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Abstract

This paper proposes some advanced plate theories obtained by expanding the unknown displacement vari-

ables along the thickness direction using trigonometric series, exponential functions and miscellaneous

polynomials. The used refined models are Equivalent Single Layer (ESL) theories. They are obtained

by means of the Unified Formulation by Carrera (CUF), and they accurately describe the displacement

field and the stress distributions along the thickness of the multilayered plate. The governing equations

are derived from the Principle of Virtual Displacement (PVD), and the Finite Element Method (FEM)

is employed to solve them. The plate element has nine nodes, and the Mixed Interpolation of Tensorial

Components (MITC) method is used to contrast the membrane and shear locking phenomenon. Cross-

ply plates with simply-supported edges and subjected to a bi-sinusoidal load, and sandwich plates with

simply-supported edges and subjected to a constant transverse uniform pressure are analyzed. Various

thickness ratios are considered. The results, obtained with different theories within CUF, are compared

with the elasticity solutions given in the literature and the layer-wise solution. It is shown that refined

kinematic theories employing trigonometric or exponential terms are able to accurately describe the

displacment field and the mechanical stress fields. In some cases, the reduction of computational costs

is particularly relevant respect to the layer-wise solution.

1 Introduction

Composite plate/shell structures have a predominant role in many engineering applications. Structural

models for composite plates must be able to deal with a number of physical effects such as anisotropy,

shear deformation and interlaminar continuity of shear stress. Analytical, closed form solutions are

available in very few cases. In most of the practical problems, the solution demands applications of

approximated computational methods. The Finite Element Method (FEM) has a predominant role

among the computational techniques implemented for the analysis of layered structures. Finite ele-

ments are usually formulated on the basis of axiomatic-type theories, in which the unknown variables

are postulated along the thickness. According to published research, various theories for composite

structures have been developed. They can be classified as: Equivalent Single Layer (ESL), in which

the number of unknowns is independent of the number of layers, and Layer-wise approach (LW), in

which the number of unknowns is dependent on the number of layers. The simplest plate/shell theory

is based on the Kirchoff/Love’s hypothesis, and it is usually referred to as Classical Lamination Theory

(CLT)[1, 2]. The inclusion of transverse shear strains leads to the Reissner-Mindlin Theory, also known
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as First-order Shear Deformation Theory (FSDT) [3]. A review of equivalent single layer and layer-

wise laminate theories was presented by Reddy [4]. Also, a large variety of plate/shell finite element

implementations of higher-order theories (HOT) has been proposed in the last twenty years. HOT-type

theories were discussed by Kant and co-authors [5, 6], by Reddy [7] and Palazotto and Dennis [8].

Concerning trigonometric polynomial expansions, some plate and beam theories have been developed.

Shimpi and Ghugal [9] used trigonometric terms in the displacements field for the analysis of two layers

composite beams. An ESL model was developed by Arya et al. [10] using a sine term to represent

the non-linear displacement field across the thickness in symmetrically laminated beams. An extension

of [10] to composite plates was presented by Ferreira et al. [11]. A trigonometric shear deformation

theory is used to model symmetric composite plates discretized by a meshless method based on global

multiquadric radial basis functions. A version of this theory, with a layer-wise approach, was proposed

by the same authors in [12]. Vidal and Polit [13] developed a new three-noded beam finite element for

the analysis of laminated beams, based on a sine distribution with layer refinement. Recently, the same

authors have dealt with the influence of the Murakami’s zig-zag function in the sine model for static

and vibration analysis of laminated beams [14]. Static and free vibration analysis of laminated shells

were performed by radial basis functions collocation, according to a sinusoidal shear deformation theory

in Ferreira et al. [15]. It accounts for through-the-thickness deformation, by considering a sinusoidal

evolution of all displacements along the thickness coordinate. The complexity of some structures often

require to adopt a 3D model to correctly describe the mechanical behaviour, this is the most used

solution of the commercial codes. Usually the computational costs of a 3D element are very relevant

compared to a 1D or 2D element. A recent work recommends over-integration in conjunction with a

3D element [16].

In this work, an improved plate finite element is presented for the analysis of plate multilayered struc-

tures. It is based on the Carrera Unified Formulation (CUF), which was developed by Carrera for

multi-layered structures [17, 18]. Within the CUF framework, several beam models using trigonomet-

ric, exponential, hyperbolic and miscellaneous series were employed [19, 20]. A review of equivalent

single layer and layer-wise laminate theories was presented in [21]. In the present work, a number of ad-

vanced ESL plate theories, obtained by use of Taylor polynomials, trigonometric series, and exponential

functions, are discussed. The Mixed Interpolation of Tensorial Components (MITC) method [22, 23, 24]

is used to contrast the membrane and shear locking. The governing equations in weak form for the

linear static analysis of composite structures are derived from the Principle of Virtual Displacement

(PVD), and the finite element method is used to solve them. Cross-ply plates with simply-supported

edges and subjected to a bi-sinusoidal load, and sandwich plates with simply-supported edges and sub-
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jected to a constant transverse uniform pressure are analyzed. The results, obtained with the different

models, are compared with both exact solutions and higher-order theories solutions given in literature.

This paper is organized as follows: geometrical and constitutive relations for plates are presented in

Section 2. In Section 3, an overview of classical, higher-order and advanced plate theories developed

within the CUF framework is given. Section 4 gives a brief outline of the FEM approach and the MITC9

method to overcome the problem of shear locking, whereas, in Section 5, the governing equations in

weak form for the linear static analysis of composite structures are derived from the PVD. In Section

6, the results obtained using the proposed CUF theories are discussed. Section 7 is devoted to the

conclusions.

2 Geometrical and constitutive relations for plates

Plates are bi-dimensional structures in which one dimension (in general the thickness in the z direction)

is negligible with respect to the other two in-plane dimensions. The geometry and the reference system

are indicated in Figure 1. Geometrical relations enable to express the in-plane εkp and out-plane εkn

strains in terms of the displacement u:

εkp = [εkxx, ε
k
yy, ε

k
xy]

T = (Dk
p) u

k , εkn = [εkxz, ε
k
yz, ε

k
zz]

T = (Dk
np +Dk

nz) u
k . (1)

The explicit form of the introduced arrays of the differential operators is:

Dk
p =


∂x 0 0

0 ∂y 0

∂y ∂x 0

 , Dk
np =


0 0 ∂x

0 0 ∂y

0 0 0

 , Dk
nz =


∂z 0 0

0 ∂z 0

0 0 ∂z

 , (2)

The stress-strain relations are:

σkp = Ck
pp ε

k
p +Ck

pn ε
k
n

σkn = Ck
np ε

k
p +Ck

nn ε
k
n

(3)

where

Ck
pp =


Ck11 Ck12 Ck16

Ck12 Ck22 Ck26

Ck16 Ck26 Ck66

 Ck
pn =


0 0 Ck13

0 0 Ck23

0 0 Ck36



Ck
np =


0 0 0

0 0 0

Ck13 Ck23 Ck36

 Ck
nn =


Ck55 Ck45 0

Ck45 Ck44 0

0 0 Ck33


(4)
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For the sake of brevity, the expressions, that relate the material coefficients Cij to the Young’s

moduli E1, E2, E3, the shear moduli G12, G13, G23 and Poisson moduli ν12, ν13, ν23, ν21, ν31, ν32 that

characterize the layer material, are not given here. They can be found in [4].

3 Carrera Unified Formulation for Plates

According to the CUF [18, 25, 26], the displacement field can be written as follows:

u(x, y, z) = F0(x, y)u0(x, y) + F1 u1(x, y) + ...+ FN uN (x, y)

v(x, y, z) = F0(x, y) v0(x, y) + F1 v1(x, y) + ...+ FN vN (x, y)

w(x, y, z) = F0(x, y)w0(x, y) + F1w1(x, y) + ...+ FN wN (x, y)

(5)

In compact form:

uk(x, y, z) = Fs(z)u
k
s(x, y); δuk(x, y, z) = Fτ (z)δukτ (x, y) τ, s = 0, 1, ..., N (6)

where (x, y, z) is the general reference system, see Figure 1, and the displacement vector u = {u, v, w}

has its components expressed in this system. δu is the virtual displacement associated to the virtual

work and k identifies the layer. Fτ and Fs are the thickness functions depending only on z. us are

the unknown variables depending on the coordinates x and y. τ and s are sum indexes and N is the

number of terms of the expansion in the thickness direction assumed for the displacements.

3.1 Taylor Higher-order Theories

Many attempts have been made to improve classical plate models. The CUF has the capability to

expand each displacement variable at any desired order. Each variable can be treated independently

from the others ones according to the requested accuracy. This procedure becomes extremely useful

when multifield problems are investigated such as thermoelastic and piezoelectric applications [27, 28,

29].

In the case of ESL models, a Taylor expansion is employed as thickness functions:

u = F0 u0 + F1 u1 + . . . + FN uN = Fs us, s = 0, 1, . . . , N. (7)

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN . (8)
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For Taylor polynomials, the letter N indicates the number of terms of the expansion and the polynomial

order. Following this approach the displacement field can be written as:

u(x, y, z) = u0(x, y) + z u1(x, y) + ...+ zN uN (x, y)

v(x, y, z) = v0(x, y) + z v1(x, y) + ...+ zN vN (x, y)

w(x, y, z) = w0(x, y) + z w1(x, y) + ...+ zN wN (x, y)

(9)

For example, the theory ET2 refers to the following displacement field:

uk(x, y, z) = uk0(x, y) + z uk1(x, y) + z2 uk2(x, y) (10)

Classical models, such as the First-order Shear Deformation Theory (FSDT), can be obtained from an

ESL theory with N = 1, by imposing a constant transverse displacement through the thickness via

penalty techniques. Also, a model based on the hypotheses of CLT can be expressed using the CUF by

applying a penalty technique to the constitutive equations.

3.2 Advanced Trigonometric and Exponential expansion Theories

If a trigonometric sine series plus a constant contribution is adopted, the displacement variables can

be written as follows:

uk(x, y, z) = uk0(x, y) + sin
(πz
h

)
uk1(x, y) + ...+ sin

(nπz
h

)
ukN (x, y) (11)

where h is the whole thickness dimension and n is the half-waves number. If the linear contribution is

considered, the displacement expression is:

uk(x, y, z) = uk0(x, y) + z uk1(x, y) + sin
(πz
h

)
uk2(x, y) + ...+ sin

(nπz
h

)
ukN+1(x, y) (12)

A similar description can be provided using a trigonometric cosine series:

uk(x, y, z) = uk0(x, y) + cos
(πz
h

)
uk1(x, y) + ...+ cos

(nπz
h

)
ukN (x, y) (13)

and with the linear contribution:

uk(x, y, z) = uk0(x, y) + z uk1(x, y) + cos
(πz
h

)
uk2(x, y) + ...+ cos

(nπz
h

)
ukN+1(x, y) (14)

A complete trigonometric series becomes:

uk(x, y, z) = uk0(x, y) + sin
(πz
h

)
uk1(x, y) + cos

(πz
h

)
uk2(x, y) + ...+ sin

(nπz
h

)
uk2N−1(x, y)+

+ cos
(nπz
h

)
uk2N (x, y)

(15)
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If the linear contribution is considered:

uk(x, y, z) = uk0(x, y) + z uk1(x, y) + sin
(πz
h

)
uk2(x, y) + cos

(πz
h

)
uk3(x, y) + .....+

+ sin
(nπz
h

)
uk2N (x, y) + cos

(nπz
h

)
uk2N+1(x, y)

(16)

If an exponential expansion is employed the displacement field is:

uk(x, y, z) = uk0(x, y) + e(z/h) uk1(x, y) + ...+ e(nz/h) ukN (x, y) (17)

and adding the linear contribution:

uk(x, y, z) = uk0(x, y) + z uk1(x, y) + e(z/h) uk2(x, y) + ...+ e(nz/h) ukN+1(x, y) (18)

3.3 Refined theories with Zig-Zag Models

Due to the intrinsic anisotropy of multilayered structures, the first derivative of the displacement

variables in the z-direction is discontinuous. It is possible to reproduce the zig-zag effects in the

framework of the ESL description by employing the Murakami theory. According to [30], a zig-zag

term can be introduced into equation(7) as follows:

uk = F0 u
k
0 + . . . + FN u

k
N + (−1)kζku

k
Z . (19)

Subscript Z refers to the introduced term. Such theories are called zig-zag theories. Following this

approach the displacement field can be written as:

u(x, y, z) = F0(x, y)u0(x, y) + F1 u1(x, y) + ...+ FN−1 uN−1(x, y) + (−1)kζku
k
NZ

v(x, y, z) = F0(x, y) v0(x, y) + F1 v1(x, y) + ...+ FN−1 vN−1(x, y) + (−1)kζkv
k
NZ

w(x, y, z) = F0(x, y)w0(x, y) + F1w1(x, y) + ...+ FN−1wN−1(x, y) + (−1)kζkw
k
NZ

(20)

These refined theories can be obtained adding the zig-zag term to the Taylor polynomials expansions

or the trigonometric and exponential ones.

3.4 Acronyms

A system of acronyms is given to denote the considered kinematic models. The first letters indicate

the used approach in this work that is Equivalent Single Layer E. Sometimes a reference solution is

given with a layer-wise approach, the first letters become LW. The second letter indicates the kind of

employed function, T for Taylor polynomials, S for sines expansions, C for cosines expansions. The
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number N indicates the number of the expansion terms (except the constant term) used in the thickness

direction. The last letter Z is added if the zig-zag term is considered. If the Navier analytical method is

employed the subscript (a) is used. The considered expansion are summarized in Table 1. For example,

the theory ET1S2Z refers to the following displacement field:

uk(x, y, z) = uk0(x, y) + z uk1(x, y) + sin

(
1πz

h

)
uk2(x, y) + sin

(
2πz

h

)
uk3(x, y) + (−1)kζku

k
4Z

(21)

4 Finite Element approximation and MITC9 method

In this section, the derivation of a plate finite element for the analysis of multilayered structures is

presented. Considering a 9-node finite element, the displacement components are interpolated on the

nodes of the element by means of the Lagrangian shape functions Ni:

us = Njusj δuτ = Niδuτi with i, j = 1, ..., 9 (22)

where usj and δuτi are the nodal displacements and their virtual variations. Therefore, equation (1)

becomes:

εp =Fs(Dp)(NjI)usj

εn =Fs(Dnp)(NjI)usj + Fs,z(NjI)usj

(23)

where I is the identity matrix. Considering the local coordinate system (ξ, η), the MITC plate ele-

ments ([31]-[32]) are formulated by using, instead of the strain components directly computed from the

displacements, an interpolation of these within each element using a specific interpolation strategy for

each component. The corresponding interpolation points, called tying points, are shown in Figure 2 for

a nine-node element. Note that the normal transverse strain εzz is excluded from this procedure, and

it is directly calculated from the displacements.

The interpolating functions are Lagrangian functions and are arranged in the following arrays:

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]

Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2]

Nm3 = [NP , NQ, NR, NS ]

(24)
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Hereafter the subscripts m1, m2 and m3 indicate quantities calculated in the points

(A1, B1, C1, D1, E1, F1), (A2, B2, C2, D2, E2, F2) and (P,Q,R, S), respectively. Therefore, the strain

components are interpolated as follows:

εp =


εxx

εyy

εxy

 =


Nm1 0 0

0 Nm2 0

0 0 Nm3



εxxm1

εyym2

εxym3



εn =


εxz

εyz

εzz

 =


Nm1 0 0

0 Nm2 0

0 0 1



εxzm1

εyzm2

εzz


(25)

where the strains εxxm1 , εyym2 , εxym3 , εxzm1 , εyzm2 are expressed through equation (23) where the

shape functions Ni and their derivatives are evaluated in the tying points.

5 Governing FEM equations

The PVD for a multilayered plate structure reads:

∫
Ωk

∫
Ak

{
δεkp

T
σkp + δεkn

T
σkn

}
dΩkdz = δLe (26)

where Ωk and Ak are the integration domains in the plane and the thickness direction, respectively.

The left-hand side of the equation represents the variation of the internal work, while the right-hand

side is the virtual variation of the external work.

Substituting the constitutive equations (3), the geometrical relations written via the MITC method

(25) and applying the CUF (6) and the FEM approximation (22), one obtains the following governing

equations:

δqkτi : Kkτsijqksj = P kτi (27)

where Kkτsij is a 3× 3 matrix, called fundamental nucleus of the mechanical stiffness matrix, and its

explicit expression is given in [33]. The nucleus is the basic element from which the stiffness matrix

of the whole structure is computed. The fundamental nucleus is expanded on the indexes τ and s

to obtain the stiffness matrix of each layer k. Then, the matrixes of each layer are assembled at the

multi-layer level depending on the approach considered, for this work the ESL approach is adopted.
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P kτi is a 3 × 1 matrix, called fundamental nucleus of the external load. qksj and δqkτi are the nodal

displacements and its variation respectively.

6 Numerical results

To assess the trigonometric and the exponential polynomial expansions the following reference problems

have been considered in this section:

• A three-layer cross-ply square plate with lamination (0◦/90◦/0◦)

• A two-layer cross-ply square plate with lamination (0◦/90◦)

• A four-layer cross-ply square plate with lamination (0◦/90◦/90◦/0◦)

• A three-layer rectangular sandwich plate

6.1 Three-layer cross-ply square plate (0◦/90◦/0◦)

A three layered cross-ply square plate with lamination (0◦/90◦/0◦) and simply-supported boundary

condition is considered. The applied load is:

p (x, y, ztop) = p̂ sin
(mπx

a

)
sin
(nπy

b

)
(28)

where m = n = 1, see Figure 1. The mechanical properties of the material are: EL/ET = 25 ;

GLT /ET = 0, 5 ; GTT /ET = 0, 2 ; νLT = νTT = 0, 25. The geometrical dimensions are: a = b = 1.0.

The mechanical load amplitude at the top position is: p̂ = 1.0. The results are presented for different

thickness ratios a/h = 4, 10, 100, and reported in non-dimensional form:

ŵ =
100wETh

3

p̂ a4
; σ̂xx =

σxx

p̂
(
a
h

)2 ; σ̂xz/yz =
σxz/yz

p̂
(
a
h

) (29)

6.1.1 Convergence and locking study

First of all, a convergence study on the plate element has been performed. A composite plate with

thickness ratio a/h = 100, is evaluated. The Navier-type solution with a Taylor polynomials expansion

of the 4th order has been taken as reference solution. It can be noticed that, evaluating the transverse

displacement w and transverse shear stress σxz, the convergence is not depending on the different kinds

of employed polynomials, see Table 2. A mesh grid of 10× 10 elements ensures the convergence. Then

a locking study has been performed evaluating different types of integration methods [34] for the same
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plate structure to prove that the element is locking free, see Table 3. The plate element with the MITC9

method leads to accurate results in terms of both transverse displacement and shear stress.

For thick and thin plates a/h = 4 , 100 the results are presented in Table 4 for various expansions.

The values of the transversal displacement w, in-plane stress σxx and transverse shear stresses σxz and

σyz are compared with the exact 3D elasticity solution [35], the analytical solution calculated with a

Taylor’s polynomial expansion of the 4th order (ET4a), and the FEM solution obtained with a Layer-

Wise approach using a Legendre expansion of the 4th order (LW4).

For thin plates, a/h = 100, the following considerations are drawn:

• Regarding the transverse displacement w the exponential function (EExp4), the cosine expan-

sion (ET1C1) and its combinations with series of sine functions (ES4C4) are more accurate

than sine functions (ES5), see Figure 3. It can be noticed that the use of the linear term

(ET1Exp3, ET1S2C2) determines a significant improvement of the results with a lower number

of degrees of freedom (DOFs). The addition of the zig-zag term improves the accuracy even if for

the sine function (ES5Z, ET1S3Z), and its combination with cosine (ES4C4Z) the improvement

is lower, see Figure 4.

• The in-plane stress σxx is accurately described by all functions with or without the zig-zag term.

• For the transverse shear stress σxz the sine and the exponential functions, with the linear contri-

bution, are close to the Taylor polynomial series of the 4th order, but at interfaces the continuity

is not fulfilled. To overcome this problem, it has been employed the zig-zag function, see Figure 5.

As expected the zig-zag term improves the results, this is true excepting for the cosine function,

the sine, and their combination.

• The transverse normal stress σzz is accurately described by the cosine function and its combination

with the sine series, see Figure 6. It can be noticed that the sine series and its combination with

the linear contribution lead to a completely wrong description of the transverse normal stress.

For thick plates, a/h = 4, the following considerations are drawn:

• Regarding the transverse displacement w, the increase of the performance of exponential series,

and the sine function instead of cosine ones is more evident than the thin case. Furthermore using

the zig-zag term the results are very close to the exact solution, except for the cosine (ET1C2Z),

see Figure 7. Moreover, it can be observed that the sine series (ES5Z, ET1S3Z) predict a linear

displacement profile, while the exponential expansion is the best approximation of the solution.
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• The in-plane stress σxx is not accurately described by the cosine function (ET1C1), see Figure 8.

It can be noticed that the Taylor results at the lower interface give a minor discontinuity. Only

adding the zig-zag function the results strongly agree with the solution, see Figure 9.

• For the transverse shear stress σxz at interfaces the continuity is not fulfilled, see Figure 10. Also

in this case only the addition of the zig-zag term is able to improve the results, see Figure 11.

Exept for the cosine series, all the employed functions can lead to good results. The discontinuity

is very reduced and it is smaller than ones obtained by using Taylor polynomials.

• The transverse normal stress σzz, unlike the previous case a/h = 100, can be described correctly

by the sine series too, see Figure 12. Adding the zig-zag term the results are closer to the exact

solution, expecially the exponential expansion and the sine and cosine combination lead to very

accurate results, see Figure 13.

For the thickness ratio a/h = 10 the results are presented in Table 5. The values of the transversal

displacement w, in-plane stress σxx and transverse shear stresses σxz and σyz are compared with the

exact 3D elasticity solution and with different reference solutions taken in the literature. For moderately

thin plate, the following considerations are drawn:

• Regarding the transverse displacement w, the exponential series, and in particular the sine func-

tions are more efficient than the cosine series. Furthermore, using the zig-zag term, except the

cosine (ET1C2Z) and the sine series (ES5Z, ET1S3Z), the results are closer to the exact solu-

tion.

• The in-plane stress σxx is not correctly described as for thin plate a/h = 100, moreover the cosine

function (ET1C1) does not match the solution. Only adding the zig-zag function the results

match the exact solution.

• For the transverse shear stress σxz, also in this case, the addition of the zig-zag term to functions

series is able to improve the results and to reduce the discontinuity. Execpt for the cosine series,

all the functions employed can lead to accurate results.

• The transverse normal stress σzz is not accurately described by sine functions, see Figure 14, but

this problem is reduced compared to the thin plate a/h = 100.
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6.2 Two-layer (0◦/90◦) and four-layer (0◦/90◦/90◦/0◦) cross-ply square plate

The plates are simply-supported and different thickness ratios are studied. The geometrical and mate-

rial properties are the same of the previous three-layer plate. The plate structures are loaded by the

same bi-sinusoidal load pressure applied at the top surface.

For the 2 layered plate the results are listed in Table 6. As expected, for thin plates, a/h = 100, all the

functions lead to accurate results. Despite the transverse displacement w and the in-plane principal

stress σxx match the exact solution, the shear stresses σxz and σyz are not correctly described. For

thick plates a/h = 4, the ET4 expansion underestimates the transverse displacement and the in-plane

stress compared to the reference solution given by a layer-wise approach. All the results obtained by

the proposed trigonometric and exponential expansions are close to the layer-wise solution more than

the Taylor polynomial one. Furthermore, adding the zig-zag term to the expansion series, all the FE

results achieve significant accuracy, also in terms of shear stresses. For the 4 layered plate the results

are listed in Table 7. The values of the transversal displacement w are compared with the exact 3D

elasticity solution and with different reference solutions available in the literature. It is clear that for

thin plate all the FE results are close to the exact solution, conversely for thick plates the results match

the exact solution only by adding the zig-zag function. It can be noticed that the zig-zag function

strongly improves the solution, especially for thick plates. The reduction of computational costs is

particularly relevant in some cases compared to the layer-wise solution.

6.3 Three-layer rectangular sandwich plate

A 3 layered, unsymmetrically laminated, rectangular sandwich plate has been analyzed. The plate

is loaded by a constant uniform pressure P topz = −0.1MPa applied to the whole top surface. The

geometrical dimensions are: a = 100mm, b = 200mm, h = 12mm. The faces have different thickness:

htop = 0.1mm, hbottom = 0.5mm, and the core thickness is hcore = 11.4mm. The two faces have

the following material data: E1 = 70000MPa, E2 = 71000MPa, E3 = 69000MPa, G12 = G13 =

G23 = 26000MPa, ν12 = ν13 = ν23 = 0.3. The core made of metallic foam has the following data:

E1 = E2 = 3MPa, E3 = 2.8MPa, G12 = G13 = G23 = 1MPa, ν12 = ν13 = ν23 = 0.25.

The results of local values at top and bottom surfaces are listed in Table 8. It can be observed that

although moderately thick plates are considered a/h = (100/12), lower order theories as ET1a lead

to completely wrong results. Very accurate models are required to capture the stress distribution in

the two faces, and the importance of the zig-zag term has to be underlined for this type of layered
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structure.

7 Conclusions

This paper has dealt with the static analysis of composite and sandwich plates by means of a two-

dimensional finite element based on the Unified Formulation. The element has been assessed by

analyzing cross-ply plates under bi-sinusoidal loads and simply-supported boundary conditions, and

sandwich plates under a constant transverse uniform pressure. The results have been presented in

terms of both transverse displacement, in-plane stresses, transverse shear stresses, and transverse nor-

mal stress for various thickness ratios. The performances of the plate element have been tested, and the

different theories (classical and refined) within the CUF framework have been compared. The following

conclusions can be drawn:

1. The plate element with the MITC technique is locking free, for all the ESL considered cases and

for all the considered displacement theories. The results converge to the reference solution by

increasing the order of expansion of the displacements in the thickness direction, regardless of the

employed function type.

2. The zig-zag term is fundamental for the description of the transverse shear stress independently

of the thickness ratio a/h.

3. The combination of the linear contribution with the trigonometric and exponential series is very

important for the description of the displacement and stresses field. The linear contribution

leads to the reduction of the trigonometric and exponential terms required to reach the reference

solution.

4. The cosine series are more accurate with thin plate, a/h = 100. For thicker plates the cosine

contribution is important for the description of transverse normal stress.

5. The sine series are effective for thicker plates. For thin plates the sine series can reach good

results except for the transverse normal stress.

6. The exponential series lead to good results for all cases, especially for thicker plates.

7. For sandwich plates with weak core more accurate models are required. Using zig-zag models it

is possible to take into account the discontinuous behaviour of the sandwich layered structures.
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Tables

Table 1: Expansion terms of the proposed theories.
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Table 2: Convergence study. Plate with lamination [0◦/90◦/0◦] and with thickness ratio a/h = 100.

Mesh 4× 4 6× 6 8× 8 10× 10 ET4a LW4 3DExactElasticity[35]

ET4
w 0.4344 0.4343 0.4342 0.4342 0.4342 0.4347 -

σxz 0.295 0.287 0.284 0.282 0.281 0.398 0.395

ET1S1
w 0.4294 0.4292 0.4292 0.4292

σxz 0.308 0.300 0.297 0.295

ET1Exp3
w 0.4345 0.4343 0.4343 0.4343

σxz 0.315 0.307 0.304 0.302

ET3Z
w 0.420 0.4347 0.4347 0.4347

σxz 0.4349 0.409 0.405 0.403

ET1C2Z
w 0.4347 0.4346 0.4345 0.4345

σxz 0.414 0.403 0.399 0.397

Table 3: Locking study. Plate with lamination [0◦/90◦/0◦] and with thickness ratio a/h = 100. All the

cases are computed with a mesh of 10× 10 elements.

Reduced Selective MITC9 ET4a LW4 3DExactElasticity[35]

ET4
w 0.4342 0.4334 0.4342 0.4342 0.4347 -

σxz 0.501 0.510 0.282 0.281 0.398 0.395

ET1S1
w 0.4292 0.4284 0.4292

σxz 0.511 0.526 0.295

ET1Exp3
w 0.4343 0.4335 0.4343

σxz 0.521 0.538 0.302

ET3Z
w 0.4347 0.4339 0.4347

σxz 0.621 0.673 0.403

ET1C2Z
w 0.4345 0.4337 0.4345

σxz 0.614 0.675 0.397
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Table 4: Plate with lamination [0◦/90◦/0◦]. Transverse displacement ŵ = ŵ(a/2, b/2,+h/2), in-plane

principal stress σ̂xx = σ̂xx(a/2, b/2,±h/2), transverse shear stress σ̂xz = σ̂xz(a, b/2, 0) and σ̂yz =

σ̂yz(a/2, b, 0) .

a/h = 4 a/h = 100 DOFs

ŵ σ̂xx σ̂xz σ̂yz ŵ σ̂xx σ̂xz σ̂yz

top bottom top bottom

3DExactElasticity[35] - 0.801 -0.755 0.256 0.2172 - 0.539 -0.539 0.395 0.0828

LW4 2.1216 0.807 -0.761 0.258 0.2197 0.4347 0.544 -0.544 0.398 0.0836 17199

ET4a 2.0083 0.786 -0.740 0.205 0.1830 0.4342 0.539 -0.539 0.281 0.0734

ET4 2.0082 0.793 -0.746 0.207 0.1845 0.4342 0.543 -0.543 0.283 0.0742 6615

ES5 2.0765 0.774 -0.779 0.293 0.2110 0.4294 0.541 -0.541 0.413 0.0451 7938

ET1S1 2.0089 0.772 -0.776 0.214 0.1857 0.4292 0.541 -0.541 0.295 0.0771 3969

ET1C1 1.6497 0.470 -0.426 0.122 0.1257 0.4332 0.543 -0.543 0.144 0.0605 3969

EExp3 1.9105 0.777 -0.604 0.177 0.1657 0.3945 0.497 -0.495 -0.303 -0.547 5292

ET1Exp2 1.9794 0.801 -0.696 0.198 0.1801 0.4341 0.544 -0.544 0.265 0.0731 5292

EExp4 2.0266 0.785 -0.747 0.223 0.1860 0.4323 0.541 -0.541 0.414 0.1664 6615

ET1Exp3 2.0199 0.785 -0.757 0.215 0.1850 0.4343 0.544 -0.544 0.302 0.0743 6615

ES3C3 2.0416 0.777 -0.732 0.245 0.1760 0.3781 0.474 -0.474 -0.435 -0.840 9261

ES4C4 2.0841 0.798 -0.752 0.287 0.1994 0.4324 0.541 -0.541 0.605 0.281 11907

ET1S1C1 2.0176 0.796 -0.752 0.213 0.1868 0.4342 0.544 -0.544 0.296 0.0747 5292

ET1S2C2 2.0448 0.788 -0.742 0.241 0.1821 0.4345 0.544 -0.544 0.376 0.0712 7938

ET3Z 2.1078 0.802 -0.756 0.259 0.1856 0.4347 0.544 -0.544 0.403 0.0709 6615

ES4Z 2.1116 0.783 -0.788 0.257 0.2209 0.4274 0.538 -0.538 0.586 0.2283 7938

ES5Z 2.1117 0.783 -0.788 0.257 0.2233 0.4295 0.541 -0.541 0.370 0.0591 9261

ET1S2Z 2.1084 0.782 -0.787 0.253 0.1975 0.4296 0.541 -0.541 0.401 0.0775 6615

ET1S3Z 2.1110 0.783 -0.788 0.255 0.2167 0.4296 0.541 -0.541 0.399 0.0843 7938

ET1C2Z 2.0461 0.709 -0.663 0.259 0.1741 0.4345 0.544 -0.544 0.397 0.0673 6615

EExp5Z 2.1134 0.805 -0.755 0.259 0.1899 0.4346 0.544 -0.544 0.426 0.1229 9261

EExp6Z 2.1180 0.805 -0.759 0.253 0.2032 0.4347 0.544 -0.544 0.403 0.0791 10584

ET1Exp4Z 2.1152 0.805 -0.758 0.257 0.1897 0.4347 0.544 -0.544 0.403 0.0725 9261

ET1Exp5Z 2.1186 0.806 -0.760 0.253 0.2023 0.4347 0.544 -0.544 0.402 0.0772 10584

ES4C4Z 2.1211 0.807 -0.761 0.257 0.2213 0.4324 0.541 -0.541 0.590 0.2283 13230

ET1S3C3Z 2.1206 0.807 -0.761 0.254 0.2172 0.4347 0.544 -0.544 0.401 0.0826 11907
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Table 5: Plate with lamination [0◦/90◦/0◦] and thickness ratio a/h = 10. Transverse displacement

ŵ = ŵ(a/2, b/2, 0), in-plane principal stress σ̂xx = σ̂xx(a/2, b/2,±h/2), transverse shear stress σ̂xz =

σ̂xz(a, b/2, 0) and σ̂yz = σ̂yz(a/2, b, 0) .

ŵ σ̂xx σ̂xz σ̂yz DOFs

top bottom

3DExactElasticity 0.7530 0.590 -0.590 0.357 0.1228

L&S [36] 0.7546 0.580 -0.580 0.367 0.127

Moriya [37] 0.7512 0.5759 -0.5785 0.3993 0.1296

R−H [38] 0.7125 0.5684 - 0.1033 -

H&L [39] 0.7531 0.5884 -0.5879 0.3627 0.1284

ET4(IS)[40] 0.7268 0.5776 -0.5753 0.2948 0.1464

LW4 0.7530 0.595 -0.595 0.3602 0.1238 17199

ET4 0.7151 0.588 -0.587 0.2639 0.1038 6615

ES5 0.7380 0.591 -0.592 0.4038 0.1194 7938

ET1S1 0.7142 0.588 -0.589 0.2746 0.1066 3969

ET1C1 0.6294 0.521 -0.521 0.1387 0.0759 3969

EExp3 0.6817 0.577 -0.550 0.2104 0.0852 5292

ET1Exp2 0.7066 0.588 -0.577 0.2484 0.1013 5292

EExp4 0.7254 0.589 -0.591 0.2993 0.1066 6615

ET1Exp3 0.7203 0.588 -0.591 0.2804 0.1046 6615

ES3C3 0.7310 0.586 -0.586 0.3434 0.0860 9261

ES4C4 0.7430 0.593 -0.592 0.4015 0.1149 11907

ET1S1C1 0.7192 0.591 -0.590 0.2754 0.1051 5292

ET1S2C2 0.7338 0.591 -0.590 0.3400 0.1030 7938

ET3Z 0.7528 0.596 -0.595 0.3646 0.1038 6615

ES4Z 0.7478 0.594 -0.594 0.3624 0.1273 7938

ES5Z 0.7478 0.594 -0.594 0.3583 0.1265 9261

ET1S2Z 0.7477 0.594 -0.594 0.3607 0.1122 6615

ET1S3Z 0.7478 0.594 -0.594 0.3598 0.1230 7938

ET1C2Z 0.7381 0.575 -0.575 0.3606 0.0973 6615

EExp5Z 0.7527 0.595 -0.594 0.3662 0.1072 9261

EExp6Z 0.7529 0.595 -0.594 0.3622 0.1142 10584

ET1Exp4Z 0.7528 0.595 -0.594 0.3642 0.1062 9261

ET1Exp5Z 0.7529 0.595 -0.594 0.3620 0.1136 10584

ES4C4Z 0.7530 0.595 -0.595 0.3636 0.1265 13230

ET1S3C3Z 0.7530 0.595 -0.595 0.3611 0.1222 11907
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Table 6: Plate with lamination [0◦/90◦]. Transverse displacement ŵ = ŵ(a/2, b/2,+h/2), in-plane

principal stress σ̂xx = σ̂xx(a/2, b/2,±h/2), transverse shear stress σ̂xz = σ̂xz(a, b/2, 0) and σ̂yz =

σ̂yz(a/2, b, 0) .

a/h = 4 a/h = 100

ŵ σ̂xx σ̂xz σ̂yz ŵ σ̂xx σ̂xz σ̂yz

top bottom top bottom

LW4 2.1699 0.1106 -0.7960 0.1451 0.1215 1.0652 0.0851 -0.7217 0.1234 0.1234

ET4a 2.1282 0.1093 -0.7708 0.2878 0.1091 1.0651 0.0842 -0.7157 0.2800 0.1120

ET4 2.1281 0.1100 -0.7770 0.2901 0.1100 1.0651 0.0849 -0.7215 0.2829 0.1132

ES5 2.1376 0.1031 -0.8334 0.2259 0.0831 1.0388 0.0905 -0.7124 0.1279 0.0511

ET1S1 2.0924 0.0990 -0.8109 0.3007 0.1149 1.0388 0.0905 -0.7124 0.3046 0.1218

ET1C1 2.0403 0.1025 -0.6585 0.2255 0.0871 1.0643 0.0867 -0.7231 0.2229 0.0891

EExp3 2.1144 0.1095 -0.7249 0.2846 0.1022 0.8801 0.0713 -0.5948 -0.8887 -0.9132

ET1Exp2 2.1204 0.1101 -0.7544 0.2965 0.1109 1.0650 0.0854 -0.7222 0.2924 0.1155

EExp4 2.1228 0.1080 -0.7546 0.3036 0.1012 1.0508 0.0832 -0.7125 0.9537 0.0877

ET1Exp3 2.1279 0.1090 -0.7683 0.3003 0.1041 1.0651 0.0848 -0.7218 0.2974 0.1070

ES3C3 2.1569 0.1101 -0.7917 0.2452 0.0902 0.8020 0.0640 -0.5429 -1.9729 -0.7892

ES4C4 2.1574 0.1104 -0.7911 0.2500 0.0917 1.0508 0.0838 -0.7119 0.7852 0.3141

ET1S1C1 2.1170 0.1109 -0.7657 0.2961 0.1142 1.0644 0.0867 -0.7233 0.2956 0.1182

ET1S2C2 2.1515 0.1119 -0.7897 0.2537 0.0940 1.0651 0.0852 -0.7219 0.2400 0.0960

ET3Z 2.1261 0.1095 -0.7674 0.2648 0.1293 1.0651 0.0851 -0.7217 0.2752 0.1351

ES4Z 2.1425 0.1087 -0.8103 0.2551 0.0824 1.0418 0.0872 -0.7109 0.9506 0.3623

ES5Z 2.1445 0.1090 -0.8112 0.2438 0.0777 1.0573 0.0885 -0.7214 0.1370 0.0352

ET1S2Z 2.1408 0.1088 -0.8102 0.2678 0.0879 1.0573 0.0885 -0.7214 0.2616 0.0850

ET1S3Z 2.1430 0.1089 -0.8106 0.2555 0.0827 1.0573 0.0885 -0.7214 0.2427 0.0775

ET1C2Z 2.0789 0.1042 -0.6984 0.1437 0.1207 1.0650 0.0853 -0.7219 0.1360 0.1233

EExp5Z 2.1595 0.1105 -0.7883 0.1770 0.1481 1.0642 0.0851 -0.7212 0.1654 0.2802

EExp6Z 2.1672 0.1098 -0.7960 0.1702 0.1352 1.0651 0.0850 -0.7217 0.0912 0.1205

ET1Exp4Z 2.1638 0.1107 -0.7940 0.1735 0.1443 1.0652 0.0851 -0.7217 0.1668 0.1499

ET1Exp5Z 2.1675 0.1099 -0.7963 0.1814 0.1358 1.0652 0.0851 -0.7217 0.1739 0.1399

ES4C4Z 2.1686 0.1103 -0.7957 0.1622 0.1386 1.0519 0.0840 -0.7127 0.1466 0.7019

ET1S3C3Z 2.1685 0.1105 -0.7956 0.1725 0.1352 1.0652 0.0851 -0.7218 0.1594 0.1382
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Table 7: Plate of 4 layers [0◦/90◦/90◦/0◦] with various thickness ratios a/h. Transverse displacement

ŵ = ŵ(a/2, b/2, 0).

a/h 4 10 20 100 DOFs

3DExactElasticity 1.937 0.737 0.513 0.435

R−H [38] 1.8937 0.7147 0.5060 0.4343

R− C [41] 1.7100 0.6628 0.4912 0.4337

P&K [42] 1.8744 0.7185 - 0.4346

D&R [43] 1.9530 0.7377 0.5122 0.4333

A&S [44] - 0.6693 - -

LH&X [45] 1.7095 0.6627 0.4912 0.4337

ET4(IS)[40] 1.9506 0.7272 0.5112 0.4366

LW4 1.9367 0.7370 0.5130 0.4346 22491

ET4 1.8708 0.7179 0.5073 0.4344 6615

ES5 1.9333 0.7267 0.5062 0.4294 7938

ET1S1 1.8995 0.7167 0.5032 0.4293 3969

ET1C1 1.4894 0.6244 0.4811 0.4332 3969

EExp3 1.7668 0.6844 0.4919 0.3953 5292

ET1Exp2 1.8435 0.7098 0.5050 0.4343 5292

EExp4 1.8905 0.7252 0.5095 0.4324 6615

ET1Exp3 1.8826 0.7218 0.5085 0.4344 6615

ES3C3 1.8956 0.7258 0.5074 0.3825 9261

ES4C4 1.9013 0.7273 0.5097 0.4318 11907

ET1S1C1 1.8818 0.7210 0.5082 0.4343 5292

ET1S2C2 1.8977 0.7271 0.5101 0.4345 7938

ET3Z 1.8715 0.7179 0.5073 0.4344 6615

ES4Z 1.9207 0.7235 0.5055 0.4277 7938

ES5Z 1.9336 0.7273 0.5070 0.4303 9261

ET1S2Z 1.9171 0.7233 0.5058 0.4303 6615

ET1S3Z 1.9214 0.7237 0.5059 0.4303 7938

ET1C2Z 1.4912 0.6244 0.4811 0.4332 6615

EExp5Z 1.8908 0.7254 0.5097 0.4344 9261

EExp6Z 1.9013 0.7275 0.5102 0.4345 10584

ET1Exp4Z 1.8912 0.7257 0.5097 0.4345 9261

ET1Exp5Z 1.9004 0.7274 0.5102 0.4345 10584

ES4C4Z 1.9014 0.7273 0.5097 0.4318 13230

ET1S3C3Z 1.9022 0.7275 0.5102 0.4345 11907
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Table 8: Sandwich rectangular plate. Transverse displacement w = w(a/2, b/2,±h/2), in-plane princi-

pal stresses σxx = σxx(a/2, b/2) and σyy = σyy(a/2, b/2) .

w σxx σyy

top bottom Top Skin Bottom Skin Top Skin Bottom Skin

top bottom top bottom top bottom top bottom

LW4a[46] -9.142 -8.968 -112.4 -48.435 -133.21 166.27 -52.824 -23.320 -54.327 69.915

LW4 -9.140 -8.968 -110.7 -51.073 -132.85 166.10 -50.519 -25.617 -53.664 69.254

ET1a[46] -0.1022 -0.1020 -89.63 -88.715 15.508 20.008 -51.453 -50.932 8.4375 11.041

ET4 -0.138 -0.137 -97.17 -101.32 7.580 27.82 -77.579 -85.692 10.330 42.724

ES5 -7.305 -7.286 -112.7 -56.801 -105.96 158.63 -66.121 -38.325 -42.071 81.605

ET1S1 -1.731 -1.638 -85.10 -85.295 -47.978 84.448 -35.870 -42.617 -43.629 58.979

ET1C1 -0.127 -0.129 -88.45 -87.420 14.642 20.492 -41.521 -40.932 6.314 9.564

EExp3 -4.371 -4.323 -92.47 -78.557 -76.505 113.58 -39.169 -41.849 -44.857 62.113

ET1Exp2 -2.765 -2.730 -90.87 -79.453 -45.443 82.566 -40.886 -39.775 -29.510 46.796

EExp4 -4.497 -4.434 -64.32 -104.42 -63.669 99.959 -11.174 -68.260 -30.944 47.640

ET1Exp3 -4.835 -4.756 -68.21 -98.110 -64.585 98.892 -15.117 -63.323 -28.370 43.578

ES3C3 -7.167 -7.043 -86.88 -82.210 -100.75 132.40 -28.679 -51.200 -41.649 54.757

ES4C4 -7.725 -7.584 -100.2 -64.880 -108.01 143.89 -42.273 -36.314 -43.099 60.993

ET1S1C1 -1.873 -1.859 -92.42 -80.000 -24.335 61.361 -43.735 -38.237 -16.651 34.028

ET1S2C2 -6.630 -6.513 -87.24 -78.839 -90.690 124.87 -30.876 -47.612 -36.754 52.577

ET3Z -6.454 -6.358 -118.9 -62.869 -113.26 166.26 -62.580 -31.329 -60.878 94.730

ES4Z -7.362 -7.184 -123.1 -42.628 -114.88 126.33 -65.387 -12.490 -54.109 47.247

ES5Z -7.482 -7.303 -119.7 -45.595 -110.17 135.74 -61.693 -15.638 -48.151 55.481

ET1S2Z -6.334 -6.166 -115.7 -51.880 -92.06 116.54 -59.280 -18.998 -41.748 47.515

ET1S3Z -7.142 -6.968 -124.3 -42.770 -113.80 119.94 -66.762 -11.918 -55.304 42.962

ET1C2Z -7.650 -7.516 -105.2 -54.839 -109.73 143.35 -48.303 -27.188 -45.287 60.373

EExp5Z -7.606 -7.473 -108.1 -52.184 -108.58 142.57 -51.282 -24.240 -44.719 60.114

EExp6Z -8.278 -8.126 -107.1 -52.842 -119.37 150.98 -48.835 -26.058 -48.859 62.350

ET1Exp4Z -7.805 -7.665 -107.7 -52.359 -111.53 144.39 -50.512 -24.802 -45.700 60.124

ET1Exp5Z -8.379 -8.225 -107.7 -52.612 -121.51 152.06 -49.329 -25.945 -50.000 62.425

ES4C4Z -8.561 -8.403 -107.9 -52.185 -123.22 156.43 -49.162 -25.942 -49.863 65.144

ET1S3C3Z -8.508 -8.351 -108.7 -51.973 -121.82 156.16 -49.995 -25.507 -49.019 65.342
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Figure 1: Reference system of the plate

with a bi-sinusoidal loading.

Figure 2: Tying points for the MITC9

plate finite element.
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Figure 3: Transverse displacement w

along the thickness, with thickness ratio

( a / h ) = 100.
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Figure 4: Transverse displacement w

along the thickness, with thickness ratio

( a / h ) = 100.
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Figure 5: Transverse shear stress

σxz along the thickness, with thick-

ness ratio ( a / h ) = 100.
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Figure 6: Transverse normal stress

σzz along the thickness, with thick-

ness ratio ( a / h ) = 100.
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Figure 7: Transverse displacement w

along the thickness, with thickness ratio

( a / h ) = 4.
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Figure 8: In-plane stress σxx along

the thickness, with thickness ratio

( a / h ) = 4.
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Figure 9: In-plane stress σxx along

the thickness, with thickness ratio

( a / h ) = 4.
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Figure 10: Transverse shear stress σxz

along the thickness, with thickness ratio

( a / h ) = 4.
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Figure 11: Transverse shear stress σxz

along the thickness, with thickness ratio

( a / h ) = 4.

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ
-

zz

z

LW4

ET4

ES5

ET1S1

ET1C1

EExp4

ET1Exp3

ES4C4

ET1S2C2

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 0.47  0.48  0.49  0.5

-0.1

-0.05

 0

-0.5-0.48-0.46

Figure 12: Transverse normal stress σzz

along the thickness, with thickness ratio

( a / h ) = 4.
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Figure 13: Transverse normal stress σzz

along the thickness, with thickness ratio

( a / h ) = 4.
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Figure 14: Transverse normal stress σzz

along the thickness, with thickness ratio

( a / h ) = 10.
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