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I–vector transformation and scaling for PLDA based speaker recognition

Sandro Cumani and Pietro Laface

{Sandro.Cumani, Pietro.Laface}@polito.it

Abstract
This paper proposes a density model transformation for speaker
recognition systems based on i–vectors and Probabilistic Lin-
ear Discriminant Analysis (PLDA) classification. The PLDA
model assumes that the i-vectors are distributed according to the
standard normal distribution, whereas it is well known that this
is not the case. Experiments have shown that the i–vector are
better modeled, for example, by a Heavy–Tailed distribution,
and that significant improvement of the classification perfor-
mance can be obtained by whitening and length normalizing the
i-vectors. In this work we propose to transform the i–vectors,
extracted ignoring the classifier that will be used, so that their
distribution becomes more suitable to discriminate speakers us-
ing PLDA. This is performed by means of a sequence of affine
and non–linear transformations whose parameters are obtained
by Maximum Likelihood (ML) estimation on the training set.
The second contribution of this work is the reduction of the
mismatch between the development and test i–vector distribu-
tions by means of a scaling factor tuned for the estimated i–
vector distribution, rather than by means of a blind length nor-
malization. Our tests performed on the NIST SRE-2010 and
SRE-2012 evaluation sets show that improvement of their Cost
Functions of the order of 10% can be obtained for both evalua-
tion data.

1. Introduction
Systems based on i–vectors [1] and on Probabilistic Linear
Discriminant Analysis (PLDA) [2, 3, 4], or discriminative
classifiers [5], represent the current state–of–the–art in text–
independent speaker recognition. The i–vector is a compact
representation of a speech segment, obtained from the statis-
tics of a Gaussian Mixture Model (GMM) supervector [6] by a
Maximum a Posteriori point estimate of a posterior distribution
[1].

It has been shown that better i–vectors can be obtained by
means of hybrid DNN/GMM architectures that may take advan-
tage of the information that is not exploited by the traditional
GMM approach: the phonetic content of a rather large window
of frames [7, 8]. In particular, in this approach, a fine–grained
“phonetic” Universal Background Model (UBM) is obtained by
associating one or more Gaussians [9] to each output unit of
a DNN, trained to discriminate among the states of a set of
context–dependent phonetic units. Another approach for ob-
taining better i–vectors exploits DNN bottleneck features, de-
rived form the input of a layer with a small number of units
located in the middle of a DNN architecture. These features
have been used as a replacement of, or in combination with,
the standard MFCC features, showing good performance im-
provement [10, 11, 12] in text–independent and also in text–
dependent speaker recognition [13].
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All these methods of i–vector extraction are performed ig-
noring the model that will be used for classification, but better
results are expected if the features provided to a classifier fulfill
its assumptions. In this work we focus on an i–vector post–
processing technique that allows obtaining better features for a
PLDA classifier.

A PLDA classifier models the underlying distribution of the
speaker and channel components of the i–vectors in a proba-
bilistic framework. From these distributions it is possible to
evaluate the likelihood ratio between the “same speaker” hy-
pothesis and “different speaker” hypothesis for a pair of i–
vectors. In particular, PLDA assumes that the i–vector genera-
tion process can be described by means of a latent variable prob-
abilistic model where an i–vectorφ is modeled as the sum of
three factors, namely a speaker factory, an inter–session (chan-
nel) factorx and the residual noiseǫ as:

φ = U1y +U2x+ ǫ .

MatricesU1 andU2 typically constrain the speaker and inter–
session factors to be of lower dimension than the i–vectors
space. PLDA estimates the matricesU1, U2, and the values of
the hyper–parameters of possible parametric priors [2], which
maximize the likelihood of the observed i–vectors, assuming
that i–vectors from the same speaker share the same speaker
factor, i.e., the same value for latent variabley.

The simplest Gaussian PLDA (G–PLDA) model assumes
also a Gaussian distribution for the latent variables and i–
vectors. However, in [2] it has been shown that ML estima-
tion of the PLDA parameters under Gaussian assumption fails
to produce accurate models for i-vectors. Thus, heavy–tailed
distributions for the model priors have been proposed leading to
the Heavy-Tailed PLDA model. This model, however, is com-
putationally expensive both in training and in testing, thus it was
not considered in our experiments.

A simpler approach has been proposed in [14] that tries to
make the distribution of the i–vectors more Gaussian–like. It
incorporates a pre–processing step where the vector dimension-
ality is possibly further reduced by Linear Discriminant Anal-
ysis (LDA), and, what is more important, length normalization
(LN) is applied to the resulting features. Using these normalized
i–vectors, the performance of the Heavy–Tailed and G-PLDA
models is comparable, the latter being much faster both in train-
ing and in testing. Another technique to better fit the assump-
tion of PLDA that the i–vectors are Gaussian distributed is the
Spherical Nuisance normalization applied to the development
and test i–vectors [15, 16].

It is worth noting that LN aims at reducing both the non–
Gaussian behavior of the i–vector, and the mismatch between
the development and test i–vector length distributions. How-
ever, as well documented in [14], the performance of PLDA is
not affected if length normalization is applied to test data only,
keeping the development i-vectors in their original form. This
suggests that LN mostly compensates the mismatch between the



development and test i–vector length distributions, rather than
obtaining a transformation of the i–vectors that fits a standard
normal distribution.

In this work we cope with both problems:

• i–vectors are transformed so that their distribution be-
comes more Gaussian–like by means of a sequence of
affine and non–linear transformations, whose parameters
are obtained by Maximum Likelihood (ML) estimation
on the development set.

• the mismatch between the development and test i–vector
length distributions is reduced by estimating an i–vector
dependent scaling factor.

We show that this approach, due to the gaussianization of the i–
vectors, is able to improve the performance of a PLDA classifier
when LN is not used, and to produce better results, compared
to the standard G–PLDA with LN, when the density transfor-
mation is performed in conjunction with either LN or scaling–
factor normalization.

The paper is organized as follows: Section 2 introduces and
analyzes the density model transformations. The i–vector post–
processing transformations that we have used is illustrated in
Section 3. Section 4 presents the proposed scaling–factor nor-
malization technique. Sections 5 and 6 are devoted to the exper-
imental settings and results, respectively, and conclusions are
drawn in Section 7.

2. Density function transformations
We are interested in mapping a set of i–vectors so that their (un-
known) distribution becomes Gaussian–like. Thus, given two
probability density functions (pdf), we need a function which is
able to transform one into the other. We can cast this problem
as estimating the pdf of a random variable whose distribution is
unknown by means of ML estimation of a parametric transfor-
mation of a random variable with known pdf.

Let function

f : S1 ×Q → S2

(x,ϑ) 7→ f(x,ϑ) (1)

be continuously differentiable with respect to bothx ∈ S1 and
ϑ ∈ Q, invertible with respect tox, with S1 ⊆ R

N , S2 ⊆ R
N

andQ ⊆ R
M , and let

fϑ(x) = f(x,ϑ) (2)

where the notationfϑ(x) is used whenever the function param-
eters are considered constants.

Let alsoY be a continuous random variable overS2 with
pdf PY(y), andX be the random variable obtained applying
the inverse function:

X = f
−1

ϑ
(Y) (3)

The pdf ofX is given by [17] (pp.149–150):

PX(x) = PY(fϑ(x))
∣

∣

∣
J
fϑ
x (x)

∣

∣

∣
, (4)

whereJfϑ
x (x) is the Jacobian offϑ(x) w.r.t. x, computed atx,

with elements(i, j):

J
fϑ
x (x)

i,j
=

∂fϑ,i

∂xj

∣

∣

∣

∣

x

, (5)

and |·| denotes the absolute value of the determinant. Consid-
ering the parametersϑ as the variables to be estimated, we can
rewriteJfϑ

x (x) as:

J
fϑ
x (x) = J

f
x(x,ϑ). (6)

The ML estimate of the parametersϑ is more easily per-
formed using the logarithm of the probabilityPX(x) as objec-
tive function, which requires the evaluation of the gradients:

∇ϑ

(

logPY (f(x,ϑ)) + log
∣

∣

∣
J
f
x(x,ϑ)

∣

∣

∣

)

. (7)

Since in the next section we use a cascade of density func-
tion transformations, it is worth recalling the composition of
transformation functions [18].

Let fi,ϑi
(x) = fi(x,ϑi) , i = 1, 2, . . . , n, be a set

of n continuously differentiable and invertible functions, with
dom(fi+1) = im(fi), and letϑ = (ϑ1,ϑ2, . . .ϑn) be the set
of the corresponding parameters. Applyingk of these functions
to x gives:

Fk(x,ϑ) = Fk,ϑ(x)
.
= (fk,ϑk

◦ · · · ◦ f2,ϑ2
◦ f1,ϑ1

) (x) (8)

Let, for convenience, setF0(x,ϑ) = x. Noting that the
transformation function (8) can be rewritten as:

Fk(x,ϑ) = fk(Fk−1(x,ϑ),ϑk), (9)

and also recalling thatX = F−1

n,ϑ(Y), the log–pdf ofX be-
comes:

logPX(x) = logPY(Fn(x,ϑ)) + log
∣

∣

∣
J
Fn

x (x,ϑ)
∣

∣

∣

= logPY(Fn(x,ϑ))+
n
∑

i=1

log
∣

∣

∣
J
fi
x (Fi−1 (x,ϑ) ,ϑi)

∣

∣

∣
(10)

The gradient expressions of this objective function with respect
to the parametersϑ can be derived by means of a forward
and a backward recursion. The gradients are passed as argu-
ments, together with the objective function, to a BFGS opti-
mizer [19, 20, 21, 22] for obtaining the parameters that maxi-
mize the log–probability of the development set.
The details of the parameter estimation procedure will be illus-
trated in a forthcoming paper.

3. I–vector post–processing
In this section we present the basic density function transfor-
mation, consisting of a composition of affine and non–linear
functions, which allows us to estimate the pdf of the i–vectors
produced by a generic extraction module. Since G–PLDA as-
sumes a Gaussian distribution of the i–vectors, it is natural to
select the standard normal as pdf forY:

PY(y) = N (0, I) . (11)

In the following, the pdf associated to a functionf refers to the
pdf of (4), wherefϑ = f , andPY(y) is given by (11).

A simple and flexible non–linear function that fits our aims
is the ”sinh–arcsinh transformation” [23]:

f(x, δ, ε) = sinh(δ sinh−1(x) + ε) , (12)
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Figure 1: (a) Plot of sinh-arcsinh transformation functions, with fixedε = 0, and variable value ofδ. (b) Pdf of the
corresponding sinh-arcsinh functions. (c) and (d) Same as (a) and(b) but with fixedδ = 0.75, and variable value ofε.

It can be generalized forn–dimensional variables as:

f(x, δ, ε) =







f(x1, δ1, ε1)
...

f(xN , δn, εn)






, (13)

whereδi > 0, i = 1, . . . , n controls the tailweight of the
distribution, andεi affects the skewness of each variable. We
will refer in the following to this sinh–arcsinh transformation
function as SAS. Figure 1a plots a family of SAS functions of
a mono-dimensional variable, with fixedε = 0, and variable
value of δ, whereas Figure 1b plots the corresponding pdfs.
Figure 1c and Figure 1d show the same plots of the previous
figures, but with fixedδ = 0.75, and variable value ofε. It
can be noticed that by changing the two parameters of the SAS
function, a wide variety of mappings can be performed, rang-
ing from linear mapping (withε = 0 and δ = 1.0 , which
would keep a standard normal distribution), to semi–heavy–
tailed symmetric or skewed distributions (see Figure 1b, and
Figure 1d, respectively).

The second transformation that we propose to apply to i–
vectors is an affine transformation defined by the function:

f(x,A,b) = Ax+ b , (14)

whereA is a full–rank matrix, andb is an offset vector.
The pdf transformation building module that we propose is

the concatenation of these two functions, shown in Figure 2. We
will refer to it as an AS (Affine–SAS) module. The aim of the
first affine transformation is to de–correlate the i–vector vari-
ables so that they can be independently transformed by the SAS

 
Affine 

transformation 

SAS 

transformation 

Figure 2: Block diagram of the transformation functions.

function, and to re–scale their values toward the most suitable
range for the SAS function.
A number of AS modules can be concatenated to form a more
complex model. For example, the samples of a multi–modal
distribution can be transformed into samples approximately dis-
tributed according to the standard normal distribution by esti-
mating the parameters of a chain of AS modules, terminated by
an additional affine function.

We assessed the potential of this approach using artificial
mono–dimensional data. We generated 10000 samples from
different distributions, and estimated the parameters of a sin-
gle or two AS module functions. Some results are shown in
Figures 3 to 6, where label AS1 and AS2 refer to the single
module and two AS modules, respectively.
Figure 3a has been obtained using samples generated by a t–
student distribution with two degrees of freedom. It shows the
original t–student distribution, which is heavy–tailed compared
with a reference standard Gaussian pdf. Also shown in this fig-
ure are the Gaussian obtained by ML estimation, and the distri-
butions obtained after AS transformations. The corresponding
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Figure 3: (a) Estimation of the pdf of a t–student distribution with two degreesof freedom by means of a transformation
with one or two AS modules (AS1 and AS2, respectively). (b) Corresponding transfer functions. (c) and (d) Same as (a)
and (b), but for a Gamma distribution with location, scale, and shape equal to -2, 1, and 5, respectively.
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Figure 4: (a) Estimation of the pdf of a mixture of two t–student distributions with parameters: weights = [0.7, 0.3],
degree of freedom = [3, 2], location = [-2, 4], and scale = [1, 1] by means of a transformation with one or two AS
modules. (b) Corresponding transfer functions.
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Figure 5: (a) Estimation of the pdf of a t–student distribution with two degreesof freedom by means of a transformation
with one or two AS modules using only 50 samples of the t-student distribution.(b) Corresponding transfer functions.
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Figure 6: Zoom of a section of the transfer functions, showing
a sharp derivative corresponding to the high peak in Figure 5a
for the two AS module model.

transformation functions are plotted in Figure 3b. A similar plot
for a Gamma pdf with location, scale, and shape equal to -2, 1,
and 5, respectively, is shown in Figure 3c and Figure 3d. Of
course, a single ML estimated Gaussian cannot fit a t–student
distribution, because it tries to fit the tails of the distribution,
whereas a normal distribution, transformed by an AS2 function,
provides a much better fitting of the original pdf. AS transfor-
mations do also a good job fitting the Gamma distribution even
if it is worth noting that a Gamma distribution is defined in the
interval (0,∞), whereas its AS approximation can also gener-
ate negative samples.
A chain of AS modules also allows approximating a multi–
modal distribution as shown in Figure 4a and Figure 4b, where
the original samples are generated from a mixture of two t–
student distributions with parameters: weights = [0.7, 0.3], de-
grees of freedom = [3, 2], location = [-2, 4], and scale = [1, 1].
In this case, even a mixture of two Gaussians does not fit well
the original distribution.
Finally, the plots of Figure 5a and Figure 5b are an example of

incorrect estimation, due to the scarcity of samples. The orig-
inal pdf is the same t–student distribution with two degrees of
freedom of Figure 3a, but the estimation is performed with 50
samples only. In this case, the AS2 model has too much free-
dom (and too many parameters), thus it generates a distribution
with two sharp peaks. The highest peak corresponds to the sharp
derivative visible in Figure 6, which is a magnified version of a
section of the transformation functions shown in figure 5b.

4. I–vector scaling
As stated in [14], LN allows reducing the mismatch between the
development and test i-vector length distributions.

We propose a different technique to estimate scaling factors
that aims at compensating this dataset mismatch. We assume
that i–vectors are sampled from different distributions charac-
terized by independent scaling parameters. Thus an i–vectorφi

is generated by a random variable whose pdf is described by the
transformation:

Φi = α
−1

i f
−1

ϑ
(Φ)

= (fϑ ◦ gαi
)−1(Φ) , (15)

whereΦ ∼ N (0, I), αi > 0 is an i–vector dependent scaling
parameter, andgαi

(x) = αix. The termsαi can be obtained
by ML estimation similarly to theϑ parameters.

It is worth noting that LN can be obtained as an approxi-
mate solution of our AS transformation function, when it de-
generates to a linear function, i.e., the SAS parameters are set
to δ = 1 andε = 0, respectively, and are not re–estimated.

Let f be the linear transformation:

fA(x) = Ax . (16)

From (15), the distribution of i–vectorφi is given by:

φi ∼ N (0, α−2

i A
−1

A
−T ) . (17)

ML optimization can be performed by alternating the estimation
of the parameters ofA and of eachαi. Starting fromαi = 1,
an optimal solution forA is given by:

A
T
A = Σ

−1
, (18)



Table 1: NIST SRE 2010 enrollment and test conditions.

Condition
Female targets Male targets

Enrollment Test Channel
/ non-target trials / non-target trials

1 2326 / 449138 1978 / 346857 interview interview same microphone
2 8152 / 157394 6932 / 121558 interview interview different microphones
3 1958 / 334438 2031 / 303412 interview telephone
4 1751 / 392467 1886 / 364308 interview microphone
5 3704 / 233077 3465 / 175873 telephone telephone different numbers

Table 2: Results for the core extended NIST SRE2010 female tests in termsof % EER and minDCF10 using different models.α–AS
refers to the AS model with scaling factor.

System
Cond 1 Cond 2 Cond 3 Cond 4 Cond 5 DCF10 average

EER DCF10 EER DCF10 EER DCF10 EER DCF10 EER DCF10 improvement

G–PLDA 2.06 0.288 3.60 0.541 3.27 0.481 1.71 0.335 3.91 0.417 -
AS without scaling 2.15 0.221 3.36 0.462 2.96 0.414 1.61 0.290 3.19 0.391 -

G–PLDA with LN 1.81 0.255 2.83 0.476 1.95 0.367 1.21 0.295 2.19 0.347 0 %
G–PLDA with Sph iter. 1 1.81 0.254 2.60 0.458 2.04 0.379 1.15 0.303 2.08 0.351 -0,3 %
G–PLDA with Sph iter. 3 1.88 0.249 2.53 0.448 2.04 0.372 1.15 0.298 2.08 0.352 1,2 %
AS with LN 1.63 0.223 2.86 0.432 2.25 0.402 1.31 0.273 2.06 0.344 3,8 %
α–AS iter. 1 1.80 0.204 2.83 0.424 2.15 0.373 1.20 0.280 2.03 0.333 7,2 %
α–AS iter. 2 1.63 0.192 2.61 0.408 2.20 0.355 1.14 0.237 2.24 0.345 11,7 %
α–AS iter. 3 1.38 0.192 2.58 0.406 2.30 0.361 1.20 0.237 2.16 0.322 12,8 %

whereΣ denotes the i–vector covariance (assuming zero–mean
i–vectors). GivenA, the log–likelihood for i–vectorφi is given
by:

logP (φi) = D logαi −
1

2
α
2
iφ

T
i Σ

−1
φi + k , (19)

whereD is the dimension of the i–vectors, andk collects the
terms that do not depend onαi. Setting the derivative with re-
spect toαi to 0 we obtain:

D

αi

− αiφ
T
i Σ

−1
φi = 0 . (20)

The ML estimateαML
i of eachαi is then:

(

α
ML
i

)−1

=

√

φT
i Σ

−1φ

D
, (21)

Applying the full transformationfϑ ◦ gαi
to an i–vector us-

ing these estimates leads to the classical length–normalized i–
vector (up to a linear transformation, which is irrelevant for
PLDA).

In general, the effect of the application of the functiongαi

can be interpreted as a length normalization tuned for the i–
vector distribution described by the transformationfϑ.

In order to estimate both the parameters of the transforma-
tion ϑ and the scaling factorsαi we adopt an iterative pro-
cedure. During training, the parametersϑ, which are shared
among all i–vectors, and the parametersαi, which are i–vector
dependent, are alternatively estimated. At testing time, we only
estimate the parametersαi of the test i–vectors. Once the pa-
rameters are estimated, we apply the transformationfϑ ◦ gαi

to each i–vector. The full chain of transformations is shown in
Figure 7.

5. Experiments
The performance of the proposed approaches has been mostly
assessed performing a set of experiments on the NIST SRE
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Figure 7: Chain of transformation functions including the scal-
ing factor module.

2010 extended core female tests [24], which are the most diffi-
cult for this evaluation. Other experiments, that confirm the re-
sults of the former tests, were also performed on the SRE 2012
[25].

For the SRE 2010 experiments the i–vectors were pro-
vided by Brno University of Technology (BUT), and were ob-
tained by using cepstral features, extracted using a 25 ms Ham-
ming window. In particular, 19 Mel frequency cepstral coeffi-
cients and the log-energy were extracted every 10 ms. These
20–dimensional feature vectors were subjected to short time
mean and variance normalization using a 3s sliding window.
Delta and double delta coefficients were then computed using
5 frame windows giving 60–dimensional feature vectors. The
i–vector extractor was based on a 2048–component full covari-
ance gender–independent UBM, trained using NIST SRE 2004–
2006 data. Gender–dependent i–vector extractors were trained
using the data of NIST SRE 2004–2006, Switchboard II Phases
2 and 3, Switchboard Cellular Parts 1 and 2, Fisher English
Parts 1 and 2.

We implemented the PLDA classifier according to the
framework illustrated in [4]. All the experiments were per-
formed using i–vectors with dimensionD = 400. In these ex-
periments the i–vector extraction post–processing includes also
a preliminary Linear Discriminant Analysis (LDA), which re-
duced the vector dimensionality to 150. This value has been
selected according to the results of previous experiments with
standard i–vectors, and also to reduce the complexity of the AS
approach.

Since the BUT i–vectors were not available for the SRE
2012 experiments, we extracted and used, instead, our stan-



Table 3: Cprimary for the core extended NIST SRE 2012 tests using different models.α–AS refers to the AS model with scaling factor.

System
Cond 1 Cond 2 Cond 3 Cond 4 Cond 5

interview phone call interview phone call phone call
without added noise without added noise with added noise with added noise noisy environment

G–PLDA 0.311 0.429 0.245 0.590 0.486
AS without scaling 0.337 0.446 0.275 0.615 0.497

G–PLDA with LN 0.316 0.323 0.255 0.457 0.366
α–AS iter. 1 0.268 0.313 0.236 0.474 0.357
α–AS iter. 2 0.264 0.301 0.246 0.472 0.342
α–AS iter. 3 0.261 0.299 0.240 0.470 0.342

dard feature set, consisting of 45-dimensional feature vectors
obtained by stacking 18 cepstral (c1-c18), 19 delta (∆c0-∆c18)
and 8 double–delta (∆∆c0-∆∆c7) parameters. We trained
a gender–independent i–vector extractor, based on a 1024–
component diagonal covariance UBMs, estimated with data
from NIST SRE 2004–2010, and additionally with the Switch-
board II, Phases 2 and 3, and Switchboard Cellular, Parts 1 and 2
datasets. The i–vector dimension was again set toD = 400. In
these experiments the i–vector extraction post–processing does
not include any dimensionality reduction. Previous experiments
with the baseline PLDA system have shown that LDA is not ef-
fective for this dataset, probably due to the larger number of
training speakers.

The estimated model uses a single AS only, and the addi-
tional final affine transformation because more complex mod-
els did not improve the performance. The BFGS optimization
was terminated when the log-likelihood of the development data
stopped improving.

A set of experiments was also performed on the SRE 2010
evaluation using the Spherical Nuisance normalization (referred
to as ”Sph” in Table 2) applied to the development and test i–
vectors [16].

6. Results
In this section we compare the performance of a baseline G-
PLDA system, without and with length normalization, Spheri-
cal Nuisance normalization, and our proposed approach, with-
out and withα-scaling.

Table 2 summarizes the results of the evaluated approaches
on the female part of all extended core conditions in the NIST
2010 evaluation. The enrollment and test conditions for this ex-
periments are given in Table 1.
The recognition accuracy is given in terms of percent Equal Er-
ror Rate (EER) and Minimum Detection Cost Function defined
by NIST for that evaluation (minDCF10). The scores are not
normalized. Last column shows the percentage of the average
minDCF10 improvement with respect to the baseline G–PLDA
system using length normalized i–vectors.

The performance of the G–PLDA system using i–vectors
without length normalization is shown in the first row of
Table 2. Excluding the EER in condition 1, all other results
show a significant improvement. This suggests that the gaus-
sianization of the i–vector pdf is effective for PLDA classifi-
cation, giving on average approximately 16% improvement of
minDCF10.
In the fourth and fifth rows of Table 2 it is possible compare the
performance of the Spherical Nuisance normalization, after a
single or three iterations (no improvements was observed using
more iterations).

The last three rows of the table show the improvement obtained
by iterating the estimation of the parameters of the AS model,
and of the scaling factors. One can observe that our approach
achieves approximately 13% average improvement with respect
to G–PLDA with LN.
Finally, the row labeled ”AS with LN” refers to a system that
uses the AS model, but replaces the scaling factor function with
the standard LN. This comparison is useful to assess the impor-
tance of using both techniques of our proposed approach. Over-
all, it can be noticed that the largest performance improvement
is obtained on the microphone conditions (Cond 1, 3, and 4),
suggesting that the i–vectors extracted in these conditions most
benefit of the proposed transformations.

The results of tests on the SRE 2012 are given in Table 3
in terms of Cprimary, the official cost function defined in the SRE
2012 evaluation plan [25]. One can observe that AS without
scaling gives worse results with respect to G–PLDA without
LN. We believe that this is caused by two effects. The i–vector
dimensions are not reduced, thus the model has more param-
eters, which can lead the overfitting. Moreover, it is possible
that the mismatch between the development and test i–vectors
is more relevant, thus its effects could be amplified by the non–
linear transformation. On conditions 1, 2, and 5, which do not
include artificial added noise in test, AS with scaling confirms
its effectiveness with respect to G–PLDA with LN. Since the
artificial noise does not appear in the development set, for the
other two conditions, our approach is probably less effective in
modeling the distribution of the test i–vectors, thus it produces
worse results.

7. Conclusions

We have presented a method for transforming the i–vectors so
that their distribution becomes more suitable to discriminate
speakers using PLDA. We employ a sequence of affine and non–
linear transformations, the parameters of which are obtained by
Maximum Likelihood (ML) estimation on the development set.
We have also proposed a complementary technique to address
the mismatch between the development and test i–vector distri-
butions. Our approach is beneficial for G–PLDA based speaker
recognition, in particular for the microphone conditions. Al-
though LN is a fast and effective technique, we achieved a sig-
nificant improvement (up to 13% relative, on average). Our i–
vector processing is more complex, but its computational cost
is comparable to the standard i–vector extraction, thus it does
not sensibly affect the PLDA classification costs.
Future work will be devoted to the evaluation of the capability
and limits of more complex models.



8. Acknowledgments
We would like to thank Niko Brummer from Agnitio for trig-
gering our interest in the topic of density model transforma-
tions, during the Torino Speaker Recognition Summer Work-
shop 2015 (TOSREW 2015). We are also indebted with Oldřich
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