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Behavioral Macromodeling of High-Speed Drivers

via Compressed Tensor Representations

C. Siviero†, S. Grivet-Talocia†, I. S. Stievano†, G. Signorini‡

† Dept. Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
‡ Intel Corporation, Munich, Germany

Abstract—This paper addresses the behavioral modeling of
digital drivers for Signal and Power Integrity co-simulations.
State-of-the-art two-piece model representations are combined
with a compact description of the device static characteristics.
The latter are considered as multivariate mappings that are
functions of the device electrical variables, and of additional
parameters defining process corners and device settings. Overall
model complexity is reduced through a compressed tensor rep-
resentation obtained via a high-order singular value decompo-
sition. Several application examples demonstrate the feasibility
and the advantages of the proposed approach.

Index Terms—Digital integrated circuits, I/O buffers, signal
and power integrity, macromodeling, circuit simulation, singular
value decomposition.

I. INTRODUCTION

The robust design of high-performance electronic devices

requires the assessment of system performance since early

design phases. Such an assessment is mainly achieved via

system-level numerical simulations, in order to accurately

predict the transient evolution of the analog waveforms at

signal and power pins, thus enabling verification of design

constraints and, if necessary, design optimization. In this

framework, the availability of efficient numerical models

describing the external behavior of digital integrated circuits

(ICs) plays a key role, thus becoming a primary target for

designers.

Detailed models of real transceivers based on transistor-

level descriptions cannot be effectively used in a system-level

simulation environment. On one hand, these models are overly

complex and hardly portable. Moreover, they are seldom

available, since they disclose information on the internal

structure and technology of devices that represent confidential

proprietary information of IC suppliers. Most of the above

limitations can be overcome by resorting to behavioral or

surrogate models. Such models try to mimic the electrical

behavior of devices, as can be observed from “external” ports,

often providing an excellent compromise between complexity

and accuracy. Different approaches are currently in use for

generating behavioral models, that can be simulated in any

electronic design automation tool [1], [2], [3].

Most state-of-the-art approaches share the common lim-

itation of using custom solutions for modeling both the

static and the dynamic characteristics of devices, with an

unavoidable impact on accuracy, and expecially compactness

and efficiency. This problem is even more relevant when the
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Fig. 1. Schematic illustration of a multi-pin driver

effects of different Process-Voltage-Temperature (PVT) oper-

ating conditions and device settings are considered. This paper

proposes a framework based on high-order singular value

decompositions, that is able to compress the large amount of

information that is required to describe the multivariate driver

characteristics, without any impact on model portability and

implementation.

II. PROBLEM STATEMENT AND MODEL STRUCTURE

We consider a general transceiver topology, depicted in

Fig. 1 for the particular case of a high-speed driver. The

structure interacts with its environment through a set of output

ports (henceforth labeled with subscript p), and a set of

supply ports (subscript s). For instance, a single-ended driver

characterized by a single power domain will have a single

output port with variables (vp1, ip1) and a single supply port

with variables (vs1, is1). A differential driver will instead be

characterized by a pair of output ports, with two port voltages

collected as components of vector vp, and corresponding

port currents in vector ip. A similar generalization holds for

structures with multiple power domains.

In this work, we adopt the well-established two-piece

model representation, which has been documented in [1], [2],

[3] to be appropriate for the behavioral representation of high-

speed drivers. Denoting with iµ(t) any output port current, we

consider the following representation

iµ(t) = wH
µ (t)fH

µ (vp,vs,λ) + wL
µ (t)f

L
µ (vp,vs,λ), (1)

where superscript ν = {H,L} labels submodels that charac-

terize the device in fixed high (H) or low (L) logic state. Each

of these submodels is further split as

fν
µ (vp,vs,λ) = F ν

µ (vp,vs,λ) + gνµ(vp,vs,λ;D), (2)



where F ν
µ denotes a static submodel describing the device

under DC steady-state operation, and where gνµ is a linear

dynamic submodel, as emphasized by the presence of the

time derivative operator D = d/dt. The additional vector

argument λ in (1) and (2) denotes any parameter upon which

the device behavior may depend, such as temperature and

process variables. The submodels gνµ are linear state-space

representations, estimated via standard system identification

methods.

The model representation (1) can also be used for the

description of the power supply currents (such as the current

is1 in the scheme of Fig. 1), possibly with an additional term

accounting for the current absorbed by previous driver stages.

The readers are referred to [2] and references therein for

additional details.

III. STATIC CHARACTERIZATION AND MODELING VIA

TENSOR COMPRESSION

Any of the static maps F ν
µ in (2) can be described in

abstract notation as a multivariate map

y = F (x), (3)

where the input vector x = (x1, . . . , xN )T collects all port

(output and supply) voltages, as well as additional parameters.

An accurate behavioral macromodel should capture the vari-

ation of the output variables y with respect to all components

xn. To this end, standard characterization approaches perform

a set of DC simulations, by computing the static response

of the device by fixing each of the independent variables

xn = Xjn with jn = 1, . . . , Jn and n = 1, . . . , N . The

result is a multidimensional tensor Y with elements

Yj1,...,jN = F (Xj1 , . . . , XjN ) (4)

with N being the order, and Jn being the dimension (num-

ber of components) along the n-th mode or direction. The

complexity of the resulting dataset, which includes |Y | =∏N
n=1

Jn independent data points, must be reduced in order

to obtain a tractable model.

Standard macromodeling approaches compute a paramet-

ric representation of Y , e.g., as a superposition of some

multivariate basis functions, through some fitting process.

Such an approach is however hardly scalable to orders N
larger than 2 or 3 at most, due to a curse of dimensionality.

The approach that we pursue in this paper is aimed at a

dimensionality reduction of the tensor Y , by seeking an

approximate representation that compresses the dataset before

proceeding to any subsequent parametric identification and/or

approximation. The process is described for the case N = 2
in Sec. III-A and extended to the general case in Sec. III-B.

A. The two-dimensional case

This scenario applies, e.g., to the case of a single-ended

driver with a single power supply. In such case, the two

independent variables are the output voltage x1 = vp and

the supply voltage x2 = vs. A double DC sweep leads to a

tensor dataset with order N = 2, which is nothing else than

a matrix Y ∈ R
J1×J2 , with elements Yj1,j2 . A well-known

result in linear algebra states that the optimal approximation

of Y with a matrix Ȳ having fixed rank ρ is provided by the

truncated Singular Value Decomposition (SVD)

Y ≈ Ȳ = U1ΣU
T

2
, (5)

where Σ = diag{σ1, . . . , σρ} collects the largest ρ singular

values. The columns un,kn
with kn = 1, . . . , ρ of the two

(orthogonal) matrices Un ∈ R
Jn×ρ for n = 1, 2 collect

the corresponding singular vectors. The above approximation

minimizes the induced 2-norm of the residual ‖Ȳ−Y‖2 and

is therefore optimal [4].

B. The general case

Here, we discuss how to generalize the SVD-based ap-

proximation (5) to a generic higher order N > 2. We start by

rewriting (5) in the more abstract form

Y ≈ Ȳ = Σ×1 U1 ×2 U2, (6)

where the operator ×n performs matrix multiplication along

the n-th direction (here, n = 1 for rows and n = 2 for

columns). The generalization of (6) to approximate a given

tensor Y with order N > 2 is straightforward [5], [6], as

Y ≈ Ȳ = S ×1 U1 ×2 U2 · · · ×N UN (7)

where the orthogonal matrices Un ∈ R
Jn×ρn for n =

1, . . . , N multiply the core tensor S ∈ R
ρ1×ρ2···×ρN along

the n-th direction. Note that, differently from (6), the core

tensor S is in general full and can be characterized by a

different size ρn along each direction. The columns un,kn

of each matrix Un can be interpreted as an orthogonal basis

of the subspace that approximates the collection all vectors

obtained by freezing all indices of Y except along the n-th

direction (also called n-th mode fibers). The componentwise

expansion of (7) reads

Ȳj1,j2,...,jN =

ρ1∑

k1=1

ρ2∑

k2=1

· · ·

ρN∑

kN=1

Sk1,k2,...,kN

(U1)j1,k1
(U2)j2,k2

. . . (UN )jN ,kN
(8)

This expression shows that the original tensor Y is repre-

sented by a much smaller tensor S with |S| =
∏N

n=1
ρn, plus

a collection of N basis sets, each having ρn vector elements.

An effective data compression is achieved if ρn ≪ Jn for

each direction n. The quality of the approximation can be

measured by the Frobenius norm, defined as

‖Ȳ −Y‖2F =
∑

j1,...,jn

|Ȳj1,j2,...,jN − Yj1,j2,...,jN |2 (9)

The computation of (7) is here performed according to an

Alternating Least Squares (ALS) algorithm [5], which refines

an initial estimate of the matrices Un by iterative reprojection

of the original tensor along the subspaces available from

previous iterations.



C. Static model construction

Once the approximation (7) is available, the components

of Un are combined with the corresponding input parameter

values to construct a collection of one-dimensional datasets

Ωn,kn
= {[Xjn , (Un)jn,kn

], jn = 1, . . . , Jn}, with one

dataset for each n = 1, . . . , N and kn = 1, . . . , ρn. A

corresponding parametric submodel ϕn,kn
(xn) is obtained

through a piecewise linear interpolation process applied to

Ωn,kn
, and the approximation to the original map (3) is

constructed as

y ≈

ρ1∑

k1=1

· · ·

ρN∑

kN=1

Sk1,...,kN
ϕ1,k1

(x1) . . . ϕN,kN
(xN ). (10)

This result is an approximation based on one-dimensional

submodels, assembled through a multidimensional tensor

product, with coefficients available from the core tensor S.

Due to the limited number of such coefficients, an equiva-

lent circuit implementation of (10) becomes viable through

behavioral voltage-controlled current sources.

IV. RESULTS

In this section, the proposed modeling approach is applied

to the output and supply ports of two CMOS devices, a differ-

ential driver DA (VDD = 3.3V) and a single-ended LPDDR3

driver DB (VDD = 1.2V). The responses of the corresponding

transistor-level descriptions obtained by HSPICE are assumed

as the reference curves hereafter.

As a first validation test, Figure 2 shows the static charac-

teristic of the current i1H at the non-inverting output terminal

of the differential driver DA, forced to operate in the H state.

The three-dimensional surface of Fig. 2, that also includes

the information on the approximation error, clearly highlights

the accuracy of the proposed approach, which provides a

very accurate representation with a relatively small number of

components (8, 8, 6) along each direction (vp1, vp2 and vs1),

respectively. The same accuracy level was obtained for all the

other current static characteristics.

Following the guidelines reported in [2], a SPICE macro-

model belonging to the class (1) has been synthesized and

validated in a realistic transient simulation. The selected

validation setup includes the switching driver, terminated at

the output ports by a mismatched coupled transmission line

structure. The supply port is connected to an ideal VDD battery

through a realistic power distribution network described by

a lumped equivalent. Figure 3 compares the macromodel to

the reference, respectively for the differential voltage at the

output ports vd = vp1 − vp2 and for the supply voltage vs1.

The accuracy of the macromodel predictions is excellent.

Figure 4 collects a similar comparison for the single-ended

driver DB , thus confirming the accuracy of the proposed

solution for different device types. The proposed models offer

a remarkable simulation speed up (for the latter case, 20×
faster than transistor-level models). We conclude that the

proposed approch provides a simple yet effective solution for

drastic complexity reduction in Signal and Power Integrity

co-simulations.
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Fig. 2. Static characteristic of the current i1 = ip1 of the H submodel for
the differential driver DA, plotted versus v2 = vp2 and vdd = vs1, with
v1 = vp1 = 1.65 V. The colormap depicts the pointwise absolute error of
the compressed model with ranks (8, 8, 6).
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Fig. 3. Output differential voltage vd(t) = v1(t)−v2(t) and corresponding
power supply fluctuation vs1(t) for driver DA. Solid line: reference; dashed
line: model.
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Fig. 4. Output port voltage response vp1(t) and corresponding power supply
fluctuation vs1(t) for driver DB . Solid line: reference; dashed line: model.


