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Design domains and abstraction levels for
effective smart system simulation

Sara Vinco, Michele Lora, Valerio Guarnieri, Jan Vanhese, Dimitrios Trachanis,
Franco Fummi

Abstract Smart systems cover a wide variety of domains, ranging from analogue
to digital, with power devices, micro-sensors and actuators, up to MEMS. This high
level of heterogeneity makes design a very challenging task, as each domain is sup-
ported by specific languages, modeling formalisms and simulation frameworks. A
major issue is furthermore posed by simulation, that heavily impacts the design and
verification loop and that is further complicated by such an heterogeneous context.
This chapter provides a formalization of the typical abstraction levels and design
domains of a smart system, with the goal of identifying a precise role in the design
flow for co-simulation and simulation scenarios. Moreover,a methodology is pro-
posed to move from the co-simulated heterogeneity to a simulatable homogeneous
representation of the entire smart system at two level of abstraction: functional level
and transactional level. At functional level, all components are implemented in C++,
with the goal of understanding the role of the underlying synchronization and sim-
ulation semantics and their overhead on simulation performance. At transactional
level, two wide-spread simulation frameworks,i.e., SystemC and SystemVue, are
adopted to ease code integration, even in presence of very heterogeneous design
flows.

Sara Vinco
Politecnico di Torino, Torino, Italy e-mail: sara.vinco@polito.it

Michele Lora
University of Verona, Verona, Italy e-mail: michele.lora@univr.it

Valerio Guarnieri
EDALab s.r.l., Verona, Italy e-mail: valerio.guarnieri@edalab.it

Jan Vanhese
Keysight Technologies, Rotselaar, Belgium e-mail: janvanhese@keysight.com

Dimitrios Trachanis
Keysight Technologies, Rotselaar, Belgium e-mail: dimitrios.trachanis@keysight.com

Franco Fummi
University of Verona and EDALab s.r.l., Verona, Italy e-mail: franco.fummi@univr.it

45



46 Sara Vinco et al.

Harvesting Device 

(PV, Piezo, etc.)

Power

Management

Energy Storage: 

Supercap, 

Batteries, etc. 

Sensors
Analog Front/Back 

End

Low Power Digital 

Processing

Wireless Transmission: RF low power, ZigBee, etc.

Power Actuators: SiC, GaN, Power Mosfet, IGBT

Fig. 1 Typical components of a smart system

1 Introduction

Smart systems represent a broad class of systems defined as intelligent, miniaturized
devices incorporating functionality like sensing, actuation, and control. In order to
support these functions, they must include sophisticated and heterogeneous compo-
nents and subsystems such as: application-specific sensorsand actuators, multiple
power sources and storage devices, intelligence in the formof power management,
baseband computation, digital signal processing, power actuators, and subsystems
for various types of wireless connectivity (as shown in Figure 1).

Smart components and subsystems are developed and producedwith very dif-
ferent technologies and materials specific to the corresponding domain and tech-
nology. The heterogeneity involves not only the language orframework adopted,
but also different levels of abstraction and different communication and synchro-
nization styles. As of today, no design methodology and tools exist that can mas-
ter, simultaneously and in a seamless manner, all the challenges that designers of
smart micro-systems are confronted with when new products need to be developed.
Nevertheless, modeling and design capabilities for heterogeneous components and
subsystems are today available at specialized design houses and silicon makers in
various forms. On the other hand, system integrators typically have separate tooling
to model the environment. As a result, the challenge in the realization of a Smart
Systems goes beyond the design of the individual componentsand subsystems (an
already difficult task by itself), but rather consists in accommodating a multitude of
functionality, technologies, and materials.

In this context, simulation is a very critical task, as each component domain
adopts specific tools and frameworks, that do not cover the whole smart system
heterogeneity. On the other hand, simulation is a key phase in the design and veri-
fication process of a system, as it heavily impacts time-to-market and the competi-
tiveness of the final product.

The goal of this chapter is to ease simulation and validationof smart systems. In
this context, it provides ataxonomy of abstraction level/design domains, to highlight
challenges and tools available for each domain. This allowsto identify a precise role
in the design flow for co-simulation and simulation scenarios, and thus to outline the
possible strategies for gaining correct simulation of smart system. The two comple-
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mentary approaches are compared with the goal of showing respective strengths and
weaknesses.

The chapter also aims at enhancingreuse and integration by showing how state-
of-the art and commercial tools can ease the adoption of homogeneous simulation,
with automatic code generation from lower abstraction levels and automatic inte-
gration of heterogeneous interfaces.

As a result, the chapter builds acomprehensive modeling and simulation frame-
work that supports both digital, analogue and circuit-level descriptions simultane-
ously. This improves the contemporary smart systems designflow in such a way
that a system level simulation of all the heterogeneous components/sub-systems of
a smart system will be possible. This advances state-of-the-art approaches by sup-
porting the development of smart systems, their integration and efficient simulation.

The chapter is organized as follows. Section 2 provides a background on smart
system design, by listing available frameworks and formalisms, together with state-
of-the-art tools. Section 3 identifies the typical abstraction levels and design do-
mains involved in smart system design, with the goal of defining a taxonomy of
the most widespread tools and languages. Finally, Section 4proposes code conver-
sion and generation approaches to gain homogeneous simulation of the heteroge-
neous components of a smart system, by working on both language and formalisms.
Section 5 provides experimental evidence of the proposed solutions, and Section 6
concludes the Chapter with some concluding remarks.

2 Background on Smart System Modeling

Smart components (and sub-components) are developed and produced with very dif-
ferent technologies and materials, specific to the corresponding domain. The goal of
this Section is to provide the necessary background for the proposed methodologies.
Section 2.1 outlines the most wide-spread formalisms and frameworks available in
the literature for tackling smart systems heterogeneity, while Section 2.2 deepens
the ones adopted in the proposed flow.

2.1 Formalisms and Frameworks for Smart System Modeling

The heterogeneity of smart system involves not only the language or framework
adopted, but also different levels of abstraction and communication and synchro-
nization styles. An evidence of this are the adopteddescription languages, that only
target specific domains, such as digital and software components (SpecC and Sys-
temC) or analogue components (VHDL-AMS, Verilog-AMS and SystemC-AMS).

In the literature, the main approaches proposed for handling such a heterogeneity
are (i) top-down flows, relying either on model-based design(MBD) or on Models



48 Sara Vinco et al.

of Computation (MoCs), and (ii) co-simulation, which exploits different simulation
environments to take care of the heterogeneity of the system[13].

In MBD approaches, the system model is at the center of the design process and
it is continually refined throughout a strictly top-down development flow [5, 22,
23]. Components following different synchronization mechanisms are put together
through data conversion, that must be implemented manually, thus not guaranteeing
correct integration.

SeveralMoCs have been proposed to describe different aspects of smart systems.
As an example, Extended Finite State Machines (EFSMs) [18] are an enhancement
of traditional FSMs suited for describing digital HW components and cycle-accurate
protocols, while hybrid automata have been defined to allow the integration of con-
tinuous physical dynamics with discrete behaviors [20]. Unfortunately, every MoC
is a stand-alone environment that can not cover all the domains comprised in smart
system development. Forcing communication through manualconversions between
MoCs does not provide any guarantee of correctness of the final result.

The complementary approach is to integrate existing components in a bottom-
up flow. This is realized withco-simulation environments where each component is
simulated in its native environment and framework. Different simulators are then
connected by defining rules and conversions about time management and event
ordering, supported methods of communication and rules of process activation
[10, 17]. However, co-simulation assemblies heterogeneous components without
providing a rigorous formal support, and it only moves the problem of integrating
heterogeneous components to the problem of integrating different simulators.

2.2 Adopted Platforms for Smart System Design

This section gives a very brief overview of the main tools andplatforms used in this
work for smart system modeling and integration: SystemC andSystemC-AMS as
a language supporting a number of abstraction levels (Section 2.2.1), HIFSuite for
automatic conversion of reused code and components (Section 2.2.2), SystemVue
as a simulator and co-simulator (Section 2.2.3), andUNIVERCM as a MoC spanning
across various heterogeneous domains (Section 2.2.4).

2.2.1 SystemC and SystemC-AMS

SystemC is a widely deployed extension to C/C++ for describing HW constructs,
ranging from register-transfer level up to transactional level [1]. The underlying
simulation kernel is entirely event-based,i.e., a centralized scheduler controls the
execution of processes based on events (synchronization, time notifications or sig-
nal value changes). SystemC provides also a methodology forperforming abstract
modeling, simulation through generalized modeling of communication and synchro-
nization: Transaction Level Modeling (TLM) [3].
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The SystemC simulation kernel has not been natively designed to handle the
modeling and simulation of analog/continuous-time systems. The recent extension
SystemC-AMS [2] was designed for overcoming this lack,i.e., for modelling and
simulating interacting analog/mixed-signal functional subsystems, thus allowing to
extend the adoption of a SystemC-based environment also to extra-functional, con-
tinuous time domains.

SystemC-AMS provides different abstraction levels to cover a wide variety of
domains.Timed Data-Flow (TDF) models discrete time processes, that are sched-
uled statically by considering their producer-consumer dependencies.Linear Sig-
nal Flow (LSF) supports the modeling of continuous time behaviors through a li-
brary of pre-defined primitive modules (e.g., integration, or delay), each associated
with a linear equation.Electrical Linear Network (ELN) models electrical networks
through the instantiation of predefined primitives,e.g., resistors or capacitors, where
each primitive is associated with an electrical equation. In case of ELN or LSF de-
scriptions, a SystemC-AMS AD solver analyzes the ELN and LSFcomponents to
derive the equations modeling system behavior, that are solved to determine system
state at any simulation time.

SystemC-AMS ELN
(Electrical Linear 

Network)

SystemC-AMS TDF
(Timed Data Flow)

SystemC-AMS LSF
(Linear Signal Flow)

Linear DAE solver Static scheduler

Synchronization layer

SystemC (and TLM) standard scheduler

Additional scheduling

and semantics layers

defined by SystemC-AMS

Fig. 2 Architecture of the SystemC scheduler as extended with SystemC-AMS support.

As highlighted by Figure 2, the key feature of all SystemC extensions is that
overall simulation in handled by the sole SystemC simulation kernel, that interacts
with its extensions to define, time after time, both the execution queue and the cor-
responding system evolution.

2.2.2 HIFSuite

HIFSuite is a set of tools and application programming interfaces (APIs) that pro-
vide support for modeling and verification of HW/SW systems [15]. The core of
HIFSuite is the HDL Intermediate Format (HIF) language uponwhich a set of front-
end and back-end tools have been developed to allow the conversion of HDL code
into HIF code and vice versa. HIFSuite allows designers to manipulate and inte-
grate heterogeneous components implemented by using different hardware descrip-
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tion languages (HDLs). Moreover, HIFSuite includes tools,which rely on HIF APIs,
for manipulating HIF descriptions in order to support code abstraction/refinement
and post-refinement verification, includingA2T, a tool for abstracting RTL digital
components to TLM or C++ [8].

2.2.3 SystemVue

SystemVue is an electronic design automation (EDA) environment for electronic
system-level (ESL) design, focused on RF and DSP systems [4]. It supports com-
plex RF envelope carriers and dataflow simulations [21]. In SystemVue, a system
is described as a schematic of components connected with wires and busses. The
simulation technology is based on a Data-Flow MoC and in is based on the Ptolemy
multi-domain, heterogeneous simulation platform [22].

SystemVue is well suited for the integration of heterogeneous systems. It pro-
vides numerous libraries with parameterized components and interfaces to diverse
modeling formats, ranging from MATLAB to the main HDLs, suchas Verilog and
VHDL. Furthermore, it allows to create custom components inmath language or
C++ and to add them to a purely SystemVue system. SystemVue supports multi-
domain simulations through links to event-based as well as circuit simulation en-
gines, such as SystemC and ModelSim, may be extended to analogue simulations.

2.2.4 UNIVERCM

UNIVERCM is an automaton-based formalism that unifies the modelingof both
the analogue (i.e., continuous) and the digital (i.e., discrete) domains, as well as
hardware-dependent SW. A formal and complete definition is available in [19].

In eachUNIVERCM automaton (depicted in Figure 3), states model the continu-
ous dynamics of the system as a condition that must be satisfied to perform contin-
uous evolution (invariant) and a predicate modeling the evolution of variables over
time (flow). Edges between states model the discrete dynamics as evolution of vari-
ables and activation of synchronization events, controlled by a boolean predicate on
the variable state and by synchronization checks.

Si Sj

Edge priority

Invariant

Flow predicate

Atomic Update 

variables

Update 

synchro

Guards on 

variables
Check 

synchro

State priority

Invariant

Flow predicate

Atomic

State priority

Fig. 3 Example ofUNIVERCM automaton
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UNIVERCM is an important resource in smart system design as it is well suited
for the application to heterogeneous domains [19]. Indeed,the computational model
allows to cover the heterogeneity that characterizes such systems, ranging from ana-
logue and digital HW up to dedicated SW. [19] presented a comprehensive reuse and
design flow based onUNIVERCM, thus showing how it is possible to provide for-
mal rules and automatic tools to convert the heterogeneity to UNIVERCM and to
produce a homogeneous simulatable implementation of the generatedUNIVERCM
system. Thus,UNIVERCM enhances reuse and bottom-up design.

3 Analysis of smart system simulation solutions

Simulation and design are heavily influenced by the abstraction level of each com-
ponent and, as a consequence, by the level of heterogeneity that characterizes the
system in terms of domains, abstraction levels and synchronization mechanisms. It
is thus necessary to clearly identify the abstraction levelinvolved in smart system
design (Section 3.2) and to associate each domain and simulator to the correct level.
For this reason, this section proposes a taxonomy that associates frameworks and
design flows to each domain and abstraction level (Section 3.3). This constitutes a
necessary starting point for understanding the impact of abstraction levels and of the
heterogeneity/homogeneity trade-off on simulation (Section 3.4).

3.1 Typical domains of smart system design

The typical classes of components of any smart system are identified in terms both
of constituting characteristics and of rolew.r.t. the inner information/energy flows.
For this reason, components are sub-divided into six main domains:

• MEMS, sensors and actuators, in charge of communicating with the surrounding
environment;

• power sources, necessary to guarantee correct functioning of all other compo-
nents;

• discrete and power devices, as parts of the energy flow, responsible for energy
dispatching and harvesting;

• analogue and RF components, mainly responsible for signal processing, trans-
mission and reception;

• digital HW, core of the system processing and functionality;
• embedded SW, as system controller and main mean of communication with the

end users.

The main simulation problems of smart systems derive from this heterogeneity
that requires the use of different design languages and different abstraction levels.
Moreover, it is extremely unlikely that a single team has theknowledge to cover all
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such design domains, thus, we have to assume that a set of design teams must co-
operate by using their own favorite design languages, In fact, there is noEsperanto
able to effectively model all such domains. A variety of design languages has rather
been proposed in the past decades to cover specific design domains, and some stan-
dards de-facto became the reference languages for design teams specialized in each
design domain. This challenging scenario will be the focus of the next sections.

3.2 Abstraction levels of smart system design

The main factors determining the level of abstraction are: time granularity, inter-
connection model, state space granularity and data aggregation. Time granularity
is an important dimension in a heterogeneous environment. It may be continuous
or discrete time, or follow an event-based semantics where time ticks only when
the system state changes. Theinterconnection model describes communication and
synchronization between components as potential or flow quantities (conservative
systems), flow charts or transactions. Thegranularity of state space details data ag-
gregation for simulation purposes,i.e., variables managed by differential equations,
symbolic variables or objective constructs (i.e., system state describes the possi-
ble behavior,e.g., C++). Finally,data aggregation states whether the component is
modeled by considering the minimum (black box) or maximum (clear box) num-
ber of state space variables necessary for a correct representation of the observable
behavior.

Given these factors, it is possible to identify five main abstraction levels, typical
of smart systems.

• At transactional level, simulation is strictly event-based and inter-component
communication happens via transactions (that provide a communication protocol
to the system). System state is modeled with variables.

• At functional level, simulation is event-based but communication relieson the
flow chart interconnection style.

• The structural level has two main approaches depending on time granularity.
Continuous time evolution is modeled with differential equations and by observ-
ing conservative laws. Discrete time may adopt both event-based or flow chart
synchronization, and finite set variables are adopted.

• At device level, simulation can be both continuous or discrete time. The major
difference is that at device level all variables are modeledexplicitly, while struc-
tural level models only those variables that are strictly necessary for simulation
purposes.

• Thephysical level adopts continuous time synchronization and the conservative
interconnection style. State space is described with continuous fields as differen-
tial equations and all variables are modeled in a clear box approach.
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3.3 Design-domains/simulation-level taxonomy

Given the variety of abstraction levels and the heterogeneous domains typically
present in any smart system, it is possible to build the design-domains/simulation-
level taxonomy shown in Figure 4. Such a chart identifies the abstraction level
(rows) and the domain (column) of the most widespread tool and languages adopted
in the context of smart systems. This allows to correctly differentiate the use of co-
simulation and simulation according to the two dimensions.Text in bold shows the
typical entrance level and tools for each domain.

S
IM

U
L
A
T
IO
N

C
O
-S
IM

U
L
A
T
IO
N

Fig. 4 Design-domains/simulation-level taxonomy, identifyingthe abstraction level (rows) and
the domain (column) of the most widespread tool and languages adopted in the context of smart
systems. Text in bold shows the typical entrance level and tools for each domain.

Models belonging thelowest abstraction levels (i.e., physical, device and struc-
tural) are represented by different domain-specific designlanguages. They must thus
be simulated by using their own simulator (e.g., Matlab, Modelsim, EMPro). For this
reason, a framework covering more than one domain can be implemented only by
usingco-simulation techniques which connect different tools by exchanging simu-
lation data from one tool to another.

Moving to thefunctional level, there is a convergence in the modeling language,
as all models belonging to different domains are represented in C++. This would
in principle allow a simulation among different domains. However, the MoC im-
plemented into each C++ model can be different from domain todomain. Thus,
simulation cannot be simply obtained by linking functionalC++ models, but such
models must also be coherentw.r.t. the same MoC. Thus, either the chosen MoC
covers all domains or some data and synchronization conversion is necessary.

At transaction level, simulation frameworks enforce a common transaction-based
communication protocol to all domains. This allows to seamlessly integrate compo-
nents belonging to different domains and based on differentMoCs and synchroniza-
tion mechanisms.
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3.4 Impact of MoCs on simulation and co-simulation performance

The taxonomy in Figure 4 helps in further understanding the impact of MoCs and
of heterogeneity on simulation and co-simulation at different abstraction levels.

As mentioned in Section 3, the heterogeneity of thelowest abstraction levels
forces to simulate each design domain by using ad-hoc simulators. Co-simulation
frameworks are thus built by connecting different simulators, such as shown in
[10, 17]. Unfortunately, explicitly modeling the synchronization between simula-
tors, different for language, formalism and underlying MoC, heavily impacts sim-
ulation performance and effectiveness [19]. Other approaches achieve a lighter im-
pact by compiling separately the different formats and linking them together, such
as done by ModelSim to co-simulate SystemC and VHDL. This lighter approach is
still affected by the presence of heterogeneous MoCs, as thedata sharing mechanism
and time synchronization introduce a heavy overhead.

Functional level brings to a convergence in terms of modeling language and
framework, thus showing the impact of MoCs to the full. If allC++ components
follow the same MoC, then they can easily integrated with no further overhead.
Else, if the adopted MoCs are heterogeneous, it becomes necessary to introduce a
communication layer for applying data and synchronizationconversion.

Communication and synchronization are further eased attransaction level, as
transactions and standard interfaces force a single communication protocol to all
components. This mitigates the effect of having multiple MoCs, as problems risen
by data sharing and time synchronization are moved inside the transactional com-
munication mechanism.

This analysis highlights that the heterogeneity of smart systems impacts simula-
tion performance in many directions. Contributing elements are indeed the adopted
languages, the levels of abstraction and the MoCs followed by the components to be
integrated. The weakest approach appears to be co-simulation, mandatory at lowest
levels, as it pays the price of all degrees of heterogeneity.Simulation becomes more
effective at functional and transactional levels, where heterogeneity is constrained
and limited to few synchronization mechanisms. For these reasons, the remainder of
this Chapter will focus on code generation for effective simulation of smart systems
at functional and transactional levels.

4 Proposed methodologies

The analysis of the smart system simulation scenarios proposed in the previous Sec-
tion highlighted that the choices in terms of abstraction level, language and MoC
may heavily affect simulation performance. This Section outlines three alternatives,
different in terms of implementation choices and covered domains. The solutions
are summarized in Figure 5, and they provide different coverage/performance trade-
offs, together with techniques and tools for achieving automatic generation of sim-
ulatable code. Section 4.1 focuses on functional level, andit estimates the impact
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PROPOSED 

SOLUTIONS

FUNCTIONAL LEVEL

(Section 4.1)

TRANSACTIONAL LEVEL

(Section 4.2)

Single MoC

(Section 4.1.1)

Multiple MoCs

(Section 4.1.2)

SystemC-based

(Section 4.2.1)

SystemVue-based

(Section 4.2.2)

Fig. 5 Proposed solutions for homogeneous simulation of heterogeneous smart systems.

of MoCs on simulation. On the other hand, Section 4.2 provides two solutions at
transactional level, based on SystemC and on the SystemVue framework.

4.1 Smart system simulation at functional level

The functional level brings all domains to a convergence in terms of modeling lan-
guage, usually C++. This easies the achievement of simultaneous simulation of
components belonging to different domains. At the same time, an effort may be
necessary whenever the C++ representations of components follow different MoCs,
i.e., different synchronization management rules. This Section provides an example
for both flows, with the goal of showing the impact of MoCs to the full.

4.1.1 Simulation based on a single MoC

The UNIVERCM MoC, presented in Section 2.2.4, was designed to reconcile het-
erogeneous domains to a unique formalism. It supports a fullbottom-up approach
where already existing heterogeneous descriptions can be automatically converted
and integrated intoUNIVERCM automata for being, subsequently, re-mapped to a
single simulatable model. This Section details both the flows, with a focus on the
major conversion issues and solutions.

Mapping from heterogeneity toUNIVERCM

The strategy to map any component toUNIVERCM strictly depends on the domain
and abstraction level of the starting description [14].

Mappingdigital HW descriptions in UNIVERCM requires to reproduce the simu-
lation semantics of HDLs, both in terms of scheduling and of synchronization.
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HDL processes are represented as automata. All edges of an automaton are
guarded by the activation of synchronization labels, reproducing a value change
of any of the signals in the sensitivity list. This activatesan automaton in response
to changes in its sensitivity list. Note that the propagation of synchronization events
is straightforward, as labels are instantaneously visiblefrom any automaton.

The typical HDL scheduling routine is in charge of generating and propagat-
ing events and advancing simulation time. This mechanism must be represented in
UNIVERCM so that events are processed in the same order and simulation semantics
is preserved. The main feature that must be preserved is thusthe fact that simula-
tion time is advanced only when there is no event to be processed in the system nor
any signal to be updated. The scheduling routine is represented with an additional
automaton, that advances a continuous variable representing time only when there
is no active label in the system. This allows to process events in the same order as
in the original HDL and to preserve the original simulation semantics.

HW-dependent SW (HdS) is SW that controls and abstracts HW functionality,
to allow easy and standard access to HW devices and the deployment of more ab-
stracted SW. HdS is thus in charge of managing communicationwith HW and it
needs to be reactive to signals and interrupts risen by HW devices. Each HdS func-
tion is mapped to aUNIVERCM automaton, evolving among a certain set of states
via transitions (note that continuous time evolution is notsupported for this domain).
Each function is provided with two special labels: an activation label (representing
function invocation and activated by automata willing to execute the function) and
a return label (used to communicate to the caller that the function has finished its
execution). This allows inter-function communication. Automata representing HdS
functions can be also sensitive to events coming from HW automata, representing
HW interrupts. This, together with data sharing for modeling MMIO mechanisms,
allows to reproduce the basics of HW-SW communication. An example of HW-SW
communication, and of mapping toUNIVERCM of the corresponding components,
is provided in Figure 6.

UNIVERCM can be easily adopted to model alsoanalogue models described with
differential equations as hybrid automata [16, 28]. The mapping is straightforward,
even if some transformations are necessary to reproduce thesynchronization seman-
tics and to remove hierarchy from the automata.

Once that all starting descriptions have been converted toUNIVERCM, automata
evolve simultaneously through data sharing (i.e., by accessing the same variables)
and by synchronizing via labels. Thus, no additional communication or scheduling
mechanism is necessary.

Mapping fromUNIVERCM to C++

The conversion flow fromUNIVERCM to C++ is defined in general for any au-
tomata, with no concern regarding the language of the original description converter
to UNIVERCM.
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Fig. 6 Mapping toUNIVERCM of a digital HW component firing an interrupt (1) and of the corre-
sponding interrupt service routine (2).

Each UNIVERCM automaton is mapped to a C++ function, representing the
whole automaton evolution, as depicted in Figure 7. A state variable is used to store
the current state of the automaton. The function body is built as aswitch state-
ment, where each case represents one of the automaton states. Each state case lists
the implementation of all the outgoing edges and of the delaytransition provided
for the state.

Eachedge is implemented as anif or else if statement, whose guard is a
logic and of the enabling condition on the edge and of the activation condition on
synchronization events. The body executed when the guard issatisfied includes the
update of variables and the activation of synchronization events. Furthermore, the
state variable is updated to the destination state of the edge.

Continuous evolution is implemented as anif or else if statement whose
guard is the invariant condition that allows to remain in thestate. The body executed
when the guard is true implements a discretized implementation of the flow predi-
cate, by adopting theEuler numerical integration algorithm with time discretization
step chosen by the designer [11]. It is important to note thatthe Euler method can
be replaced with one of the many available algorithms for theapproximation of
solutions of ordinary differential equations.

Code generated fromUNIVERCM automata is ruled by amanagement function,
in charge of activating automata and of managing the status of the overall system
and parallel composition of automata. The result of this approach is that all code
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16.       }

17.    case (B): ...

18.    case (C): ...

}
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Fig. 7 UNIVERCM automaton to be converted to C++ (left) and correspondinggenerated code
(right)

generated fromUNIVERCM automata is controlled by a single function, and it is
thus provided with a simple interface.

If the system is made of moreUNIVERCM automata, the management function
is not enough to grant correct composition. Indeed, the starting components come
from heterogeneous domains, and thus the communication means may differ. On
the other hand, communication betweenUNIVERCM automata happens via variable
sharing and through synchronization events. Thus, any two automata can be easily
composed by checking the correspondence between variablesand synchronization
events of the two. Mapping the one in the other must be identified by the designer.
This allows to extend the management function to all operations necessary to prop-
agate updated values.

Finally, UNIVERCM variables and events are mapped to native C++ constructs.
Variables are mapped to a couple of C++ variables, representing the current value
and the future value respectively, in order to respect theUNIVERCM semantics.
Value update is performed by the management function, as previously anticipated.
The type of each variable is determined by the variable alphabet for discrete vari-
ables, while continuous variables are mapped to doubles. Support type libraries may
be used, for simulation purposes or to enhance simulation speed [6]. Synchroniza-
tion events are represented with boolean values, wheretrue states that the label is
active. In detail, labels are mapped to a couple of boolean values, representing the
current value and the next simulation value respectively. At the end of each simula-
tion step, the management function will set the new current value to the future one,
and reset the future value tofalse.
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Integration strategies and challenges

Simulation based on a single MoC poses no challenges regarding integration. All
starting components, despite of their heterogeneity, are converted toUNIVERCM
automata, by mapping the starting semantics toUNIVERCM native constructs. This
allows to abstract the characteristics of the starting descriptions, and to represent
the system as a number of automata that interact through no conversion mechanism.
This is a winning approach. as no manual intervention is necessary to allow integra-
tion. This reduces by far communication overheads, and it speeds up simulation.

4.1.2 Simulation based on multiple MoCs

UNIVERCM is a very powerful MoC, as it covers a wide number of domains. How-
ever, its representation of digital HW may lead to an explosion of the modeled
automata, both in terms of states and of synchronization labels. Furthermore, no
methodology has been defined yet for mapping circuit-based descriptions, as elec-
trical behaviours and conservation laws are difficult to reproduce in an automata
based approach. For this reason, it may be necessary to integrate code generated via
UNIVERCM with C++ code generated with other strategies. This Section outlines
two additional strategies, necessary to cover all smart system domains efficiently.
The Section ends by presenting the integration strategies and challenges, to allow
overall smart system simulation even in presence of different MoCs.

HIFSuite for efficient conversion of digital HW to C++

HIFSuite (introduced in Section 2.2.2) is a closely integrated set of tools and APIs
for reusing already developed components and for verifyingtheir integration into
new designs [15].

HIFSuite was first designed for allowing system designers toconvert HW/SW
design descriptions from an HDL to a different HDL and to manipulate them in a
uniform and efficient way. For this reason, the underlying HIF core language is made
of a set of objects corresponding to traditional HDL constructs like, for example,
processes, variable/signal declarations, sequential andconcurrent statements, and
so forth [9]. Each HIF construct is mapped to a C++ class that describes specific
properties and attributes of the corresponding HDL construct. Such objects can then
be manipulated through powerful C++ APIs which allow to explore, manipulate,
and extract information from HIF descriptions.

All such characteristics make HIFSuite a very convenient infrastructure to define
conversion tools working on digital HW descriptions. The typical conversion flow
from digital HW to C++ is outlined in Figure 8, and it leaves the underlying MoC
of the starting description unchanged.

Any digital HW description, implemented in a HDL language, is converted to its
HIF representation via theHIFSuite front-end tools, performing a straightforward
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Fig. 8 HIFSuite-based flow for automatic conversion of digital HW descriptions to C++

mapping from HDL constructs to the corresponding HIF objects. The abstraction
of the HIF description is then carried out by two manipulation tools from HIF-
Suite,DDT andA2T. DDT replaces the original HDL data types from the starting
HW description with C++ built-in data types in order to greatly improve simulation
performance. Then,A2T implements the methodology in [7] to convert the HDL
processes to functions and the HDL scheduling semantics to amanagement func-
tion. Additionally, A2T can be guided to generate more performing C++ code by
providing it with profiling information of the starting HDL implementation. If the
repeated execution of asynchronous processes dominates execution time,A2T may
replace the standard dynamic HDL simulation semantics witha static scheduling
approach. Such an approach creates a sequence of processes to be repeated at ev-
ery simulation cycle, thus avoiding the overhead of event management. This allows
to further abstract the starting HDL description, to customize the generated code
with the goal of optimizing simulation performance. The obtained HIF description
is finally converted to C++ through the back-end toolhif2sc.

The winning aspect of this strategyw.r.t. theUNIVERCM-based conversion flow
presented in Section 4.1.1 lies in the efficiency of the generated code. HIF natively
preserves the HDL semantics, thus not introducing additional constructs,e.g., for
scheduling or synchronization management. This results ina more compact C++
implementation of the starting digital HW.

Conversion of analogue and mixed signal descriptions to C++

Analogue components can be seen as a set of algebraic and differential equations,
expressing the functionality. These equations can be expressed in different ways:
they can be explicitly listed or they can be hidden by expressing them as intercon-



Design domains and abstraction levels for effective smart system simulation 61

nections of primitives, as for block diagrams. Thus, when aiming at reproducing
the behavior of an analogue device, it is fundamental to extract the correct set of
equations from the original description. To accomplish this task, HIFSuite analy-
sis features come in handy, and they are exploited into a framework of front-end,
manipulation and back-end tools. The resulting flow is depicted in Figure 9.

HIF core language
(XML based)

HIFSuite

Manipulation tools

v2hif
Verilog-

AMS
C++hif2sc

OCCAM
(for analogue models)

Fig. 9 HIFSuite-based flow for automatic conversion of analogue and mixed signal descriptions to
C++

To read analogue descriptions, the Verilog parser of HIFSuite is extended to sup-
port Verilog-AMS. The tool takes care of parsing analogue descriptions, based on
dipole equations, and to map constructs into HIF. The HIF representation is then
used to analyze and manipulate the information expressed bythe design. Analysis
and manipulation are performed byOCCAM (Ordinary C++ Code for Analogue
Models), a tool developed on top of HIFSuite that implements an analysis and ma-
nipulation algorithm composed by the following five steps:

• Acquisition: starting from the set of dipole equations acquired by the Verilog
front-end tool, an hash table is created. For each electric branch of the circuit
represented by the original description, current and voltage are labeled and then,
every equation is stored in the hash table, using the left value label as key. Then,
also the inverse equations are computed, stored in the tableand marked as “lin-
early linked” to the original equation.

• Enrichment: the system of equations can be partially specified, and somerela-
tions may thus be left implicit. It is necessary to apply Kirchhoff’s current and
voltage laws to retrieve the entire set of equations composing the system. This
is done by employing a Modified Nodal Analysis algorithm on the set of equa-
tions extracted during the acquisition step. The implicit equations, retrieved by
the Modified Nodal Analysis, are inserted into the hash tableand marked as “lin-
early linked”.

• Assemble: in order to abstract the system, the outputs of interest arefixed by the
designer. For every output of interest, its label is used to fetch an equation from
the hash table. Then, all the terms of the fetched equations are used as label to



62 Sara Vinco et al.

fetch other equations, recursively, in order to retrieve all the terms influencing the
chosen output. A tree structure representing these dependency is built for every
output of interest.

• Preparation: the tree built at the assemble step is visited, and the dependencies
are mapped into a sequence of assignments and function calls, to represent alge-
braic and differential operators.

• Dismantle: the sequence of instructions created after the previous steps are in-
serted into a function. Since the produced models aim at simulating continuous
time evolution, they have to be repeatedly executed. Thus, the simulation sched-
uler will provide to call and execute the function wrapping the behavior, period-
ically during the simulation.

Finally, the behavioral representation produced by OCCAM and modeled in HIF
has to be translated into C++. To do this, the HIFSuite back-end tools have been
extended in order to support this kind of representation, toproduce C++ code for
the simulation.

Integration strategies and challenges

The integration of C++ code generated with the presented techniques introduces
major challenges. Indeed, this Section clearly highlighted that at functional level
different domains and techniques share a common language, but not the MoC and
the synchronization mechanisms. As an example, an event fired by a component
generated throughUNIVERCM may be difficult to detect by code generated through
HIFSuite or through a complex abstraction process, necessary to handle analogue
and mixed signal descriptions.

If execution inside components may be self-sufficient and correct, problems arise
whenever interaction between components is necessary. Dueto the complexity of
the task and to the complex configurations that may show up, this task can be han-
dled only manually, by carefully considering the characteristics of the specific com-
ponents into play.

Whenever integrating heterogeneous C++ code, the designershall consider:

• functionality activation: each MoC introduces different scheduling strategies in
the C++ code, ranging from the reconstruction of HDL scheduling up to simple
activation of all automata forUNIVERCM-based code. The designer shall imple-
ment a global scheduling routine, that activates the singledomains by respecting
timing and causality relationships;

• time evolution: each MoC advances time with specific solutions, that are af-
fected by the presence of runnable activities. Local scheduling strategies must
thus agree on a shared notion of time, so that events are propagated in the correct
order and that digital synchronous signals such as clocks are coherentw.r.t. the
remainder of the system;

• event propagation: each local scheduler must be able to detect synchronization
events fired by the other domains. For this reason, the globalscheduler must
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convert events from one formalism to the other, without introducing delays or
timing misalignments;

• data sharing: different components must be able to share data despite of the
implementation differences. The global scheduling routine shall propagate value
changes, thus converting data from one format (or data type)to the other.

This highlights that, even if the single conversion techniques are correct, interaction
of heterogeneous MoC introduces heavy management overheads and it may leave
space for synchronization misalignments.

4.2 Smart system simulation at transactional level

The transactional layer brings all domains to a convergencein terms of modeling
language and of underlying framework. The differences in terms of MoC or abstrac-
tion level are not reduced by means of conversion methodologies, but they are rather
preserved to ease the integration process. Ad-hoc interfaces or simulation strategies
mask this heterogeneity with a transaction-based mechanism, where a global sched-
uler satisfies activation requests and performs all conversions and synchronization
with no intervention from the user. This Section provides two examples of this strat-
egy, the one relying on the standard language SystemC (Section 4.2.1) and the other
based on the commercial tool SystemVue (Section 4.2.2). This will highlight the
characteristics of the transactional level to the full.

4.2.1 SystemC-based simulation

SystemC, together with its extensions, is a well established language for the mod-
eling of smart systems. Its strength, as anticipated in Section 2.2.1, is the presence
of a single simulation kernel, mastering requests coming from any of the supported
MoCs and libraries.

SystemC can be considered transactional as any of the supported MoCs defines a
precise interface to the simulation kernel, thus wrapping different levels of abstrac-
tion of the instantiated constructs. Each solver communicates with the simulation
kernel through transactions,i.e., activation requests that are satisfied by the kernel
through synchronization with the remainder of the system and through data sharing
and conversion. This Section shows how effective SystemC can be at supporting the
heterogeneity of smart systems, ranging from analogue and mixed signal conserva-
tive descriptions up to digital HW components.

Mapping fromUNIVERCM to SystemC

Mapping ofUNIVERCM to SystemC traces the approach for C++ code generation
proposed in Section 4.1. However, the presence of a simulation kernel allows to del-
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egate some management tasks, and to reproduce automata behavior through native
SystemC constructs. Note that this is crucial to ease and enhance the interaction
with SystemC code generated through different design flows.

The main effect of the adoption of SystemC is on the management routine.
UNIVERCM automata are indeed mapped to processes, rather than functions. This
allows to delegate automata activation to the SystemC scheduler, by making each
process sensitive to its input variables. Automata activation is removed from the
management function, that still updates the status of variables and events at any
simulation cycle. The management function itself is declared as a process, activated
with a custom event after all automata have performed one simulation step.

The mapping of synchronization events is left unchanged, despite of the pres-
ence of native SystemC events,i.e., sc events. Indeed, SystemC events cannot
be used into conditions, feature that is on the other hand necessary to fully support
UNIVERCM transition semantics.

The mapping ofUNIVERCM variables changes slightly. Variables shared by two
or more automata are mapped to SystemC signals, to allow datasharing between
processes and ensure correct simulation and process activation. UNIVERCM vari-
ables used by a single automata are still mapped to a couple ofC++ variables,i.e.,
current value and future value, that are updated and handledby the management
function.

Mapping of digital HW to SystemC and SystemC TLM through HIFSuite

As previously stated in Sections 2.2.2 and 4.1.2, HIFSuite is an ideal framework
to convert digital HW descriptions into corresponding SystemC and SystemC-TLM
descriptions. The flow to automatically convert digital HW descriptions to SystemC
at RTL is depicted in Figure 10. The input HW description, written in VHDL or Ver-
ilog, is firstly converted to its HIF representation by theHIFSuite front-end tools.
This step is achieved by parsing the input description and mapping HDL constructs
to corresponding HIF objects. Then, the HIF description is converted to the corre-
sponding SystemC RTL code by the the back-end toolhif2sc. A number of manip-
ulations on the HIF description are required during this step to account for the lack
of expressiveness of SystemCw.r.t. VHDL and Verilog. In fact, some VHDL and
Verilog constructs do not have a direct mapping to a corresponding SystemC con-
struct. As such, they must be translated by resorting to an equivalent implementation
through other SystemC constructs.

HIFSuite also features a flow to automatically abstract digital HW descriptions
to SystemC TLM for faster simulation speed. The resulting flow is illustrated in
Figure 11. The first step consists again of converting the input HW description to
its corresponding HIF representation by theHIFSuite front-end tools. If the target
is to generate a TLM description optimized for simulation performance, the follow-
ing step consists of invokingDDT from HIFSuite on the generated HIF description
in order to improve simulation performance by replacing theoriginal HDL data
types with C++ built-in data types. This step is however completely optional. In



Design domains and abstraction levels for effective smart system simulation 65

!"#$%&'($)*+,-*,($$
./01$2*3(45$

!"#6-78($

!"#$%&'$())

%##*+)

9('7)&,$

9!:1$

6;38(<=$

>?1$
,-./+0)

Fig. 10 HIFSuite-based flow for automatic conversion of digital HW descriptions to SystemC RTL

case it is bypassed, the output TLM description at the end of the flow will feature
SystemC data types. The abstraction of the HIF description from RTL to TLM is
carried out by the manipulationA2T from HIFSuite.A2T produces code compli-
ant with the TLM-2.0 standard. The user can select which TLM protocol will be
generated by adopting one of the two TLM-2.0 coding styles, namelyloosely-timed
(LT) andapproximately-timed (AT). If the LT coding style is adopted, the abstracted
design will implement the blocking transport interface, and blocking transport prim-
itives will be used to achieve communication. Conversely, if the AT coding style is
adopted, the abstracted design will implement the non-blocking transport interface,
and non-blocking transport primitives will be used to achieve communication. The
abstraction process generates C++ functionality code fromRTL processes, and re-
places the RTL cycle-accurate communication protocol withthe transaction-based
TLM communication protocol. As reported in Section 4.1.2, profiling information
on the starting HW description can be provided toA2T in order to generate more ef-
ficient C++ code for the design functionality. Finally, the abstracted HIF description
is converted to SystemC TLM through the back-end toolhif2sc.
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Fig. 11 HIFSuite-based flow for automatic conversion of digital HW descriptions to SystemC
TLM
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Mapping of analogue conservative descriptions to SystemC-AMS

Smart systems often feature heterogeneous components thatdo not match the tradi-
tional digital design flow. A typical example are MEMS components, often used as
means of sensing and actuation, thus having a crucial role inthe interaction of the
system with the surrounding environment. The main complexity introduced by this
kind of descriptions is that they areboth behavioural and conservative, i.e., they
feature a certain level of abstractionw.r.t. the actual component realization, but at
the same time they obey physical laws, such as energy conservation laws [12, 27].

The limitations of traditional flows and tools at handling such components are
highlighted by the characteristics of SystemC-AMS that, though being the reference
language for smart system simulation, does not support descriptions that are both
behavioural and conservative (as described in Section 2.2.1). The limited flexibility
of SystemC-AMS forces designers to adopt other HDLs (e.g., Verilog-AMS), that
can not be easily integrated with the frameworks and flows presented in this Chapter.

For these reasons, this Section shows how SystemC-AMS can beextended to
support behavioural and conservative descriptions. Instead of adding a new abstrac-
tion level (with corresponding libraries and classes), theadopted approach uses
SystemC-AMS existing primitives in a novel way [26]. Note that, due to the limita-
tions of SystemC-AMS, supported models are strictly linearand time-invariant.

The starting point of the methodology is a Verilog-AMS behavioural description.
In Verilog-AMS, a circuit is modelled as an abstract graph ofnodes connected by
branches [25]. System state is defined in terms of voltages (V()) and currents (I())
associated with nodes and branches. Relationships betweennodes are modelled with
algebraic and differential equations, calledsimultaneous statements.

Since SystemC-AMS is less expressive than Verilog-AMS, anyVerilog-AMS
simultaneous statement is reproduced by connecting a number of ELN elements.
Given a Verilog-AMS description, each simultaneous statement is divided into basic
contributions by finding the largest sub-equation that can be represented by a single
ELN object. In linear and time-invariant descriptions, this corresponds to breaking
the equation into the single addends.

Each addend is then mapped to the most suitable ELN primitive. As an exam-
ple, an instance of thesca vsource primitive is used to reproduce independent
voltage sources,e.g., V(a) <+ +8.01. On the other hand, an instance of the
sca vccs primitive reproduces voltage controlled current sources,e.g.,I(a) <+
+4.02 V(b). ELN primitives must then be connected to reproduce the relation-
ship expressed by the starting simultaneous statement. If the term on the left hand
side of the simultaneous statement is a current, SystemC-AMS instances are con-
nected in parallel. Else, if the term is a voltage, instancesare connected in series, by
adding intermediate components. Figure 12 exemplifies these concepts on a simul-
taneous statement including a voltage controlled current source, a current controlled
current source and an independent current source.

Differential contributions require a more complex approach, as they model a
derivative (or integrative) relationship between the current or voltage of two sep-
arate circuit nodes. SystemC-AMS, on the other hand, restricts differential be-
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vccs_b = sca_vcvs(«bb», +4.02);

vccs_b ->np(a); 

vccs_b ->nn(gnd); 

vccs_b ->ncp(b);

vccs_b ->ncn(gnd);

cccs_c = sca_ccvs(«cc», -3.72);

cccs_c ->np(a); 

cccs_c ->nn(gnd); 

cccs_c ->ncp(c);

cccs_c ->ncn(gnd); 

ccs = sca_csource(«ccs», +8.01); 

ccs ->p(a); 

ccs ->n(gnd); 

1

2

3

Fig. 12 Example of mapping of a Verilog-AMS simultaneous statementto SystemC-AMS. The si-
multaneous statement includes a voltage controlled current source (term 1, mapped to an instance
of sca vccs), a current controlled current source (term 2, mapped to asca cccs) and an in-
dependent current source (term 3, mapped to asca csource). Since the left-hand side of the
simultaneous statement is a current construct, all ELN instances are connected in parallel. Non-
connected terminals are connected to ground.

haviours to dependencies on single network nodes, through the adoption of capac-
itors (sca c ELN module) or inductors (sca l). To overcome this limitation, it
is necessary to introduce an intermediate node that has no physical correspondence
in the circuit, but that is rather used for describing the differential dependence. The
node is connected to an inductor in case of a derivative construct (e.g., I(a) <+
ddt(+4.02 V(b))) and to a capacitor in case of an integrative construct (e.g.,
I(a) <+ idt(+4.02 V(b))). Suitable ELN primitives are then used to bind
the evolution of the intermediate node to the nodes involvedin the starting differen-
tial contribution.

As the application of the proposed approach may be tedious and error-prone, and
thus prevent the application to industrial-size case studies, the whole methodology
has been automated on top of the HIFSuite framework.

Integration strategies and challenges

The code generation solutions presented in this Section tackle the heterogeneity of
smart systems by adopting a common language (i.e., SystemC and its extension),
still preserving the heterogeneity in terms of MoC. However, interaction between
different MoCs does not rely on manual, error-prone synchronization approaches,
as for the functional level (Section 4.1). All synchronization is indeed transferred to
the simulation kernel, that satisfies requests from all MoCsand abstraction levels.

Synchronization correctness is thus guaranteed by the underlying SystemC sim-
ulation kernel, that natively masters heterogeneous requests and takes care of syn-
chronization issues between its extensions and MoCs. Furthermore, native convert-
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ers allow to perform data conversion and to propagate eventsfrom one MoC to
the other, without any manual intervention from the user. Still, the heterogeneity in
terms of MoCs affects simulation performance, as data and synchronization conver-
sion imply a computation overhead. Thus, the simplicity of integration comes at a
price of simulation performance.

4.2.2 SystemVue-based simulation

SystemVue is an environment designed for easing the integration process. Its ex-
ecution semantics is based on the Synchronous Dataflow MoC. As such, system
behaviors are described by interconnecting basic blocks, expressing a functionality.
The strength of SystemVue is that it provides predefined blocks as well as a C++
API to create libraries of custom components that can be included in a system sim-
ulation together with components shipped with SystemVue. This allows to easily
integrate any C++ code, including manually designed code and code generated with
the methodologies proposed in Section 4.1.

The first step to integrate a C++ external component in SystemVue is to spec-
ify its interface as names and data types of all the inputs, outputs and parame-
ters. Theinterface of a SystemVue node implemented in C++ is composed by a
set of variables that are then specified to belong to the interface using the macros:
DEFINE MODEL INTERFACE, ADD MODEL OUTPUT andADD MODEL INPUT.
The data types of these variables, in order to be accepted by the macros, have to
belong to a well-defined subset of the available C data types.Some data types, such
as circular buffers, are implemented in the SystemVue support library. The other
available data types are a subset of the C/C++ data types, that does not include
the standardunsigned integers. This can be an issue, as normalunsigned
int data types do not ensure that the span of data representationis the same on
different architectures. For this reason, in order to assure the predictability of the
number of bits used to represent data on the interface, everyvariable is declared
asdouble. Then, before any computation step, the data read from the interface is
assigned to a data structure using standardInteger andBoolean variables for
computation. After the computation, the variables of the data structure are copied
into the output variables. Figure 13 gives a sketch of the C++code generated by
HIFSuite for SystemVue. The left-hand side of the figure focuses on the interface
and it shows the declaration of the interface variables, theinput/output data structure
and the interface declaration. On the right-hand side of thefigure theRun method
exemplifies the usage of input/output variables and data structure.

In SystemVue, functionality is implemented in terms of fourfunctions:

• Setup() is used to specify the rate of each port, in particular when using cir-
cular buffers, in the node interface. The default value is uni-rate, and it is not
mandatory to implement this function.

• Initialize() is executed during the initialization of the dataflow, thus
should be used to run all the necessary initialization code necessary to the node
functionality.
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Fig. 13 Overview of the SystemVue-compliant C++ generated by HIFSuite.

• Run() is the main method, as it contains the functionality that hasto be executed
at every simulation step. Its execution is scheduled by SystemVue, according to
the dataflow structure, and the rate of the input/output ports of the node.

• Finalize() performs any post-simulation coding that the model needs toper-
form, such as closing file or de-allocating memory.

In order to respect this interface, C++ code generation techniques must be cus-
tomized and extended to ensure SystemVue support. As an example, the code gen-
erated by HIFSuite uses theInitialize()method to reset all variables and data
structures of the component. TheRun() function, as depicted on the left part of Fig-
ure 13, handles the input/output as discussed above and it calls the code generated
by A2T (i.e., simulate) to emulate component evolution, passing the input/output
structure as parameter. When the simulate function returns, the output variables are
written according to computed component evolution.

A final integration issue arises whenever components adopt different MoCs. In
SystemVue, synchronization and communication among different nodes is based
in SDF, that forces the insertion of a delay in every loop among different compo-
nents. Thus, it is necessary to insert delays to break the loops between connected
components, for instance between a bus and a CPU or between bus and peripher-
als. However, the generalized insertion of such delays can produce synchronization
problems due to the modification of simulation delays that usually guarantee the
correct behavior of a digital system. For this reason, digital components in loop are
automatically merged by HIFSuite in a single component and abstracted withA2T
as a single component.

By following these guidelines, SystemVue easies the integration of existing code,
as the designer must simply match the APIs for the designed components, while
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the synergy with HIFSuite automatically translates pre-design digital and analogue
components and all synchronization issues are left to the simulation kernel.

5 Experimental Validation of Proposed Methodologies

The goal of this section is to support the proposed analysis and methodologies with
experimental evidence. To this extent, the proposed examples focus on single code
generation techniques and on the simulation of a complex smart system case study
achieved through SystemVue.

5.1 Validation of HIFSuite-based language conversion techniques

The automatic abstraction of digital components to SystemC/TLM and to C++ plays
a key role in the simulation of a smart platform at both the functional and the trans-
actional levels. Thus, its effectiveness must be evaluatedin depth.

Table 1 Abstraction alternatives of digital components for functional and transactional simulation.

Design

Modelsim SystemC RTL, Abstract C++, Abstract C++, Abstract C++,
(VHDL/ SystemC HDTLib data typesC++ native data C++native data
Verilog) data types types (SystemC top)(SystemC top)types (pure C++ top)

T (s) T (s) T (s) S (x) T (s) S (x) T (s) S (x)

AES 72.3 850.9 332.5 2.6 8.0 106.4 7.1 119.8
Camellia 1,823.7 25,433.39,022.6 2.8 8.0 3,179.2 3.3 7,707.1
DES56 707.5 7,608.51,941.1 3.9 8.5 895.1 4.6 1,654.0

SHA512 1,758.9 6,302.12,452.4 2.5 12.6 371.2 3.4 1,377.2
XTEA 171.8 975.2 260.9 3.7 18.0 54.2 3.4 286.8

Table 1 reports simulation time (T(s)) for some VHDL and verilog digital com-
ponents, together with the speedup achieved through the automatic abstraction by
A2T with the support ofHDTLib or DDT for data type abstraction. The reference
simulation time is generated by Modelsim (ColumnModelsim). The generated code
may be managed through either a SystemC top-level module (Columns labelled
with SystemC top) or a C++ main simulation file (pure C++ top). This distinction
allows to analyse all the scenarios outlined in Figure 5, thus covering both the func-
tional abstraction level (single/multiple MoC) and the transactional abstraction level
(through the adoption of SystemC or SystemVue for componentaggregation).

Results clearly conclude that the automatic abstraction ofdigital components is
extremely efficient (up to three orders of magnitude in speedup) in the case of RTL
modules converted to C++ for single MoC functional simulation or for SystemVue-
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based transactional simulation. In the other cases, the effectiveness of the abstraction
process is limited on single components, but it still produces a simulation advantage
whenever the platform model must be built by aggregating different components.

5.2 Validation of the mapping of analogue conservative
descriptions to SystemC-AMS

Mapping of analogue conservative descriptions to SystemC-AMS proved to be a
complex step, due to the requirements in terms of construct coverage and of appli-
cation of energy conservation laws. In order to prove the effectiveness of the overall
methodology, we applied the overall approach to a complex industrial case study,
developed in the context of the SMAC project. Application tothis industrial case
studies was eased though the implementation of an automatictool, calledABA-
CuS (Analogue BehAvioural Conservative Systemc-ams), that leverages HIFSuite
to ease the conversion process.

The adopted case study is a2-dimensional MEMS accelerometer implemented
in Verilog-AMS by means of the MEMS design platform MEMS+, that supports
automatic Verilog-AMS code generation [12], starting from3-dimensional physical
models as the one depicted in Figure 15. Table 2 reports the main characteristics
of the MEMS design, both in terms of simultaneous statementsand of types of
contributions. The MEMS design features most of types of supported contributions,
thus showing the application and validation of a significantpart of the methodology
on a single case study.

Fig. 14 3-dimensional model of the accelerometer in the MEMS+ design simulator.

Table 3 shows the results of the application ofABACuS to the MEMS design.
The table shows the number of lines of code of the resulting SystemC-AMS imple-
mentation, the number of added nodes and of instances of SystemC-AMS prim-
itives. The number of lines of codes is increased tenfold (precisely, 11.12x), as
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Table 2 Characteristics of the original Verilog-AMS MEMS design.

Lines of code 89

Equations
Voltage sources10
Current sources15

Node declarations
Interface 14
Internal 14

Contributions

Independent 4
Voltage 59
Current 0

Derivative 12
Integrative 0

Table 3 Characteristics of the generated SystemC-AMS MEMS design.

Lines of code 1,474

Added node declarations 12

sca r 93
sca vsource 4
sca vcvs 32

SystemC-AMS sca ccvs 0
primitive sca csource 0

instantiations sca vccs 48
sca cccs 0
sca l 12
sca c 0

the SystemC-AMS generated by the methodology is more verbose than Verilog-
AMS. Each contribution requires the instantiation of the ELN primitive, plus the
corresponding explicit port binding. Furthermore, the number of ELN primitives is
higher than the number of Verilog-AMS contributions. This is due to the presence
of 12 derivative contributions in the original Verilog-AMScode. Each such contri-
bution determines the instantiation of three ELN primitives (as explained in Section
4.2.1). As a result, of the 188 resulting SystemC-AMS ELN instances:

• 93 correspond to resistors added to connect each SystemC-AMS node to ground;
• 59 correspond to voltage source contributions;
• 36 are generated by the 12 derivative constructs, that determine also the declara-

tion of 12 additional internal nodes.

Fast code generation is a major advantage of the proposed approach. Table 4
highlights that code generation is almost instantaneous (17.48s overall), and that
most of the effort in spent in the HIFSuite conversions (55%). The most costly step
of ABACuS lies in the mapping from Verilog-AMS contributions to ELN primi-
tives and in their instantiation (37%). On the other hand, node management and the
separation of Verilog-AMS equations into single contributions is almost immediate.

The generated code was validated by comparing its executionw.r.t. the original
Verilog-AMS code, run by using the Questa simulator [24]. SystemC-AMS simula-
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Table 4 Characteristics of the execution ofABACuS on the MEMS design.

Overall 17.48s

HIFSuite Conversion to HIF 1.86s
tools Conversion to SystemC-AMS7.81s

ABACuS
Node management 0.94s

Division into contributions 0.29s
ELN component instantiations6.58s

Fig. 15 Evolution of the MEMS outputs for Verilog-AMS (solid) and SystemC-AMS (dashed).

tion was run by adopting the same input stimula of the Verilog-AMS implementa-
tion, and with a 1us timestep. SystemC-AMS proved to be slightly faster than the
Verilog-AMS execution (28.02s and 33.72s, respectively).At the same time, the
average error in the computation of the MEMS outputs is 0.02%. This confirms
the visual accuracy evident from Figure 15, where the Verilog-AMS and SystemC-
AMS curves are almost totally overlapping. The small error is due to the different
management of time in the two simulators: SystemC-AMS adopts a fixed timestep,
while Verilog-AMS can adapt the length of the timestep over time, thus reaching
a higher accuracy. The low error rate highlights the effectiveness of the generated
code, both in terms of accuracy and of simulation speed.
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5.3 Adoption of SystemVue for a heterogeneous case study

The final example collects all previous results to show a transactional level simula-
tion of a smart system based on SystemVue integrating a number of heterogenous
components. The starting point is complex heterogeneous smart system, developed
with the goal of representing a generic smart system. The system, calledopen source
test case (OSTC) includes eight modules covering digital HW, embedded SW, RF-
Transceiver, network elements and a MEMS sensor (i.e., the accelerometer). Such
modules are extremely heterogenous in terms of language, asthey are described in
SystemC, VHDL, Verilog, Verilog-AMS and C++. An exhaustivedescription of the
OSTC will be the focus of Chapter 9.

Figure 16 shows the SystemVue representation of the OSTC. Each module has
been imported in SystemVue after its abstraction to C++, performed by using HIF-
Suite. SystemVue supports co-simulation, thus allowing the comparison of the fol-
lowing scenarios:

• co-simulation of all digital HW components;
• co-simulation of one digital HW component;
• homogeneous C++-based simulation.

Fig. 16 SystemVue schematic of the OSTC.

The simulation scenario used for all the models simulates 100 ms of system ex-
ecution, with a time step of 100 ns. The inputs of the accelerometer are sinusoidal
stimula, and the software application is pre-loaded in the memory. The software
takes care of system boot and peripheral initialization. Then, the application repeat-
edly reads data from the accelerometer, computes the data and sends the results to
the digital hardware and the network interface.

Table 5 shows the time needed to simulate the three differentscenarios. What
appears clear from these results is that the number of simulators instantiated, hence
the number of co-simulation interfaces employed, heavily impacts performance. In
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Table 5 Simulation time for the three different simulation scenarios in SystemVue.

Scenario Simulation Time (s.)Speed-up

co-simulation of all digital HW 278.59 -
co-simulation of one digital HW 153.23 1.8x

C++ based simulation 36.32 7.7x

particular, it worth notice that, in this case, every co-simulation interface (two in the
case of the first entry of the table, one in the second), seems to introduce around
120 seconds overheadw.r.t. the simulation without co-simulation interface, thus in-
troducing an overhead of about 80%. As a result, the impact ofinterfaces and con-
version layers between different tools seems highly relevant and strictly dependent
on the number of used interfaces and external tools. The limited speed-up is mainly
affected by the low abstraction capability of the two main digital components of the
OSTC. Such components are indeed described at gate level rather than at RTL, thus
the abstraction to C++ is not extremely effective. Higher speedups can be obtained
by using real RTL components, such as the ones reported in Table 1.

6 Concluding Remarks

This chapter provided a formalization of the abstraction levels and design domains
of a smart system. This taxonomy allows to identify a preciserole in the design flow
for co-simulation and simulation scenarios, and to examinethe impact of heteroge-
neous or homogeneous models of computation. Moreover, a methodology has been
proposed to move from the co-simulated heterogeneity to a simulatable homoge-
neous representation of the entire smart system at two levelof abstraction: functional
level and transactional level. At functional level, all components are implemented
in C++, with the goal of understanding the role of the underlying synchronization
and simulation semantics and their overhead on simulation performance. At transac-
tional level, two wide-spread simulation frameworks,i.e., SystemC and SystemVue,
have been adopted to ease code integration, even in presenceof very heterogeneous
design flows.
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