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Design domains and abstraction levelsfor
effective smart system simulation

Sara Vinco, Michele Lora, Valerio Guarnieri, Jan Vanhese)ibios Trachanis,
Franco Fummi

Abstract Smart systems cover a wide variety of domains, ranging froatcgue
to digital, with power devices, micro-sensors and actisatgp to MEMS. This high
level of heterogeneity makes design a very challenging tskach domain is sup-
ported by specific languages, modeling formalisms and sitiwul frameworks. A
major issue is furthermore posed by simulation, that hgawipacts the design and
verification loop and that is further complicated by such atetbgeneous context.
This chapter provides a formalization of the typical abdgiom levels and design
domains of a smart system, with the goal of identifying a {ecole in the design
flow for co-simulation and simulation scenarios. Moreogemethodology is pro-
posed to move from the co-simulated heterogeneity to a sitalble homogeneous
representation of the entire smart system at two level dfatison: functional level
and transactional level. At functional level, all compotsare implemented in C++,
with the goal of understanding the role of the underlyingcdyonization and sim-
ulation semantics and their overhead on simulation perdoca. At transactional
level, two wide-spread simulation framework®,, SystemC and SystemVue, are
adopted to ease code integration, even in presence of végylgeneous design
flows.
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Harvesting Device Power Energy Storage:
(PV, Piezo, etc.) Management ST
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| Power Actuators: SiC, GaN, Power Mosfet, IGBT |

Fig. 1 Typical components of a smart system

1 Introduction

Smart systems represent a broad class of systems defingelbgent, miniaturized
devices incorporating functionality like sensing, acioatand control. In order to
support these functions, they must include sophisticateichaterogeneous compo-
nents and subsystems such as: application-specific sesrst@ctuators, multiple
power sources and storage devices, intelligence in the édower management,
baseband computation, digital signal processing, powtiagars, and subsystems
for various types of wireless connectivity (as shown in Fégil).

Smart components and subsystems are developed and prodliticagtry dif-
ferent technologies and materials specific to the corredipgnrdomain and tech-
nology. The heterogeneity involves not only the languagéamework adopted,
but also different levels of abstraction and different camimation and synchro-
nization styles. As of today, no design methodology andsteaist that can mas-
ter, simultaneously and in a seamless manner, all the clygtethat designers of
smart micro-systems are confronted with when new produess o be developed.
Nevertheless, modeling and design capabilities for hgemeous components and
subsystems are today available at specialized design ©iansesilicon makers in
various forms. On the other hand, system integrators tjipibave separate tooling
to model the environment. As a result, the challenge in théization of a Smart
Systems goes beyond the design of the individual compor@atsubsystems (an
already difficult task by itself), but rather consists in@eenodating a multitude of
functionality, technologies, and materials.

In this context, simulation is a very critical task, as eacdmponent domain
adopts specific tools and frameworks, that do not cover thelevbimart system
heterogeneity. On the other hand, simulation is a key phrateei design and veri-
fication process of a system, as it heavily impacts time-toket and the competi-
tiveness of the final product.

The goal of this chapter is to ease simulation and validaif@mart systems. In
this context, it provides @xonomy of abstraction level/design domains, to highlight
challenges and tools available for each domain. This altoidentify a precise role
in the design flow for co-simulation and simulation scersgrénd thus to outline the
possible strategies for gaining correct simulation of gregstem. The two comple-
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mentary approaches are compared with the goal of showipgcésge strengths and
weaknesses.

The chapter also aims at enhancregse and integration by showing how state-
of-the art and commercial tools can ease the adoption of hemepus simulation,
with automatic code generation from lower abstraction|kewad automatic inte-
gration of heterogeneous interfaces.

As a result, the chapter buildscamprehensive modeling and simulation frame-
work that supports both digital, analogue and circuit-levekdgsions simultane-
ously. This improves the contemporary smart systems ddkignin such a way
that a system level simulation of all the heterogeneous cormpts/sub-systems of
a smart system will be possible. This advances state-e&tha@pproaches by sup-
porting the development of smart systems, their integnaiod efficient simulation.

The chapter is organized as follows. Section 2 provides &draond on smart
system design, by listing available frameworks and forsmadi, together with state-
of-the-art tools. Section 3 identifies the typical absimacievels and design do-
mains involved in smart system design, with the goal of de§ira taxonomy of
the most widespread tools and languages. Finally, Sectfmogoses code conver-
sion and generation approaches to gain homogeneous sonutdtthe heteroge-
neous components of a smart system, by working on both layggarsd formalisms.
Section 5 provides experimental evidence of the proposedticas, and Section 6
concludes the Chapter with some concluding remarks.

2 Background on Smart System Modeling

Smart components (and sub-components) are developedahayed with very dif-
ferent technologies and materials, specific to the cormedipg domain. The goal of
this Section is to provide the necessary background forriegsed methodologies.
Section 2.1 outlines the most wide-spread formalisms aardédworks available in
the literature for tackling smart systems heterogeneihjlerSection 2.2 deepens
the ones adopted in the proposed flow.

2.1 Formalismsand Frameworksfor Smart System Modeling

The heterogeneity of smart system involves not only thedagg or framework
adopted, but also different levels of abstraction and comoation and synchro-
nization styles. An evidence of this are the adoptestription languages, that only
target specific domains, such as digital and software coemsr(SpecC and Sys-
temC) or analogue components (VHDL-AMS, Verilog-AMS and@®nC-AMS).

In the literature, the main approaches proposed for hagdlich a heterogeneity
are (i) top-down flows, relying either on model-based de$§iBD) or on Models
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of Computation (MoCs), and (ii) co-simulation, which exipdaifferent simulation
environments to take care of the heterogeneity of the sygt8m

In MBD approaches, the system model is at the center of the design process and
it is continually refined throughout a strictly top-down é&pment flow [5, 22,
23]. Components following different synchronization macisms are put together
through data conversion, that must be implemented mantialiy not guaranteeing
correct integration.

SeveraMoCs have been proposed to describe different aspects of snsaensy.
As an example, Extended Finite State Machines (EFSMs) [E8ha enhancement
of traditional FSMs suited for describing digital HW comports and cycle-accurate
protocols, while hybrid automata have been defined to allenintegration of con-
tinuous physical dynamics with discrete behaviors [20]fddtunately, every MoC
is a stand-alone environment that can not cover all the dugr@mprised in smart
system development. Forcing communication through macaralersions between
MoCs does not provide any guarantee of correctness of tHe déisalt.

The complementary approach is to integrate existing compisnn a bottom-
up flow. This is realized witlto-simulation environments where each componentis
simulated in its native environment and framework. Diffarsimulators are then
connected by defining rules and conversions about time nesneigt and event
ordering, supported methods of communication and rulesro€gss activation
[10, 17]. However, co-simulation assemblies heteroges@mmnponents without
providing a rigorous formal support, and it only moves thehpem of integrating
heterogeneous components to the problem of integratifey€ift simulators.

2.2 Adopted Platformsfor Smart System Design

This section gives a very brief overview of the main tools pladforms used in this
work for smart system modeling and integration: SystemC SystemC-AMS as
a language supporting a number of abstraction levels (@e2t2.1), HIFSuite for
automatic conversion of reused code and components (8&t®02), SystemVue
as a simulator and co-simulator (Section 2.2.3),@RtVERCM as a MoC spanning
across various heterogeneous domains (Section 2.2.4).

2.2.1 SystemC and SystemC-AM S

SystemC is a widely deployed extension to C/C++ for desegttiW constructs,
ranging from register-transfer level up to transactiomakl [1]. The underlying
simulation kernel is entirely event-based,, a centralized scheduler controls the
execution of processes based on events (synchronizétioa nbtifications or sig-
nal value changes). SystemC provides also a methodologyeféorming abstract
modeling, simulation through generalized modeling of camioation and synchro-
nization: Transaction Level Modeling (TLM) [3].
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The SystemC simulation kernel has not been natively dedigménandle the
modeling and simulation of analog/continuous-time systefe recent extension
SystemC-AMS [2] was designed for overcoming this laick, for modelling and
simulating interacting analog/mixed-signal functionabsystems, thus allowing to
extend the adoption of a SystemC-based environment alsdre-®inctional, con-
tinuous time domains.

SystemC-AMS provides different abstraction levels to cavevide variety of
domains.Timed Data-Flow (TDF) models discrete time processes, that are sched-
uled statically by considering their producer-consumeretielenciesLinear Sg-
nal Flow (LSF) supports the modeling of continuous time behaviorsugh a li-
brary of pre-defined primitive modules.d., integration, or delay), each associated
with a linear equatiorklectrical Linear Network (ELN) models electrical networks
through the instantiation of predefined primitives},, resistors or capacitors, where
each primitive is associated with an electrical equatinrcdse of ELN or LSF de-
scriptions, a SystemC-AMS AD solver analyzes the ELN and t&mponents to
derive the equations modeling system behavior, that aveddb determine system
state at any simulation time.

SystemC-AMS ELN

(Electrical Linear SystemC-AMS LSF SystemC-AMS TDF

Network) (Linear Signal Flow) (Timed Data Flow) Additional s.chedu//ng
—and semantics layers
| Linear DAE solver | | Static scheduler | defined by SystemC-AMS

| Synchronization layer |

SystemC (and TLM) standard scheduler

Fig. 2 Architecture of the SystemC scheduler as extended witte8yStAMS support.

As highlighted by Figure 2, the key feature of all SystemGCeastons is that
overall simulation in handled by the sole SystemC simutekiernel, that interacts
with its extensions to define, time after time, both the ekeoujueue and the cor-
responding system evolution.

2.2.2 HIFSuite

HIFSuite is a set of tools and application programming fiatees (APIs) that pro-
vide support for modeling and verification of HW/SW systerhS][ The core of
HIFSuite is the HDL Intermediate Format (HIF) language upiich a set of front-
end and back-end tools have been developed to allow the ionef HDL code
into HIF code and vice versa. HIFSuite allows designers toimdate and inte-
grate heterogeneous components implemented by usingatiffieardware descrip-
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tion languages (HDLs). Moreover, HIFSuite includes toasich rely on HIF APIs,
for manipulating HIF descriptions in order to support cotdeteaction/refinement
and post-refinement verification, includi®gT, a tool for abstracting RTL digital
components to TLM or C++ [8].

2.2.3 SystemVue

SystemVue is an electronic design automation (EDA) envirent for electronic
system-level (ESL) design, focused on RF and DSP system# glypports com-
plex RF envelope carriers and dataflow simulations [21]. {at&nVue, a system
is described as a schematic of components connected wiés witd busses. The
simulation technology is based on a Data-Flow MoC and in $&dan the Ptolemy
multi-domain, heterogeneous simulation platform [22].

SystemVue is well suited for the integration of heterogersesystems. It pro-
vides numerous libraries with parameterized componerdsraarfaces to diverse
modeling formats, ranging from MATLAB to the main HDLs, sua Verilog and
VHDL. Furthermore, it allows to create custom componentsath language or
C++ and to add them to a purely SystemVue system. System\ymosis multi-
domain simulations through links to event-based as wellirasiit simulation en-
gines, such as SystemC and ModelSim, may be extended tagaileedomulations.

2.2.4 UNIVERCM

UNIVERCM is an automaton-based formalism that unifies the modedingoth
the analogueife.,, continuous) and the digital.€., discrete) domains, as well as
hardware-dependent SW. A formal and complete definitionadlable in [19].

In eachUNIVERCM automaton (depicted in Figure 3), states model the contin
ous dynamics of the system as a condition that must be sdtisfigerform contin-
uous evolution (invariant) and a predicate modeling théwusian of variables over
time (flow). Edges between states model the discrete dyseasievolution of vari-
ables and activation of synchronization events, contlddea boolean predicate on
the variable state and by synchronization checks.

State priority

Edge priority State priority
Invariant Guards on Check Invariant
Flow predicate variables synchro Flow predicate
Atomic Update Update Atomic

variables synchro

Fig. 3 Example ofuNIVERCM automaton
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UNIVERCM is an important resource in smart system design as it issuéed
for the application to heterogeneous domains [19]. Indésedgomputational model
allows to cover the heterogeneity that characterizes sggthrmis, ranging from ana-
logue and digital HW up to dedicated SW. [19] presented a celrgnsive reuse and
design flow based oNIVERCM, thus showing how it is possible to provide for-
mal rules and automatic tools to convert the heterogeneity\ivVERCM and to
produce a homogeneous simulatable implementation of thergeedUNIVERCM
system. Thus)NIVERCM enhances reuse and bottom-up design.

3 Analysisof smart system simulation solutions

Simulation and design are heavily influenced by the abstra&tvel of each com-

ponent and, as a consequence, by the level of heterogehaitgharacterizes the
system in terms of domains, abstraction levels and synctation mechanisms. It
is thus necessary to clearly identify the abstraction lewalved in smart system
design (Section 3.2) and to associate each domain and sontdahe correct level.

For this reason, this section proposes a taxonomy that iagsedrameworks and
design flows to each domain and abstraction level (Secti®n Bhis constitutes a
necessary starting point for understanding the impactstrattion levels and of the
heterogeneity/homogeneity trade-off on simulation (Bec3.4).

3.1 Typical domains of smart system design

The typical classes of components of any smart system angifidd in terms both
of constituting characteristics and of rala.t. the inner information/energy flows.
For this reason, components are sub-divided into six mainadias:

e MEMS sensorsand actuators, in charge of communicating with the surrounding
environment;

e power sources, necessary to guarantee correct functioning of all othempm
nents;

o discrete and power devices, as parts of the energy flow, responsible for energy
dispatching and harvesting;

e analogue and RF components, mainly responsible for signal processing, trans-
mission and reception;

e digital HW, core of the system processing and functionality;

e embedded SW, as system controller and main mean of communication wigh th
end users.

The main simulation problems of smart systems derive framteterogeneity
that requires the use of different design languages andrdiit abstraction levels.
Moreover, it is extremely unlikely that a single team haskhewledge to cover all



52 Sara Vinco et al.

such design domains, thus, we have to assume that a set ghdeams must co-
operate by using their own favorite design languages, It faere is ndEsperanto
able to effectively model all such domains. A variety of dedanguages has rather
been proposed in the past decades to cover specific desigummrand some stan-
dards de-facto became the reference languages for deaigs &pecialized in each
design domain. This challenging scenario will be the fodith® next sections.

3.2 Abstraction levels of smart system design

The main factors determining the level of abstraction dmetgranularity, inter-
connection model, state space granularity and data aggreg@me granularity
is an important dimension in a heterogeneous environmentay be continuous
or discrete time, or follow an event-based semantics whiere ticks only when
the system state changes. Theerconnection model describes communication and
synchronization between components as potential or flomtifiess (conservative
systems), flow charts or transactions. Tnanularity of state space details data ag-
gregation for simulation purposés., variables managed by differential equations,
symbolic variables or objective constructe( system state describes the possi-
ble behaviore.g., C++). Finally,data aggregation states whether the component is
modeled by considering the minimum (black box) or maximutegcbox) num-
ber of state space variables necessary for a correct repatisa of the observable
behavior.

Given these factors, it is possible to identify five main edogtion levels, typical
of smart systems.

e At transactional level, simulation is strictly event-based and inter-comgut
communication happens via transactions (that provide amamication protocol
to the system). System state is modeled with variables.

e At functional level, simulation is event-based but communication redieghe
flow chart interconnection style.

e The dtructural level has two main approaches depending on time granularity
Continuous time evolution is modeled with differential atjans and by observ-
ing conservative laws. Discrete time may adopt both evased or flow chart
synchronization, and finite set variables are adopted.

e At device level, simulation can be both continuous or discrete tintee Major
difference is that at device level all variables are modelgglicitly, while struc-
tural level models only those variables that are strictlgassary for simulation
purposes.

e Thephysical level adopts continuous time synchronization and the cwatee
interconnection style. State space is described with ooatis fields as differen-
tial equations and all variables are modeled in a clear bpxagzh.
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3.3 Design-domains/simulation-level taxonomy

Given the variety of abstraction levels and the heterogesemmains typically
present in any smart system, it is possible to build the dedmmains/simulation-
level taxonomy shown in Figure 4. Such a chart identifies th&traction level
(rows) and the domain (column) of the most widespread todlamguages adopted
in the context of smart systems. This allows to correctlfedéntiate the use of co-
simulation and simulation according to the two dimensidiest in bold shows the
typical entrance level and tools for each domain.

MEMS, sensors|  Power Discrete and Analog Digital Embedded
and actuators sources |power devices| —and RF HW SW
SystemVue, SystemVue 7 5
TRANSACTIONAL| SystemVue |[SystemVue|[ SystemVue | SystemVue | SystemC QEMU ’ =
(TLM/AMS) =)
i C++, C++, C++, S
FUNCTIONAL Gt Gt G+ SystemVue [ SystemC QEMU |] &
ADS, Matlab, Matlab, ADS, Matlab, Cycle 7]
STRUCTURAL | AMS HDLs, | Simulink, ADS AMS RTL HDL | accurate =
MEMS+ |AMS HDLs HDLs QEMU 8
Matlab, EMPro, EMPro, <
DEVICE MEMS+, SE& Spectre, Spectre, }I?]I;/ILSS - o S
AMS HDLs pt Momentum | Momentum 2
‘ Matlab, FEM. EMPro, EMPro, AMS pr
PHYSICAL MEMS+, Spi Spectre, Spectre, HDL - ]
FEM pice Momentum | Momentum s

Fig. 4 Design-domains/simulation-level taxonomy, identifyitige abstraction level (rows) and
the domain (column) of the most widespread tool and langaiagepted in the context of smart
systems. Text in bold shows the typical entrance level aals for each domain.

Models belonging théowest abstraction levels (i.e., physical, device and struc-
tural) are represented by different domain-specific desigguages. They must thus
be simulated by using their own simulaterd., Matlab, Modelsim, EMPro). For this
reason, a framework covering more than one domain can bemgsited only by
usingco-simulation techniques which connect different tools by exchanging simu-
lation data from one tool to another.

Moving to thefunctional level, there is a convergence in the modeling language,
as all models belonging to different domains are repregent€++. This would
in principle allow a simulation among different domains.wéwer, the MoC im-
plemented into each C++ model can be different from domaidaimain. Thus,
simulation cannot be simply obtained by linking functio@a+ models, but such
models must also be coheremt.t. the same MoC. Thus, either the chosen MoC
covers all domains or some data and synchronization caovessnecessary.

At transactionlevel, simulation frameworks enforce a common transaction-dhase
communication protocol to all domains. This allows to sesssly integrate compo-
nents belonging to different domains and based on diffévier@@s and synchroniza-
tion mechanisms.
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3.4 Impact of MoCs on simulation and co-simulation performance

The taxonomy in Figure 4 helps in further understanding theaict of MoCs and
of heterogeneity on simulation and co-simulation at déferabstraction levels.

As mentioned in Section 3, the heterogeneity of litveest abstraction levels
forces to simulate each design domain by using ad-hoc siorslaCo-simulation
frameworks are thus built by connecting different simulgtsuch as shown in
[10, 17]. Unfortunately, explicitly modeling the synchipation between simula-
tors, different for language, formalism and underlying Md&@avily impacts sim-
ulation performance and effectiveness [19]. Other apgresi@chieve a lighter im-
pact by compiling separately the different formats anditigkhem together, such
as done by ModelSim to co-simulate SystemC and VHDL. Thistégapproach is
still affected by the presence of heterogeneous MoCs, atathesharing mechanism
and time synchronization introduce a heavy overhead.

Functional level brings to a convergence in terms of modeling language and
framework, thus showing the impact of MoCs to the full. If &+ components
follow the same MoC, then they can easily integrated with umhier overhead.
Else, if the adopted MoCs are heterogeneous, it becomessaygdo introduce a
communication layer for applying data and synchronizationversion.

Communication and synchronization are further easetlaasaction level, as
transactions and standard interfaces force a single corgation protocol to all
components. This mitigates the effect of having multiple@dpas problems risen
by data sharing and time synchronization are moved insieérémsactional com-
munication mechanism.

This analysis highlights that the heterogeneity of smasteaps impacts simula-
tion performance in many directions. Contributing elersare indeed the adopted
languages, the levels of abstraction and the MoCs followeatidcomponents to be
integrated. The weakest approach appears to be co-sionylatandatory at lowest
levels, as it pays the price of all degrees of heterogertgityulation becomes more
effective at functional and transactional levels, wheretwgeneity is constrained
and limited to few synchronization mechanisms. For theasams, the remainder of
this Chapter will focus on code generation for effectiveldettion of smart systems
at functional and transactional levels.

4 Proposed methodologies

The analysis of the smart system simulation scenarios geapia the previous Sec-
tion highlighted that the choices in terms of abstractiorelelanguage and MoC
may heavily affect simulation performance. This Sectiotiioes three alternatives,
different in terms of implementation choices and coverenhaios. The solutions

are summarized in Figure 5, and they provide different cagefperformance trade-
offs, together with techniques and tools for achieving matic generation of sim-

ulatable code. Section 4.1 focuses on functional level,ibadtimates the impact
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jSingIe MoC
(Section 4.1.1)
FUNCTIONAL LEVEL )
(Section 4.1) Multiple MoCs
(Section 4.1.2)
PROPOSED -
SOLUTIONS '7SystemC—based
(Section 4.2.1)
TRANSACTIONAL LEVEL |
(Section 4.2) )
SystemVue-based
(Section 4.2.2)

Fig. 5 Proposed solutions for homogeneous simulation of heteeges smart systems.

of MoCs on simulation. On the other hand, Section 4.2 pravis® solutions at
transactional level, based on SystemC and on the Systenm&fnefvork.

4.1 Smart system simulation at functional level

The functional level brings all domains to a convergenceims of modeling lan-
guage, usually C++. This easies the achievement of simadiazs simulation of
components belonging to different domains. At the same,temeeffort may be
necessary whenever the C++ representations of compordiotg fifferent MoCs,
i.e, different synchronization management rules. This Sagiiovides an example
for both flows, with the goal of showing the impact of MoCs te full.

4.1.1 Simulation based on a single MoC

The UNIVERCM MoC, presented in Section 2.2.4, was designed to reeheit-
erogeneous domains to a unique formalism. It supports @&éitbm-up approach
where already existing heterogeneous descriptions camtbenatically converted
and integrated intwNIVERCM automata for being, subsequently, re-mapped to a
single simulatable model. This Section details both the dlomith a focus on the
major conversion issues and solutions.

Mapping from heterogeneity toNIVERCM

The strategy to map any componentt®lVERCM strictly depends on the domain
and abstraction level of the starting description [14].

Mappingdigital HW descriptionsin UNIVERCM requires to reproduce the simu-
lation semantics of HDLs, both in terms of scheduling andyoicéronization.
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HDL processes are represented as automata. All edges oftamaton are
guarded by the activation of synchronization labels, rdpoing a value change
of any of the signals in the sensitivity list. This activatgsautomaton in response
to changes in its sensitivity list. Note that the propagatibsynchronization events
is straightforward, as labels are instantaneously vidilole any automaton.

The typical HDL scheduling routine is in charge of genemtamd propagat-
ing events and advancing simulation time. This mechanisrst inei represented in
UNIVERCM so that events are processed in the same order and siomsatinantics
is preserved. The main feature that must be preserved ighieusct that simula-
tion time is advanced only when there is no event to be preddsshe system nor
any signal to be updated. The scheduling routine is reptedewith an additional
automaton, that advances a continuous variable repragdittie only when there
is no active label in the system. This allows to process avienthe same order as
in the original HDL and to preserve the original simulati@emsntics.

HW-dependent SW (HdS) is SW that controls and abstracts HW functionality,
to allow easy and standard access to HW devices and the dephtyf more ab-
stracted SW. HdS is thus in charge of managing communicatitnHW and it
needs to be reactive to signals and interrupts risen by HWeegvEach HAS func-
tion is mapped to @NIVERCM automaton, evolving among a certain set of states
via transitions (note that continuous time evolution isswgiported for this domain).
Each function is provided with two special labels: an a¢iiralabel (representing
function invocation and activated by automata willing teexte the function) and
a return label (used to communicate to the caller that thetfoim has finished its
execution). This allows inter-function communication.t@unata representing HdS
functions can be also sensitive to events coming from HWraata, representing
HW interrupts. This, together with data sharing for modgMMIO mechanisms,
allows to reproduce the basics of HW-SW communication. Asmegle of HW-SW
communication, and of mapping ttNIVERCM of the corresponding components,
is provided in Figure 6.

UNIVERCM can be easily adopted to model ats@l ogue models described with
differential equations as hybrid automata [16, 28]. The piragis straightforward,
even if some transformations are necessary to reprodusgtichronization seman-
tics and to remove hierarchy from the automata.

Once that all starting descriptions have been convertetitéERCM, automata
evolve simultaneously through data sharing.( by accessing the same variables)
and by synchronizing via labels. Thus, no additional comication or scheduling
mechanism is necessary.

Mapping fromUNIVERCM to C++
The conversion flow fromuNIVERCM to C++ is defined in general for any au-

tomata, with no concern regarding the language of the algiascription converter
to UNIVERCM.
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if (input_received == true)

1. notify(interrupt);
0
- _@_ Input received True @ >
=1
Do nothing Activate
INTERRUPT

request_irqg (interrupt,interrupt_handler, ...);

2 static irgreturn_t interrupt_handler (int irg, void *devid, ...){
: <interrupt handling operations>
return IRQ_HANDLED;

0
True Received -3 ==
INTERRUPT

Interrupt
handling Do nothing
operations 0
True True

}

Interrupt
handling
operations

Activate
RETURN

Fig. 6 Mapping touNIVERCM of a digital HW component firing an interrupt (1) and of trere-
sponding interrupt service routine (2).

Each UNIVERCM automaton is mapped to a C++ function, representing the
whole automaton evolution, as depicted in Figure 7. A stateable is used to store
the current state of the automaton. The function body ig bgilaswi t ch state-
ment, where each case represents one of the automaton Eiatésstate case lists
the implementation of all the outgoing edges and of the dektaysition provided
for the state.

Eachedge is implemented as anf orel se if statement, whose guard is a
logic and of the enabling condition on the edge and of the activatiord@mn on
synchronization events. The body executed when the guaatisfied includes the
update of variables and the activation of synchronizati@ngs. Furthermore, the
state variable is updated to the destination state of the.edg

Continuous evolution is implemented as anf orel se i f statement whose
guard is the invariant condition that allows to remain ingtege. The body executed
when the guard is true implements a discretized implemientaf the flow predi-
cate, by adopting thBuler numerical integration algorithmwith time discretization
step chosen by the designer [11]. It is important to notettiaEuler method can
be replaced with one of the many available algorithms forapproximation of
solutions of ordinary differential equations.

Code generated fromNIVERCM automata is ruled by management function,
in charge of activating automata and of managing the stédttisecoverall system
and parallel composition of automata. The result of thisraaph is that all code
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. switch(state) {
case (A):
if(water_level 2 Xhigh){
t:=0;

state:=C; @

@ true

true

0 ° true

water_level @ activate(HIGH);
< low }

t=0 {Low} . else if(water_level 2 Xlow){
9. t:=1;
@ 1 10. state := A; @

2 1. }

PNV A WNE

0 waier:ij:vel 12.  else if(water_level < Xlow){
water_level > low —=nieh 13. t:=0;
1 t=0 {HIGH} @} 14. state := B; @
1 15. activate(LOW);

false @ 16. )
e 17. case (B): ...
true 18. case (C): ...
true }

Fig. 7 UNIVERCM automaton to be converted to C++ (left) and correspondjegerated code
(right)

generated fronuNIVERCM automata is controlled by a single function, and it is
thus provided with a simple interface.

If the system is made of motgNIVERCM automata, the management function
is not enough to grant correct composition. Indeed, theistacomponents come
from heterogeneous domains, and thus the communicationsmaay differ. On
the other hand, communication betwesnvVERCM automata happens via variable
sharing and through synchronization events. Thus, any tw@enaata can be easily
composed by checking the correspondence between variidesynchronization
events of the two. Mapping the one in the other must be idedtlly the designer.
This allows to extend the management function to all openathecessary to prop-
agate updated values.

Finally, UNIVERCM variables and events are mapped to native C++ constructs.
Variables are mapped to a couple of C++ variables, reprieggtiite current value
and the future value respectively, in order to respectUR&/ERCM semantics.
Value update is performed by the management function, asqugy anticipated.
The type of each variable is determined by the variable &lehfor discrete vari-
ables, while continuous variables are mapped to doublggp@titype libraries may
be used, for simulation purposes or to enhance simulatieadsft]. Synchroniza-
tion events are represented with boolean values, wheve states that the label is
active. In detall, labels are mapped to a couple of boolearesarepresenting the
current value and the next simulation value respectivelyha end of each simula-
tion step, the management function will set the new currahtesto the future one,
and reset the future value tal se.
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Integration strategies and challenges

Simulation based on a single MoC poses no challenges reggirtiegration. All
starting components, despite of their heterogeneity, arwarted toUNIVERCM
automata, by mapping the starting semanticsNovERCM native constructs. This
allows to abstract the characteristics of the starting rifgsuns, and to represent
the system as a number of automata that interact throughnvecsgion mechanism.
This is a winning approach. as no manual intervention is seary to allow integra-
tion. This reduces by far communication overheads, anceidp up simulation.

4.1.2 Simulation based on multiple MoCs

UNIVERCM is a very powerful MoC, as it covers a wide number of domatitmwv-
ever, its representation of digital HW may lead to an explosif the modeled
automata, both in terms of states and of synchronizatioaldal-urthermore, no
methodology has been defined yet for mapping circuit-bassdriptions, as elec-
trical behaviours and conservation laws are difficult torogjpice in an automata
based approach. For this reason, it may be necessary todata@gpde generated via
UNIVERCM with C++ code generated with other strategies. This Seatiutlines
two additional strategies, necessary to cover all smatesyslomains efficiently.
The Section ends by presenting the integration strategiéshallenges, to allow
overall smart system simulation even in presence of diffiekéoCs.

HIFSuite for efficient conversion of digital HW to C++

HIFSuite (introduced in Section 2.2.2) is a closely intégdaset of tools and APIs
for reusing already developed components and for veriffirgiy integration into
new designs [15].

HIFSuite was first designed for allowing system designersotovert HW/SW
design descriptions from an HDL to a different HDL and to npatéte them in a
uniform and efficient way. For this reason, the underlying Elbre language is made
of a set of objects corresponding to traditional HDL conssuike, for example,
processes, variable/signal declarations, sequentiatandurrent statements, and
so forth [9]. Each HIF construct is mapped to a C++ class teatdbes specific
properties and attributes of the corresponding HDL cowst&uch objects can then
be manipulated through powerful C++ APIs which allow to expl manipulate,
and extract information from HIF descriptions.

All such characteristics make HIFSuite a very convenieinastructure to define
conversion tools working on digital HW descriptions. Thpital conversion flow
from digital HW to C++ is outlined in Figure 8, and it leavethnderlying MoC
of the starting description unchanged.

Any digital HW description, implemented in a HDL languageconverted to its
HIF representation via thiel FSuite front-end tools, performing a straightforward
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Manipulation tools

Profiling A2T
information (RTL to C++ abstraction)

DDT
(data types abstraction)

g Front-end
VHDL tools

HIF core language ]
(XML based) hif2sc C++

HIFSuite

Fig. 8 HIFSuite-based flow for automatic conversion of digital H@&driptions to C++

mapping from HDL constructs to the corresponding HIF olgeghe abstraction
of the HIF description is then carried out by two manipulatiools from HIF-
Suite,DDT andA?T. DDT replaces the original HDL data types from the starting
HW description with C++ built-in data types in order to gtgamprove simulation
performance. Them?T implements the methodology in [7] to convert the HDL
processes to functions and the HDL scheduling semanticantareagement func-
tion. Additionally, A>T can be guided to generate more performing C++ code by
providing it with profiling information of the starting HDLmiplementation. If the
repeated execution of asynchronous processes dominatestiex time A2T may
replace the standard dynamic HDL simulation semantics wisitatic scheduling
approach. Such an approach creates a sequence of proeebsesepeated at ev-
ery simulation cycle, thus avoiding the overhead of eventagament. This allows
to further abstract the starting HDL description, to customize the generated code
with the goal of optimizing simulation performance. Theaibed HIF description

is finally converted to C++ through the back-end tbié2sc.

The winning aspect of this strategyr.t. the UNIVERCM-based conversion flow
presented in Section 4.1.1 lies in the efficiency of the gateercode. HIF natively
preserves the HDL semantics, thus not introducing additiconstructse.g., for
scheduling or synchronization management. This resultsimore compact C++
implementation of the starting digital HW.

Conversion of analogue and mixed signal descriptions to C++
Analogue components can be seen as a set of algebraic aadedifal equations,

expressing the functionality. These equations can be egpdein different ways:
they can be explicitly listed or they can be hidden by expnesthem as intercon-
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nections of primitives, as for block diagrams. Thus, whemiag at reproducing
the behavior of an analogue device, it is fundamental toaekthe correct set of
equations from the original description. To accomplisis tiaisk, HIFSuite analy-
sis features come in handy, and they are exploited into aenark of front-end,

manipulation and back-end tools. The resulting flow is deypliin Figure 9.

Manipulation tools

OCCAM
(for analogue models)

Verilog- HIF core language ]
AMS v2hif (XML based) hif2sc CHt

HIFSuite

Fig. 9 HIFSuite-based flow for automatic conversion of analogukraixed signal descriptions to
C++

To read analogue descriptions, the Verilog parser of HIteSsiextended to sup-
port Verilog-AMS. The tool takes care of parsing analoguscdetions, based on
dipole equations, and to map constructs into HIF. The HIFasgntation is then
used to analyze and manipulate the information expresseidebgtesign. Analysis
and manipulation are performed BCCAM (Ordinary C++ Code for Analogue
Models), a tool developed on top of HIFSuite that implements anysimbnd ma-
nipulation algorithm composed by the following five steps:

e Acquisition: starting from the set of dipole equations acquired by theldg
front-end tool, an hash table is created. For each electandh of the circuit
represented by the original description, current and gel&e labeled and then,
every equation is stored in the hash table, using the lefieviabel as key. Then,
also the inverse equations are computed, stored in thedablenarked as “lin-
early linked” to the original equation.

e Enrichment: the system of equations can be partially specified, and sefae
tions may thus be left implicit. It is necessary to apply Kinoff's current and
voltage laws to retrieve the entire set of equations conmgotie system. This
is done by employing a Modified Nodal Analysis algorithm oa #et of equa-
tions extracted during the acquisition step. The impligit&ions, retrieved by
the Modified Nodal Analysis, are inserted into the hash tabmarked as “lin-
early linked”.

e Assemble: in order to abstract the system, the outputs of interedfixad by the
designer. For every output of interest, its label is useetohfan equation from
the hash table. Then, all the terms of the fetched equati@nased as label to
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fetch other equations, recursively, in order to retrievéha terms influencing the
chosen output. A tree structure representing these dependebuilt for every
output of interest.

e Preparation: the tree built at the assemble step is visited, and the digpeies
are mapped into a sequence of assignments and functiontoakgpresent alge-
braic and differential operators.

e Dismantle: the sequence of instructions created after the previapssre in-
serted into a function. Since the produced models aim atlating continuous
time evolution, they have to be repeatedly executed. Thessimulation sched-
uler will provide to call and execute the function wrappihg behavior, period-
ically during the simulation.

Finally, the behavioral representation produced by OCCAWd modeled in HIF
has to be translated into C++. To do this, the HIFSuite batk{eols have been
extended in order to support this kind of representatioprémuce C++ code for
the simulation.

Integration strategies and challenges

The integration of C++ code generated with the presentdthtques introduces
major challenges. Indeed, this Section clearly highlighteat at functional level
different domains and techniques share a common languagapbthe MoC and
the synchronization mechanisms. As an example, an evedtbiyea component
generated througbNIVERCM may be difficult to detect by code generated through
HIFSuite or through a complex abstraction process, nepessdandle analogue
and mixed signal descriptions.

If execution inside components may be self-sufficient amdeot, problems arise
whenever interaction between components is necessarytdhe complexity of
the task and to the complex configurations that may show igptakk can be han-
dled only manually, by carefully considering the charastis of the specific com-
ponents into play.

Whenever integrating heterogeneous C++ code, the desgadrconsider:

o functionality activation: each MoC introduces different scheduling strategies in
the C++ code, ranging from the reconstruction of HDL schiedulip to simple
activation of all automata fawNIVERCM-based code. The designer shall imple-
ment a global scheduling routine, that activates the sidgiaains by respecting
timing and causality relationships;

e time evolution: each MoC advances time with specific solutions, that are af-
fected by the presence of runnable activities. Local sclmgistrategies must
thus agree on a shared notion of time, so that events aregatguhin the correct
order and that digital synchronous signals such as cloaksa@nerentv.r.t. the
remainder of the system;

e event propagation: each local scheduler must be able to detect synchronization
events fired by the other domains. For this reason, the gkdieduler must
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convert events from one formalism to the other, withoutadtrcing delays or
timing misalignments;

e data sharing: different components must be able to share data despiteeof th
implementation differences. The global scheduling raishall propagate value
changes, thus converting data from one format (or data typéhp other.

This highlights that, even if the single conversion techiesjare correct, interaction
of heterogeneous MoC introduces heavy management overheadt may leave
space for synchronization misalignments.

4.2 Smart system simulation at transactional level

The transactional layer brings all domains to a convergénterms of modeling
language and of underlying framework. The differencesrimssof MoC or abstrac-
tion level are not reduced by means of conversion methodksplut they are rather
preserved to ease the integration process. Ad-hoc inesfacsimulation strategies
mask this heterogeneity with a transaction-based meahanikere a global sched-
uler satisfies activation requests and performs all coiuessand synchronization
with no intervention from the user. This Section provides examples of this strat-
egy, the one relying on the standard language SystemC ¢8etf.1) and the other
based on the commercial tool SystemVue (Section 4.2.2% Wil highlight the
characteristics of the transactional level to the full.

4.2.1 SystemC-based simulation

SystemC, together with its extensions, is a well estabdishrguage for the mod-
eling of smart systems. Its strength, as anticipated ini@et2.1, is the presence
of a single simulation kernel, mastering requests comiogfany of the supported
MoCs and libraries.

SystemC can be considered transactional as any of the sagpoCs defines a
precise interface to the simulation kernel, thus wrappiffgrnt levels of abstrac-
tion of the instantiated constructs. Each solver commuegcwith the simulation
kernel through transactionise., activation requests that are satisfied by the kernel
through synchronization with the remainder of the systeththrough data sharing
and conversion. This Section shows how effective Systenm®eant supporting the
heterogeneity of smart systems, ranging from analogue axednsignal conserva-
tive descriptions up to digital HW components.

Mapping fromuUNIVERCM to SystemC

Mapping of UNIVERCM to SystemC traces the approach for C++ code generation
proposed in Section 4.1. However, the presence of a sironlkérnel allows to del-
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egate some management tasks, and to reproduce automatéiobét@ugh native
SystemC constructs. Note that this is crucial to ease andreehthe interaction
with SystemC code generated through different design flows.

The main effect of the adoption of SystemC is on the managenoerine.
UNIVERCM automata are indeed mapped to processes, rather thaihscThis
allows to delegate automata activation to the SystemC sidedy making each
process sensitive to its input variables. Automata adtivais removed from the
management function, that still updates the status of bksaand events at any
simulation cycle. The management function itself is dexdaas a process, activated
with a custom event after all automata have performed onelatian step.

The mapping of synchronization events is left unchangespitie of the pres-
ence of native SystemC eveni®, sc_event s. Indeed, SystemC events cannot
be used into conditions, feature that is on the other handssacy to fully support
UNIVERCM transition semantics.

The mapping ofJNIVERCM variables changes slightly. Variables shared by two
or more automata are mapped to SystemC signals, to allowstating between
processes and ensure correct simulation and processtativaNIVERCM vari-
ables used by a single automata are still mapped to a coufile-bivariablesij.e.,
current value and future value, that are updated and hafgiébde management
function.

Mapping of digital HW to SystemC and SystemC TLM through HIK&

As previously stated in Sections 2.2.2 and 4.1.2, HIFSuiten ideal framework
to convert digital HW descriptions into corresponding 8ys€ and SystemC-TLM
descriptions. The flow to automatically convert digital H\&driptions to SystemC
at RTL is depicted in Figure 10. The input HW description tten in VHDL or Ver-
ilog, is firstly converted to its HIF representation by tH&=Suite front-end tools.
This step is achieved by parsing the input description angixing HDL constructs
to corresponding HIF objects. Then, the HIF descriptionoisverted to the corre-
sponding SystemC RTL code by the the back-endhif@sc. A number of manip-
ulations on the HIF description are required during thig $teaccount for the lack
of expressiveness of System@.t. VHDL and Verilog. In fact, some VHDL and
Verilog constructs do not have a direct mapping to a cornedjpg SystemC con-
struct. As such, they must be translated by resorting to aivalgnt implementation
through other SystemC constructs.

HIFSuite also features a flow to automatically abstracttdigi\W descriptions
to SystemC TLM for faster simulation speed. The resulting/fle illustrated in
Figure 11. The first step consists again of converting thetik)V description to
its corresponding HIF representation by tHE-Suite front-end tools. If the target
is to generate a TLM description optimized for simulationfpemance, the follow-
ing step consists of invokinBDT from HIFSuite on the generated HIF description
in order to improve simulation performance by replacing ¢niginal HDL data
types with C++ built-in data types. This step is however clatgly optional. In
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Fig. 10 HIFSuite-based flow for automatic conversion of digital H@édriptions to SystemC RTL

VHDL tools

HIFSuite

case it is bypassed, the output TLM description at the enteflow will feature
SystemC data types. The abstraction of the HIF descriptiam RTL to TLM is
carried out by the manipulatiod®T from HIFSuite.A°T produces code compli-
ant with the TLM-2.0 standard. The user can select which TLigtqrol will be
generated by adopting one of the two TLM-2.0 coding stylesyelyloosely-timed
(LT) andapproximately-timed (AT). If the LT coding style is adopted, the abstracted
design will implement the blocking transport interfaced éfocking transport prim-
itives will be used to achieve communication. Conversélye AT coding style is
adopted, the abstracted design will implement the nonkigtransport interface,
and non-blocking transport primitives will be used to agkieommunication. The
abstraction process generates C++ functionality code fRain processes, and re-
places the RTL cycle-accurate communication protocol Withtransaction-based
TLM communication protocol. As reported in Section 4.1.&ffling information
on the starting HW description can be provided& in order to generate more ef-
ficient C++ code for the design functionality. Finally, tHes&racted HIF description
is converted to SystemC TLM through the back-end toffisc.

Manipulation tools

Profiling AT
information (RTL to TLM abstraction)

DDT
(data types abstraction)
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Fig. 11 HIFSuite-based flow for automatic conversion of digital HWsdriptions to SystemC
TLM
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Mapping of analogue conservative descriptions to Systé&vS

Smart systems often feature heterogeneous componentiothat match the tradi-
tional digital design flow. A typical example are MEMS compotis, often used as
means of sensing and actuation, thus having a crucial rdleeiiinteraction of the
system with the surrounding environment. The main comptértroduced by this
kind of descriptions is that they almth behavioural and conservative, i.e., they
feature a certain level of abstractiam.t. the actual component realization, but at
the same time they obey physical laws, such as energy catserlaws [12, 27].

The limitations of traditional flows and tools at handlingBicomponents are
highlighted by the characteristics of SystemC-AMS thaiutgh being the reference
language for smart system simulation, does not supportigésas that are both
behavioural and conservative (as described in Sectiof)2:Phe limited flexibility
of SystemC-AMS forces designers to adopt other HDd.g.( Verilog-AMS), that
can not be easily integrated with the frameworks and flowsgzd in this Chapter.

For these reasons, this Section shows how SystemC-AMS cantbaded to
support behavioural and conservative descriptions. &asté adding a new abstrac-
tion level (with corresponding libraries and classes), ddepted approach uses
SystemC-AMS existing primitives in a novel way [26]. Notathdue to the limita-
tions of SystemC-AMS, supported models are strictly lirseead time-invariant.

The starting point of the methodology is a Verilog-AMS beioaval description.
In Verilog-AMS, a circuit is modelled as an abstract grapmoéles connected by
branches [25]. System state is defined in terms of voltages)(and currentsl(( ) )
associated with nodes and branches. Relationships betweles are modelled with
algebraic and differential equations, calkchultaneous statements.

Since SystemC-AMS is less expressive than Verilog-AMS, ¥erlog-AMS
simultaneous statement is reproduced by connecting a nuaofiliel N elements.
Given a Verilog-AMS description, each simultaneous statets divided into basic
contributions by finding the largest sub-equation that Grelpresented by a single
ELN object. In linear and time-invariant descriptionssthbrresponds to breaking
the equation into the single addends.

Each addend is then mapped to the most suitable ELN primitigean exam-
ple, an instance of theca_vsour ce primitive is used to reproduce independent
voltage sourcesg., V(a) <+ +8.01. On the other hand, an instance of the
sca.vccs primitive reproduces voltage controlled current souregs,| (a) <+
+4. 02 V(b).ELN primitives must then be connected to reproduce thdiosla
ship expressed by the starting simultaneous statemeiiie ierm on the left hand
side of the simultaneous statement is a current, SystemG-Aigtances are con-
nected in parallel. Else, if the term is a voltage, instamresonnected in series, by
adding intermediate components. Figure 12 exemplifieethescepts on a simul-
taneous statement including a voltage controlled curi@ntc®, a current controlled
current source and an independent current source.

Differential contributions require a more complex appigaas they model a
derivative (or integrative) relationship between the eatror voltage of two sep-
arate circuit nodes. SystemC-AMS, on the other hand, ctstdifferential be-
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1(a) <+ +4.02 V(b) -3.72 I(c) +8.01 [ vccs_b = sca_vevs(«bb», +4.02);
f f T vees_b ->np(a);
7777777777 : 1~ vees_b ->nn(gnd);
bo—ncpc'p—+ 1 Onp—T—0 a vees_b ->ncp(b);
i ll | vees_b ->nen(gnd);

" cces_c = sca_ccvs(«cew, -3.72);
cces_c ->np(a);

o—| . 2 onp—
co—nep i PP 24 cces_c ->nn(gnd);
| i
! l: cces_c ->nep(c);
! f
nn ¢ Snn L cces_c ->nen(gnd);

3P [ ccs = sca_csource(«ccs», +8.01);
l 34 ccs->p(a);
n

| ccs ->n(gnd);

Fig. 12 Example of mapping of a Verilog-AMS simultaneous statente®ystemC-AMS. The si-
multaneous statement includes a voltage controlled cusairce (term 1, mapped to an instance
of sca_vccs), a current controlled current source (term 2, mappeddea@.cccs) and an in-
dependent current source (term 3, mapped sea_csour ce). Since the left-hand side of the
simultaneous statement is a current construct, all ELNaires#s are connected in parallel. Non-
connected terminals are connected to ground.

haviours to dependencies on single network nodes, thrdwehdoption of capac-
itors (sca_c ELN module) or inductorsqca_l ). To overcome this limitation, it
is necessary to introduce an intermediate node that hasysicahcorrespondence
in the circuit, but that is rather used for describing théedéntial dependence. The
node is connected to an inductor in case of a derivative oactse.g., | (a) <+
ddt (+4. 02 V(b))) and to a capacitor in case of an integrative constregt, (
I (a) <+ idt(+4.02 V(b))). Suitable ELN primitives are then used to bind
the evolution of the intermediate node to the nodes invoindde starting differen-
tial contribution.

As the application of the proposed approach may be tedicdis@ar-prone, and
thus prevent the application to industrial-size case ssjdhe whole methodology
has been automated on top of the HIFSuite framework.

Integration strategies and challenges

The code generation solutions presented in this Sectidtetdlte heterogeneity of
smart systems by adopting a common language SystemC and its extension),
still preserving the heterogeneity in terms of MoC. Howewaieraction between
different MoCs does not rely on manual, error-prone syneization approaches,
as for the functional level (Section 4.1). All synchronigatis indeed transferred to
the simulation kernel, that satisfies requests from all Ma@$ abstraction levels.
Synchronization correctness is thus guaranteed by thelyimdeSystemC sim-
ulation kernel, that natively masters heterogeneous stguaad takes care of syn-
chronization issues between its extensions and MoCs. éunitre, native convert-
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ers allow to perform data conversion and to propagate evemts one MoC to
the other, without any manual intervention from the usell, 8te heterogeneity in
terms of MoCs affects simulation performance, as data andsgnization conver-
sion imply a computation overhead. Thus, the simplicityraégration comes at a
price of simulation performance.

4.2.2 SystemVue-based simulation

SystemVue is an environment designed for easing the irttegrprocess. Its ex-
ecution semantics is based on the Synchronous Dataflow M@&Gugh, system
behaviors are described by interconnecting basic blosfsessing a functionality.
The strength of SystemVue is that it provides predefineddsles well as a C++
API to create libraries of custom components that can beded in a system sim-
ulation together with components shipped with SystemVies allows to easily
integrate any C++ code, including manually designed codecade generated with
the methodologies proposed in Section 4.1.

The first step to integrate a C++ external component in Syétenis to spec-
ify its interface as names and data types of all the inputpuis and parame-
ters. Theinterface of a SystemVue node implemented in C++ is composed by a
set of variables that are then specified to belong to thefaterusing the macros:
DEFI NE_MODEL _| NTERFACE, ADD_MODEL _OQUTPUT and ADD_MODEL _| NPUT.
The data types of these variables, in order to be acceptelebynaicros, have to
belong to a well-defined subset of the available C data typase data types, such
as circular buffers, are implemented in the SystemVue siigiboary. The other
available data types are a subset of the C/C++ data typesddies not include
the standardinsi gned i nt eger s. This can be an issue, as norralsi gned
i nt data types do not ensure that the span of data representation same on
different architectures. For this reason, in order to asslie predictability of the
number of bits used to represent data on the interface, exigble is declared
asdoubl e. Then, before any computation step, the data read from tedace is
assigned to a data structure using standlardeger andBool ean variables for
computation. After the computation, the variables of theddructure are copied
into the output variables. Figure 13 gives a sketch of the Cede generated by
HIFSuite for SystemVue. The left-hand side of the figure f@=ion the interface
and it shows the declaration of the interface variablesnbet/output data structure
and the interface declaration. On the right-hand side ofithee theRun method
exemplifies the usage of input/output variables and datatstre.

In SystemVue, functionality is implemented in terms of féwmctions:

e Setup() is used to specify the rate of each port, in particular whengusir-
cular buffers, in the node interface. The default value israte, and it is not
mandatory to implement this function.

e Initialize() is executed during the initialization of the dataflow, thus
should be used to run all the necessary initialization caessary to the node
functionality.
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class component : public

SystemVueModelBuilder::DFModel bool Run() {
component_jostructio_exchange(
unsigned int cycles; ouL,
false,
double input_1; OouL
double input_2; );
double output; io_exchange.input_1=input_1;
io_exchange.input_2=input_2;
struct component_jostruct{ simulate(&io_exchange, cycles);
uint32_tinput_1; output =io_exchange.output;
bool input_2; return true;
uint32_toutput; }

}io_exchange;
void simulate(
DEFINE_MODEL_INTERFACE(component) component_jostruct * io,

{ unsigned int & cycles )
ADD_MODEL_INPUT(input_1);
ADD_MODEL_INPUT(input_2); /| Axtool generated implementation
ADD_MODEL_OUTPUT(output);
return true; }

y o

Fig. 13 Overview of the SystemVue-compliant C++ generated by Hif€Su

e Run() isthe main method, as it contains the functionality thattbde executed
at every simulation step. Its execution is scheduled bye®ystie, according to
the dataflow structure, and the rate of the input/outputspafrthe node.

e Finalize() performs any post-simulation coding that the model neegdsto
form, such as closing file or de-allocating memory.

In order to respect this interface, C++ code generatiomigctes must be cus-
tomized and extended to ensure SystemVue support. As anpéxatme code gen-
erated by HIFSuite uses thai t i al i ze() method to reset all variables and data
structures of the component. TRan( ) function, as depicted on the left part of Fig-
ure 13, handles the input/output as discussed above anidkitloa code generated
by AT (i.e, simulate) to emulate component evolution, passing thatinptput
structure as parameter. When the simulate function retthra®utput variables are
written according to computed component evolution.

A final integration issue arises whenever components adéfpteht MoCs. In
SystemVue, synchronization and communication amongréiffenodes is based
in SDF, that forces the insertion of a delay in every loop amdifferent compo-
nents. Thus, it is necessary to insert delays to break theslbetween connected
components, for instance between a bus and a CPU or betweeambuperipher-
als. However, the generalized insertion of such delays oagiuze synchronization
problems due to the modification of simulation delays thatallg guarantee the
correct behavior of a digital system. For this reason, digibomponents in loop are
automatically merged by HIFSuite in a single component drsdracted withA2T
as a single component.

By following these guidelines, SystemVue easies the itiigm of existing code,
as the designer must simply match the APIs for the designetonents, while
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the synergy with HIFSuite automatically translates prsigiedigital and analogue
components and all synchronization issues are left to thalation kernel.

5 Experimental Validation of Proposed M ethodologies

The goal of this section is to support the proposed analysisw@ethodologies with

experimental evidence. To this extent, the proposed exasriptus on single code
generation techniques and on the simulation of a complextsystem case study
achieved through SystemVue.

5.1 Validation of HIF Suite-based language conversion techniques

The automatic abstraction of digital components to Syst@mi and to C++ plays
a key role in the simulation of a smart platform at both thectional and the trans-
actional levels. Thus, its effectiveness must be evaluatddpth.

Table1 Abstraction alternatives of digital components for fuontil and transactional simulation.

Modelsim SystemC RTL, Abstract C++, | Abstract C++,| Abstract C++,
Design (VI—!DL/ SystemC | HDTLib data typegC++ native data C++native data

Verilog) | data types |types (SystemC top)SystemC top)types (pure C++ top)

T(s) T(s) TE[ S® [T SK [T SX
AES 72.3 850.9 332.5 2.6/ 8.0 106.4 7.1 119.8
Camellig 1,823.7 25,433.39,022.6 2.8 8.0 3,179.2 3.3 7,707.1
DES56 707.5 7,608.91,941.1 3.9 8.5 895.1 4.6 1,654.0
SHA512 1,758.9 6,302.12,452.4 2.5/12.6 371.2 3.4 1,377.2
XTEA 171.8 975.40 260.9 3.7/18.0 54.2 3.4 286.8

Table 1 reports simulation tim@( s) ) for some VHDL and verilog digital com-
ponents, together with the speedup achieved through tloenatit abstraction by
AT with the support oHDTLib or DDT for data type abstraction. The reference
simulation time is generated by Modelsim (ColuMbndelsim). The generated code
may be managed through either a SystemC top-level moduleif@®s labelled
with SystemC top) or a C++ main simulation filepure C++ top). This distinction
allows to analyse all the scenarios outlined in Figure 5s ttavering both the func-
tional abstraction level (single/multiple MoC) and thawsactional abstraction level
(through the adoption of SystemC or SystemVue for compoaggtegation).

Results clearly conclude that the automatic abstractiatigifal components is
extremely efficient (up to three orders of magnitude in spegth the case of RTL
modules converted to C++ for single MoC functional simuaator for SystemVue-
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based transactional simulation. In the other cases, thetaféness of the abstraction
process is limited on single components, but it still prastua simulation advantage
whenever the platform model must be built by aggregatinigdifit components.

5.2 Validation of the mapping of analogue conservative
descriptionsto SystemC-AMS

Mapping of analogue conservative descriptions to Syst&S proved to be a
complex step, due to the requirements in terms of constawerage and of appli-
cation of energy conservation laws. In order to prove theatiffeness of the overall
methodology, we applied the overall approach to a compldustrial case study,
developed in the context of the SMAC project. Applicatiorthics industrial case
studies was eased though the implementation of an automeaticcalled ABA-
CusS (Analogue BehAvioural Conservative Systemc-ams), thagrieges HIFSuite
to ease the conversion process.

The adopted case study ialimensional MEMS accelerometer implemented
in Verilog-AMS by means of the MEMS design platform MEMS+atlsupports
automatic Verilog-AMS code generation [12], starting frBrdimensional physical
models as the one depicted in Figure 15. Table 2 reports tlie characteristics
of the MEMS design, both in terms of simultaneous statemants of types of
contributions. The MEMS design features most of types opsujed contributions,
thus showing the application and validation of a signifiqzant of the methodology
on a single case study.

Fig. 14 3-dimensional model of the accelerometer in the MEMS+ desimulator.

Table 3 shows the results of the applicationrAACUS to the MEMS design.
The table shows the number of lines of code of the resultirggeByC-AMS imple-
mentation, the number of added nodes and of instances oér8¢sAMS prim-
itives. The number of lines of codes is increased tenfolédisely, 11.12x), as
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Table2 Characteristics of the original Verilog-AMS MEMS design.
| Lines of code [89

\oltage sourced0
Current sourcegd5|

Interface |14
Internal 14

Independent | 4

\Voltage |59
Contributions Current 0
Derivative [12
Integrative | O

Equations

n

Node declaratio

Table 3 Characteristics of the generated SystemC-AMS MEMS design.

| Lines of code [1,474
[ Added node declarations | 12 ]
sca.r 93

sca.vsource| 4
sca.vcvs 32
SystemC-AM$ sca_ccvs 0
primitive  [sca_csource| O
instantiations| sca_vccs 48

sca_cccs 0
sca.l 12
scac 0

the SystemC-AMS generated by the methodology is more vertien Verilog-
AMS. Each contribution requires the instantiation of theNEprimitive, plus the
corresponding explicit port binding. Furthermore, the ivemof ELN primitives is
higher than the number of Verilog-AMS contributions. Thigdiue to the presence
of 12 derivative contributions in the original Verilog-AM&de. Each such contri-
bution determines the instantiation of three ELN primisiyas explained in Section
4.2.1). As a result, of the 188 resulting SystemC-AMS ELNénses:

e 93 correspond to resistors added to connect each SystemE&nfide to ground;

e 59 correspond to voltage source contributions;

e 36 are generated by the 12 derivative constructs, thatrdeteralso the declara-
tion of 12 additional internal nodes.

Fast code generation is a major advantage of the proposedaabp Table 4
highlights that code generation is almost instantaneodst8k overall), and that
most of the effort in spent in the HIFSuite conversions (55Phe most costly step
of ABACuUS lies in the mapping from Verilog-AMS contributions to ELNipyi-
tives and in their instantiation (37%). On the other handlewxmanagement and the
separation of Verilog-AMS equations into single contribas is almost immediate.

The generated code was validated by comparing its execwtidnthe original
Verilog-AMS code, run by using the Questa simulator [24]st8ynC-AMS simula-
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Table4 Characteristics of the execution ABACuUS on the MEMS design.
| Overall [17.483
HIFSuite Conversion to HIF l;.%s

tools |Conversion to SystemC-AM[S/.81s

Node management 0.94s
ABACuS| Division into contributions | 0.29s
ELN component instantiation$.58s
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Fig. 15 Evolution of the MEMS outputs for Verilog-AMS (solid) and §SgmC-AMS (dashed).

tion was run by adopting the same input stimula of the Ver#ddS implementa-
tion, and with a 1us timestep. SystemC-AMS proved to be dligaster than the
Verilog-AMS execution (28.02s and 33.72s, respectiveMt)the same time, the
average error in the computation of the MEMS outputs is 0.02Bs confirms
the visual accuracy evident from Figure 15, where the Vgf#d/1S and SystemC-
AMS curves are almost totally overlapping. The small ersodie to the different
management of time in the two simulators: SystemC-AMS aglafixed timestep,
while Verilog-AMS can adapt the length of the timestep oweret thus reaching
a higher accuracy. The low error rate highlights the effectess of the generated
code, both in terms of accuracy and of simulation speed.
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5.3 Adoption of SystemVue for a heterogeneous case study

The final example collects all previous results to show asiational level simula-
tion of a smart system based on SystemVue integrating a nuofilbeterogenous
components. The starting point is complex heterogeneoasg system, developed
with the goal of representing a generic smart system. Thesysallecbpen source
test case (OSTC) includes eight modules covering digital HW, embet8e/, RF-
Transceiver, network elements and a MEMS senser, the accelerometer). Such
modules are extremely heterogenous in terms of languadkepsire described in
SystemC, VHDL, Verilog, Verilog-AMS and C++. An exhaustigescription of the
OSTC will be the focus of Chapter 9.

Figure 16 shows the SystemVue representation of the OST¢h EBadule has
been imported in SystemVue after its abstraction to C++popered by using HIF-
Suite. SystemVue supports co-simulation, thus allowirggagbmparison of the fol-
lowing scenarios:

e co-simulation of all digital HW components;
e co-simulation of one digital HW component;
e homogeneous C++-based simulation.

—pp(123)

Yryyy

SYYYYY
Y

Fig. 16 SystemVue schematic of the OSTC.

The simulation scenario used for all the models simulat@smi$ of system ex-
ecution, with a time step of 100 ns. The inputs of the acceateter are sinusoidal
stimula, and the software application is pre-loaded in tlenory. The software
takes care of system boot and peripheral initializatiorerT; the application repeat-
edly reads data from the accelerometer, computes the ddtsemas the results to
the digital hardware and the network interface.

Table 5 shows the time needed to simulate the three diffexeamiarios. What
appears clear from these results is that the number of sionslmstantiated, hence
the number of co-simulation interfaces employed, heawilpacts performance. In
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Table5 Simulation time for the three different simulation sceoarin SystemVue.

| Scenario [Simulation Time (s])Speed-up
co-simulation of all digital HW 278.59 -
co-simulation of one digital HW 153.23 1.8x
C++ based simulation 36.32 7.7x

particular, it worth notice that, in this case, every co+dtion interface (two in the
case of the first entry of the table, one in the second), seermgrbduce around
120 seconds overhead.t. the simulation without co-simulation interface, thus in-
troducing an overhead of about 80%. As a result, the impaictteffaces and con-
version layers between different tools seems highly reiegad strictly dependent
on the number of used interfaces and external tools. Théslihspeed-up is mainly
affected by the low abstraction capability of the two maigi@il components of the
OSTC. Such components are indeed described at gate Idvet than at RTL, thus
the abstraction to C++ is not extremely effective. Highezeshups can be obtained
by using real RTL components, such as the ones reported ie Tab

6 Concluding Remarks

This chapter provided a formalization of the abstractimele and design domains
of a smart system. This taxonomy allows to identify a preciéein the design flow
for co-simulation and simulation scenarios, and to exarttisémpact of heteroge-
neous or homogeneous models of computation. Moreover, otielogy has been
proposed to move from the co-simulated heterogeneity tonallatable homoge-
neous representation of the entire smart system at twodéablstraction: functional
level and transactional level. At functional level, all qgooments are implemented
in C++, with the goal of understanding the role of the undadysynchronization
and simulation semantics and their overhead on simulaggiopnance. At transac-
tional level, two wide-spread simulation frameworke, SystemC and SystemVue,
have been adopted to ease code integration, even in presferery heterogeneous
design flows.
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