-injection and extraction 

wells is 150 m while the distance between the wells of different heat pumps is 80 m.  

The new heat pump is expected to induce a thermal plume in the groundwater temperature along 

the direction illustrated in Figure 3.1, due to the position of the skyscraper and the Po river. 
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Figure 3.1: System description. 

 

A model developed in Energy + (U.S. Department of Energy) has been used to estimate the 

thermal load of the building. The time evolution of thermal load over one year is depicted in 

Figure 3.2. The curve has been obtained as the interpolation of the results produced by the 

building model. It can be seen that cooling season lasts for about 6000 hours with a peak request 

of 7 MW. Heating period is of about 2800 hours with a peak heating load of 2.5 MW.  

 

Figure 3.2: Thermal energy load. 

 

At each instant of time water extraction temperature, water re-injection temperature and mass 

flow rate are related to the thermal load accordingly through Eq. (1) during heating season and 

through Eq. (2) during cooling season. 
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where Φbcde is the heat flux exchanged at the condenser,

COP the coefficient of performances, 

the specific heat, Tinj the temperature of the water re

of the extracted mass flow rate.

Two possible operating conditions are considered:

• the first scenario is characterize

temperature difference between extraction and re

accordingly to Equations (1) and (2). 

• the second scenario considers a variable mass flow rate while the temperature differen

is considered constant and equal to 12°C.

The model geometry is illustrated in Figure 

m while the reduced model considers 2 km to investigate the distribution of the the

until the injection of the groundwater in the river

3D model is 100 m high and 500 m wide in order to consider the diffusion of thermal plume also 

in the orthogonal directions. 
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Φbcde f− �
ghi + 1j � klmn 	op�qrd� − qsLt�  

ΦsuJp f �
ghi + 1j � klmn 	op�qrd� − qsLt�  

is the heat flux exchanged at the condenser,ΦsuJpthe heat flux at the evaporator,

COP the coefficient of performances, klmn  the mass flow rate extracted from the groundwater , 

the temperature of the water re-injected in the ground, T

of the extracted mass flow rate. 

Two possible operating conditions are considered: 

the first scenario is characterized by a constant heat pump mass flow rate while water 

temperature difference between extraction and re-injection varies during time 

accordingly to Equations (1) and (2).  

the second scenario considers a variable mass flow rate while the temperature differen

is considered constant and equal to 12°C. 

Figure 3.3: Model geometry  

 

The model geometry is illustrated in Figure 3.3. The length of the full 3D model geometry is 600 

m while the reduced model considers 2 km to investigate the distribution of the the

until the injection of the groundwater in the river Po. The transversal section 

100 m high and 500 m wide in order to consider the diffusion of thermal plume also 

 

 (3.1) 

 (3.2) 
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acted from the groundwater , op 

injected in the ground, Text, the temperature 

d by a constant heat pump mass flow rate while water 

injection varies during time 

the second scenario considers a variable mass flow rate while the temperature difference 

 

. The length of the full 3D model geometry is 600 

m while the reduced model considers 2 km to investigate the distribution of the thermal plume 

. The transversal section considered for full 

100 m high and 500 m wide in order to consider the diffusion of thermal plume also 
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3.4 Multi-level model 

3.4.1  3D model 

The zone near the wells has been modeled using the finite volume method by means of the 

software Fluent
®
. The fluid-dynamic behavior of the system considered has been modeled using 

the continuity equation and the classical Navier-Stokes equation: 

 
vw
vt + ∇ ∙ �y-z� � 0     (3.3) 

 
v
vt �y-z� + ∇ ∙ �y-z-z� � −∇P + ∇ ∙ �{̿� + az (3.4) 

where ρ is the fluid density, v the groundwater flow velocity and τ the stress tensor. Porous media 

are modeled by the addition of a momentum source term az to the standard momentum equation. 

This term is expressed as: 

 az � − �
^ 	}-z   (3.5) 

where K is the permeability coefficient, 0.0015 m/sec. 

The standard energy transport equation (3.6) is used to evaluate temperature distribution under the 

assumption of thermal equilibrium between fluid and solid phases. The thermophysical properties 

are modified to take into account the presence of the porous matrix. In particular, the thermal 

conductivity in the porous medium is computed as the weighted average of the fluid conductivity 

and the solid conductivity. 

 y	o	 v~vt +	∇ ∙ 3y	op	-	q6 � �#s��∇�q�   (3.6) 

 #s�� � 	�	#� +	�1 − ��#�     (3.7) 

where T is the groundwater temperature, γ the ground porosity, kf and ks the thermal 

conductivities of the liquid and the solid phase. Table 3.1 reports the values of the parameters 

used for the analysis. 

 

Permeability (K)  6.6x10
-9

 m
2
 

Unperturbed temperature 15°C 

Unperturbed water velocity  1.58 m/day 

Porosity (γ) 20% 

Thermal conductivity of the liquid phase (kf) 0.65 W/mK 

Thermal conductivity of the solid phase (ks) 3 W/mK 

Table 3.1: Input Parameters 
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The adapted computational grid is a non-structured mesh near the wells while a structured mesh is 

adopted in the vicinity of inlet and outlet sections. Overall 2.5x106 cells are used with the element 

dimension varies between 0.5 and 5 m.  

Adiabatic boundary conditions are applied to the four lateral faces. Unperturbed groundwater 

temperature and constant groundwater velocity are imposed at the inlet face.  

The wells are modeled using a distributed inlet mass flow rate condition for the re-injection wells 

and an outlet mass flow rate condition for the extraction wells. In the case of constant mass flow 

rate strategy, the momentum equation is solved under steady state conditions as the velocity field 

does not vary with time. Then, the time-dependent energy equation is solved. On the contrary, in 

the case of variable mass flow rate strategy, energy and momentum unsteady state equations are 

solved simultaneously, since both velocity and temperature fields vary with time. A Second Order 

Implicit Euler method is used to solve the problem. The convergence is considered reached when 

the residuals are lower than 10
-5

 for mass and momentum equations and lower than 10
-8

 for the 

energy equation. 

3.4.2 Network Model 

A network model is used to investigate the zone of the subsurface far from the wells. The 

computational grid for the network model consists of about 27000 nodes. Energy balance 

equation (3.7) is written for each node of the network considering the control volume depicted in 

Figure 3.4: 

 yop v~
vt a∆� � +∑ #s��a	�∇q ∙ �|�� +∑ yopa-		q��   (3.8)

  

where Δx the discretization step and S is the surface. 
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Figure 3.4: A detail of the network model 

 

The conductive contribution is computed along all the directions. The advective contribution is 

evaluated at the cells boundary but only along y direction since the x and z component of the 

groundwater velocity are zero. Adiabatic boundary conditions are applied to the four lateral faces, 

while on the outlet section the following condition is imposed: 

    #∇q	 ∙ � � 0   (3.9) 

which means that no heat conduction occurs on the outlet surface. 

Simulations are carried out considering the heat pump operating for three years to take into 

account the effect of the previous seasons on the thermal plume. The time step is about 10 hours 

for both models. 

3.4.3 Coupling strategy between the CFD model and network model 

The multi-level analysis requires to couple the CFD and network models. A 1-way coupling 

strategy is here adopted. In fact  the information are exchanged in only one direction: the CFD 

model results are provided to the network model but at the same time the CFD model does not 

receive any information to the network model. The CFD model is indeed independent on the 

network model. In particular, as regards the information exchange, a Dirichlet boundary condition 

(temperature boundary condition) is prescribed at the interface between the two models. At each 

instant of time, the temperature field along the outlet section of the 3D domain is passed to the 

network model and it is prescribed at the inlet face of the network model. In order to implement 
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such condition an appropriate matching procedure has been used. This is necessary because the 

number of nodes on the outlet section of the 3D model is significantly larger than on the inlet 

section of the network model. For this reason a two-dimensional interpolation is performed in 

order to reconstruct the temperature distribution on the inlet section of the network model. Such a 

coupling strategy is performed at each time step of the numerical simulations. 

As regards  the fluid dynamic quantities, it is not necessary to perform any coupling because an 

unperturbed groundwater velocity field is prescribed. Such assumption is fully justified since the 

velocity perturbations induced by the heat pumps are confined to a small region near the wells. 

Thus, the groundwater velocity field is unperturbed in most of the domain of interest.     

3.5. Results and Discussion 

3.5.1 Constant mass flow rate case 

In this section, the results obtained for the constant mass flow rate scenario are reported. Pressure 

and velocity fields along an xy-plane 20 m below the top surface are shown in Figures 3.5a and 

3.5b. 

 a)        b)          

 

 

Figure 3.5: a) Groundwater pressure [Pa] field. b) Groundwater velocity [m/s] field. 

 

 It can be noticed that water extraction creates a pressure drop near the first couple of wells, while 

pressure increases near the second couple of wells because of the reinjection of water. Overall, 

pressure decreases along y direction because of groundwater average velocity field. It can be seen 

from Figure 3.5b that the velocity magnitude differs from the undisturbed value only near the 

wells. In fact, the velocity increases behind the extraction wells due to the pressure drop induced 

by the water extraction. The velocity between the wells is smaller than the groundwater 

undisturbed velocity since part of mass flow rate in this zone is by-passed. Finally, it can be seen 

that the reinjection creates a velocity increase downstream the second couple of wells. 
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     a)                          b)        

 

     c)             d) 

    

 
Figure 3.6: Groundwater temperature [K] field at different times: 

 a) 2 months,  b) 6 months, c) 10 months d) 12 months; constant mass flow rate case. 

 

Figure 3.6a shows the temperature field 2 months after the start-up of the heat pumps. This instant 

of time corresponds to the beginning of cooling season, as can be observed in Figure 3.2. A 

thermal plume around and below the re-injection wells can be seen in the groundwater 

temperature field. The temperature of the thermal plume is about 285 K, except for a small area 

near the re-injection wells where it is slightly higher due to the beginning of the cooling season. 

Figure 3.6b reports the temperature field at the peak of the cooling load. At this specific 

condition, groundwater reaches the maximum temperature of 307 K in the neighborhood of the 

re-injection wells, since the cooling load is maximum. 

The thermal plume reaches a temperature of about 300 K along the outlet cross section of the 

domain, as depicted in Fig. 3.6b. Small temperature variations can be noted along transversal 

directions due to heat conduction. The temperature field after 10 months is depicted in Figure 

3.6c. At such instant of time the thermal plume shows a higher temperature near the outlet section 

of the domain, while the temperature field near the re-injection wells is affected by the beginning 

of the heating season. 
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Figure 3.6d illustrates the temperature field after one year. The temperature of the thermal plume 

is around 293 K along the outlet section due to summer cooling. Near the wells, a minimum 

temperature of 285 K is observed because of the heating season. 

The time evolution of the thermal plume in the following months in the 3D domain is similar to 

the results already illustrated because the thermal load evolves according to Figure 3.2 also for the 

second and third year of operation.  

a)        b)         

 

Figure 3.7: Groundwater temperature [K] field after 2 years for constant mass flow rate case; a)  
full 3D model domain; b) network model domain. 

 

Figure 3.7 shows the temperature field after 2 years in a longitudinal cross section of the entire 

multi-scale model domain. Figure 3.7a reports the result of the full 3D model while Figure 3.7b 

shows the result of the network model at the same instant of time. Different scales are adopted for 

the two plots in order to make the results more readable. The temperature shows two local 

maxima, the first one is about 304 K, while and the second presents a temperature of about 296 K. 

Thus, the maximum temperature in the thermal plume decreases of 3 K along the first 400 m and 

of 11 K in 1200 m. The temperature difference between the thermal plume and the unperturbed 

groundwater is 8 K at 1.2 km downstream the re-injection wells. Moreover, it can be observed 

from Figure 7 that the water temperature is around 305 K at about 500 m from the re-injection 

wells, i.e. 17 K higher than the unperturbed one.   

The temperature field after 3 years over the computational domain analyzed by the network model 

is depicted in Figure 3.8a. It is possible to observe that the thermal plume extends up to about 2 

km along the groundwater flow direction and that temperature perturbation is about 4 K at y = 1.8 

km. This indicates that the thermally affected area is rather wide after three years and almost 

reaches the river Po. 
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 a)        b)        

 

 c)        d)        

   

Figure 3.8: Temperature time evolution and temperature distribution for constant mass flow rate 
case. a) monitoring point position; b) temperature time evolution; c) longitudinal direction x = -

50 m; d) temperature distribution along x = -50 m. 
 

Figure 3.8c shows the time evolution of the groundwater temperature at the three points indicated 

in Fig. 3.8a. The time variation of temperature strongly depends on the considered position and 

the amplitude of the thermal perturbation diminishes far from the heat pump wells. The maximum 

temperature perturbation is about 18 °C at point III, while it decreases to 11°C at point II and to 

about 8°C at point I. It can be observed from Fig. 3.8c that the time evolutions of temperature at 

points I and III are in phase, i.e. the maximum temperature occurs at similar time for points I and 

III. On the contrary, temperature at point II shows a local minimum when temperature is 

maximum at the points I and III. The temperature of the thermal plume is always higher than the 

unperturbed groundwater temperature at points I and II. On the contrary, near the skyscraper 

(point III), the heat pump induces a local temperature which is lower than the unperturbed one 

during the heating season. After 2.5 years the temperature perturbation at the peak of the cooling 

load is about -1°C at point III, while it increases to 10°C at point II and to about 5°C at point I. 

These features of the time evolution of temperature are an important aspect that has to be 

analyzed when possible new heat pump installations are considered. In fact, the thermal 
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perturbation due to the already existing heat pumps may significantly affect the performance of 

other heat pumps, depending on the position of the latter. Figure 3.8c also reports the expected 

temperature deviations due to the variation of thermal load indicated in Fig. 3.2 by the error bars. 

It can be noticed that uncertainties in the thermal load may lead to a maximum temperature 

deviation of about 2.5°C near the heat pump installation (point III). The temperature deviation 

downstream the heat pump (points I and II) is about 1.5 °C.  

The numerical predictions of temperature perturbation obtained by the multi-level model allows 

one to estimate COP variation due to the presence of the thermal plume.  According to the studies 

carried out by Marcotte et. al 2010 and Fatouh and Elgendy 2011 the COP of a heat pump 

installed at point II (Fig. 8c) would be lower of about 15-20% at the peak of the third cooling 

season. The COP reduction for an heat pump installed at point I would be of only 8-10%, since 

the perturbation of groundwater temperature is less marked at such position. 

Figure 3.8d depicts the temperature profile along the line x = -50 m after two and three years. The 

plot confirms that the advection effect of groundwater flow dominates the heat transfer 

phenomenon. The temperature profile for y smaller than 1100 m does not change significantly 

from two to three years. This means that heat conduction is not particularly relevant in such 

portion of the domain. On the contrary, the extent of the thermally affected area clearly augments 

in the time span of one year. In fact, the thermal plume reaches the position y = 1300 m after 

about two years, while it is found at y = 2200 m after three years because of the groundwater 

flow. 

The computational time needed to solve the full 3D model on a single 3.3 GHz CPU is about 2 

days for the constant mass flow rate case. On the other hand, the network model requires about 2 

hours to complete the simulation in a domain 2 km long. This result clearly demonstrates that the 

multi-level method allows one to significantly reduce the computational cost and to obtain results 

in an acceptable time. 

3.5.2 Variable mass flow rate case 

In this section, the results corresponding to the variable water mass flow rate case are illustrated. 

Figure 3.9a reports the pressure distribution when the water mass flow rate of the heat pump is 

maximum. Such a condition occurs when the thermal load is maximum, as can be noticed from 

Figure 3.2 and Eqs. (3.1) and (3.2). The pressure distribution is very similar to the one obtained 

for the constant mass flow rate case. However, the pressure perturbation near the wells is more 

marked, since the maximum mass flow rate is higher in the case of variable water mass flow rate.  

Figure 3.9b reports the velocity field corresponding to the maximum value of the mass flow rate. 
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The velocity field is similar to the one presented for the constant mass flow rate case, but the local 

values are slightly higher because of the larger mass flow rate. 

      a)               b)        

 

Figure 3.9: a) Groundwater pressure [Pa] field after 6 months. 
b) Groundwater Velocity [m/s] field after 5 months. 

 

The temperature field is significantly affected by the heat pump operating mode as can be 

appreciated by comparing Figure 3.6 with Figure 3.10b. The thermal plume after two months is 

less extended than in the case of variable mass flow rate. This is due to the fact that at the 

beginning of the heating season the mass flow rate is smaller in the case of variable water 

withdrawal. Moreover, the thermal plume shows a lower temperature in the case of variable mass 

flow rate. Thus, the groundwater temperature is less  perturbed. 

     a)                b)        

 

      c)                d)        

 
 

Figure 3.10: Groundwater temperature [K] field at different times a) 2 months;  b) 6 months c) 10 
months d) 12 months; variable mass flow rate case. 
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After about 6 months, the thermal load reaches its maximum and so the mass flow rate. 

Consequently, the thermal plume is wider, as illustrated in Figure 3.10b. The temperature of 

thermal plume is nearly constant and equal to 308 K. On the contrary, in the case of constant mass 

flow rate (Figure 3.6b) the temperature of thermal plume diminishes along the downstream 

direction. After 10 months (Figure 3.10c) the thermal plume is particularly wide at the outlet 

section of 3D domain, while it shows a small extension near the re-injections wells. At the 

beginning of the heating season the thermal load is negligible, therefore also the water mass flow 

rate extracted by the heat pump is small.    

a)        b)         

 

Figure 3.11: Variable mass flow rate case; groundwater temperature [K] field a) after 2 years 
full 3D model domain b) after 2 years network model domain. 

 

Figure 3.11a shows the results of the full 3D model after two operating years. Figure 3.11b 

illustrates the results of the network model at the same time. Different scales are adopted for the 

two plots in order to make the results more readable. The temperature field presents two local 

maxima due to the time evolution of the thermal load. The first maximum has a temperature of 

300 K while the second one presents a temperature of 294 K. The maximum temperature of the 

thermal plume decreases of 7 K along the first 400 m and of 13 K in 1200 m. Thus the difference 

between maximum temperature and unperturbed groundwater temperature 1.2 km downstream 

the wells is  of 6 K. From a comparison of Figure 3.6 and Figure 3.10 it is possible to claim that 

groundwater temperature is less perturbed when the heat pump operates with a variable mass flow 

rate. However, the extent of the thermal plume is larger when the heat pump operates with 

variable mass flow rate.  
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        a)         b)        

 

        c)        d)        

 

Figure 3.12: Temperature time evolution and temperature distribution for variable mass flow rate 
case. 

a) monitoring point position; b) temperature time evolution; 
c) longitudinal direction x = -50 m; d) temperature distribution along x = -50 m. 

 

This is particularly evident from Figure 3.12a where it can be seen that the width of the thermal 

plume is about 200 m, while it is about 150 m for the constant mass flow rate case (Fig. 3.8a). The 

longitudinal extent of thermal plume after 3 years is about 2 km and at y = 1.8 km the temperature 

perturbation is about 3 K. 

The time evolution of the temperature at three different positions is illustrated in Figure 3.12c. It 

can be noticed that the maximum temperature perturbation is about 12°C at point III, 8°C at point 

II and to about 6°C at point I. This confirms that maximum perturbation of groundwater 

temperature is lower if heat pump operates with a variable mass flow rate. Figure 3.12c also 

illustrates the temperature deviations due to the thermal load uncertainties for the variable mass 

flow rate case.  Finally, Figure 3.12d shows that advection is dominant also for the variable mass 

flow rate case and that heat conduction is not particularly relevant in the zone already affected by 

the thermal plume. 
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The computational time necessary to solve on a single 3.3 GHz CPU the full 3D model for the 

variable mass flow rate scenario is about 6 days. The computational time is higher in this case 

compared to the constant mass flow rate case since it is necessary to solve the unsteady state 

momentum equation. 

The time necessary for the network model to complete the simulations is about 2 hours. 

3.6. Concluding Remarks 

In this chapter, a thermal fluid-dynamic study of the groundwater temperature evolution due to 

the installation of a geothermal heat pump has been performed. A multi-level model is used to 

examine a large computational domain in a reduced computational time. The multi-level model 

adopted in this paper couples a full 3D finite volume model used to investigate the more complex 

zone of the system (near field), and a network model employed to capture the evolution of the 

thermal plume in the far field area. The model has been used to compute the time variation of 

groundwater temperature for 3 years. Two possible scenarios have been considered: a constant 

heat pump mass flow rate case and a variable heat pump mass flow rate case.  

The analysis shows that the multi-level method allows one to reduce the computational time 

required by the simulations. In fact, a computational time of a about 2 days is needed to solve the 

full 3D model in a domain 600 m long. On the other hand, the computational time required to 

solve the network model in a domain 2 km long is about 2 hours. 

The analysis indicates that the presence of heat pumps significantly perturbs the groundwater 

temperature field. However, the shape and the extent of the thermal plume are strongly affected 

by the heat pump operating mode. The thermal plume temperature is about 308 K in the zone near 

the re-injection wells when the heat pump mass flow rate is variable. The thermal plume width 

changes in time according to time-wise thermal load variation. In particular, the thermal plume is 

more marked in the vicinity of the wells when the cooling load is maximum. According to the 

results obtained through the network model, the temperature is considerably perturbed also at 

large distances. At 1.8 km downstream the wells the difference between the unperturbed 

temperature and thermal plume temperature is about 3 K when the heat pump operates with a 

variable mass flow rate. 

When the heat pump operates with a constant mass flow rate, the thermal plume width is constant 

near the wells and its overall extent is smaller compared to the variable mass flow rate case. 

However, the perturbation of the groundwater temperature is more relevant. In fact, at 1.8 km 

downstream the thermal plume temperature is 5 K higher than the unperturbed one. 
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The results also illustrates that a key aspect is the temperature time evolution due to unsteadiness 

of thermal load. At a fixed position in space, the thermal perturbation shows strong variations in 

time, although the amplitude of such a perturbation depends on the considered position. The 

maximum perturbation is of about 18°C for the constant mass flow rate case, while it is about 

12°C when heat pump operates with variable mass flow rate. Furthermore, the time wise variation 

of the groundwater temperature may lead to about 10-20% performance reduction of new heat 

pump installations in the area affected by the thermal plume.  

This part of the thesis shows that the performances of a heat pump can be significantly affected by 

upstream installation, with an effect strongly dependent on the distance between the two heat 

pumps. Heat pump performances can be subjected to an improvement or a reduction. As an 

example, a possible installation located 400 m downstream the skyscraper would show an 

increase in its performances during winter operations of about 45% with respect to the case of 

unperturbed groundwater. This evaluation has been performed considering a condensing 

temperature of 60 °C and evaluating the COP using equation 3.10: 

 ����i_t� � ~����
~����I~�� (3.10) 

Similarly, an installation located 700 m from the skyscraper would register a reduction of its 

theoretical performance during summer operation of about 50%. This evaluation has been 

performed by evaluating the COP through equation 3.11 

 ����_t� � ~��
~����I~�� (3.11)	

It possible to conclude that the methodology illustrated in the chapter is very promising and can 

be extended to investigate large heat pump installations in urban areas. Furthermore multi-level 

modeling can help to investigate heat pump performance and evaluate how perturbed groundwater 

temperature affects the energy efficiency, which is an important aspect in the case of global 

energy planning. 
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4  
District Heating Network modeling  

for pumping cost reduction 

 

4.1 Introduction 

Optimization of the operating conditions of a District Heating Network (DHN) is a very important 

aspect for primary energy savings in DH systems. Often the analysis is limited to the reduction or 

minimization of the primary energy consumption related with heat generation. Nonetheless, an 

additional aspect which should be considered is the role played by the pumping system. In fact, 

the thermal request of the various buildings connected with the network varies during the day, 

week and season depending on the external conditions as well as on the user behavior. Pumping 

systems are used in DHNs to supply the users with their thermal request through proper 

adjustment of the circulating mass flow rate. In the case of small networks, pumps are usually 

located at the thermal plant(s). In the case of large networks, instead, various different booster 

pumps may be installed along the network. Configurations with multiple pumps make it possible 

to obtain a correct water distribution with a variety of control strategies. Figure 4.1 shows two 

possible alternative strategies that can be applied to supply the same thermal load to the users in 

the case of one pumping group at the plant and one booster pumping group. Each of these strategy 



 

typically involves a different pumping power, due to the different mass flow rate that should be 

pumped in each pumping group, therefore an optimization can be performed with the goal of 

minimizing the requested electric power. Such problem becomes quite complex to solve in the 

case of looped networks. 

Figure 4.1: Example of alternative pumping strategies in a district heat

The energy consumed for pumping

distances involved are long. This aspect is further stressed in the case of low temperature district 

heating systems, typically operating 

return networks and large mass flow rates (

continuously during the heating season, even when heat demand is low. For instance, the DH

system of the city of Turin, which is considered in this 

about 6 MW of power transferred to the fluid, depending on the thermal load

primary energy (assuming 0.6 global efficiency of the pumps and 0.58 electric efficien

combined cycles located in the thermal plants)

request is about 790 MW (about 215 MW in the cogeneration plants and 578 MW in the boilers). 

This means that pumping represents about 2% of the primary ene

and increases to about 6-8% at night.

for minimizing the electricity consumption for pumping operations. After a literature overview 

and a description of the DHN u

experimental data. The model has been reduced through a POD

the model reduction are discussed

optimizing operations in case of different power plant configurations and in case of malfunctions.
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typically involves a different pumping power, due to the different mass flow rate that should be 

oup, therefore an optimization can be performed with the goal of 

minimizing the requested electric power. Such problem becomes quite complex to solve in the 

Figure 4.1: Example of alternative pumping strategies in a district heating network

The energy consumed for pumping operations is not negligible, in particular in large 

distances involved are long. This aspect is further stressed in the case of low temperature district 

heating systems, typically operating with small temperature differences between the supply and 

return networks and large mass flow rates (Tol and Svendsen 2012). Moreover, pumps work 

continuously during the heating season, even when heat demand is low. For instance, the DH

which is considered in this dissertation as a case study, requires up to 

about 6 MW of power transferred to the fluid, depending on the thermal load, i.e. about 17 MW of 

primary energy (assuming 0.6 global efficiency of the pumps and 0.58 electric efficien

combined cycles located in the thermal plants). The primary energy consumption at the peak 

request is about 790 MW (about 215 MW in the cogeneration plants and 578 MW in the boilers). 

This means that pumping represents about 2% of the primary energy consumption at peak request 

8% at night. In this part of the work a physical model has been developed 

g the electricity consumption for pumping operations. After a literature overview 

and a description of the DHN used as test case, the model is described and tested using 

experimental data. The model has been reduced through a POD-RBF technique and the resu

reduction are discussed (Guelpa et al 2016). The obtained tool has been used for 

s in case of different power plant configurations and in case of malfunctions.

typically involves a different pumping power, due to the different mass flow rate that should be 

oup, therefore an optimization can be performed with the goal of 

minimizing the requested electric power. Such problem becomes quite complex to solve in the 
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request is about 790 MW (about 215 MW in the cogeneration plants and 578 MW in the boilers). 

rgy consumption at peak request 

In this part of the work a physical model has been developed 

g the electricity consumption for pumping operations. After a literature overview 

sed as test case, the model is described and tested using 

RBF technique and the results of 

The obtained tool has been used for 

s in case of different power plant configurations and in case of malfunctions. 



47 

 

4.2Literature overview 

The importance of energy consumption due to pumping in DHSs is also highlighted in various 

papers in the literature. Most of these works propose implementations of fluid dynamic models of 

the network for design purpose or for the analysis of the effects in off-design conditions of 

possible control strategies.  

In the literature, different approaches for district heating networks modeling have been proposed. 

These can be classified in two main groups: black box approaches and physical approaches. In 

black box approaches, the physical composition of the network is disregarded and modeling is in 

form of standard transfer function models or neural networks. Physical approaches, instead, 

involve the use of mathematical methods for computing flow and temperature distributions in the 

network (Palsson 2000). As far as this second approach is concerned, different types of models 

have been developed, starting from the pioneering Hardy Cross method (H. Cross 1936). More 

recently, various models have been proposed in order to overcome the problems related to 

convergence, computational cost and limitations that affect Hardy Cross method (Lindell 2006). 

All these methods are based on the graph representation of the network, which allows one to 

obtain a compact definition of the topology which can be directly used in matrix calculations 

(Harary 1995). Further details are available in section 4.4. One of the most used approach to solve 

district heating hydraulics is the loop equation method (Stevanovic et al 2007). Aggregated 

models which use a lower number of equivalent branches in order to simplify the network have 

been also developed (Larsen et al. 2002). Furthermore, a node-based model has been proposed, 

which keeps track of how long water mass has been on its way from the previous node 

(Benonysson et al. 1995). Both aggregated and node-based models do not solve fluid-dynamic 

and thermal transient conservation equations within all the nodes of the network (Stevanovic et al. 

2009). Stevanovic et al. 2009 solve the thermo fluid-dynamic problem of an existing network, 

neglecting heat losses; no information about computational costs are provided. A nodal method 

for the fluid dynamic and thermal analyses of large fluid networks has been proposed in Calì and 

Borchiellini 2002. This method has similarities to the approach adopted in the present work, but it 

does not allow one handling systems where pumps are installed along the network, as the effect of 

pumps is considered through boundary conditions. In this approach, the momentum equation in 

the various branches is written in a way that mass flow rates are expressed as the function of the 

total pressure differences at the branches; this equation is then substituted into the mass balance 

equation in order to obtain an equation set with as many unknowns as the number of nodes, which 

is solved to obtain the total pressures and then the mass flow rates. An advantage of this method is 

that it is particularly suitable for exergy and thermoeconomic analysis, which can be applied to 

the analysis of optimal planning of networks, as shown in Verda and Ciano 2005. 



48 

 

Concerning specific applications where the pumping system is involved, a method for district 

heating network design, based on the probabilistic determination of the flow rate for hot water 

heating, is carried out in Koiv et al. 2014; network costs, pumping energy consumption, and 

power of boilers are considered. In Wang et al 2015 a multi-objective optimization is performed 

for the best network design. Both initial investment for pipes and pumping cost for water 

distribution are considered in order to obtain the best pipe diameters that reduce the total cost. A 

technical-economical optimization with the aim of minimizing both the pumping energy 

consumption and the thermal energy losses while maximizing the yearly annual revenue is 

performed in Ancona et al. 2014. In Fang et Lahdelma 2015, a method for optimized the 

production and distribution cost of a DHS is carried out with a particular attention on the pumping 

cost.  

Most works available in literature are focused on small DHNs. When a large DHN is considered, 

the computational cost to solve a physical based model becomes very high; this excludes the use 

of full physical models for fast multi-scenario and  fast optimization applications. In the present 

dissertation a large network is considered. This is presented in section 4.3. 

4.3. System description 

The Turin district heating network is the largest network in Italy. It currently connects about 

55000 buildings with an annual thermal request of about 2000 GWh. The maximum thermal 

power is about 1.3 GW. An expansion of the system, to reach about 72 million cubic meters of 

buildings is already planned (Tripodi 2012). The water supply  temperature is constant and its 

value is almost 120°C while the return temperature varies with mass flow rate circulating in the 

network and thus with the thermal load. 

The complete network can be considered as composed of two main parts hydraulically connected: 

a transport network and the distribution networks. The transport network, consists in large 

diameter pipes, usually larger than 200 mm, and connects the thermal plants to the thermal 

barycentres. Each barycentre is the point that links the main network to a distribution network 

which supplies water to the thermal substations in the connected building. In the Turin network 

there are 182 barycentres. The transport network is a loop network, while the sub-networks are 

mainly tree-shaped networks. Figure 4.2 depicts the transport pipeline network and, in detail, 3 

barycentres with their corresponding tree-shaped networks. The model developed in this work 

only considers the main transport network. The total length is about 515 km. The distribution 

networks are instead modeled considering equivalent hydraulic resistances. 



 

 (a)

Figure 4.2: Schematic of Turin District Heating Network (a) In detail 3 barycentres (b) Pumping 

Five thermal plants, which are highlighted in green in Figure 4.2, provide heat to the network. The 

main characteristics of the plants are reported in Table 4.1. The most usual start

thermal plants is the following: the two cogeneration plants in Moncali

thermal request is below 260 MW one plant is operating, while the second one is operating when 

the request is below 520 MW), then the cogeneration plant in Torino Nord is started up and then 

the storage units in Politecnico and i

boilers in Politecnico, Torino Nord, Mirafiori Nord, BIT, Moncalieri. In the case some of the 

plants are not available or when specific constraints due to electricity production must be fulfilled

a different order can be selected.
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ts, which are highlighted in green in Figure 4.2, provide heat to the network. The 

main characteristics of the plants are reported in Table 4.1. The most usual start-up strategy of the 
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thermal request is below 260 MW one plant is operating, while the second one is operating when 

the request is below 520 MW), then the cogeneration plant in Torino Nord is started up and then 

n Torino Nord. Larger thermal requests are covered using the 

boilers in Politecnico, Torino Nord, Mirafiori Nord, BIT, Moncalieri. In the case some of the 

plants are not available or when specific constraints due to electricity production must be fulfilled, 
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Plant Acronym Power [MW] Type 
Moncalieri Monc. 520  Cogeneration (two 

 141  Boilers 

BIT BIT 255  Boilers 

Mirafiori Nord M.N. 35  Boilers 

Martinetto Storage 60  Storage 

Politecnico Poli. 255  Boilers 

 60  Storage 

Torino Nord T.N. 220  Cogeneration 

 340  Boilers 

 150  Storage 

 

Table 4.1. Characteristics of the thermal plants 

Regarding pumping systems, the main pumping stations are located at the thermal plants and 9 

booster pump groups are located along the network. The main pumping stations allow the desired 

hot mass flow rate to be pumped into the network, from the operating thermal plants to the users. 

Booster pumping stations are used in order to distribute the correct mass flow rate to each user, 

contrasting friction losses and hydraulic head. Booster pumping stations and direction of the 

pumped flow are indicated in Figure 4.2b. RP1 and RP2 include two groups of pumps, each 

pumping in a specific direction; RP5 includes three groups of pumps; RP3 and RP4 include only 

one group of pumps. The latter is not considered in the simulations because it is used in a network 

configuration different to that examined in this work. The use of RP4 will be necessary when the 

network developments, which are already planned, are completed. A further utilization of this 

pump is possible in the case of malfunctions.  

4.4. Description of the Model 

In order to minimize the pumping energy consumption, to provide the users with their thermal 

request, an optimization is performed. In the optimization, each scenario is defined by setting the 

total thermal load and the contribution of each plant to the thermal load, i.e. the heat production of 

each plant does not vary in the optimization procedure. Mass flow rates at the various plants are 

obtained dividing the heat production by the specific heat and the temperature difference between 

supply and return network. 

As already mentioned in the introduction to this chapter there are various different settings of the 

pumping groups which allow combining the production of plants and the request of the users, 

each corresponding with a different total power consumption. The independent variables are the 

pressure differences in the pumping stations; therefore there are 8 independent variables, one for 

each pump located along the network. Only the booster pumping stations are considered in the 
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optimization while the settings for the pumps in the plants are dependent variables. A maximum 

pressure of 17 bar has been set as a technical constraint. 

The objective function is the energy consumption, also called the energy cost. It has been 

calculated as: 

 � � ∑ ��∆p�
wp + ∑ ��∆p�

wm  (4.1) 

where subscript p indicates pumping systems located in the thermal plant, which are the 

dependent variables in the optimization problem, and subscript r indicates the booster pumping 

systems, which are the independent variables. The water density in the plants was evaluated as the 

average value between the supply and the return temperatures. This procedure should be repeated 

for different thermal loads in order to build an optimal control strategy. 

Two approaches have been used to perform the optimization: a fluid dynamic approach and a 

POD approach. 

As regards the fluid dynamic approach, a genetic algorithm (Golberg 1989) is applied to the 

model described in the next section. The algorithm starts the search for the optimal values from 

multiple initial points. Consequently various cases (also called "individuals" in the literature) 

must be created to run the optimization. This set of cases is usually named the "population". The 

number of individuals in the population is kept constant during the optimization process, but the 

values of the independent variables associated with each individual are modified at each iteration. 

Iterations are usually called "generations" in GA nomenclature. To create the initial population to 

be used in the optimization, the non-dimensional variables are randomly selected.  A population 

of 100 elements and a maximum number of 100 iterations have been selected here. The 100 sets 

of pressure differences randomly selected constitute the first population. The genetic algorithm 

runs until the convergence is reached, when further changes in population members do not affect 

the minimal cost obtained. The convergence has been reached after about 50-60 generations 

depending on the thermal load selected. The procedure is shown in Figure 4.3a. The pressure 

differences can vary between the values selected in order to obtain, for the most cases simulated, a 

maximum pressure value lower than the upper pressure limit. 

The second optimization is performed using a POD-RBF approach. The POD-RBF model is built 

using the simulation results conducted in various scenarios using the fluid dynamic full model. 

Each set of full model results is called snapshot. In this work each snapshot consists in a set of 

mass flow rates in the branches where the pumping stations are located and the corresponding 

pumping cost. Once the model is built, it can be used to simulate cases different than the ones 
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used to build the model or used as an optimization tool. The procedure is represented in Figure 

4.3b.  

 

Figure 4.3: Schematic of the two optimization approaches  (a) Fluid dynamic model (b) POD-

RBF model 

An optimization conducted using the fluid dynamic model is highly time consuming because the 

model considers a detailed analysis of the system behavior in all the network zones, even if 

information in some sections is required (in this case in the booster pumping power branches). 

The POD-RBF model instead provides an approximate value of the objective function, but the 

search for the optimum is much faster. These two methods are discussed in detail and compared 

in the next sections. 

4.5  Fluid-dynamic model 

A one dimensional model has been developed to detail the thermo-fluid dynamic behavior of the 

main pipeline of the network (i.e. the transport network). The topology of the network has been 

described using a graph approach  (Harary 1995). Each pipe is considered as a branch delimited 

by two nodes, which are identified as the inlet node and outlet node on the basis of a reference 
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direction (velocity is positive when the fluid is flowing in the same direction as the reference 

direction and negative when flowing in the opposite direction). The supply transport network 

considered in the present dissertation consists of 685 branches and 677 nodes, with 9 loops. The 

incidence matrix A, is used in order to describe the network topology by expressing the 

connections between nodes and branches. Matrix A has as many rows as the number of nodes and 

as many columns as the number of branches. Its general element Aij is equal to 1 or -1 if the 

branch j enters or exits the node i and 0 otherwise. 

The fluid-dynamic model considers the mass conservation equation applied to all the nodes and 

the momentum conservation equation to all the branches. In the fluid-dynamic model a series of 

simplifications in the mass and the momentum conservation equations have been considered: 

• The unsteady term has not been considered since fluid-dynamic perturbations travel the 

entire network in a period of time of about 5 s, smaller than the time step adopted for 

calculations (60 s). 

• The density has been considered as constant which also means that the velocity changes 

between the inlet and the outlet of a branch have been considered negligible. 

Under these hypotheses, the mass balance of a node can be written as: 

 ∑�rd − ∑�c�t � �sLt (4.2) 

where Gin are the mass flow rates entering the nodes from upstream branches, Gout the mass 

flow rates exiting the node and entering downstream branches and Gext a mass flow rate exiting 

outwards. 

Using this matrix the mass balance equation written using matrix form is: 

 A ∙ � + ���� � 0 (4.3) 

where G is the vector containing the mass flow rates in the branches and Gext the vector that 

contains the mass flow rates exiting the nodes outwards. The terms in Gext are different than zero 

in the case of open networks, i.e. when only a portion of the entire closed circuit is considered 

(e.g. only the supply or the return network as often considered in the analysis ( Fang and 

Lahdelma 2014 ).  

The steady-state momentum conservation equation in a branch for an incompressible fluid is 

written in (4.4) including the gravitational term in the static pressure:  

 �p�� − p ¡�� � �
�
¢
£L

¥¦
§¨¦ +

�
�∑ βªª

¥¦
§¨¦ − t (4.4) 
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where the first and the second terms on the right-hand side terms are the distributed and the 

localized pressure losses, while the last term is the pressure rise due to the pumps that may be 

located in the branch. Equation (4.4) can be rewritten as: 

 G � Y�p�� − p ¡�� + Yt (4.5)	
where the term Y is the fluid dynamic conductance of the branch, expressed as:  

 Y � RI� � ®��
¥
§¨¦ f

¢
£L + ∑ βªª j¯I� (4.6) 

The friction factor f has been evaluated using an explicit Haaland correlation (Haaland 1983) in 

order to avoid iterative calculations and thus reduce the computational cost of the simulations. 

Momentum equation can rewritten in matrix form. This formulation is obtained using the 

incidence matrix in order to relate the quantities that are defined at the branches (mass flow rates 

and pressure variations due to friction and pumping) with pressures at the inlet and outlet nodes: 

 � � ° ∙ A± ∙ ² + ° ∙ ³ (4.7) 

The diagonal matrix Y represents the fluid dynamic conductance of branches. Because of the 

dependence of Y on mass flow rate, the obtained system of equation is non-linear. Equation (4.7) 

is finally modified by setting proper boundary conditions. At least one pressure should be set in a 

node. In the case of analyses applied to an entire network pressure is set on the node representing 

the pressurization system. In the case of supply network analysis pressure is set at the master 

plant. Considering boundary conditions involving mass flow rates at the nodes (Gext) these are 

usually adopted when a portion of the network is analyzed. These are imposed at the barycentre or 

the user nodes and at the nodes associated with the slave plants. 

Because of the non linearity of Eq. 4.7 and the coupling between mass and momentum equations, 

the problem is solved using a SIMPLE (semi implicit method for pressure linked equation) 

algorithm (Patankar 1980). This is a guess and correction method: a pressure vector ²′ is first 

guessed and during the iterations it is corrected together with the mass flow rate vector obtained 

using (4.7). Through the  initialization P=²′ it is possible to evaluate �′	as 

 �′ � °′ ∙ A± ∙ ²′ + °′ ∙ ³ (4.8) 

where Y' is built considering an initial guess of mass flow rate G0'. Eq. (4.8) is nonlinear, 

therefore a proper algorithm has to be used for its solution. A fixed point algorithm (Lefschetz 

1937) has been implemented for this purpose in this work. The correction of the mass flow �bcmm 

rate and the pressure �bcmm are defined as: 

 µ � ²′ + µ¶·¸¸ (4.9) 
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 F � �′ + F¶·¸¸ (4.10) 

Combining together equations (4.6) and (4.8) it is possible to obtain:  

 � − �′ � ° ∙ A± ∙ ² − °′ ∙ A± ∙ ²′ + �° − °¹� ∙ ³ (4.11) 

which becomes: 

 F¶·¸¸ � ° ∙ A± ∙ µ¶·¸¸ (4.12) 

under the assumption of �Y � YS�. Substituting Eq. (4.10) in Eq. (4.3) it is possible to obtain Eq. 

(4.13). 

 A ∙ F¶·¸¸ � −A ∙ �′ − ���� (4.13) 

The substitution of (4.12) in (4.13), allows one to write Eq. (4.13) as follows: 

 A ∙ °′ ∙ A± ∙ µ¶·¸¸ � −A ∙ �′ − ���� (4.14) 

which can be rewritten in a simpler form: 

 º ∙ µ¶·¸¸ � » (4.15) 

considering: 

 ¼ � A ∙ °′ ∙ A± (4.16) 

 ½ � −A ∙ �′ − ���� (4.17) 

Eq. 4.15 can be used to evaluate the pressure correction ²¾¿ÀÀ, while it is possible to evaluate P 

through Eq. 4.9. Furthermore G can be obtained by using Eq. 4.12 and Eq. 4.10. P and G can thus 

be used as new guess values for the following iteration. The procedure is carried out until the 

convergence is reached. In order to evaluate the convergence level, residuals can be calculated 

through Eq. 4.18 and 4.19; the convergence is reached when the values R1 and R2 are both lower 

than the tolerance value. In this case a tolerance value of 0.001 is selected. 

 �′ − °′ ∙ A± ∙ ²′ − °′ ∙ ³ � VÁ (4.18) 

 A ∙ � − ���� � VÁ (4.19)	
To improve the process of convergence, an under relaxation factor (α) can be used while updating 

pressures and mass flow rates, therefore Eq. (4.9) and Eq. (4.10) become: 

 µ � ²′ + �	µ¶·¸¸ (4.20) 

 F � �′ + �	F¶·¸¸ (4.21) 

As regards boundary conditions, the mass flow rates entering and exiting the system are included 

in the vector Gext. Moreover a pressure value should be set at least on one boundary node. To 

express such boundary condition, the pressure value is imposed in the initial guess vector P'; 



 

furthermore, as the value of the pressure in such node is known, no correction is applied on it. 

This means that matrix H, in the column related to the node where pressure is 

zeros except for the value in the diagonal term which is 1, while in the vector 

corresponding row.  

A schematic of the SIMPLE procedure is depicted in Figure 4.4. Further details can be found in 

Sciacovelli et al. 2013. 

Figure 4.4. Schematic of the SIMPLE procedure

 

The model includes both the supply and the return pipelines (in total 1373 nodes and 1571 

branches), which are connected in the barycentres. The network is open at the various plants. This 

means that each plant is considered through a node on the supply line and a node on the return 

line. From fluid dynamic viewpoint, barycentres are considered as pipes with their distributed and 

local (e.g. T-junctions, curves, etc.) resistances. In a general case, the mass fl

the barycentres, Gut, differ from their requests, therefore an adjustment is necessary to model the 

valve controlling the barycentre mass flow rates. Therefore a variable resistance term is added to 

the fixed term. Resistances are expr

in equation (4.5). 
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The model includes both the supply and the return pipelines (in total 1373 nodes and 1571 

branches), which are connected in the barycentres. The network is open at the various plants. This 
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junctions, curves, etc.) resistances. In a general case, the mass flow rates supplied to 

the barycentres, Gut, differ from their requests, therefore an adjustment is necessary to model the 

valve controlling the barycentre mass flow rates. Therefore a variable resistance term is added to 

the fixed term. Resistances are expressed as equivalent lengths, which affect the term Y appearing 

furthermore, as the value of the pressure in such node is known, no correction is applied on it. 

, in the column related to the node where pressure is imposed, has all 

zeros except for the value in the diagonal term which is 1, while in the vector d is zero in the 

A schematic of the SIMPLE procedure is depicted in Figure 4.4. Further details can be found in 
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branches), which are connected in the barycentres. The network is open at the various plants. This 

t is considered through a node on the supply line and a node on the return 

line. From fluid dynamic viewpoint, barycentres are considered as pipes with their distributed and 

ow rates supplied to 

the barycentres, Gut, differ from their requests, therefore an adjustment is necessary to model the 

valve controlling the barycentre mass flow rates. Therefore a variable resistance term is added to 

essed as equivalent lengths, which affect the term Y appearing 
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The variable resistance term is iteratively modified until an acceptable flow distribution is 

obtained, with all users supplied with the requested mass flow rate. To obtain the mass flow rate 

required from every user the value of Leq in the nth-iteration is calculated as follows: 

 L�Â� �	L�Â_¢ + L�Â_/�I� f¥ÃÄ
ÅÆÇ

¥ÃÄ j
�
 (4.22) 

where Leq_f is the fixed resistance and Leq_v is the variable resistance. Subscripts n and n-1 refer to 

the current and previous iterations, respectively. The iterative procedure stops when the relative 

error between Gn-1 and Gut is smaller than a threshold value. 

Concerning boundary conditions, the mass flow rate supplied by each plant is fixed on the 

corresponding node of the supply network. Similarly, the mass flow rate returning at each plant is 

fixed on the corresponding node on the return network, except for the node corresponding with 

Moncalieri plant, where the pressure is fixed. The latter boundary condition is required for proper 

solution of the fluid dynamic problem, as a further condition on the mass flow rate would result in 

a linearly dependent equation. Pressure is imposed on the Moncalieri plant, since the master 

pressurizing group is located there.   

4.6 Full physical model validation 

In order to validate the fluid dynamic model in the various operating conditions, a comparison 

with some measured data of the Turin district heating network has been carried out. The pressure 

differences between two nodes located at the outlet of a pump and at the inlet of the next pump 

located downstream have been evaluated in three different portions of the network where 

measurements were available for an entire heating season. In Figure 4.5, the pressure differences 

are reported as a function of the mass flow rate circulating in the network. The measured data 

reported in figure refer to the operating conditions in March, where a large variation takes place. 

In the figure, the results of the fluid dynamic model are also represented. In the case of the first 

portion, the model is able to capture the fluid dynamic behavior of the network with high 

accuracy. In the other sections the dispersion of data is much larger and of almost the same order 

as the pressure differences, mainly because these portions are closer to the centre of town, where a 

large number of sub-networks and buildings are located, therefore multiple variable extractions 

take place along these portions of network. In the model, the thermal request profile of the various 

barycentres was considered similar, i.e. with the same shape parameterized on the basis of the 

design request. In reality this does not occur as requests have different variability as the function 

of time, but these pieces of information is nowadays not fully available. In addition, the model 

was run considering strict compliance with the control strategy, while in real operation a deviation 

within an acceptable range is allowed. These are the causes of the large dispersion of data. 

Anyhow, the average deviation is lower than 0.3 bar, therefore  it is possible to state that the fluid 

dynamic model is able to capture the hydraulic behavior of the network. 
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Figure 4.5: Test for Fluid dynamic model simulation capability: comparison with measured data 

 

4.7  Fluid-dynamic model reduction 

A POD-RBF model can be used constructed following the method of snapshots, as proposed by 

Sirovich 1987. A snapshot vector u of N relevant physical quantities obtained through the full 

physical model simulations is collected. The S input parameters of the simulation used to obtain 

the snapshots are collected in a vector d. In this work, pressure rise at the eight booster pumps,  

the percent thermal load (with respect to the maximum thermal load) and the contribution of each 

plant to the thermal load are chosen as the process parameters. For a given thermal load and 

contribution of the various plants, the eight values of pressure rise at booster pumps are the free 

variables that can be modified in the optimization process. It is worth remarking the fact that 

pressure rises in the pumps located at the thermal plants are not free variables. These should be 

adjusted in order to allow circulation of the selected mass flow rates exiting the various plants 

(this is necessary since the thermal load of each thermal plant is imposed). 

Table 4.2 reports the maximum pressure selected for the various booster pumps, obtained after a 

pre-processing stage, which has been performed in order to limit the number of random 

combinations of the input that are rejected because of a maximum pressure exceeding the 

technical limit of 17 bar. 
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 Pmax[bar] 

RP1a 7 

RP1b 7.5 

RP2a 6.5 

RP2b 7 

RP3 6 

RP5a 5 

RP5b 5 

RP5c 5 

 

Table 4.2. Maximum pressure values for the each booster pumping stations 

 

The response u of the system to a given set of the free variables is expressed by the mass flow 

rates at the booster pumps and by the total pumping power. 

Different snapshots are obtained by varying the optimization independent variables within a 

predefined range. In order to avoid obtaining an ill-conditioned model, some precautionary 

measures have been adopted. First, the input data of the model have been normalized. 

Furthermore the snapshots have been randomly selected considering a uniform coverage of the 

input ranges. The complete collection of M snapshots constituted the snapshot matrix U. POD 

aims at approximating an arbitrary snapshot as follows: 

 ÈÉ � ФË ∙ ÌËÍ (4.23) 

where ÌËÍ ∈ ℝÎ×� is a reduced state variable and ФË  is an orthogonal matrix. The latter is obtained 

by solving the following eigenvalue problem (Ostrowsky et al. 2005): 

 3BB±6 ∙ Ð� � λ�Ð� (4.24) 

Matrix ФË  is then built using the eigenvectors Ð�corresponding to the largest eigenvalues λi, which 

are ranked in decreasing order. Namely, ФË � ÒÐ�, Ð�, … ,ÐÎÓ.  
In the present analysis, the POD method has been coupled with radial basis functions (RBF). RBF 

are typically applied to approximate functions which are known only in a finite number of points. 

This interpolation technique involve all known values of functions and it is particularly effective 

when the distribution of nodes is scattered. Specifically, the reduced state variable ÌËÉ in Eq. 

(4.23) has been expressed as a linear combination  of radial basis functions of the process 

parameters p: 
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 ÌË � R ∙ Ô�d� (4.25) 

where g contains the radial basis functions and matrix B the coefficients. Here, Euclidean norm 

was used as RBF: 

 g��p� � ‖p − p�‖ i � 1,… , K (4.26) 

Matrix B is found by enforcing that Eq. (4.25) is exact for each of the snapshots contained in the 

matrix U [31]. 

The evaluation of a snapshot corresponding to an arbitrary set of parameter p can be performed 

using Eq. (4.27). This is obtained by substituting Eq. (4.25) in Eq. (4.23): 

 È � ФË ∙ R ∙ Ô�p� (4.27) 

The entire procedure has been built in Matlab
®
 environment. To initialize the POD optimization 

procedure, a set of random combinations of the free variables has been collected into the initial 

snapshot matrix U and fed as input to the full physical model. The corresponding values of mass 

flow rates in each of the eight pumps and the total pumping costs have been obtained. Snapshots 

and results are used to create the POD-RBF model, which is the implicit function relating the free 

variables to the output. 

4.8 POD model validation and performances 

Starting from the full physical model, 15000 simulations have been performed, varying the free 

variables randomly within the predefined ranges. These have been used to create the POD-RBF 

model.  

A test of the POD model has been first performed considering new random sets of the free 

variables, which were not included in the original set. The fluid-dynamics model is used in order 

to compute the pumping cost, selecting the independent variable randomly, i.e. the pumping 

pressure differences and the thermal load. The same data are used in order to calculate the output 

through the POD model. In Figure 4.6a the pumping costs resulting from the POD and Fluid 

dynamic model are compared. Results evidently show that the POD based tool in almost all cases 

is able to capture the system behavior.  

Mass flow rates obtained from a random set of data using the two models are also computed. For 

each simulation, the branch containing the booster pumps where the largest mass flow rate is 

located is analyzed in Figure 4.6b. The figure shows that the reduced model is able to predict the 

mass flow rate for all cases with small deviations.  
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Figure 4.6. Test for POD simulation capability with 10 random cases a) pumping costs b) mass 

flows rate 

The optimization has been performed for different heat loads. A comparison between the fluid 

dynamic model and the POD-RBF model is reported in Figure 4.7. Scenarios have been obtained 

considering the most typical start-up sequence of the thermal plants. As regards the fluid dynamic 

model optimization, Figure 4.7 shows that the larger the thermal load, the larger the optimal 

pumping cost, except for the scenario corresponding with 40%  of the nominal load. The 

minimum cost for 40% of the nominal load is slightly larger than the minimum cost for 50% of 

the nominal load. This is due to the fact that when the thermal load is below 40% of the nominal 

load, only the Moncalieri thermal plant is operating (unless a different order is set, which can 

occur, for instance, in the case of network maintenance or depending on the production plans, 

especially related with the electricity production). When the request exceeds 40% of the nominal 

load, both the Moncalieri and Torino Nord thermal plants are operating. As these plants are 

located on opposite sides of the network, users in the North areas of the town (closer to Torino 

Nord plant) are reached by the water flow exiting Torino Nord plant. This allows a reduction in 

the pressure drops, therefore reducing the pumping cost despite an increase in the total mass flow 

rate flowing. When the mass flow rate further increases, the pumping cost tends to increase again. 

The optimum pumping pressure sets obtained using the POD-RBF model were used as an input in 

the fluid dynamic model in order to compare the optima. Results show that the POD-RBF model 

is able to predict the optimal costs as a function of thermal load with average relative errors of 

about 5%.  
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Figure 4.7: Best cost comparison 

A comparison of the computational cost requested to obtain the optimum values with the fluid-

dynamic model and the POD-RBF model is reported in Figure 4.8. Computational costs are 

evaluated as the summation of the time requested to obtain the minimum cost in all the thermal 

load conditions that have been analyzed on a single 3.3 GHz CPU. Using the POD-RBF, the total 

time required for the calculation is reduced by about 95% with respect to that required by the fluid 

dynamic model, which makes the reduced model more suitable for real time applications. 

 

Figure 4.8. Computational costs comparison 
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4.9 POD model for energy cost reduction 

4.9.1 Usual start-up sequence of thermal plants 

In order to present the potential advantages that can be achieved using an optimized pumping 

strategy, a comparison between the pumping cost corresponding to the application of a pumping 

strategy similar to that currently adopted and the optimal strategy is reported in Figure 4.9. In this 

analysis, the usual start-up sequence of the thermal plants is considered. It is possible to notice 

that the use of the optimized control strategy instead of the current one allows the achievement of 

a significant reduction in the energy consumption for all thermal loads, particularly in the portion 

between 40% and 90% of the nominal thermal load. The differences between results obtained 

with the two optimization strategies (the POD-RBF and the fluid-dynamic model) are quite 

negligible in comparison with the difference between optimal and current strategy, therefore only 

the POD-RBF results have been shown, since it is the approach that can be reasonably used in real 

applications. 

 

Figure 4.9: Energy consumption with current and optimized pumping strategy 

To better visualize the energy cost reduction with respect to the current pumping strategy, the 

energy cost reductions in each thermal load is shown in Figure 4.10. Energy saving is between 8% 

and 24% and it is particularly large at high thermal load. The use of an optimized pumping 

strategy allows an annual reduction in primary energy consumption due to pumping of about 4.4 

GWh/year (from 25.8 GWh/year in the case of the current strategy to 21.4 GWh/year in the case 

of the optimized strategy). This represents more than 0.5% reduction in the total primary energy 

consumption, which is about 842.5 GWh/year (about 768.0 GWh/year associated with heat 
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supplied to the users, about 48.5 GWh/year due to heat losses, and 25.8 GWh/year due to 

pumping). 

These results suggest that application of the POD-RBF optimization approach allows significant 

improvements in the overall energy performances of large district heating networks. Further 

advantages related with the use of optimized strategies are discussed in the next sections. 

 

Figure 4.10: Energy cost reduction due to use of POD-RBF method instead of current pumps 

control strategy 

 

4.9.2 Different start-up sequence of the thermal plants 

The same POD-RBF model can be used in order to optimize the pumping strategy when different 

combinations of the plants is adopted in thermal production. These scenarios can be necessary in 

the case one of the plants is not available or if there are specific constraints on the electricity 

production by the cogeneration plants. When the configuration in heat production changes, also 

the mass flow rate distribution at the thermal plants changes, therefore a different setting of the 

pumps is necessary, even if the thermal request of the users remains unmodified. The optimization 

tool should be sufficiently flexible to allow fast optimizations in variable conditions. The POD-

RBF model can been used by fixing the total load, by modifying the sequence of thermal plants 

that are used to cover it and by limiting the maximum DH mass flow rate that is elaborated by 

each plant (and thus the maximum thermal load supplied by each plant).  

Table 4.3 shows four different scenarios, corresponding with different plant configurations at 60% 

of the maximum thermal request of the users. In Figure 4.11, the corresponding optimal settings 

of the pumping group obtained using the POD-RBF model are shown. 
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Figure 4.11: Optimal pumping costs with different plants start up strategy at constant load 

 

CASE 1 CASE 2 CASE 3 CASE 4 

Monc. Cog. Group 

1 

Monc. Cog. Group 

1 

Monc. Cog. Group 1 and 

2 

Monc. Cog. Group 1 and 

2 

T.N. Cog. T.N. Cog. T.N. Boiler Politecnico 

Politecnico T.N. Boiler Politecnico   

  Politecnico     

 

Table 4.3. Power plants start up strategies considered 

Results show that the pumping cost is smaller when the two Moncalieri cogeneration plants are 

not used at 100% of their load. In fact in cases1 and 2, where just the Moncalieri cogeneration 

group 1 is switched on, the optimal cost is lower than in the cases3 and 4, where both the 

cogeneration groups in Moncalieri are used. This is due to the fact that the Moncalieri power plant 

is located at the south end of the network, therefore when large mass flow rate are supplied by 

these plants, a large pumping power is necessary. When one of the Moncalieri cogeneration plants 

is switch off, the power spent to pump the water from the south area to the city centre (R Monc, 

RP1a, RP1b)  is smaller, while the power to pump water from the north to the south is larger (R 

T.N., R Poli and RP5c). The configuration which minimizes the pumping power corresponds to a 

more distributed production. In case 1, in fact heat is produced in three plants, one located in the 

south end (Moncalieri), one in the central area (Politecnico) and one in the north end (Torino 

Nord).  
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4.9.3 Operation in the case of malfunctioning pumping groups 

The POD-RBF model is also been used in order to find the optimal set of pumping pressure when 

a failure in a pumping station occurs and therefore that piece of equipment cannot be used. In 

malfunctioning scenarios, minimization of primary energy consumption may become a secondary 

objective. Nevertheless, the fact that a constrained optimization is performed allows one to obtain 

the best pumping settings corresponding with fulfillment of the thermal request of the users, 

which is instead the main objective in malfunctioning scenarios.  

The analysis has been performed for each pumping station. Results are reported in Table 4.4, 

considering 60% of the thermal request and the usual configuration for thermal production.  

  Optimal Cost [W] 

No malfunctions 3,57 

Malfunction in pump 1a 3,63 

Malfunction in pump 1b 4,06 

Malfunction in pump 2a 3,58 

Malfunction in pump 2b 3,57 

Malfunction in pump 3 3,59 

Malfunction in pump 5a 3,58 

Malfunction in pump 5b 3,60 

Malfunction in pump 5c 3,58 

 

Table 4.4. Minimum costs in case of malfunctions 

The minimum cost is obtained when no malfunctions occur. Nevertheless in most malfunctioning 

cases, the optimal costs do not differ significantly with respect to the case without malfunctions, 

except when a failure occurs in the pump 1b. This is due to the fact that this pump is located in a 

crucial position for water circulation and its unavailability causes longer paths to reach the users 

and thus larger friction losses. 

Possible iterative interactions between pumping system settings and plant operation can be 

theoretically examined using the modeling approach proposed in this work. Such cases are 

meaningful in the case of possible malfunctions that may affect the hydraulic behavior of the 

network. In the case there are no pumping strategies that allow proper fulfillment of the thermal 

request, it is possible to examine scenarios where the production share among the plant is 

modified in order to help reducing the hydraulic issues. 
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These results show that POD-RBF model allows one to create a flexible operation tool, which 

allows optimal management of both normal and abnormal (malfunctioning) scenarios. 

4.10 Concluding remarks 

The present chapter reports the application of reduced modeling to the optimization analysis for 

the minimization of the pumping cost in a large district heating network. The optimization is 

carried out using two different approaches. The first approach, more conventional, is based on the 

application of a genetic algorithm to the full physical fluid dynamic model of the network. The 

second approach utilizes a reduced model, obtained through radial basis function (RBF) and 

proper orthogonal decomposition (POD) in order to capture the main features of the physical 

system. This last approach provides more approximate results due to model reduction but requires 

much smaller computational time. The errors of the POD model in the evaluation of the objective 

function are quite small.  

Fluid dynamic model and the POD-RBF model are used to find the optimal values of pumping 

cost. Results show that a deviation of about 2% is obtained for both optima. Therefore POD 

provides a good approximation of the physical behavior of the system. In contrast the difference 

in computational time is very large. This is a crucial feature to allow optimal operation in real 

networks, as the operating conditions vary significantly depending on the thermal request and the 

availability of both the thermal plants and the pumping groups. In the case study considered in 

this work the optimization of the POD model requires about 4% of the time requested for the 

optimization using GA. This difference increases with the number of nodes that are used to 

represent the network topology, which means that the advantages of using such a technique 

increases in the case of large networks. In order to show the potential for energy saving in district 

heating network pumping systems, a comparison between the electricity consumption using the 

current control strategy and the optimized strategy was carried out. This comparison shows 

encouraging results which suggest the applicability of fast simulation to the optimal management 

of the pumping system in district heating networks. The simulation tool shows to be sufficiently 

flexible to allow one handling both normal operating conditions, corresponding with variation of 

the thermal request of the users and in the use of the thermal plants, and malfunctioning 

conditions of pumping groups. The same approach could be extended to the optimization when 

malfunctions occur in the pipes (at least the main portion of the network). In order to consider the 

possible advantages related with this approach an example is considered below. 

One of the branches located downstream RP1 along the portion of network which proceeds 

straight ahead with respect to the portion linking Moncalieri to RP1 is considered as 

malfunctioning. This means that the entire mass flow rate reaching RP1 must proceed in the 



 

direction towards RP3. Two st

strategy and a strategy obtained through optimization. Results are shown in figure 4.12 in terms of 

pressures at the various nodes of the network. It is possible to notice that in the case of the

strategy, more than 80 nodes have a pressure larger than 16 bar, which is not acceptable. The only 

way for the network to operate in this scenario consists in limiting the mass flow rate supplied to 

the users, so that the corresponding pressure le

optimized strategy the number of nodes with a pressure larger than 16 bar is reduced to13. This 

means that still is not possible to fulfill the thermal request of the users, but the reduction in the 

mass flow rate to be applied is limited.

Figure 4.12: Comparison between current strategy and optimized strategy in case of a pipe 

malfunction 

As a conclusion of this application it is possible to state that an optimized strategy would allow 

better network management also in the case of malfunctioning conditions. A reduced model is a 

prerequisite to apply such operational approach to large network. The feasibility analysis for a 

POD-RBF model has been performed here just analyzing a single case, while the full 

development and application of this tool is left as a future work.
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direction towards RP3. Two strategies are compared at peak request: the current operation 

strategy and a strategy obtained through optimization. Results are shown in figure 4.12 in terms of 
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5     
District heating network modeling 

 for thermal peak shaving 

 

5.1 Introduction 

A typical problem related to DHS in Mediterranean area is the peak of the total thermal request 

which occurs in the morning when most of the building heating systems are switched on. 

Cogeneration groups are usually not sufficient to provide heat to the users during the peak, 

therefore boilers have to be used, with a consequent reduction of the overall performances in 

terms of primary energy consumption. The thermal fluid-dynamic simulation modeling can 

significantly help in the analysis of the effects of possible changes in operation and system design. 

Model can thus be used to study how modifications, like users request variations, installation of 

local storage systems, and other management changes, affect the peak load.  

In Figure 5.1, the global thermal request of the Turin DHS, is reported for a typical winter day. 

The plot shows that the global thermal load during the morning peak, at around 6 am, is almost 

double than the mean request during the day. When the thermal request is smaller than 740 MW, 

the heat is completely provided through cogeneration plants. When the request exceeds this value, 
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the storage systems are discharged providing a thermal power of 270 MW for a certain time 

period. When the request exceeds the 1000 MW,as it occurs during the peaks, boilers have to be 

used to provide the requested amount of heat to the users. Possible opportunities for thermal peak 

shaving  may be particularly effective since they can reduce the amount of heat generated with 

boilers, i.e. the portion involving large primary energy consumption. 

 

 

Figure 5.1. Global thermal request in a typical winter day in the Turin DHS 

 

In this part of the work, a physical tool for the thermal analysis of large district heating network is 

described and tested; it has been used to predict the total thermal request at the thermal plants and 

for analyzing the possibility to modify the thermal request profile of some buildings as well as the 

installation of thermal storages. The goal is to obtain information on how the mentioned 

modifications may affect the peak, in order to increase the cogeneration exploitation. The physical 

model has been tested using experimental data; the temperature and thermal request evolution in 

different points of the DHN have been compared. In order to reduce the computational cost, a 

faster model, obtained through a POD-RBF reduction technique has been carried out. The reduced 

model capability to predict the total thermal request has been compared with the physical model 

results. At first, the model is used for studying the installation of storages, in a certain point of the 

network and quantifying the primary energy consumption reduction. Secondly an optimization 

tool has been carried out with the aim of finding the optimal set of anticipations in the time for 

switching on the heating systems in some of the buildings in order to minimize the primary 

energy consumption. This part of work has been developed under the Dimmer project, which has 

the aim of developing a web-service oriented, open platform with capabilities of real-time district 

level data processing and visualization. Through the web-service interface, some applications can 

be developed to monitor and control energy consumption in district heating systems. 
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5.2 Literature overview 

 The interest in investigating opportunities for thermal peak shaving, like users request variations, 

installation of local storage systems, and other management changes, is increasing, as documented 

in the recent literature. In Verda and Colella (2011) the use of storages systems which can be 

charged during the night and used during the start up transient are examined in order to reduce the 

morning peak. This is shown to be a very effective measure for reducing the boiler utilization and 

enhance cogeneration use. In (Jokinen et al. 2014) and (Verda and Baccino 2014)  network 

models are used in order to study the opportunities to modify the thermal request profile of some 

users for maximizing the heat production from cogeneration or renewable plants. In Dotzauer 

2002 a simple model has been implemented for DHSs heat-load forecasting based on the idea that 

the heat demand can be described relatively well as a function of the outdoor temperature and 

behavioral aspects. The possibility of using a dynamic simulation tool with the aim of studying 

interactions of CHP/DHN, with a particular emphasis on the network to heat storage capacity, is 

examined in Prato et al 2012. In Barelli et al 2006 a model is proposed for thermal load evolution 

as a function of the user thermal power installed, the seasonal hours of the burner operation, the 

timetable of the heating systems, the external daily temperature. Operation optimization is an 

interesting point that can be obtained using fluid dynamic models. In Lindenberger et al. 2000 a 

model for optimizing integration of boilers, heat pumps and cogeneration is performed. Fang and 

Lahdelma 2014 propose a steady state  model a for computing mass flow rates, thermal losses and 

temperatures and in DHN using measurements at the users. The latter is one of the few works 

where the available measurements are exploited to provide information about the network state. 

The present dissertation aims at further contribution to this topic.  In addition most of the works 

available in the literature are focused on small networks or a simplified representation is adopted. 

This thesis instead is focused on the transient analysis of large networks. 

5.3 The thermo fluid-dynamic model 

The model used for solving the fluid-dynamic problem is the same described in paragraph 4.4. 

The thermal model is based on the energy conservation equation applied to all the nodes. The 

energy conservation equation  is expressed in transient form for two main reasons: 

1. Thermal perturbations travel the network at the water velocity, which is the order of few 

meters per second; it depends on the request and the portion of network, in fact velocity 

is typically small at night and in the distribution networks. Therefore temperature 

variations take a lot of time to reach the thermal plants.  

2. The network is characterized by a very large heat capacity.  
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The energy conservation equation for the i
th
 node is written neglecting conduction in the fluid 

along the network, as:  

 
v�wb∆~�Ø

vt ∆Ùr +∑ o��� q� � ~h~�qr − qsdu�   (5.1) 

where the first term is the unsteady term, the second term represents the contribution due to mass 

flow rates in all the j
th
 branches linked to the i

th
 node and the right-hand side term contains the 

contribution of thermal losses. In order to relate branches and nodes an Upwind scheme (Ferziger 

and Peric  2002), that assigns to the j
th
 branch the temperature of the previous node considering 

the actual fluid flow direction, is used. Equation (5.1) can be written in matrix form for all nodes: 

 gTKTM =⋅+⋅ & , (5.2) 

Dirichlet boundary conditions (i.e. node at imposed temperature) and an inlet mass flow rate are 

imposed in all the inlet sections connected to just one pipe. In the case inlet section is connected 

to more than one pipe so that the mass flow rates mix together, the node temperature cannot be 

imposed, therefore an inlet mass flow rate characterized by an imposed temperature is used. In 

each outlet sections an outlet mass flow rate was imposed. 

5.4 Modeling Strategy 

The described model can be used in order to simulate the behaviour of the supply and the return 

sides of the network considering them as a whole network. The correct mass flow rate required by 

each substation available from measurements is imposed as a constraint. This approach has been 

used in Sciacovelli et al. 2013, in Cosentino et al. 2014 and Cosentino et al 2014 (2) in order to 

simulate the main pipeline of the Turin DHN (500 km with 1389 branches and 1373 nodes). In 

this work the full network is considered. It includes about 800 km with about 20000 nodes. In 

Figure 5.3 the time required to solve a single iteration of the thermo fluid-dynamic model is 

reported as a function of number of nodes; if number of nodes become large, the computational 

cost dramatically increases. Therefore it is not possible with the normal physical approach analyze 

the whole network especially in the case multiple simulations are required. The analysis has been 

performed considering separately the transport pipeline and the distribution networks to allows 

the computational cost to be acceptable,. The entire network is modeled using a two-step 

approach: first the distribution network is simulated and then the obtained results are used as 

boundary conditions to the transport pipelines. As a results the total computational time is much 

lower than the one considering the whole network together. 



 

Figure 5.3. Computational time to solve the thermo fluid

number 

The goal of this work is to use the fluid

Figure 5.4 reports a schematic of a generic district heating network that connect power plants and 

users with the involved thermo fluid

Figure 5.

The total heat power required to the network has been computed using the energy equation at the 

thermal plants, which can be expressed as:
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3. Computational time to solve the thermo fluid-dynamic model as function of the nodes 

is to use the fluid-dynamic model to predict the thermal request

4 reports a schematic of a generic district heating network that connect power plants and 

mo fluid-dynamic variables.  

5.4. Schematic of inputs for the main pipeline model

 

The total heat power required to the network has been computed using the energy equation at the 

thermal plants, which can be expressed as: 

Φ � ∑ GÚÛ±Ü� c	�T̈ ßà − TÚÛ±Ü�  

is the mass flow rate that enters (and exits) the i
th
 plant 

temperature at the outlet of the power plants (supply pipeline), TÚÛ±Ü is the water temperature at 

plant (return pipeline) and c the specific heat. Mass flow rate entering the 

, is a consequence of the request of the users and the start

plants strategy. The supply temperature is considered as constant at about 120°C. Water exiting 

in the buildings flows on the return network and mixes with the various 
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streams coming from the various distribution networks. These streams are at different 

temperatures, due to the different distance of the distribution networks from the plants, which 

involves the fact that flows corresponding with the same portion of the request profiles reach the 

junction point at different times. In the end, temperature evolution  at the plant is significantly 

different than that at the users. The present model is used for determining the temperature 

evolution at the plants, TÚÛ±Ü, starting from information at the buildings, which is crucial to 

investigate possible effects of actions operated at the buildings such as night attenuation or the 

installation of local thermal storage systems. Temperatures of water exiting the heat exchangers of 

the buildings in the primary side are available. These can be directly used as boundary conditions 

in order to simulate the return network in current operating conditions.   

5.5 Thermal Model Validation 

The pipeline model provides values of pressure and temperature in each node and mass flow 

rate in each branch. The validation of the model has been carried out comparing the temperature 

in some nodes of the distribution network and the corresponding experimental data. In particular, 

the temperatures at the inlet section of the some heat exchangers, at the primary side, have been 

selected. The temperature evolutions in two days, obtained with both the model and the 

experimental data, are compared in Figure 5.5. For each temperature evolution the corresponding 

mass flow rate entering the heat exchanger is also appended in order to clarify the system 

behaviour. During the transient, the temperature at the inlet section of user mass flow rate is not 

constant. During the night the temperature reaches low values in all the considered heat 

exchangers. This decrease is due to the very low mass flow rate in the pipeline, as shown on the 

right sides of the Figure 5.5, and the almost constant heat losses towards the environment. This 

also means that the ratio between heat transport and heat losses decreases. During the day the 

analyzed temperature evolutions present different peculiarities, depending on the heating strategy 

adopted by the user. In the case of the two buildings shown in Figures 5.5a and 5.5b the 

temperature is almost constant during all the day. This is due to the non-stop heating strategy of 

the system. In these figures it is possible to notice that a peak request occurs when the system is 

switched on. This is related with the decrease in the temperature of the local heating circuit 

(secondary side) taking place at night. When the system is switched on, the heat flux exchanged 

by the heat exchanger is much larger than the design value because if the very large temperature 

difference between primary and secondary sides. The large mass flow rate is necessary to supply 

such heat flux. Systems depicted in Figure 5.5c and 5.5d, contrarily, are switched off at different 

times during the day. The fact that the heating system is switched off can be clearly noticed from 

the mass flow rate evolution. Each time the system is switched on, the mass flow rate presents a 

peak even if this is much smaller than that occurring after night. This is because the temperature 
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decrease of the secondary side during the pauses is limited. The comparison between model 

results and experimental data demonstrates that the model is able to reproduce the daily 

temperature evolution in the points of the considered network with sufficient accuracy. The mean 

relative error is lower than 10%. In particular the model perfectly detects the temperature when 

the heating system is operating. During the network cooling transient, also, the model simulates 

properly the temperature reduction, even if the reduction takes place slower. During the daily 

switching off the model detects the temperature reduction but here also the trend obtain using the 

simulator shows a slower decrease with respect to the experimental data. The difference among 

model results and experimental data could be due to an imperfect isolation of the pipes where the 

thermocouples are located. 

 

Figure 5.5. Temperature and mass flow rate at the inlet section of some users heat exchangers 

temperature: dashed line= experimental data, solid line=model results 
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The return distribution networks and the return main pipeline have been analyzed for the 

evaluation of the thermal energy power evolution while the supply temperature is known. The 

temperature in some barycentres are reported in Figure 5.6a; the corresponding mass flow rates 

are also shown in Figure 5.6b. The analyzed distribution networks are characterized by different 

values of volume of buildings connected. In particular a large, a medium and a small distribution 

networks, in terms of total amount of connected building volume, have been considered. 

Therefore, mass flow rates in the distribution networks are very different.  

In general mass flow rate is constant during the last hours of the evening, then it dramatically 

decreases at 11 p.m. and it remains about constant during the night. Early in the morning the mass 

flow rate gradually increases between 5 a.m. and 6.30 a.m. in order to satisfy the start-up 

requirements. Then it decreases and after 8 a.m. it remains constant. Temperatures are between 

40°C and 50°C. These values remains quite high also during the night because some of the 

connected users require thermal power also during the night.  

  

Figure 5.6. Temperature in some points linking a distribution networks with the return main 

pipeline 

 The heat power required to the thermal plants are collected in order to evaluate the total load. The 

results obtained are reported in Figure 5.7. In the examined scenario, which corresponds to a cold 

day of April, the base thermal power is mainly provided to the Torino Nord power plant, which is 

a cogeneration power plant. The other cogeneration plant, i.e. Moncalieri power plant, is used 

only during the start-up transient, in the morning. The energy storage units provide heat in the 

evening and during the morning peak, while during night they are charged, as  shown to the 

negative values in Figure 5.7. The Bit power plant is not used. The comparison with measured 

data shows that the model is able to predict with a good level of accuracy the thermal load 

required to each thermal plant.  
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Figure 7. Heat Flux evolution at the thermal plants 

The evolution of total thermal power during the transient between 7.00 p.m. and 10.00 a.m. is 

reported in Figure 5.8. During the evening the heat power is almost constant and it is about 330 

MW.  In this part of the analyzed period the model slightly overestimates the required power. 

During the night, the load reduces to about 70 MW and remains almost constant until early 

morning. In this portion of curve the model is able to simulate real data with good accuracy. The 

energy demand reaches the maximum value of about 800 MW during start-up, at 6.45 a.m.  After 

that the heat required slightly decreases until a value of about 450 MW. 

The thermo fluid-dynamic model is able to detect the heat power evolution during the considered 

period; it is able to predict the peak load position and with a certain level of approximation also 

the quantity of power required. However the small differences occurring between real and 

simulated power evolution are probably mainly due the uncertainties related to the available data 

as well as on the fact that the data registered by the monitoring system refer to about 50% of the 

connected users, therefore the lacking data have been obtained through extrapolation. 
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Figure 5.8. Total heat power evolution during the night transient. Comparison between real data 

and simulation results. 

The results provided to the model could be used  to predict the thermal power demand and peak 

load position with different load conditions in order to implements primary energy saving plans 

strategies.  

The computational time needed to solve the thermo fluid-dynamic model for the entire transient 

on a single 3.3 GHz CPU is about 800 s. Therefore it seems that this model can be used in order 

to simulate behavior of large district heating network with an appreciably low computational cost. 

5.6 Model Reduction 

5.6.1 Model Reduction Approach 

As detailed in paragraph 4.5  the fluid-dynamic problem, that is nonlinear, has been solved using 

a SIMPLE  algorithm (Patankar 1980), that is a prediction and correction method. The SIMPLE 

make the computational cost quite high. Each time step fluid-dynamic simulation in the Turin 

main supply network needs about 2 s, as detailed in Figure 5.3. When the period that has to been 

simulated is long or when multiple simulation are necessary, a too high computational cost can 

reduce the practical usage of the tool. In order to make the model faster, a POD-RBF model has 

been applied to the main network model. In fact, the main issue of the fluid-dynamic model is the 

evaluation of the mass flow rate flowing in the different loops; once those values are calculated 

the mass flow rates in all the other nodes are directly obtained through the mass balance reported 

in Eq. (4.3). The POD-RBF model has been used to obtain the mass flow rates in the different 

loops. In this case, the input vector d includes the mass flow rate produced from each power plant. 

The POD-RBF model outputs, collected in the snapshots matrix u, are the mass flow rates in each 

loops. The POD-RBF procedure described in paragraph 2.4 has been used. 
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5.6.2 Reduced Model test results 

The reduced model has been tested in order to evaluate its effectiveness for calculating the total 

thermal load required to the network. At first, the model capability of evaluating the direction and 

the quantity of water flowing inside each loop is tested. Results are depicted in Figure 5.9. The 

direction of the flow inside the loop is always captured by the POD-RBF model. The quantity of 

water is always well detected. A maximum error of 10% has been encountered.  

 

Figure 5.9. Comparison between Full and Reduced models: mass flow rates in each network 

loops 

The error becomes negligible when the total heat power required by the users are compared. This 

is the most important result in order to evaluate the POD-RBF applicability to this kind of system. 

Results reported in Figure 5.10 suggest that the use of the POD-RBF model does not reduce the 

simulation accuracy significantly. The two evolutions in the graph are not discernable, therefore it 

is reasonable to assume that the reduced model can be used instead of the full model without any 

significant loss of detail in the results. 

 

Figure 5.10. Comparison between Full and Reduced models: total power required to the power 

plants 
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In Figure 5.10 the computational cost to run the Full and Reduced models in 15 hour operation 

simulation are reported. Simulations have been performed on a single 3.3 GHz CPU. The use of 

the POD model allows a computational cost reduction of 90 % respect to the use of the full 

model. This characteristics makes the reduced model suitable for real time operation analysis and 

district heating management improvement and optimization. 

 

Figure 5.11. Comparison between Full and Reduced models: computational cost 

 

5.7 Thermal Model application for storage installation 

The physical simulation tool can be applied to large district heating networks for the analysis 

of peak load shaving. Here the model has been used to analyze possible future network 

improvements. In fact the connection of an additional part of network has been already planned. 

In particular the opportunity of using some storage systems to feed the new part of network is 

currently being examined. Therefore the proposed simulation tool is used to study the network 

including the new part. The goal is to quantify how the additional part of the new network may 

affect the peak thermal load, considering two different cases, with and without the installation of 

storage units. The storage units are supposed to be fed one hour before the heating systems 

starting. In Figure 5.12 the comparison is shown; Figure 5.12a shows the full transient operation, 

while in 5.12b the peak detail is reported. The presence of the storage induces an increase in 

thermal request between 4.30 a.m. and 5.30 a.m. and a remarkable reduction of the peak thermal 

load. This allows the use of the cogeneration plants for a larger fraction of the thermal request. In 

fact the peak shaving allows a lower use of boiler with a consequent primary energy saving. In 

particular, the maximum peak is here reduced of about 60 MW. The total energy amount removed 

to the peak thanks to the storage installation, in the day considered, is about 25 MWh. 
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Figure 5.12. Thermal load after the inclusion of the new area.  

a) Full transient operations b) Peak comparison 

 

5.8 Thermal Model for Optimizing switching on time of the heating 

systems 

The physical model is used for studying the possibilities for peak shaving trough optimal changes 

in user thermal requests. In particular, changes in the start-up time of heating systems of some 

users located in a distribution network have been studied. The optimization tool allows to evaluate 

the best set of  anticipations of the heating system start-up time in order to minimize the energy 

fraction produced trough boilers. The effects of the heating system start-up time on the total 

request evolution of the district heating network have been simulated using a physical model. This 

is necessary because of the long distances involved in the network, which cause a temperature 

evolution at the barycentre significantly different than that at the users. The optimizer has been 

applied to one of the distribution networks of the Turin DHN (see section 4.3). Details about the 

distribution network are available in the next paragraph. 

5.8.1 Distribution network description 

The selected distribution network is the one shown whit the yellow circle in Figure 5.13. This 

is indicated in the full network topology as BCT_414. It is 4.7 km long and links the transport 

network to 103 buildings. It is included in the so-called Polito District, which is the district 

selected for the DIMMER project. This is a university district not far from the city center and it 

includes public and private buildings with different intended uses.  
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Figure 5.13. Description of the selected area 

a good test case in order to  analyze energy saving opportunities and the 

possibility to extend methodologies and results to other districts of the city. To show that Polito

District can be considered as representative of the Turin DHS an analysis 

d. Various pieces of information at a global level have been 

collected: annual heating consumption, volume, surface, year of construction. In Figure 

of the characteristics analyzed are reported: users typology (Figure 5.14a), buildings energy 

b) and construction period (Figure 5.14c).   
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The analysis of the Polito District with respect to the entire town is based on data collected for 

about 5% of the buildings connected to the district heating network. The buildings are distributed 

along the network in several areas; this guarantees the representativeness of the buildings 

selected.  

Concerning the year of construction, the thermal request as a function of the construction period 

are reported in Figure 5.15. The five epochs of construction are selected as follows: 

• epoch 1: before 1918 ; 44% of the buildings; 

• epoch 2: between 1918 and 1945 ; 14% 

• epoch 3: between 1946 and 1960 ; 21% 

• epoch 4: between 1961 and 1970 ; 17%  

• epoch 5: after 1971 ; 4%   

 

The average value is the same for the various buildings (between 31 kWh/m3 and 36 kWh/m3). 

The standard deviation obtained for the examined buildings is also shown in the figure.  

 

Figure 5.15– Specific yearly thermal request of the buildings depending on the epoch of 

construction 

The annual thermal request as a function of volume and shape factor (that is ratio between surface 

and volume) is performed. The results, depicted in Figure 5.16 show the correlation among the 

buildings volume and the thermal request. The same figure shows that the shape factor does not 

significantly affect the thermal demand.  
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Figure 5.16– Annual thermal request of the buildings as the function of volume, for four groups of 

shape factors. 

This analysis shows that the district is sufficiently representative of the entire network, since the 

distribution of volumes is similar to the one of the buildings selected in different areas of the 

network. Distributions for Turin ( 5% of the buildings) and the Polito District are shown in Figure 

5.17.  

 

Figure 5.17 – Volume distribution of the buildings in the district and in town. 

The BCT 414 (reported in Figure 5.18) is used as a case study because of the large number of 

buildings connected to this network that are monitored using the data gathering system. Moreover 

about 30% of the buildings have a switching on schedule which can be varied.  
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Figure 5.18. Schematic of the selected distribution network 

 

5.8.2 Data gathering 

In order to performed the optimization of the switching on times of the heating systems, it is 

necessary to know the expected thermal profile of each building. With this aims, the data 

gathering system has been used. In particular when a particular future day (DATE1) is chosen for 

carrying out the optimization, the expected external temperature for that day is selected  through 

weather forecast. Also the day type of DATE1 is selected, as the user behavior affect the energy 

consumption evolution Fang and Lahdelma 2014. If the day selected is Saturday, offices are 

closed therefore the heat demand is lower than in working days, while if it is Sunday most offices 

are closed and the request is even smaller than in the other days. If it is Monday the heat request is 

larger because of the need of increasing the temperature in the buildings that switch off the 

heating system during the weekend. The other days are considered to have a similar temperature 

request at a given external temperature. 

Secondly a past day (DATE2) with an external temperature similar to the one of DATE1 and the 

same day of the week ( Saturday, Sunday, Monday or other days), is selected. The data collected 

through the gathering system for the DATE2 are used as the expected thermal request for the day 

DATE1. 

 In the considered distribution network a system for the data gathering is installed in almost all the 

heat exchangers of buildings connected to the distribution network. The data collection system 
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has been created out with the aim of gathering quantities that allow one to characterize the energy 

consumption and the comfort conditions.  

Most of the heat exchangers in the BCT_414 have been equipped with a flow meter on the 

primary sides. Three of the four temperatures at the inlet and outlet sections of the heat 

exchangers are also monitored: the inlet (T1) and outlet (T2) temperatures on the primary side 

(the distribution network side) and the temperature of water supplied to the building heating 

systems (T3). Some of the heat exchangers have been recently equipped with a fourth temperature 

sensor on the inlet section of the secondary side. In Figure 5.19 the data collected in a winter day 

have been reported. 

 

Figure 5.19. Data collected at the heat exchangers of users in the BCT_414 

 

Figure 5.19 reports the evolution of the temperature at the inlet section, the outlet section, the 

mass flow rate at the primary side and, as an elaboration of these 3 sets of data, the heat flux 

requested evolution. Through the analysis of the inlet temperature evolution, it is clear that most 

of the heating systems are switched off during the night and are switched on between 5 a.m. and 6 

a.m. During the day, the inlet temperatures are all between 115°C and 118 °C.  Some of the users 

are never switched off and their inlet temperatures are about constant. The difference of these 

values is due to the different distances from the transport network and the user nodes. In fact a 

user located near the transportation pipeline receives water at a higher  temperature than a user 
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located far from the transportation pipeline, because of the different thermal losses. The larger the 

distance between the user and the thermal barycentre, the larger the thermal losses and the lower 

the inlet temperature at the heat exchanger. The temperature in the outlet section of the heat 

exchanger depends on the inlet temperature, on the mass flow rate and the temperature level at the 

secondary side. Most of the values are between 55 °C and 75 °C. As regards mass flow rate and 

heat power evolutions, they often present various peaks during the daily transient. These peaks 

occur when the heating system is switched on; the highest peak is the early morning peak (that is 

the one that has to be reduced). This point is confirmed also from Figure 5.20, which depicts the 

sum of the power request of all the users (in the left part)  and a detail of the peak time (on the 

right part). In particular, the time period considered for the peak analysis and minimization, as 

reported in Figure 4b, is between 5.00 a.m. - 8.00 a.m. 

 

Figure 5.20. Total heat request at the BCT_414 

 

Unfortunately for technical reasons not all the considered distribution networks can be included in 

the anticipation evaluation. Some users can be included only in some periods and other users can 

never be included. The distinction from the user that can, always or sometimes, be varied and the 

users that can never be varied is detailed in Figure 5.21. It is clear from the figure that most of the 

thermal power request can be modified trough a switching time rescheduling. 
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Figure 5.21. Variable and not variable amount of heat requests at the BCT_414 

 

5.8.3  Optimization tool description 

The optimization model aims at finding the best set of start-up time anticipations for the heating 

systems x that allows to minimize the chosen objective function. As not all the 103 thermal 

profiles can be changed, only a fraction of the buildings is considered in the optimization, while 

the other requests are considered as not adjustable. Therefore the total number of independent 

variable, with the control system used nowadays, is 96; as a consequence x is a vector 96x1.  

Before discussing the optimization approach two aspects should be considered. Variations in the 

request profile involve possible changes in the indoor temperature. These should be checked using 

a proper model of buildings. In the case the indoor temperature should not decrease below the 

values prior to the anticipation, a larger thermal request for the buildings is registered. Thanks the 

larger exploitation of cogeneration, primary energy consumption is expected to decrease despite 

the additional heat request. 

The variable x can assume only discrete values since the time demand modification is performed 

considering slots of 10 minute multiples. This assumption is related with the structure of the ICT 

system which commands the rescheduling. As the optimization tool still does not integrate the 

indoor temperature simulator (see paragraph 5.9) , the change in temperature profiles are limited 

to 20 minutes. This allow one not to increase too much the heat request. Therefore each profile 
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start-up time modification can be chosen among the following values: 0 minutes, 10 minutes, 20 

minutes. In order to further limit the heat request, when a 20 minutes modification is selected, a 

partial heat recovery is considered through 10 minute anticipation of the time the system is 

switched off. This means that currently the user thermal request can increase with respect to the 

current operation of an energy consumption equal to an extra 10 minute operation.  

A genetic algorithm, specifically set for integer-values, has been used to perform the 

minimization. The selected population members is 30 and the selected generation number is 20.  

The network model is used to take into account the effects of the long distances on the water 

temperature. The streams coming from the different users are at different temperatures, due to the 

different distance of the users respect to the barycentres. Water exiting the heat exchangers flows 

on the return distribution network and mixes with the various streams coming from the users 

located in the other areas, thus changing its temperature. This is the reason why the temperature 

evolution at the barycentre is significantly different than that at the users and a thermal fluid 

dynamic mode is required. Temperature of water returning to the plants is further different and 

affects the thermal power exchanged at plants. This point is discussed with an example in section 

5.8.4. 

Different objective functions can be considered in order to select the desired optimization criteria.  

1. In the first case the set of optimal values x allows one to minimizing heat produced 

through boilers in order to increase the cogeneration exploitation. The objective function 

that has to be minimized is the time integral of the thermal power when the thermal power 

exceeds the cogeneration maximum heat flux. 

 Qâ �_ã ä_åæ � � Φ�åÄçÄ�t�dt�è
�é − ΦêÉ�ë ä�t0 − tÉ�  (5.4)  

In the case of the application to a distribution networks the maximum heat flux produced in 

cogeneration mode is calculated as proportion of the nominal request the barycentre 414 with 

respect to the total request of the network. Te current request of the barycentre is: 

 Φíë±îÇî�t� � G±ï±_íë±îÇî�t�	cæ	�Tð¡ææñò − Tó��_� ô�íë±îÇî�t��  (5.5) 

where ta is time when the heat request exceed the maximum cogeneration power,  tb is time when 

the system starts requiring only cogeneration power, 	Tó��_� ô�íë±îÇî is the temperature of water 

exiting the distribution network and G±ï±_íë±îÇî�t� is the circulating mass flow rate. The various 

quantities are reported in Figure 5.22. 
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Figure 5.22. Thermal power evolution and, in evidence, the area to minimize as the objective 

function 

 

2. In the second case the optimizer allows one minimizing the maximum peak value. It can 

be used when the thermal peak do not necessarily exceed the cogeneration maximum 

production and the goal is to reduce the peak in order to check the potential advantages in 

connecting additional buildings to the network . It can also be useful when the 

cogeneration fraction is not fixed in advance and the aim is to guarantee a thermal profile 

that is as flat as possible. This can be used for instance to check the possibility to decrease 

the electricity production. The objective function is: 

 	ΦêÉ� � max�	Φíë±îÇî�t�	�  (5.6) 

where 

 Φíë±îÇî�t� � G±ï±_íë±îÇî�t�	cæ	�Tð¡ææñò − Tó��_� ô�íë±îÇî�t��  (5.7) 

 

In all the cases Tret_nodeBCT414  is evaluated through the thermal fluid-dynamic model 

5.8.4 Optimization Results 

Distances between the various users and the barycentre node have an effect on the temperature 

evolution in the network; this means that an optimization conducted at a district level is not just 

the summation of optimizations of single buildings. Figure 5.6 reports the curve obtained by 
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summing the thermal requests  of all the users (dashed line) and the total thermal request at the 

barycentre (plain line); the latter takes into account the effects due to the delay time associated 

with the network topology and the heat losses. In particular, the dashed line assumes higher 

values before 6 a.m, and lower values in the following period, due to the fact that the time for 

water flow to reach the barycentre point is not considered. Furthermore, the integral of the plain 

curve is larger than the integral of the dashed curved, which is due to the fact that the power 

plants provide not only the heat required by the buildings but also the heat necessary to rise water 

temperature in the distribution network.. 

This proves that knowledge of the thermal request of users is not sufficient for studying the 

network behavior. Therefore, a thermo-fluid dynamic model is necessary in order to analyze peak 

shaving strategies properly. 

 

Figure 5.23. Thermal request evolution at the barycentre node (plain line) and sum of the user 

thermal requests (dashed line) 

 

In Figure 5.24 the optimized thermal load evolution obtained respectively with the boiler 

production minimization and the peak minimization are depicted. The curve obtained with the 

optimized strategy is shifted with respect to that corresponding with current scenario because of 

the switching on anticipation of the heating systems. The grey horizontal line represents the 

maximum cogeneration power that can be provided to the distribution network. 

As regards the first optimization approach, the integral above the grey horizontal line has been 

minimized. The figure clearly shows that, when the optimization is performed, the area 

corresponding to the heat produced trough boilers is reduced with respect to the one obtained with 

the current strategy. The maximum peak value instead is not significantly reduced. 
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When the second optimization approach is applied, the maximum value of the peak is clearly 

reduced, while the boiler production it is not significantly different with respect to that in the 

current scenario. 

 

Figure 5.24. Optimized results (dark dashed line) compared to the current strategy (continuous 

lines):  a) CASE A :Boiler production minimization b) CASE B: Thermal peak minimization 

 

To make the comparison more clear the total heat required and the type of heat generation in the 

various cases is shown in Figure 5.24. The total thermal consumption corresponding with the 

optimized cases is clearly higher than in the current case, due to the additional consumption 

associated with anticipated starting of the heating system, which is only partially recovered during 

the day. In fact, the anticipated switching leads to an increase of the time period when the heating 

system is operating. In CASE A, the total energy increase is about 4% while in CASE B is about 

4.4%. The total heat generation is provided in two different ways: trough cogeneration and  

trough boiler systems. Clearly the amount of heat produced in a cogeneration system allows to 

better exploit the use of fossil fuel due to the possibility of combine production of heat and 

electricity. In both the optimized cases the fraction of heat produced with a cogeneration system is 

larger than in the current scenario. In CASE A, the cogeneration fraction is about 93 %, in CASE 

B about 92% and in the current scenario about 90% (all the percentage refers to the considered 

barycentre).  As a consequence, the use of heat produced through boilers is reduced (CASE A 7 

%, CASE B 8%, current scenario 10%) 
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Figure 5.25. Amount of heat required in the current condition and in the optimized cases 

 

Figure 5.26a reports the results in terms of  primary energy consumption required in the 

different cases. The ratio between primary energy consumption and heat produced is considered 

1.11 for the boilers and 0.36 for the cogeneration system. As regards the CASE A, even if the 

total energy request increases of about 1.27 MWh/day, the overall primary energy consumption 

decreases because of the higher performances of cogeneration with respect to the boilers. The 

energy savings obtained with the best set of anticipation is about 0.17 MWh/day. This correspond 

to the primary energy savings of about 1.25 % of the fuel consumption for the distribution 

network. As regards CASE B, an increase of the primary energy consumption is verified. This 

result warns to the use of the second optimization approach for primary energy reduction when 

the maximum production of cogeneration is not known. Nevertheless, this approach is very 

effective with respect to the minimization of the peak. In addition, the analysis should be properly 

combined with the opportunities such as the possibility to produce an additional amount of 

electricity(operating scenario) or the connection of additional users (design scenario). Figure 

5.26b reports the maximum values assumed to the thermal evolution in the three considered cases. 

The peak reduction in the CASE B is about 900 kW; that means that the peak is reduced of about 

the 6% with respect to the current scenario. 

 

0

5

10

15

20

25

30

35

Total heat 

consumption

Heat from 

cogeneration

Heat from boilers

H
e

a
t 

[M
W

h
]

Current condition

Boiler production 

minimization

Peak minimization



95 

 

 

Figure 5.26. Current condition and in the optimized cases comparison: 

 a) Primary energy consumption b) Maximum peak value 

 

  As regards the computational cost, the optimization tool provides the optimum set of anticipation 

using a single 3.3 GHz CPU in about 2 hours. This is a crucial feature to allow optimal operation 

in real networks. It is worth mentioning the fact that the approach corresponding with peak 

minimization has been implemented in March 2016 in the Turin district heating network, in the 

examined barycentre. 

5.8.5 Optimization in the real case 

The model has been used in order to reduce the thermal peak in March 2016 in the distribution 

network BCT 414 of the Turin district heating network. The results of the modified schedule have 

been collected through the monitoring system. A comparison between some results obtained in 

various days, before and after the use of the peak shaving strategy are reported in Figure 5.27. The 

figure depicts the evolution of the thermal load for the different days and the corresponding 

environmental temperature. The reported evolutions have all quite similar shapes and in particular 

it is possible to notice that the amount of heat request is not clearly related with the external 

temperature. Therefore the external temperature is just one of the parameters that affect the 

thermal load. For instance the thermal load may be affected to the temperature of the previous 

days due to thermal capacity of the buildings. The two curves indicated with MOD correspond to 

the application of the peak shaving strategy, while the curves labeled with OLD correspond to the 

strategy without changes. In the examined period, the following schedule changes have been 

applied. 
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1. Scenario MOD Tenv=3.9°C: for 23 buildings an anticipation of 20 minutes has been 

applied , for 2 buildings an anticipation of 10 minutes has been applied; 7 buildings have 

not been modified in the schedule despite the possibility to do it. 

2. Scenario MOD Tenv=9.1°C: for 17 buildings an anticipation of 20 minutes has been 

applied , for 3 buildings an anticipation of 10 minutes has been applied; 14 buildings have 

not been modified in the schedule despite the possibility to do it. 

 

Figure 5.27. Measured thermal consumption of the BCT 414 in several cases.  

Mod= with peak reduction tool. Old= without peak reduction tool 

 

In order to better compare the effects of the peak reduction tool it is worth to consider only the 

users that, in all the considered days, had the data transfer system able to deliver data. In fact the 

data transmission system may not be always able to deliver data due to absence of signal. The 

sums of the users always communicating for the days previously selected are reported in Figure 

5.28. Only the period when the peak takes place has been considered. To better distinguish the 

different curves the two curves obtained after the tool use are reported through dashed lines. 

Furthermore a detail of the more interesting zone is also reported in Figure 5.29. The figure shows 

that the thermal peaks obtained with the fluid-dynamic tool are more flat than the others. This can 

be noticed, in particular, by comparing the green (MOD) line and the yellow (OLD) line. The 

thermal request associated to the green line increases faster than the yellow line, but the maximum 

value of the green line (10245 kW) is lower than the one of the yellow line (10584 kW). The 

obtained peak reduction is almost 340 kW, which corresponds to more than 3%, despite the 

limited number of buildings which schedule could be modified.  
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Figure 5.28. Sum of the communicating user thermal requests during:  

left) all the peak period; right) a detail. 

5.9 Optimizer improvements 

In order to make the optimizer more effective some further developments have been performed. 

In particular the possibility of increasing the anticipation range is investigated in order to make 

the peak shaving more effective. To explore such opportunities a model for the user heating must 

be applied in order to account for the internal temperature evolution when changes in the start-up 

time are applied. This analysis guarantees that the changes in the strategy do not produce 

significant effects on the building temperatures. In such way the comfort standard can be 

preserved. In particular the user simulator carried out consists of a building model based on the 

data available at the heat exchangers, which means that no indoor temperature sensors should be 

applied. This is a requirement to make the procedure applicable on a large scale. In addition it 

should be considered that the model does not aim to accurately predict the values of internal 

temperatures, but only to account for the possible changes. 

5.9.1 Building physical model 

The building model includes the thermal substation and the “macro heating device” which 

represents the ensemble of the heating system and the building envelope. A schematic of the 

system considered to simulate the buildings is shown in Figure 5.29. 

 

 

Figure 5.29. Schematic of the heating system in the buildings 

 

An energy balance of the building is written including the unsteady term, the heat provided by 

the heating system Φðòð� and the losses Φñ ðð�ð with the environment, namely 
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 Φðòð� +Φñ ðð�ð � Mc ô±ô�  (5.8) 

Where Mc is the thermal capacity of the building and T is the average indoor temperature. This 

means that a single average temperature T is considered in the building. For the purpose of the 

analysis proposed in this work, this does not represent a limitation of the model as it is further 

discussed in the next section. Losses can be expressed through a global dispersion coefficient per 

unit volume Uvol: 

 Φñ ðð�ð � U/ ñV�T − T ¡�ð�ô�� (5.9) 

Both parameters Mc and Uvol are evaluated trough the analysis of measurement data available 

at each heat exchanger. These are the four temperatures at the heat exchanger, the mass flow rate 

on the primary network and the external temperature (Toutside). The term Uvol  is evaluated using 

data collected when the system is operating in pseudo steady-state conditions, which typically 

take place in the afternoon, ,as shown in Figure 5.30.This figure shows the temperature difference 

between the flow at the outlet section and the inlet section of the heat exchanger. In particular, in 

the left part of the figure, the daily evolution is depicted while the second plot shows in detail the 

last part of the temperature decrease. 

 

   

Figure 5.30. Model validation. Heat request at the heat exchanger comparison. 

 

In these conditions, equation (1) is rewritten as: 

 U/ ñV � úûüûÄ
�±I±çÃÄûÜýþ�    (5.10) 

The term Mc has been evaluated considering the transient operation after the heating system is 

switched off. In this case, it is assumed that, when the temperature of water exiting the heat 

exchanger on the secondary side of the heating system is approaching the indoor temperature, 

these two temperatures tend to decrease in a similar way. Therefore, data collected during the last 
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stage of the water cooling can be used to evaluate the decrease in the internal temperature and 

thus the thermal capacity of the building: 

 
ô±
ô� Mc � U/ ñV�T − T ¡�ð�ô��    (5.11) 

Temperatures of the water exiting the DHS heat exchangers at the secondary side, Tout_sec, and 

heat flow exchange at the users, Фsyst, are evaluated using the substation model. 

The heating system of each building has been modeled considering the two heat exchangers 

shown in Figure 5.28. The first heat exchanger is the one in the substation where district heating 

network water flows on the primary side and the water of the building heating system flows on 

the secondary side. The second heat exchanger simulates all the heating devices in the building as 

a single component exchanging heat with the indoor environments (assumed at an homogeneous 

time dependent temperature T). The heat exchangers are modeled using a effectiveness-NTU 

method. A time delay is considered in order to account for the average time requested for water 

circulation on the secondary network. This is a third parameter that characterizes the building and 

it is calculate through comparison of the calculated thermal request profile and the registered 

evolution. 

Temperatures on the secondary network have been calculated at each time step, since these values 

vary during operation. In contrast, the mass flow rate on the secondary network is constant when 

the heating system is operating, since typically no variable speed pumps are installed in the 

buildings. The mass flow rate on the secondary network is zero when the heating system is not 

operating. 

 The user model has been tested through data collected during a winter day in order to verify its 

capability to simulate the buildings indoor temperature evolution. 

5.9.2 Building model results 

In this section, results of the building model validation are reported. A specific building where 

four indoor temperature sensors were installed has been considered. Results in terms of indoor 

temperature evolution and heat flux measured at the heat exchangers are evaluated and compared 

with available measurements. In Figure 5.31, the temperature evolution computed through the 

building model (in black) is compared to the temperature evolutions measured in four different 

rooms. A winter day with an average external temperature of 8 °C is considered. The evolution is 

well captured by the model both in the heating-on and heating-off stages. During the heating stage 

the temperature increases of  4.5 degrees, the same of the temperature detected using the 

thermocouple installed in the building. Also, the time at which the maximum internal temperature 

is reached in simulations and measured data is similar. It is worth noticing that the model does not 

consider any contribution due to unpredictable contributions, such as solar radiation, but this is 

not considered in the currently applied control strategies. 
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Figure 5.31Model validation. Indoor temperature comparison 

Figure 5.32 illustrates a comparison of the heat request at the heat exchanger evaluated using 

the building model and the experimental data. It is possible to notice that the heat flux exchanged 

at the thermal substation is very large when the heating system is switched on. This is due to the 

fact that temperature on the secondary circuit drops significantly at night, reaching a temperature 

close to the internal building temperature. The average temperature difference between primary 

and secondary side is thus much larger than at design and so the heat flux. After the peak, the heat 

flux decreases due to the temperature increase on the secondary circuit. This decreasing trend is 

affected by the characteristic time requested to complete the secondary circuit. From Figure 5.31 

it can be concluded that the model is able to capture the heat flow evolution at the heat exchanger 

both in transient and steady state conditions.  

 

Figure 5.32 Model validation. Heat request at the heat exchanger comparison. 

In addition, six buildings connected with the selected distributed networks are considered 

(Note that the analysis is performed considering a wider area than just the single distribution 

network adopted in the previous sections, because the building where indoor temperature were 

available is located on a different distribution network). For these buildings it is possible to 

compare the calculated temperature of water exiting the heat exchanger on the primary network 
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with the experimental values. These buildings are also used in order to show the effects of the 

rescheduling on the internal temperatures. The criteria to select the buildings are their volume and 

the distance between the building and the connection node with the transport network. These 

pieces of information are reported in Table 5.1, where model coefficients are also shown. These 

coefficients have been evaluated using the approach described above. Last term (tc) is the 

characteristic time considered in the simulation of each building.  

Building 
Volume 

(m
3
) 

Distance 

(m) 

Uvol V 

(W/K) 

Mc 

(kJ/K) 

tc 

(s) 

1 3127 169 3752 70357 150 

2 3000 856 2880 69005 150 

3 6930 200 6029 169785 320 

4 7019 769 5755 176176 300 

5 14470 313 10418 393584 560 

6 16725 750 19233 460773 660 

Table 5.1. User model coefficients 

 

A comparison between the calculated and measured temperatures of water exiting the selected 

heat exchangers is shown in Figure 5.33, which shows that the model is able to capture the 

behavior of buildings, with the exception of building C.  

 

Figure 5.33. Temperature of water exiting the heat exchanger on the primary side for six selected 

buildings. 
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On the basis of the results presented in this section it is possible to conclude that the model is 

suitable for evaluating the acceptability, in terms of comfort level, of possible changes in the 

thermal request. 

5.9.3 Thermal profile changes 

Two scenarios corresponding with different changes in the thermal request profiles have been 

analyzed, as reported in Table 5.2. In both cases it has been considered that only 50% of the 

buildings accept to modify their thermal request profiles. The two cases differ in terms of the 

maximum anticipation in the start-up time of the heating system. The energy demand of the 

selected users has been modified in the following way: 

1) a simulation corresponding with a scenario with no changes operated on the thermal request 

profiles is performed. This simulation allows one obtaining the thermal load curve and the 

internal temperature in each building as the function of time;  

2) the time at which the heating system is switched on is anticipated of a period between 0 and 

the maximum value indicated in Table 5.2;  

3) when the indoor temperature of a building reaches a desired value, during the first half of 

the morning, the heating system is switched off until the internal temperature profile crosses the 

curve corresponding to the scenario with no changes.  

For each building, a temperature evolution curve is obtained. This curve is above the original 

curve in the first part of the morning. When the two curves cross each other, the thermal request 

profile continues in the same way as the scenario with no changes. It is important here to stress 

the fact that the use of an average temperature for the building is not a limitation since the 

criterion for acceptability of the new request profile is based on the comparison of the curves with 

and without changes. It is assumed that if the average temperature for the scenario with no 

changes was acceptable for the end-users, the fact that the same temperature is reached with the 

new profile guarantees the same comfort conditions. 

The modified profile generally involves a larger thermal consumption for the building, 

nevertheless, this consumption takes place in off-peak hours, when cogeneration is available, 

while the thermal request in peak hours is reduced. The primary energy cost of these two amounts 

of heat is thus different: the off-peak heat request has a primary energy production cost of about 

0.36 MWh/MWh (cost of heat produced through cogeneration), while the avoided heat 

consumption in peak hours has a primary energy cost of about 1.11 MWh/MWh (avoided cost of 

heat produced through boilers). In fact, cogenerated heat is produced by combined cycles 

characterized by an electrical efficiency of 58%. When these plants operate in maximum 
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cogeneration mode, electricity production decreases of about 50 MW, while heat production 

increases of about 240 MW. Therefore the cost of a unity of heat production is that of 0.21 unities 

of electricity. In contrast, the avoided heat production in peak hours allows reducing the use of 

industrial boilers which are characterized by an average efficiency of about 90%. 

 Fraction Maximum anticipation 

CASE 1 50% 20min 

CASE 2 50% 30min 

 

Table 5.2. User request modification analyzed 

 

5.9.4  Current thermal request  

A first simulation of the distribution networks and the buildings connected with the network is 

performed in order to reconstruct the scenario “as-is”. Thermal request of the buildings is set on 

the basis of measurements available using a time step of 5 minutes. The peak request of each 

building and the time at which it occurs are registered. These pieces of information are illustrated 

in Figure 5.34, where the various contributions and the total summation in each timeframe are 

presented. It is apparent that, as expected, there are many users requiring the highest amount of 

thermal power between 5.40 am and 6.40 am. The peak thermal power required from most of the 

buildings is below 1 MW. It can also be noticed that a large user presents a peak thermal request 

of 2750 MW at 8.45 am, which is an uncommon behavior. This type of user does not need any 

thermal request variation since its start-up peak occurs when most users are in off-peak 

conditions. As expected, the peak thermal power presents a maximum at 6.20 am. The peak value 

obtained in Figure 5.34 is not the maximum thermal request of the distribution network, because 

this only accounts for the peak request of each user. Users characterized by earlier peak request 

may have already reached the pseudo steady-state request, as shown in Figure 5.30, therefore the 

instant request may be different in shape and values. 
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Figure 5.34. Current situation. Summation of the thermal peaks of the various buildings. 

Figure 5.35 depicts the current total thermal load registered at the end nodes of the distribution 

networks of the considered area i.e. at the nodes linking the distribution network with the 

transport network. The thermal request between 0 a.m. and 5 a.m.  is close to 0 MW, due to the 

absence in the considered network of users requiring heat also during the night, i.e. hospitals. A 

peak load of about 42 MW occurs at about 6.10 a.m., which means about 10 minutes before the 

maximum value reported in Figure 5.32. This is mainly due to the shape of the heat flux curves of 

the buildings, which is typically characterized by a thinner peak than that shown in figure 6 

(which refers to a large building) and a slighter increase towards the pseudo steady state. 

Then the thermal load reduces to values which vary between 10 MW and 20 MW. The red 

dashed line, represents the amount of thermal power that can be provided in cogeneration mode to 

this network. Such value has been obtained by distributing the total cogeneration capacity among 

the various distribution network according with their specific nominal request. As already 

discussed in this thesis, the presence of the morning peak does not allow proper exploitation of 

the cogeneration plants. 

In the following section, possible strategies obtained by modifying the thermal request of the 

buildings are analyzed. 

 

Figure 5.35 Current thermal power request evolution in the considered distribution network. 
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5.9.5  Thermal request modifications 

Two different request profiles that are alternative to the current operational strategy have been 

defined have been defined  according with the requirements defined in Table 2. The 

corresponding distributions of peaks are shown in Figure 5.36. In the first strategy the maximum 

peak summation is reduced to about 5 MW, but the main variation refers to the anticipation of 

peaks that in the current strategy occur before 6.10 a.m.: all peaks are made more homogeneous 

than that shown in figure 8 and are all below 2 MW. In the case of the modified strategy 2, the 

opportunity to anticipate up to 30 minutes is used to create a sort of alternation between “high” 

peaks of about 1-2 MW and small peaks.  

 

Figure 5.36. Modified strategies 1 (left) and 2 (right).  

Summation of the thermal peaks of the various buildings. 

 

The time profiles of the total heat load for the distribution network obtained by applying the 

current operational strategy and two alternative strategies are illustrated in Figure 5.37. Clearly, 

when the request of buildings is anticipated the total thermal request presents an anticipated 

increase. Both modified strategies 1 and 2 provoke a remarkable reduction in the peak load. 

Before the peaks, the alternative strategies require an additional amount of heat, but this is mainly 

supplied by cogeneration plants. In contrast, load is reduced after the peak, even if not of the same 

quantity, therefore a partial heat recovery is obtained. In the case of modified strategy 1, the 

additional thermal energy supplied to the network through cogeneration is 0.8 MWh/day, but the 

avoided production of thermal energy through boilers is about 1.4 MWh/day. This results in a 

reduction of primary energy consumption of more than 1.2 MWh/day. In the case of the second 

strategy, the additional thermal energy supplied to the network through cogeneration is about 1.2 

MWh/day, but the avoided production of thermal energy through boilers is about 2.5 MWh/day. 

This results in a reduction of primary energy consumption of more than2.3 MWh/day. 
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If this result is extrapolated to the entire network, assuming that 50% of the request of 

buildings is rescheduled, the primary energy savings could be about 4-5% of the annual fuel 

consumption. 

 

Figure 5.37 Thermal power request evolution in the considered distribution network with 

different user request variation strategy 

The analysis of the indoor temperature using the building model is presented in Figure 5.38 for 

the six selected buildings. For each building, the curves, corresponding with the current strategy 

and the modified strategy are shown. Only the strategy 2 is shown, since it is the one involving 

the largest possible deviation in the startup schedule. In all cases the heating system is stopped at 

night, therefore internal temperature decreases, reaching a minimum at about 5-6 a.m. then the 

heating system is turned on and the internal temperature starts increasing. In the case of building 

(a) and (c), it is possible to notice that the heating system is stopped during the day (at 10.05 and 

10.30, respectively), therefore the average internal temperature calculated using the compact 

model presents one or more oscillations above 20 °C. In contrast, the other buildings reach a 

plateau after an initial steep increase, which involves a reduction in the thermal request in the 

second part of the morning (after about 10 am) and a modulation during the day. 

When the modified strategy is applied, the indoor temperature presents an anticipated increase, 

therefore the internal temperature curve stays above that corresponding with the current strategy. 

In the second part of the morning, between 9 and 11 depending on the examined building, the 

recovery is applied. This is obtained through partial anticipation of the first planned stop in the 

case of buildings (a) and (c) or by introducing such stop in the other cases. Stop duration is 

calculated so that the indoor temperature curve corresponding with the modified request crosses 

that corresponding with the current request. From this point on the thermal request profile follows 

the current one and so the indoor temperature. The fact that the indoor temperature is always 

maintained above or coincident with that corresponding with the application of the current 

strategy guarantees the fact that the modified strategies are acceptable for the end-users.  
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Figure 5.38. Indoor temperature evolution with the current and the modified users thermal 

requests. 

 

5.10 Concluding Remarks 

In this chapter presents a thermo fluid-dynamic model for the analysis of possible optimum for 

peak shaving in district heating systems is presented. The model has been built for performing 

unsteady simulation of large district heating networks and it has been applied to the largest district 

heating network in Italy, located in Turin, for the analysis of start-up transient operation. 

The model is based on a steady state fluid-dynamic model and a transient thermal model of the 

network. The fluid-dynamic model evaluates the mass flow rates in branches using the SIMPLE 

algorithm. The thermal model determines the  temperature in the nodes using an Upwind scheme. 

The models have been applied to the transport pipeline as well as to distribution networks. In 

order to keep low computational cost a different approach has been used: the transport and 

distribution networks have been simulated separately. In particular results provided to each 

distribution network simulation  have been used as the input of the transport pipeline model. The 

time required by the thermo fluid-dynamic model to simulate 13 hours of the whole return 

network behaviour on a single 3.3 GHz CPU  is about 2 hours  

The model provides the temperature in all the nodes and the mass flow rates in all the branches. 

Results are compared with experimental data to prove model effectiveness. The model is able to 

detect the thermal power required to the plants with good approximation. Prediction of heat power 

required in different periods is useful as decisional support in operational strategies (e.g. 
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electricity production by the cogeneration systems) and for thermal peak shaving through 

installation of storage systems as well as the promotion of night attenuation or variation in the 

thermal request profile of the users. The model has been applied to examine the effects of network 

enlargement and to find optimal users switching on changes. In fact at first in particular the model 

is used to analyze the effect of local storage installation in a new portion of the network. Secondly 

a tool for optimizing changes of user thermal request strategy has been developed and applied to 

the minimization of the primary energy consumption. This tool has been applied to one of the 

Turin DHS distribution network and it is currently under testing in the real network. Results allow 

one quantifying the possible reduction of the non-cogeneration heat request during peak hours, 

with the current control technology. The possible reduction of the non-cogeneration heat is about 

27%, while the maximum value of the peak can be reduced of the 6%. Results show that a 

primary energy reduction of about 0.17 MWh/day can be achieved, with a consequent energy 

saving of about 1.25% with respect to the current strategy. The tool provides results in about 2 

hours, therefore it is sufficiently fast for application to the management of large networks. Further 

developments regards the full integration of the users model in the anticipation optimizer in order 

to make the peak shaving more effective without affect the indoor comfort level, as well as the 

implementation of the strategies involving larger changes in the start-up time of the various users. 

In particular reduction techniques can also be applied to more complex building models. 
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6      
Wildfire application 

 

6.1 Introduction 

This chapter aims at proposing the reduction of a physical model through proper orthogonal 

decomposition. This means that with respect to the applications considered in Chapters 4 and 5 

here the POD technique is directly applied to the model equation. An application to the wildfire 

prediction field is proposed, using a simple physical model as test case. The selected model is a 

one-dimensional model based on the energy conservation equation, which was applied to a real 

scenario with no-slope but variable wind velocity. The data necessary for the estimation of the 

parameters of the physical model have been obtained from field fire experiments. Data from 

additional field experiments have been  used to check the model effectiveness in fire behaviour 

prediction. It is worth stressing that experimental data in this work are used with the only aim of 

checking that the full model is able to predict fire behaviour evolution correctly. In contrast, the 

goal of this analysis is to demonstrate that the POD reduction technique allows one to obtain 

results close to that of the full model but using a much smaller computational time. This means 

that the POD model should be checked against the full model, while the full model should be 

checked against the experimental data. In the followings paragraphs, after a literature overview, 
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the physical model is first tested using experimental data, the reduced model is compared to the 

full one and finally results were discussed. A 2D model is used to obtain the fire landscape 

propagation. 

 

6.2 Literature overview 

Reliable and computationally fast prediction of wildland fire behavior (e.g., rate of spread, energy 

release, perimeter and area growth) is crucial for operational purposes such as fire risk analysis, 

strategic fuel treatment planning, or support to incident management (Cruz and Alexander 2013). 

This goal is challenging for the fire scientist community since the early XX
th
 century (e.g., Fons 

1946) due to difficulties related to the understanding and representation of complex fire spread 

processes, the involvement of multiple length and time scales and the presence of various sources 

of uncertainty (Sullivan 2009a, b, c; Cruz and Alexander 2013; Finney et al 2015).  

Fire models currently used in operational modeling systems (e.g., Rothermel 1972; Coleman and 

Sullivan 1996;Canadian Forest Service 2004) are mainly empirical or quasi-empirical  (Sullivan 

2009a) because these models are pragmatic, straightforward to implement, and are 

computationally effective (Sullivan 2009b; Cruz and Alexander 2013). Although useful, these 

models suffer of many limitations such as uncertainty and imprecision, calibration needs and a 

condition of non-uniqueness (Morvan and Dupuy 2004; Cruz and Alexander 2013; Finney et al. 

2013). Physical and quasi-physical fire models (Sullivan 2009a) attempt to overcome these limits 

by representing both the physics and chemistry of fire spread (Sullivan 2009a; Morvan 2011; 

Finney et al. 2015). Comparative analyses between empirical and physical models have shown 

that the development of fire operational tools based on physical approaches is a promising 

research field (Hanson et al. 2000;Morvan et al. 2009). Some of the most used tools based on 

physical models (Morvan 2011) are FIRESTAR (Morvan and Dupuy 2004), FIRETEC (Linn and 

Harlow 1997), FIRELES (Tachajapong et al. 2008), and WFDS (Mell et al. 2007). However, the 

physical mechanisms that occur in wildfires are very complex and involve large domains. 

Therefore, even when some simplifications are considered, such as two dimensional models 

(Morvan and Dupuy 2004), very high computational resources are required. This currently 

precludes their use as operationally-oriented tool (Sullivan 2009c), especially when the analysis 

of multiple scenarios is required. In this framework, a reduction technique is proposed for testing 

its capability on making physical models applicable to super real time fire prediction. 

6.3 Model Description 

With the aim described in the previous paragraph a simple physical model has been selected. This 

is a one-dimensional model which considers the energy equation (6.1) for the fuel array and 

imposes the local rate of burning fuel as proportional to the current amount of fuel where 
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combustion takes place (6.2). Similar models have been adopted in various works available in the 

literature (Balbi et al.1999; Simeoni et al. 2001): 
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The first term in the energy equation is the storage term. This depends on the average density ρ of 

the mixture of fuel and air, the specific heat per unit volume, c, and the time variation of 

temperature. The second term is the convective term. This depends on the air velocity v along the 

fire propagation direction x and the derivative of temperature with respect to x. As fluid flow in 

not solved, velocity is assumed as constant throughout the domain, which is a limitation of the 

model.  

The empirical coefficient kv, which value is obtained through experiments, is used in order to 

allow substituting the upwind velocity to the local velocity. 

The first term on the right hand side is the diffusive term, which accounts for heat conduction. 

Quantity k is an equivalent thermal conductivity associated with the mixture of fuel and air. The 

second term accounts for the convective heat losses towards the environment, which is assumed at 

a constant temperature Te. The quantity h is a convective heat transfer coefficient per unit volume 

and is evaluated on the basis of available experiments, as shown below. The third term is a source 

term which accounts for the heat released due to fuel combustion. The quantity H is the heat 

content of the fuel, while s is the fuel array depth. These are multiplied times the rate of mass 

variation, which is evaluated through equation (6.2).  

Last term accounts for the net radiation heat transfer with the other portions of fuel array (j). This 

term is computed as: 

 ( )∑ −=Φ
j

jijRAD TTrF
44

εσ  (6.3) 

where r is the radiative coefficient accounting for the surface per unit volume emitting thermal 

radiation, Fij is the view factor of the surface with respect to the surrounding areas, ε is the 

emissivity and ϭ is the Stefan-Boltzmann coefficient. The presence of the radiative term (6.3) 

make the energy equation non-linear.  

 

The mass variation rate due to fuel combustion is assumed as directly proportional to the local 

fuel mass, according to Balbi et al. 1999. The parameter a assumes a positive constant value only 
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if the cell temperature at the previous time step is higher than the ignition temperature, otherwise 

it is zero. In order to limit the possible impact of the assumptions related with the combustion 

model, the parameter a, which value depends on fuel type and humidity, is evaluated 

experimentally. 

 

Despite being simple, the selected physical model presents two important features that need to be 

tested to prove the applicability of POD to wildfire science: 1) possible propagation of the fire 

front over large domains and 2) physical phenomena modeled through non-linear terms (the 

radiative term in this specific case). In this framework, the previously mentioned limitations of the 

physical model do not affect significantly the outcomes of such POD application. Once proved 

POD applicability to this model, more detailed models can be considered, such as two 

dimensional models, or models including continuity and momentum equations, radiative transfer 

equation and complex combustion models. 

In order to solve the energy equation, a numerical approach has been used. Energy equation has 

been discretized with a finite difference central scheme (Ferziger and Peric 2002) and a Newton-

Raphson algorithm has been used in order to solve it. The energy equation of the full model can 

be written in matrix form and, after the opportune rearrangements, becomes:  

 

 fDTATTC ++= 4&  (6.4) 

where matrix C includes the coefficients of the storage term, matrix A the coefficients of the 

convective term, diffusive term and unknown part of the heat loss, matrix D the radiative term and 

vector f the known part of the heat loss term and the source term.  

Dirichlet boundary conditions have been imposed at both the boundaries. A sinusoidal 

temperature distribution with a maximum of 700 K has been imposed as initial condition in the 

first 0.4 m of the domain in order to represent the fuel ignition while the environmental 

temperature is set at t=0 in all the other regions. The initial mass condition per unit area is 0.39 

kg/m
2
 everywhere. For the effect of the radiation o the unburned fuel the flame is considered to be 

50 cm height.  

The model has been applied to the system shown in Figure 6.1. The domain is 50 m long. This 

system is the one dimensional description of the domain used for the experimental data collection 

necessary to parameterize the physical model. A partition of the domain is also reported in the 

figure in order to better display the results and compare them with the measurements from field 

experiments.  
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Figure 6.1 Experimental and model domain 

The various parameters necessary in the full model have been obtained using measured data and 

information on fuel characteristics, weather and fire behavior collected during field fire 

experiments on grassland fuels, dominated by Molinia arundinacea Shrank (Figure 6.2). The 

analysis has been carried out under controlled conditions in winter 2009 in North-West Italy 

(Ascoli et al. 2009). 

The values of  the fuel energy content, H, the density of the mixture of fuel and air, ρ, and the fuel 

height, s, have been computed by assessing the grass fuel structure and load in the field soon 

before burning. At each experimental site, fuels were harvested in six 1-m
2 

quadrats and oven-

dried in the laboratory at 90°C to determine the load (t ha
-1

) on a dry basis. The fuel depth has 

been assessed every 0.5 m along six linear transects (length =10 m) at each fire site. Fuel load and 

bulk density range between 4.29 to 5.50 t ha
-1

, and 2.2 to 7.1 kg m
-3

, respectively. Flammability 

parameters (surface area to volume ratio, moisture of extinction, heat content) have been derived 

from published values for similar grass fuels as provided by the Fuel Characteristics 

Classification System (USDA 2015).  

 

Figure 6.2 Field fire experiment 
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Four fire experiments have been conducted through a collaboration with the Università di Torino. 

The data have been collected under moderate dry weather on the same day in the winter dry 

season, when the grass fuel was fully cured. Fuels have been thus entirely constituted by dead 

grasses with a diameter smaller than 6 mm (i.e., dead fine fuels) with a cover of 100% at each 

experimental site.  

Fuel moisture has been assessed soon before each fire experiment by collecting five samples of 

dead Molinia leaves. Fresh samples have been weighed in the field using a portable scale, and 

then oven dried in the laboratory at 90°C to constant weight. Fuel moisture has been computed on 

a dry weight basis and ranged between 11% and 19%. To let the fire front spread freely through 

grasses, each fire experiment has been ignited by a 25 m line ignition, and the fire was allowed to 

spread for 50 m before being suppressed along a fuel break.  

At each fire experiment, the fire spread has been assessed by measuring the arrival time of the fire 

front by using K-thermocouples (0.4 mm in diameter) positioned at fixed points (asterisk symbols 

in Figure 6.1) along a 50 m transect parallel to the spreading fire front. K-thermocouples have 

been placed within the fuel bed (5-10 cm from the soil surface) and the environmental (air-gas-

fuel) temperature has been measured at intervals of 1 second. Consequently, at each sampling 

point the maximum temperature and the temperature-time profile have been obtained (6.3). 

During each fire experiment, air temperature and moisture, and wind speed and direction have 

assessed every 10 seconds by two weather stations positioned at a height of 2 m upwind the 

experimental plot.  

Time since last rain was 19 days. Air temperature and moisture, and wind speed during the four 

experiments ranged between 20 to 27%, 19 to 25°C, and 2.8 to 7.1 km h
-1

, respectively. The 

coupling of weather data with fire behavior data has allowed to separate thermocouple data 

recorded during no-wind conditions, backfire and head fire phases (i.e., against and with the wind 

respectively).  

Both no-wind conditions and head fire conditions have been considered for the model parameters 

evaluation.  In total, 32 rate of spread observations have been collected (8 each experiment, as 

shown in Figure 6.1), each associated with fuel characteristics (load; bulk density; moisture), 

environmental conditions (slope; wind speed), fire behavior (rate of spread; no-wind, back or 

head fire phase) and effects (fuel consumption). Rate of spread ranges between 0.8 to 14.2 m min
-

1
. Fuel consumption has been assessed soon after the fire by collecting remaining charred fuels in 

six 1 m
2
 quadrats at each fire site and ranged between 75 and 90% of the pre-fire mean fuel load. 

In total, 40 experimental temperature-time profiles have been collected (10 each experiment, as 

shown in Figure 6.3). Maximum flame temperature ranges between 244°C and 733°C. Average 

residence time above 60°C and 300°C are 183 and 21 seconds, respectively. 
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Figure 6.3 Temperature-time profile collected to a thermocouple 

The values of the diffusive coefficient k, the convective losses coefficient h, the linearized 

reaction rate a, the radiative coefficient r and the convective coefficient kv have been determined 

using a comparison between simulations and experimental data. A genetic algorithm has been 

applied in order to parameterize the set of coefficients to simulate the fire front spread. Indeed, 

genetic algorithms have been successfully used to calibrate coefficients of wildfire prediction 

models (Wendt et al. 2013, Ascoli et al. 2015). The relative errors in terms of burning period, 

Errburning, arrival time, Errarrive, maximum temperature, ErrmaxT, and integral of the temperature in 

time, Errintegral, have been computed. The sum of these deviations has been considered as the 

indicator of the error performed to the model respect to experimental data in fire behavior 

prediction, as indicated in (6.5). 

 burning4arrive3egralint2Tmax1
Err*wErr*wErr*wErr*wErr +++=

 (6.5) 

The weight factors (w1, w2, w3, w4) have been added in order to select the importance of each 

error. In particular, the weight factors associated with temperature measurements (w1, w2) have 

been selected as smaller than the others with the intent of filtering the effects due to the errors in 

field measurements. 

The genetic algorithm has been used to find an optimal set of coefficients that minimizes the 

error, keeping it below a threshold level (5%). To limit premature convergence towards local 

optima, a crossover probability of 0.8 and an average mutation of 0.3 (this latter value changes 

during the optimization process) have been set (Srinivas and Patnaik 1994) and a large initial 

population (Pandey et al. 2014) equal to 60 random cases. The optimization has been conducted 

in 40 generations.  
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In order to determine kv, the optimization has been carried out considering 3 of the 32 available 

segments where 3 different values of wind velocity were registered: 0 m s
-1

, 1.4 m s
-1

 and 2.0 m s
-

1
. The same set of coefficients has been then used to simulate fire propagation depending on the 

wind velocity, as registered during the experiments. Results have been compared with 

experimental results collected in presence of the same wind velocity. The average value of the 

three error indicators, obtained with the three different wind speeds, has been computed and the 

set of coefficients that minimize the error has been evaluated; in this way the physical model has 

been parameterized. The coefficient evaluation strategy is summarized in Table 6.1. 

Symbol Explanation Evaluation 

Ρ Mixture air fuel density Laboratory Analysis 

C Specific heat (Campbell, Norman 2012) 

kv Advective coefficient GA usingThermocouple Measurements 

K Diffusive coefficient GA usingThermocouple Measurements 

H Losses coefficient GA using Thermocouple Measurements 

H Energy content Laboratory Analysis 

S Fuel height Field Analysis 

A Mass rate variation 

coefficient 

GA using Thermocouple Measurements 

R Radiative coefficient GA using Thermocouple Measurements  

 

Table 6.1. List of the model coefficients and the related evaluation strategy. 

 

6.4 Full Model results 

In this first part of the section, the outcomes of the coefficients setting are analyzed. At first, a 

discretization analysis has been performed in order to select the time step and the grid size that 

provide an acceptable error. Results are plotted in Figure 6.4. Time step and spatial discretization 

have been selected in order to keep both errors, due to time and space, below 10%. Simulations 

have been performed considering a time step 0.1 s and a resolution of 0.02 m. 
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Figure 6.4 Time step and Grid analysis results 

After defining the space and time discretization, the model coefficients have been set through 

genetic algorithm optimization. The values of the coefficients evaluated with the genetic 

algorithm are: a=0.034962 s
-1

, kv=798.576 J m
-3

K
-1

, k=0.89455 Wm
-1

K
-1

, h=1191.608 W m
-3

K
-1

, 

r=2.6610 m
-1

. 

A comparison of the rate of spread (ROS) obtained with the physical model and the experimental 

ROS is shown in Figure 6.5 for three different wind velocities. These results show that the 

physical model is able to capture the behavior of the experimental fire front evolution. A small 

error of about 0.01-0.02 m/s is committed for each wind speed. Deviations are due to the 

inaccuracy of the model but also the uncertainties in the parameters and in the measurements, 

such as the non-homogeneous fuel characteristics, humidity, wind velocity, etc. 

 

 

Figure 6.5 ROS obtained with the set full model and the ROS obtained during the experiments 
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In order to further comment these deviations, a collection of the relevant rate of spread data 

gathered during the experiments are reported in Figure 6.6, expressed as the function of wind 

velocity. A general trend of the fire evolution can be noticed, but an average deviation of 15% is 

registered with respect to the expected linear trend (Sullivan, 2009b). The maximum difference in 

the ROS is about 0.075 m s
-1

. 

 

Figure 6.6 Collection of ROS obtained during all the experiments in different wind conditions 

 

6.5 POD approach to wildfire modeling 

As discussed in paragraph 2.5 POD technique (Sirovich 1987) is based on the main idea that a 

physical field can be expressed as a linear combination of the mode eigenfunctions, which 

describe the spatial aspects, and amplitude coefficients, which account for time dependence. 

Therefore, using POD procedure it is possible to split the contribution of spatial coordinate and 

time contribution, and considering just the first k mode, as reported in equation (6.1). 
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~
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Therefore, rewriting (6.4) using (6.6) and multiplying by
T

B
~

, the energy equation becomes: 
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A smaller set of equation is then solved with a consequent decrease of computational cost. The 

obtained ODEs have been discretized through Backward Euler scheme and solved using the 

Newton-Raphson method. The time step and the resolution of the POD model have to be the same 

as the physical model it is derived from. 

In order to find an appropriate number of snapshots to be considered in the snapshot matrix, a 

parametric analysis has been conducted varying the number of snapshots. The analysis has been 

performed for various values of the ROS. Results of the POD model show that no significant 

differences in the fire front propagation are registered if the time gap among the snapshots is 

selected according the following inequality: 

 ∆tð�Éæ < �
Úï¨��þýÜ�Äþý®�û

¯∗�
 (6.9) 

For the application presented in this work, a maximum acceptable gap of 1.5 s between two 

consecutive snapshots has been obtained and no significant differences were noticed comparing 

results obtained using one snapshot per second or more. A total of 60 snapshots have been 

collected every second performing a single simulation using the full model and assuming 

homogeneous fuel characteristics and constant wind speed. This means that no computationally 

expensive simulations are necessary to obtain the snapshots, even in the case of applications to 

large domains. 

Once the snapshots are collected and the correlation matrix is built, just a small fraction of 

eigenfunctions, 7%, is sufficient in order to simulate fire propagation. This produces the reduction 

of computational cost. 

An additional aspect, which is specific for the application of POD to forest fire engineering, 

should be pointed out. Fire front propagation at a certain time involves a very limited portion of 

the full domain, which could be instead quite vast. A conventional approach, involving definition 

of the snapshots on the entire domain, would result inefficient from the computational viewpoint. 

An alternative approach has been adopted in this work: snapshots have been defined only on a 

limited portion of the domain, where the phenomena related with the presence of fire front take 

place (e.g. radiation heat transfer). The length of this portion should be therefore calibrated 

according with the flame high. The eigenfunctions have been set to zero outside this portion of 

domain. Eigenfunctions built in this way have been then moved with the fire front during its 

propagation. This technique allows one to apply the model also to very large domains with small 

computational costs. 

In this application, a 50 m full domain has been considered, in order to compare results with the 

available experimental data. Eigenfunctions have been obtained collecting the snapshots in a 
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portion of the domain of 20 m, while they have been set to zero outside. The portion of domain 

has been then moved, through change of the coordinates, after few iterations. 

The input of the POD model are the fuel parameters, the wind speed and the boundary conditions, 

as for the full model. The model calculates the temperature distribution as the function of time 

and the rate of spread. 

6.6 POD model results 

In this section, results obtained using the POD model are reported and analyzed with the aim of 

providing information on its effectiveness in predicting the wildfire field. A comparison with both 

the full model results and experimental data is performed.  

Temperature distributions at different time frames obtained with the full model and the POD 

model considering 2 ms
-1 

wind speed are reported in Figure 6.7. These results show that the 

evolution predicted by the full model rapidly reaches a shape that tends to a pseudo steady state, 

which does not change with time. The temperature profile in the combustion region varies only in 

the first part of the simulation then the rate of spread is constant. Figure 6.7 indicates that a good 

agreement between full model and POD model is achieved, although the POD model slightly 

over-predicts the fire front velocity. The differences that can be observed in Figure 6.7 are due to 

the fact that only a part of the total amount of eigenfunctions is used, in order to reduce the 

computational cost.  

 

Figure 6.7 Temperature distribution at different times Full model (plain line)and POD model 

(bold lines)  

In order to better compare the results obtained with the full and the POD model, a comparison of 

the rates of spread is reported in Figure 6.8a. This indicates that a good agreement between 

experimental ROS and the rate of spread calculated with the proposed model is achieved.  
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Figure 6.8.Comparison between Full and POD model in terms of relative error and 

computational cost  

In figure 6.8b, a comparison of computational time requested to solve the problem using the two 

models in the same portion of domain (20 m) is shown. The computational cost is expressed as 

the ratio between the computational time for the simulation and the fire propagation time. A 

reduction of 85% in the computational time is obtained using the POD model. This result suggests 

that model reduction can be an useful approach to be used in order to make physical models more 

suitable for fast (or faster) simulations. It is worth noticing that comparison on the 20 m domain is 

fair, since both the mesh of the physical model and the eigenfunctions are defined on this portion. 

In the case a larger domain were considered, the advantage of POD model would be even larger. 

In fact, the number of nodes of the physical model would increase and so its computational cost 

per time step, while the number of eigenfunctions would remain the same and so the 

computational cost per time step of the POD model. 

The error, as previously indicated in Figure 6.8a, depends on the number of eigenfunctions used 

to evaluate the results. The higher the number of eigenfunctions, the higher the accuracy of 

results, but also the higher the computational cost. Therefore is necessary to find a trade-off 

between accuracy and computational cost.  
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Figure 6.9 Relative error and computational cost reduction performed to the POD model with 

different number of eigenfunctions 

 

In order to select a proper number of eigenfunctions, an error analysis has been performed. 

Results are reported in Figure 6.9. The square in the figures represents the number of 

eigenfunctions that is interesting to select due to the low relative error performed and the high 

reduction in computational cost. 

 

6.7 POD model application 

6.7.1 POD for simulation in the experimental domain (different wind speeds) 

Once the POD model is obtained, it can be used for fast simulation of scenarios obtained by 

varying the model parameters, such as the fuel characteristics or wind speed, without need of any 

additional snapshots. This means that no additional full model simulations are necessary. The 

POD model has been applied to the prediction of the fire evolution in two particular experiments 

carried out on the entire domain (see Figure 6.10). During the experiments, wind speed had 

changed, varying from 0,9 m s
-1

 to 2.5 m s
-1

. It is worth remarking that the POD model was 

created considering the snapshots corresponding to a single wind velocity, 2.0 m s
-1

. Therefore 

only a single full model simulation is required in order to obtain a reduced model which is then 

used in a wide range of wind speeds. The values of ROS obtained with the POD model in the 

different domain sections are compared with the full model results and the experimental values. 

Each domain section is characterized by a particular wind velocity, due to the variations that were 

registered during the experiments. Results are reported in Figure 6.10. 
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Figure 6.10 ROS results: comparison simulations vs exp

 

Having in mind the goal of testing the performance of the POD model, the most interesting 

comparison is that with the full model results. In this regard, it is possible to notice th

average deviation of the two models in the 18 sections is about 6.4%, with an average difference 

in the ROS of about 0.013 m s

are slightly larger in the sections characterized by smal

snapshots that have been used in model reduction corresponds to a larger velocity (2.0 m s

general, these results prove that POD method can be used as a model reduction technique for 

wildfire evolution physical model.

Comparison between both models and experimental results is performed with the purpose of 

showing that the physical models (both the full and the reduced ones) are suitable for representing 

the events. The average deviations of the two models with 
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10 ROS results: comparison simulations vs experiments(in bold the corresponding wind 

speeds).  

1st and 2nd experiments 

Having in mind the goal of testing the performance of the POD model, the most interesting 

comparison is that with the full model results. In this regard, it is possible to notice th

average deviation of the two models in the 18 sections is about 6.4%, with an average difference 

in the ROS of about 0.013 m s
-1

, while the maximum difference is about 0.017 m s

are slightly larger in the sections characterized by smaller velocity (0.9-1.3 m s

used in model reduction corresponds to a larger velocity (2.0 m s

general, these results prove that POD method can be used as a model reduction technique for 

l model. 

Comparison between both models and experimental results is performed with the purpose of 

showing that the physical models (both the full and the reduced ones) are suitable for representing 

the events. The average deviations of the two models with respect to the experiments is about 

20%, with an average difference in the ROS of about 0.03 m s
-1
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In some cases, the level of accuracy is smaller, with a maximum difference in the ROS of about 

0.09 m s-1. As already discussed, this is due to the non-homogeneities in fuel characteristics, 

humidity and wind (which value was read each 10 s), as shown by the not precise relation 

between wind speed and rate of spread (Figure 6.6). For instance with the same wind speed (1.7 m 

s-1) two very different experimental rates of spread were obtained.  

6.7.2 POD for simulation with different fuel 

The main strength of the POD projection approach is the ability to reproduce the behavior of the 

system with some different characteristics, using snapshots provided to an experiment or 

simulation executed in other conditions. It can be useful for carrying out simulations with 

different fuel conditions or developing sensitivity or parametric analysis using a reduced model 

built from a single reference scenario. In particular, it is possible to assess the effects of the fuel 

parameters using small computational resources. In this paper the effect of uncertainties in the 

evaluation of the reaction rate are investigated using the POD model. In particular, a +/- 30% 

variation of a (Eq. 6.2) has been considered. The resulting variation of ROS are illustrated in Fig. 

6.11. The rate of spread evaluated with the full and POD model are very similar; the maximum 

error obtained is less than 6%. Furthermore the considered case is characterized by a low 

propagation velocity, therefore the deviation has a very small value, of the order of 0.0006 m/s. 

Figure 6.11 shows that an higher value of a correspond to a slower propagation, while ROS 

decrease with smaller value of a.  

 

Figure 6.11 ROS with different mass loss rate coefficient (Guelpa et al 2014) 

 

6.8 Discussion about POD applied to wildfire problems 

On the basis of the results, it is possible to state that the application of POD technique to physical 

models is suitable for fast prediction of wildfire behavior, since large reduction in computational 
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efforts is accompanied by sufficiently small deviations in the ROS. This advantage is expected to 

be strengthened when the model complexity or the domain size increases.  

A crucial aspect is that the POD model is built using snapshots collected from a very small 

number of simulations or experiments. Simulations or experiments do not need to refer to the 

entire event development, but may refer to a limited portion of domain. As an example, in the 

application presented here a single simulation has been conducted for 60 seconds considering 

constant wind speed (2.0 m/s) and homogeneous fuel. Once the snapshots are obtained, it is 

possible to perform simulations where the fuel characteristics (density, height, humidity, etc.) and 

wind speed vary with space and/or time, using the same POD model, i.e. no additional 

simulations using the full physical model or experiments are requested. Figure 6.10 is an example 

of POD application to scenarios corresponding with different wind speeds. An example of 

application to different fuel characteristics is available in Figure 6.11, where the POD model has 

been applied to a +/- 30% variation of the parameter a in a scenario without wind. The maximum 

relative error in the ROS was less than 6% (i.e. within the acceptable accuracy according to the 

number of snapshots, as highlighted in Figure 6.9), while the total variation in the ROS is about 

50%. 

The POD approach proposed in the present work is not limited to the selected physical model, but 

can be extended in the future to more complex models. Various works in the literature show that 

most of the phenomena considered in complex physical models can be reduced through POD, as 

discussed below: 

2D propagation. Different techniques can be adopted to extend POD models to 2D propagation. 

As a first option, a 1D model can be combined with a simulation models (Sullivan 2009a ) in 

order to obtain a landscape propagation (see for instance Anderson et al (1982) model or Glasa 

and Halada 2008). Section 6.9 shows an application of the simulator approach with experimental 

validation. A second option consists in dividing the fire-front during its evolution into multiple 

sectors and perform the POD simulation (always using the same basis) for each sector, so that the 

new fire-front can be obtained. Another choice is the creation of a 2D POD model that solves the 

conservation equations in a two-dimensional domain as described in Du et al 2013.  The initial 

position of the fire front does not affect the POD model and when the initial point changes, there 

is no need to re-compute a new POD basis. 

Large domain extension. The analysis developed in this work is applied to a small domain (50 m). 

This choice was forced by the need of referring to field experiments, which data are necessary for 

tuning the model coefficients and for validation purpose. The POD approach proposed here 

calculates the basis on a limited portion of the domain (20 m), which is moved with the fire front 

during the simulation. In this way, it is not necessary to define the eigenfunctions on the full 
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domain where propagation may occur, which would require a large number of eigenfunctions and 

high computational costs. The proposed approach, instead, allows one defining the eigenfunctions 

on a limited portion of domain with an extension depending on the fire size and then using it for 

possible propagations on large domains. 

Fluid flow and turbulence. Various applications of POD to fluid dynamic problems are available 

in the literature. In Cazemier et al. 1998 and Frouzakis, et al. 2000, the proper orthogonal 

decomposition has been successfully applied to a DNS formulation of fluid flow. The Galerkin 

method has been combined with POD in order to reduce turbulence models (Sirovich 1987; 

Berkooz et al. 1993), such as RANS models (Rambo and Yoshi 2005) or LES models (Ullmann 

and Lang 2010). In the case of LES, which is the model adopted in various CFD codes such as 

WFDS and FIRELES, POD allows one reducing significantly the computational resources 

requested for the turbulence model. This issue is clearly presented in a recent paper  (Keskinen et 

al. 2016) where the application to the simulation of an internal combustion engine is proposed. 

Coupled fluid flow and heat transfer. POD modeling, mainly in the form of Galerkin-POD, has 

been applied to combined fluid flow and heat transfer problems. In Du et al. 2013b, a POD model 

is used for fast prediction of the air side velocity and temperature fields in an air-cooled 

condenser, which shows complex non-linear behavior, dependent on the meteorological 

conditions and operational configuration. In Ghosh and Joshi 2013 a POD model is used to 

predict transient air temperatures in an air-cooled data center. As a third example, it worth citing 

the work by Han et al. 2015, where a POD model is applied to the reduction of a natural 

convection problem considering radiation heat transfer at the boundaries. 

Combustion models. Various papers in the literature present the application of POD to chemical 

kinetics (Danby and Echekki 2005) or to the simulation of chemical reactors (Yuan et al. 2005; 

Bizon, Continillo 2012). POD was successfully used also to solve combustion problems involving 

fluid flow, heat transfer and chemical reactions, such as in (Pyta et al. 2014; Iudiciani 2012). 

The proposed approach has allowed to successfully deal with two specific features of the POD 

application to wildfire propagation. This overview shows that the approach has large potential to 

be applied to complex physical models. 

 



 

6.9 Landscape evolution

6.9.1 Huygens Principle applied to fire propagation

In order to obtain the landscape propagation

mathematical models that transform the one

as discussed in the previous section

out to morph the shape of a fire 

necessary to represent the burning zone perimeter and t

the perimeter position with 

represented using one of the following approaches:

perimeter defined as the boundary of different types of

In this analysis, an approach based 

(1982 for wildfire evolution) 

propagates with an elliptical spread at each point of the fire front with the main ax

along the main propagation direction. Therefore the fire front at the time step t 

envelope of all the ellipses built at each point of the fire front at the time t

Figure 

The Huygens principle has been applied, in this case considering the main propagation direction 

as coincident with the direction of the wind. Therefore the major semi

ROS with a certain wind speed times the time step. The length of the minor axis is the ROS when 

no wind occurs times the time step. Therefore:
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.9 Landscape evolution 

.9.1 Huygens Principle applied to fire propagation 

In order to obtain the landscape propagation, when a 1D model is used, it is necessary to use 

mathematical models that transform the one-dimensional result in a two-directional prop

as discussed in the previous section. Many interesting mathematical model ha

to morph the shape of a fire front as it advances in all the directions. In particular

necessary to represent the burning zone perimeter and to perform a suitable method for changing 

 time. The delimitation of the burning or not burning zone is usually 

ed using one of the following approaches: 1) perimeter considered

oundary of different types of cells.  

an approach based on Huygens principle, that  was first used by Anderson 

(1982 for wildfire evolution) has been applied to the POD model. The idea is to consider that fire 

liptical spread at each point of the fire front with the main ax

along the main propagation direction. Therefore the fire front at the time step t 

built at each point of the fire front at the time t-1 (F

Figure 6.12 Huygens Principle applied to forest fire 

The Huygens principle has been applied, in this case considering the main propagation direction 

as coincident with the direction of the wind. Therefore the major semi-axis length is given

ROS with a certain wind speed times the time step. The length of the minor axis is the ROS when 

no wind occurs times the time step. Therefore: 

� � 	��a�*!�		-(
&o!�� � -�	 ∙ 		� 

� � 	��a�*!�		-(
&o!�� � 0�	 ∙ 			� 

it is necessary to use 

directional propagation, 

. Many interesting mathematical model have been developed 

as it advances in all the directions. In particular, it is 

o perform a suitable method for changing 

not burning zone is usually 

1) perimeter considered as a curve or 2) 

, that  was first used by Anderson et al. 

The idea is to consider that fire 

liptical spread at each point of the fire front with the main axis directed 

along the main propagation direction. Therefore the fire front at the time step t grows as the 

1 (Figure 6.12).  

 

The Huygens principle has been applied, in this case considering the main propagation direction 

axis length is given by the 

ROS with a certain wind speed times the time step. The length of the minor axis is the ROS when 

 (6.10) 

 (6.11) 



 

6.9.2 Fire evolution 

The capability of the 2D model to detect the fire spread evolution has been tested using 

experimental data. Figure 6.13 repo

and 50 m long.  The orange line is the ignition line. The arrival time of the fire front at the points 

indicated with black circles was collected during the experiment. Therefore the set of 10 va

(t_th1, th2, ..., t_thn) has been compared with the results obtained using the 2D model

Figure 

Figure 6.14 reports the fire fronts at each time t_th

velocity and direction detected

experiments, wind direction was mainly between SW and SSW. Accordingly, the fire front 

reaches higher distances in the lower part of the domain (where  y<0) due to the higher wind 

component in the west direction. 

The distance measured along the x direction between the blue points and the black circles is the 

error associated with the 2D model perform. The error values have been depicted in Figure 6.15.
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The capability of the 2D model to detect the fire spread evolution has been tested using 

experimental data. Figure 6.13 reports a schematic of the experimental domain, about 30 m large 

and 50 m long.  The orange line is the ignition line. The arrival time of the fire front at the points 

indicated with black circles was collected during the experiment. Therefore the set of 10 va

) has been compared with the results obtained using the 2D model

Figure 6.13 Experimental domain 

 

Figure 6.14 reports the fire fronts at each time t_thi evaluated using the 2D model and the wind 

velocity and direction detected at each time period between t_thi and t_thi

experiments, wind direction was mainly between SW and SSW. Accordingly, the fire front 

reaches higher distances in the lower part of the domain (where  y<0) due to the higher wind 

west direction.  

The distance measured along the x direction between the blue points and the black circles is the 

error associated with the 2D model perform. The error values have been depicted in Figure 6.15.

The capability of the 2D model to detect the fire spread evolution has been tested using 

rts a schematic of the experimental domain, about 30 m large 

and 50 m long.  The orange line is the ignition line. The arrival time of the fire front at the points 

indicated with black circles was collected during the experiment. Therefore the set of 10 values 

) has been compared with the results obtained using the 2D model 

 

evaluated using the 2D model and the wind 

i+1 . During the 

experiments, wind direction was mainly between SW and SSW. Accordingly, the fire front 

reaches higher distances in the lower part of the domain (where  y<0) due to the higher wind 

The distance measured along the x direction between the blue points and the black circles is the 

error associated with the 2D model perform. The error values have been depicted in Figure 6.15. 



 

Figure 6.14 2D model fire front at t=t_th

The 2D model fire front differ from the experimental fire front of 

mean difference is about 1 m and the relative error about 5%. Therefore a g
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2D model fire front at t=t_thi . In the table the wind speed and direction at each time 

period. 

The 2D model fire front differ from the experimental fire front of a maxim of 2.2 m, while

mean difference is about 1 m and the relative error about 5%. Therefore a g

ained between the model results with the 2D experimental fire propagation

2D model fire front at t=t_thi . In the table the wind speed and direction at each time 

period. 
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. In the table the wind speed and direction at each time 

a maxim of 2.2 m, while the 

mean difference is about 1 m and the relative error about 5%. Therefore a good agreement is 

fire propagation. 

 

. In the table the wind speed and direction at each time 
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6.9.3 Fast 2D Landscape propagation model including wind and slope con

When both wind and slope affect the rate of spread, a different approach should be used in order 

to obtain landscape propagation. This necessity is due to the fact that these two

have different orientations. A fast propagation a

evolution towards the principal propagation directions. This means that the 2π radians have been 

divided into a limited number of sectors. In each direction,

computed and the corresponding rate of spread is obtained. I

model, the Rothermel model has been used to evaluate the 1D rate of spread in each selected 

direction. The Rothermel model has thus been implemented using a Matlab

trough data obtained with the Behave sof

example with 4 main propagation directions (indicated with I,II,III,IV) is reported.

components of the vector wind (w) and slope (s) are evaluated in each propagation direction

the rate of spread is evaluated accordingly. 

Figure 6.16 Main propagation direction approach

 

In the examined application, at each time step the fire front in divided into a number of portions 

of fixed length (in the simulations, a maximum length of 1m has been set).

each portion, the propagation is then evaluated as discussed here above. In particular, 16 main 

directions have been selected for each point of the fire front.

An up-slope terrain (23°), with variable wind speed, is considered. Th

East while wind is oriented towards north

km/h. Figure 6.17 shows the corresponding 2D propagation results. In black the initial burning 

area is reported, while red curves re

line is the fire front at the end of simulation, after 65 minutes. The figure shows that wind and 
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6.9.3 Fast 2D Landscape propagation model including wind and slope con

When both wind and slope affect the rate of spread, a different approach should be used in order 

to obtain landscape propagation. This necessity is due to the fact that these two contributions

orientations. A fast propagation approach has been obtained computing the fire

evolution towards the principal propagation directions. This means that the 2π radians have been 

divided into a limited number of sectors. In each direction, the contributions slope and wind are 

computed and the corresponding rate of spread is obtained. In order to test the 2D propagation 

model, the Rothermel model has been used to evaluate the 1D rate of spread in each selected 

direction. The Rothermel model has thus been implemented using a Matlab
®
 

trough data obtained with the Behave software that includes a Rothermel model. In Figure 6.16,an 

example with 4 main propagation directions (indicated with I,II,III,IV) is reported.

components of the vector wind (w) and slope (s) are evaluated in each propagation direction

read is evaluated accordingly.  

 

Figure 6.16 Main propagation direction approach 

at each time step the fire front in divided into a number of portions 

of fixed length (in the simulations, a maximum length of 1m has been set). For the central point of 

each portion, the propagation is then evaluated as discussed here above. In particular, 16 main 

directions have been selected for each point of the fire front. 

slope terrain (23°), with variable wind speed, is considered. The slope in oriented towards 

East while wind is oriented towards north-east. The wind speed velocity varies between 5 and 15 

Figure 6.17 shows the corresponding 2D propagation results. In black the initial burning 

is reported, while red curves represent the fire front at different time frames. The red thick 

line is the fire front at the end of simulation, after 65 minutes. The figure shows that wind and 
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slope contributions are of primary importance in the fire spread. This is clear from the compar

of the distance between the ignition area and the final fire front in the same direction of wind and 

slope (E, N-E) respect to the distance in the S

occur. Propagation in the S

direction. Furthermore between 45 and 60 minutes,

among the red lines is larger.

 

 

Figure 6.17 Main propagation direction approach results.

 left: result obtained through the simulator; right: data used as inputs

 

6.10 Concluding remarks
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with the aim of significantly reduce the computational time requested for simulation. A simple 1D 

problem, which parameters were obtained from field experiments, 

suitable strategy for the application of POD to wildfire 

POD model is able to provide results very similar to the full model with significant reduction in 

the computational cost. As an example, using 6% of the available eigenfunctions, an average 

deviation of 6.4% in the results is obtained, while 

equation is reduced of 85% with respect to the full model. 
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slope contributions are of primary importance in the fire spread. This is clear from the compar

of the distance between the ignition area and the final fire front in the same direction of wind and 

E) respect to the distance in the S-W direction where no wind and slope contribution 

occur. Propagation in the S-W direction is negligible respect to the propagation in the N

direction. Furthermore between 45 and 60 minutes, when the wind speed is higher, the distance 

among the red lines is larger. 

 

Figure 6.17 Main propagation direction approach results.

left: result obtained through the simulator; right: data used as inputs
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with the aim of significantly reduce the computational time requested for simulation. A simple 1D 
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POD model is able to provide results very similar to the full model with significant reduction in 

the computational cost. As an example, using 6% of the available eigenfunctions, an average 

deviation of 6.4% in the results is obtained, while the computational time to solve the energy 

equation is reduced of 85% with respect to the full model.  

Snapshots provided by the full model in a single wind condition (2.0 m s
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POD model is able to provide results very similar to the full model with significant reduction in 

the computational cost. As an example, using 6% of the available eigenfunctions, an average 
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deviation in the ROS prediction by the two models is of about 0.013 m s
-1

, while the maximum 

difference is about 0.017 m s
-1

. Similarly, the same POD model can be applied to non-

homogeneous fuel distributions. 

These are promising results, which encourage a further application of the POD technique to more 

complex and multi-dimensional physical models in order to reduce their computational cost and 

make their use for operational purposes more feasible. Furthermore a model for 2D fire 

propagation that takes into account the difference between wind and slope direction has been 

carried out. Further development will be focused on the inclusion of the moisture and slope 

contribution in the physical model. The contribution of the moisture will be considered modifying 

the term related to the mass consumption and the unsteady term, while the slope contribution is 

taking into account through the adjustment of the radiative and convective terms. The model will 

be included in the 2D landscape propagation tool  with the aims of obtaining a very fast physical 

simulator that can be used as evolution prediction, real time risk analysis and preventive risk 

analysis. Furthermore, future plans include an analysis aiming at the evaluation of the preferential 

paths for the prediction of the fire evolution by means of an entropy generation analysis. 
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7      
Conclusions  

and future developments 
 

The work presented in this thesis is related to the modeling of energy transfer in systems 

involving large domains and long evolution time. In particular, various approaches to make 

simulations of such types of systems fast have been developed and applied. Three different 

applications have been analyzed: 

• The thermal plume evolution in the subsurface due to groundwater heat pumps 

installation is analyzed with the aim of determining the effects of a newly installed heat 

pump on possible downstream installations. This is a possible future scenario in urban 

areas. The system involves spaces of the order of kilometers and times of the order of 

years. It cannot be considered stationary because of the changes in the operating 

conditions of the heat pump as well as the propagation of the thermal plume in the 

ground. A multi-level modeling approach has been used to make the computational cost 

to solve a multi-year simulation acceptable. The model consists in coupling a 3D model 
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in the near field (near the extraction and re-injection wells) where the velocity and 

temperature gradients are higher and a network model in the far field, where the effect of 

the velocity profile becomes close to the undisturbed profile and the temperature 

gradients small. The approach proposed here is not new but here it has been applied for 

the first time to the analysis of groundwater resources. The main novelty is thus related 

with the application, which can be used to create a tool for the analysis of large territories 

where multiple installations of heat pumps are planned. 

• The Turin District Heating Network has been considered as an application with the idea 

of producing fast tools for the analysis of possible improvements in the operating 

conditions. The Turin DHN is one of the largest in Europe and the largest in Italy 

therefore a high computational time is required to solve the thermal fluid dynamic 

problem in the whole network. Two different aspects have been analyzed. At first, a tool 

for the optimization of pumping strategies has been built with the aim of minimizing the 

electricity consumption requested to pump water to the various users. Secondly some 

methods for the thermal peak shaving have been investigated. In particular storage 

installation have been considered and changes in user thermal requests have been 

optimized, with the purpose of increasing the cogeneration exploitation and, as a 

consequence, reduce the primary energy consumption. The DHN description is based on a 

graph approach and the model solve the conservation equation for the network. In both 

the analyzed cases a POD-RBF technique has been applied to the model to ensure a major 

simulation velocity. The main novelties related to this part consists in the development of 

a fast tool for the analysis of district heating networks. The tool is able to integrate 

measured data coming from the thermal substations in order to evaluate the opportunities 

for operation improvements or optimization. In addition the approach is suitable for 

multi-level analysis, which involves the use of the fluid-dynamic model for the main 

transport network and reduced models for the distribution networks. A carefully 

validation has also conducted in order to make it possible to use the tool in the real plant, 

where the tool is currently under tests. 

• A wildfire prediction model has been developed with the aims of showing the potential 

for the use of POD to such kind of systems. This work is based on the main idea to make 

wildfire physical models, which are currently characterized by very high computational 

costs, suitable for  fast simulation and risk analysis purposes. A simple 1D model based 

on energy and mass conservation equation has been implemented and its capability to 

predict real fire spread on grassland has been tested through experimental data. A fast 

landscape propagation tool has been performed with the purpose of producing a two-

dimensional fire evolution predictor. The POD reduction technique has never been 

applied to simulate forest fire propagation and this work represents the starting point for a 
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more complete use of this technique addressing wildfire related problems. The approach 

has been currently integrated in an industrial prototype tool for risk analysis within an 

European Integrated Project (AF3). To apply POD to wildfire a novel approach has been 

proposed in order to limit the analysis only to the domain where fire propagates. The 

domain is then moved with time as the fire front advances.  

The work shows that often, in different fields, high computational costs become a severe 

limitation to perform simulations or, in some cases, to use models as operational tools. Often 

these restrictions can be overcame  trough the choice of a suitable reduction technique. For 

instance the groundwater application can be solved in high, but reasonable, computational cost, 

only trough a reduction approach. In this particular case the multi-level technique allows the 

model to provide  results in a much smaller time. The solution of the full 3D model on a single 3.3 

GHz CPU is performed in about 2 days for a domain 600x500x100 and considering 3 years 

operation for the heat pumps. On the other hand, the network model requires about 2 hours to 

complete the simulation in a domain 300x2000 m long. The multi-level method allows one to 

significantly reduce the computational cost and to obtain results in an acceptable amount of time. 

If the 3D model were applied to the entire domain a computational cost of more than a week 

would be expected. The expected computational cost reduction is more than 70%. This results 

become more important if examined from a more complex point of view as indicated in this 

section later on.  

In some cases the computational cost required for the simulation is not a limitation for researches 

purposes; however it constitutes an inadequate characteristic for real time purposes. This is the 

case of simulations in case of large DHSs and wildfire system propagation. 

In these two cases the full models have been reduced trough different techniques. In both 

applications the present work reports the capability of the proposed methods to avoid high 

computational complexity and the corresponding reduction in accuracy. As reported in the 

Chapter 4, the POD interpolation approach (POD-RBF technique) allows a reduction of more than 

95% of the computational cost with a maximum deviation of about 8% with respect to the full 

model. The POD projection approach reduces the computational time of about the 85% with 

respect to the full model about 6% average deviation. However the robustness of the POD 

projection approach allows to apply the reduced model also in case that are far from the case used 

for the snapshots construction. Therefore when the model has to be more general as possible, it 

would be better to adopt a more robust approach even if a higher computational cost is required. 

As an example in the two proposed applications the POD model is able to detect the fire 

behaviour also when an extrapolation with respect to the input data is required, while the POD-

RBF methods only allows one to interpolate quickly the system behaviour within the domain for 

scenarios where snapshots are obtained. In the case of the POD model, it is difficult to define a 
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unique precision that characterizes this model reduction technique, because it essentially depends 

on the deviation between the simulated scenario and that considered for creating the snapshots. As 

an example when a difference in the fuel type occurs as a variation of ±30% in the coefficients 

values the maximum relative error detected was about 6%, a low value respect to the uncertainties 

related to the different conditions. In particular for the aims of the DHN simulation, both the 

optimal pumping operation and the thermal load prediction are evaluated in various representative 

scenarios and for the considered applications the is no significant need for extrapolation. 

Therefore the POD-RBF is a suitable method for this particular application, a remarkable 

reduction in the computational cost with small deviations can be obtained. In the future, the 

possible application of the method to the analysis of network expansion or malfunctioning 

operation may require using an approach able to allow extrapolations such as the POD model. 

Considering the results obtained, in the author's opinion the proposed methods and applications 

deserve further developments. Various ideas that should be considered as future work are 

discussed below: 

• As regards the groundwater analysis, the present work provides the basis for the future 

elaboration of a simulator able to include more heat pump installations in a large domain. 

Such composite model will be able to perform a simulation of an entire urban area, 

providing results of possible interactions between the heating systems. These scenarios 

present potential issues as documented in various analyses performed for the towns of 

London and Turin among others (Fry 2009). Two different pieces of information can be 

made available by means of the composite model: 1) The combined effects of more heat 

pump installations can be significantly different than the global effects of just one; in fact 

it is possible that a certain amount of water is extracted from or re-injected in the thermal 

plume created by an heat pump located up-stream. In the case the downstream installation 

is operating in cooling mode and the water temperature results as modified by the winter 

operation of an upstream system, the second pump reduces the effects produced by the 

first one. The opposite occurs when the two systems, despite the time requested for water 

to flow and reach the second installation, are in phase (e.g. warmer water resulting from 

summer mode operation extracted from a heat pump operating in summer mode). 2) 

Secondly such analysis gives useful details useful to predict the changes in heat pumps 

performances that can be not negligible. In fact from the study reported in Chapter 3 an 

installation 400 m from the test case would have a non negligible increase in the heat 

pump winter performances. On the other hand the thermal plume would produce, in the 

heat pump far 700 m from the test case, a decrease in the performances of more than 

30%. Clearly the analysis would be more accurate if all the groundwater heat pump 

installed in the cities (that nowadays are usually not a low number)  would be considered. 
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Furthermore an experimental analysis for the model validation will be developed when 

the experimental data collected in some points of the groundwater domain will be 

available. The tool could be also applied in order to analyze possible thermal storage in 

aquifer that could be designed even in the case of smooth water flow. 

 

• About DHS, different further steps have been planned: 

� The inclusion of all the distribution networks through a GIS based input is one 

of the main improvement considered; this information allows one considering 

the evolutions of the network including connection of additional users or 

installations of additional portions of the network. Such global model including 

the main network and all the distributions networks allows one to have a more 

complete view of the network behaviour and constitutes a valuable tool for 

operations and system improvement decisions. 

� Another important improvement regards the optimizer for the best time schedule 

for the various users. At present, the full model is used as the fluid-dynamic 

solver in the optimization tool installed on the real network and currently 

applied to a single barycentre (BCT-414). This is time consuming and it is not 

possible to directly extend it on the global network. Different approaches can to 

be considered in order to overcome such limitation. The POD-RBF technique 

could be applied to each single barycentre in order to make the optimum 

evaluation faster. At present the computational time required for running the 

optimization of a single barycentre is about 2.5 hours. The inclusion of the 

reduced POD-RBF is supposed to accelerate the simulation and allows to obtain 

the results in about 15 minutes.  

� The application of POD-RBF to operating conditions with malfunctions has 

been tested but not fully exploited. The analysis of possible malfunctions in 

pipes requires a significant increase in the number of free variables. The 

proposed approach might not be suitable for the solution of such problem. As a 

possible future development the POD approach could be used in order to reduce 

the momentum equation similarly to what has been proposed for the fire 

propagation. Another possible approach that is worth considering is the analysis 

of sensitivities to malfunctions through application of topological optimization. 

This option is currently under development within a different doctoral thesis. 

� Furthermore a more detailed user model will be developed in order to allow 

better exploitation of the opportunities for primary energy savings. In fact, 

increasing the anticipation range can be performed only trough a user model that 

guarantees that the changes in the start-up time strategy do not produce 
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significant effects on the building temperatures, so that the comfort standards 

can be preserved. A user model by means of the commercial software "Energy 

Plus" will be built. This model could be then reduced using for instance neural 

network in order to obtain fast simulation of the buildings behaviour as a 

function of the heating scheduling. This would allow to perform an optimization 

that includes, for each test case, a check of the indoor comfort level. 

  

• Regarding the wildfire prediction simulator various contributions will be included in the 

physical model in order to make it capable to reproduce fire evolution in several 

conditions. 

� At first the moisture content have to be included in the model. In fact it is a very 

important characteristic that can significantly vary the fire propagation. This 

contribution will be included in the mass variation coefficient term of the energy 

conservation equation in order to take into account the differences in the 

combustion when a moisture content varies. Furthermore also the unsteady term 

has to be modified in order to take into account the presence of the water. 

� The slope contribution should be included when the fire propagate in an up-

slope terrain. In this case the spread is faster due to main aspects: the different 

view factor and buoyancy contribution. Therefore both the radiation and the 

convective terms have to be properly modified. This part of inclusion is 

currently in progress. 

� The obtained model will be included in the 2D tool for landscape propagation in 

order to use it as a fire evolution simulator. In particular the contribution of 

retardant substances and other extinguish procedure will be studied through the 

model. This aspect has the aim of proposing a simple and fast physical model 

for estimation of the real time risk analysis and the evaluation of the preventive 

risk. Only a very fast model can in fact be used for such purposes because of the 

suitability to perform in a short time many simulation taking into account the 

input data uncertainty and, in case of preventive analysis, the ignition point. 

� Furthermore another kind of analysis has been planned and it is currently under 

elaboration. It has the aims of determining the main propagation direction in 

case of different directional contribution. In fact the fire spread direction is 

mainly due to wind direction, slope direction and position of the fuel with less 

level of moisture and lower ignition point. When all these contributions appear 

at the same time the fire propagate according a preferential path. The future 

work will be focused on the use of the entropy generation analysis to identify 

preferential paths for fire propagation analysis. In such works the effects due to 



139 

 

the fuel type, fuel characteristics (e.g. humidity), wind and slope as well as the 

heat transfer mechanisms, including radiation, have to be taken into account.  

� The POD model has proven to be very effective in reducing the computational 

time requested for multiple simulations. As the approach has been applied to a 

simple physical model, it is worth further developing it in order to allow its 

application to more complex physical models. 
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