
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Study and analysis of innovative network protocols and architectures / Virgilio, Matteo. - (2016).
Original

Study and analysis of innovative network protocols and architectures

Publisher:

Published
DOI:10.6092/polito/porto/2643655

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2643655 since: 2016-06-09T14:05:28Z

Politecnico di Torino

POLITECNICO DI TORINO
SCUOLA DI DOTTORATO

PhD Course in Computer and Control Engineering – XXVIII cycle

PhD Dissertation

Study and analysis of innovative
network protocols and

architectures

Matteo Virgilio
student id: 199850

Tutor Course Coordinator
dr. Guido Marchetto prof. Matteo Sonza Reorda

May 2016

† A mia nonna Sara

Summary

In the last years, Internet has grown at an unbelievable rate, pervading almost all
the aspects connected to our everyday life. Work, entertainment, social network-
ing, mobility, long-distance interactions: these are all examples of contexts that
have been extensively touched and often revolutionized by the use of the ICT tech-
nologies. Nevertheless this trend is expected to become even more accentuated in
the next future thanks to the introduction of different new paradigms: Internet Of
Things, Virtual/Augmented Reality, Cloud/Fog Computing just to mention few.
One important key point to understand is that the underlying technologies and the
vast community of researchers/developers that revolves around it, has the impor-
tant task of constantly bringing innovation to support modern IT applications and
also to make them sustainable from different viewpoints: environmental, cultural,
social, political. Most of the challenges for the next years are heavily related to the
different directions that the ICT area is going to pursue and we, as a community
of "thinkers", have to carefully assess the benefits that a certain paradigm shift can
bring to the world as opposed to the drawbacks that a particular technology can
contain in its definition or in the way it can be (mis)used by the final users.

In this respect, among all the challenges that are continuously raising new ques-
tions, we will focus on the security and safety aspects that some new paradigms,
currently proposed in the networking panorama, are posing as open questions. This
task is not trivial since, when we talk about security (in its widest meaning), we
also need to talk about the "side thinking" approach which basically requires to take
into consideration all the possible scenarios in which a given paradigm or technology
can operate and the ability to foresee possible malicious behaviors which are not the
expected (or desired) ones. As a consequence of this fact, it is possible, in general, to
study security issues from different standpoints. Some people are more comfortable
in analyzing new protocols or system architectures by reasoning on their formal def-
inition, thus defining "rules" that the system under analysis should obey to. Others
are more prone to detect different types of errors or design flaws by looking directly
at the system itself. In this case, we have a number of different methodologies that
have been widely used since the born of the first computer program: black box test-
ing, white box testing, static code analysis and so on. If the system under test is
a network protocol, simulation is an appealing approach that actually worked and

iv

still works nowadays to assess the behavior in the most representative operating
scenarios. Please notice that all these techniques should not be seen as mutually
exclusive but rather as complementary ways to ensure an higher level of confidence
for the achieved results where, most of the time, a desirable result is "the system
behaves as expected in all situations" (clearly formalized in some sane way).

In this thesis, we will analyze the security implications of different newly pro-
posed network architectures and we will leverage a variety of techniques based on
the evolving context of the document. This will give us the opportunity to introduce
in depth all the topics we have covered and the different approaches that we have
successfully applied to all of them. Since the focus is especially placed on innovative
protocols and architectures, we specifically focused on two dominant proposals that
we currently have in the networking arena, namely the Content-Centric Networking
(CCN) and the Software Defined Networking (SDN). Even if they target rather or-
thogonal aspects (thus bringing innovation in divergent directions), they can be seen
as vivid expressions of the trends the community is willing to pursue in the next
future; while the CCN mission is to support and optimize content dissemination
by completely change the way information are actually routed and delivered in the
Internet, SDN aims at making the network more programmable and, thus, flexible.

More specifically, we developed a full fledged Java simulator to represent various
operating scenarios of the CCN protocol in order to assess mechanisms and security
implications that we have found interesting and worth deepening from a security
standpoint. Results presented in Section 1.5 are obtained by means of our simulation
tool while results presented in the following sections are obtained using an extended
version of ndnSIM, a reference simulator available in the CCN community, which
was not yet released when we started our work and that we extensively customized
to simulate our network scenarios in conjunction with our proposed mechanisms
aimed at extending the features of the CCN architecture. For what concerns Section
2.1.1, our main contributions are in the formal verification activity, where a complete
model of the proposed algorithm for the data exchange management in NFV contest
and a set of desired properties have been developed to ensure system safety and
consistency. In Section 2.2.1 our main contribution is in the network functions
modeling activity, where we extended the presented verification tool to also support a
wider category of stateful network functions, that we considered relevant in complex
SDN/NFV deployment scenarios.

v

Contents

Summary iv

List of Tables viii

List of Figures ix

1 CCN: an architecture for the future Internet 1
1.1 Introduction: modernizing the Internet 5
1.2 Background . 5

1.2.1 Names . 5
1.2.2 Packets . 6
1.2.3 Forwarding . 6

1.3 Security: problems and solutions . 8
1.4 An overview on the existing literature 10
1.5 PIT Resilience Analysis . 10

1.5.1 Simulation scenario . 11
1.5.2 Results . 17
1.5.3 Discussion . 21

1.6 Interest Flooding Attack (IFA) Countermeasures and Solutions As-
sessment . 22
1.6.1 Countemeasures to DDoS attacks 24
1.6.2 Simulation Scenario . 26
1.6.3 Simulation Results . 27

1.7 Scalability: issues and challenges . 30
1.7.1 Problem statement and requirements 31
1.7.2 An overview on existing solutions 32
1.7.3 Push Architecture Designs . 34
1.7.4 Evaluation . 39

2 Empowering the Internet: SDN and NFV 49
2.1 New architectures for SDN . 50

2.1.1 Introduction . 50

vi

2.1.2 Related Work . 52
2.1.3 The data exchange architecture 53
2.1.4 Operating context . 54
2.1.5 Architecture Overview . 54
2.1.6 Execution model . 55
2.1.7 Basic algorithm: handling pass-through data 55
2.1.8 Formal verification . 65
2.1.9 Experimental results . 74
2.1.10 Single chain - Latency . 76
2.1.11 Single chain - Comparison with other approaches 78

2.2 The problem of checking SDN/NFV networks 80
2.2.1 Introduction . 80
2.2.2 The SP-DevOps concept . 82
2.2.3 The verification process . 84
2.2.4 Verification results . 88
2.2.5 Discussion . 90

3 Conclusion 91

Bibliography 93

vii

List of Tables

1.1 PITs performance evaluation . 18
1.2 Baseline network performance with no countermeasure deployed . . . 27
1.3 Countermeasures simulations results with different attack bandwidths 29
1.4 Facebook Statistics . 40
2.1 Algorithm verification . 68

viii

List of Figures

1.1 Network congestion in traditional networks 3
1.2 Network congestion improved in a CCN network 4
1.3 CCN packets[37] . 6
1.4 Interest processing . 7
1.5 Data processing . 8
1.6 Attack scenario . 9
1.7 Telecom Italia topology . 12
1.8 Users allocation . 13
1.9 Zipf probability distribution (density function) 13
1.10 Network performance evaluation . 20
1.11 Interest Flooding Attack example . 22
1.12 AJAX with long polling . 33
1.13 A tree-like COPSS network . 35
1.14 Basic pattern used to push data to Alice 36
1.15 Example of how to push data to a client based on location dependent

host identifiers . 37
1.16 Simulation results depicting the number of incoming/outgoing pack-

ets for the Rome central router in both scenarios (COPSS and LDHI).
We selected this particular node since it is the most overloaded one
and also because, in the COPSS deployment, we select this network
device to work as RN. 46

1.17 Cumulative Distribution Function of the latency experienced by end
users in the two proposals . 47

1.18 Pending Interest Table (LDHI) and Subscription Table (COPSS) com-
parison. 47

2.1 Function chains deployed in a middlebox. 51
2.2 Deployment of the algorithm within a middlebox. 54
2.3 Run-time behavior and indexes of the algorithm. 58
2.4 Binding primary buffer - auxiliary buffer. 63
2.5 Throughput of a single function chain with the algorithm presented

in this section. 75

ix

2.6 Latency introduced by the function chain with a growing number of
cascading Workers. 77

2.7 Internal throughput of the function chain, with real Workers and a
1M packets in memory. 78

2.8 Throughput of a single function chain when other data exchange al-
gorithms are used. 79

2.9 SP-DevOps cycle for UNIFY service creation. 83
2.10 Antispam model . 86
2.11 Web cache model. 86
2.12 NAT model. 87
2.13 An example of Network Function-Forwarding Graph. 88
2.14 Test {A, B}.1: firewall and anti-spam configured to accept packets;

Test {A, B}.2: firewall configured to drop server/client packets;
Test B.3: anti-spam configured to drop server/client packets. 89

x

Chapter 1

CCN: an architecture for the
future Internet

Portions of this chapter were previously published in [84, 86, 87]

When the Internet was born, it was not so easy to foresee all the possible future
use cases, either for the users and also (especially) for the designers. As a matter of
fact, most of the principles introduced in the TCP/IP stack were mainly inherited
from the traditional POTS1 network especially the part related to the identification
of an endpoint by means of a location dependent identifier (what is commonly
known as IP address) and also the conversational approach based on two hosts that
exchange packets with each other. This can be easily observed by simply looking
at the network layer packet structure, which contains a source and a destination
field, thus implementing this idea of couples of peers that communicate thanks to
an invisible pipe transporting bits from one place to another. Clearly, there exist
a lot of differences in terms of requirements between the TCP/IP stack operating
mode and the traditional circuit switching networks, not to mention the different
level/type of services they export to their utilizers. Anyway, it is undoubtedly
true that some concepts belonging to the telephony environment were inherited and
wisely adopted also in the TCP/IP protocol suite.

The conversational approach was perfectly suitable for many use cases envisioned
at design time (and also nowadays). For example, a very common scenario widely
spread since the beginning of the Internet revolution, was to have a single smart and
powerful computer (e.g. mainframe/server) closed into a room with sufficient space
and air, and a plethora of simple devices connecting to it to share and use resources,
intended here as a set of computing modules or as a set of blocks that store a massive
amount of data. It is easy to understand that a given user was interested in accessing

1Plain Old Telephone Service

1

1 – CCN: an architecture for the future Internet

a specific mainframe. For example, a researcher could be interested in accessing his
department mainframe in order to perform some simulations on his last model and
get the results back after days of work. Clearly, in a similar scenario, where the user
wants to reach a specific location (the department mainframe) with some specific
access policies, there is nothing wrong with the conversational paradigm and the
approach based on couples of peers exchanging packets works definitely fine. Still,
a VoIP call is another example of communication entirely based on data transfer
between two very specific hosts. However, if we consider the evolution of the Internet
since these use cases, we have to admit at least two points:

1. the devices that were classified as simple I/O end terminals are now becoming
smarter and smarter resembling very much the server they are connecting to
(at least in terms of potential);

2. the mainframe/simple client use case has enormously evolved especially be-
cause the users of the Internet are no more highly skilled and highly focused
researchers but more and more casual users, practically the entire world pop-
ulation, and they are of course not highly focused on IT technologies and
their main purpose is to access the popular data they are interested in (sports,
celebrities, news, social networking, . . .).

Considering this evolution, some researchers in the world started to think that the
network, as we conceive it today, is not so optimized for the use we make of it. Most
of the time, users do not care much about the location of a given information but they
are actually interested in retrieving the content itself, no matter where it is located.
Still, the information they are looking for is likely interesting for many others and
the dissemination of it could (should) be aided by the network. Unfortunately this
is not the case in the TCP/IP world albeit additional mechanism have been put in
play to cope exactly with this problem during the years (through CDNs, web caches
and so on). Just to be more concrete, let us think about the latest music video from
one famous international pop singer. In this quite generic scenario (where generic
here means "very common"), it is very likely that many users of the network will
transfer the video from the original source (a media server, a YouTube like service,
. . .) to their final devices (smartphones, laptops). This will result in a massive
amount of logical point-to-point links between each user and the server which ends
up in being massively overwhelmed by a huge amount of identical requests. A side
effect of this operating mode is the network congestion, especially in proximity of
the content providers which must overdimension their links in order to support the
traffic peak, and also a degradation in terms of quality of experience perceived by
the end users. Essentially, the problem stays in the fact that the famous music
video is transferred over the same wires millions of times (or billions, if we look
at the statistics of many popular videos on YouTube) and this clearly leads to an
under-optimized use of the network resources, which are repeatedly used to transfer

2

1 – CCN: an architecture for the future Internet

the same bits. Figure 1.1 shows a graphical representation of a network congestion
due to the content provider bottleneck.

Figure 1.1: Network congestion in traditional networks

Starting from all these valid considerations, we assisted in the last years to the
creation of a movement which targets the design and the implementation of a new
network architecture for the future Internet, that is an alternative approach to the
routing problem that can meet the increasing demand for content distribution across
the globe. This initiative is generically called Information Centric Networking (ICN)
and incorporates a number of tentative architectures that have been proposed during
the last years to tackle the complex problem of optimizing the content dissemination
by means of a full fledged protocol suite. One of the most prominent proposals in
this area is certainly the Content-Centric Networking (CCN) solution, which has
been originally proposed by Van Jacobson in 2009[37]. The essential idea here is to
deploy a cache in all the nodes installed in the network (edge devices, core routers
and so on) in order to maintain a local repository where to store the most popular
contents. Each user requesting a given content has an opportunity to retrieve the
information from one of the different caches scattered around the network thus
minimizing the content retrieval latency. In this renewed scenario, the network
would appear less congested due to the optimization introduced by caches and the
already depicted scenario (Figure 1.1) would change according to Figure 1.2. As it is
evident from the picture, assuming a reasonable hit ratio for the caches, the network
congestion can be significantly reduced and the dissemination of content would be
greatly aided according to the CCN mechanism. In the following we will detail in
depth different features of this solution and also some drawbacks that must be more

3

1 – CCN: an architecture for the future Internet

Figure 1.2: Network congestion improved in a CCN network

closely evaluated, especially because, to the best of our knowledge, no commercial
implementation of CCN is yet available in any production network (even though
some prototypes are currently under development in different research laboratories)
hence no actual statistics can be gathered about the protocol performance in real
conditions.

The aspects that we analyze in the first part of this thesis are related to security,
scalability and performance in terms of generated traffic and delay between the
content request and the content retrieval. We start our work with the analysis of
a Distributed Denial of Service (DDoS) attack that has been introduced in CCN
due to its stateful nature. We evaluate the problem by quantifying the impact on a
real telecom operator scenario (by means of an ad-hoc simulator) and then we also
analyze some possible countermeasures that have been implemented and adapted
for our specific use case (the network of Telecom Italia, TI). After covering the
DDoS security issue, we move towards the study of some scalability problems that
can be encountered while implementing PUSH applications on top of CCN. Since
the working mode of the protocol is inherently PULL, designing and implementing
modern applications that work in PUSH mode appears to be rather challenging.
We will propose an architecture to overcome some of the existing limitations with a
special attention on the protocol scalability.

4

1.1 – Introduction: modernizing the Internet

1.1 Introduction: modernizing the Internet
Starting from the valid claim that in a content distribution network it is actually
important to address resources themselves, rather than their physical location, CCN
aims to change the traditional network operation by making all network devices
name-aware. Then, routing decisions are taken according to the name of the resource
the user is requesting.
The approach is promising and may represent one of the most significant innovations
in the networking field. However, its new operating mode opens the path for possible
issues and threats that were not present in the traditional network. These have to
be properly investigated in order to have an exhaustive evaluation of the overall
CCN architecture. For example, content delivery is based on a status information
(the requested URI) that has to be maintained at nodes in the so called Pending
Interest Table (PIT). This may pose strict constraints in terms of reliability and
scalability. In fact, this table may overflow, with consequent service disruption and
possible network collapse. Furthermore, these constraints might be even exploited
by attackers in order to slow down or even interrupt the normal network operation.
In the next sections we deal with this specific problem by providing a performance
evaluation of some possible PIT architectures in terms of resilience to (possibly
malicious) overload conditions. In particular, we consider three PIT architectures,
referenced in the available CCN literature:

• (i) a PIT storing all the bytes composing an URI, which we call SimplePIT;

• (ii) a PIT storing a fixed length entry for an URI, which we call HashedPIT;

• (iii) a PIT implemented through multiple Bloom Filters placed in each router
interface, as described in [93]. This solution is known as DiPIT.

The experiments are conducted by means of an ad-hoc simulator, designed to recre-
ate the behavior of a CCN network and to track memory usage at CCN nodes.
In order to obtain significant results, the simulator implements the topology of a
prominent Italian ISP.

1.2 Background

1.2.1 Names
CCN is built around the concept of named data. Each piece of content must have
a unique name through which it can be retrieved by the different applications. For
instance, “/nytimes/website/index.html/0 " could be the first chunk name of the New
York Times home page. In the same way, all the resources disseminated throughout
the network must have analogous structured and hierarchical names. Notice that

5

1 – CCN: an architecture for the future Internet

these names are not flat but aggregate on a name space basis so that a router can
store a single entry in the routing table (e.g. “/nytimes/*") to correctly forward all
the requests addressed to a specific domain.

1.2.2 Packets
The mechanism provided to retrieve a content relies on a special packet called In-
terest which is used by clients to specify the name of the requested resources. Inter-
mediate nodes route this packet towards the content custodian, by inspecting the
name and matching it against the routing table.

Resources are then propagated by another kind of transport unit which is called
Data packet and it is meant to carry the content payload. Some additional informa-
tion are embedded within the Data packet in order to allow the producer to digitally
sign its content and make its public key available to the world for the verification
process. Figure 1.3 shows the main packet fields.

Interest packet Data packet

Content Name

Selector

Nonce

Content Name

Signature

Signed Info

Data

Figure 1.3: CCN packets[37]

1.2.3 Forwarding
The CCN routing engine is based on three internal data structures that are used to
perform different tasks at the packet reception:

• Content Store (CS) is a local repository that acts as a node cache. All Data
packets (or part of them, according to the cache replacement algorithm) may
be stored in this local portion of the memory in order to serve future requests
and speed up the response delivery;

• Pending Interest Table (PIT) is the data structure used to annotate all the
forwarded Interest packets. Through this table, the node can “remember" from
which interfaces it received a request for a given content hence it is able to
correctly forward the response packet (when it will be generated);

6

1.2 – Background

• Forwarding Information Base (FIB) is the exact structure that we also have in
traditional IP routers. Clearly, in the CCN architecture, the routing decision
is taken according to the name present in the Interest packet so this table is
used in combination with a Longest Prefix Match algorithm against the set of
name components.

The way the two types of packets are processed by the CCN routing engine is
asymmetric. In Figure 1.4, the Interest forwarding process is briefly summarized.

C
o

n
te

n
t

S
to

re
P

e
n

d
in

g
 I

n
te

re
st

 T
a

b
le

F
o

rw
a

rd
in

g
 I

n
fo

rm
a

ti
o

n
 B

a
se

No
PIT Lookup

Content
available in the

CS?

Interest reception

CS Lookup

Generate the
response and end

Yes

Already have an
entry in the PIT?

Have a route for
the requested

content?

Incoming face
already in faces

list?

Add face and end

No

Yes

Create a PIT entry
and forward the

Interest
Yes

Drop Interest

No

No
FIB Lookup

End

Yes

Figure 1.4: Interest processing

Figure 1.5 shows how Data packets are not routed but they only follow the
reverse path drawn by the Interests.

7

1 – CCN: an architecture for the future Internet

P
e

n
d

in
g

 I
n

te
re

st
 T

a
b

le
C

o
n

te
n

t
S

to
re

Data reception

Have an entry
for this content?

PIT Lookup

Forward the
content to all

faces

End

Yes

Apply cache
replacement

algorithm and end

CS Lookup

No

Figure 1.5: Data processing

1.3 Security: problems and solutions

The PIT is the fundamental structure used to maintain the state of each active flow.
It grows with users sending their Interests and shrinks when Data packets arrive at
the router. Considering the access speed required for such a structure and the pos-
sibilities offered in this sense by current memory technologies, the PIT size might
represent a bottleneck for the entire CCN infrastructure.
The problem might be exacerbated by a massive usage of long Interest LifeTimes,
which would further increase the number of simultaneous entries in the PIT. Despite
the pull nature of CCN, this possibility cannot be excluded as it would be neces-
sary for supporting publish/subscribe services [23] where users subscribe for a given
content that will be asynchronously produced in the future. Many of these services
are implemented, for example, by means of HTTP long polling strategies, which
make extensive use of long (potentially unanswered) requests. [49] presents a com-
plete discussion on the best practices about timer setting and on how ’long’ these
requests should be. In general, 30 s is considered a safe value, as longer timers may
be undesirable for intermediate proxies placed between the server and the client.
However, solutions with longer values are widely adopted in common web applica-
tions (e.g.,FaceBook and some web-based mail applications, which to our experience
often use timers of more than one minute). In addition to that, we have to consider
that one or more malicious users could craft artificial requests with the purpose of

8

1.3 – Security: problems and solutions

filling the available PIT memory on routers, thus implementing a Distributed Denial
of Service (DDoS) attack.
With PIT overflow, users would see their Interests discarded by routers and, con-
sequently, they would experience an increasing rate of retransmissions until the
network completely collapses. With this problem in mind, some possible PIT ar-
chitectures have been proposed with the aim of reducing the required table size. A
first simple solution [37] is to realize the PIT by means of a hash-table, where each
URI is encoded using a fixed number of bits. Other possible solutions deploy more
complex architectures. For example, [16] proposes a tree-like structure to arrange
the PIT entries in order to also ensure high lookup, insertion, and deletion speed,
while [93] presents a very efficient PIT architecture based on Bloom Filters.
While these solutions may be effective during normal operation, performance degra-
dation might be experienced when the system is under the abovementioned DDoS
attacks. This kind of attack may be implemented by distributedly generating Inter-
est packets that contain a valid destination prefix but non-existing resource names,
so that routers properly forward Interests and store new entries in their PITs, but
responses never come back. The destination might possibly be colluded with the
attacker and simply drop incoming packets. In order to maximize the impact of
the attack, a malicious user could request always different resources thus avoiding
Interest merging. Furthermore, the attacker could also select large values for the
LifeTime field. Figure 1.6 shows a very simple network consisting of three routers,

Figure 1.6: Attack scenario

an attacker (or, equivalently, a bot net), a normal client and a bad destination,
which is placed ad hoc by the attacker. The role of the bot net is that of generating
Interests towards the fake destination. Routers along the dashed path (R1 and R2)

9

1 – CCN: an architecture for the future Internet

are flooded with unanswered Interests, which indeed increases their memory usage.
This work presents an analysis of the PIT resilience to possible overload and con-
sequent service disruption. A comprehensive simulation study of the possible PIT
architectures is done in order to evaluate their performance from this perspective.

1.4 An overview on the existing literature
The feasibility of the CCN approach with regard to the amount of requested re-
sources at nodes, together with a proper CCN node dimensioning, has been recently
object of a wide research activity. For example, [3] presents an efficient router de-
sign and describes some possible usage scenarios. Designing an efficient forwarding
plane is also the subject of [94], which identifies key issues related to the protocol
fast speed implementation and establishes some principles to be observed in order
to design scalable forwarding architectures. Furthermore, [63] presents a feasibility
study of CCN and concludes that CCN nodes based on current technologies would
still be unable to sustain requests arrival rates at the Internet scale. However, they
can sustain rates at Content Distribution Network and small ISP scale. Specifically
concerning the PIT dimensioning problem, two recent papers propose different ar-
chitectures conceived for reducing the PIT size. As also described in the previous
section, [16] proposes a tree-like PIT structure, while [93] present a PIT architec-
ture based on Bloom Filters. However, both papers do not provide a quantitative
evaluation of the PIT overload problem and do not consider possible DDoS attacks.
Concerning the security threats in a CCN network, the available literature mainly
covers privacy, data authentication, and data integrity issues. For example, [73]
addresses the privacy problem deriving from the stateful operation of CCN routers,
while data authentication and integrity have been considered since the seminal CCN
papers [37, 38]. Instead, a comprehensive study of the possible PIT overload issue
deriving from a DDoS attack is missing. [17] presents a solution to mitigate these
attacks, while the ongoing work by Gasti et al. [65] gives an introductive overview
of the problem and of some ongoing experiments.

1.5 PIT Resilience Analysis
This section focuses on the evaluation of the PIT resilience to possible overload. Our
analysis is performed by simulation and considers three possible PIT architectures:
(i) a PIT storing all the bytes that compose an URI, referred to as SimplePIT; (ii)
a PIT storing fixed length entries evaluated as hash values of the URIs, referred to
as HashedPIT; (iii) a PIT implemented through multiple Bloom Filters placed in
each router interface, as described in [93]. This last solutions is known as DiPIT.
The PIT architecture presented in [16] is not explicitly investigated here as it shares

10

1.5 – PIT Resilience Analysis

with the HashedPIT the same principle of introducing fixed length entries (in [16]
the numerical codes that make up the logical tree structure are reduced to fixed
length).
While in the first two cases PIT overloading can be measured in terms of memory
occupancy, with possible memory overflow, in the latter case this is not possible
as the DiPIT is based on Counting Bloom Filters, where memory occupancy is
constant. In essence, the filter fills the entire memory size and each Interest is
encoded in a sequence of ’1s’ to be added at given positions of the filter. In this case,
PIT overloading results in a high rate of the so called false positive events, namely,
the node erroneously concludes that an Interest is present in the filter and either does
not propagate it or erroneously removes some entries from the PIT when a chunk
is received. In both cases this results in a degradation of the service perceived, as
both events require one or more Interest retransmissions. [93] proposes an effective
combination of filters to reduce the false positive probability during normal operation
(see [93] for further details), but this may increase when the network is under attack.
In order to quantitatively evaluate the effect of false positives and also enable a
coherent comparison among the three considered PIT architectures, we base our
analysis on the average percentage of Interest retransmissions that occur at users’
machines. This is clearly proportional to the average download time they experience,
and hence it is a metric of the overall network performance.
A further issue to address is the selection of a proper simulator complying with
the requirements of our study. Some CCN simulators are available, but all are
customized for specific analyses. For example, ccnSim [22] has been designed mainly
for the evaluation of cache replacement techniques and hence is not optimized for
experimenting on the PIT management. Hence, in order to focus our analysis on PIT
issues and meet our specific requirements, we developed a full custom event-driven
Java simulator.

1.5.1 Simulation scenario

With the main aim of obtaining significant and quantitative results, the network
configuration and user behavior models are refined to faithfully recreate realistic
scenarios. In particular, we adopt as a reference the network of Telecom Italia, a
prominent Italian ISP. Data related to the Telecom Italia network that are of inter-
est in this context are publicly available on the web.
First of all, the topology adopted in our simulations reproduces the real structure
of the Telecom Italia network [78] (see Figure 1.7, represented at Point of Presence
(PoP) granularity). The network is divided in two areas: the first one that covers
Northern Italy and the second one that covers central and Southern Italy. PoPs
are almost equally divided between the Northern and the Southern areas and in our
simulator each PoP is represented by a router. This topology is typical also of many

11

1 – CCN: an architecture for the future Internet

ISPs in Europe.
Concerning the network population, we adopt the number of broadband Internet
subscriptions currently active in the Telecom Italia network - around 9 million -
available in the ISP investor relation [80]. We also assume the topological distribu-
tion of users among the ISP PoPs to be directly proportional to the geographical
distribution of the ISP customers. As a result, we allocate users to various POPs
according to Figure 1.8, that contains the fraction of users per Province derived
from real statistics. This allows us to accurately reproduce the download traffic
pattern of the ISP users. Furthermore, access bandwidths are considered uniform
for simplicity and equal to 7 Mbps (download) and 1 Mbps (upload), which are the
values characterizing a large percentage of Telecom Italia users. The overall header
size of the protocols underlying CCN is assumed fixed to 20 bytes.

Regarding the selection of the content to be retrieved by clients, we assume a

Figure 1.7: Telecom Italia topology

Zipf-Mandelbrot probability distribution, which Saleh et al. [72] proved to prop-
erly model the behavior of users in a content distribution P2P network. Given
the content delivery nature of a CCN network, this probability distribution could
reasonably model the user behavior also in our case.

According to the Zipf’s Law and given the total number of resources in the
network, which are uniformly distributed among per-PoP content providers, the
corresponding distribution function is expressed as follows:

p(i) = 1
(i + q)α

∀i ∈ [1, N]

12

1.5 – PIT Resilience Analysis

Figure 1.8: Users allocation

where p(i) is the probability of extracting the i-th content available in the network,
q and α are two parameters that [72] fixed to α = 0.55, q = 25 for a residential
ISP (as Telecom Italia is), and N is the total amount of resources. The resulting
function is depicted in Figure 1.9 where we highlight in green the theoretical trend of
the mathematical expression above mentioned and, in red, we highlight the density
function obtained by our custom random generator assuming 1.000.000 samples
generation. The code implemented to realize the Zipf distribution is shown in Listing

Figure 1.9: Zipf probability distribution (density function)

13

1 – CCN: an architecture for the future Internet

1.1.

Listing 1.1: Zipf random generator
public class Z i p f D i s t r i b u t i o n {

private Double [] cd f ;
private Double [] dens i ty ;

private Random random ;
private int tota lE lements ;
private double alpha ;
private double q ;

public Z i p f D i s t r i b u t i o n (long seed , int tota lElements , double alpha , double
q)

{
this . to ta lE lements = tota lE lements ;
this . a lpha = alpha ;
this . q = q ;
random = new Random(seed) ;
i n i t () ;

}

private void i n i t ()
{

Assert . a s se r tTrue (q > 0) ;
cd f = new Double [tota lE lements] ;
den s i ty = new Double [tota lE lements] ;
double temp , norm=0;
int i ;
for (i =0; i<tota lE lements ; i++)
{

temp=(1.0/Math . pow(i+q , alpha)) ;
Asser t . a s se r tTrue (temp > 0) ;
cd f [i]=temp ;
den s i ty [i]=temp ;
i f (i !=0)

cd f [i]+=cdf [i −1] ;
norm+=temp ;

}
for (i =0; i<tota lE lements ; i++)
{

cd f [i] /= norm ;
den s i ty [i] /= norm ;

}
}

public int next Int ()
{

double r = random . nextDouble () ;
int i ;
for (i =0; i<tota lE lements && r>=cdf [i] ; i++) ;
return i ;

}

public double g e t P r o b a b i l i t y (int i)
{

i f (i < 0 | | i > tota lE lements)
return 0 . 0 ;

return den s i ty [i] ;
}

14

1.5 – PIT Resilience Analysis

public Double [] getDens i ty () { return den s i ty ; }

public Double [] getCumulativeFunction () { return cd f ; }

}

Download requests are modeled using a Poisson process with average rate equal
to 500 requests per second. This results in an average value of around 12 million
simultaneously active downloads in the steady state. We believe this network load is
even higher than that observed in a 9 million users network during normal operation
and hence it is significant for our study.
Another key parameter for our evaluation is the memory availability at CCN nodes.
Reasonable values for the PIT size that match both the required memory access
speed and current memory technologies are some hundreds of MB [93], available by
means of the SRAM technology. In order to be more conservative and also with the
aim of analyzing a possible near future scenario, we fix the PIT size to 1 GB. In the
DiPIT case, this value refers to the overall available filters memory (the PITs plus
the shared Bloom filter). In order to optimize the DiPIT implementation and make
the simulation more scalable, we implemented a model of the Bloom Filter rather
than the actual Bloom Filter (see Listing 1.2).

Listing 1.2: DiPIT implementation details
package i t . p o l i t o . ccn . s imu la to r ;

import i t . p o l i t o . ccn . s imu la to r . except ion . FullPITException ;
import java . u t i l . L i s t ;
import org . apache . commons . math3 . d i s t r i b u t i o n . Uni formRealDis t r ibut ion ;

/∗
∗ Bloom F i l t e r model implementation
∗/

public class DiPIT extends PIT{

public stat ic f i n a l int HASHES = 4 ; // number o f hash f u n c t i o n s

private stat ic Uni formRealDis t r ibut ion d i s t ;

private PIT p ;
private int f a l s e P o s i t i v e s ;
private long t o t a l Q u e r i e s ;
private f i n a l long s i z e ;

stat ic {
d i s t = new Uni formRealDis t r ibut ion () ;

}

public DiPIT (double p i t S i z e) {
super (p i t S i z e) ;
p = new RegularPIT (1000∗ p i t S i z e) ; // Big

enough
s i z e = (long) (p i t S i z e ∗ Math . pow(10 , 6)) ; // Used f o r prob

c a l c
f a l s e P o s i t i v e s = 0 ;
t o t a l Q u e r i e s = 0 ;

}

15

1 – CCN: an architecture for the future Internet

@Override
public int getAverageEntrySize () {

return p . getAverageEntrySize () ;
}

@Override
public boolean e x i s t s U r i (Uri ur i , int fragmentNumber) {

t o t a l Q u e r i e s ++;
i f (p . e x i s t s U r i (ur i , fragmentNumber))

return true ;
double prob = g e t F a l s e P o s i t i v e P r o b a b i l i t y () ;
double random = d i s t . sample () ;
/∗ False p o s i t i v e ∗/
i f (random <= prob)
{

f a l s e P o s i t i v e s ++;
return true ;

}
else

return fa l se ;
}

@Override
public List <I n t e r f a c e > g e t I n t e r f a c e s P e n d i n g (Uri ur i , int fragmentNumber) {

return p . g e t I n t e r f a c e s P e n d i n g (ur i , fragmentNumber) ;
}

@Override
public boolean addEntry (Uri ur i , int fragmentNumber , I n t e r f a c e iFace)

throws FullPITException {
return p . addEntry (ur i , fragmentNumber , iFace) ;

}

@Override
public void removeEntry (Uri ur i , int fragmentNumber) {

p . removeEntry (ur i , fragmentNumber) ;
}

private double g e t F a l s e P o s i t i v e P r o b a b i l i t y () {
return Math . pow ((1 − Math . exp(−HASHES ∗ (double) p . getElementsInPIT () /

s i z e)) , HASHES) ;
}

public void c l e a r A l l () { p . r e s e t () ; }

public int getElementsInPIT () { return p . getElementsInPIT () ; }

public int g e t F a l s e P o s i t i v e s () { return f a l s e P o s i t i v e s ; }

public long getTota lQuer i e s () { return t o t a l Q u e r i e s ; }

}

In particular, we simulated the false positive probability by means of the following
analytical model:

p = (1− e− K∗n
size)K (1.1)

where:

16

1.5 – PIT Resilience Analysis

• K is number of hashing functions used. We set K=4 in our simulator;

• n is number of elements added to the filter;

• size is the total size of the filter (1GB in our case).

Thanks to this implementation we are able to speed-up the computation since there
is no implementation of the different hashing functions and also to save a massive
amount of space. Considering the network of TI, we would have 30 DiPIT (one for
each router) leading to 30GB of ram only for these filters (not considering the edge
of the network). In this case, the simulation would have required too many resources
while the mathematical model is able to scale well also on common laboratory ma-
chines.

Concerning the attack parameters, we consider a maximum aggregate attack
bandwidth of 4 Gb/s, which is a realistic value for a medium scale ISP such as
Telecom Italia [68], and Interest LifeTimes values that vary between 4 s (the default
value considered in the CCNx [62], the prototypal implementation of CCN node)
and 180 s. Notice that those are reasonable LifeTime values if we think to enable
complete publish/subscribe services in a CCN network, as discussed in Section 1.3.

1.5.2 Results
This section reports on the simulation results obtained for the three considered
PIT architectures: the SimplePIT, the HashedPIT and the DiPIT. We consider a
distributed bot net sending Interests to fake destinations connected to the Rome edge
router. Hence, our analysis focuses on the Rome PoP as it is the most overloaded
node. In essence, we keep track of the memory usage at the Rome PoP. Furthermore,
we also measure the average percentage of retransmissions experienced by users, as
depicted above.

I scenario - SimplePIT

In the first scenario, we consider to deploy a SimplePIT at each router. This PIT
implementation stores the entire URI in the memory so it is the simplest architecture
we can think of. In order to maximize transmission efficiency, and consequently
maximize attack impact, it is important for the attackers to craft very long URIs.
We selected 1000 bytes in our simulation. In particular, each malicious URI has a
valid 13 bytes prefix (e.g. /it/badPubRm/ required for reaching the destination)
and a non-existing resource name whose length is set to a randomly selected string
of 1000 bytes.
Simulation results concerning the memory occupancy at the Rome PoP and the
related retransmission rate are shown in Table 1.1 for several values of the overall
bot net bandwidth and of the fake Interest LifeTimes (retransmissions are referred

17

1 – CCN: an architecture for the future Internet

Attack settings SimplePIT HashedPIT DiPIT
Retransm. RAM Usage Retransm. RAM Usage Retransm. RAM Usage

Band = 100 Mbps 0 ≈ 49 MB 0 ≈ 25 MB % ≈ 0.01 % 1 GB
LifeTime = 4 sec

Band = 500 Mbps 0 ≈ 245 MB 0 ≈ 125 MB ≈ 2.42 % 1 GB
LifeTime = 4 sec

Band = 2 Gbps 0 ≈ 980 MB 0 ≈ 500 MB ≈ 87.6 % 1 GB
LifeTime = 4 sec

Band = 4 Gbps ≈ 15 % ≈ FULL ≈ 83 % ≈ FULL ≈ 90 % 1 GB
LifeTime = 4 sec

Band = 100 Mbps 0 ≈ 735 MB 0 ≈ 375 MB ≈ 21 % 1 GB
LifeTime = 60 sec

Band = 100 Mbps ≈ 37 % ≈ FULL 0 ≈ 750 MB ≈ 86 % 1 GB
LifeTime = 120 sec

Band = 100 Mbps ≈ 52 % ≈ FULL ∞ ≈ FULL ≈ 88 % 1 GB
LifeTime = 180 sec

Table 1.1: PITs performance evaluation

only to finished downloads). Users do not experience a considerable retransmission
rate until the PIT is completely full. However, by increasing either the overall attack
bandwidth or the Interest LifeTime, routers start to be unable to correctly handle
incoming traffic and all the connections are significantly slowed down.
These results can be analytically justified. Let us consider the following case as an
example (we recall that the overall headers of underlying protocols is fixed to 20
bytes in our simulations):

Battackers = 2 Gbps, LifeT ime = 4sec (1.2)

|Interest|attackers = 1033 bytes(
URI
1013 +

HEADER
20) (1.3)

The number of Interests per second generated by the bot net can be calculated in
the following manner:

(2 ∗ 109) bps

(1033 ∗ 8) bits
≡ 242013 Interest

sec
(1.4)

Considering a 4 s LifeTime, we obtain:

≈ 242013 ∗ 4 = 968.052 entries⇒ ≈ 980MB occupied (1.5)

which is consistent with our simulation result.

II scenario - HashedPIT

In the second scenario, we consider the HashedPIT, namely, a centralized hash table
storing a fixed length entry for each URI in transit. We exploit the SHA-1 hashing

18

1.5 – PIT Resilience Analysis

algorithm in order to ensure a negligible collision rate. In this context, the best size
for an attacker’s URI is 20 bytes, according to the SHA-1 output digest (160 bits).
Longer URIs are useless as would be reduced to 20 byte strings by CCN nodes. In
this case the resultant attackers transmission efficiency, here intended as the amount
of transmitted data that will be stored in the PIT with respect to the total traffic
generated by the host, is around 50% due to the non-negligible underlying header
size (20 byte headers in our simulations lead to 20 / (20+20) = 50 % transmission
efficiency). Since in the previous case the efficiency was about 98% (1013 byte
long URIs lead to 1013 / (1013 + 20) ≈ 98%), one could infer that an attacker
has simply to double its bandwidth to get the same impact of the SimplePIT case.
This is only partially confirmed by simulation results presented in Table 1.1. We
can observe how, as expected, the memory occupancy is halved at equal simulation
conditions and, consequently, the retransmission rate grows slowly with the increase
of the attack intensity. However, it is worth noticing the greater attack effectiveness
when the PIT is almost completely full with respect to the previous case. Such
a situation here prevents users from finishing any downloads and the number of
retransmissions tends to infinite, namely, no useful data are received by clients, who
continue to retransmit Interests: the network is completely unusable. The infinite
value in Table 1.1 just represents the situation in which no stable value is reached
for the number of retransmitted packet from the client point of view. This is due to
the fact that the first data structure is more complex to overfill as stored Interests
are of highly variable length and attackers do not have exact information of the
amount of memory that is still available at routers. Hence, when the PIT is almost
full many attackers’ fake Interests are discarded as they are too large with respect
to the available space. Some shorter users’ Interest can instead be accommodated
and hence the network is still able to operate, although with a significantly reduced
efficiency. In the HashedPIT case, instead, 20 bytes is always the best choice for
URI length so the attack is more effective and destructive. This clearly does not
mean that the SimplePIT can be considered resilient to DDoS attacks as specific
attacker techniques may be adopted to possibly saturate the PIT. This analysis is
left for future work.

III scenario - DiPIT

The last scenario refers to a very different PIT and router architecture. The central
PIT is split into multiple smaller per-interface PITs, each implemented by a Count-
ing Bloom Filter data structure. The specific description of this proposal and the
algorithm adopted is available in [93]. The retransmissions observed in this case are
due to the Bloom Filter false positive events, as described above in this section. The

19

1 – CCN: an architecture for the future Internet

(a)

(b)

Figure 1.10: Network performance evaluation

probability for a Bloom Filter to return a false positive may be approximately eval-
uated2 as (1− e− k∗n

m)k, where k is the number of hash functions deployed to code a
given element, n is the number of elements currently in the filter, and m is the total
size of the filter. In our simulator each Bloom Filter is modeled by means of this
probability function. Furthermore, the specific architecture based on different filters
and the insertion/deletion algorithms presented in [93] are reproduced in order to
obtain consistent results.
In [93], the authors also suggest possible values for k, which vary according to the
Interest arrival rate that the router has to support. We set this value to 4 hash

2Assuming independence for the probabilities of each bit being set.

20

1.5 – PIT Resilience Analysis

functions because larger values are not suitable for high-end routers. For the Bloom
Filter, we assume for simplicity 8 bit counters and no counter overflow. Simulation
results are presented in Table 1.1. It is worth noticing how although the DiPIT does
not suffer from memory overflow (neglecting counter overflow), false positive events
become a truly limiting factor when the network is under attack and many entries
are inserted into the filter. In fact, considerable retransmission rates are observed
also with non-huge attack intensities.

1.5.3 Discussion
These simulation results lead us to a twofold conclusion. First, none of the analyzed
PIT architectures is overloaded during normal operation in the considered network
scenario. Even with a low intensity attack, memory usage is reasonable and no
retransmissions are observed. This in some way confirms that even a traditional
SimplePIT-based solution might be currently deployed at ISP scale, as also con-
cluded by the analysis in [63]. However, second, there are significant weaknesses in
all the architectures when the attack intensity grows.
To summarize our results, Figure 1.10 plots the number of pending downloads in
the network over time for some reference values of attack bandwidth B and fake
Interest LifeTime. In Figure 1.10(a), the considered attack intensity leads this num-
ber to slowly diverge with a similar trend for both the HashedPIT and DiPIT based
nodes. For the SimplePIT we do not observe a significant gap with respect to the
system behavior during normal operation. Figure 1.10(b) considers a more critical
scenario: B=100 Mbps, LifeTime=180 s and also B=4 Gbps, Lifetime=30 s for the
SimplePIT. We can observe how the SimplePIT is only partially affected in this
second case, while the system fast exits the steady state due to retransmission rate
divergence when the HashedPIT is deployed. We can conclude that the HashedPIT
is the architecture most affected by the considered attack, while the SimplePIT is
the architecture most resilient for the reasons explained above. The DiPIT has an
intermediate behavior. Clearly, these results hold in our attack scenario. Starting
from this point, one could design other specific attacker behaviors that even worsen
the perceived service, especially for the SimplePIT. For example, an attacker may:

• (i) combine broad bandwidth and higher LifeTime to increase attack effective-
ness;

• (ii) distribute more zombies around the network to avoid attack source detec-
tion;

• (iii) exploit more bad prefixes in order to make any countermeasures even
more complex to deploy.

This is a non-exhaustive list that further motivates the real need for proper coun-
termeasures to DDoS in a CCN network. Our results show how all architectures are

21

1 – CCN: an architecture for the future Internet

affected by these attacks and hence further studies are needed to figure out possible
countermeasures. One can be, for example, the introduction of smarter algorithms
for LifeTime management at content routers, which adapt LifeTimes as a function
of the network load: a router can grant larger LifeTime values in case of low traffic
congestion and, conversely, implement a sort of LifeTime shaping when the load
increases. With such a mechanism, we would break down the hypothesis that in-
termediate nodes do not manage LifeTime values as well as PIT entries removal
(for example by discarding the ones which have a too long expiration time). Other
mechanisms could be based on an Interest RED (Random Early Discard) strategy
based on the amount of occupied memory. The higher the congestion, the larger is
the probability of discarding an incoming Interest.

1.6 Interest Flooding Attack (IFA) Countermea-
sures and Solutions Assessment

In traditional IP networks, DDoS attacks usually plague end terminals since the
connection information state is kept by these devices. On the other hand, CCN is
hardly based on the fact that intermediate routers maintain per packet state. This
feature allows the protocol to avoid routing loops since each Interest is recorded into
the PIT table, and also to implement native multicast support because each node
remembers who asked for what. However this feature arms attacking users because,
as we will show in this section, there exists the possibility to artificially generate
forged packets with the only aim of wasting router memory. In particular, let us
consider the scenario depicted in Figure 1.11

The attacker needs to announce a valid prefix to send fake Interests to; in our
example, /com/badContent/* serves to this purpose and let us call that node prefix
Hijacker. In addition, the attacker needs one or more zombie clients (or even a large

Normal User

Attacker
Normal Content Provider

Prefix Hijacker

/com/badContent/*

/com/youtube/*
R1

Figure 1.11: Interest Flooding Attack example

22

1.6 – Interest Flooding Attack (IFA) Countermeasures and Solutions Assessment

botnet) to start sending Interests targeted at the existing prefix but with non existing
(and possibly long) resource names, for example /com/badContent/abcdefg. . . z.
Such packets will correctly reach the prefix Hijacker, i.e. the machine configured
to receive these datagram without generating any response, but no useful data will
be sent back. With this simple procedure, all the Interests seen by R1 (and for
which R1 creates an entry in the PIT) will remain in the device memory until
the timeout, called LifeTime , expires. As better analyzed in the next section, an
attacker with a proper bandwidth may be able to deny the service for legitimate
users whose Interests would correctly call back Data packets but are not able to
be accommodated due to memory exhaustion. We can roughly compute the overall
memory usage due to the attacker activity with the following formula:

Membytes = Bandbps

8 ∗ Lifetimesec ∗ Trasmeff (1.6)

Trasmeff = f(namelength)
Totalpacketlength

(1.7)

where:

• Band is the attacker bandwidth;

• Lifetime is the time interval set in the fake Interest;

• Trasmeff is the transmission efficiency intended as the amount of data within
the packet that goes in the PIT (over the total transmitted data).

It is worth mentioning that the efficiency can have a significant variation, depend-
ing on different factors. For example, it depends on the amount of transmitted data
that ends up in the PIT, usually proportional to the name length, and it depends on
how the router stores those data in the table, if it applies any kind of hashing func-
tion or uses special encoding scheme. We represent any possible scenario in (2) with
a generic function f to model the possibility to apply any processing to the name
string. To simplify our analysis we assume that the router stores each forwarded
request as a plain text in the PIT and we neglect other implementation dependent
details such as additional per PIT entry state information. We will also assume
that fake Interest packets contain very long names in order to increase the above
mentioned transmission efficiency and consequently maximize the attack impact.

The IFA is analyzed in several papers, which also discuss some possible solutions.
For example, [88, 28, 14, 90] contain a preliminary evaluation of possible security
threats applicable to the CCN/NDN architecture. Notice that the DDoS we are
dealing with in our work is just one attack among different possible variants. In
fact, some attacks are targeted at wasting the router CPU resources while others
aim at poisoning content through caches. The possibility to implement these attacks

23

1 – CCN: an architecture for the future Internet

in a real network has been widely recognized as a concrete scenario, thus encour-
aging the research area focusing on solutions and countermeasures. To the best
of our knowledge, three main proposals are targeting the specific problem of IFA.
The work by Afanasyev et al.[1] presents a framework named Satisfaction Based
Pushback to limit the number of forwarded Interests for a given prefix depending on
statistics about the Interest satisfaction ratio, i.e. a metric representing the number
of Interests that bring back useful Data in a given time interval, as opposed to those
Interests that expire without causing the delivery of useful data. Another counter-
measure, referred to as Poseidon, is presented in [15]. This approach is similar to
the previous one in that it gathers statistics about the traffic seen at each router
but with a different activation procedure, as we will show in the following. The last
solution we will consider, referred to as Traceback, is described in [17]. The idea
is to activate a countermeasure after the memory usage has reached a predefined
threshold. The algorithm consists in generating spoofed Data packets for the entries
that are causing the memory overflow problem. Collaborative messages between the
involved routers can be exploited to obtain better results in terms of reactivity in all
these designs. Our goal is to evaluate and compare them in our use case scenario,
i.e. the network of the main Italian service provider.

1.6.1 Countemeasures to DDoS attacks
Satisfaction based pushback

The Satisfaction based pushback algorithm is described in [1] and it works as follow:
each router computes the Interest satisfaction metric as the ratio between the num-
ber of satisfied Interests over the number of forwarded Interests. This computation is
performed on a per interface basis and it is an indication about the probability of an
Interest coming from a certain interface to be satisfied. Such metric can be directly
used to calculate the limits of Interests the router is willing to forward from each
interface. After the computation, the router announces its limits to downstream
neighbors in order to rate limit the incoming traffic, especially for those interfaces
that are increasing the burden on the PIT memory occupancy. After some time,
the router computes new statistics and clears its history with an exponential decay,
in order to restore the original limits and give a chance to each interface to have
more virtuous Interests forwarded again. Notice that metrics about the traffic may
be collected at different granularities: prefixes, FIB entries and so on. The traffic
limit messages announced by each router will flow back up to the end user interface.
Whether or not the client node obeys to the imposed limit, the rate limiting will
anyway be enforced by each router on the path. Notice that this approach is made
available by two features of the CCN protocol: (i) the state information maintained
by each router can be exploited to gather some statistics about the traffic and (ii)
the symmetric data routing implied by CCN can be used to compute which Interests

24

1.6 – Interest Flooding Attack (IFA) Countermeasures and Solutions Assessment

call back data since they will follow the reverse path.

Interest Traceback

The Traceback algorithm is described in [17] and it is designed to release the un-
wanted PIT entries when the available amount of memory space falls under a prede-
fined threshold. The detection phase is rather simple and only requires to monitor
the PIT memory usage over time. After detecting an abnormal memory occupancy,
the Traceback process is triggered and a set of spoofed Data packet are generated for
those entries that remained unsatisfied for a long time. The spoofed Data packets
carry the name needed to satisfy the offending Interests and are forwarded down-
stream to release resources all along the path. In order to leverage, as much as
possible, the memory space available to the PIT, we defined the threshold after
which the Traceback is activated as 90% of the occupied memory. Such aggressive
limit avoids algorithm overreacting and allows the network to support temporary
traffic peak without triggering any Interests blocking mechanism. Since some imple-
mentation details were omitted in the reference paper, we designed our code to meet
as close as possible the countermeasure description. In particular, in Algorithm 1,
we show the code of the monitoring process which is scheduled every second to check
if the memory occupancy is over its alarming value.

Listing 1.3: Traceback monitoring process
void Traceback : : CheckMemory ()
{

IF p i t _ s i z e g r e a t e r than MAX_PIT_size∗90/100
// Look f o r fake e n t r i e s and send spoofed Data
Traceback : : FindAndSend () ;

END IF
SCHEDULE next check in 1 sec

}

If it is the case, the FindAndSend() function is invoked to generate spoofed Data
packets and make them travel towards the attack initiator. A simplified high level
vision of our implementation can be seen in Algorithm 2.

Listing 1.4: Traceback sending spoofed Data
void Traceback : : FindAndSend ()
{

FOR EACH Entry in Pit
IF IsOld (Entry)

FOR EACH Face in Entry . FacesL i s t
IF Face . IsConnectedToEndUser ()

BLOCK Face
ELSE

GENERATE SpoofedData
SEND SpoofedData through Face

END IF
END LOOP
RELEASE memory

END IF

25

1 – CCN: an architecture for the future Internet

END LOOP
}

Poseidon

Poseidon[15] is a framework to mitigate the effect of the IFA on CCN/NDN networks.
It shares some similarities with the previous approach since it also collects statistics
by observing the forwarded traffic. The main difference is in the detection phase:
Poseidon is triggered when two metrics exceed their corresponding thresholds. The
two parameters used by Poseidon are defined as follows:

ω(rj
i , tk) = #Interests from rj

i at time tk

#Data from rj
i at time tk

(1.8)

ρ(rj
i , tk) = # of PIT bytes used by rj

i at time tk (1.9)

In order for Poseidon to be activated, both of these two metrics must exceed the
allowed value. The algorithm uses both in order to limit the number of false positive,
namely the number of times it erroneously detects an in progress attack. To this
end, it is very important to accurately tune the temporal window over which these
metrics are calculated. In fact, a small window value would result in raising an alert
too soon even when the threshold have been exceed just for a short physiological
network burst. On the other hand, a too large value would cause the algorithm
to react too slowly. In our simulations we use a one second window, in order to
obtain an acceptable tradeoff. Poseidon reacts to an attack detection by imposing
limits on the number of accepted Interests from the interface which exceeded both
thresholds and lowering them for that interface. Additionally, collaborative messages
are exchanged by the routers on the attack path to share information about their
state. After some time, if the traffic becomes normal again, Poseidon will restore all
the thresholds to their original values and the imposed limits are deactivated.

1.6.2 Simulation Scenario
Our simulation scenario is the network of the main Italian service provider, Telecom
Italia (TI), whose logical topology is publicly available[78] and is showed in Figure
1.7, with PoP granularity. The connection between each user and its corresponding
POP is modeled as an ADSL line with 7Mbps/1Mbps downlink/uplink bandwidth
because these are very common values for TI domestic DSL contracts. The total
number of customers is around 10 million and their distribution in the network is
coherent with the population density of each province. Another important param-
eter is the PIT size. In this sense, the technology used to implement this table can
deeply vary, depending on the traffic rate to be supported. For example, support-
ing the traffic of a national backbone router may require the use of static RAM

26

1.6 – Interest Flooding Attack (IFA) Countermeasures and Solutions Assessment

technologies to fit the requirements in terms of access time, while other peripherals
devices may employ larger (but slower) DRAM to serve less intensive traffic pat-
terns. Since our focus is on high end network appliances, we choose a default value
of 1GB for the maximum PIT size, which represents a sort of upper limit with re-
spect to current hardware technologies. See [63] for a deeper insight on this topic.
To load our network, we implement download arrivals at each client side and limit
customers to download just one file at a time, for simplicity and scalability of the
simulations. Each file to be requested is selected among the global resources catalog
with a Zipf probability distribution having α=0.55 and q=25 as in [86]. This traffic
load represents our baseline for all the simulations. The attacker model is rather
simple since it generates Interest packets at the maximum speed allowed by its up-
link bandwidth. Each packet contains a different (and random) resource name to
avoid Interest merging on routers along the path. We distributed many attackers
around the network, targeting the same prefix in order to concentrate the effects on
a central device, which, in our scenario, is the Rome PoP. For this reason and also for
the sake of brevity, we provide results and metrics only for this network appliance.
One prefix Hijacker node is directly connected to the Rome PoP to attract all the
fake Interests and discard them. Such behavior makes PIT entries unsatisfied for
the whole Lifetime thus wasting precious memory portions.

1.6.3 Simulation Results
In order to have a baseline for our simulations, i.e., the behavior of the network when
no countermeasure is implemented, we run a simulation campaign varying the attack
bandwidth starting from a minimum value of 100 Mbps up to 4 Gbps. Notice that
this attack bandwidth is perfectly feasible since many security reports[68] confirm
the possibility to obtain an aggregate attack bandwidth even higher than 10 Gbps
by exploiting distributed zombies, hence our assumption is quite conservative. The
results of this preliminary test are showed in Table 1.2;

Attack
Bandwitdh Retransmissions RAM usage # Downloads

0 bps 0 % 0.2 % 2841000
100 Mbps 0 % 5 % 2841000
500 Mbps 0 % 25 % 2841000
2 Gbps 0 % 98 % 2841000
4 Gbps 5.14 % 99.9 % 2101500

Table 1.2: Baseline network performance with no countermeasure deployed

Simulations results are provided either in terms of memory performance (RAM

27

1 – CCN: an architecture for the future Internet

usage) and also in terms of the overall network functioning (percentage of retrans-
missions and total number of completed downloads). We report the RAM usage as
the amount of memory occupied just by the PIT in a stable situation, i.e., after any
transient has disappeared. As it can be seen, in all the cases in which the PIT is
not completely filled the number of downloads completed by normal users is con-
stant. Thus, the network can be considered ’stable’, namely, all the transfers are not
significantly affected by the attacker activity. On the other hand, in the last case
(last row), the clients and their connections are considerably slowed down and the
overall number of finished transfers decreased. This is in line with our expectations
since the fake traffic has two consequences: (i) wasting part of the links bandwidth
and (ii) fulfilling the PIT, which becomes unable to admit regular Interests. This
implies an increasing number of Interest retransmissions, computed as:

retr% = #Interest−#Data

#Interest
∗ 100 (1.10)

where:

• #Interests is the actual number of Interests sent;

• #Data is the number of Data composing the file in transfer.

In an ideal scenario, the number of transmitted Interest packets per file transfer
should be equal to the number of Data packets, leading to 0% retransmissions. This
computation is performed for each finished download and then averaged at the end
of the simulation. After implementing the countermeasures in the network, we run a
simulation campaign for each of them and obtained the results depicted in Table 1.3.
We start our analysis with the Pushback algorithm. As we can see from the results,
an increasing attack bandwidth causes a worse network performance, especially con-
sidering the overall number of downloaded files. The surprising result is that the
countermeasure limits the network also in case of low intensity attacks because the
algorithm is designed to compute the maximum number of acceptable Interests and
announce it to downstream routers. Since the fake Interest packets mix with nor-
mal requests, the resulting limit computed for the interfaces of the routers along the
path and targeted by the attacker involves also part of the legitimate traffic. The
worse performance cannot be captured in the retransmissions computation since, as
previously mentioned, it is performed only for finished file transfers thus not taking
into account downloads in progress at the end of our simulations. For what con-
cerns the Traceback framework, results are definitely better and almost all the files
are correctly delivered. Only in the last case, with an aggregate attack bandwidth
of 4 Gbps, some downloads are not completed. The reason is that we have some
transients between each attack detection and the countermeasure deployment, so
that some regular Interests are initially discarded by on path routers. After reach-
ing the threshold set for the Traceback process (this only happens in the last two

28

1.6 – Interest Flooding Attack (IFA) Countermeasures and Solutions Assessment

Attack
Band

Retransmissions RAM Usage Total downloads
PB TB POS PB TB POS PB TB POS

0 bps 0 % 0 % 0 % 0.2 % 0.2 % 0.2 % 2841k 2841k 2841k
100 Mbps 0 % 0 % 0 % 5 % 5 % 0.3 % 2839,5k 2841k 2841k
500 Mbps 2 % 0 % 0 % [0.7-6.4]% 25 % 0.3 % 2707k 2841k 2841k
2 Gbps 0 % 0 % 0 % [0.7-6.4]% 0.2 % 0.3 % 2706,5k 2841k 2841k
4 Gbps 0 % 13 % 0 % [0.7-6.4]% 0.2 % 0.3 % 2706,5k 2837,5k 2841k

Table 1.3: Countermeasures simulations results with different attack bandwidths

rows where the attacker band is equal or higher than 2Gbps), the countermeasure is
triggered and the spoofed Data immediately release the memory wasted on interme-
diate nodes. The routers, which give connectivity to end users as well as attackers,
quickly identify the attack originator and lock the link. In this way the attacker
activity is completely denied and the network operating restored, as proved by the
good performance achieved in terms of finished downloads and memory usage. The
number of retransmissions is slightly higher because, during the transient, some
downloads may experience a slow down. The last framework under test is Posei-
don. As evident from Table 1.3, simulation results are even better than the previous
cases as confirmed by the total number of finished downloads, which is completely
restored in all the considered attack scenarios. This is a positive consequence of the
dynamic behavior of Poseidon and its combined usage of two parameters, ω e ρ. To
improve the performance, we set the maximum threshold for the metric related to
the memory destined to each face, by taking into account the link bandwidth to
which that interface is connected, as follows:

pj
i = Bj∑

k

Bk

∗MAX_PIT_SIZE (1.11)

where:

• pj
i is the maximum amount of memory for the PIT entries coming from inter-

face j on router i;

• Bj is the bandwidth of the link connected to interface j;

•
∑

k

Bk is the sum of all the bandwidths of links connected to the router inter-

faces.

In this way, bigger links (as in the case of the RM-MI link) are allowed to use
a larger amount of the RAM portion because they usually serve a wider part of
the traffic hence it is reasonable to have more PIT entries due to those interfaces.

29

1 – CCN: an architecture for the future Internet

The considered thresholds are automatically lowered while the attack is starting,
resulting in less probability for the attacker to have its Interests forwarded upstream.
After the statistics become normal again (with an exponential decay law), thresholds
are raised again to progressively reopen the link to the attacker. However, this
oscillation is never dangerous for the network performance as the system performs
an early detection of this phenomenon thanks to the monitoring process that is
triggered with 1 second frequency, and the regular traffic is definitely not affected by
the fake traffic. This last result reveals that Poseidon is the most resilient framework
against IFA and can successfully shield the considered network topology under the
assumptions made for the attacker behavior.

1.7 Scalability: issues and challenges
Since its first appearance, CCN has gained an ever increasing interest thanks to
the revolutionary idea of addressing data rather than hosts, in a world where in-
formation (e.g. web pages, media content and so on) is becoming more and more
important. In all ICN proposals the notion of location-dependent host identifier has
been completely abandoned in favor of a name based routing scheme: users inter-
ested in a given content can simply generate a request indicating the resource name,
without caring of its exact location. This vision has nurtured a number of research
work, ranging from the study of smart cache management algorithms[25, 12, 89] to
the exploitation of CCN for mobility environments[44] and high availability applica-
tions. However, the inherent pull nature of the protocol poses serious challenges for
all the applications that work in a push-like fashion since CCN establishes a precise
direction for all network communications: indeed, the requesting node is also the
connection initiator and the content provider has apparently no direct way to start
sending data. Nevertheless, this behavior is exactly the one that many modern web
applications realize since, in many cases, they may need to notify the clients with
an asynchronous event (like the reception of an incoming message or an alert trig-
gered by some external module). In this case, the data transfer initiator is the node
holding the data (e.g. the web server) and not the one who is interested in it (e.g.
the client browser). In traditional IP networks the standard Http Get/Response
(which works in a much similar way as the CCN pull model) has been enhanced
with additional protocol extensions to support server to client data transmission
(Web sockets, HTTP streaming, long polling techniques and so on). We argue that
allowing those functions also in CCN would greatly augment the appeal of the data
centric architecture.

What we have talked about so far, i.e. the automatic update of the client side
when the content producer generates news for it, shares many similarities with what,
in the literature, is referenced to as a publish/subscribe system[23], namely a network
architecture allowing multiple clients (i.e. the subscribers) to subscribe to multiple

30

1.7 – Scalability: issues and challenges

topics, whose data is generated by other entities called publishers. In principle, when
a publisher makes a content available to the world, all the interested subscribers
should be notified for the newly generated content and the fresh data is pushed to
them. This idea is much general and can be applied both to traditional TCP/IP
networks and also to ICN. Indeed regarding the latter, there exist some proposals
that aim to implement the pub/sub architecture within the CCN infrastructure and
we will discuss them in Section 1.7.2. However, while these solutions work very well
when the number of content generators is small and not so rapidly changing, there is
still little clarity on other scenarios where the content generation is extremely rapid
and data providers/consumers appear and disappear very frequently in different
parts of the network, especially for what concerns scalability at the Internet scale.
For instance, let us think to an alarm signal broadcasting a real time message to all
the interested users or a webmail service informing its clients for a new incoming
message. Enabling the pub/sub system to work well in such dynamic scenarios,
would enable push-based applications to be implemented on top of CCN as well.

The main contribution of this section is to explore some possible designs for
a generic push application, underlining the main challenges that must be solved
and proposing an effective way to cope with them. While doing this, we will use
a specific case study application in order to make our study more concrete. In
particular, we consider the design of a CCN based social network application since
it allows us to consider the problem of rapidly connecting/disconnecting clients,
such as mobile clients, and also to evaluate the mechanisms that can be leveraged to
deliver asynchronous notifications to clients. This context is significant as already
discussed in [46, 92, 91, 60]. We propose a design based on the idea of location-
dependent host identifiers which make each host involved in any form of dynamic
push application, able to receive automatic update from a content source. This idea
is derived from well known concepts inherited from the TCP/IP world. However,
to the best of our knowledge, their applicability to CCN has never been considered
while, in fact, it can bring new benefits and advantages to the CCN protocol. In our
work, we evaluate and compare our solution with COPSS[13], the state of the art
framework enabling the instantiation of a publish/subscribe environment on CCN.
Our simulation results are based on the topology of the most prominent Italian
service provider (i.e. Telecom Italia). We collected a number of statistics about the
Facebook social network since it is widely recognized[47] as the most famous social
website in the world, and we use them to represent a realistic network population
in our experiments.

1.7.1 Problem statement and requirements

Given the functioning of the CCN pull mode, we may infer the following points: (i)
the connection initiator is the one who wants to receive a particular content, (ii)

31

1 – CCN: an architecture for the future Internet

the entity which has the content (e.g. a content provider) cannot send any data
without being asked first. However, since our focus is on applications that need to
notify clients on an asynchronous basis, the connection initiator is, in principle, the
one holding the content. For example, considering a modern web application imple-
menting a web mail service, it would be necessary for the server to notify the clients
for each new incoming message and this notification must be delivered in real-time
as not to deteriorate the quality of experience perceived by the end users, as already
discussed in [4, 48]. This behavior is achieved in standard HTTP (over IP) by means
of different techniques. One of the most popular and easy to implement is the one
realized by AJAX requests. With this technique, the client polls the server for a new
update by means of a background AJAX connection. The server leaves the chan-
nel open until it has some news for the client, then sends them and terminates the
connection. Then, the client side reissues another request in order to always make
a channel available to the server for further data pushing. This mechanism is sum-
marized by the sequence diagram in Figure 1.12. It is worth mentioning that other
programming techniques may achieve the same result of the just described one. The
set of these techniques is generically called COMET programming and it includes
HTTP streaming, AJAX requests, long polling and so on. Since the introduction of
HTML 5, there is also a special interface for bidirectional communications which is
called WebSocket API. As we have stated above, including this programming mode,
which is very common in the current scenario of network applications, within the
boundaries of the CCN infrastructure seems to be as important as complex. In the
next sections, we discuss possible designs and their relative challenges with a special
attention on the scalability of the transport network.

1.7.2 An overview on existing solutions

In CCN we have some proposals that target push applications. For example,
[16, 83, 86] mention the idea of a long Interest lifetime useful to keep an open
channel between the content provider and the data consumer. With this approach,
the content provider can simply generate the response (when it is ready) by exploit-
ing the pending Interest; Dai et al.[16] envision the use of a special type of never
dying Interest which is meant to remain in the PIT even when the Data has been
forwarded. The idea is much similar to the above one, except for the fact that
clients do not have to re-express the Interest when it expires. COPSS[13] relies on
a complete and well designed pub/sub environment, where a Rendezvous Node is
in charge of centralizing the subscriptions to the interested topics (from the clients)
and the publications of new pieces of data (from the publishers). This idea shares
some similarities with the IP multicast implementation. We will give a larger im-
portance to COPSS in the following sections since, to the best of our knowledge, it

32

1.7 – Scalability: issues and challenges

Client Server

Channel open

Event occurrence

Consume data

Channel open

Consume data

Event occurrence

Client connects

Figure 1.12: AJAX with long polling

is the state of the art technique for pub/sub within the CCN proposal and it in-
cludes a variety of solutions to the common problems of such network architectures
(push enabled content dissemination, efficiency, possible incremental deployment,
offline subscribers management, and so on). A possible alternative approach, which
appeared in the CCNx project mailing list and also in the NDN website FAQ[59],
requires the server to send out an Interest to the client meaning that it wants to
receive an Interest for a newly generated content. This scheme must be carefully
evaluated since it introduces additional packets which represent a sort of overhead
to signal the availability of a fresh content.

The first two solutions (Interests with long timeout and never dying PIT entries)
are theoretically possible but they are not completely scalable since they require to
store a massive amount of state on intermediate routers for a possibly long time.
The situation can even get worse in case of malicious attacks, as many recent papers
demonstrated[90, 86, 1, 15, 88, 17, 20]. For this reason, we do not consider them
in our evaluation section, as we are interested in Internet scale applications (like a
social network application is).

There is some additional related work in the area. In particular, [8] provides a
significant contribution from a design point of view since it proposes an effective way

33

1 – CCN: an architecture for the future Internet

to implement push/pull communications by means of a unique, unified data struc-
ture: the Forwarding Information Base (FIB). The architecture envisioned is general
and not specific to CCN while our target is exactly CCN. Moreover, [74] highlights
and discusses the importance of enabling real-time content distribution over Named
Data Networking but an extensive evaluation of possible mechanisms to accomplish
this in a realistic network topology and workload conditions is missing. Finally, [54]
is centered around the idea of deploying a social network application over the ICN
infrastructure. To support this idea, the authors underline the big advantages that
can be obtained by exploiting the idea of in-network caching. However it does not
fully evaluate the impact on a very large scale in terms of state to be maintained on
network routers.

In addition, it is worth mentioning that there are some important European
project [19, 26] aiming at designing a clean slate approach to the pub/sub im-
plementation exploiting ICN concepts and ideas. While these proposals are much
general and refer to ICN, in this work we will focus on a particular incarnation, that
is CCN.

1.7.3 Push Architecture Designs
We now introduce and describe two possible architectures to implement push appli-
cations on CCN. In particular, we adapt COPSS[13] which is targeted at realizing a
network of content publishers and subscribers, since it is the state of the art frame-
work for the pub/sub paradigm over CCN, and we also implement our solution
based on a special Interest sent from the content publisher to a specific consumer
by means of an ad hoc host identifier. This last design, fully compatible with the
widely recognized CCN design[37], has been derived by various discussions which
appeared on some of the main CCN-related mailing lists with additional key mecha-
nisms we have designed to better support dynamic nodes (e.g. clients) and increase
the scalability of the routing architecture.

Copss

COPSS[13] is a well known framework implementing a publish/subscribe system over
CCN. The COPSS architecture is based on the concept of Rendezvous Node (RN).
In essence, the RN is a “special" type of COPSS-aware router which is in charge of
centralizing the reception of subscriptions from all the subscribers interested in a
given range of contents (identified by one or more Content Descriptors (CD)), and
the reception of news from content generators spread all over the network. In order
to balance the load among different network devices, the network may be configured
to have different RNs which handle different CDs. A valid CD could be, for instance,
“/sport/soccer/italy".

34

1.7 – Scalability: issues and challenges

All the network routers must have a FIB entry in order to properly forward
the subscriptions (carried in a packet called Subscribe3) to the relative RN and they
must store this information in a data structure called Subscription Table (ST) which
encapsulates all the subscriptions and the interfaces from which they arrived.

The content generation is handled by a special type of transmission unit called
Publish packet which is conceptually similar to a standard CCN Data packet (it is
meant to transport the content payload) but it is routed through a FIB matching
procedure instead of being forwarded by means of PIT breadcrumbs. When reaching
the destination RN, that is the Rendezvous node designated to handle the target
CD, the Publish packet is propagated to downstream subscribers, thanks to the STs
scattered in the network, so that they can consume the new update.

From this brief description, we can deduce that the RN becomes the routing
tree root for the CDs it is configured to handle. In this sense, all the packets (both
Subscribe packets and Publish packets) must go first to the RN and only after that,
they will be delivered to the leaves. As previously mentioned, many RNs can exist

Publisher

Rendezvous Node

Consumer

(1) Publish Packet goes from the Publisher to the RN

(2) Publish Packet is delivered to consumers

COPSS router

COPSS router

ConsumerConsumer

Figure 1.13: A tree-like COPSS network

to manage different descriptors. This can lead to sub-optimizated paths since all the
Publish/Subscribe packets for a given CD must be firstly routed to the corresponding
RN, as showed in Figure 1.13. Therefore a trade-off between load distribution and
path optimization is necessary. In our evaluation section we assess this aspect with
particular emphasis on our topology (the Telecom Italia network).

3Conceptually, the Subscribe packet is very similar to an Interest packet except for the fact
that it includes a set of contents.

35

1 – CCN: an architecture for the future Internet

Location-Dependent Host Identifiers (LDHI)

In this section we present our proposal. We start by introducing the basic pattern
upon which it is based then we move forward and introduce the additional enhance-
ments that make the architecture more feasible and scalable. The starting pattern
is the following one: each time the server has an update for a particular client, it
sends out an Interest to a specific prefix the user is able to attract Interests for, that
is a prefix agreed by the user and the network and for which the user has registered
a FIB entry. This packet serves just to communicate the availability of a new con-
tent. Part of the name contained in the packet could also be exploited to carry the
information about the newly generated content. At the reception of this packet, the
client, in turn, sends an Interest to the announced name in order to immediately
retrieve the fresh content.

To clarify the operations of this model, let us consider the example of Figure
1.14: Alice is connected to a generic social network application and she wishes to
receive all the updates from her friends. Bob is one of them. When the server has

Alice Server

New update from Bob

Consume data

Figure 1.14: Basic pattern used to push data to Alice

a new content (due to Bob social activity), the server sends an Interest with the
following name: “/mysocialapp/Alice/mysocialapp/Bob/news/123456 ". The first
part, namely “/mysocialapp/Alice/ " is a globally routable prefix which Alice is able
to attract Interests for. The second part, namely “/mysocialapp/Bob/news/123456 "
is the name of the update so that Alice is enabled to easily strip it and explicitly
request the new content by means of a classic Interest/Data transaction. This
basic scheme is theoretically possible but it introduces some drawbacks that we
must closely evaluate. First of all, it needs two additional packets for the setup
stage. This introduces an extra RTT compared to the IP solution, where the data

36

1.7 – Scalability: issues and challenges

is immediately returned in a half RTT. In addition to this, we have another concern
about the reachability of clients. In fact, the above mentioned scheme is based
on the fact that the prefix “/mysocialapp/Alice/ " is “globally routable". This is
theoretically feasible but practically un-scalable. In fact, the semantics of this prefix
is location independent in the sense that the client must be reachable to this prefix
from any portion of the network it is connected to. This implies a continuous update
of the routers’ FIB entries as soon as a client changes its position and also a small
probability of aggregating entries.

Having in mind the scalability (especially of the transport network), we re-
designed this basic scheme and propose to provide client nodes with an identifier
which should be location-dependent and closely related to the place/network where
the user connects. In our vision this identifier should be provided by the network it-
self by means of an ad-hoc protocol in a much similar way to the Dynamic Host Con-
figuration Protocol (DHCP) protocol, which provides IP addresses in current LANs.
Those identifiers can be leveraged to increase the scalability of the FIB because
they aggregate on a geographical basis like IP addresses in traditional networks.
Our idea is conceptually different from the ones available in the literature. For
example, in the Voice-over-CCN implementation[38], clients are reachable through
domain specific names, which solely depend on the service provider name space. We
propose to change this vision according to the geographical location of the user so as
to exploit aggregability of FIB entries. Given this idea of location-dependent host
identifiers (LDHI), the previous scenario with Alice connected to the social network
application, changes as in Figure 1.15.

Alice Server

New update from Bob

Consume data

Figure 1.15: Example of how to push data to a client based on location dependent
host identifiers

37

1 – CCN: an architecture for the future Internet

As it can be noticed from the diagram, each user needs a packet to make the
server aware of its current identifier. This can be achieved with a single Interest
packet at service connection time. In our example the connection Interest car-
ries the name “/mysocialapp/connections/italy/turin/polito/Alice": the first part,
namely “/mysocialapp/connections/ ", is a globally routable prefix which identifies
the service endpoint taking care of user connections. The second part, namely “/i-
taly/turin/polito/Alice", is the dynamic information about the prefix that can be
used to send Interests towards the client and we call it location dependent host
identifier. In this way, the server can easily extract this prefix and store it locally.
At this point, it should be clear that, whenever Alice connects from different parts
of the network, she will get different node identifiers, depending on the geograph-
ical position of the hosting network, and she will have to notify the server about
its current unique identifier. After the connection, the server application is able to
contact Alice by sending an Interest addressed to “/italy/turin/polito/Alice/myso-
cialapp/Bob/news/123456 ", which includes the name of the new content. When
receiving this Interest packet, Alice knows a new update has been generated by
Bob and it can be obtained by a traditional Interest/Data transaction targeted at
“/mysocialapp/Bob/news/123456 ".

With our proposal, we achieve the following benefits: the network does not
have to update the FIB entries of all the routers in the network4 each time a new
client connects and the FIB becomes extremely scalable thanks to this IP-inherited
idea of geographical aggregation of entries. Clearly, we must evaluate the overhead
introduced by the initial setup stage needed for each notification delivery. This is the
main purpose of the evaluation section, through which we quantify the additional
traffic impact.

It is worth noticing that many concepts and ideas explained in this section are ex-
plicitly inherited from the IP world, especially the notion of host identifiers (see [30]
for a full discussion on the use of node identifiers in mobility environments). How-
ever, their applicability to CCN has never been discussed because this new network
architecture is exactly aimed at abandoning this approach based on a host-centric
vision of the network. This intuition is well motivated and justified by current trends
in Internet growing since users are currently more interested in retrieving specific
contents rather than reaching specific network nodes. Nevertheless, we would like
to underline that this concept of location-dependent identifiers does not change the
way CCN works and its core idea of addressing data rather than physical locations.
We see this mechanism as an additional tool to implement applications that need
to reach a particular host, thus realizing a conversational communication. The rest
of the content dissemination must be performed with the standard Interest/Data
procedure which should not involve any location-dependent identifier. We look at

4Or a portion of them, depending on how much the position changes and on the routing protocol.

38

1.7 – Scalability: issues and challenges

this proposal as a significant extension to enlarge the CCN applicability also to the
specific services we are considering in this section.

1.7.4 Evaluation

Introduction

In this section we tackle the complex problem of evaluating the impact of the above
described solutions, either in terms of network traffic and latency and also in terms
of memory requirements for intermediate nodes. The complexity is due to at least
two reasons: first of all, we have to consider a realistic network topology in order
to understand the implementation issues in a concrete scenario. Second, we must
conjecture a plausible network load, meaning the number of users connected to
the network, their bandwidth, the number of notifications per second received by
them and a set of other statistics representing the users behavior. In the next two
subsections, we will discuss exactly these aspects.

The metrics adopted to compare the solutions pertain to the number of packets
(both Interest and Data packets), the latency introduced by the two approaches,
and the memory usage on intermediate nodes. These elements represent the key
dimensions of our problem. Since in COPSS, the memory requirement can only be
expressed (in this context) in terms of the ST size, we compare this data structure
with the PIT in the LDHI scenario. We believe this is a fair comparison since these
are the two most overloaded protocol components in the experiments we performed.

The topology

Our simulations are fully focused on the network of Telecom Italia (TI, the main
Italian provider) since we believe the structure of this provider is quite common
to most middle-sized network operators. The logical network topology of TI is
publicly available and it is showed in Figure 1.7, at PoP granularity. The PoPs
presence is almost equally distributed between the northern part of the country
and the southern one, serving the most densely populated provinces. Rome and
Milan are the core cities for the entire topology and they are connected through an
high-speed backbone link.

We have distributed TI users in all the provinces (according to the demographical
size of the province itself) by means of one edge router per PoP. The link between
each user and the edge router is 7 Mbps for the downlink and 1 Mbps for the uplink
as these are the most common values for Italian domestic ADSL. Other bandwidths
are set as in Figure 1.7.

39

1 – CCN: an architecture for the future Internet

Users model

Our focus is on a generic social network application implemented on top of CCN.
For this reason, we have gathered statistics[77, 76] about the users behavior, tar-
geting the major social network website, that is Facebook. We then deduced all the
necessary parameters in order to achieve accurate simulation results. We summarize
them in Table 1.4.

Table 1.4: Facebook Statistics

Statistic Value Description

1 TOTAL_FB_USERS 1.3 bilion Total number of Facebook users in the world
2 TOTAL_IT_USERS 26 milions Total number of Facebook users in Italy
3 CONTENT_UPDATES 939.000 Number of content updates every 60 seconds
4 AVG_TIME_SOCIAL 2H 29M Avg time users spend on social media per day
5 AVG_VISIT_DURATION 20M Avg duration of a single user visit
6 AVG_FRIENDS 130 Avg number of friends per user

From stats 1 and 2, we deduce that the number of Italian user is 2% over the
total FB population hence we can use this information to infer the number of con-
tent updates per second generated by the Italian population (derived from stat 3).
From stats 4 and 5, we can compute the average number of visits per day per each
user and from stat 6 we can finally generate a complete social graph by extracting
AVG_FRIENDS friends per each FB user.

Each time a content is generated, we randomly select the corresponding author
from our population and the fresh update is delivered to all of its friends. This
reflects the behavior of most social networks, which consists in updating the client
web page with all the friends news feed.

Social networking over COPSS

The first part of our evaluation consists in simulating the network illustrated in
the previous sections, with an adapted implementation of COPSS. We have imple-
mented this architecture in ndnSIM[2], the reference NS-3 module for NDN/CCN
simulations.

We have assumed the server node is connected to the Rome PoP and it acts
as the node who receives all the updates generated by the various users and it
publishes them through the COPSS network. Notice that this choice optimizes the
paths because the RN and the application server are adjacent.

All the clients act as subscribers thus each user must subscribe to the topics it
is interested in. Since we are implementing a social network application, we assume
the topics correspond to the user profiles a client wants to receive news from. This
procedure, i.e. the subscription to all friends updates, must be performed each time a

40

1.7 – Scalability: issues and challenges

client appears in the network so as to inform the pub/sub network of its presence. A
symmetric procedure has to be applied at user disconnection time since the network
(in particular the Subscription Tables) must be updated to correctly handle the user
departure. To solve this specific problem, we have assumed an explicit Unsubscribe
packet which is sent out from all the clients when they disappear from the network.
This is a simplification since, in a real deployment, COPSS aware routers should
handle clients disappearing without any announcement. This can be accomplished
by using a soft state-like mechanism which is able to recognize the client departure,
for example by means of a timeout event. For the sake of simplicity, we have assumed
that all clients behave correctly, i.e. they always communicate their disconnection.

Since each client has 130 friends (on average, as in stat 6) we expect to have 130
Subscription packets on average at each node entering the network, each one rep-
resenting the willing to receive friends updates. The same applies at disconnection
time for the unsubscription procedure. Notice that, due to the assumption that Un-
subscribe packets are always generated, we are simulating an extra traffic. However,
if a timeout mechanism existed to avoid this assumption, a massive amount of pack-
ets would have been generated to periodically refresh ST entries in COPSS aware
routers, hence the network traffic is balanced in these two possible implementations.

Social networking through location dependent identifiers (LDHI)

The second part of our evaluation is focused on the architecture including location-
dependent host identifiers (LDHI). Regarding this point, a client connected for
example to the Rome PoP would have an identifier similar to “/rome/users/ro-
Client123/ ". The relative PoP has a single entry, that is “/rome/users/*", pointing
to the interface the edge router (ER) is connected to. Therefore, assuming each
client is connected to a different interface on the ER, this last has, in turn, as many
entries as the number of users since the aggregability is not obtained at the ER level
but only in the transport network.

The service connection process is performed at each client connection thanks to
the client sending an Interest packet, meant to announce its current prefix to the
server. Such packet contains a name like “/facebook/connections/rome/users/ro-
Client123/ ". The first two components are parts of a globally routable prefix and
the rest (“/rome/users/roClient123/ ") can be stored by the server application for
future communication with that particular host. Notice that this connection pro-
cess is much lighter than the COPSS case because we only need to send a single
packet to join the social service while in COPSS the client must send a Subscrip-
tion Packet for each friend profile he is interested in. This reasoning applies also
for the disconnection phase since a single packet addressed to a similar name (i.e.
“/facebook/disconnections/rome/users/roClient123/ ") is enough to leave the social
application in LDHI.

We assume that the server portion of the social network application fully knows

41

1 – CCN: an architecture for the future Internet

the social graph, which is the list of friends for each connecting client. This is a
reasonable assumption to reflect the functioning of modern client-server applications
that tends to concentrate all the important information on the server side.

We now introduce the steps used to deliver asynchronous notifications to the
end users. Let us assume that a certain client (for example, the one identified
by “/venice/users/veClient2413 ") generates a new content and transfers it to the
server. At this point, the server has the task to push data towards all the interested
clients. This information (the list of all interested clients) is explicitly contained in
the server state as the social graph holds all the users interconnections. Given the
friends list, the server takes the corresponding identifier of each user and generates
an Interest packet. For example, assuming that the user possessing “/milano/user-
s/miClient2413 " as node identifier is a friend of the user having “/venice/users/ve-
Client2413 " as node identifier, the server generates an Interest with the following
name: “/milano/users/miClient2413/facebook/news/%00%01%CB". The first three
components are necessary to reach the correct destination (the user willing to re-
ceive the update) while the rest is the NDN name of the newly generated content.
In our simulations, we simply name all the content updates with a sequential num-
ber incrementally increased by the server (the very last name component). At the
reception of this Interest, the client side of the social application understands that
a new interesting content is available and requests it with a classical Interest/Data
transaction targeted to the content “/facebook/news/%00%01%CB". With the pro-
posed scheme, we also benefit from the CCN caching capability since all the notified
client nodes ask for the same content (in a short period of time) hence the content
diffusion is greatly aided by the CCN protocol caching features.

Simulation results

Simulation results are depicted in Figure 1.16, where we show the amount of packets
generated by the COPSS and LDHI solutions. In both cases, we only report the
traffic seen at the Rome PoP since it is the most overloaded device and also because
it serves as the Rendezvous Node in COPSS. With this choice, we have the RN and
the FB server very close to each other, hence paths are perfectly optimized. The
first relevant difference is in the number of outgoing Interests (or Publish packets
in COPSS), that is the amount of Interest/Subscribe packets sent from all node
interfaces. In fact, as we can see from Figure 1.16(b), COPSS does not propagate
any packet while LDHI constantly generates traffic for the whole simulation time.
This is not surprising since the role of the RN in COPSS is to concentrate all the
subscriptions without further forwarding them. In LDHI the outgoing Interests are
packets coming from users asking to connect/disconnect to/from the service and
packets asking for updates. In addition, we also have the initial Interests exploited
by the server to setup the communication for each notification transfer.

42

1.7 – Scalability: issues and challenges

Another key point is related to the number of incoming Interest/Subscribe pack-
ets, which is higher in COPSS. This is due to the massive amount of packets that
are sent each time a user enters/leaves the social network and it is proportional to
the average number of friends per user (in both procedures).

Regarding the amount of Data/Publish packets generated, we do not have any
appreciable difference since network caches eliminate any possible delay between
one client content request and the other ones in LDHI. This is a beneficial effect of
having a network of caches deployed throughout the topology.

Evaluating the performance of the two systems in terms of latency experienced
by the end users when a new content is delivered to them, is also very important.
Here the latency is defined as the time between the production of a content update
by the server and the reception of the news by the client side. As we underlined
in the previous sections, LDHI has an higher latency time due to the setup stage
needed for each status update. This phase takes an extra RTT and has an impact
on the overall amount of time needed by the client to receive a content. In Figure
1.17, we highlights the performance results obtained in our simulations and we show
the probability distribution for different latency values. From the comparison, it is
evident that COPSS outperforms LDHI, requiring three times less time to deliver
a fresh content on average. One of the main reasons to accept this drawback is
that many applications do not have so strict real time data delivery constraints
(social networking falls under this category). Furthermore, we proved LDHI has the
positive effect to generate (under the assumptions made) less traffic and this can be
an essential feature in the mobility scenarios, where users are limited in the amount
of traffic they can generate.

As our simulation results show, the initial concern about the additional overhead
introduced in LDHI by the setup stage, is partially mitigated thanks to some of the
implementation details we have described so far. Clearly, the extra RTT needed to
transfer data still exists with LDHI (and not with COPSS) but, depending upon
the kind of application we want to implement, this latency can be neglected. Our
understanding is that many applications (web-based or not), might have no need for
a low latency data delivery hence delays of some milliseconds may be tolerated (like
in the social network example). For what concerns the global traffic produced in the
network, we can conclude that LDHI performs better in this network scenario (the
overall number of generated packets is smaller). Of course, this conclusion holds
in our context. One may find other contexts where the population behavior is less
penalizing in COPSS, depending on the number of content subscriptions per second,
connections/disconnections per second, and so on. However, we can argue that our
result is significant as the topology and the application behavior are both derived
from the real world.

The traffic produced and the latency introduced by the two solutions are just
the first dimensions of our problem. Another important and crucial aspect we would

43

1 – CCN: an architecture for the future Internet

like to analyze pertains with the amount of internal state that must be maintained
by intermediate routers. In this sense, we provide in Figure 1.18(a) and 1.18(b) the
RAM usage we experienced with the two solutions on the Rome PoP, since it is the
central (and most overloaded) switching device of our topology.

A possible solution could be the distribution in the network of several RNs
to balance the load in terms of state which has to be maintained. However, we
consider this option inappropriate in this specific context for the following reason:
since we are implementing a single application with a single domain prefix (i.e.
“/mysocialapp"), the balancing could be done on a specific CD basis. For example,
CDs with "/mysocialapp/users/a*", may be handled by one RN, while other CDs,
e.g. “/mysocialapp/users/b*", may be handled by another RN, and so on. The
problem of this approach is that we cannot know in advance which would be the
optimal placement for RNs location since we do not know a priori where clients
interested in CDs matching “/mysocialapp/users/a*" come from. Furthermore, the
clients location is likely to change in a very rapid manner, thus an optimal RNs
configuration would probably exist only for a small time interval. In fact, we recall
that all Publish/Subscribe packets must go first to the relative RN. Hence, leaving
the path construction to the randomness of users connection may be not a wise
idea. These considerations lead us to the conclusion that RNs load balancing is not
always a viable solution.

Concerning the LDHI memory consumption, we have to consider that the PIT
is not heavily loaded (see Figure 1.18(b)) since each entry remains in the pending
state for a very short period of time, thus the memory usage is definitely negligible.
Regarding this last point, we would like to add that the Lifetime set within the
Interest packets used by the server to trigger a user request might be in theory
nearly zero, that is such packets might pass through the router without leaving
any trace since they will not call back Data packets (at least, this is not a strict
requirement). Of course, this solution is not feasible since PIT traces are also useful
to avoid routing loops. As a consequence, the lifetime may be set to a very small
value in order to avoid possible loops and also to minimize the memory usage on CCN
devices. The memory consumption showed in Figure 1.18(b) refers to the memory
portion occupied by names. In addition, some overhead should be considered since
each entry has other information (list of nonces, list of interfaces, etc. . .) hence
our computation should be refined with some (hopefully small, depending on the
PIT implementation details) space overhead. The memory consumption showed in
Figure 1.18(b) confirms that LDHI outperforms COPSS in terms of scalability even
at ISP scale, generating a small amount of state information. In fact overloading the
central Rendezvous Node with a huge amount of state information could limit the
functioning of the entire network. In LDHI, we do not have this issue because the
information scattered in all COPSS routers by means of the Subscription Tables, is
moved at the edge of the network, in particular on the social network application

44

1.7 – Scalability: issues and challenges

server, which is in charge of maintaining the user relations (what is commonly called
the social graph in social network applications). We believe this is a key point to
build a network capable of fully supporting scalable applications.

45

1 – CCN: an architecture for the future Internet

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20000 40000 60000 80000In
 In

te
re

st
/S

ub
sc

rib
e

P
ac

ke
ts

Time [sec]

LDHI
COPSS

(a) Incoming Interest/Subscribe packets for
COPSS and LDHI at Rome node

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 20000 40000 60000 80000

O
ut

 In
te

re
st

/S
ub

sc
rib

e
P

ac
ke

ts

Time [sec]

LDHI
COPSS

(b) Outgoing Subscribe packets for COPSS
and LDHI at Rome node

 0

 500

 1000

 1500

 2000

 0 20000 40000 60000 80000

In
D

at
a

P
ac

ke
ts

Time [sec]

(c) Incoming Publish packets for COPSS at
Rome node

 0

 500

 1000

 1500

 2000

 0 20000 40000 60000 80000

In
D

at
a

P
ac

ke
ts

Time [sec]

(d) Incoming Data packets for LDHI at Rome
node

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 0 20000 40000 60000 80000

O
ut

D
at

a
P

ac
ke

ts

Time [sec]

(e) Outgoing Publish packets for COPSS at
Rome node

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 0 20000 40000 60000 80000

O
ut

D
at

a
P

ac
ke

ts

Time [sec]

(f) Outgoing Data packets for LDHI at Rome
node

Figure 1.16: Simulation results depicting the number of incoming/outgoing packets
for the Rome central router in both scenarios (COPSS and LDHI). We selected this
particular node since it is the most overloaded one and also because, in the COPSS
deployment, we select this network device to work as RN.

46

1.7 – Scalability: issues and challenges

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

L
a
te

n
c
y
 (

C
D

F
)

Time [ms]

LDHI
COPSS

Figure 1.17: Cumulative Distribution Function of the latency experienced by end
users in the two proposals

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 20000 40000 60000 80000

R
A

M
 U

sa
ge

 [M
B

]

Time [sec]

(a) COPSS memory performance at the Rome
PoP.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20000 40000 60000 80000

R
A

M
 U

sa
ge

 [M
B

]

Time [sec]

(b) LDHI memory performance at the Rome
PoP.

Figure 1.18: Pending Interest Table (LDHI) and Subscription Table (COPSS) com-
parison.

47

48

Chapter 2

Empowering the Internet: SDN
and NFV

The architecture and all the mechanisms we described so far have been proposed
to optimize content distribution in modern Internet. We sacrificed the simplicity
of the IP routing protocol in order to make the network even smarter and more
content-oriented. The final goal is that of better supporting the increasing users
demand for popular content.

In the networking panorama, however, there is still room for an innovation that
is currently hitting an orthogonal target w.r.t content dissemination. We are talking
about the architectures and technologies currently known as SDN and NFV. Here
the focus is on dynamicity and programmability: the first attempt to introduce such
features in the network can be safely connected to the OpenFlow (OF) protocol,
whose first version was described in [55] in 2008. Essentially, the idea was to extract
the intelligence (the control plane) from forwarding elements and move it in a more
centralized network component called Controller. The Controller’s logic can be
then designed in a more flexible way, i.e. by means of some kind of network oriented
programming language. What remains in the forwarding elements according to this
new vision, is just a set of simple forwarding rules following the MATCH -> ACTION
pattern and these rules are driven by the controller by means of a specific protocol:
OF. Since we want to achieve flexibility and agility in the network configuration, the
forwarding elements (i.e., the so called OF switches) can programmed proactively,
that is the controller installs the rules on the switches before the traffic passes
through them (e.g., at network bootstrap) or reactively, that is the controller installs
a rule in a switch when it is required, for example when the switch encounters a
packets it has no rule for.

As a consequence of this brief description, it can be inferred that the forward-
ing process of an OF switch is not based on any traditional L2/L3 protocol (no
MAC learning nor IP routing) but rather on this MATCH->ACTION rule pattern.
Clearly we can match a variety of fields in a network packet (src/dest port, src/dest

49

2 – Empowering the Internet: SDN and NFV

IP, src/dest MAC, . . .) thus forwarding a given flow through a given path thanks
to this flexibility introduced by OF rules and the controller logic. Starting from
this feature, it is easily feasible to customize the network paths on a per-flow basis
which can be useful to make different types of traffic pass through different types of
network functions (either physically deployed or virtualized). This opens the view
on a new range of services and technologies that can be implemented on practically
any existing network with the aim of exposing a new set of functionalities either for
network designers and maintainers and also for end users. For example, it is possi-
ble to customize the network services offered to a given traffic (user) by providing
additional functions (web cache, wan accelerators, security functions, . . .) and this
is also known as Service Function Chaining (SFC). In this chapter we will analyze
new architectures and solutions proposed in this context to solve different problems.
For example we present an efficient data exchange mechanisms to make it possible
to move packets from a Virtual Network Function (VNF) to another hosted on the
same physical machine. We also propose and validate a solution to check safety
properties on dynamically changing networks. Indeed while dynamicity can bring
automation and easy-to-use tools to continuously change the network forwarding
behaviour, tools to check that networks configuration makes sense and does not
break network consistency and integrity must be designed and integrated into such
flexible environments. In the next sections we will cover (and solve) all these issues.

2.1 New architectures for SDN
Portions of this section (partially published in [9]) are also part of the PhD thesis
of Ivano Cerrato (“High Performance Network Function Virtualization for User-
Oriented Services") who collaborated to this work.

2.1.1 Introduction
The already introduced Network Function Virtualization (NFV) [24] proposes to
replace dedicated middleboxes, used to deliver a multitude of network services by
means of a growing number of (cascading) dedicated appliances, with software im-
ages that run on general-purpose servers. This allows leveraging high-volume stan-
dard machines (e.g., Intel-based blades) and computing virtualization to consolidate
and optimize the processing in the data plane of the network. This results in a more
flexible deployment of network applications (e.g., NAT, firewall), in lower capital
and operating costs for the hardware thanks to the possibility to deploy many dif-
ferent (small) Virtual Network Functions (VNF) on the same (standard) computer,
and in simpler and more reliable networks. In addition, while appliances are often
dedicated to a single tenant, servers can be multitenant, hence being able to host
services belonging to different actors [70], such as a traffic monitor belonging to the

50

2.1 – New architectures for SDN

operator and a firewall belonging to a given company, with even more advantages
in terms of consolidation.

When several VNFs are executed in the same server, an incoming packet can
traverse an arbitrary number of VNFs before leaving the middlebox (i.e., a func-
tion chain, as shown in Figure 2.1). The exact sequence of functions traversed by
a packet can be determined only at run-time, by inspecting the packet. In fact,
(i) packets belonging to different tenants can traverse different functions, and (ii)
packets belonging to the same tenant can experience different paths (e.g., when only
a portion of traffic needs to undergo a deep packet inspection). Packets can also
be modified in transit (e.g., a NAT changes the source IP address), hence requiring
that a packet is re-analized when it leaves a VNF, to determine what is next. As
depicted in Figure 2.1, this requires that each server includes a module (usually
referred as virtual switch or vSwitch) that classifies each packet to determine which
is the next function to traverse and then delivers the packet to it.

Journey of a specific
packet within the
middlebox

Virtual switch

NF4

NF1

NF5

NF2 NF3

Network

Network functions

Figure 2.1: Function chains deployed in a middlebox.

Basing on some preliminary work [10], this proposal evaluates a new architecture
for moving network packets between different functions, by means of a vSwitch.
This solution, which is based on circular lock-free First-In-First-Out (FIFO) buffers
managed by ad-hoc algorithms, is designed to:

• (i) guarantee traffic isolation between functions, so that a function can only
access the portion of traffic that is expected to flow through it, hence limiting
the potential hazards due to malicious applications and provide an effective
support to multitenancy;

• (ii) provide excellent scalability by allowing to consolidate a huge number of
VNFs on the same server;

51

2 – Empowering the Internet: SDN and NFV

• (iii) achieve high performance in terms of data movement speed among dif-
ferent VNFs, similarly to what is required in physical servers among different
hardware modules [95].

Scalability and performance are obtained also by taking care of implementation
details such as exploiting cache locality as much as possible and limiting the number
of context switches, since their costs would introduce an excessive overhead. The
correctness of the data exchange algorithms (e.g. absence of concurrency hazards)
is guaranteed by means of formal verification.

This section focuses on VNFs that (i) implement a pass-through behavior (each
packet received is sent again to the network), (ii) may drop packets or (iii) may
generate new packets as a consequence of a packet just received (e.g., an ARP reply
as a consequence of an ARP request). This allows us to cover the vast majority of
network middleboxes, including for example NATs, firewalls, traffic monitors, and
intrusion detection systems.

2.1.2 Related Work
The efficient lock-free implementation of FIFO queues has been largely investigated
in the past. For instance, [57] and [29] propose lock-free algorithms that operate
on FIFO queues managed as non-circular linked-lists. Similar proposals can be
found in [67] and [32], which also require to manage a pool of pre-allocated memory
slots. However, all the solutions proposed so far are usually based on uni-directional
flows of data according to the producer-consumer paradigm, which is not an opti-
mal solution for managing the bi-directional data flows occurring in the virtualized
environments we are considering. In fact, in these environmnts, a packet always
goes from the virtual switch to the VNF and then back to the virtual switch. Using
classical uni-directional producer-consumer solutions requires the VNF to remove
data just received from a first queue and to write them into a second queue used for
sending the data back. This implies that data are always copied once in this trip,
which may limit the throughput of the system particularly when several functions
have to be traversed (hence several copies have to be carried out).

Another possible way to efficiently exchange data between applications can be
seen in the context of a lock-free operating system, in which [52] and [53] present a
single producer/consumer and a multi-producer/multi-consumer algorithm to man-
age circular FIFO queues. A similar idea has been proposed by Intel in the DPDK
library and in [82], whose algorithms have been designed to operate in contexts
where many processes can concurrently insert items into a shared buffer or remove
them. However, those proposals are not applicable in our case because they cannot
guarantee isolation between VNFs due to the presence of a unique shared buffer.
Similar considerations can be made for ClickOS [50, 51] (based on the VALE vir-
tual switch [71]) and NetVM [35], which instead targets network function chains.

52

2.1 – New architectures for SDN

ClickOS uses two unidirectional queues with the necessity to copy packets once;
NetVM uses two unidirectional queues between “untrusted” functions, while switch-
ing to a unique shared buffer (handled in zero-copy) among “trusted” functions,
hence impairing traffic isolation requirement. MCRingBuffer [45], instead, defines
an algorithm to exchange data between one producer and one consumer running on
different CPU cores, which is particularly interesting for its efficient implementa-
tion of memory access patterns; in fact, part of those techniques were reused in our
implementation as well (Section 2.1.7).

Solutions such as Xen [5], and Hyper-Switch [69] address the problem of effi-
ciently exchanging packets between different entities such as virtual machines (VM)
running on the same server, which looks similar to our problem of chaining network
functions. However, their architecture is designed for packets that originate or ter-
minate their journey in a VM, not for pass-through functions. This implies different
architectural choices such as different buffers for packets flowing in different direc-
tions, albeit integrated with a complex data exchange mechanism based on swapping
memory pages rather than copying packets between the hypervisor and the VM [5].
It is also worth mentioning that network-aware CPU management techniques have
been proposed in the context of Xen for improving the performance of virtual servers
hosting these network applications [31].

Virtual switches such as OpenvSwitch (OVS) [64] and the eXtensible Datapath
daemon (xDPd) are used to implement network function chains (as shown respec-
tively in [7, 11]), although they appear in some way orthogonal to our proposal. In
fact, they implement the classification and forwarding mechanism (either based on
the traditional L2 forwarding or on the more powerful Openflow protocol [55]), but
do not focus on the data exchange mechanism which is often based on bi-directional
FIFO queues (in some case a shared memory can be configured). In this respect,
our mechanism can be built on top of those existing solutions to improve their data
transfer capabilities, hence the overall performance of the system.

2.1.3 The data exchange architecture

This section describes the proposed architecture, designed to efficiently implement
function chaining within a single middlebox. In particular, the section first provides
an overview of the architecture and then dives into the details of the packet exchange
algorithm.

In our architecture, we define the Master as the module that plays the role of
the vSwitch, while VNFs are represented by modules called Workers. Moreover, a
token is a generic data unit exchanged between the Master and the Workers. The
token represents a packet in the VNF use case, but our mechanism could be used
to exchange any kind of data, according to the specific use case implemented.

53

2 – Empowering the Internet: SDN and NFV

2.1.4 Operating context
VNFs are pieces of software operating on the data plane of the network that, in
the vast majority of cases, forward their packets with minimal (or no) changes,
allowing packets to continue their journey toward the final destination. However,
some functions (e.g., firewall) may need to drop packets, which should not be sent
back to the network after their processing. Other functions, instead, may need to
send new packets as a consequence of a previously received packet. For example, a
bridging module may need to duplicate a broadcast packet several times (e.g., once
for each interface of the middlebox) and then provide all these copies to the next
functions in the chain. Similarly, another function may extend a packet (e.g., by
adding a new header) so that it exceeds the MTU of the network; this packet must
then be fragmented, and all the fragments must be sent out.

Hence, our architecture must take all these requirements into account and must
be able to efficiently move all the above traffic within the middlebox in order to allow
flexible function chains. As depicted in Section 2.1.1, this requires a fast and efficient
mechanism to move data between the vSwitch and the VNFs, which translates into
the necessity of a dedicated data dispatching mechanism, being this component one
of those that has the biggest impact on the system performance.

2.1.5 Architecture Overview

Function 1
(Worker) … Function N

(Worker)

Consume/send
packets

Produce/receive
packets

Virtual switch (Master)

Network

Traffic flowing through a
function chain within a
network middleboxPrimary buffer

Auxiliary buffer

Figure 2.2: Deployment of the algorithm within a middlebox.

As shown in Figure 2.2, our architecture is based on a set of lock-free ring buffers;
in particular, the Master shares two buffers with each Worker, which are managed
through different (but not independent) parts of the same exchange algorithm.

54

2.1 – New architectures for SDN

The primary buffer is used to exchange pass-through tokens, i.e., data that
go from the Master to the Worker, and back from the Worker to the Master. In
particular, the proposed solution has the peculiarity of allowing the Worker to return
data back without any copy. Instead, the auxiliary buffer is used to support another
kind of traffic we envision in our use case scenario, namely Workers that can possibly
generate new tokens as a consequence of the data received from the Master, such as
an ARP reply packet generated in response to an ARP request, or when a packet has
to be modified but it results in an excess of the MTU, hence requiring the creation
of another packet. This second buffer is unidirectional and it is only used by the
Worker to provide “new” data to the Master.

Each buffer slot (both primary and auxiliary) includes some flags in addition to
the real data, which are used to identify the content of each slot; more details will be
presented in the next sections. Finally, buffer slots are currently of fixed length and
equal to the network MTU size; however the extension of the algorithm to handle
variable slot sizes, tailored to the length of the packet actually received, is trivial.

2.1.6 Execution model
The Master operates in polling mode, i.e., it continuously checks for new tokens
and inserts them into the primary buffer shared with the target Worker. This
operating mode has been chosen because the middlebox (and then the Master itself)
is supposed to be traversed by a huge amount of traffic; hence, a blocking model
would be too penalizing because it would require an interrupt-like mechanism to
start the Master whenever new data are available. This could significantly drop the
performance with high packet rates [58]. In fact, interrupt handling is expensive in
modern superscalar processors because they have long pipelines and support out of
order and speculative execution [21], which tends to increase the penalty paid by an
interrupt.

Vice versa, since the traffic entering into a specific Worker is potentially a small
portion compared to the one handled by the Master, a blocking model looks more
appropriate for this module. This ensures the possibility to share CPU resources
more effectively, which is important in multi-tenant systems where potentially a
large number of Workers are active. Hence, when a Worker has no more data to
be processed, it suspends itself until the Master wakes it up by means of a shared
semaphore.

2.1.7 Basic algorithm: handling pass-through data
The algorithm used to move data from the Master to the Workers (and back) requires
the sharing of some variables (underlined in the pseudocode shown in the following),
a semaphore, and the primary buffer between the Master and each Worker. In

55

2 – Empowering the Internet: SDN and NFV

particular, in this section we assume the presence of the Master and a single Worker,
while its extension to several Workers is trivial.

Algorithm 1 provides the overall behavior of the Master and shows how it cycli-
cally repeats the following three main operations: (i) in lines 14-21 it produces new
data (line 19), which corresponds to the reception of tokens from the network inter-
face card (NIC) in our case, and immediately provides them to the Worker through
the primary buffer (line 20); (ii) it reads the tokens already processed by the Worker
from the primary buffer (line 22), and finally (iii) it wakes up the Worker if there
are data waiting for service for a long time in order to avoid starvation (line 23).
From lines 14-21, it is evident that the Master produces several tokens consecutively,
in order to better exploit cache locality. Furthermore, if the buffer is full (line 15),
it stops data production and starts removing the tokens already processed by the
Worker from the buffer.

Algorithm 1 Executing the Master
1: Procedure master.do()
2:
3: {Initialize shared variables}
4: M.prodIndex ← 0
5: W.prodIndex ← 0
6: workerStatus ← WAIT_FOR_SIGNAL
7:
8: {Initialize private variables of the Master}
9: M.consIndex ← 0

10: timeStamp ← 0
11:
12: {Execute the algorithm}
13: while true do
14: for i = 0 to (i < N or timeout()) do
15: if M.prodIndex == (M.consIndex−1) then
16: {The buffer is full}
17: break
18: end if
19: data ← master.produceData()
20: master.writeDataIntoBuffer(data)
21: end for
22: master.readDataFromBuffer()
23: master.checkForOldData()
24: end while

Algorithm 2 details the mechanism implemented in the Master to send data
to the Worker. As shown by line 8, a token is inserted into the slot pointed by
the shared index M.prodIndex as soon as it is produced; however, the Worker is

56

2.1 – New architectures for SDN

awakened only if at least a given number of tokens (i.e., MASTER_PKT_THRESHOLD)
are waiting for service in the primary buffer (lines 10-13). Thanks to this threshold,
we avoid to wake up the Worker for each single token that needs to be processed,
hence improving performance because (i) it reduces the number of context switches
and (ii) it increases cache locality, for both data and code. Since a token is inserted
into the buffer as soon as it is produced regardless of the fact that the Worker is
running or not, and since the Worker will suspend itself only when the buffer is
empty (as detailed in Algorithm 5), the Worker is able to process a huge amount of
data consecutively, thus improving system performance.

Algorithm 2 The Master writing data into the primary buffer
1: Procedure master.writeDataIntoBuffer(Data d)
2:
3: if M.prodIndex == M.consIndex then
4: {The buffer is empty}
5: timeStamp ← now()
6: end if
7:
8: buffer.write(M.prodIndex,d)
9: M.prodIndex++

10: if buffer.size() > MASTER_PKT_THRESHOLD and
(workerStatus /= SIGNALED) then

11: workerStatus ← SIGNALED
12: wakeUpWorker()
13: end if

Our algorithm avoids the starvation of tokens sent to a Worker, especially when
the system is in underload conditions. This is done by means of a timeout event,
which wakes up the worker even if the abovementioned threshold is not reached yet.
In particular, the Master acquires and stores the current time whenever it inserts a
new token and the buffer is empty (lines 3-6 of Algorithm 2). This way, the Master
knows the age of the oldest token and it is able to possibly wake up the Worker also
depending on the value of a given time threshold, as shown in Algorithm 3.

Algorithm 3 The Master waking up the Worker due to a timeout
1: Procedure master.checkForOldData()
2:
3: if buffer.size() > 0 and (workerStatus /= SIGNALED) and

((now() − timeStamp) > TS_THRESHOLD) then
4: workerStatus ← SIGNALED
5: wakeUpWorker()
6: end if

57

2 – Empowering the Internet: SDN and NFV

The functions described in Algorithm 2 and Algorithm 3 need to know whether
the Worker is already running or not in order to avoid useless Worker awakenings.
This information is carried by the shared variable workerStatus, which is set to

M.prodIndex

W.prodIndex W.consIndex

M.consIndex

M.prodIndex

W.prodIndex W.consIndex

M.consIndex

M.prodIndex

W.prodIndex W.consIndex

M.consIndex

W.consIndex

M.consIndex M.prodIndex

W.prodIndex

MASTER_PKT_THRESHOLD

WORKER_PKT_THRESHOLD

Token to be handled by
the Worker

Token already processed
by the Worker

a)

b)

c)

d)

Token to be removed by
the Master

Figure 2.3: Run-time behavior and indexes of the algorithm.

SIGNALED by the Master just before waking up the Worker (line 11 of Algorithm 2
and line 4 of Algorithm 3), and changed to WAIT_FOR_SIGNAL by the Worker just
before suspending itself (line 22 of Algorithm 5). This way, the Master can test this
shared variable to have an indication about the Worker status, and then wake it up
only when necessary.

Algorithm 4 shows how the Master removes the data that have already been

58

2.1 – New architectures for SDN

processed by the Worker. In particular, it consumes all the tokens until the index
M.consIndex does not reach the index W.prodIndex, incremented by the Worker
each time it has handled a batch of tokens, as detailed in Algorithm 5. In this way,
also the Master reads several consecutive data from the primary buffer in order to
better exploit cache locality.

Algorithm 4 The Master reading data from the primary buffer
1: Procedure master.readDataFromBuffer()
2:
3: if buffer.size() then
4: if M.consIndex /= W.prodIndex then
5: timeStamp ← now()
6: while M.consIndex /= W.prodIndex do
7: if not buffer.dropped(M.consIndex) then
8: master.consumeData(buffer.read(M.consIndex))
9: end if

10: M.consIndex++
11: end while
12: end if
13: end if

Notice that Algorithm 4 also considers those tokens provided by the Master to
the Worker, and dropped by the Worker itself. In case of dropped data, the Master
receives back an empty slot, identified through the flag dropped. The content of a
slot is only consumed if this flag is zero, otherwise the Master just increments the
M.consIndex and moves on to the next slot of the buffer, as shown in lines 7-10.
This prevents the Master from reading a slot with a meaningless content.

Algorithm 5 details the operations of the Worker. As evident from lines 12-23,
whenever a Worker wakes up, it processes all the tokens available in the primary
buffer (i.e., all the slots of the buffer with indexes less than M.prodIndex). Only at
this point (line 24), as well as after it has processed a given amount of data (lines
13-16), the Worker updates the shared index W.prodIndex, so that the Master can
consume all the tokens already processed by the Worker itself. This way, the Master
will be notified for data availability only when a given amount of tokens are ready
to be consumed, with a positive impact on performance. It is worth noting that
this batching mechanism is different from the one implemented when the Master
sends data to the Worker. In fact, in that case, the Worker is woken up when the
amount of data into the buffer is higher than a threshold, while the M.prodIndex,
used by the Worker to understand when it has to suspend itself, is incremented
each time a new data is inserted. Here, instead, the W.prodIndex (i.e., the index
used by the Master to know when the consuming of tokens must be stopped) is not
updated each time the Worker processes a data. As a consequence, it is possible

59

2 – Empowering the Internet: SDN and NFV

that some tokens have already been processed by the Worker, but it has still to
update the W.prodIndex and then the Master cannot consume them in the current
execution of Algorithm 4. This results in a slightly higher latency for these tokens,
but in better performance for the system thanks to this batching processing enabled
into the Master. As a final remark, lines 18-20 show that the Worker can drop the
token under processing by setting the dropped flag in the current slot of the primary
buffer.

Algorithm 5 Executing the Worker
1: Procedure worker.do()
2:
3: {Initialize private variables of the Worker}
4: W.consIndex ← 0
5: pkts_processed ← 0
6:
7: {Execute the algorithm}
8: while true do
9: waitForWakeUp()

10: W.consIndex ← W.prodIndex
11: pkts_processed ← 0
12: while W.consIndex /= M.prodIndex do
13: if pkts_processed == WORKER_PKT_THRESHOLD then
14: pkts_processed ← 0
15: W.prodIndex ← W.consIndex
16: end if
17: toBeDropped ← buffer.process(W.consIndex)
18: if toBeDropped then
19: buffer.setDropped(W.consIndex)
20: end if
21: W.consIndex++
22: pkts_processed++
23: end while
24: W.prodIndex ← W.consIndex
25: workerStatus ← WAIT_FOR_SIGNAL
26: end while

Figure 2.3 depicts the status of the primary buffer1 and the indexes used by
the algorithm in four different time instants. In Figure 2.3(a) the buffer is empty,
and then all the indexes point to the same position. Instead, in Figure 2.3(b) the

1For the sake of clarity, the figure represents the shared buffer as an array instead of a circular
FIFO queue.

60

2.1 – New architectures for SDN

Master has already inserted some data into the buffer, but the Worker is still waiting
since the MASTER_PKT_THRESHOLD has not been reached yet. Figure 2.3(c) depicts
the situation in which the Master has woken up the Worker, which has already
processed two items. Notice that, since the WORKER_PKT_THRESHOLD has not been
reached yet, the W.prodIndex still points to the oldest token in the buffer. Instead,
in Figure 2.3(d) this threshold is passed and the Master has already consumed some
data.

Extended algorithm: handling Worker-generated data

Our architecture handles also Workers that may need to generate new data as a
consequence of the token just received from the Master but, as evident, this cannot
be done with the primary buffer alone as Workers cannot inject new data into the
primary buffer. In fact, the Worker can just modify (potentially completely) pass-
through tokens, i.e., data received from the Master that must be sent back to the
Master itself or, at most, it can drop these tokens.

Since network applications forward most of the packets without performing any
manipulation on it, we decided to keep the primary buffer as simple as possible for
the sake of speed, while adding a new lock-free ring buffer, i.e., the auxiliary buffer,
to handle the case in which new data have to be provided to the Master. This
buffer, in which the Worker acts as the producer while the Master plays the role of
the consumer, is managed through two indexes; moreover, it requires a further flag
in each slot of the primary buffer, which indicates whether the next token should be
read from the primary or the auxiliary buffer.

Algorithm 6 The Worker writing new data into the auxiliary buffer
1: Procedure worker.writeDataIntoAuxBuffer(Data[] newData, Index W.consIndex)
2:
3: while data ← newData.next() do
4: if auxProdIndex == (auxConsIndex-1) then
5: {The auxiliary buffer is full}
6: break
7: end if
8: auxBuffer.write(auxProdIndex,data)
9: auxBuffer.setNext(auxProdIndex)

10: auxProdIndex++
11: end while
12: auxBuffer.resetNext(auxProdIndex-1)
13: buffer.setAux(W.consIndex)

Algorithm 6 details how the Worker sends new data to the Master, as a conse-
quence of the processing of the token at position W.consIndex in the primary buffer.

61

2 – Empowering the Internet: SDN and NFV

As shown in lines 3-11, several data can be generated for a single token received from
the Master, which are all linked to the same slot of the primary buffer. A first flag,
called aux, is set in the slot of the primary buffer to signal that the next slot to read
is the one on top of the auxiliary buffer (line 13). Instead, the next flag set in a
slot of the auxiliary buffer tells that the next packet has still to be read from the
auxiliary buffer, instead of returning to the next slot of the primary buffer.

The reading procedure is described in Algorithm 7. When the Master encounters
a slot with the aux flag set in the primary buffer, it processes a number of tokens in
the auxiliary buffer, starting from the slot pointed by auxConsIndex until the next
flag is set. Moreover, according to lines 4-7 of Algorithm 6, if the auxBuffer is full,
new tokens that the Worker may want to send to the Master are dropped.

It is worth noting that the auxConsIndex is only moved by the Master and, at
the beginning of Algorithm 7, it points to the first data to be read in the auxiliary
buffer while, at the end of the pseudocode, it points to the first slot will be read the
next time the Master will process data in the auxiliary buffer.

Algorithm 7 The Master reading data from the auxiliary buffer
1: Procedure master.readDataFromAuxBuffer()
2:
3: while true do
4: master.consumeData(auxBuffer.read(auxConsIndex))
5: if not auxBuffer.next(auxConsIndex) then
6: auxConsIndex++
7: break
8: end if
9: auxConsIndex++

10: end while

Figure 2.4 depicts the primary buffer with some slots linked to the auxiliary
buffer. In particular, the slot pointed by M.consIndex is associated with two data
of the auxiliary buffer, i.e., the one pointed by auxConsIndex and the following one,
which has the next flag reset to indicate that the next slot is not linked with the
current slot in the primary buffer. Instead, the next token in the primary buffer is
not associated with the secondary buffer (the aux flag is reset), while the third slot
contains data dropped by the Worker; despite this, the slot is linked to three data
in the auxiliary buffer. In other words, the configuration in which aux == 1 and
dropped == 1 is valid and it enables to completely replace a packet with a new one.

Implementation

Since the achievable performance depends not only on design but also on implemen-
tation issues, this section presents some implementation choices that can improve

62

2.1 – New architectures for SDN

M.consIndex

0

1

0

0

1

1

slot
W.prodIndex

Primary
buffer

1 0 1 1 0

auxConsIndex auxProdIndex

Auxiliary
buffer

Dropped flag

Aux flag Next flag

Data to be handled by
the Master

Figure 2.4: Binding primary buffer - auxiliary buffer.

performance and scalability and that have been adopted in our ptototype imple-
mentation.

Private copies of shared variables. As in many algorithms derived from the
producer-consumer problem, also in our case we need to keep two processes in sync
by means of a pair of shared variables, one written only by the first process, the other
one written only by the second process. Although in this case concurrency issues
are limited (no contention can occur because the two processes never try to write
the same variable at the same time), the actual implementation on real hardware
can introduce additional issues, as shown in MCRingBuffer [45]. In fact, when a
first CPU core modifies the content of a variable that is shared with a different
CPU core, the entire cache line (64 bytes long on the modern Intel architectures)
of the second core containing that variable is invalidated. If the second core needs
to read that variable, the hardware has to retrieve this value either from the shared
cache (e.g., the L3 in many recent Intel architectures) or from the main memory,
with a consequent performance penalty. In our algorithm, this problem occurs for
M.prodIndex, incremented by the Master whenever a new token is inserted into
the primary buffer and read by the Worker, and for W.prodIndex, incremented by
the Worker and read by the Master. However, our algorithm is robust enough to
operate correctly even if those variables are not perfectly aligned. As a consequence,
the Worker creates a private copy of M.prodIndex just after waking up, while the
Master copies in a private variable the content of W.prodIndex before reading data
from the shared buffer.

Shared variables on different cache lines. Because of the same problem
mentioned in the previous paragraph (a CPU core can invalidate an entire line of
cache in the other cores), our code implements a cache line separation mechanism

63

2 – Empowering the Internet: SDN and NFV

(similar to MCRingBuffer [45]), which consists in storing each shared variable (pos-
sibly extended with padding bytes) on a different cache line. This way, when the
Master changes, for instance, the value of prodIndex, the cache line containing
workerIndex is not invalidated in the private cache of the core where the Worker is
executed.

Alignment with cache lines. In case of a cache miss, the hardware introduces
a noticeable latency because of the necessity to transfer the data from the memory
to the cache, which happens in blocks of fixed size (the cache line). From that
moment, all the memory accesses within that block of addresses are very fast, as
data are served from the L1 cache. In order to minimize the number of cache misses
(and the associated performance penalty), our prototype was engineered to align the
most frequently accessed data so that they span across the minimum set of cache
lines. In particular, the starting memory address of the packet buffers and their slot
sizes are multiple of the cache line size; the same technique is used for minimizing
the time for accessing the most important data used in the prototype.

Use of huge memory pages. Huge pages are convenient when a large amount
of memory is needed because they decrease the pressure on the Translation Lookaside
Buffer (TLB) for two reasons. First, the load of virtual-to-real address translation
is split across two TLBs (one for huge pages and the other for normal memory),
preventing normal applications (based on normal pages) from interfering with the
packet exchange mechanism (which uses huge pages). Second, they reduce the num-
ber of entries in the TLB when a large amount of memory is needed. We use the
huge pages for the shared (primary and auxiliary) buffers; the drawback is the po-
tential increase of the total memory required by the algorithm because the minimum
size of each buffer increases from 4KB to 2MB.

Preallocated memory. Dynamic memory allocation should be avoided during
the actual packet processing, as this would heavily decrease the performance of the
whole system. In our case, all the buffers used by the packet exchange mechanisms
are allocated at the startup of each Worker, allowing the system to add/remove
workers at run-time while at the same time avoiding dynamic memory allocation.

Emulated timestamp. Getting the current time is usually rather expensive
on standard workstations as it requires the intervention of the operating system
and, often, an I/O operation involving the hardware clock. In our case we emulate
the timestamp, which is needed to wake up a Worker when packets are waiting for
service for too long time, by introducing the concept of current round, that is the
number of loops executed by the Master in Algorithm 1. As a consequence, our
implementation schedules a Worker for service when there are packets waiting for
more than N rounds; this number can be tuned at run-time based on the expected
load on the Master.

Batch processing. Batch processing is convenient because it keeps a high
degree of code locality, with a positive impact on cache misses. Our prototype

64

2.1 – New architectures for SDN

implements batch processing whenever possible, e.g., the Master reads all waiting
packets from a worker before serving the next, and Workers process all the packets
in their queue before suspending themselves; the drawback is the potential increase
of the latency in the data transfer.

Semaphores. A simple POSIX semaphore is used to wake up a Worker that
has data waiting to be processed (i.e., at least MASTER_PACKET_THRESHOLD packets
are queued, or some packets are waiting for long time and the timeout expires).
Although POSIX semaphores are implemented in kernel space, their impact is ac-
ceptable as they are rarely accessed by algorithm design. Instead, no explicit signal
is used in the other direction: the shared variables M.consIndex and W.prodIndex
are used by the Master to detect the presence of packets than needs to be read from
the buffer.

Threading model. Context switching should be avoided whenever possible
because of its cost, particularly when this event happens frequently (such as in
packet processing applications, which are usually rather simple and often handle a
few packets in a row). For this reason, the Master is a single thread process, cycling
on a busy-waiting loop and consuming an entire CPU core, while Workers (which
are single-thread processes as well) work in interrupt mode and share the remaining
CPU cores. While the Master can be simply parallelized over multiple cores as long
as the function chains are not interleaved2, by design our implementation keeps it
locked to a single core as we would like to allocate the most part of the processing
power to the (huge number of) Workers, which will host the network functions that
are in charge of the actual (useful, from the perspective of the end users) processing.

2.1.8 Formal verification
Assessing the correctness of an algorithm is often not straightforward, hence we built
an abstract model of the Master with a single Worker in order to formally check
some fundamental properties. We do not consider a plurality of Workers because the
interaction between the Master and a Worker is independent of the interaction with
any other Worker, hence this approach is sufficient to demonstrate the correctness of
the whole system. In particular, we only focus on the primary buffer as its operation
is one of the main contributions of our work and hence it needs a proof of correctness.
The auxiliary buffer, instead, is not explicitly verified as it is managed as a standard
producer/consumer system, which has been already studied and validated in the
existing literature.

The model of our algorithm has been developed in Promela [33], a well known

2Interleaved chains may introduce additional complexity because multiple masters may collide
when feeding a single Worker; this would require an extension of our algorithm (no longer lock-free)
that is left to a future work.

65

2 – Empowering the Internet: SDN and NFV

modeling language that, in conjunction with the SPIN [34] model checker generator,
can be used to formally verify distributed and concurrent software against certain
desired properties. The main purpose of the model checking technique is to explore
all the possible states of a system and verify whether the specified properties hold
in each execution path. Whenever the model checker finds an execution path that
leads to a property violation, it provides the full counter-example with all the steps
needed to reach the undesired behavior.

When creating an accurate model of the system, it is very important to keep
the nature of the problem tractable, as model checking verification tools tend to
exploit a massive amount of memory (state-space explosion problem). Therefore,
the actual model of the data exchange mechanism has been built by omitting some
implementation details that are not relevant for the analyzed properties in order to
reduce the overall number of states. This is possible because many system states (or
runs) are mapped to the same abstract state (or run). A more detailed description
of our model will be provided in Section 2.1.8.

Properties specification

Given the structure of our algorithm, we can identify six properties that must be
always satisfied. The first two properties refer to conditions on some key variables
that must be verified to guarantee that no slots will be erroneously overwritten,
formally defining regions of the buffer that are “owned” by one of the two modules
(the Master and the Worker) at a given time.

Property 1. W.prodIndex must never exceed M.prodIndex.

M.prodIndex indicates the first empty position in the primary buffer that must
be fulfilled by the Master. Hence, it represents a boundary that the Worker must
never pass.

Property 2. M.consIndex must never exceed W.prodIndex.

M.consIndex represents the position of the token being processed by the Worker,
while W.prodIndex identifies the position of the last “processable” token (for the
Worker).

We also consider two additional safety properties, which must be satisfied by the
system. Specifically we require that:

Property 3. The number of pending tokens delivered by the Master to the Worker
and not yet processed by the Worker itself is, at any time, a non negative integer not
exceeding the maximum number of elements that the buffer can store, namely (N -
1), where N is the total buffer size:

0 <= tokens_master_to_worker <= (N − 1)

66

2.1 – New architectures for SDN

Property 4. The number of pending tokens delivered by the Worker to the Master
and not yet processed by the Master itself is, at any time, a non negative integer not
exceeding the maximum number of elements that the buffer can store, namely (N -
1), where N is the total buffer size:

0 <= tokens_worker_to_master <= (N − 1)

Our circular buffer implementation always leaves at least one empty position, so
as to distinguish the cases where the buffer is completely full or completely empty.
This is why the actual buffer capacity is N-1.

Finally, we consider two more properties related to the overall system behavior.

Property 5. Deadlock absence.

This property is automatically checked by SPIN, and in our case it means that
neither the Master nor the Worker ever enter an infinite waiting situation.

Property 6. Livelock absence.

This last property ensures that some useful work is eventually done by the Mas-
ter. Here the notion of “useful work” is intended as the Master capability to pro-
duce, sooner or later, new tokens for the Worker, e.g., by inserting new data into the
buffer. This is an important property verified under the assumption that a fairness
constraint exists during the verification phase, i.e., we assume the process scheduler
gives the possibility to both the Master and the Worker to execute, sooner or later,
some instructions. This is a reasonable hypothesis since most modern execution
environments implement scheduling algorithms to avoid process starvation. Please
refer to the full model code for further specifications details (references below).

Model details

The primary buffer

Our abstract model does not require the modeling of realistic data into the buffer
but only the buffer status; hence, only indexes are modeled. Another parameter
that is crucial for the model is the buffer size, meaning the actual number of tokens
that can be stored into the buffer.

The semaphore and the functions implementation

The model of the semaphore consists in an asynchronous channel shared between the
master and the worker. Basically, the blocking wait operation corresponds to reading
a packet from the channel, while the signaling operation is modeled by writing a
packet into the channel. This is a very common pattern, useful to implement various
kinds of communication/synchronization primitives between two or more entities.

67

2 – Empowering the Internet: SDN and NFV

The functions presented in the pseudocode in Section 2.1.3 are modeled as
Promela processes since the language does not provide an explicit way to repre-
sent functions and their returned value. We exploit the following pattern: the caller
sends a token through a synchronous channel shared with the callee in order to pass
the control to the invoked process. Then, it performs a receive operation on the
same channel in order to be awakened from the other end-point when the processing
has terminated. Notice that the channel can also be used to pass arguments to and
from the called process/function.

The Master and the Worker

The two main entities, the Master and the Worker, are modeled as two independent,
concurrently running processes. They share the M.prodIndex and W.prodIndex
variables, and the channel/semaphore (as stated in our pseudo-code in Section 2.1.7).
We perform the algorithm verification with a single Worker because a multi-worker
scenario does not introduce any possible error, given the independence of the al-
gorithm execution between the Master and each Worker. In other words, for each
Worker, the Master employs an independent instance of our algorithm. In order to
decrease the amount of states to be verified by the model checker, and hence reduce
the overall verification time to a reasonable value, we use the following abstractions:
(i) the if-statement of Algorithm 3 excludes the check on the timestamp value as the
whole model does not contain any explicit information about the elapsing time; (ii)
the timeout() function that is present in the loop guard (Algorithm 1) is replaced
by a non-deterministic choice (i.e., rather than modeling a realistic mechanism to
implement a timeout event, we instructed the model checker to extract a random
value to decide if a timeout has occurred or not). Both these abstractions provide
a significant performance enhancement without any loss in terms of exhaustiveness
of the verification.

Parameters VERIF.
RESULTBUFFER

SIZE
MASTER

THRSHLD
WORKER
THRSHLD

Property 1 [1,8] [1,8] [1,8] SUCCESS
Property 2 [1,8] [1,8] [1,8] SUCCESS
Property 3 [1,8] [1,8] [1,8] SUCCESS
Property 4 [1,8] [1,8] [1,8] SUCCESS
Property 5 [1,8] [1,8] [1,8] SUCCESS
Property 6 [2,8] [1,8] [1,8] SUCCESS

Table 2.1: Algorithm verification

68

2.1 – New architectures for SDN

Verification results

The model explained above can be exhaustively verified for different values of the
main model parameters, as shown in Table 2.1. For each property, the table specifies
the considered range of values for the buffer size, the MASTER_PKT_THRESHOLD and
the WORKER_PKT_THRESHOLD. For the sake of scalability of the verification process
and without losing in generality, we used rather small values compared to a realistic
buffer, which could contain millions of tokens. In fact, possible structural bugs
would be detected also in a small size system deployment.

Some inconsistent parameters settings in the considered ranges, such as a thresh-
old greater than the buffer size, are skipped in our verification work. Notice also
that, with a buffer size equal to one token, Property 6 is not considered as the buffer
cannot contain any token and therefore the master is not able to perform any useful
work, according to our definition. Properties 1-5 are verified even without forcing
any fairness criterion between the execution of the Worker and the Master, since
their satisfaction does not necessarily depend on a particular sequence of processes
scheduling.

In conclusion, the results of our verification process completely demonstrate the
correctness of the algorithm from different points of view (absence of indexes mis-
behavior or accidental packets overwriting, and absence of deadlocks and livelocks).
The complete Promela code is publicly available [85] and is reported in the following:

Listing 2.1: Algorithm model
/∗ Shared B u f f e r A l g o r i t h m − Code f o r s a f e t y c h e c k s i s d e a c t i v a t e d (commented) −> Only l i v e n e s s

p r o p e r t i e s ∗/

#define WAIT_FOR_SIGNAL 0 // t h e worker i s s l e e p i n g
#define SIGNALED 1 // t h e worker i s running
#define N 9 // b u f f e r s i z e
#define MASTER_PKT_THRESHOLD 9
#define WORKER_PKT_THRESHOLD 9
#define TIMEOUT 1
#define CONTINUE 0
#define i s F u l l () (b u f f e r _ s i z e == N−1)
#define cond1 (s c h e d u l i n g == 0)
#define cond2 (s c h e d u l i n g == 1)
#define cond3 (o l d _ f l a g == 0)
#define cond4 (o l d _ f l a g == 1)
#define cond5 (master_progress == 0)
#define cond6 (master_progress == 1)

/∗ Boolean v a r i a b l e s r e p r e s e n t i n g t h e s i g n s o f t h e i n e q u a l i t i e s m o d e l l i n g t h e p r o p e r t i e s we want
t o c h e c k ∗/

// b i t work_index_M_prod_index_inequal i ty ; // W_prod_index < M_prod_index (i n t h e i n i t i a l
s t a t e)

// b i t M_cons_index_work_index_inequal i ty ; // consumer_index < W_prod_index (i n t h e i n i t i a l
s t a t e)

/∗ P a c k e t s c o u n t e r s (used t o c h e c k p r o p e r t i e s) ∗/
// b y t e from_master_to_worker_pkt_counter ; // c o u n t e r f o r p a c k e t s read from t h e master b u t

not y e t p r o c e s s e d by t h e worker
// b y t e from_worker_to_master_pkt_counter ; // c o u n t e r f o r p a c k e t s p r o c e s s e d by t h e worker

b u t not y e t t a k e n by t h e master

/∗ V a r i a b l e s s h a r e d between t h e master and t h e worker ∗/
byte M_prod_index ; // assuming b u f f e r s i z e i s l e s s than 255
byte W_prod_index ; // . . . idem
b i t worker_status ; // o n l y two p o s s i b l e s t a t e s f o r t h e worker : SIGNALED |

WAIT_FOR_SIGNAL
byte b u f f e r _ s i z e ; // a c t u a l b u f f e r _ s i z e
b i t s c h e d u l i n g = 0 ;
b i t master_progress = 0 ;

69

2 – Empowering the Internet: SDN and NFV

b i t o l d _ f l a g = 0 ;

l t l p r o g r e s s _ p r o p e r t y
{

(
always
(

// // PREMISE : some c o n s t r a i n t s t h a t we want t o impose on non
d e t e r m i n i s t i c c h o i c e s

(
always ((s c h e d u l i n g == 0) i m p l i e s (e v e n t u a l l y (s c h e d u l i n g == 1))

) // I f I s c h e d u l e t h e t imeout , I w i l l a l s o
w r i t e a p a c k e t s o o n e r or l a t e r

)
&&
(

always ((o l d _ f l a g == 0) i m p l i e s (e v e n t u a l l y (o l d _ f l a g == 1))
) // I f p a c k e t s are not o ld , t h e y w i l l become so
s o o n e r or l a t e r

)
// //

)
)

i m p l i e s
(

// // CONSEQUENCE: We want t o v e r i f y t h e master i s p e r f o r m i n g some p r o g r e s s e s
always ((master_progress == 0) i m p l i e s (e v e n t u a l l y (master_progress == 1))

)
// //

)

}

/∗ Channel used t o implement t h e s y n c h r o n i z a t i o n between master and worker ∗/
chan sem = [2] o f { b i t } ;

/∗ Channels used t o r e a l i z e t h e communication between t h e master and v a r i o u s f u n c t i o n s ∗/
chan writeDataIntoBuffer_ch = [0] o f { b i t } ;
chan checkForOldData_ch = [0] o f { b i t } ;
chan readDataFromBuffer_ch = [0] o f { byte } ; // The c h a n n e l i s used t o p a s s (and t o

r e t u r n) M_cons_index

a c t i v e proctype master ()
{

/∗ Shared v a r i a b l e s i n i t i a l i z a t i o n ∗/
M_prod_index = 0 ;
W_prod_index = 0 ;
worker_status = WAIT_FOR_SIGNAL;
b u f f e r _ s i z e = 0 ;

/∗ P r i v a t e v a r i a b l e s ∗/
byte i ;
byte M_cons_index ;
byte temp_index ;
bool f _ r e s u l t ;
byte temp ;
M_cons_index = 0 ;

/∗
d_step {

from_master_to_worker_pkt_counter = 0 ;
from_worker_to_master_pkt_counter = 0 ;

work_index_M_prod_index_inequal i ty = 0 ;
M_cons_index_work_index_inequal i ty = 0 ;

}
∗/

main_loop :
i = 0 ;
inner_loop :

master_progress = 0 ;
i f
: : (i < N) ;

/∗ I s Timeout e x p i r e d ? ∗/
i f
: : (1 == 1) ;

s c h e d u l i n g = 1 ; // No , so c o n t i n u e t r y i n g t o produce a
p a c k e t

: : (1 == 1) ;
s c h e d u l i n g = 0 ;
goto f i n e _ f o r ; // Yes , so e x i t from t h e l o o p

f i ;
atomic

70

2.1 – New architectures for SDN

{
i f
: : (M_cons_index == 0) ;

temp_index = N−1;
: : e l s e

temp_index = M_cons_index −1;
f i ;
temp = M_prod_index ;

}
i f
: : (temp == temp_index) ; // B u f f e r F u l l

goto f i n e _ f o r ;
: : e l s e

s k i p ;
f i ;
/∗ Write d a t a i n t o t h e b u f f e r ∗/
writeDataIntoBuffer_ch ! 1 ;
writeDataIntoBuffer_ch ? f _ r e s u l t ;

: : e l s e
goto f i n e _ f o r ;

f i ;
i = i + 1 ;

goto inner_loop ;
f i n e _ f o r :

/∗ Read d a t a from t h e b u f f e r ∗/
readDataFromBuffer_ch ! M_cons_index ;
readDataFromBuffer_ch ?M_cons_index ;

/∗ Check f o r o l d Data ∗/
checkForOldData_ch ! 1 ;
checkForOldData_ch ?_;

goto main_loop ;
}

a c t i v e proctype worker ()
{

/∗ P r i v a t e v a r i a b l e s ∗/
int pktCnt = 0 ;
byte W_cons_index = 0 ;
byte temp ;

worker_loop :
sem?_;
W_cons_index = W_prod_index ;
pktCnt = 0 ;
worker_inner_loop :

temp = M_prod_index ;
i f
: : (W_cons_index != temp) ;

i f
: : (pktCnt == WORKER_PKT_THRESHOLD) ;

pktCnt = 0 ;
// Here we must v e r i f y i f t h e W_prod_index has r e v e r t e d

t o t h e b e g i n n i n g
atomic {

/∗
i f
: : (W_prod_index > W_cons_index) ;
d_step {

M_cons_index_work_index_inequal i ty = 1−
M_cons_index_work_index_inequal i ty ;

work_index_M_prod_index_inequal i ty = 1−
work_index_M_prod_index_inequal i ty ;

}
: : e l s e s k i p ;
f i ;
∗/
W_prod_index = W_cons_index ;
/∗ Check a s s e r t i o n s ∗/
/∗
i f
: : (work_index_M_prod_index_inequal i ty == 0) ;

a s s e r t (W_prod_index <= M_prod_index) ;
: : (work_index_M_prod_index_inequal i ty == 1) ;

a s s e r t (W_prod_index >= M_prod_index) ;
f i ;
∗/
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

}
: : e l s e s k i p ;
f i ;
// p r o c e s s p a c k e t : NULL p r o c e s s i n g i n t h i s c a s e
// s k i p ;

71

2 – Empowering the Internet: SDN and NFV

// p r o g r e s s 2 : s k i p ;
d_step {

/∗
∗ Updat ing W_cons_index :
∗ Atomic e x e c u t i o n (i n c r e m e n t + modulo) i s OK s i n c e

W_cons_index i s a p r i v a t e
∗ v a r i a b l e o f t h e worker
∗/

W_cons_index = (W_cons_index+1) % N;
/∗
from_master_to_worker_pkt_counter −−;
from_worker_to_master_pkt_counter++;
a s s e r t (from_master_to_worker_pkt_counter >= 0) ;
a s s e r t (from_master_to_worker_pkt_counter < N) ;
∗/

}
pktCnt++;

: : e l s e goto f ine_worker_inner_loop ;
f i ;

goto worker_inner_loop ;

f ine_worker_inner_loop :
// Here we must v e r i f y i f t h e W_prod_index has r e v e r t e d t o t h e b e g i n n i n g
atomic {

/∗
i f
: : (W_prod_index > W_cons_index) ;

M_cons_index_work_index_inequal i ty = 1−
M_cons_index_work_index_inequal i ty ;

work_index_M_prod_index_inequal i ty = 1−
work_index_M_prod_index_inequal i ty ;

: : e l s e
g o t o up d at e_ in d ex ;

f i ;
u pd at e_ i nd ex :
∗/
W_prod_index = W_cons_index ;

}
worker_status = WAIT_FOR_SIGNAL;

goto worker_loop ;
}

a c t i v e proctype w r i t e D a t a I n t o B u f f e r ()
{

byte temp ;
byte r e s u l t ;
b i t s t a t u s ;

w r i t e D a t a I n t o B u f f e r _ l o o p :
writeDataIntoBuffer_ch ?_;
// Write t h e p a c k e t i n t o t h e b u f f e r
/∗ A v a l i d c o n d i t i o n f o r l i v e l o c k a b s e n c e c h e c k i s :

∗ more p a c k e t s w i l l a l w a y s be w r i t t e n i n t h e b u f f e r
∗/
d_step{

b u f f e r _ s i z e ++;
master_progress = 1 ; // We have w r i t t e n a p a c k e t i n t o t h e b u f f e r so

we have done u s e f u l work
/∗
from_master_to_worker_pkt_counter++;
a s s e r t (from_master_to_worker_pkt_counter >= 0) ;
a s s e r t (from_master_to_worker_pkt_counter < N) ;
∗/

}
/∗ Updat ing M_prod_index ∗/
temp = M_prod_index ;
temp++;
i f
: : (temp == N) ;

atomic {
M_prod_index = 0 ;
// work_index_M_prod_index_inequal i ty = 1−

work_index_M_prod_index_inequal i ty ;
/∗ Check a s s e r t i o n s ∗/
/∗
i f
: : (work_index_M_prod_index_inequal i ty == 0) ; a s s e r t (

W_prod_index <= M_prod_index) ;
: : (work_index_M_prod_index_inequal i ty == 1) ; a s s e r t (

W_prod_index >= M_prod_index) ;
f i ;
∗/
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

}

72

2.1 – New architectures for SDN

: : e l s e
atomic {

M_prod_index = temp ;
/∗ Check a s s e r t i o n s ∗/
/∗
i f
: : (work_index_M_prod_index_inequal i ty == 0) ; a s s e r t (

W_prod_index <= M_prod_index) ;
: : (work_index_M_prod_index_inequal i ty == 1) ; a s s e r t (

W_prod_index >= M_prod_index) ;
f i ;
∗/
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

}
f i ;
/∗ Check w h e t h e r t o wake up t h e worker or not ∗/
i f
: : (b u f f e r _ s i z e > MASTER_PKT_THRESHOLD) ;

s t a t u s = worker_status ;
i f
: : (s t a t u s != SIGNALED) ;

worker_status = SIGNALED;
sem ! 1 ;

: : e l s e
s k i p ;

f i ;
: : e l s e

s k i p ;
f i ;
r e s u l t = 1 ;

f i n e _ w r i t e D a t a I n t o B u f f e r :
writeDataIntoBuffer_ch ! r e s u l t ;

goto w r i t e D a t a I n t o B u f f e r _ l o o p ;
}

a c t i v e proctype checkForOldData ()
{

b i t s t a t u s ;

checkForOldData_loop :
checkForOldData_ch ?_;
/∗ Non−d e t e r m i n i s t i c c h o i c e : are p a c k e t s t o o o l d ? ∗/
i f
: : (b u f f e r _ s i z e > 0) ;

s t a t u s = worker_status ;
i f
: : (s t a t u s != SIGNALED) ;

i f // Are p a c k e t s t o o o l d ?
: : (1 == 1) ; // YES

o l d _ f l a g = 1 ;
worker_status = SIGNALED;
sem ! 1 ;

: : (1 == 1) ; // NO
o l d _ f l a g = 0 ;

f i ;
: : e l s e s k i p ;
f i ;

: : e l s e s k i p ;
f i ;
checkForOldData_ch ! 1 ;

goto checkForOldData_loop ;
}

/∗
∗ The f u n c t i o n t a k e s M_cons_index as i n p u t argument (t h r o u g h t h e c h a n n e l)
∗ and r e t u r n s M_cons_index
∗/

a c t i v e proctype readDataFromBuffer ()
{

byte M_cons_index ;
byte temp ;

readDataFromBuffer_loop :
readDataFromBuffer_ch ?M_cons_index ;
readDataFromBuffer_while :

/∗ Read d a t a from b u f f e r ∗/
temp = W_prod_index ;
i f
: : (M_cons_index != temp) ;

// Consume t h e p a c k e t by d e c r e m e n t i n g b u f f e r _ s i z e (v a r i a b l e used
o n l y by t h e master)

b u f f e r _ s i z e −−;
atomic {

/∗ M_cons_index i s a master ’ s p r i v a t e v a r i a b l e ∗/

73

2 – Empowering the Internet: SDN and NFV

M_cons_index++;
// from_worker_to_master_pkt_counter −−;
i f
: : (M_cons_index == N) ;

M_cons_index = 0 ;
// M_cons_index_work_index_inequal i ty = 1−

M_cons_index_work_index_inequal i ty ;
: : e l s e

goto readDataFromBuffer_while ;
f i ;
/∗
a s s e r t (from_worker_to_master_pkt_counter >= 0) ;
a s s e r t (from_worker_to_master_pkt_counter < N) ;
∗/
/∗ Check a s s e r t i o n ∗/
/∗
i f
: : (M_cons_index_work_index_inequal i ty == 0) ; a s s e r t (

M_cons_index <= W_prod_index) ;
: : (M_cons_index_work_index_inequal i ty == 1) ; a s s e r t (

M_cons_index >= W_prod_index) ;
f i ;
∗/
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

}
: : e l s e goto f ine_reading_data ;
f i ;

goto readDataFromBuffer_while ;
f ine_reading_data :
readDataFromBuffer_ch ! M_cons_index ;

goto readDataFromBuffer_loop ;
}

2.1.9 Experimental results
In order to evaluate performance and scalability (using the implementation choices
described in the previous section), we carried out several tests on our prototype
implementation running on a workstation equipped with an Intel i7-3770 @ 3.40
GHz (four CPU cores plus hyperthreading), 16 GB RAM, 16x PCIe bus, a couple
of Silicom dual port 10 Gigabit Ethernet NICs based on the Intel x540 chipset (8x
PCIe), and Ubuntu 12.10 OS, kernel 3.5.0-17-generic, 64 bits. An entire CPU core
is dedicated to the Master; instead, Workers have been allocated on the remaining
CPU cores in a way that maximizes the throughput of the system. All the following
graphs are obtained by averaging results of 100s tests repeated 10 times.

The data exchanged among the Master and the Workers consists of synthetic
network packets of three sizes, 64 bytes to stress the forwarding capabilities of the
chain, 700 bytes that matches the average packet size in current networks, and 1514
bytes to stress the data transfer capabilities of the system. We present first a set
of experiments where packets exchanged between the Master and the Workers are
directly read/written from/to the memory, without involving the network; those
tests aim at validating the performance of the algorithm in isolation, without any
disturbance such as the cost introduced by the driver used to access to the NIC or
the overhead of the PCIe bus. Later, in the next sections, we will present some
results involving a real network, where the workstation under test is connected with
a second workstation acting as both traffic generator and receiver, with two 10Gbps
dedicated NICs. This setup allows to derive the precise latency experienced by
packets in our middlebox. In this case we use the PF_RING/DNA drivers [27] to

74

2.1 – New architectures for SDN

read/write packets from/to the NIC, which allows the Master to send/receive packets
without requiring the intervention of the operating system. In addition, data coming
from the network is read in polling mode in order to limit additional overheads due
to NIC interrupts, and in batches of several packets in order to maximize code
locality. Similar techniques are used also when sending data to the network after all
the processing took place.

Single chain - Throughput

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

1 2 4 6 8 10
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(a) Dummy Workers and a single packet in
memory.

 0

 10

 20

 30

 40

1 2 4 6 8 10
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(b) Real Workers and a single packet in memory.

 0

 10

 20

 30

 40

 50

1 2 4 6 8 10
 0

 10

 20

 30

 40

 50

 60

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(c) Dummy Workers and 1M packets in mem-
ory.

 0

 10

 20

 30

 40

1 2 4 6 8 10
 0

 10

 20

 30

 40

 50

 60

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(d) Real Workers and 1M packets in memory.

Figure 2.5: Throughput of a single function chain with the algorithm presented in
this section.

This section reports the performance of our algorithm in a scenario where all
packets traverse the same chain, which is statically defined. Tests are repeated with
chains of different lengths and the measured throughput is provided in graphs that
include (i) a bars view corresponding to the left Y axis that reports the throughput
in millions of packets per second and (ii) a point-based representation referring to
the right Y axis, that reports the throughput in Gigabits per second.

Figure 2.5 shows the throughput offered by the function chain in different con-
ditions. As expected, the overall throughput of the chain (i.e., the packets/bits that
exit from the chain) decreases with the number of Workers because of our choice to
reserve the most part of the CPU power to the Workers, hence limiting the Master
to a single CPU core.

75

2 – Empowering the Internet: SDN and NFV

Figure 2.5(a) shows the throughput that could be achieved in ideal conditions,
that is: (i) with dummy Workers, i.e., that do not touch the packet data, and (ii)
with the Master always reading the same input packet from memory and copying
it into the buffer of the first Worker of the chain, which reduces the overall number
of CPU cache misses experienced at the beginning of the chain. This provides an
ideal view of the system, where the penalties due to memory accesses are kept
to a minimum. Results reported in Figure 2.5(b) are instead gathered in a more
realistic scenario, i.e., with Workers that access to the packet content and calculate
a simple signature across the first 64 bytes of packets. This may represent a realistic
workload, as it emulates the fact that most network applications operate on the first
bytes (i.e., the headers) of the packet. This test shows that performance is reduced
compared to Figure 2.5(a) for two reasons: (i) because of the higher number of cache
misses generated by the cores assigned to the Workers and caused by the Workers
accessing to the packet content, and (ii) because of the additional processing time
spent by the Workers for completing their job.

Next tests consider a scenario where the input data for the chain is stored in a
buffer containing 1M packets, thus emulating a real middlebox that receives traffic
from the network. In particular, Figure 2.5(c) refers to a scenario with dummy
Workers such as in Figure 2.5(a) and shows how an apparently insignificant different
memory access pattern can dramatically change the throughput. In fact, the Master
experiences frequent cache misses when reading packets at the beginning of the
chain. This modification alone halves the throughput compared to Figure 2.5(a),
particularly when packets have to traverse chains of limited length, while in case of
longer chains this additional overhead at the beginning is amortized by the cost of
the rest of the chain.

Finally, Figure 2.5(d) depicts a realistic scenario where Workers access the packet
content (such as in Figure 2.5(b)), and the Master feeds the chain by reading data
from a large initial buffer (1M packets). Even in this case our algorithm is able to
guarantee an impressive throughput, such as about 38 Mpps with 64B packets.

In order to confirm that, with the current workload, the Master represents the
bottleneck of the system, Figure 2.7 shows the internal throughput of the chain,
namely the total number of packets moved by the Master, with an increasing number
of Workers, in the same test conditions of Figure 2.5(d). This figure gives an insight
of the processing capabilities of the Master, which slightly increases with a growing
number of Workers and proves the effectiveness of our algorithm as the number of
packets it processes essentially does not depend on the number of Workers.

2.1.10 Single chain - Latency
Some architectural and implementation choices, such as working with batches of
packets, aim at improving the throughput but may badly affect the latency. For

76

2.1 – New architectures for SDN

this reason, this section gives an insight about the latency experienced by packets
traversing our chains. Measurements are based on the gettimeofday Unix system
call and, in order to reduce its impact on the system, only sampled packets (one
packet out of thousand) have been measured.

Figure 2.6(a) shows the latency of 64B packets when traversing a function chain
consisting of a growing number of Workers, in case of real Workers and 1M packets
in memory. As expected, the latency increases with the length of the chain; however
its value is definitely reasonable for most of networking applications, reaching an
average value of about 2.2ms in case of 10 cascading Workers, being far less with
shorter (and more realistic) chains.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Time [us]

1 Worker (avg: 37us)
2 Workers (avg: 104us)
4 Workers (avg: 335us)
6 Workers (avg: 784us)

8 Workers (avg: 1394us)
10 Workers (avg: 2211us)

(a) Our algorithm.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Time [us]

1 Worker (avg: 23us)
2 Workers (avg: 71us)

4 Workers (avg: 224us)
6 Workers (avg: 358us)

8 Workers (avg: 421624us)
10 Workers (avg: 419100us)

(b) Zero-copy buffers among the Master and the (polling) Workers.

Figure 2.6: Latency introduced by the function chain with a growing number of
cascading Workers.

77

2 – Empowering the Internet: SDN and NFV

2.1.11 Single chain - Comparison with other approaches
This section aims at demonstrating the advantages of our data exchange algorithm
by comparing our proposal with two other approaches that could be used to exchange
packets between the Master and the Workers.

In this respect, we cannot directly compare our algorithm with existing solutions
such as VALE [71], OVS [64] and xDPd [6], because they include the overhead of
packet classification (e.g., L2 forwarding, Openflow matching), which would affect
the performance of the data exchange algorithm. As a consequence, we distilled
the fundamental design choices of the most important alternative approaches and
we carefully implemented them in a way that they could be compared with our
algorithm, implemented by using, whenever applicable, the guidelines listed in Sec-
tion 2.1.7. Particularly, the comparison aims at validating the advantages of two
important aspects of our algorithm: the absence of a data copy in the Worker, and
the blocking mode operating model of the Worker, while other approaches adopt a
busy waiting model.

The first alternative approach we compare with is based on the traditional pro-
ducer/consumer paradigm, in which the Master shares two buffers with each Worker:
the first is used by the Master to provide packets to the Worker, while the second op-
erates in the opposite direction. The second approach closely follows the processing
model suggested by Intel in the DPDK library [36], namely, two buffers (based on
the traditional producer/consumer paradigm) are shared between the Master and
each Worker. However, these buffers contain pointers, which means that the actual
data is stored in a shared mempool and never moved between the components of
the function chain (zero-copy). Moreover, both the Master and Workers operate in
polling mode. Although this solution neither provides isolation among the Work-
ers, nor limits the CPU consumption, it is compared with our proposal because

 0

 10

 20

 30

 40

 50

1 2 4 6 8 10
 0

 20

 40

 60

 80

 100

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

Figure 2.7: Internal throughput of the function chain, with real Workers and a 1M
packets in memory.

78

2.1 – New architectures for SDN

 0

 10

 20

 30

 40

1 2 4 6 8 10
 0

 10

 20

 30

 40

 50

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(a) Unidirectional buffers shared between the Master and the Workers.

 0

 10

 20

 30

 40

 50

1 2 4 6 8 10
 0
 50
 100
 150
 200
 250
 300
 350
 400
 450

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(b) Zero-copy buffers among the Master and the (polling) Workers.

Figure 2.8: Throughput of a single function chain when other data exchange algo-
rithms are used.

nowadays it represents the “standard” way to implement network function chains.
Tests are executed in realistic conditions, namely with Workers accessing packets

and 1M packets in memory and therefore the above results should be compared with
the performance obtained in Figure 2.5(d).

As expected, the throughput of the chain drops of about 30% when unidirectional
buffers are used, as shown by comparing Figure 2.5(d) and Figure 2.8(a). This is
mainly due to the operating principles of our primary buffer, which allows the Worker
to send back a packet to the Master without moving the packet itself, while in this
alternative approach one additional data copy in the Worker has to be performed.

Instead, the second alternative approach slightly outperforms our algorithm un-
til the number of jobs (one Master plus N Workers) is lower than the number of
available CPU cores, as evident by comparing Figure 2.8(b) with Figure 2.5(d).
This is due to the absence of data copies and to the polling-based operating mode
implemented in the Workers. However, a stronger performance degradation with

79

2 – Empowering the Internet: SDN and NFV

respect to our solution (it offers less than 1 Mpps throughput) is noticeable when 8
(or more) Workers are active because at least two of them have to share the same
CPU core.

The second alternative approach has also been evaluated in terms of latency in-
troduced on the flowing packets. Similarly to what happens for the throughput, it
outperforms our proposal when the number of jobs running is less than the num-
ber of CPU cores, as evident by comparing Figure 2.6(a) and Figure 2.6(b). For
instance, six chained Workers introduce an average latency of 358µs, against the
784µs obtained with our algorithm. Instead, in case of more Workers, the average
latency of the second alternative approach reaches 420ms, which is a consequence
of the fact that many polling processes share the same CPU core, and is definitely
not acceptable. Hence, this solution neither provides isolation among Workers (due
to the zero-copy), nor acceptable performance when the number of Workers exceeds
the number of available cores, being inappropriate for our objectives.

2.2 The problem of checking SDN/NFV networks

Portions of this section were previously published in [81].

2.2.1 Introduction

Paradigms such as Software Defined Network (SDN) and Network Function Virtual-
ization (NFV) can be seen as expressions of a systemic trend called “Softwarization".
Other expressions of the same trend are Cloud, Edge, and Fog Computing, Cloud
Networking, etc. In essence, the disruptive innovation of “Softwarization" stands in
the techno-economic feasibility of virtualizing most (if not all) network and service
functions of Telecommunications and ICT infrastructures. In this directions, it is
argued that future Telecommunications infrastructures are likely to become highly
dynamic, flexible and programmable production environments of ICT services. This
flexibility, introduced by the SDN/NFV related technologies, has an important im-
pact on the way services are actually developed and operated by network providers.
While it is true that the network becomes an active production environments where
multiples functionalities can be automatically provided by the infrastructure, i.e.
without the operator intervening on all the steps needed to provide a new service, it
is equally true that automatically deployed network configurations must be checked
before they are installed in the production network so as to avoid configuration
errors or malicious attempts to make the network unusable. A first evaluation of

80

2.2 – The problem of checking SDN/NFV networks

this idea is carried out by the EU FP7 UNIFY3 consortium, which sets out to in-
tegrate modern cloud computing and networking technologies by considering the
entire network as a unified service production environment, spanning the vast net-
working assets and data centers of telecom providers. In order to reach a high level
of agility for service innovation, UNIFY has one focus on providing dynamic ser-
vice programming and orchestration, deploying logical service components, namely
Virtual Network Functions (VNFs), across multiple network nodes. In particular,
UNIFY architecture follows SDN principles with a logically centralized control and
orchestration plane. Additionally, compute, storage and network abstractions are
combined into a joint programmatic interface referred to as Network Function For-
warding Graph (NF-FG). An NF-FG defines a selected mapping of VNFs and their
forwarding overlay definition into the virtualized resources presented by the under-
lying layer. Current OSS/BSS do not seem to cope with the requirements posed by
this evolution as they were basically designed for operating monolithic, closed phys-
ical nodes, involving significant deployment, integration and maintenance efforts: in
fact, the operations of future Telecommunications infrastructures will involve the
management and control of a myriad of software processes, rather than closed phys-
ical nodes. Thus, another important goal of UNIFY is the design and development
of integrated operations and development capabilities under the name of Service
Provider-DevOps (SP-DevOps). In fact, DevOps paradigm, formerly developed for
Data Centers (DCs), is getting momentum as a source of inspiration regarding how
to simplify and automate management processes for future Telecommunications in-
frastructures.

Among the above challenges, we focus on the UNIFY verification process (i.e.,
the definition of methods and techniques to validate a particular network configu-
ration before deploying it), which can be seen as an essential task in environments
where reconfiguration of services is expected to be triggered very frequently, both in
response to user requests and also in case of management events. Misconfiguration
of dynamic network middleboxes4, violation of specified network policies, or artificial
insertion of malicious network functions are just examples of cases that a complete
solution must properly handle in order to preserve network integrity and reliability.
For this reason, the work presented in this section goes in the direction of verify-
ing complex graph of services through an intense modeling activity, targeted at the
specific middleboxes and the network as a whole. We are motivated by the obser-
vation that most existing tools are “Openflow oriented", i.e. they mostly consider
networks with a controller which installs <match, action> rules on the switches. Al-
ternatively (and more generically but with the same fundamental limitations), they
consider networks with devices that only perform forwarding decisions according to

3www.fp7-unify.eu
4In this section we use the terms VNF and middlebox interchangeably.

81

2 – Empowering the Internet: SDN and NFV

the packet header, i.e. without taking into account any additional traffic history
information. Works as [43, 42, 66, 79] fall in this category and represent a valuable
efforts in this research area. Our contribution is intended to move a step forward
and overcome the above mentioned limitations by extending these works. In this
sense, one important reference is [61], which tackles exactly the same problem and
provides a scalable solution based on an off-the-shelf SMT solver. We experiment
with this approach and further develop it to meet our specific requirements, also en-
riching the available VNF models catalog in order to satisfy the demands for more
and more complex service graphs and to validate the approach with different kinds
of VNFs. We specifically consider the UNIFY use cases, but it is worth noticing how
our work is much general and easily applicable to other scenarios since it involves
very common network functions.

2.2.2 The SP-DevOps concept
In order to cope with the high service velocity and increased dynamicity enabled
by UNIFY and comparable SDN/NFV based environments, we consider a novel
management and operation paradigm for Service Providers, called Service Provider
DevOps - SP-DevOps. SP-DevOps is based on the same major underlying principles
as identified for DevOps [75]:

• i) Monitor and validate operational quality;

• ii) Develop and test against production-like systems;

• iii) Deploy with repeatable, reliable processes;

• iv) Amplify feedback loops.

While we acknowledge that DevOps has also a crucial cultural dimension (reflected
barely by the feedback loop principle), our work focuses on technical aspects asso-
ciated to these principles, which reflect on processes and associated capabilities for
integrated monitoring, verification, and testing software and programmable infras-
tructure. Even if significant parts of the telecommunication networks are foreseen to
be virtualized in the future, we in [40] identified important characteristics of telecom-
munication networks that differ from traditional data centers, i.e.: (i) higher spatial
distribution, as telecom resources are spread over wide areas due to coverage require-
ments; (ii) lower levels of redundancy in access and aggregation networks compared
to the massive data centers of typical cloud computing companies; (iii) stronger re-
quirements on high availability and latency in according to standards and customer
expectations. These characteristics pose new challenges for applying DevOps prin-
ciples in telecommunications environments [41]. SP-DevOps addresses them with a
set of technical processes supporting developer and operator roles in a virtualized

82

2.2 – The problem of checking SDN/NFV networks

Slide title

44 pt

Text and bullet level 1

 minimum 24 pt

Bullets level 2-5

minimum 20 pt

Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcde
fghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅ
ÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùú
ûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇň
ŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝Ẁ
ẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃ
ŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl

ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰαβγδεζηθικλνξο
ρςΣΤΥΦΧΨΩΪΫΌΎΏ

ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯАБ
ВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲ
ѲѴѴҐҐәǽẀẁẂẃẄẅỲỳ№

Do not add objects or text in the

footer area

Ericsson Internal | 2015-03-04 | Page 1

Deploy

Observability

Troubleshooting

Verification

VNF developer

support

Service developer

VNF Developer
Operator

Figure 2.9: SP-DevOps cycle for UNIFY service creation.

telecom network. Figure 2.9 illustrates the relation between the four SP-DevOps
processes and the developer/operator roles by means of a service creation lifecy-
cle. The four SP-DevOps processes follow the DevOps principles to meet specific
challenges regarding Observability and Troubleshooting (Principle: Monitor and
validate operation quality); Verification (Principle: Deploy with repeatable, reliable
processes); and Development (Principle: Develop and test against production-like
systems). We also identified three main roles involved in the processes: two Devel-
oper roles, where one is associated to a classical operator role assembling the service
graph for a particular category of services (the Service Developer), and a second as-
sociated to the classical equipment vendor role in actually programming a VNF (the
VNF Developer). The role of the Operator is to ensure that a set of performance
indicators associated to a service are met when the service is deployed on virtual
infrastructure within the domain of a telecom provider. SP-DevOps might not be a
new form of DevOps as such, but it must include solutions that are uniquely tailored
for the characteristics of its environment. Consequently, we propose the SP-DevOps
Toolkit as an instantiation of the SP-DevOps concept [56]. The SP-DevOps Toolkit
consists of a set of DevOps solutions that are developed targeting specific research
challenges identified in the UNIFY production environment [41, 40]. Besides scal-
able and programmable infrastructure monitoring functions, the toolkit will also
provide modules for deploy-time functional verification of various abstraction levels
of service definition, supporting the three SP-DevOps roles. As in any development
process, identification of problems early in the service or product livecycle can signif-
icantly reduce times and costs spent on complicated debugging and troubleshooting
processes. In the next sections, we focus on verification with respect to the service

83

2 – Empowering the Internet: SDN and NFV

definitions and configurations initiated by the Service Developer. Automated ver-
ification functions operating during deploy-time on each layer of the orchestration
and control architecture, facilitate verification as part of each step in the deployment
process, allowing identification of problems early in the service lifecycle.

2.2.3 The verification process

The SP-DevOps paradigm represents a significant opportunity for service providers
to implement more complex services in their networks and increase the agility by
which a new function (or a chain of) can be automatically configured and deployed
in their infrastructure. However, while the process of inserting and/or modifying
functions throughout the network can be automated with technologies similar to
the ones used for the Cloud Computing scenario [39], great importance has also to
be placed on the design and implementation of automatic tools that can verify a
network configuration on the fly, before it is deployed. This guarantees to avoid
unexpected behaviours or that some desired properties are no longer satisfied in the
new configuration. For example, an operator may want to ensure that a given traffic
flow is permitted (or not permitted, due to a policy constraint) from one node to
another. Concerning this last aspect, our verification process is currently based on
a verification approach recently proposed in [61]. In order to achieve high perfor-
mance, this verification approach exploits Z3 [18], a state of the art SMT solver,
and translates network scenarios with multiple middleboxes into sets of First Order
Logic (FOL) formulas that are then analyzed by Z3. This choice is motivated by the
overall verification tool performance and scalability, which would be hard to achieve
with standard model checking based techniques. In fact, the latter requires time
and memory that usually increase exponentially with the system complexity, while
the SAT-based approach proposed in [61] seems to be less prone to this problem.
In the SP-DevOps context, where development cycles are rather fast, being able to
analyze the new network configurations quickly is crucial, and this is the reason why
we think the approach presented in [61] is promising for this kind of application.
The FOL formulas given to Z3 represent the network operating principles along with
the functional behavior of all the VNFs involved in the scenario being considered.
While [61] presents the general ideas of the proposed approach, not all the details
are fully developed, and not all the different situations that may arise when con-
sidering different kinds of VNFs are considered. Here, we present our preliminary
work towards integrating the approach presented in [61] into a SP-DevOps context
like the one of UNIFY. A considerable part of this work has been about developing
models for new VNFs that were not explicitly considered in [61], and making some
first experiments with them.
In our design, the formal verification task is split into multiple sub-tasks, so that the
whole process is simpler and faster. More precisely, at NF-FG deploy time, or when

84

2.2 – The problem of checking SDN/NFV networks

the graphs undergo modifications in response to higher level events (e.g., adminis-
tration events or user requests), the VNF chains composing the graph are computed
and then, for each of them, a formal model is generated, including the model of
all the involved VNFs. Finally, the verification engine processes the whole VNF
chain model to check the satisfiability of a given property. In particular, we focus
on reachability problems in service graphs, leaving the verification of other network
properties as possible future work. Furthermore, since we are using abstract models
of the real middleboxes, we assume that these models are correctly defined. This
means that we verify abstract models of the real middleboxes, considering them as
faithful representations of the real VNFs. Verification of possible mismatch between
a VNF model and its implementation is out of scope for the current prototype. For
further details about the adopted formal verification theory and other background
concepts, please refer to [61].

VNFs models

The approach for modeling network function chains proposed in [61] has been exper-
imented by the authors with some middlebox types, such as stateless and stateful
firewalls. When modelling scenarios that include VNFs that may alter packets (e.g.
a NAT), the network constraints specifications need to be changed, because, in the
context of a reachability verification process, it is necessary to also consider the
possibility for a target VNF to receive a packet different from the one originally
transmitted. This kind of situation, which was not addressed explicitly in [61], re-
gards a significant set of middleboxes that is currently deployed in SP networks
and that is envisioned to be included in the NF-FG within the UNIFY project, e.g.
NAT, VPN gateway and so on. We revisited the network constraints developed by
the authors of [61], by introducing the possibility of verifying reachability properties
between two network nodes and intermediate VNFs that do modify forwarded packet
headers. Finally, we checked that verification works as expected with these revisited
constraints, by experimenting with the new middlebox models that we developed.

The first one we consider is a simplified version of an anti-spam NF, whose model
is reported in Figure 2.10.

We simplify the email protocol by assuming each client interested in receiving a
new message addressed to him, sends a POP3_REQUEST to the mail server in order
to retrieve the message content. The server, in turn, replies with a POP3_RESPONSE
which contains a special field (named email_from) representing the message sender.
The process of sending an email is similarly modeled through SMTP request and
response messages. In order to be able to introduce our model within the verification
tool, we need to express our function behaviour by means of logic constraints and
implications. As evident from Formula 2.1a, our function rejects any message con-
taining a black listed email address. On the other hand, Formula 2.1b is needed in
order to state that a POP3_REQUEST message is forwarded only after having received

85

2 – Empowering the Internet: SDN and NFV

(send(antispam, n0, p0, t0) ∧ p0.protocol = P OP 3_RESP ONSE) =⇒
¬isInBlackList(p0.email_from) ∧ ∃(n1, t1) | (t1 < t0

∧ recv(n1, antispam, p0, t1))
∀n0, p0, t0

(2.1a)

(send(antispam, n0, p0, t0) ∧ p0.protocol = P OP 3_REQUEST) =⇒
∃(n1, t1) | (t1 < t0

∧ recv(n1, antispam, p0, t1))
∀n0, p0, t0

(2.1b)

Figure 2.10: Antispam model

(send(cache, n0, p0, t0) ∧ ¬isInternal(n0)) =⇒ ¬isInCache(p0.url, t0)
∧ p0.proto = HT T P _REQ ∧ ∃(t1, n1) | (t1 < t0 ∧ isInternalNode(n1)
∧ recv(n1, cache, p0, t1)), ∀n0, p0, t0

(2.2a)

(send(cache, n0, p0, t0) ∧ isInternal(n0)) =⇒ isInCache(p0.url, t0)
∧ p0.proto = HT T P _RESP ∧ p0.ip_src = p1.ip_dest ∧ p0.ip_dest = p1.ip_src∧
∧ ∃(p1, t1) | (t1 < t0 ∧ p1.protocol = HT T P _REQ ∧ p1.url = p0.url

∧ recv(n0, cache, p1, t1)), ∀n0, p0, t0

(2.2b)

isInCache(u0, t0) =⇒ ∃(t1, t2, p1, p2, n1, n1) | (t1 < t2 ∧ t1 < t0 ∧ t2 < t0

∧ recv(n1, cache, p1, t1) ∧ recv(n2, cache, p2, t2) ∧ p1.proto = HT T P _REQ

∧ p1.url = u0 ∧ p2.proto = HT T P _RESP ∧ p2.url = u0 ∧ isInternal(n2))
∀u0, t0

(2.2c)

Figure 2.11: Web cache model.

it in a previous time instant. As it is clear from this description, the anti-spam func-
tion is completely stateless: it only needs information contained within the scope of
a single packet to decide how to process it (i.e. forward or drop). As next step, we
introduce two more models that are heavily based on traffic history, namely VNFs
whose behaviour may be altered by a proper sequence of packets.

Another VNF we consider is a simple web cache (reported in Figure 2.11). The
functional model consists of two interfaces connected respectively to the private
network, i.e., the one which contains the clients issuing HTTP requests, and the
external network.

Formula 2.2a states that a packet sent from the cache to a node belonging to
the external network, implies a previous packet, containing a HTTP request and
received from an internal node, which cannot be served by the cache (otherwise the
request would have not been forwarded towards the external network). Formula 2.2b
states that a packet sent from the cache to the internal network contains a HTTP
RESPONSE for an URL which was in cache when the request has been received. We
also state that the packet received from the internal network is a HTTP REQUEST

86

2.2 – The problem of checking SDN/NFV networks

(send(nat, n0, p0, t0) ∧ ¬isP rivateAddress(p0.ip_dest)) =⇒ p0.ip_src = ip_nat

∧ ∃(n1, p1, t1) | (t1 < t0 ∧ recv(n1, nat, p1, t1) ∧ isP rivateAddress(p1.ip_src)
∧ p1.origin = p0.origin ∧ p1.ip_dest = p0.ip_dest ∧ p1.seq_no = p0.seq_no

∧ p1.proto = p0.proto ∧ p1.email_from = p0.email_from ∧ p1.url = p0.url)
∀n0, p0, t0

(2.3a)

(send(nat, n0, p0, t0) ∧ isP rivateAddress(p0.ipdest)) =⇒ ¬isP rivateAddress(p0.ip_src)
∧ ∃(n1, p1, t1) | (t1 < t0 ∧ recv(n1, nat, p1, t1) ∧ ¬isP rivateAddress(p1.ip_src)
∧ p1.ip_dest = ip_nat ∧ p1.ip_src = p0.ip_src ∧ p1.origin = p0.origin

∧ p1.seq_no = p0.seq_no ∧ p1.proto = p0.proto ∧ p1.email_from = p0.email_from

∧ p1.url = p0.url) ∧ ∃(n2, p2, t2) | (t2 < t1 ∧ recv(n2, nat, p2, t2)
∧ isP rivateAddress(p2.ip_src) ∧ p2.ip_dest = p1.ip_src ∧ p2.ip_dest = p0.ip_src

∧ p2.ip_src = p0.ip_dest), ∀n0, p0, t0

(2.3b)

Figure 2.12: NAT model.

and the target URL is the same as the response. The final formula expresses a
constraint that the isInCache() function must respect. In particular, we state that
a given URL (u0) is in cache at time t0 if (and only if) a request packet was received
at time t1 (where t1 < t0) for that URL and a subsequent packet was received at
time t2 (where t2 < t0 ∧ t2 > t1) carrying the corresponding HTTP RESPONSE.

It is worth noticing that this model is a simplified version of a real web cache
since, if our function receives a request for a particular URL and that content is
already in cache, no additional packets are generated in order to be sure that no
update exists for that content (as usually done by means of the If-Modified-Since
HTTP header) and the response is immediately forwarded. We neglect these details
in order to keep the cache model as much clear and straightforward as possible. The
last middlebox we present here is the NAT function. The corresponding model is
reported in Figure 2.12.

In order to model the NAT behaviour, a distinction between the private and
external network is needed. This separation is modeled by using a boolean function
(isPrivateAddress()) that returns true if a given IP address belongs to the set of
internal node addresses. Analyzing the reported formulas, we start by considering an
internal node which initiates a communication with an external node (Formula 2.3a).
In this case, the NAT sends a packet (p0) to an external IP address, if and only if it
has previously received a packet (p1) from an internal node. The received and sent
packets must be equal for all fields, except for the ip_src, which must be equal to
the NAT public IP address.
On the other hand, the traffic in the opposite direction (from the external network to
the private) is modeled by the Formula 2.3b. In this case, we state that if the NAT
is sending a packet to an internal address, this packet (p0) must have an external
IP address as its source. Moreover, p0 must be preceded by another packet (p1 in

87

2 – Empowering the Internet: SDN and NFV

NAT ACL
firewall

Anti-
spam

Web
Cache

Web
Client

Mail
Client

Web
Server

Mail
Server

NF-FG

Web Client – Web Cache – NAT – ACL firewall – Web Server

Chain A

Mail Client – Anti-spam – NAT – ACL firewall – Mail Server

Chain B

Figure 2.13: An example of Network Function-Forwarding Graph.

the formula), which is, in turn, received by the NAT and it is equal to p0 for all the
other fields. It is worth noting that, generally, a communication between internal
and external nodes cannot be started by the external node in presence of a NAT.
As a consequence, this condition is expressed in Formula 2.3b by imposing that p1
must be preceded by another packet p2, sent to the NAT from an internal node.

2.2.4 Verification results
In order to evaluate the new developed models and the overall approach, we consider
the NF-FG5 shown in Figure 2.13 as a use case. In our reference graph, four end-
hosts (two clients and two servers) can generate either HTTP or POP3 and also
SMTP traffic, which is processed by different middleboxes when traversing the graph.
Moreover, some of those network functions may require a different configuration.
Specifically, the NAT must be configured in order to know which hosts belong to
the private network (as the web cache) and which IP address must be used as
masquerading address; the firewall must be provided with a set of ACL entries that
specify which couples of nodes are authorized to exchange traffic. Additionally, the
forwarding is configured such that the web traffic is forwarded to the web cache,
while the email traffic (both POP3 and SMTP) is routed to an anti-spam function.
A first step towards the NF-FG verification is the VNF chains extraction. In our use
case, two chains are extracted from the NF-FG (Figure 2.13): the Chain A processes
the web traffic, while the Chain B is traversed by POP3 and SMTP packets.
We perform multiple tests on the two chains to cover different cases and configuration
options: (i) anti-spam and firewall configurations and (ii) traffic directions (from

5We do not provide the firewall VNF model as it was presented as use case in [61].

88

2.2 – The problem of checking SDN/NFV networks

S

U U U
S

U U U U U

Hair Color
Test A.1 Test A.2 Test B.1 Test B.2 Test B.3

0

0.1

0.2
Ve

rifi
ca

tio
n

T
im

e
(s

)

Client → Server Server → Client S=satisfied U=unsatisfied

Figure 2.14: Test {A, B}.1: firewall and anti-spam configured to accept packets;
Test {A, B}.2: firewall configured to drop server/client packets; Test B.3: anti-
spam configured to drop server/client packets.

client to server and vice-versa). Concerning the Chain A, only the ACL firewall can
be configured, hence we setup two tests: one with the firewall configured to allow
all the traffic (test A.1) and the other one with the firewall configured to drop all
packets exchanged between the web client and server (test A.2).
Instead the Chain B is tested in three scenarios, obtained by changing the firewall
and anti-spam configurations as follows:

• (i) test B.1, similarly to test A.1, is performed without any function configured
to drop the received traffic;

• (ii) in test B.2, the firewall drops the traffic between the mail client and server
(Figure 2.14);

• (iii) test B.3 is such that the anti-spam is configured to drop all the emails
sent by the mail client, while the traffic originated by the server is allowed
(Figure 2.14).

Our evaluation is executed on a workstation with 32GB of RAM and an Intel i7-
3770 CPU running an Ubuntu 14.04.01 with kernel 3.13.0-24-generic. The results
are shown in Figure 2.14, where the verification time is reported for each presented
scenario.
In test A.1 the reachability problem from the client to the server (the light grey
colored bar in Figure 2.14) is satisfied as expected. It is worth noting that the
unsatisfiability of the problem in the opposite direction (the dark grey colored bar
in Figure 2.14) is due to the fact that client and server can exchange traffic only if
the connection is initiated by the client. In test A.2, in both cases the reachability
problems are not satisfied because of the firewall VNF configuration. In test B.1,
the verification problem is satisfiable in case of traffic sent by the mail client, while
the reachability property is not verified for the traffic sent by the mail server for the

89

2 – Empowering the Internet: SDN and NFV

above-mentioned reasons.
As it can be seen from the achieved results, performance is promising also in the
worst case scenario, since we are able to solve the reachability problem in less than
200ms, while the verification time is less than 50ms in most cases. This is reasonably
in line with the UNIFY requirements, especially in terms of time required by the
verification process to authorize a newly asked network reconfiguration.

2.2.5 Discussion
It is argued that, in the future, Telecommunications infrastructures are likely to
become highly dynamic, flexible and programmable production environments capa-
ble of providing any ICT services. Current OSS/BSS do not seem to cope with
the requirements posed by this evolution: in fact, future operations will involve
the management and control of a myriad of software processes, rather than closed
physical nodes.

In fact, today most SPs still have rather complicated and static operational en-
vironments for legacy infrastructures, where IT and Network are fully separated,
and managed by different Department. DevOps, formerly developed for managing
Data Centers (DCs), is attracting a growing interests as a paradigm to be extended
to future Telecommunications infrastructures. Nevertheless, it is argued that the
DevOps will jump ahead current ossification only if it will be sustainable from a
business viewpoint (CAPEX, OPEX saving are not enough): importantly DevOps
criteria of success depend on how closely the related future infrastructures (e.g.
UNIFY) will be capable of enabling new service paradigms for SP’s (e.g., Immersive
Communications, Anything as a Service, etc) and to create new ICT ecosystems
(e.g., coming from the crossing of Telecommunications with Internet of Thing, or
Cloud Robotics). Motivated by these considerations, we presented our contribu-
tion related to the verification process on service graphs, which is one of the most
important pillars in the SP-DevOps feedback cycle and a key enabler to support
envisioned changes in the way SPs deploy and operate new network services. After
generalizing the applicability of a state of the art approach to the verification of
complex network graph, we presented and discussed different models we developed
to validate our key ideas.

90

Chapter 3

Conclusion

The evolution of the Internet is posing serious challenges to the scientific community
from different sides: content dissemination, network services flexibility, network
programmability, softwarization and data-plane performance scalability issues. The
success of these new paradigms, that we extensively analyzed in this work, is strictly
related to their ability to provide value-added services to end customers, i.e. tangible
benefits in terms of user experience and/or in terms of rich features set. On the other
hand, most of the newly proposed network architectures will be key in the next future
only if the network usage performed by end users will evolve accordingly. Indeed
our understanding is that any protocol or architecture for the future Internet should
focus not only on currently available trends and services but has to be general
enough to support future possibilities and scenarios. As a lesson learned from the
past, one of the key features of the TCP/IP protocol suite is to be general enough
to support any data exchange the community could think of at that time and also
low demands for the lower, physical layers which is clue to split the complexity on
the proper layers. These design choices made most of the IP related protocols, the
first class citizens in the modern Internet and they are still in place after decades of
fast changing technologies.

Among the new protocols and architectures that have been recently proposed,
one important aspect that must be carefully assessed is the security and reliability
of all of them. As we have shown in this thesis, differentiated weaknesses must be
closely evaluated and quantified by means of different techniques: a simulation-based
approach can be seen as a convenient way to represent the most common operating
scenarios and it often provides an effective technique to catch the essence of a given
system/protocol, that is the most important benefits (defined and measured in some
way) and also the possible drawbacks. On the other hand, more formal techniques
can be used to achieve rigorous results with a solid mathematical foundation. In this
work, we exploited either techniques to highlight problems and the corresponding
solutions, also trying to detect the most promising architectures for the future In-
ternet given the ever evolving environment of modern telecommunication networks.

91

3 – Conclusion

Regarding CCN, we analyzed and quantified a new family of DDoS attacks that can
be implemented on a content-oriented network. After evaluating this important issue
in realistic network conditions, we also selected the state of the art countermeasures
and implemented them in our simulation tool in order to detect the most effective
technique at Internet scale. Concerning scalability, we have found huge challenges in
the implementation of PUSH based applications in CCN environments. Motivated
by the need of enabling support to this kind of applications also in content-oriented
networks, we proposed an architecture to overcome existing limitations especially
in terms of protocol routing scalability and we accurately evaluated the additional
overhead needed to support content delivery. We believe this is a key feature since
a wide part of modern applications require producer driven communications.

Innovation in current telecommunication networks is inspired not only by an
ever increasing demand for efficient content distribution but also by the new op-
portunities created by virtualization technologies. In other words, the focus will
be more and more moved to the transformation1 of bits during their trip along the
network and not only on their transportation. Perfectly aligned with this vision,
we studied innovative architectures to implement the Service Function Chaining
paradigm. Our contribution took the form of an algorithm to efficiently move pack-
ets in NFV/SDN contexts, namely a mechanism to allow fast packets processing
among different VNFs. Concerning VNFs, we also proposed an enhanced general
framework (based on state of the art solutions) to rigorously verify critical network
policies in order to avoid inconsistent configurations that could break network co-
herency. Our tool is a full fledged verification module, designed to be included in a
wider set of components that are together able to automate the process of developing
and operating new services in telecom operator networks.

Progresses in telecommunication networks and wider and wider availability of
standard, open source solutions are leading remarkable changes in the ICT ecosys-
tem. As a matter of fact, protocols, architectures and software solutions must keep
pace to support society in this never ending effort to improve the quality that ICT
can safely bring in our everyday life. In the next future, our ability to develop smart
solutions will define the boundaries of the collective progress that we, as society, will
pursue.

1Here this term means offering services to end users or enterprises in a customizable way with
the explicit support of the network operator.

92

Bibliography

[1] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and Lixia Zhang. Inter-
est flooding attack and countermeasures in named data networking. In IFIP
Networking Conference, 2013, pages 1–9, May 2013.

[2] A. Afanasyev, I. Moiseenko, and L. Zhang. ndnsim: Ndn simulator for ns-3.
Technical Report, NDN-0005, Oct. 2012.

[3] S. Arianfar, P. Nikander, and J. Ott. On content-centric router design and
implications. In ReARCH ’10, Philadelphia, PA, USA, Nov. 2010.

[4] E. Baccaglini, G. Marchetto, T. Tillo, and G. Olmo. Efficient slice-aware
h.264/avc video transmission over time-driven priority networks. International
Journal of Communication Systems, 27(12):3822–3836, 2014.

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177, October 2003.

[6] BISDN. xdpd. http://www.xdpd.org, 2016.
[7] Jeremias Blendin, Julius Rückert, Nicolai Leymann, Georg Schyguda, and

David Hausheer. Position paper: Software-defined network service chaining.
In Proceedings of the Third European Workshop on Software Defined Network-
ing (EWSDN 2014), 2014.

[8] Antonio Carzaniga, Koorosh Khazaei, Michele Papalini, and Alexander L. Wolf.
Is information-centric multi-tree routing feasible? In Proceedings of the 3rd
ACM SIGCOMM Workshop on Information-centric Networking, ICN ’13, pages
3–8, New York, NY, USA, 2013. ACM.

[9] I. Cerrato, G. Marchetto, F. Risso, R. Sisto, and M. Virgilio. An efficient
data exchange algorithm for chained network functions. In 2014 IEEE 15th
International Conference on High Performance Switching and Routing (HPSR),
pages 98–105, July 2014.

[10] I. Cerrato, G. Marchetto, F. Risso, R. Sisto, and M. Virgilio. An efficient
data exchange algorithm for chained network functions. In High Performance
Switching and Routing (HPSR), 2014 IEEE 15th International Conference on,
pages 98–105, July 2014.

[11] Ivano Cerrato, Tobias Jungel, Alex Palesandro, Fulvio Risso, Marc Suñé, and

93

http://www.xdpd.org

Bibliography

Hagen Woesner. User-specific network service functions in an sdn-enabled net-
work node. In Proceedings of the Third European Workshop on Software Defined
Networking (EWSDN 2014), pages 135–136, 2014.

[12] Jia Chen, Hongke Zhang, Huachun Zhou, and Hongbin Luo. Optimizing con-
tent routers deployment in large-scale information centric core-edge separa-
tion internet. International Journal of Communication Systems, 27(5):794–810,
2014.

[13] Jiachen Chen, M. Arumaithurai, Lei Jiao, Xiaoming Fu, and K.K. Ramakrish-
nan. Copss: An efficient content oriented publish/subscribe system. In Archi-
tectures for Networking and Communications Systems (ANCS), 2011 Seventh
ACM/IEEE Symposium on, pages 99–110, Oct 2011.

[14] Seungoh Choi, Kwangsoo Kim, Seongmin Kim, and Byeong hee Roh. Threat
of dos by interest flooding attack in content-centric networking. In Information
Networking (ICOIN), 2013 International Conference on, pages 315–319, Jan
2013.

[15] Alberto Compagno, Mauro Conti, Paolo Gasti, and Gene Tsudik. Poseidon:
Mitigating interest flooding ddos attacks in named data networking. CoRR,
abs/1303.4823, 2013.

[16] Huichen Dai, Bin Liu, Yan Chen, and Yi Wang. On pending interest table
in named data networking. In Proceedings of the Eighth ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems, ANCS
’12, pages 211–222, New York, NY, USA, 2012. ACM.

[17] Huichen Dai, Yi Wang, Jindou Fan, and Bin Liu. Mitigate ddos attacks in ndn
by interest traceback. In NOMEN ’13, Turin, Italy, Apr. 2013.

[18] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
In Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-
Verlag.

[19] Vladimir Dimitrov and Ventzislav Koptchev. Psirp project – publish-subscribe
internet routing paradigm: New ideas for future internet. In Proceedings of
the 11th International Conference on Computer Systems and Technologies and
Workshop for PhD Students in Computing on International Conference on
Computer Systems and Technologies, CompSysTech ’10, pages 167–171, New
York, NY, USA, 2010. ACM.

[20] Kun Ding, Yun Liu, Hsin-Hung Cho, Han-Chieh Chao, and Timothy K. Shih.
Cooperative detection and protection for interest flooding attacks in named
data networking. International Journal of Communication Systems, 2014.

[21] Constantinos Dovrolis, Brad Thayer, and Parameswaran Ramanathan. Hip:
Hybrid interrupt-polling for the network interface. ACM Operating Systems
Reviews, 35:50–60, 2001.

[22] D.Rossi and G. Rossini. Caching performance of content centric networks under

94

Bibliography

multi-path routing (and more). Technical Report, Telecom Paris Tech, 2011.
[23] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-

marrec. The many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–
131, June 2003.

[24] European Telecommunications Standards Institute. Network Functions Vir-
tualisation. White paper, SDN and OpenFlow World Congress, Darmstadt,
Germany, Oct. 2012.

[25] Bohao Feng, Huachun Zhou, Shuai Gao, and Ilsun You. An exploration of
cache collaboration in information-centric network. International Journal of
Communication Systems, 2014.

[26] Nikos Fotiou, Dirk Trossen, and GeorgeC. Polyzos. Illustrating a publish-
subscribe internet architecture. Telecommunication Systems, 51(4):233–245,
2012.

[27] Francesco Fusco and Luca Deri. High speed network traffic analysis with com-
modity multi-core systems. In Proceedings of the 10th ACM SIGCOMM Con-
ference on Internet Measurement, IMC ’10, pages 218–224, New York, NY,
USA, 2010. ACM.

[28] P. Gasti, G. Tsudik, E. Uzun, and Lixia Zhang. Dos and ddos in named data
networking. In Computer Communications and Networks (ICCCN), 2013 22nd
International Conference on, pages 1–7, July 2013.

[29] Anders Gidenstam, Håkan Sundell, and Philippas Tsigas. Cache-aware lock-
free queues for multiple producers/consumers and weak memory consistency.
In Proceedings of the 14th international conference on Principles of distributed
systems, OPODIS’10, pages 302–317, Berlin, Heidelberg, 2010. Springer-Verlag.

[30] Moneeb Gohar, Heeyoung Jung, and Seok-Joo Koh. Distributed mapping man-
agement of identifiers and locators in mobile-oriented internet environment.
International Journal of Communication Systems, 27(1):95–115, 2014.

[31] S. Govindan, Jeonghwan Choi, A.R. Nath, A. Das, B. Urgaonkar, and Anand
Sivasubramaniam. Xen and co.: Communication-aware cpu management in
consolidated xen-based hosting platforms. Computers, IEEE Transactions on,
58(8):1111–1125, Aug 2009.

[32] Moshe Hoffman, Ori Shalev, and Nir Shavit. The baskets queue. In Eduardo
Tovar, Philippas Tsigas, and Hacene Fouchal, editors, OPODIS, volume 4878
of Lecture Notes in Computer Science, pages 401–414. Springer, 2007.

[33] Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual.
Addison-Wesley Professional, first edition, 2003.

[34] Gerard J. Holzmann. The model checker spin. IEEE Transactions on Software
Engineering, May 1997.

[35] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. Netvm: High perfor-
mance and flexible networking using virtualization on commodity platforms. In
11th USENIX Symposium on Networked Systems Design and Implementation

95

Bibliography

(NSDI 14), pages 445–458, Seattle, WA, 2014. USENIX Association.
[36] Intel. Data plane developer kit - programmers guide. http://www.dpdk.org,

2012.
[37] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart, J. D.

Thornton, and R. L. Braynard. Networking named content. In CoNEXT ’09,
Rome, Italy, Dec. 2009.

[38] Van Jacobson, Diana K. Smetters, Nicholas H. Briggs, Michael F. Plass,
Paul Stewart, James D. Thornton, and Rebecca L. Braynard. Voccn: Voice-
over content-centric networks. In Proceedings of the 2009 Workshop on Re-
architecting the Internet, ReArch ’09, pages 1–6, New York, NY, USA, 2009.
ACM.

[39] R. Jain and S. Paul. Network virtualization and software defined network-
ing for cloud computing: a survey. Communications Magazine, IEEE, 51(11),
November 2013.

[40] W. John and C. Meirosu. Unify d4.1: Initial requirements for the sp-devops
concept, universal node capabilities and proposed tools, 2014.

[41] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu. Research directions in
network service chaining. In SDN4FNS, 2013 IEEE SDN for, Nov 2013.

[42] Peyman Kazemian, George Varghese, and Nick McKeown. Header space anal-
ysis: Static checking for networks. In NSDI 12, San Jose, CA, 2012. USENIX.

[43] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey. Veriflow: Verifying network-wide invariants in real time. In NSDI 13,
Lombard, IL, 2013. USENIX.

[44] Do-hyung Kim, Jong-hwan Kim, Yu-sung Kim, Hyun-soo Yoon, and Ikjun
Yeom. End-to-end mobility support in content centric networks. International
Journal of Communication Systems, 2014.

[45] Patrick P. C. Lee, Tian Bu, and Girish P. Chandranmenon. A lock-free, cache-
efficient multi-core synchronization mechanism for line-rate network traffic mon-
itoring. In IPDPS, pages 1–12, 2010.

[46] Lei Li, Xin Lin, Yue Zhai, Caixia Yuan, Yanquan Zhou, and Jiayin Qi. User
communities and contents co-ranking for user-generated content quality eval-
uation in social networks. International Journal of Communication Systems,
pages n/a–n/a, 2014.

[47] Pei Li and Yunchuan Sun. Modeling and performance analysis of information
diffusion under information overload in facebook-like social networks. Interna-
tional Journal of Communication Systems, 2014.

[48] Jianxin Liao, Qi Qi, Tonghong Li, Yufei Cao, Xiaomin Zhu, and Jingyu Wang.
An optimized qos scheme for ims-nemo in heterogeneous networks. Interna-
tional Journal of Communication Systems, 25(2):185–204, 2012.

[49] S. Loreto, P. Saint-Andre, S. Salsano, and G. Wilkins. Known issues and best

96

http://www.dpdk.org

Bibliography

practices for the use of long polling and streaming in bidirectional http. RFC
6202, Apr. 2011.

[50] Joao Martins, Mohamed Ahmed, Costin Raiciu, and Felipe Huici. Enabling
fast, network processing with clickos. In Proceedings of the Second ACM SIG-
COMM Workshop on Hot Topics in Software Defined Networking, HotSDN ’13,
pages 67–72, New York, NY, USA, 2013. ACM.

[51] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio
Honda, Roberto Bifulco, and Felipe Huici. Clickos and the art of network func-
tion virtualization. In 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 459–473, Seattle, WA, 2014. USENIX
Association.

[52] H. Massalin and C. Pu. Threads and input/output in the synthesis kernal. In
Proceedings of the twelfth ACM symposium on Operating systems principles,
SOSP ’89, pages 191–201, New York, NY, USA, 1989. ACM.

[53] Henry Massalin and Calton Pu. A lock-free multiprocessor os kernel. SIGOPS
Oper. Syst. Rev., 26(2):108–, April 1992.

[54] B. Mathieu, P. Truong, Wei You, and J. Peltier. Information-centric network-
ing: a natural design for social network applications. Communications Maga-
zine, IEEE, 50(7):44–51, July 2012.

[55] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: en-
abling innovation in campus networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, March 2008.

[56] C. Meirosu. m4.1: Sp-devops concept evolution and initial plans for prototyp-
ing, 2014.

[57] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proceedings of the fif-
teenth annual ACM symposium on Principles of distributed computing, PODC
’96, pages 267–275, New York, NY, USA, 1996. ACM.

[58] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in
an interrupt-driven kernel. In USENIX Annual Technical Conference, pages
99–112, 1996.

[59] NDN. Named Data Networking: A future Internet architecture. http:
//named-data.net/, 2014. [Online; accessed 13-May-2014].

[60] Shumao Ou, Hui Pan, and Feng Li. Heterogeneous wireless access technology
and its impact on forming and maintaining friendship through mobile social
networks. International Journal of Communication Systems, 25(10):1300–1312,
2012.

[61] Aurojit Panda, Ori Lahav, Katerina J. Argyraki, Mooly Sagiv, and Scott
Shenker. Verifying isolation properties in the presence of middleboxes. CoRR,
abs/1409.7687, 2014.

97

http://named-data.net/
http://named-data.net/

Bibliography

[62] PARC. Ccnx technical documentation. http://www.ccnx.org/, 2016.
[63] D. Perino and M. Varvello. A reality check for content centric networking. In

ICN ’11, Toronto, Canada, Aug. 2011.
[64] Ben Pfaff, Justin Pettit, Teemu Koponen, Keith Amidon, Martin Casado, and

Scott Shenker. Extending networking into the virtualization layer. In Pro-
ceedings of the 8th ACM Workshop on Hot Topics in Networks (HotNets-VIII),
October 2009.

[65] P.Gasti, G. Tsudik, E. Uzun, and L. Zhang. Dos & ddos in named-data net-
working. arXiv:1208.0952, Aug. 2012.

[66] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson,
and Guofei Gu. A security enforcement kernel for openflow networks. In
Proceedings of the first workshop on Hot topics in software defined networks,
HotSDN ’12, New York, NY, USA, 2012. ACM.

[67] S. Prakash, Yann Hang Lee, and T. Johnson. A nonblocking algorithm for
shared queues using compare-and-swap. IEEE Trans. Comput., 43(5):548–559,
May 1994.

[68] Radware. Global application & network security report. Annual Report, 2011.
[69] Kaushik Kumar Ram, Alan L. Cox, Mehul Chadha, and Scott Rixner. Hyper-

switch: A scalable software virtual switching architecture. In Proceedings of the
2013 USENIX Conference on Annual Technical Conference, USENIX ATC’13,
pages 13–24, Berkeley, CA, USA, 2013. USENIX Association.

[70] Fulvio Risso and Ivano Cerrato. Customizing data-plane processing in edge
routers. In Proceedings of the First European Workshop on Software Defined
Networking (EWSDN), pages 114–120, 2012.

[71] Luigi Rizzo and Giuseppe Lettieri. Vale, a switched ethernet for virtual ma-
chines. In Proceedings of the 8th international conference on Emerging net-
working experiments and technologies, CoNEXT ’12, pages 61–72, New York,
NY, USA, 2012. ACM.

[72] O. Saleh and M. Hefeeda. Modeling and caching of peer-to-peer traffic. In
ICNP ’06, Santa Barbara, CA, USA, Nov. 2006.

[73] S.Arianfar, T. Koponen, B. Raghavan, and S. Shenker. On preserving privacy
in content-oriented networks. In ICN ’11, Toronto, Canada, Aug. 2011.

[74] Thomas C. Schmidt and Matthias Wählisch. Why we shouldn’t forget multicast
in name-oriented publish/subscribe. CoRR, abs/1201.0349, 2012.

[75] Sanjeev Sharma and Bernie Coyne. DevOps For Dummies. Limited IBM Edi-
tion’ book, October 2013.

[76] Amanda Sibley. 47 handy Facebook stats and charts. http://boletines.
prisadigital.com/47_facebook_stats_and_charts2.pdf, 2012. [Online;
accessed 13-May-2014].

[77] We Are Social. Social, Digital & Mobile Around The World
(January 2014). http://www.slideshare.net/wearesocialsg/

98

http://boletines.prisadigital.com/47_facebook_stats_and_charts2.pdf
http://boletines.prisadigital.com/47_facebook_stats_and_charts2.pdf
http://www.slideshare.net/wearesocialsg/social-digital-mobile-around-the-world-january-2014
http://www.slideshare.net/wearesocialsg/social-digital-mobile-around-the-world-january-2014

Bibliography

social-digital-mobile-around-the-world-january-2014, 2014. [On-
line; accessed 13-May-2014].

[78] A. Soldati. Telecom italia ip backbone and peering policies. In Italian Peering
Forum (PFI 2008), 2008.

[79] Sooel Son, Seungwon Shin, Vinod Yegneswaran, Phillip A. Porras, and Guofei
Gu. Model checking invariant security properties in openflow. In ICC, pages
1974–1979. IEEE, 2013.

[80] Telecom Italia S.p.A. Resoconto intermedio di gestione al 31 marzo
2012 (in italian). http://1q2012.telecomitalia.com/ attachments/telecomi-
talia2012q1it.pdf, 2012.

[81] Serena Spinoso, Matteo Virgilio, Wolfgang John, Antonio Manzalini, Guido
Marchetto, and Riccardo Sisto. Service Oriented and Cloud Computing: 4th
European Conference, ESOCC 2015, Taormina, Italy, September 15-17, 2015,
Proceedings, chapter Formal Verification of Virtual Network Function Graphs
in an SP-DevOps Context, pages 253–262. Springer International Publishing,
Cham, 2015.

[82] Philippas Tsigas and Yi Zhang. A simple, fast and scalable non-blocking con-
current fifo queue for shared memory multiprocessor systems. In Proceedings of
the thirteenth annual ACM symposium on Parallel algorithms and architectures,
SPAA ’01, pages 134–143, New York, NY, USA, 2001. ACM.

[83] Christos Tsilopoulos and George Xylomenos. Supporting diverse traffic types in
information centric networks. In Proceedings of the ACM SIGCOMM Workshop
on Information-centric Networking, ICN ’11, pages 13–18, New York, NY, USA,
2011. ACM.

[84] M. Virgilio, G. Marchetto, and R. Sisto. Interest flooding attack countermea-
sures assessment on content centric networking. In Information Technology -
New Generations (ITNG), 2015 12th International Conference on, pages 721–
724, April 2015.

[85] Matteo Virgilio. Shared buffer model. https://github.com/
netgroup-polito/shared-buffer, 2015.

[86] Matteo Virgilio, Guido Marchetto, and Riccardo Sisto. Pit overload analysis in
content centric networks. In Proceedings of the 3rd ACM SIGCOMM Workshop
on Information-centric Networking, ICN ’13, pages 67–72, New York, NY, USA,
2013. ACM.

[87] Matteo Virgilio, Guido Marchetto, and Riccardo Sisto. Push applications
and dynamic content generation over content-centric networking. International
Journal of Communication Systems, pages n/a–n/a, 2015.

[88] Matthias Wählisch, Thomas C. Schmidt, and Markus Vahlenkamp. Backscatter
from the data plane - threats to stability and security in information-centric
network infrastructure. Comput. Netw., 57(16):3192–3206, November 2013.

[89] Jin Wang, Kejie Lu, Shukui Zhang, Jianxi Fan, Yanqin Zhu, and Baolei

99

http://www.slideshare.net/wearesocialsg/social-digital-mobile-around-the-world-january-2014
http://www.slideshare.net/wearesocialsg/social-digital-mobile-around-the-world-january-2014
https://github.com/netgroup-polito/shared-buffer
https://github.com/netgroup-polito/shared-buffer

Bibliography

Cheng. An efficient communication relay placement algorithm for content-
centric wireless mesh networks. International Journal of Communication Sys-
tems, 28(2):262–280, 2015.

[90] Kai Wang, Jia Chen, Huachun Zhou, Yajuan Qin, and Hongke Zhang. Model-
ing denial-of-service against pending interest table in named data networking.
International Journal of Communication Systems, 2013.

[91] Qingjie Wang, Jianrong Wang, Jian Yu, Mei Yu, and Yan Zhang. Trust-aware
query routing in p2p social networks. International Journal of Communication
Systems, 25(10):1260–1280, 2012.

[92] Kun Yang, Xueqi Cheng, Liang Hu, and Jianming Zhang. Mobile social net-
works: state-of-the-art and a new vision. International Journal of Communi-
cation Systems, 25(10):1245–1259, 2012.

[93] W. You, B. Mathieu, P. Truong, J. Peltier, and G. Simon. Dipit: a distributed
bloom-filter based pit table for ccn nodes. In ICCCN ’12, Munich, Germany,
July 2012.

[94] Haowei Yuan, Tian Song, and Patrick Crowley. Scalable ndn forwarding: Con-
cepts, issues and principles. In ICCCN ’12, Munich, Germany, July 2012.

[95] Li Zhao, L.N. Bhuyan, R. Iyer, S. Makineni, and D. Newell. Hardware support
for accelerating data movement in server platform. Computers, IEEE Transac-
tions on, 56(6):740–753, June 2007.

100

