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NATURAL VENTILATION OF HIGH-RISE BUILDINGS 
A METHODOLOGY FOR PLANNING WITH DIFFERENT ANALYSIS 

TOOLS AND CASE-STUDY INTEGRATION 

SUMMARY 

Natural ventilation of buildings has the potential to significantly reduce energy 
consumption related to cooling and fanning. This can be achieved by (i) providing 
good indoor air quality without any electricity demand and (ii) improving thermal 
comfort in the summer through increased daytime airspeed and high night ventilation 
rates. In high-rise office buildings, however, natural ventilation is still not a widely 
preferred means of ventilation.  

The main reason is the lack of information on the required system design. There are 
neither standards nor tools and instrument that support planners in the design of 
natural ventilation systems. Evaluation tools and instruments that are usually applied 
for effective vent sizing during preliminary planning are not suitable for complex 
flow path design. Only few results, if any, are available on the performance of 
naturally ventilated high-rise office buildings, especially where energy conservation 
is considered. In addition, a passive cooling approach can rely not only on intense 
natural ventilation but also on the reduction of heat gains, and on night cold storage 
systems. Considering these aspects together, there is a definitive need for research on 
the flow path design taking vent sizing for the provision of good indoor air quality 
and thermal comfort into account..  

The current thesis is predicated on the above mentioned research gap. Towards this 
end, the thesis sets out to explore the concept of natural ventilation with focus on 
office buildings as a major application area. Emphasis is laid on the cooling potential 
of natural ventilation. The existing barriers for practically implementing passive 
technologies can be lowered by creating a quantifiable framework that accounts for 
all the relevant input parameters in the design process. In order to reach this goal, a 
planning and simulation approach is developed for the required system design, and 
the functionality is subsequently evaluated. The results of simulations are compared 
to those of a reference case-study. 

The 28-floor Kanyon high-rise office tower, situated in Istanbul, Turkey, is selected 
to demonstrate the applicability as it is considered to be a representative, state-of-the 
art building. From the energy metering, it is concluded that mechanical cooling and 
ventilation result in significant electricity consumption. Detailed information on the 
building and its operation has been made available by the building management. In 
addition to the primary case-study, a comparative assessment of the impact of three 
different moderate climate locations, viz., Istanbul, Turin and Stuttgart, is 
systematically analysed. 
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The primary objectives of the thesis can be stated as (i) the development of a design 
approach, and (ii) the investigation of the feasibility of the proposed design, based on 
an existing case-study building virtually adapted specifically for this purpose.  

The approach is developed in three steps, including (i) conceptual design 
considerations with focus on the architectural consequences on the building type of 
concern, (ii) the original development of a preliminary design tool based on electrical 
circuit analogies for sizing the natural ventilation system, and (iii) a more detailed 
design development based on annual building energy performance simulations 
including custom ventilation control.  

In the first step, an architectural concept is developed for passive cooling in wide-
shaped high-rise buildings where it is impossible to realise simple cross ventilation 
or single-sided ventilation. During the conceptual design process several challenges 
emerged. Conceptual adaptations addressing the flow path design are (i) a central 
chimney strategy in respect to the building width, (ii) isolated, modular segments, as 
each can then be treated as a medium-rise building and (iii) opposed, wind adapting 
openings to guarantee the intended flow direction and to maximise the wind pressure 
differences. Other solutions proposed for passive cooling are (iv) improved external 
shading devices (v) activation of the structural mass for night-time ventilation. 

In the second step of the design approach, the originally developed ‘HighVent’ 
planning tool is introduced with the aim to determine the design air change rate and 
system sizes necessary for climate specific summer design days. Simple electrical 
circuit analogies, for both ventilation and thermal models, are found to be suitable in 
supporting the passive system planning. As it is concluded that the classic design day 
conditions for mechanical plant sizing are too strict for passive cooling system 
design, meaningful design boundary conditions are provided. Openings can be sized 
automatically by the inverse solver method including an optimization process. For 
the Kanyon building, the pressure distribution is deduced from wind tunnel 
measurements. The program first calculates the flow-path design for a given airflow 
rate with unchanging boundary conditions. These values are then provided to the 
thermal module, which calculates the dynamic thermal comfort. The procedure is 
then repeated till the system size is sufficient for passive cooling. The tool outputs 
include advice if certain adaptive thermal comfort criteria can be reached for a 
summer design day.  

In the third step, the annual performance is exemplarily modelled with EnergyPlus 
building energy performance simulations including airflow networks. This includes 
the ‘HighVent’ tool preliminary ventilation design outputs, further ‘post-processed’ 
as model inputs, the conceptual adaptations made for improved shading and thermal 
mass activation, and the remaining features of the as-built Kanyon building in 
accordance with the data provided by the building management. It allows the users to 
perform sensitivity analysis for the investigation of the impact of specific parameters. 
The custom ventilation control dynamically targets to achieve (i) good indoor air 
quality according to EN 13779, and (ii) stay within adaptive comfort limits category 
II according to EN 15251. Annual thermal comfort is the most crucial indicator for 
evaluating passive cooling concepts, and is therefore proposed for final decision 
making. As the volume of a building is an expensive resource, the designer needs to 
do a weighting between the expected comfort and the size of the natural ventilation 
system. 
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The applicability of the ‘3-step’ design approach is then further evaluated by 
comparing the fully mechanical operated as-built Kanyon building with an operation 
based on passive and the hybrid control. The assessment is carried out with the help 
of performance indicators, and the results are intended to assist decision making in 
the design phase. Indicators proposed to evaluate the functionality are the energy 
consumption compared to that of mechanical ventilation and cooling systems, and 
compliance with the thermal comfort limits; additional aspects are the ventilation 
rates and the indoor air quality reached. 

A significant result of this comparative study is that control over the openings is 
crucial for all the scenarios when it comes to natural ventilation applications; 
otherwise ventilation rates can get too high and the office rooms tend to cool down 
way too much even during summer. It is shown that the ‘adaptive temperature 
amplifier’ control algorithm developed is more robust than simplistic controls. 
Furthermore, simulation results indicate that properly designed and controlled natural 
ventilation shows a good functionality and the comfort limits are rarely exceeded. 
However, differences in climate among geographical regions have a varying impact 
on the simulation results. For example, in the climate of Stuttgart, further adaptations 
to the preliminary design of the ‘HighVent’ tool or hybrid cooling are not necessary, 
whereas in Istanbul adaptations might be reasonable. However, to satisfy the comfort 
expectations in Turin, there is a necessity for further passive design adaptations or a 
hybrid cooling concept. That humidity values meet comfort expectations must be 
discussed and accepted by all project stakeholders, else a hybrid operation approach 
might be a good alternative. Nonetheless, in all controlled scenarios, high indoor air 
quality is achieved.  

To systematically study the possible energy conservation while maintaining thermal 
comfort, the energy consumption of identical buildings with different variants 
(passive/hybrid/active) is compared and benchmarked against the as-built scenario. 
Results show that the primary energy input for the Kanyon office-tower building can 
be reduced by approximately 30% to 40% for passive operation and by 28% to 34% 
for hybrid operation. For passive cooling including controlled natural ventilation, 
there is even no energy consumption for cooling and ventilation required, while 
energy usage for pump operation is limited only to the heating season. The hybrid 
strategies are found to be capable of exploiting the biggest share of passive cooling 
and ventilation energy conservation by providing a maximum operative temperature 
limit of 26 °C. This verifies the initial assumption that energy conservation of purely 
passively cooled and ventilated office spaces is significant, especially when 
compared to highly energy consuming state-of-the-art office towers. 

The results of this research work are intended, on the one hand, to support building 
planners in better understanding and implementing passive cooling measures and, on 
the other hand, to contribute to further development of sustainable building practices.  
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ÇOK KATLI B İNALARDA DO ĞAL HAVALANDIRMA 
FARKLI ANAL İZ ARAÇLARI VE ÖRNEK ALAN ENTEGRASYONU İLE  

PLANLAMA İÇİN BİR YÖNTEM 

ÖZET 

Doğal havalandırma, binalarda, soğutma ve hava üflemeye ilişkin elektrik enerjisi 
tüketimini azaltma potansiyeline sahiptir. İki ana fonksiyonu: (i) havanın hareket 
ettirilmesi için elektrik harcanmadan iyi bir iç mekan hava kalitesi sağlanması ve (ii) 
gün içinde hava hızının artırılması ve gece boyunca yüksek havalandırma oranları 
aracılığıyla yaz aylarında konfor sıcaklığının iyileştirilmesidir. Esas fayda, dışsal 
enerji gereksinimine ihtiyaç duymaksızın, yaz aylarında soğutma için gerekli olan 
yüksek havalandırma oranlarına ulaşılması olasılığıdır. Ancak ana sorun, kış 
aylarında, ılık oda sıcaklığından ısının geri kazanılmasıdır. Doğal havalandırma, çok 
katlı ofis binaları için hala yaygın olarak tercih edilen bir havalandırma yöntemi 
değildir. Konfor sıcaklığı kestirimlerindeki belirsizliklere bağlı olarak, mimar ve 
mühendisler, pasif teknolojilerin uygulanmasına hala çekinceli yaklaşmaktadırlar.  

Bunun nedeni, klima tesisatı olmadan iyi bir konfor sıcaklığı ve iç mekan hava 
kalitesinin elde edilebilmesi için gerekli olan elverişli sistem tasarımı konusunda 
sınırlı düzeyde bilginin var olmasıdır. Plancıları doğal havalandırma sistemlerinin 
tasarımı konusunda destekleyebilecek, hazır standartlar bulunmamaktadır. Hava 
deliklerinin efektif olarak boyutlandırılması için ön değerlendirme araç ve aygıtları 
bulunsa da, bunlar sadece bazı bina ve havalandırma tasarımları için geçerlidir ve 
karmaşık akım yolu tasarımlarında kullanılmak için elverişli değildir. Doğal olarak 
havalandırılan çok katlı ofis binalarının, özellikle enerji korunumu ile ilgili 
performansları konusunda, yok denecek kadar az sonuca rastlanmaktadır. Akım yolu 
tasarımının içerdiği ögelerin boyutları ve havalandırma stratejilerinin araştırılması 
konusunda nihai bir ihtiyaç bulunmaktadır. Pasif soğutma yaklaşımının sadece 
sağlam bir doğal havalandırmaya değil, aynı zamanda ısı kazanımlarının 
azaltılmasına ve gece soğuğunun depolanması sistemlerine de dayandığı 
görülmüştür. 

Bu tez, bahsi geçen araştırma açığına dayanmaktadır ve dolayısıyla amaçlanan, 
ılıman Avrupa iklimlerinde enerji korunumu sağlanabilmesi için doğal 
havalandırmadan faydalanılmasının elverişlili ğini incelemektir. Bu amaç 
doğrultusunda tezin başlangıç noktası, doğal havalandırma için büyük bir uygulama 
alanı olan ofis binalarına yoğunlaşarak, doğal havalandırma kavramını incelemektir. 
Buradaki ana önerme, pasif teknolojilerin etkin şekilde uygulanması yoluyla, 
sürdürülebilir binalar tasarlanması ve inşa edilmesinin mümkün olduğudur. Esasen, 
doğal havalandırmanın soğutma potansiyeli üzerine vurgu yapılmaktadır. En önemli 
kapsayıcı hedef, yeni binaların tasarlanması ve mevcut olanların geliştirilmesi ile 
bağlantılı enerji tasarrufu önlemleri konusundaki bilimsel anlayışı derinleştirmektir. 
Tasarım süreciyle ilgili bütün girdi parametrelerini tanımlayan, ölçülebilir bir 
çerçeve yaratılması aracılığıyla, pasif teknolojilerin pratik olarak uygulanabilmesi 
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önündeki mevcut engellerin azaltılması sağlanabilir. Bu hedefe ulaşmak amacıyla, 
gerekli sistem tasarımı için bir planlama ve simülasyon yaklaşımı geliştirilmi ş ve 
ardından, kontrollü doğal havalandırmanın fonksiyonelliği değerlendirilmiştir. 
Simülasyon sonuçları, referans alınan örnek alan ile karşılaştırılmıştır. 

İstanbul / Türkiye’de yer alan çok katlı ofis kulesi Kanyon (28 kat), yüksek konfor 
beklentileri ve karmaşık mekanik sistemleri ile en son teknoloji ile inşa edilmiş bir 
bina olarak temsili özellikler taşıması nedeniyle, uygulamayı göstermek amacıyla 
seçilmiştir. Binanın ölçülen enerji tüketiminden yola çıkarak, solar ve içsel ısı 
kazanımı ile temiz hava kontrolünün, mekanik soğutma ve havalandırma için önemli 
düzeyde elektrik tüketimine neden olduğu sonucuna varılmıştır. Bina ve işletme 
konusundaki detaylı bilgi, bina yönetimi tarafından sağlanmıştır. Esas alan 
araştırmasına ek olarak, üç farklı ılıman iklim konumunun etkisi üzerine bir 
karşılaştırmalı değerlendirme yapmak üzere, İstanbul, Torino ve Stuttgart sistematik 
olarak analiz edilmiştir. Bu değerlendirme, farklı iklim koşullarının, tasarım ve 
performans üzerindeki etkilerini daha iyi anlamak için gerçekleştirilmi ştir. Kapsamın 
bu şekilde genişletilmesi ile öngörülen, pasif soğutma sistem tasarımları için anlamlı 
sınır koşullarının sağlanmasıdır. 

Tezin başlıca hedefleri şu şekilde sıralanabilir: (i) çok katlı ofis binalarının pasif 
soğutma ve havalandırması için bir tasarım yaklaşımı geliştirmek, (ii) önerilen 
tasarımın fizibilitesini incelemek adına, özellikle bu amaç için sanal olarak 
uyarlanmış mevcut bir binaya dayalı alan araştırması gerçekleştirmek. 

Doğal havalandırma tasarımının farklı analiz araçları ve örnek alan entegrasyonu ile 
planlanması için bir yaklaşım geliştirilmi ştir. Yöntem üç aşamadan oluşmaktadır: (i) 
ilgili bina tipi üzerindeki mimari sonuçlara odaklanan kavramsal tasarım 
değerlendirmesi, (ii) havalandırma sistemini boyutlandırmak için elektrik devresi 
analojilerine dayalı özgün bir ön tasarım aracının geliştirilmesi ve (iii) isteğe bağlı 
havalandırma kontrolünü de içeren, yıllık bina enerji performansı simülasyonlarına 
dayalı daha detaylı bir tasarım geliştirilmesi. 

İlk aşamada, basit çapraz havalandırma ya da tek yönlü havalandırma 
uygulamalarının imkânsız olduğu geniş yapılı çok katlı binalarda, pasif soğutma için 
genel bir kavram geliştirilmi ştir. Tasarım yaklaşımına ilişkin araştırma sorusu 
mimarı sonuçlar üzerine yoğunlaşmıştır. Bulgular, dikkate alınan spesifik bina 
türünün incelenmesine ek olarak, örnek alan olan Kanyon binasının ve iklim 
değerlendirmesinin incelenmesinden elde edilen bulgulara dayanmaktadır. 
Kavramsal tasarım sürecinde bir takım zorluklar ortaya çıkmıştır. Akım yolu 
tasarımına yönelik kavramsal uyarlamalar şunlardır: (i) bina genişliğine bağlı olarak 
merkezi baca stratejisi, (ii) her biri orta yükseklikte bir bina olarak 
değerlendirilebilecek izole, modüler parçalar ve (iii) istenilen akım yönünü 
garantilemek ve rüzgâr basınç farklılıklarını maksimize etmek için karşılıklı, rüzgâra 
göre ayarlanmış açıklıklar. Pasif soğutma için önerilen diğer kavramsal tasarım 
çözümleri şunlardır: (iv) binaya giren solar radyasyon miktarını düşürme 
kapasitesine sahip, iyileştirilmi ş dışsal gölgelik aygıtları ve (v) gece havalandırması 
için binanın yapısal kütlesinin aktive edilmesi. 

Tasarım yaklaşımının ikinci aşamasında, iklime özgü yaz gündüz tasarımı için 
gerekli olan hava değişimi oranını ve sistem boyutunu belirlemek amacıyla özgün 
olarak geliştirilmi ş ‘HighVent’ (‘YüksekHavaDeliği’) planlama aracı tanıtılmıştır. 
Basit elektrik devre analojileri, hem havalandırma hem termal modellerde, doğal 
havalandırma sistemleri odaklı pasif sistem planlamasını desteklemek için uygun 



xxxi 

görülmüştür. Sonuçların geçerliliği, ‘EnergyPlus’ bina enerjisi simülasyon programı 
ile karşılaştırmalı doğrulama yapılması yoluyla kanıtlanmıştır. Mekanik tesis 
boyutlandırması ile ilgili klasik gündüz koşulları tasarımının, pasif soğutma sistem 
tasarımı için fazla katı olduğu ve uyarlanmış konfor yaklaşımını yansıtmadığı 
sonucuna varılması neticesinde anlamlı tasarım sınır koşulları, yaz günü profillerinin 
özgün olarak geliştirilmesi aracılığıyla sağlanmıştır. Yaklaşım, aşırı sıcak ve normal 
yaz dönemleri için ortalama hava sıcaklığı, nem oranı, radyasyon ve rüzgâr bilgisini 
organize etmektedir. Açıklıklar, optimizasyon sürecini de içeren ters çözücü yöntemi 
ile otomatik olarak boyutlandırılabilmektedirler. Yöntem, arazi ve kat yükseklikleri 
için düzeltme faktörü önermektedir. Varsayılan basınç dağılımı ve akım dirençleri 
düzenlenebilmektedir. Kanyon binası için, basınç katsayıları, rüzgâr tüneli 
ölçülerinden elde edilmiştir. Program öncelikle, değişmeyen sınır koşulları ile 
verilmiş hava akımı oranına göre akım yolu tasarımını hesaplamaktadır. İlk 
modülden alınan bu değerler, dinamik konfor ısısını hesaplayan termal modüle 
aktarılmaktadır. Ardından, işlemler, sistem boyutu pasif soğutma için yeterli olana 
dek tekrarlanmaktadır. Bina, hava sızdırmazlığı, yönelim, solar kontrol, parlama 
oranı, ısı kütlesi, konumu ve içsel ısı kazanımları gibi tasarım seçenekleriyle 
tanımlanabilmektedir. Termal modeli de içeren dinamik gündüz simülasyon 
tasarımları, tek bölge modeli için yürütülmektedir. Bu tasarımlar, seçilen 
havalandırma stratejisi ve boyuta göre binanın termal davranışı üzerindeki etki 
değerlendirmesinin yapılmasına olanak tanımaktadırlar. Araç sonuçları, eğer yaz 
günü tasarımları için belirli bir uyarlanmış konfor ısısı ölçütü elde edilebilirse, 
öneriler de içermektedir. 

Üçüncü aşamada, uyarlanmış Kanyon binasının yıllık performansı, hava akımı 
ağlarını da içeren EnergyPlus bina enerji simülasyonları ile örnek oluşturacak şekilde 
modellenmiştir. Model, ‘HighVent’ aracının ilk havalandırma tasarım sonuçlarını, 
‘i şlem sonrası’ model girdilerini, iyileştirilmi ş gölgelik ve ısı kütle aktivasyonları 
için yapılmış kavramsal uyarlamaları ve bina yöneticileri tarafından sağlanmış 
veriler doğrultusunda Kanyon binasının uygulama çizimlerine ilişkin diğer 
özelliklerini de içermektedir. Belirli parametrelerin etkilerinin incelenebilmesi için 
kullanıcılara duyarlılık analizi yürütme olanağı tanınmaktadır. Programlanmış isteğe 
bağlı havalandırma kontrolü ile dinamik olarak elde edilmeye çalışılan: (i) EN 
13779’a bağlı yüksek iç mekân hava kalitesi elde edilmesi ve (ii) EN 15251 kategori 
II’ye bağlı olarak uyarlanabilir konfor sınırları içerisinde kalmasıdır. Hedeflenen 
hava değişimi oranı, uygulanması amaçlanan hava miktarını temsil ederken, ulaşılan 
hava değişimi oranı, simülasyonda ortaya çıkan havalandırmanın küçük olan 
miktarıdır. Yıllık konfor ısısı, pasif soğutma kavramlarının değerlendirilmesi için en 
önemli göstergedir; dolayısıyla son karar alma aşaması için önerilmiştir. Bina 
hacminin pahalı bir kaynak olmasından dolayı, tasarımcının, beklenen uyarlanabilir 
konfor ve doğal havalandırma sistem boyutu arasında bir önem değerlendirmesi 
yapması gerekmektedir. Tasarım özelliklerinin göreli etkisinin araştırılması için 
duyarlılık analizi yapılması suretiyle sistem yeniden boyutlandırılabilir. Karma bir 
yaklaşımın benimsenmesi durumunda, mekanik sistem donanımı ve enerji tüketim 
parametrelerinin de dikkate alınması gerekmektedir. 

Yöntem yaklaşımının uygulanabilirliği, mevcut Kanyon ofis kulesinin sanal olarak 
uyarlanması yoluyla tanıtılmış ve değerlendirilmiştir. Sanal izleme, modelleme ve 
simülasyon aracılığıyla, yöntem, hava sıcaklığı dağılımı ve hava akımı örüntülerini, 
doğal olarak havalandırılan bir ofis kulesi binasının prototipinde öngörebilmektedir. 
İşleyiş düzeyi, bina enerji performansı simülasyon sonuçlarının Avrupa standartları 
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veya diğer referans ölçütlerine göre sınıflandırılabilmesi için performans 
göstergelerinin kullanılması yoluyla tasdik edilmektedir. Farklı iklimsel koşulların 
etkisi, üç farklı iklimsel konumdaki örnek binanın karşılaştırmalı performans 
değerlendirmeleri aracılığıyla ortaya koyulmakta, böylece, Avrupa Birliği’nin, Bina 
Enerji Performansı Yönergesinde belirlenen iddialı hedefler desteklenmektedir. 

Açıklıkların kontrol edilmesinin bütün örneklerde önemli olduğu görülmüştür; aksi 
takdirde, havalandırma oranları fazla yükselerek, yaz aylarında bile ofis odalarının 
fazla soğumasına neden olmaktadır. Haftalık tasarım simülasyonlarının 
karşılaştırılması ile geliştirilen ‘uyarlanabilir hava sıcaklığı yükselticisi’ kontrol 
algoritmasının, aşırı soğuma olmaksızın ve sıklıkla yüksek ayarı yapılmasına gerek 
kalmaksızın pasif soğutma için gerekli akım oranlarının uyarlanmasında, basit 
kontrollerden daha dirençli olduğu gösterilmiştir.  

Sonuçlar, doğru tasarlanan ve kontrol altındaki doğal havalandırmanın iyi işlediğini 
ve EN 15251 kategori II’deki uyarlanmış konfor sınırlarının nadiren aşıldığını 
göstermektedir. Stuttgart ikliminde, ileri tasarım uyarlamalarına ya da karma 
soğutmaya ihtiyaç olmadığı sonucuna varılmıştır. İstanbul’da, %3 ile %5 arasında 
ortalama bir aşma sıklığı ile ileri tasarım uyarlaması ya da karma soğutma makul 
ancak zorunlu değildir. Ancak, Torino’daki konfor beklentilerinin karşılanması için, 
daha fazla tasarım uyarlaması veya bir karma soğutma kavramına ihtiyaç olduğu 
saptanmıştır. Duyarlılık analizi, parlama alanı ya da teçhizat ısı kazanımının yarıya 
indirilmesi veya binanın ağır olması durumunda, Torino’daki ortalama aşma 
sıklığının %3’ün altında bir değere düşürülebileceğini göstermektedir. Nem 
değerlerinin konfor beklentilerini karşılaması tartışılmalı ve tüm proje taraflarınca 
kabul edilmelidir, aksi takdirde karma operasyon yaklaşımı iyi bir alternatif 
oluşturabilir. 

Kontrol edilen tüm örneklerde, EN 13779’a uygun olarak, dış mekân havası üzerinde 
400 ppm’nin altında CO2 seviyesine rastlanmış, yüksek iç mekân hava kalitesine 
erişilmiştir. Bunun nedeni, bir saniyede kişi başı en az 14 litre ile tanımlanan gerekli 
hava akım oranlarının sağlandığı, mekanik ve doğal havalandırma sistem boyutunun 
yeterli olmasıdır. 

Konfor ısısının devamlılığı sağlanırken olası enerji korunumunun incelenebilmesi 
için, simülasyon aracılığıyla, birbiriyle aynı olup varyantları (pasif/karma/aktif) 
farklı olan binalar karşılaştırılmıştır. Enerji tüketimi için uygulanmış senaryolar 
referans alınmıştır. Kanyon ofis binasının başlıca enerji girdisi, pasif işlem için 
yaklaşık olarak %30-40 arasında ve karma işlem için %28-34 arasında 
düşürülmüştür. Kontrollü doğal havalandırmayı da içeren pasif soğutmada, soğutma 
ve havalandırma için enerji tüketimi yoktur ve pompa işlemi ısıtma sezonuyla 
sınırlandırılmıştır. Bu durum, ilk başta yapılan varsayımı doğrulamaktadır; tamamen 
pasif olarak soğutulan ve havalandırılan ofis mekânları için enerji korunumu kayda 
değerdir, özellikle de yüksek enerji tüketen son teknoloji ofis kuleleri ile 
kıyaslandığında. Karma stratejilerin, işlem için maksimum 26 °C hava sıcaklığı sınırı 
sağlaması nedeniyle, pasif soğutma ve havalandırma kaynaklı enerji korunumunda 
en yüksek paya sahip olduğu görülmüştür. Yıllık küresel ısınma potansiyelinde 
azalmanın, yaklaşık olarak, Stuttgart’ta 1 200 ton CO2’ye, Torino’da 1 300 CO2’ye 
ve İstanbul’da 1 700 ton CO2’ye eşdeğer olduğu görülmektedir. 
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1. INTRODUCTION 

Natural ventilation of buildings has the potential to save significant electrical energy 

consumption related to cooling and fanning. The main advantage of natural 

ventilation is the possibility of achieving high ventilation rates in summer for cooling 

without external energy requirements. The main drawback, though, is the difficulty 

of winter heat recovery from the warm room air. For high-rise office buildings, 

natural ventilation is still not a widely preferred means of ventilation. This is because 

only limited information is available on suitable system design required to achieve 

good thermal comfort and indoor air quality, without air conditioning. There are no 

readily available standards which support planners in the design of natural ventilation 

systems. Few results, if any, are available on the performance of naturally ventilated 

high-rise office buildings, especially where energy conservation is concerned. 

The current thesis is predicated on the above mentioned research gap, and therefore 

aims to investigate the feasibility of exploiting natural ventilation as a means of 

achieving energy conservation for moderate European climates. Emphasis is laid on 

the cooling potential of natural ventilation. The overarching goal is to deepen the 

scientific understanding of the associated energy saving measures both in the design 

of new buildings and the improvement of existing buildings. In order to reach this 

goal, a planning and simulation approach is developed for the required system 

design, and the functionality of controlled natural ventilation is subsequently 

evaluated. The focus is on office buildings as a major application area of natural 

ventilation. The results of simulations are compared to those of a reference case-

study – an office tower with mechanical ventilation and cooling systems.  

The thesis first summarises the findings of previous studies on natural ventilation and 

hybrid design, control strategies, energy consumption, and performance indicators. 

The approach to the development of proposed methodology is then explained, 

followed by its virtual application through simulations. The 28-floor Kanyon high-

rise office tower, situated in Istanbul, Turkey, is selected to demonstrate the 

applicability as it is considered to be a representative, state-of-the art building with 
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high comfort expectations and high energy consuming mechanical systems. Detailed 

information on the building and its operation has been made available by the building 

management for this research work.  

In addition to the primary case-study, a comparative assessment of the impact of 

three different moderate climate locations, viz., Istanbul, Turin and Stuttgart, is 

systematically analysed. This is to deepen the understanding of design and 

performance consequences as a function of different climates. This extension is also 

envisaged to provide meaningful boundary conditions for passive cooling system 

design.  

1.1 Design Methodology 

The proposed passive cooling approach is based on three steps as follows. The 

Kanyon office tower is virtually adapted accordingly.  

Step 1: Passive cooling is conceptually realised by intense day and night natural 

ventilation, flanked by a reduction of solar heat gains, and by thermal mass activation 

to store night cold in the building fabric. The idea of night-time ventilation in office 

buildings is to use the thermal mass of a building as a heat sink. The structure is 

cooled by convection during the night and is able to absorb heat in the occupied 

hours. In principle, cool night air passes over a heavyweight building fabric and 

cools the thermal mass. The warmer daytime air will then be reduced in temperature 

when passing over that cooled slab. Therefore, night ventilation is particularly suited 

to offices, which are unoccupied during the night. In this way, relatively high air 

changes can be used to provide maximum cooling effect without creating thermal 

discomfort or mechanical heating in the morning. This strategy provides attenuation 

of peaks in cooling load and modulation of internal temperature with heat discharge 

at a later time. The natural ventilation design is especially developed for wide-shaped 

high-rise buildings where it is impossible to realise simple cross ventilation or single-

sided ventilation.  

Step 2: A ‘HighVent’ preliminary design planning tool is developed based on 

existing models of electrical analogies of flow and thermodynamics. This is intended 

to support the passive system planning with emphasis on the size and distribution of 

flow paths. The cross-sectional areas of openings for a building segment with up to 
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ten storeys are determined for (i) target air change rate with fixed boundary 

conditions, and (ii) expected wind velocities in accordance with the climate 

assessment. The design is then tested with dynamic, summer design day boundary 

conditions. The results will indicate whether the passive cooling system sizes are 

appropriate to obtain a good comfort level for the climate considered or if the target 

air change rate or other measures have to be further adapted. Other measures include 

reducing solar and internal heat gains (e.g., better shading/smaller windows, and less 

equipment or loads from lights, respectively), and activating additional thermal mass 

for night-time ventilation using the building as a heat sink (e.g., making the building 

heavier by removing internal claddings).  

Step 3: In the third step of the passive cooling approach development, the 

preliminary design outputs are utilised as inputs for detailed annual simulations. This 

is realised by using integrated building energy performance and airflow network 

simulations. In contrast to the sizing tool developed in Step 2, the overall annual 

performance for a specific climate including the mechanical systems and controls can 

be considered. Simulation outputs further guide the designer to modify the initial 

sizing parameters gathered from the ‘HighVent’ design tool if necessary. 

Finally, in the design evaluation section, more coupled airflow network- and 

dynamic building simulations are carried out to determine the annual thermal 

comfort and the energy savings. Parametric results for the three chosen moderate 

climate locations show that summer cooling potential and thermal comfort strongly 

depend on the natural ventilation strategy. Good results can be expected only if 

ventilative cooling is applied along with other passive cooling measures, which in 

this study are the reduction of solar heat gains and the activation of the building 

thermal mass as a heat sink for night-time ventilation. Control over the openings is 

crucial for all the cases; otherwise ventilation rates can get too high, and the office 

rooms tend to cool down way too much even in summer conditions. 
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1.2 Contributions of the Study 

The primary objectives of the thesis can be stated as follows: 

1) Development of a design approach for passive cooling and ventilation of high-

rise office buildings, and 

2) Investigation of the feasibility of the proposed design, based on an existing case-

study building adapted specifically for this purpose.  

The design approach to reduce heat gains and to use the building’s mass as a heat 

sink, has the focus on controlled natural ventilation. The developed methodology 

conceptually considers the special building shape as tall and wide. It is intended to 

provide fundamental understanding on how the building space can be naturally 

ventilated by maximally exploiting the natural driving forces, viz., wind and buoyant 

forces, for volume flow. Bearing this in mind, the original ‘HighVent’ program, 

which is based on electrical analogies of flow and thermodynamics, is developed as a 

planning tool for the distribution and dimensioning of complex flow paths. This tool 

has been developed with a view to preparing for a suitable extension of the existing 

standards, and to support the planning of ventilation applications even in non-

residential, high-rise buildings. This means of creation of controlled natural 

ventilation concepts had to be resorted to, as actual standards and guidelines in 

practice were found to be ill-suited for the building type concerned. 

To evaluate the developed design, and to identify the existing design parameters to 

be changed, outputs of the ‘HighVent’ tool are further utilised as inputs for a 

complex energy performance simulation of the building. Since the functionality of 

controlled natural ventilation is highly dependent on the control methodology, new 

adaptive temperature amplifier controls are developed as part of the energy 

management system controls. In this study, the openings for natural ventilation are 

controlled at night and day in a way that ensures good indoor air quality, best 

possible thermal comfort conditions, and energy efficient building operation. 

Detailed EnergyPlus [1] simulations are intended to yield information on the 

functionality of passive cooling. The most important factors influencing passive and 

hybrid cooling performance such as ventilation rates, controls, heat gains, building 

mass, and climatic conditions are evaluated. Design week profiles give insight into 

the functioning of natural ventilation systems, and also serve to analyse the opening 
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control and the quality of indoor air. Annual assessment gives insight into the overall 

functionality of controlled natural and hybrid operation throughout the year. 

Indicators used to evaluate the functionality are the energy consumption compared to 

mechanical ventilation and cooling, and especially compliance with the thermal 

comfort limits for the users. Annual simulations are intended to indicate the period 

when adaptive comfort can hardly be reached, and also provide information on the 

influence of different design parameters. 

Specific and systematic statements on annual energy savings achievable through 

natural ventilation are rare. The saved electrical energy consumption for mechanical 

ventilation, the possible cooling energy by night ventilation with increased air 

changes rates and the energy losses due to missing heat recovery in winter must be 

considered as well as the auxiliary energy, e.g., system pumps. Here two identical 

buildings with different variants (passive/active) must be compared by simulation, 

because the setpoint temperatures are different for naturally ventilated buildings than 

in air-conditioned buildings. For a more systematic study of the possible energy 

conservation while maintaining thermal comfort, further parametric annual 

simulations coupled with airflow network simulations are carried out. The savings on 

energy, and the consequent environmental impact are then determined. This is done 

by comparing the corresponding effects of the proposed natural ventilation strategies 

with those of an identical building for which mechanical ventilation is used. 

1.3 Hypothesis 

From the metered energy consumption of the Kanyon office building, it is concluded 

that the building's solar- and internal heat gains as well as its fresh air control result 

in significant electricity consumption for mechanical cooling and ventilation. 

Systems that consume energy for fresh air supply to provide comfort can be reduced 

or eliminated with the use of passive or hybrid technologies. For sustainable use of 

energy, thus, there is a huge potential for passive systems, whenever they are 

capable, to maintain a good indoor environment for the building occupants. 

The two main functions of natural ventilation are: (i) provision of good indoor air 

quality without any electricity demand for moving the air, and (ii) improvement of 

thermal comfort in summer through increased daytime airspeed and high night 

ventilation rates. Especially for commercial buildings, night-time ventilation seems 
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to be a simple and energy efficient approach to improve thermal comfort in summer 

[2]. Additionally, passive systems such as self-adapting solar shading elements or the 

use of thermal mass as a heat sink can help to temper the internal environment.  

Hybrid operation combines the use of natural and mechanical systems to cool and 

ventilate buildings. These systems offer opportunities to take advantage of the 

external conditions when appropriate, but have a mechanical backup system to 

maintain the indoor environment during periods when the external conditions are not 

adequate [3].  

Understanding the climate of a specific site can create more liveable buildings that 

require lower maintenance and utility costs. In moderate climates, by reducing the 

amount of supplementary cooling and fresh air needed to maintain occupant comfort 

and health, the approach of passive technologies may result in adequate building 

design without the need for any mechanical systems. 

However, due to uncertainties in the prediction of thermal comfort, architects and 

engineers are still hesitant to apply passive technologies to wide, tall, and complex 

buildings such as the Kanyon tower. In order to reduce uncertainties, the most 

important parameters affecting the summer passive design performance need to be 

identified. This thesis derives its motivation from this premise, and aims to lower the 

barriers for implementation of passive technologies in high-rise buildings. This thesis 

provides a unique opportunity for the passive system design in high-rise office 

buildings as performance modelling is carried out at different design stages, and is 

thus integrated into the design decision-making. 

The results of this research work are intended to help the building planner to better 

understand and implement passive cooling measures. It is envisioned that 

recommendations for sustainable building practices can be put forward through this 

thesis by devising the following: 

1) a passive system design and sizing tool, 

2) natural ventilation control algorithms, and 

3) a method for detailed design evaluation through  

energy performance simulations. 

As a result, builders can possibly build smaller mechanical cooling plants, or even 

leave them out, and the buildings can be operated more efficiently, while providing 
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the users with improved thermal comfort. Moreover, it is hoped that this thesis will 

be helpful for researchers in their search for better solutions to the problem of 

designing and constructing sustainable buildings.  

1.4 Assumptions 

The approach developed contains multiple assumptions for model inputs as well as 

for the thermodynamic concepts, so that complex interrelations can be simplified and 

managed. The assumptions made while developing the ‘HighVent’ design tool vary 

to some degree when compared to those made in the context of more detailed 

building energy performance simulations with EnergyPlus. Building energy 

performance simulation is typically used to compare design alternatives, rather than 

to predict the actual energy performance of buildings. The list below is intended to 

point the most relevant assumptions made: 

• Typical meteorological year weather data used for simulations is gathered at 

meteorological stations outside the city centre, and is based on long-term 

measurements from the past. 

• Wind pressure is estimated according to wind tunnel experiments (pressure 

coefficients) and the power-law estimation, which calculates the local wind 

speed depending on the height of the opening and the terrain roughness. 

• Flow resistance of orifices is described by the discharge coefficients with values 

from literature, which are mostly obtained from laboratory tests under still-air 

conditions. 

• Simplified approaches for infiltration and natural ventilation are based on 

electrical analogy models. 

• Internal heat loads from equipment and lighting are approximated, based on 

interviews with the building management, and partly on electricity metering. 

• Solar heat loads are computed by simple performance parameters, taken from the 

technical specifications defined by the glazing production company. 

• Convective heat transfer is strongly simplified and computed for cases without 

mechanical cooling with values from the EN ISO 13791 standard, although for 

mechanically operated reference cases, the EnergyPlus default TARP algorithm 

is employed. 
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• Well-mixed zone air assumption is employed with spatially uniform 

temperatures. 

• Model validation of the as-built reference scenario is based on energy bills and 

metering data for electricity and natural gas consumption from the years 2008 

and 2009. As the metering data does not provide all levels of detail necessary to 

validate each type of consumer separately, their shares of consumption are 

mostly approximated according to the model inputs. 

1.5 Structure of the Thesis 

The thesis is organised as follows. 

Chapter 2 contains the literature review, also identifying the research problem. It first 

gives a brief overview of the trends in high-rise office building operation. It then 

summarises the principles of natural ventilation, e.g., driving forces, strategies, 

elements, controls, performance indicators, and air flow modelling approaches. An 

overview is given on the major findings of past and ongoing research projects. The 

regulatory framework complements this chapter by providing the area relevant codes 

across European countries. 

Chapter 3 introduces the passive cooling design approach developed with focus on 

wide-shaped office-towers. An electric analogy software tool named ‘HighVent’ is 

developed to design and size natural ventilation systems. It is capable of designing 

flow paths and evaluating the comfort performance with a relatively small number of 

input parameters. The tool outputs are then further ‘post-processed’ as inputs for 

detailed building energy performance simulations including airflow networks. 

EnergyPlus simulations are intended to access annual information about the comfort 

reached. This detailed design development also includes the model calibration and 

original natural ventilation controls. 

Chapter 4 investigates the existing Kanyon office tower located in Istanbul. Detailed 

data including the building’s energy consumption gathered from the building 

management is presented. The geometry, the construction elements, and the building 

usage are analysed and processed towards reliable building energy performance 

simulation model inputs.  
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Chapter 5 reviews the climate of the three locations considered based on ‘typical 

meteorological year’ weather data. As the focus is on passive cooling and comfort 

during summer, the cooling period is further evaluated to infer the climatic cooling 

potentials. Summer design weeks are analysed and then further processed to generate 

meaningful design days for passive cooling as input for the developed ‘HighVent’ 

design tool. 

Chapter 6 explains the passive cooling design approach through virtual case-study 

integration. The Kanyon building is adapted for the climates of Istanbul, Turin and 

Stuttgart. The HighVent’ tool is utilized to design and size the passive system 

components. For the detailed design development of the passive approach including 

the controls, a BEPS model of Kanyon tower is simulated on annual basis along with 

the preliminary passive design outputs from the tool. 

Chapter 7 evaluates the design approaches developed by comparing the fully 

mechanical Kanyon building operation with an operation based on controlled passive 

and hybrid cooling. The most important factors influencing passive and hybrid 

cooling performance are evaluated and design alternatives are analysed and 

discussed for different climates. The assessment is carried out with the help of 

performance indicators, and the results are intended to assist decision making in the 

pre-design phase. For the estimation of energy conservation and environmental 

benefits, simulation outputs for the passive and the hybrid scenarios are compared to 

those with mechanical ventilation and cooling systems.  

Finally, in Chapter 8 a summary of the research work is given and conclusions of the 

research are drawn. Suggestions for areas of improvement and perspectives for 

further research work are also presented. 

Appendix A contains wind pressure coefficient data from wind tunnel tests carried 

out for the Kanyon building including adjacent buildings. The building is modelled 

with a scale of 1:300. 98 points of the building façade structure correspond to 14 

nodes on each storey and on seven height levels. The measurements are repeated for 

eight wind directions. The data is used as input for the ‘HighVent’ design tool and 

for dynamic AFN simulations with EnergyPlus. 

Appendix B gives supplementary information about the ‘HighVent’ tool underlying 

the dynamic calculation method. It provides pre-simulated solar transmitted heat 
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gains for different shading configurations, used as tool input. The construction 

library provides lumped capacity model constructions with different levels of mass. 
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2. LITERATURE REVIEW 

Major challenges for the 21st century are a secured long-term energy supply as well 

as the sustainable protection of earth’s atmosphere to limit the climate change to less 

than 2 °C by the end of the century. Scientists estimate that 2 °C of warming is the 

limit of safety, beyond which climate change becomes catastrophic and irreversible 

[4]. It was recognised that deep cuts in global greenhouse gas emissions are required, 

vitally essential from ecology and economic point of view. The International Energy 

Agency (IEA) estimates that buildings account for 30-40% of the worldwide energy 

use, which is equivalent to 2,500 Mtoe (million tonnes of oil equivalent) every year 

[5]. The built environment section therefore has a huge potential for energy savings. 

These reductions are fundamental for achieving the IAE’s target of a 77% reduction 

in the planet’s carbon footprint against the 2050 baseline. Stabilized CO2 levels are 

called for by the Intergovernmental Panel on Climate Change (IPCC).  

Increasing population density in cities is now widely accepted as necessary for 

achieving more sustainable cities. Keeping in mind that the United Nations (UN) 

forecasts more than six billion people in urbanised areas by 2050, widespread 

megacities will require much more land usage and higher energy demand for 

infrastructure and mobility. A higher density of population may be reached by high-

rise buildings; besides the lower land usage, such buildings have the benefit of higher 

building volume to envelope area ratio, creating less heat losses and requiring less 

material usage. But there are also potential disadvantages such as the increasing 

lighting demand and lower natural ventilation potentials due to a lower envelope area 

to floor area ratio. These may negate the benefits together with the fact that building 

structures at heights need greater material sizing to counteract greater environmental 

pressure [6]. 

Globally, more and more legislative instruments are being introduced to control the 

energy consumption level of buildings. With the Energy Performance of Buildings 

Directive (EPBD) [7], the European Union (EU) has set ambitious goals to improve 

the sustainability of the built environment (see § 2.6). However, regulations like 
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codes and standards prescribe how to construct new developments and how to restore 

energy efficiency in real estate assets; but, they seldom address passive techniques 

with the same technical emphasis compared to active measures. Normally, single 

efficiency measures are considered, which cannot achieve possible primary energy 

savings with an integrated passive approach.  

Bioclimatic architecture responds to the regional climate and conditions, and can 

provide comfort even without expensive heating or cooling [8]. Designers can learn 

to adapt their buildings, making use of solar energy and other environmental sources 

[9]. However, it is often tried to use superior, modern types of construction, which 

can end up relying on costly climate control systems, especially in warm locations. 

Architects often resist energy efficiency for competitive and social reasons, and 

mostly their expectations for efficiency are often much too low for achieving 

substantial energy savings. Especially, office buildings with their high requirements 

on lighting, thermal comfort, and air quality, as well as their often highly glazed 

facades have high-energy demand, which is to be questioned. 

Building ventilation is the intentional process of supplying fresh air from the outside 

to the inside of a building and keeping interior air circulating. Ventilation is used to 

provide high indoor air quality, and is a crucial parameter for thermal comfort 

conditions. The air change is necessary to control temperature, to replenish oxygen, 

and to remove moisture, odours, smoke, dust, airborne bacteria, and carbon dioxide. 

The circulation of air within the building prevents the interior air from stagnation. 

Ventilation systems supply and remove air either naturally and/or mechanically. 

Different types of ventilation may operate in different areas of the building. The air 

change rates achievable through natural ventilation with correct sizing of the 

openings are significantly higher than those with mechanical ventilation for night 

cooling and without electrical energy input. Building infiltration due to an untight 

envelope is unintentional airflow, and therefore treated separately from building 

ventilation. ‘Build tight, ventilate right’ is said to be a good builder's motto. Good 

ventilation in many cases is also subject to a legal minimum requirement. The choice 

between natural and mechanical ventilation depends on different criteria, such as 

discussed in the British Standard 5925 [10]. 
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2.1 High-Rise Office Buildings 

Historically, by the end of the 19th century the first high-rise office buildings were 

built naturally ventilated. They were constructed relatively narrow to control the 

indoor environment passively by exploiting daylight and fresh air from outside to 

naturally ventilate and cool the buildings. The only simple mechanical systems 

focused on heating the building in winter. Natural ventilation systems from that 

period do offer only limited control, and therefore do not provide comfort 

expectations for modern buildings. Very well-known examples of buildings of this 

period still relying on natural ventilation are the Chrysler Building and the Empire 

State Building in New York [6]. 

More complex mechanical systems were established by the 1950s due to cheap 

energy and technical progress in terms of the ability to control the indoor 

environment mechanically with air conditioning systems. As a consequence of their 

widespread usage, architects were no longer ‘restricted’ by the central concern to 

consider passive strategies to provide good indoor environment as they were when 

designing the first generation of skyscrapers in the beginning of the 20th century. 

From this time, architects had the possibility to design light and highly transparent 

offices with deep floor plans. This glass box style, together with the lack of solar 

control, created increased cooling and heating demands depending on the season. 

After the energy crisis in 1973, building regulations aimed to decrease the heating 

and cooling energy consumption of buildings. Regulations mainly focused on the 

building insulation, air tightness, and heat recovery. In this period, buildings were 

designed to be isolated from the outdoor environment, and the energy consumption 

suffered from high solar heat gains. Another aggravating factor was the increase in 

internal heat gains from office equipment, low-efficiency lighting systems, and high 

staff densities. While reducing the heating demand, many existing office buildings 

are still either overheated in summer, or use excessive amounts of energy to maintain 

acceptable temperatures [3]. The poor indoor air quality and the growth of mould due 

to high humidity levels and bad maintenance of the Heating, Ventilation and Air 

Conditioning (HVAC) systems spread illnesses; this is well known as the ‘sick 

building syndrome’.  
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Starting from the 1980s, designers considered energy efficient buildings, which also 

provided a healthier indoor environment. Architects started to reconsider and 

revitalise natural ventilation as a response to a number of challenges in the built 

environment. An integrated design aims to utilise and interact with the outdoor 

environment. The focus slowly moved towards optimal use of sustainable 

technologies such as solar gains, natural light and ventilation, and passive cooling. 

To a certain extent and depending on the expectations of occupants, the climate, the 

building use, the design and the location, sustainable technologies are able to supply 

heating, lighting, and cooling. Yet, supplementary active systems are often needed to 

support the passive technologies. This is especially true in the case of high-rise office 

buildings where a pure passive approach for ventilation and cooling is seldom 

implemented [6]. Even sustainable, passive technologies have been better understood 

in the last few decades, in recent years a trend towards increasing cooling demand 

has been observed, especially in commercial type buildings [11]. Higher internal and 

solar heat gains and increased comfort expectations, as well as global warming and 

the ‘heat island’ effect in big cities increase the cooling demand. The HybVent 

project [3] investigated that ‘in well-insulated office buildings, which are becoming 

more and more common in IEA countries, ventilation and cooling account for more 

than 50% of the energy requirement’. It was concluded that a well-controlled and 

energy efficient ventilation system is required to achieve low energy consumption. 

Moreover, it is stated that adequately controlled natural ventilation and passive 

cooling are energy efficient and sustainable technologies. 

Although the emphasis in this thesis is on passive ventilation to minimise energy 

consumption by maximizing the airflow rates, the reality is that high-rise office 

buildings are almost always operated with mechanical ventilation systems or 

sometimes with mixed-mode ventilation. However, mechanical ventilation systems 

in commercial buildings usually include air distribution ducts with centrally located 

fans to control the indoor air quality. In addition, mechanical ventilation systems 

usually also incorporate filters, space heating, cooling, and heat recovery. The use of 

mechanical ventilation and air conditioning systems does have an energy demand 

and a related energy cost. The more complex the system is in terms of duct length, 

filters, and heat recovery (high pressure drops), and the higher the airflow rate to be 

generated, the higher is the fan power necessary to move the air. The main advantage 
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of mechanical ventilation in terms of energy conservation is winter heat recovery 

from the warm room air. The main drawback is the restricted possibility of achieving 

high outside air ventilation rates in summer. Besides the initial costs for these 

systems, regular system maintenance is required to secure bacterial safety. Moreover, 

complex mechanical systems often have high space requirements for the central units 

and ductwork. 

2.2 Natural Ventilation 

Natural ventilation, also known as passive ventilation, is the most energy efficient 

technique for the provision of good indoor air quality. This is accomplished without 

any electricity demand for moving the air and improving the thermal comfort in 

summer by increased daytime airspeed and high night ventilation rates. The air 

change rates achievable through natural ventilation with correct sizing of the 

openings are significantly higher than those with mechanical ventilation for night 

cooling. Generally, controlled natural ventilation offers excellent potential for single-

sided ventilation, and of course also for cross ventilation and stack ventilation due to 

the possibility of large opening cross-sections. The simplest form of natural 

ventilation is through open windows, or through window trickle vents. 

In the design of ventilation strategies, natural ventilation is often not considered since 

there are very few standards and guidelines available for supporting planners in the 

design of natural ventilation, especially for high-rise office buildings. 

The purpose of this section is to outline the physical processes which govern natural 

ventilation, to introduce the different ventilation strategies and elements, and to 

illustrate these for simple cases. Equations describing the volume flow (see § 2.4.1 

and § 2.6.1) can be combined with meteorological data and flow path characteristics 

in models, which allow natural ventilation rates to be calculated. These models may 

be used to provide guidance on the areas of opening required to ensure that airflow 

requirements are satisfied. 

The NatVent project [12] (see § 2.5.4) identified the lack of experience and know-

how of the main stakeholders such as architects, engineering consultants, and 

building developers as the main barriers for the use of natural ventilation. Moreover, 

the project concluded that design tools and simulation codes were missing. Many 
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research projects have since been trying to develop simplified methods for passive 

cooling applications in order to handle the complex task of simulating airflow rates 

under changing external pressure and temperature [13-16]. 

Monitoring projects mainly analyse the indoor air quality and thermal comfort of 

naturally ventilated buildings, e.g., a study of 19 naturally ventilated buildings [12]. 

While the indoor air quality in most of the buildings was acceptable, eight of the 

buildings had serious overheating problems particularly caused by solar gains. Two 

design strategies for naturally ventilated buildings were identified:  

1) When indoor air quality is the main priority, airflow rates tend to be low.  

2) When summer comfort is the priority, much higher airflow rates are required and 

significant thermal mass needs to be present for night ventilation.  

Simulations showed that natural night ventilation is only suitable in buildings with 

sufficient and accessible thermal mass of about 75-100 kg per square meter of floor 

space. The internal gains have to be limited to 30 W per m2 of floor area. Night 

ventilation reduced the mean room temperature by 1,2 °C during working hours for a 

building in Freiburg/Germany [17], and between 1,5 and 2 °C in La Rochelle/France 

compared to a reference room [18].  

The average reduction of temperature in an office building in Greece was predicted 

between 1,8-3 °C using night ventilation [19]. Monitoring projects show that night 

ventilation works well in climates with large diurnal temperature differences, but 

cannot be recommended for humid climates with humidity ratios above 

15 g per kg air. 

Natural ventilation can reach much higher ventilation rates than mechanical 

ventilation systems that are especially designed for fresh air supply. A range of 

studies using measurements and simulations in schools and offices showed air 

change rates between 5 and 22 per hour for cross ventilation and 1 to 4 per hour for 

single-sided ventilation [20-24]. The World Health Organization (WHO) 

recommends the use of natural ventilation in hospital isolation rooms with very high 

air change rates of 24 changes per hour, while general hospital areas should be 

ventilated with 8 air changes per hour [25]. 
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2.2.1 Driving forces 

The driving forces for natural ventilation of rooms and buildings are pressure 

differences caused by buoyancy or wind, or by a combination of these acting 

together or against each other. Ventilation rates (calculation see § 2.4.1) are 

dependent on the magnitude and direction of these forces and the flow resistance of 

the flow path. Air is forced to flow into the building where the external pressure 

across the enclosure orifices of a building is higher than the internal pressure. 

Orifices can be tiny cracks (infiltration) or large openings like windows (controllable 

building ventilation). 

Physically, wind on a building envelope creates a pressure field with positive 

pressure on the windward side and negative pressure on the leeward and mostly all 

other sides. Buoyant pressure mechanisms arise where gravity acts on density 

differences due to temperature differences (e.g., mostly when the internal 

temperature is higher than the external temperature). Buoyancy induced ventilation is 

also known as ‘stack-effect’ or ‘chimney-effect’. 

2.2.1.1 Buoyancy 

The volume flow caused by buoyancy forces through a single large opening (i.e., 

open windows rather than cracks) or multiple openings in the building envelope is 

proportional to the square root of the pressure difference, and depends on the room 

air and the external air temperature as well as on the stack height. Density differences 

due to temperature differences create a density gradient. Below the neutral pressure 

line (NPL), the air will flow from the cold side to the warm side, and above the NPL 

from the warm side to the cold side. 

 

Figure 2.1: Internal and external pressure distribution of buoyant flow (a) causes airflow through a 
single large opening (b) or through a lower and upper opening (c). 
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An overall measure of the stack buoyancy pressure difference with two openings on 

different height levels hs (stack height) is: ∆�� = ∆���� ∙ 
 ∙ Δℎ
 (2.1)

For the subsequent flow rate calculations or the sizing of opening areas, it is 

important to use a relatively accurate value for the density difference Δρ. The 

absolute value for the density ρ or the average density �̅ is less important. Therefore, 

it is common practice to express the density difference in terms of the temperature 

difference in Kelvin [26]: ∆��̅ = ∆���� + ����2 + 273 (2.2) 

2.2.1.2 Wind 

The airflow due to wind pressure differences has similar physical relationships as the 

buoyant driven flows, except that the pressure differences here are wind induced 

across the building. 

Wind pressure differences Δpw are dependent on the pressure coefficients Cp and on 

the local wind velocity vz at the height of the openings. The surface pressure pw will 

vary with the square of local wind velocity: �� = 0,5 ∙ ���� ∙ �� ∙ ��  (2.3)

Values of the wind pressure depend on the building shape, the wind speed and 

direction, the location and surroundings, and the specific location on the building 

surface. 

 

Figure 2.2: Wind pressure distribution on a pitched roof building. 
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The wind pressure difference between two points (e.g., inlet and outlet openings) 

may be calculated according to: 

∆�� � !��," # ��, ! (2.4)

Wind pressure coefficients 

Values of the pressure coefficient depend on four parameters, which are the spatial 

location on the building envelope (e.g., height and distance from the middle), the 

building shape, the surroundings (e.g., nearby buildings and vegetation), and the 

wind direction [27]. The static pressure coefficient is dependent on the wind pressure 

pw at the point at which pressure coefficient is being evaluated, the pressure in the 

freestream p∞, the air density ρair, and the air velocity vz: 

�� �
�� # �$

0,5 ∙ ���� ∙ �� 
 (2.5)

Cp data can be obtained from primary or secondary sources. Primary sources are 

expensive and time intensive full scale measurements, wind tunnel measurements, or 

Computational Fluid Dynamics (CFD) simulations. Less reliable secondary sources 

are tables such as those in the EN 15242 standard [28] and ASHRAE Fundamentals 

Handbook [27], or Cp-generators which are based on interpolation and extrapolation 

of generic knowledge and previously measured data and are therefore best applicable 

on standard building geometries. Costola [29] gives a good overview of such 

sources. 

The following diagram exemplarily shows pressure coefficient data from a secondary 

source. The values are extracted from investigations made by Orme et al. [30]. 

 

Figure 2.3: Comparison of wind pressure coefficients on the façade for a low-rise building with 
different shielding conditions [30]. 
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2.2.2 Ventilation strategies 

The term ‘ventilation strategy’ refers to the principle on how (driving force) and 

where on the envelope (opening configuration) air is introduced in the building. 

Ventilation strategies used to exploit the natural driving forces can be divided into 

three types: single-sided, cross, and chimney (stack) ventilation. 

2.2.2.1 Single-sided ventilation 

Single-sided ventilation typically serves a single room and occurs if the outside air 

enters and leaves the room on one side of the enclosure. Relative to other ventilation 

strategies, single- sided ventilation offers the least attractive solution for reaching 

high ventilation rates, and is only suitable together with a relatively low spatial 

depth. 

Single-sided ventilation for ventilative cooling can be considered as well-designed in 

two variants: by a single tall opening, or with a double opening at different heights. If 

the opening is reasonably tall or two openings are on different height levels, the main 

driving force is typically the difference between inside and outside temperatures. 

Wind forces may influence the air change rate due to turbulences depending on the 

wind speed, but may also slightly decrease the airflow rate as the wind pressure rises 

with altitude due to the wind profile as described in § 3.2.1.1, and therefore 

counteract the buoyant flow. The double opening variant may enhance the stack 

effect by maximizing the height difference up to a room-scale. Even when increasing 

the penetration depth, care is needed in positioning any low level inlet if the external 

temperature is cold as it may create draughts. A winter solution could be to only 

open the upper opening for fresh air supply, while the lower opening can enhance 

summer ventilation at lower temperature differences. With only one opening, the 

airflow enters and leaves at a single large opening, and the flow rates are usually 

lower. The neutral pressure plane in both variants is typically close to the centre.  

As compared to other strategies, the ventilation rates are typically lower, and the 

ventilation air does not penetrate as far into the space. As a rule of thumb, it is 

commonly stated that for effective ventilation, the room depth should not be higher 

than maximum 2,5 times the room height [26]. 
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Figure 2.4: Single-sided single (a) and double (b) opening ventilation. 

2.2.2.2 Cross ventilation 

Cross ventilation can serve a single room or multiple rooms in series, and occurs if 

the outside air enters and leaves the building on different sides of the enclosure. 

Relative to other ventilation strategies, cross ventilation typically offers an excellent 

solution for reaching high ventilation rates. But because of large and rapid variations 

in wind, the airflow is more difficult to control. 

Even if cross ventilation can be assisted by thermal driving forces, wind is mostly the 

primary driving force, especially in the cooling season with low temperature 

differences between inside and outside. Positive pressure on the windward facade 

and negative pressure on most other orientated surfaces of the enclosure create a 

pressure field around the building. With the inlet and outlet on both sides of the 

room, directly or via a flow path connected to different sides of the enclosure, high 

flow rates can be usually achieved. If multiple rooms are connected, the resistance to 

airflow needs to be considered carefully. Thermal effects may assist if the openings 

for inflow and outflow are positioned on different height levels as shown in  

Figure 2.6. This is of special importance if there is no wind present. 

The depth for effective ventilation has to be limited to prevent from the build-up of 

pollutants and heat. As air is crossing the room and reachable ventilation rates are 

higher than in the single-sided variant, larger room depths can be ventilated. In 

literature, as a rule of thumb, it is commonly stated that the flow path depth should 

not be higher than 5 times the ceiling height [26]. This implies a relative narrow plan 

depth of the building of typically not more than 15 m. 
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Figure 2.5: Wind driven cross ventilation with two openings, one on each orientation. 

 

Figure 2.6: Buoyancy assisted cross ventilation with two openings, one on each orientation. 

2.2.2.3 Chimney ventilation 

Chimney ventilation, like cross ventilation, can serve a single room or multiple 

rooms. Chimney ventilation, also referred to as stack ventilation, occurs if fresh cool 

air enters the ventilated space at low level openings, leaving vertically towards a high 

level chimney exhaust, commonly situated above the roof. As far as the occupied 

space is concerned, chimney ventilation can be treated like cross ventilation with 

occupied space depth of maximum 5 times the ceiling height.  

The strategy is mainly thermally driven by the difference in density between the 

warm chimney air column and the cold supply air, and can be further assisted by 

wind if the chimney outlet is in a region of wind-induced negative pressure as 

described in § 2.2.1.2. Due to large height difference between the inlet and the outlet 

up to a multi-storey scale, chimney ventilation offers a good ventilation potential. 

Solar gains to the chimney space can further increase the ventilation rate and stabilise 

the upward flow direction. If multiple storey levels are connected to a single 

commonly used exhaust stack, great care has to be taken when determining the 

different sizes of the ventilation openings on each storey of the building. For equal 

ventilation rates, the openings at lower floors need to be smaller compared to those 

near the chimney exhaust opening. This fact also has to be considered for the 

opening control. 
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Figure 2.7: Stack ventilation with solar and wind assistance. 

The air may flow from the edges to the centre of the building, to be exhausted via a 

central chimney or atrium. Chimney ventilation is therefore especially suited for 

wide building shapes with a central spine of chimneys as shown in Figure 2.8. But 

considering the wind pressure distribution at the inlet openings, it will be not uniform 

on the different envelope orientations, and therefore the flow direction and 

magnitude is difficult to control. 

An atrium can be considered as a wide chimney. It is typically a rectangular, usable 

space for social interaction in the centre of a building, which is accessible from the 

surrounding rooms. A modern glass-roofed atrium, besides other functions, provides 

ventilation and daylight. The atrium design is a variant of the chimney ventilation 

principle and is suitable for wide plan, low- to medium height buildings. Hence, it is 

not considered further in the context of this study focusing on high-rise buildings. 

 

Figure 2.8: Central chimney ventilation. 

A special chimney ventilation strategy worth mentioning is the so called ‘termite 
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it utilises a central exhaust air chimney, and also supplies air by a central void to 

provide fresh-air entry. In the example below, the cool air supply chimney can be 

integrated together with the exhaust air chimney by a constant chimney diameter. 

With a ‘termite’ strategy, air may be introduced at a central inlet point, which can be 

of special interest if underground earth tubes are intended to precool the supply air, 

and/or if central filters and/or supply air fans are intended to support the passive 

ventilation system. Disadvantages are the higher flow resistance and the smaller 

opening sizing possibilities. An existing example of the design is the Eastgate centre 

in Zimbabwe [31]. 

 

Figure 2.9: ‘Termite’ chimney ventilation example. 

2.2.3 Ventilation elements 

Precise parameterisation of flow through openings is necessary in order to model 

natural ventilation strategies. In this section, the most important elements forming the 

flow path are introduced. 

2.2.3.1 Window Openings 

Well-established opening types in naturally ventilated buildings are windows with 

rotating axis such as bottom- or side-hung windows. Due to the complexity of their 

geometries, simple analytical airflow calculations and airflow networks typically do 

not include their full geometry as input parameters; they include an effective area and 

height together with a discharge coefficient (see § 2.4.1.3) to describe the equivalent 

area of the rectangular orifice that would have the same flow as the pivoted window 

opening. The full geometry is typically described in a simplified way, but mostly 
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little guidance is provided on selecting airflow parameters such as the flow effective 

area and the discharge coefficient. 

The flow effective opening area Aeff and height heff have to be first determined by the 

full geometry of windows (height, width, angle of tilt, opening factor, etc.). 

However, the definition of effective opening area is not standardised in literature – 

some authors include the tilt angle to the (effective) discharge coefficient [32], while 

others do not [16], depending on the focus of their work. In this study, the effective 

opening areas are dependent on the tilt angle, and the discharge coefficient stays 

constant. Depending on the ventilation strategy, typical opening cross-sections are 

approximately 1-3% of the floor area [16]. 

Sliding windows 

Geometrically, the sliding (sash) window type is a rectangular opening without 

tilting or rotating elements. For the estimation of the flow rates, the effective area 

corresponds to the geometrical area together with an Opening Factor OF. The 

effective height is also dependent on the motion axis and whether the window 

moveable parts are controlled horizontally (Eq. (2.6)) or vertically (Eq. (2.7)): ℎ�%% = ℎ (2.6)ℎ�%% = &' ∙ � (2.7)

 
(a) 

 
(b) 

Figure 2.10: Geometrical representations of horizontally (a) and vertically (b) movable sliding 
windows and their resulting effective opening area, height, and width. 

Pivoted windows 

Simplified methods for the effective area calculation of bottom-hung windows can be 

found in literature [16,28]. Coley [33] investigated how to better represent bottom-

hung windows in thermal models regarding the flow effective height of an opening, 

which is of special importance considering single-sided ventilation strategies. 

Subsequently, these methods gathered from literature are further adapted here for 

representing different tilted window types. 
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However, Hall [34] states in her dissertation that the determination of the resulting 

opening areas for bottom- and top-hung tilted windows requires further investigation 

in order to reach a better general validity for the simulation. She experimentally 

determined smaller effective opening areas for bottom-hung windows with reveals.  

The European standard EN 15242 [28] (see § 2.6.4) makes the very simplified 

assumption that the volume flow through a tilted window depends only on the tilt 

angle and is independent of the ratio of height to width.  

A more accurate formula was developed by van Paassen [16] in the context of the 

NatVent study (see also § 2.5.4). It fits reasonably well with the EN 15242 formula 

for low height windows. This expression, besides the tilt angle, also reflects the 

opening geometry as a function of height and width (cf. Figure 2.11): 

(�%% = ) 11+ℎ ∙ ,- + 1.2 ∙ ℎ ∙ , ∙ sin 2∝24 + ℎ ∙ sin+∝-5  
(2.8)

 

Figure 2.11: Effective areas with different height to width ratios scaled by the fully opened window 
with equal area according to van Paassen [16], and comparison with the EN 15242 [28] polynomial 

approximation. 

Figure 2.12 also shows the effective area from the manufacturer’s test data of flow 

through top-, bottom- and side-hung windows as provided in the IES MacroFlo 

documentation [35]. IES lists the effective discharge coefficient by window angle 

and window aspect ratio, and interpolated values for Cd. The data here was 

normalised by the effective discharge coefficient at 90 degree opening angle as 

described by Hult et al. [36]. Relatively close agreement was found especially for 
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narrow windows between the data from window manufacturers and the effective 

areas calculated according to van Paassen. 

 

Figure 2.12: Effective area for a wide and a narrow pivoted window scaled by the fully opened 
window with equal area according to van Paassen [16], and comparison with measured data reported 

by IES MacroFlo. 

The effective opening height for a bottom-hung window is determined according to 

Coley [33] by the following formulation: 

ℎ�%% = (�%%,  (2.9)

 

Figure 2.13: Geometrical representation of a bottom-hung window and the resulting effective opening 
area and height. 

 

Figure 2.14: Geometrical representation of a top-hung window and the resulting effective opening 
area and height. 

The effective opening area of side-hung windows as shown in Figure 2.15 can be 

calculated similarly as in the bottom-hung formula shown before (Eq. (2.8)). The 

adapted formula for the calculation of the effective area of side-hung windows is: 

(�%% = ) 11+, ∙ ℎ- + 1.2 ∙ , ∙ ℎ ∙ 678 2∝24 + , ∙ 678+∝-5  
(2.10)

0,0

0,2

0,4

0,6

0,8

1,0

0 10 20 30 40 50 60 70 80 90

A
e

ff
 / 

h·
w

  

tilt angle α in ° 

w/h = 0,50    *van Paassen

w/h = 2,00    *van Paassen

w/h = 0,50    *MacroFlo top-hung

w/h = 2,00    *MacroFlo top-hung

w/h = 0,50    *MacroFlo bottom-hung

w/h = 2,00    *MacroFlo bottom-hung

w/h = 0,50    *MacroFlo side-hung

w/h = 2,00    *MacroFlo side-hung

α

h

w

h e
ff

weff

A Aeff

weff

h e
ff

Aeff

w

α Ah



 

28 

The effective height for the single-sided ventilation here however equates to the 

geometrical height of the opening (cf. Figure 2.15). 

 

Figure 2.15: Geometrical representation of a side-hung window and the resulting effective opening 
area and width. 

2.2.3.2 Sub-slab distribution  

As already shown in the termite example in § 2.2.2.3, another possibility for air 

supply other than simple window inlets is sub-slab, also referred to as underfloor air 

distribution. This air supply type uses an underfloor supply plenum, e.g., located 

between the concrete slab and the raised floor to supply external air into the occupied 

zones of the building. The approach provides greater control of air distribution across 

the building section [37]. The flow path can be designed to take air directly from the 

envelope (Figure 2.16), and also from the building’s internal chimneys (Figure 2.9). 

The airflow resistances in the airways are strongly dependent on the design as they 

depend on whether the flow is laminar or turbulent, and on the dimensions of the 

airways. Specially designed floor diffusers are usually used as supply outlets.  

 

Figure 2.16: Stack ventilation with sub-slab distribution. 

Vertical temperature stratification is a well-known phenomenon and will result here 

as sub-slab supply can be considered similar to displacement ventilation [38]. 
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Figure 2.17: A characteristic airflow pattern and temperature stratification in a room with 
displacement ventilation (adapted from [38]). 

2.2.3.3 Chimney openings 

Considering the wind pressure field around a building as shown in Figure 2.2, 

chimney openings for air intake or exhaust require care when designing the position 

and form. Chimney inlets (wind-scoop) are best positioned windward, and chimney 

exhausts (wind-extract) in most other directions. A chimney device, which is opened 

on two or four sides, is capable of acting as scoop and extract. A pair of partitions is 

usually placed diagonally across each length. This ventilation system has been part of 

the building design for already hundreds of years in the Middle East, and is known as 

‘wind-catcher’ or ‘badgir’ [39].  

 

Figure 2.18: Three types of aerodynamic device: (a) wind scoop, (b) wind extract, (c) balanced 
ventilator (adapted from [40]). 



 

30 

2.2.4 Ventilative cooling 

To reach thermal comfort conditions in the warm period, an effective ventilation 

strategy for temperature control (cooling) comprises measures that act to reduce the 

internal and solar gains as far as possible and to absorb heat in the fabric of the 

structure. The protection from intense heat gains may involve landscaping, building 

form, layout and external finishing, solar control and shading of building surfaces, 

thermal insulation, and the control of internal gains.  

The aim of ventilation is to achieve high flow rates of cooler outside air through the 

building. Ventilation as a heat dissipation technique can deal with the potential for 

disposal of excess heat of the building to an environmental sink of lower 

temperature, which here is the external air. The dissipation of excess heat generally 

depends on the availability of an appropriate environmental heat sink, and of an 

appropriate thermal coupling between the building and the sink as well as sufficient 

temperature differences for the transfer of heat. The potential of heat dissipation 

techniques strongly depends on climatic conditions.  

For the control of temperatures, passive daytime cooling or night cooling can then be 

very effective in moderate climates. This requires rather high flow rates, with a factor 

of 3 to 12 times the flow required for indoor air quality reasons in a medium-densely 

occupied office. This substantial difference leads to completely different systems for 

passive cooling, although the ventilation system for indoor air quality control may 

assist the control of temperatures during warm periods. The ventilation system for 

indoor air quality control will almost never be sufficient to take over the function of 

temperature control. With mechanical ventilation, the necessary system size and 

electricity demand is in opposition to the necessary flow rate.  

Naturally ventilated buildings can offer good thermal comfort even in hot summer 

conditions. For example, in the summer of 2003 the office building Lamparter had 

less than 10% of the hours of use above 26 °C, but atriums can easily overheat [24]. 
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Figure 2.19: Natural ventilation air change rates applied or measured [20,23,24]. 

2.2.4.1 Diurnal ventilation 

Daytime ventilation is a simple strategy to enhance comfort by direct personal 

cooling. When internal temperature is felt too warm at still air, increased air 

velocities can compensate for higher room temperatures to achieve comfortable 

conditions by wind-chill. The increased airflow of outdoor air increases the limits of 

acceptable temperature and humidity as it affects evaporation and convection around 

the human body. High airflow rates are particularly useful when relative humidity is 

high as the higher air velocity increases the rate of sweat evaporation from skin, thus 

increasing heat losses in the thermal balance of human body [41]. 

Direct advective cooling with high flow rates replaces the warm internal air by cooler 

external air, and therefore the internal air temperature may closely follow the 

ambient air temperature.  

Daytime ventilation can only be applied in an acceptable way if the indoor comfort 

may be achieved with outdoor air temperatures and with acceptable indoor air 

velocities. The distinct operation control regime should be considered with relatively 

high ventilation rates of the order of 5 to 10 ACH for direct ventilative cooling when 

appropriate.  
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Figure 2.20: Boundaries of outdoor air conditions within which indoor comfort can be provided by 
natural ventilation during the day, with indoor airspeed about 2 m/s (a very light breeze) [8]. 

2.2.4.2 Night-time ventilation 

The idea of night-time ventilation in office buildings is to use the thermal mass of a 

building as a heat sink. The structure is cooled by convection during the night and is 

able to absorb heat in occupied hours. In principle, cool night air passes over a 

heavyweight building fabric and cools the thermal mass. The warmer daytime air 

will then be reduced in temperature when passing over the cooled slab. Therefore, 

night ventilation is particularly suited to offices, which are unoccupied during the 

night so that relatively high air changes can be used to provide maximum cooling 

effect without creating thermal discomfort. This strategy provides attenuation of 

peaks in cooling load and modulation of internal temperature with heat discharge at a 

later time (Figure 2.21). The larger the outdoor temperature swings, the bigger the 

influence of such storage capacity. The cycle of heat storage and discharge must be 

combined with means of heat dissipation, so that the discharge phase does not add to 

overheating. 

Controlled night cooling must continue till the building is adequately cooled or 

occupied again. If the building structures are cooled to a too low level, the cooling 

process has to be interrupted before the end of the night in order to regain acceptable 

surface temperatures before the start of occupation. Night-time ventilation is an 

effective low energy cooling technique, especially in climates with relatively low 
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peak summer temperatures during the day and medium to large diurnal temperature 

differences.  

The distinct operation control regime should be considered with high ventilation 

rates when required. Typical ventilation rates for night cooling (typically of the order 

of 5 to 15 ACH) will exceed minimal rates needed for indoor air quality control, 

which during unoccupied hours may fall well below 1 ACH. Thus again, air quality 

control other than moisture control will usually not be needed to be considered 

during night-time ventilation. 

 

Figure 2.21: Typical surface temperature cycle (black line) of an office concrete slab using the 
thermal mass as a heat sink with a constant flow rate of 10 ACH during night and day. 

Night ventilation can be operated passively, e.g., window ventilation, or 

mechanically with fans. Natural night ventilation has the advantage of higher flow 

rates without fan electricity demand. Night ventilation can operate not only along 

with passive diurnal ventilative cooling strategies, but also with mechanical cooling. 

Thus, night ventilation, if not a pure passive approach, is also of importance to 

reduce the energy consumption for mechanical cooling in summer. 

2.2.5 Design impact 

Natural ventilation principles will result in buildings with very little visible 

conventional ventilation equipment, as the building itself mostly provides the 

ductwork. The investment in mechanical equipment will be shifted towards a larger 

investment in the building itself: increased room air volume per person, a shape 

favourable for air movement, a more complex facade/window system, optionally 

with underground intake air culverts, extract air stacks, etc. Thus, modern natural and 

hybrid ventilation systems will have a large impact on the building design, making 
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close cooperation between the architect, the civil engineer and the HVAC engineer a 

necessity [3], providing the possibility of ‘form-follows-function’ stylistic elements. 

For high-rise building shapes, the challenges in terms of designing the envelope and 

its openings are greater, primarily because the potential magnitudes of driving forces 

become bigger, and their relative magnitudes can vary over a wider range. For a 

buoyant driven chimney strategy where multiple storeys are connected to one single 

stack, the pressure differences at the lowest storey openings are great, especially 

when the temperature differences are high (in winter). For example, for a building 

with 200 m height and with a temperature difference of 20 °C between inside and 

outside, the pressure drop across the envelope at the ground level would be in the 

range of 140 Pa (without internal resistance) [42]. Besides high unintended 

infiltration rates, this force is unacceptable for controlling (open and close) windows 

and doors. Another difficulty is the range of opening sizes. The pressure drop at the 

lower level of the building can be many times more than that at the highest level. At 

the upper storeys, the opening sizes for pure buoyant ventilation as well as the 

chimney size tend to be too large to be realised in practice. Internal flow path 

resistance can reduce the peaks in pressure drop around a single orifice, but the 

overall system size would be enhanced (e.g., the resulting chimney diameter). In 

contrast, the wind pressure at the highest storeys is generally much higher than that 

on the lower floors. This is because of the urban terrain roughness, the resulting wind 

profile (see § 3.2.1.1) and local wind shielding, e.g., by other buildings (see 

§ 2.2.1.2). The resulting opening sizes are thus very different to the sizes intended for 

thermal ventilation. Also, the forces of wind and buoyancy may oppose each other 

depending on the flow path design, which makes the control over external air supply 

difficult. To overcome these difficulties, Etheridge [43] proposes the design of 

isolated spaces (single zones or storeys) or building segmentation (part of the 

building up to few storeys) as vertical passages will suffer less from the difficulties 

mentioned above. Each isolated zone, storey or segment can then be treated as a low-

rise design (Figure 2.22). 
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Figure 2.22: Three ventilation strategies for tall buildings: (a) upward cross-flow with direct 
connection between floors; (b) upward cross-flow with segmentation; (c) isolated spaces. Note: The 
flow pattern is the same for each floor, so only a few flow arrows are shown. The resulting pressure 

drops are due to buoyancy at 20 °C temperature difference without internal resistance. Source: 
adapted from [42]. 

2.2.6 Control strategies 

The control of natural ventilation openings either focuses on indoor air quality, on 

indoor temperature levels for free cooling modes, or on a mix of both. It is important 

that both ventilation rates and air distribution must be considered. Manual or 

automatic control can be achieved whenever the building is occupied. The relatively 

simple control of indoor air quality is discussed in § 2.3.1. 

Surveys that tried to identify manual control actions for direct ventilative cooling 

have shown that occupants in general will accept wider thermal comfort bands when 

occupant control is available [41,44-48], and is generally preferred. Therefore during 

occupation, it is best to allow building occupants to control (overwrite) the flow rate 

(opening factor) as manual control appears to be strongly related to productivity [26]. 

Nevertheless, there are some obvious pitfalls with manual control, especially 

concerning problems of unintentionally high ventilation rates. Thus, automatic over-

rides may have to be used in practice [49]. During occupancy, a distinction is made 

between cellular and landscaped offices [50]. While user control functions well in 

cellular offices, in landscaped offices automatic control is also necessary during the 



 

36 

day. However, the correct control strategy is not easy to establish and users should 

still be able to override the automatic control.  

Results from twelve office and educational building case studies showed that during 

non-occupancy, automatic control is necessary to cool down the building structure 

with the help of night ventilation [20]. Night-time ventilation (see § 2.2.4.2), due to 

its dynamic nature, represents a great challenge as it can lead to overheating, 

overcooling, and moisture entrainment. It affects the indoor conditions during the 

next day by [51]: 

3) peak air temperatures reduction, 

4) air temperature reduction throughout the day and, in particular in the morning 

hours, 

5) slab temperature reduction, and 

6) time lag creation between the occurrence of external and internal maximum 

temperatures. 

Good control needs to forecast future conditions. Consequently, due to the absence 

of occupants and also for security reasons (i.e., sudden change of weather), night 

ventilation is best controlled automatically. A great number of researchers 

highlighted the problem of developing effective night cooling control strategies 

(references may be found in [49]). Axley [49] recommended and compared three 

such simple control strategies developed (summarised in Table 2.1). In the third 

column, different night control strategies (Opt. A-E) either based on room air 

temperature setpoints, floor slab temperature levels, degree hours, or daily cooling 

uptake were analysed and compared for an office building, and showed very 

comparable results. The setting of the control parameters was shown to be more 

important than the strategy itself. The main parameter was to provide high enough 

airflow rates for night ventilation and limit the internal gains [15,16]. 
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Table 2.1: Recommended night cooling control strategies from different investigations [49]. 

Kolokotroni [52] Martin & Fletcher [53] van Paassen et al. [16] 
enable night cool criteria 

• if peak zone temp. 
> 23 °C or, 

• if average daytime 
zone temp. > 22 °C 
or, 

• if average afternoon 
outside air temp. 
> 23 °C or, 

• if slab temp. > 23 °C. 

• if peak zone temp. 
> 23 °C or, 

• if average daytime 
zone temp. > 22 °C 
or, 

• if average afternoon outside air 
temp. > 20 °C or, 

• Opt. A: if peak zone 
temp. > 24 °C and if 
daytime zone 
degree hours, base 
21 °C is positive or, 

• Opt B: if average 
afternoon outside 
air temp. > 18 °C 
or, 

• Opt. C: if slab temp. 
> 23 °C. 

• Opt. D: PI vent 
control on peak 
zone temp. to 
(18 – 22)a °C or, 

• Opt. E: manual control based 
on weather forecast. 

operate night cool criteria 

• if zone temp. > 
outdoor temp. and 

• if outside air temp. 
> 12 °C and 

• if zone temp. > zone heating 
setpoint. 

• if zone temp. > 
outdoor temp. 
+2 °C and 

• if outside air temp. 
> 12 °C and 

• if zone temp. > zone heating 
setpoint. 

• if zone temp. > 
outdoor temp. and 

• if outside air temp. > 12 °C. 

operation period 

• enable operation 7 
days a week 

• enable operation during entire 
non occupied period 

• enable operation 7 
days a week 

• enable operation 
during entire non-
occupied period 

• continue operation two 
additional nights when 
activation & operation criteria 
are no longer satisfied if 
operated for 5 or more 
consecutive nights. 

• enable operation 7 
days a week 

• enable operation during entire 
non-occupied period 

In recent years, fuzzy control algorithms have also been successfully used for 

combining acceptable indoor air quality and thermal comfort [54]. Another study in 

the UK showed that complex algorithms do not perform better than simple ones, but 

it is recommended not to overcool the buildings especially in the transition months 

May, June, September, and October [53]. 
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2.3 Performance Indicators 

2.3.1 Indoor air quality 

The main reason ventilation is required to maintain a reasonable level of indoor air 

quality is the fact that people are in buildings. Their bio-effluents have to be removed 

and diluted. The required flow rates are therefore normally expressed in volume per 

person. Sensors may also directly control the demand based on the CO2 

concentration, and can improve the air quality while saving energy. The operation 

control regime should be considered for the control of ventilation rates and air 

distribution to maintain acceptable indoor air quality. Typically, minimal ventilation 

rates for air quality control (background ventilation, i.e., of the order of 1 ACH 

during building occupancy) will be less than those required for direct ventilative 

cooling (see § 2.2.4). The minimal ventilation rate is reasonably controlled 

automatically, as personal detection of air quality conditions is generally too subtle to 

be considered [49]. The control is critical in winter conditions and can have 

significant energy consequences.  

Thus, air quality control will normally not be an issue during direct ventilative 

cooling. To reduce heat losses to a minimum without heat recovery in winter, it is 

favourable to restrict the ventilation intervals (to a few minutes). Higher ventilation 

rates can supply the total required amount of air in a shorter time period. During 

these short time periods, the building heat losses are smaller because most of the heat 

is stored in the building fabric, and the entering fresh air quickly heats up again. 

In a number of cases with the so-called ‘sick building syndrome’ symptoms, people 

rely on the strategy to ventilate more because of high emissions from the building, 

the furniture materials and the badly maintained mechanical ventilation systems. This 

is not very energy efficient. The goal must be to keep emissions as low as possible. 

The strategy therefore is source and product control, but not ventilation. 

Indoor air quality is usually evaluated by the CO2 concentration indicator. 

Unfortunately, there is no agreement on the limit values for good air quality (see 

Figure 2.23). According to EN 13779 [55] high indoor air quality (IAQ) is achieved 

with less than 400 ppm above the level of outdoor air, medium IAQ in a range 

between 400 to 600 ppm, moderate IAQ from 600 to 1000 ppm, and low IAQ above 

1000 ppm. The German Federal Ministry for the Environment, Nature Conservation 
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and Nuclear Safety considers 1000 ppm in schools as hygienically good, from 1000 

to 2000 ppm as hygienically noticeable, and above 2000 ppm as not acceptable. 

EN 15251 [41] uses 1000 ppm as the upper limit for the design of ventilation 

systems. According to the Commission Delegated Regulation (EU) No 244/2012 

[56], ‘energy efficiency measures … shall be compatible with air quality … levels 

according to CEN standard 15251 on indoor air quality or equivalent national 

standards’. 

 

Figure 2.23: Monitored and allowed CO2 concentrations [21,41,55,57-59]. 

2.3.2 Thermal comfort 

Thermal comfort is seen as a state of mind that expresses satisfaction of the 

occupants. It is assessed by subjective evaluation [60] since the occupants will desire 

differently based on their physiology and psychology. Besides the psychological 

parameters such as individual expectations, thermal neutrality is maintained when the 

heat generated by human metabolism is in thermal equilibrium with the 

surroundings. The main factors that influence thermal comfort are the metabolic rate, 

the clothing insulation, the air temperature, the mean radiant temperature, the air 

velocity, and the relative humidity.  
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The Predicted Mean Vote (PMV) model [60] is one of the most recognised thermal 

comfort models, and has been incorporated into a number of standards and design 

codes (e.g., ISO-7730 [61]). But the PMV method should be applied only to air-

conditioned buildings, while the adaptive model can be generally applied only to 

passively operated buildings where no mechanical systems have been installed. The 

adaptive model was developed with the idea that outdoor climate influences indoor 

comfort as occupants dynamically interact with their environment. The operative 

room temperature is allowed to increase in naturally ventilated, non air-conditioned 

buildings with rising ambient air temperatures. Occupants in the warm period control 

their thermal environment by means of clothing, controllable natural ventilation, 

fans, and shading elements [62]. Extensive field studies showed that the occupants of 

naturally ventilated buildings do accept and even prefer a wider range of 

temperatures than in air-conditioned buildings because their preferred temperature 

depends on outdoor conditions.  

Adaptive comfort models are implemented in standards such as European EN 15251 

and ISO 7730 standard, and slightly different in the American ASHRAE 55 standard. 

Contrarily to the ASHRAE 55 standard [63], and in accordance with the EN 15251 

standard [41], the adaptive approach can be applied to hybrid (mixed-mode) 

buildings whenever the mechanical systems are not running. In contrast to the PMV 

model, the adaptive model does not reflect the influence of humidity. According to 

the Commission Delegated Regulation (EU) No 244/2012 [56]: ‘energy efficiency 

measures … shall be compatible with … indoor comfort levels according to CEN 

standard 15251…. In cases where measures produce different comfort levels, this 

shall be made transparent in the calculations.’ 

The temperature excess method cumulates the hours with room air temperatures 

above a given setpoint and compares them with limiting values, e.g., 5% of all office 

hours. 

In this thesis, the acceptable temperature setpoints were calculated following the 

adaptive comfort limits, which are defined in the European standard EN 15251 [41]. 

Depending on the exponentially weighted running mean of the daily mean ambient 

air temperature series of the previous week, recommended operative temperatures are 

calculated for different comfort categories (for details see § 2.6.3). The criteria were 

obtained through investigations in office buildings with user operated windows [48].  



 

41 

2.3.3 Energy consumption 

The HybVent project investigated that ‘in well-insulated office buildings, which are 

becoming more and more common in IEA countries, ventilation and cooling account 

for more than 50% of the energy requirement’ [3]. Due to passive cooling and 

controlled natural ventilation, there is no energy consumption for cooling and 

ventilation. It is assumed that if thermal comfort can be guaranteed without air 

conditioning, then significant cooling and ventilation energy conservation can be 

achieved [64]. Energy savings by natural ventilation can mostly only be evaluated 

when simulation tools are used, as two identical buildings with different ventilation 

or climatisation strategies are rarely available for monitoring. The savings on 

venting, heating, and cooling energy can be determined by comparing natural 

ventilation strategies (while maintaining thermal comfort) with an identical office 

building for which mechanical ventilation is used (e.g., utilizing building energy 

simulation tools). 

A 30% reduction of the cooling energy consumption and 40% reduction of the 

installed cooling capacity was predicted for a UK low energy office building with a 

stack driven night ventilation air change rate of 10 per hour [51]. 40% reduction of 

the daily cooling demand was simulated for a high thermal mass office building in 

Belgium [65]. Blondeau investigated that night ventilation with air change rates of 8 

per hour can reduce cooling requirements by 12 to 54%, depending on the 

temperature setpoint [18]. 

The primary energy consumption of naturally ventilated office buildings in Denmark 

was compared with that of mechanical ventilation systems [66]. The naturally 

ventilated buildings consumed 40 kWh/m² per year, whereas the consumption of 

mechanical ventilation systems varied from 50 kWh/m² per year (VAV system) to 

90 kWh/m² per year (CAV system). The primary energy conservation for naturally 

ventilated office buildings in Belgium was calculated to be 8 kWh/m² per year [23]. 

Studies conducted on the 23 storey Liberty Tower of Meiji University in Tokyo [3] 

showed that about 17% of energy consumption for cooling is saved by using the 

natural ventilation system. 
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2.4 Airflow Modelling Approaches 

The driving forces for natural ventilation of rooms and buildings are pressure 

differences caused by buoyancy and wind (see § 2.2.1). Ventilation rates are 

dependent on the magnitude and direction of these forces, and the flow resistance of 

the flow path (see § 2.2.2 and § 2.2.3). 

Simplified calculation methods for cross ventilation can be applied when the pressure 

conditions at inlets and outlets are the same or at least similar for each orientation, 

and thus a relatively constant pressure difference can be supposed. For thermally 

driven ventilation, the inlets and outlets should each be located at the same or at least 

a similar height level; for wind induced ventilation, the wind pressure coefficients 

and the wind speeds at the opposing openings should each have a similar value. 

Occasionally, one will encounter configurations that cannot be covered by simple 

equations as presented in § 2.4.1. Examples are solar chimneys or atriums with inlets 

on different floors and with a common outlet or complex wind pressure conditions at 

different façade orientations. In such cases, it is advisable to calculate the airflow for 

the most effective flow path. If this is no longer possible due to the complexity of the 

flow paths, it is recommended to utilise the more complex, but still explicit 

‘Envelope-flow’ method [26,43] or dynamic multi-zone flow models [67,68], which 

are included in programs such as TRNSYS or EnergyPlus [1]. As a unique tool, 

Computational Fluid Dynamics (CFD) predicts the airflows at all points of the space 

defined including the flow momentum, but computation time is excessive. 

The analytical calculation methods described below can be utilised for sizing 

openings or to validate the airflow network simulation or CFD simulation results for 

simple situations. For complex flow path configurations, the flow rate can be 

estimated by AirFlow Networks (AFN) [69], the Envelope Flow Model (EFM) [70] 

or by the electrical analogy approach developed in this thesis (see § 3.2.1.2). 

2.4.1 Analytical approaches 

The flow rate through a flow path also referred as to airway configuration, depends 

on the opening areas in series and parallel (§ 2.4.1.3), the discharge coefficients 

(flow resistance) of the openings (also § 2.4.1.3 ) and the pressure differences (see 

driving forces § 2.2.1). A flow path configuration may range from only one opening 
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for single-sided ventilation up to multiple external and internal openings of different 

size, height level, and orientation. Simple analytical equations presented here cannot 

reflect all but some of the more simple configurations.  

2.4.1.1 Cross ventilation 

Simplified empirical formulae estimate the volume flow rate of a single opening 

dependent on the effective area. The basic equation for the volume flow can be 

expressed by: 

9:: = �; ∙ (�%% ∙ <2 ∙ |∆�|����  (2.11)

The pressure difference across an opening for combined wind Δpw and buoyant ∆pb 

pressure differences may be evaluated by: 

Δ� = Δ�� ± Δ�? = @��," ∙ ��," − ��, ∙ ��,  2 ± ∆���� + ����2 + 273 ∙ 
 ∙ ℎ
@ (2.12)

It is assumed that the reference air density ρ0 for wind induced pressure is the outside 

air density ρext, and for the buoyant share the mean air density is from inside and 

outside �̅. The solution (±) depends on whether the opening level on the windward 

side is located higher than that on the leeward side (-) or not (+). 

With AS,eff as the effective area of the whole flow path (see § 2.4.1.3), the basic 

equation for the volumetric flow can then be expressed by: 

9:: = (A,�%% ∙ <2 ∙ |∆�|�B = AA,�%% ∙ √2 ∙ <EΔ������ ± Δ�?�̅ E
= (A,�%%F@��," ∙ ��," − ��, ∙ ��,  2 ± ∆���� + ����2 + 273 ∙ 
 ∙ ℎG@ (2.13)

This equation can also be used to exclusively estimate wind induced flow or 

thermally induced flow by setting the respective shares to zero.  
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2.4.1.2 Buoyant ventilation 

For the ventilation through identical lower and an upper openings as shown in Figure 

2.24, the pressure drop on each is assumed to be the same, but acting in opposite 

directions. With the same effective opening area, the height in which the  

pressure gradients intersect (i.e., the NPL) is midway between the two openings [26]. 

If two openings on different heights are differently sized and with a temperature 

difference between inside and outside, the resistance of the bigger opening is smaller 

than for the smaller opening. To fulfil the mass conservation (inflow = outflow), the 

pressure drop around the bigger opening must decrease compared to the smaller 

opening until the mass flow equalises on both openings. The Neutral Pressure Level 

(NPL) here moves towards the bigger sized opening [26]. 

 

Figure 2.24: Pressure distribution and NPL for two openings buoyant flow with the same and 
different opening areas. 

The volumetric flow can be assumed with the same equation as that for cross 

ventilation by setting wind pressure share to zero. The flow rate may be estimated by 

the following equation (again, As,eff is described in § 2.4.1.3): 

9:: = (A,�%%<2 ∙ ∆���� + ����2 + 273 ∙ 
 ∙ ℎ
 (2.14)

It is important to note again that differently sized openings influence the position of 

the NPL, which can be especially important in multi-storied buildings with a 

common flow path. The required ventilation rates of each level may be adapted (e.g., 

set equal) by sizing the openings depending on their height level. The sum of all 

inflows may balance the exhaust flow of a single high level opening, if the NPL is 

forced above the height of the highest inflow opening (sizing the exhaust big and 

high enough). The driving pressure at a low level here is much higher than on upper 

levels, and the openings should be sized accordingly (cf. Figure 2.25) [26]. 
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Figure 2.25: Pressure distribution and NPL for multiple openings buoyant flow with different 
opening areas. 

The buoyant flow through a single opening such as a window is bidirectional as 

shown in Figure 2.1 (b). For cold ambient conditions, the warm room air exits at the 

upper part of the opening and the colder ambient air enters at the lower part of the 

opening. If the ambient air is warmer than the room air in summer conditions, the 

flow reverses. The flow direction changes at the height of the neutral pressure plane. 

The integration of the flow profile over the height results in a constant of 1/3 in the 

following equation, as only part of the window opening area Aeff is available as air 

inlet, and the neutral pressure plane is assumed at half the effective opening height 

heff level. Any influence of wind (e.g., due to turbulence) is not initially considered 

here. For single-sided ventilation with a single large opening, the flow rate caused by 

buoyancy can be expressed through the following equation [71]: 

9:: = �; ∙ (�%%3 < ∆���� + ����2 + 273 ∙ 
 ∙ ℎ�%% (2.15)

2.4.1.3 Flow path 

A building can be regarded as a series of discrete cells connected to outside air and to 

each other by opening elements of the types discussed. Cells can be connected in 

series and in parallel. Together they form a flow path with a specific flow resistance, 

which for the whole airway can be described by a global effective opening area. 

Opening discharge coefficients 

The discharge coefficient of an orifice Cd is the ratio of the actual flow to the ideal 

flow without the effects of friction and flow contraction (flow resistance). According 

to the British standard BS 5925 [10], it is conventional to assign a value to the 

discharge coefficient, corresponding to that of a sharp-edged orifice. Typical values 

of sharp-edged external openings such as windows lie between 0,60 and 0,65 

cold

NPL
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[26,32,72-74]. Previous research showed that the discharge coefficient of an opening 

did vary to some degree with Reynolds number, but only little variation was detected 

with external large openings appropriate for building ventilation [73]. The current 

practice of using values obtained from laboratory tests under still-air conditions may 

not be appropriate when the ventilation is influenced by wind. There are several wind 

tunnel investigations that show Cd varying with wind direction (e.g., [75]). The value 

taken in the BS is 0,61, which is also the value used further in this work. 

For internal openings in partitioned buildings, which are much larger than the 

external openings, the discharge coefficient is close to 1 [76], because if the rooms 

are connected by very large openings, they effectively form a single zone. 

Flow path resistance (total effective area of a flow path) 

For multiple openings in a flow path, a global effective area AS,eff including the 

discharge coefficients has to be calculated for the entire flow path. 

For openings in a parallel arrangement, the effective opening surface area AP,eff is 

obtained from the sum of discharge coefficients and area products: (H,�%% = �;," ∙ (�%%," + �;, ∙ (�%%, + ⋯ + �;,� ∙ (�%%,� (2.16)

For openings in serial arrangement, the effective surface AS,eff is estimated as 

follows: 1(A,�%% = 1(H,�%%," + 1(H,�%%,  + ⋯ + 1(H,�%%,�  (2.17)

2.4.1.4 Example calculations and EnergyPlus validation 

The analytical calculation methodology described has been validated against the 

widely recognised building energy simulation software with integrated AFN 

EnergyPlus [1]. The relative deviation of the simulated flow rates with same opening 

configuration and fixed boundary conditions as in the examples before is 3,2% for 

the single-sided ventilation scenario and 0,04% for the cross ventilation scenario. 

The validation methodology can be found in another article by the author of this 

thesis [77]. 
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2.4.1.5 Ventilative potential 

The potential of natural ventilation for different openings and room geometries were 

originally analysed in the context of a different study by the author of this thesis, and 

published in ‘Energy and Buildings’ [77]. Here, the term ‘ventilation potential’ is 

utilised, as the flow rates are not only dependent on the size of the openings, but also 

on the ventilation strategy including flow resistances and the achieved pressure 

differences from buoyancy and wind with fixed boundary conditions. 

 

Figure 2.26: Analytical results of a variant matrix for single-sided ventilation with small temperature 
differences between room and ambient air. The base-case is a room depth of 5,75 m and 2,8 m ceiling 

height with a total effective opening area of 0,88 m² (3% of the net floor area). 

2.4.2 Airflow networks 

Airflow Network (AFN) simulation models have been developed to quickly solve the 

airflows and contaminant distributions in buildings. Buildings are represented by 

well-mixed zones, assuming a uniform temperature and contaminant concentration, 

connected by airflow paths. Air momentum effects are neglected. The flow 

calculation is based on the assumption that indoor airflows reach steady state at each 

timestep. Multizone airflow network models can simulate several airflow 

components i.e., cracks, ducts, duct fittings, fans, flow controllers, vertical and 

horizontal large openings (windows, doors and/or staircases), and passive stacks. 

AFN consists of a set of nodes linked by such components and represents a 

simplified airflow model. The flow elements correspond to openings and calculate 

the airflow rates; buoyancy flows are calculated by air density differences. 

Mathematically, matrix equations are constructed and numerically solved using the 
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Bernoulli equation. Convergence is reached when the sum of all mass flow rates 

through all components of a flow path converges to zero. 

AFNs are often coupled to thermal dynamic simulation models to evaluate the whole 

building performance, including the thermal mass of building elements. EnergyPlus 

contains such a fully integrated network model (primarily COMIS [69], then 

replaced by AIRNET/CONTAM [67]) for calculating building airflows and their 

impact on building energy use as described in § 3.3.1.2 and by J. Huang et al. [78]. 

Other examples for AFN integration into Building Energy Performance Simulation 

(BEPS) are ESP-r, LESOCOOL and TRNSYS. Different coupling approaches such 

as the onion and ping pong coupling are possible [79].  

However, AFN models are based on assumptions and simplifications [80] and the 

local air velocities in rooms cannot be computed. Pseudo steady state AFN 

simulations were compared with analytical models with very good agreement [77]. 

Johnson [81] compared the predicted airflows from different AFN models against 

measured airflow from laboratory experiments. The different simulation programs 

yielded similar predictions, which are within 30% error for the simple cases 

evaluated. Care must be taken in case of single-sided ventilation with relative strong 

wind, since the AFN calculations do not consider the turbulent air exchange as 

reflected in BS 5925 [10].  

2.4.3 Computational fluid dynamics 

Computational Fluid Dynamics (CFD) methods provide numerical solutions of the 

partial differential equations governing airflow and related physical processes. 

Solving the Navier-Stokes equation in a fluid domain, the technique is particularly 

suited for air movement and contaminant distribution analysis in [26,82] and around 

[83,84] buildings. CFD allows the airflow patterns inside a ventilated space to be 

analysed in great detail, but computation effort is extensive. Detailed information can 

be visualised for air velocity, and temperature and pressure distribution at each point 

of the zone. This provides the user with a vast amount of information, and it is 

theoretically possible to know the temperature, and the flow and concentration fields 

throughout the whole area of interest with the desired spatial and time resolution. 

The geometrical domain under analysis is subdivided into a large number of small 

cells (typically from some thousands up to some millions) over which the equations 
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of conservation of mass, energy and momentum (and, if needed, of any scalar of 

interest) are written, discretised and iteratively solved. 

Usually, commercially available CFD codes as well as user-developed tools are 

capable of performing both steady state and transient analyses and special 

subroutines are frequently included in order to take into account a wide variety of 

other physical phenomena, such as particle settling and thermal radiation. Some CFD 

codes that use unstructured grids can also handle very complex geometries. 

However, CFD simulations are also much more time-consuming than a multi-zone 

approach. Because of limitations in computer power, in practice it is not possible to 

simulate a whole building with a large number of rooms. CFD is therefore more 

suited to produce ‘snapshots’ of how a design would work at a certain moment. 

Given the long calculation time and the high dependency on boundary conditions, 

CFD simulations are usually only applied at a detailed design level to verify indoor 

comfort [26]. 

Thermal domain and detailed airflow domain simulation can also be coupled to 

achieve better results by providing boundary conditions. For instance, a BEPS 

program can provide building heating/cooling load and interior surface temperatures 

of building envelopes to CFD as boundary conditions, while CFD can determine 

surface convective heat fluxes for BEPS. 

2.5 Previous Research Projects on Natural Ventilation 

2.5.1 PASCOOL (1992-95) 

2.5.1.1 Introduction 

The PASCOOL project [85] investigated the tools necessary to promote passive 

cooling in buildings. Based on this, design tools and design guidelines for passive 

cooling of buildings were developed. The project operated from late 1992 to 1995 

and was funded in part by a sub-programme (energy conservation and utilisation) of 

the European non-nuclear energy programme JOULE II. 
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2.5.1.2 Results 

The LESOCOOL tool 

The 16 bit Windows program LESOCOOL [86] developed by the Solar Energy and 

Building Physics Laboratory of the EPA in Lausanne, was intended for the  

pre-design evaluation of natural or mechanical ventilative cooling potentials. It is a 

simplified multi-zone ventilation simulation model in combination with heat storage 

and heat transfer. Limitations are that it allows simulation only for a single flow path 

without branches, and also that the thermal model is based on infinitely thick walls. 

The required input parameters are the wall first layer material and surface, the 

position and dimensions of the openings, and the time schedules for heat gain, 

ventilation, and external temperature. 

The PASSPORT-AIR tool 

The software Passport-Air [86] complements LESOCOOL as a network model for 

airflow calculations. It was developed to calculate the airflow rates in naturally 

ventilated buildings. 

The CpCalc+ tool 

The tool CpCalc+ [87] is based on empirical data from wind tunnel experiments, and 

allows the calculation of pressure coefficients on buildings. This Cp-generator (based 

mostly on interpolation and extrapolation of measured data) was developed because 

Passport-Air relies on wind pressure coefficient distribution on surfaces as the inlets 

and outlets for cross ventilation. 

2.5.2 IAE Annex 28: Low Energy Cooling (1993-97) 

2.5.2.1 Introduction 

The objective of the IEA Task 281 was to provide design tools and guidelines on the 

application of low energy cooling strategies. Besides the ventilative night cooling for 

commercial buildings, other technologies were also addressed but will not be 

reviewed here. Outputs of the IEA annex include technology reviews, technology 

selection guidance, tools for early and detailed design, and case-study descriptions. 

The detailed design tool NiteVent was finally published within the NatVent study, 

and is presented in Section 2.5.4.2. 

                                                 
1 http://www.ecbcs.org/annexes/annex28.htm#p 
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2.5.2.2 Results 

Climatic considerations 

Even the technology review [88] states that hot or moderate climates with large 

diurnal temperature swings between day and night over summer are best suited for 

ventilative night cooling. The technical synthesis report [89] claims that ventilative 

night cooling is appropriate for moderate climate conditions in which high mid-day 

dry-bulb is not common (e.g., usually < 31 °C), whereas the technology selection 

guidance [90] indicates hot climate (SDT2 > 28 °C and SNT3 > 20 °C) as low 

feasible, warm climate (SDT > 28°C and SNT < 20 °C) as low suitable, and cool 

climate (SDT > 28 °C and SNT < 20 °C) as medium suitable. 

The technology review states that the humidity ratio of the air should be less than 

15 g per kg dry air since the technology primarily provides sensible cooling. The 

technology selection guidance declares all humidity levels from humid 

(MC4 > 14 g/kg) to dry as medium suitable. 

Thermal mass application 

To increase the storage performance and to provide the desired daily cooling cycle, 

the thermal mass of the building must be in direct contact with the cool night 

ventilation air. The mass should therefore not be isolated by lightweight finishes, 

such as dry lining or suspended ceilings. It has been found that any thickness of 

dense concrete greater than about 50 mm has very little effect on the diurnal 

temperature cycles, although these larger thicknesses may become significant in 

weekly or seasonal variations. 

Cooling load and heat gain limitations 

Simulations indicated that depending on the climate and building, ventilative night 

cooling is capable of providing cooling for up to 40 W/m² of internal heat gains. On 

an average, night cooling will offset ~20-30 W/m² of heat gain for heavy-weight 

constructions. Therefore the technology is capable of satisfying only moderate 

cooling loads. Beside the provision of accessible thermal mass, ventilative night 

cooling should be planned in combination with good thermal insulation to the 

building envelope and also together with external shades over windows as they are 

                                                 
2 SDT summer peak design temperature 
3 SNT summer night minimum design temperature corresponding to summer peak design temperature 
4 MC  summer design moisture contend 
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crucial in preventing higher solar heat gains. To minimise the internal heat gains, low 

energy appliances and their smart control, and taking advantage of natural 

daylighting are important. Moreover, it was indicated that the most appropriate 

application is in buildings which are unoccupied during night-time, with regular 

cycles of heat gains. 

Comfort assessment 

Computer simulations indicated that night-time ventilation can reduce the daytime 

peak temperatures in heavyweight buildings in the order of 2-3 °C; but controls are 

needed to monitor the outside and indoor conditions to prevent from overcooling and 

discomfort in the early morning hours. Also, as cooling occurs, the relative humidity 

should be maintained at less than ~ 60%. Thus, in humid climates care must be taken 

not to bring in too much moisture at night which would cause discomfort during the 

following day. 

Air change rates 

Night-time ventilation is particularly suitable for commercial buildings that remain 

unoccupied at night and where high airflows can be used. Typical night air change 

rates needed for cooling are between 5-20 ACH. The daytime ventilation rate needs 

to be minimised to the rate needed for IAQ requirements when the outdoor air 

temperature is greater than the thermal mass surface temperature. 

Control algorithms 

In the description of the detailed design tools [91], three night cooling control 

algorithms for commercial buildings have been identified: the setpoint control, the 

slab temperature control, and the degree hours control. 

In general, night ventilation should be initiated if the peak zone temperature is above 

23 °C, and/or the average daytime zone temperature is above 22°C, and/or the 

average afternoon outside air temperature was above e.g. 20 °C and/or the slab 

temperature is above 23 °C. 

Night cooling should continue if the zone temperature is above the outside air 

temperature (for natural ventilation), and the outside air temperature is above 12 °C 

(to prevent any risk of condensation). 

If setpoint controlled, the zone temperature may drop at night to 16 °C before the 

vents close. Once this has occurred, the building will then slowly increase in 
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temperature due to heat gains re-emitted from the building fabric. The vents remain 

shut until the second hysteresis setpoint (e.g., 19 °C) allows opening again. This 

alternating cooling and heating process continues until such time as the ‘preheat’ 

period is reached. The preheat period is the time at which the inlet and outlet vents 

must shut in order that the space reaches the heating setpoint (e.g., 19 °C) by the start 

of occupation without overcooling the building. In the preheat period, the radiative 

and convective heating rates may be calculated in order to predict if the desired 

occupancy temperature will be reached in the morning hours even if the openings 

remain open. Although it is not anticipated to occur, the heating system should be 

enabled to ensure that any overcooling will not affect the comfort conditions. 

 

Figure 2.27: Control Strategy 1 - Setpoint Control [91]. 

The precooling strategy to cool the slab to a predefined slab temperature setpoint 

during the night is described for a hybrid ventilation strategy. The mechanical 

ventilation system may briefly assist the natural ventilation if the low night 
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electricity tariff may be exploited and the slab temperature setpoint is not reached. 

The calculation of slab temperature setpoint is self-learning, and is based on 

equalising the slab temperature, the room temperature, and the slab temperature 

setpoint. An adjustment factor is provided in order that a cooling effect is still 

available from the slab towards the end of the occupancy period. If at a certain time 

of the night the slab temperature has not achieved the slab setpoint, the time is 

calculated so that fan -assisted cooling is enabled to achieve the slab temperature 

setpoint. This calculation is based upon the difference between the internal and the 

external temperatures, and the rate of change of the slab temperature using fans 

under these conditions. For mechanical or hybrid ventilation, cooling benefits must 

be balanced against the use of fan energy and the temperature shift of the incoming 

air due to the fan induced heat gains. 

The degree hours control strategy aims to calculate the daytime heat gains and the 

cooling gains at night to maintain equilibrium. The decision as to precool or not is 

based upon the number of hours that the internal temperature is above the room 

temperature setpoint. If at the end of the occupied period the degree hours are greater 

than 3, then the night precooling is activated. The openings then modulate to 

maintain the space temperature at the precool setpoint (e.g., 18 °C) till the degree 

hours of night cooling gains are equal to those of the daytime heating gains. The 

control system also calculates the time to raise the space temperature back to the 

comfort setpoint by the start of occupation period. It may then terminate the night 

ventilation before the equilibrium between the building fabric temperature and the 

space temperature of the next day is reached. 

2.5.3 AIOLOS (1993-97) 

2.5.3.1 Introduction 

The European-funded project AIOLOS has been coordinated by Mat Santamouris 

and involved experts in numerous European countries. The project was carried out 

within the framework of the ALTENER Programme, which focused on the 

promotion of renewable energy sources of the European Commission. The goal of 

the project was to create educational material on the efficient use of passive 

ventilation. The project deliverables were published in the book ‘Natural Ventilation 

in Buildings: A Design Handbook’ [14]. An accompanying CD-ROM contains the 
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design performance evaluation AIOLOS software for the calculation of the airflow in 

natural ventilation configurations.  

2.5.3.2 Results 

Empirical methods 

Eight simplified empirical methods for the prediction of the airflow rates [10,92-94] 

and the air velocity inside a building [95-98] are presented. 

Airflow network model and experimental validation 

The second approach is the network model (see § 2.4.2) where the building is 

represented by a grid that is formed by nodes (zones with a pressure value) and 

linkages (flow paths through openings). The mathematical approach is presented and 

results gathered from different simulation tools (AIRNET, ESP, BREEZE, 

PASSPORT-AIR, COMIS) were compared against each other and against the 

measured data. 

Experiments were performed in Athens (single-sided ventilation), Lyon (cross 

ventilation) and Lausanne (stack driven ventilation). 

For the single-sided scenario, all five network tools predicted very similar airflow 

rates. But the predictions were initially not in good agreement with the experimental 

values. It was found that the experiments were characterized by high wind speeds 

and small temperature differences, but the network modelling with PASSPORT-AIR 

neglected the wind effect in the case of single-sided ventilation. Therefore an 

additional algorithm was developed [99] and introduced via a correction factor to the 

model. This factor depends on a correlation between the Grashof number and the 

Reynolds number. The correlation coefficient between experiments and simulation 

then was close to 0,75. 

The cross ventilation experiments with rather low wind speeds (~ 3 m/s) were carried 

out in two rooms connected by a door and with sliding windows on opposite, 

sheltered facades. Simulations were realised using the COMIS model, and measured 

wind speed was modified by a wind profile model [100] for the calculation of local 

wind speed at the level of the windows. The value of the external discharge 

coefficient of the windows was taken to be equal to 0,85, while the internal door 

discharge coefficient was set at 0,65. The pressure coefficients at the two facades 

were calculated using a simplified model for low rise-buildings [100]. It was found 
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that that the AFN model estimated the flow rates reasonably well, but that 

inaccuracies in pressure and discharge coefficients caused notable error. 

The stack driven experiments were carried out in the LESO building for six different, 

relatively simple flow paths and different temperature differences. The building’s 

staircase here acts as an up to 12 m high chimney. Simulations were carried out with 

the absence of wind using PASSPORT-AIR. The internal door connecting the office 

with the staircase was open. All discharge coefficients were set at 0,7. The 

comparison of measured and predicted airflow rates showed good agreement. 

Methodologies for sizing openings 

The methods described for sizing openings are based on simplified empirical 

methods or on computerized iterative AFN methodologies. Five empirical methods 

and one AFN method are discussed. By estimating the opening area, a certain airflow 

rate is targeted. Calculations are performed with unchanging driving forces, which 

are the local prevailing wind speed and direction or the mean expected indoor-

outdoor temperature difference. They do not reflect the thermal mass of the building, 

the climatic region, the comfort criteria, and the solar and internal heat gains; they 

also do not give recommendations about the desired airflow rate. The empirical 

methods treat the building as only one zone without internal resistance. 

Two empirical methods developed by the Florida Solar Energy Centre calculate the 

window area for cross ventilation with a design wind speed from the closest weather 

station, which is then adapted for the local wind speed. The first method [101] 

calculates the gross window area including 20% framing and screening with a 

porosity of 0,6. The method proposes correction factors for the wind incidence angle, 

the terrain, the wind shielding by neighbouring buildings, and the floor height (only 

ground or first floor). The second method [102] introduces pressure coefficients from 

a simple table, which replace the factors for the wind incidence angle and the terrain. 

The inlets and outlets may be designed here in different size. Also the porosity of the 

windows can be adapted by choosing from different insect screens and window 

types.  

A very simple method proposed by ASHRAE [103] is also discussed, which can be 

used for wind or temperature driven ventilation, but not for a combination. If the 

flow is mainly due to wind, and the openings are sized equal, the area is a product of 

the design flow rate, the local wind speed, and a factor that accounts for the 
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effectiveness of the opening based on the wind direction. If the airflow is mainly due 

to the temperature difference, the area may be calculated from the design flow rate, 

height difference between inlets and outlets, and the temperature difference. If the 

inlets and outlets are not equal in size, then the percentage of the desired flow may be 

increased according to a diagram.  

The Aynsley [93] and the British Standard (BS) methods [10] both estimate the 

surface area of the openings for wind-driven ventilation based on the same equation: 

9: = ��F +��," − ��, -1(" ∙ �;," + 1(  ∙ �;,   (2.18)

The BS-method in addition proposes an expression to calculate the opening sizes due 

to buoyancy: 

9: = �; ∙ (
<2 ∙ ∆� ∙ 
 ∙ ∆ℎ�in + �ext2 + 273  (2.19)

where: 1(
 = 1(" + 1(   (2.20)

Additionally the BS-Method provides criteria to define whether the flow is mainly 

due to wind pressure or buoyancy (see also § 2.6.1). 

The sixth method described is based on computerized network simulation. Openings 

can be sized by realizing a sensitivity analysis to study the relative impact of the 

design characteristics (e.g., the opening areas and their location). AFN models are 

capable of calculating combined thermal and wind pressure differences; they can also 

model multi-zone buildings with internal openings (flow resistances). This method 

therefore overcomes some of the limitations of the empirical methods. 

AOILOS tool 

The dynamic, airflow network (AFN) modelling based AOILOS software is focused 

on the calculation of airflow rates in multi-room buildings for a run period of up to 

30 days. It is suitable for the calculation of airflow rates in each simulated room zone 
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and also for calculating the airflow through each opening involved. It allows the 

users to perform sensitivity analysis for the investigation of the impact of specific 

parameters. It includes an optimization process for the opening sizing in terms of 

optimum airflow rates. The openings are controlled (open or closed) by user-defined 

schedules, which are the same for each day in a given simulation period. It also 

includes a single zone thermal model for the whole building. This allows the 

assessment of the impact of the chosen ventilation strategy on the thermal behaviour 

of the building. The program first calculates the global airflow rates of the building 

with a given internal air temperature. These values from the first module are then 

provided to the thermal module, which calculates the cooling loads and the thermal 

comfort with a fixed design temperature. Comfort is calculated by means of the 

temperature excess method in degree hours. 

2.5.4 NatVent (1994-98) 

2.5.4.1 Introduction 

The NatVent project was a seven nation pan-European project aiming to reduce 

primary energy consumption of office type buildings in urban areas. Like PASCOOL 

it was partly funded by the European Commission JOULE program, and was targeted 

at countries with low winter temperatures and moderate summer temperatures. 

The work was divided into three work packages (WP). The first work package 

identified the barriers that prevented the uptake of natural ventilation, based on 

interviews with leading designers, architects, and building owners and developers. 

The second work package evaluated the performance of 19 existing and naturally 

ventilated low energy buildings. Temperature, humidity, carbon dioxide and 

ventilation rates were measured during both winter and summer periods to determine 

the shortcomings and advantages of different strategies. In the third work package, 

‘smart’ technology systems and component solutions were investigated to overcome 

the identified barriers. This included passive air supply components for use with high 

external pollution and noise loads, ’smart’ constant air inlets for IAQ and thermal 

comfort, heat recovery systems with acceptable energy consumption, and especially 

‘smart‘ systems integration for optimum year round performance. 
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2.5.4.2 Results 

Barriers 

Conclusions from the interviews of 107 designers and decision makers in the final 

perceived barriers report [104] show that the interviewees showed a lack of 

knowledge about ad hoc designed natural ventilation compared to what they knew 

about mechanical ventilation. But it was also indicated that they worked with 

traditional natural ventilation. The interviewees noticed that there were only few 

available good sources of information (e.g., natural ventilation guidelines) for 

products especially when compared to those pertaining to mechanical ventilation 

systems. They expected the same level of user satisfaction for naturally and 

mechanically ventilated cellular offices, but less for open plan offices. In contrast, 

they expected mechanical ventilation systems to perform better with regard to 

cooling effectiveness, draught minimisation, ability to remove and prevent ingress of 

odours, and insulation against external noise. Most interviewees expected much 

lower installation, running and maintenance costs for passive ventilation than for 

mechanical ventilation. If mechanical systems were installed, they would have to 

account for a significant proportion of the total costs of the building.  

Recommendations included the development of simple, energy efficient, low-cost 

natural ventilation system concepts. Standards and guidelines must be developed so 

that there is a more favourable technical and legal framework for naturally ventilated 

office buildings. Simple design tools like diagrams or easy-to-use computer 

programmes have to be developed. Components and control systems for natural 

ventilation, and the general knowledge need improvement. 

Experiences from the monitored buildings 

The final performance monitoring report [12] from WP2 stated that the measured 

CO2 levels in most of the 19 buildings were acceptable, but eight buildings suffered 

from serious overheating problems, which was the most common user complaint. On 

the contrary, studies on several buildings proved that it was indeed possible to 

achieve an acceptable thermal summer comfort without mechanical cooling. A clear 

distinction between natural ventilation for IAQ and summer comfort is essential to 

avoid confusion. Natural ventilation for IAQ aims to control the indoor air quality 

during office hours with a rather low air change rate from 0 to 1,5 ACH, since large 
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ventilation flows mean large energy losses. Advanced control strategies instead of 

manually opening windows were found to considerably reduce ventilation losses. 

In contrast, to achieve good thermal comfort in summer, the airflow rates should be 

controlled as high as possible if the internal temperature is warmer than the external 

temperature. In addition, accessible thermal mass is required. The optimum solution 

is found in buildings with exposed heavy ceilings, floors and walls. Exposed ceiling 

or (half) open lowered ceiling also achieves acceptable results but not optimal. 

Recommended airflow rates without specific problems (from 5 to 10 h-1) aim cooling 

down the thermal mass of the building especially at night. Monitoring the results 

showed that the control of airflow rates for summer comfort is in most cases not as 

critical as it is for IAQ ventilation. Automatic control has the possibility of 

optimizing the opening and closing, but it is recommended taking a relatively simple 

and stable control, as a detailed study [16] of different control algorithms showed the 

impact of the control strategy as limited. Undercooling during the early morning 

hours should be avoided. During the office hours, it is preferable that the users can 

overrule the automatic control. But if the openings are controlled manually, it is 

essential to provide a clear instruction for the use of the ventilation openings, also in 

combination with the shading devices, the lights, and the radiators. 

Another key message from the monitoring report is that summer comfort requires 

much more than just intensive ventilation. In many of the monitored buildings, there 

was a problem of overheating due to very high solar gains. The recommended design 

elements to control solar heat gains are shading devices, and the intelligent choice of 

glazing type surfaces and orientation. A high insulation level can limit indirect solar 

gains through opaque surfaces. Low energy equipment and well-controlled lighting 

systems can minimise the internal gains. 

Control strategies and opening sizing 

In WP 3.4, two methods for the calculation of effective vent opening areas were 

developed for the early stage of design [16]. They were based on a comprehensive 

parametric analysis carried out with an ad hoc developed SIMULINK dynamic 

thermal and ventilation network tool. The aim was to investigate the control 

strategies and the required ventilation opening area for a representative three zone 

office model with two office zones (22 m² each) and a corridor (9 m²). Simulations 

were carried out for single-sided, cross and stack (hs = 5 m / exhaust fan-assisted) 
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ventilation. The comfort criterion was evaluated by the temperature excess method. 

No more than 100 hours in a year with indoor temperatures above 25,5 °C, and no 

more than 15 h above 28 °C were accepted. The effective opening area is dependent 

on the opening angle of the window (calculation according to § 2.2.3.1). The weather 

data represented the months May till September, and was from De Bilt in the 

Netherlands from 1964. Parameters investigated were the building orientation, mass 

(low = 55 kg/m², medium = 75 kg/m², high = 100 kg/m²), internal heat gains (20 to 

40 W/m²), solar gains (different shades and window areas) and the control strategy. 

The area density of the thermal mass is the sum of half the weight of the side walls, 

the back wall, the floor and the ceiling, and the entire weight of the façade, divided 

by the net room floor area. The control during office hours (8 am till 6 pm) tries to 

keep the room air temperature at the cooling setpoint (22 °C) when Tin > Text and 

Text > 12 °C. It was shown that the various predictive night control strategies 

proposed in literature produce nearly the same results (Figure 2.28) and concluded 

that the setting of the control parameters was more important than the strategy itself. 

The strategy used for further analysis was the predictive cooling day control, where 

if during the previous day vents were open for cooling, the night setpoint was 

decreased by 2 °C. The start value was 22 °C and the minimum was 18 °C. 

 

Figure 2.28: Effect of the control strategies [16]. 

The first method designed was an easy-to-use selection chart (Figure 2.29) to 

determine the ventilation system and effective opening areas that can be applied. 
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Figure 2.29: Graphical pre-design tool for night cooling [16]. 

The second method was intended also to calculate the effective opening area with 

similar inputs as in the graphical tool, but was based on simplified equations and 

could be used in a spreadsheet [16].  

Controlled airflow inlets 

The project conducted a market breakdown [105] in European countries for several 

types of air inlets, controlled by pressure differences, humidity, pollutants, and 

temperature. The purpose of pressure controlled air inlets is to maintain a constant 

airflow independent of wind and buoyant pressure differences, where pressure 

differences across air inlets are normally in the range of 1 to 20 Pa. An ideal constant 

airflow inlet gives a constant flow independent of the pressure difference, and can 

also compensate for increased airflow from leakage. 

Besides the market analysis, the FlexNightVent prototype [106] was designed and 

tested with promising results for fresh air supply, but mainly focusing on night 

cooling. The cross ventilation design consists of a motorised trickle vent with sound 

attenuation for fresh air supply, a motorized window that could be set in any position 

for night cooling and a control unit for connecting the ventilator system with a 

building management system and for manual overriding. An optional presence sensor 
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saves energy in the heating season by closing the trickle vents. The ventilation 

openings were dimensioned by the method mentioned in § 2.2.3.1. The motorized 

window control for cooling is divided into three subroutines [107]. During 

occupation, no feedback control was applied because filed tests showed that the 

inhabitants would not accept frequent adjustments. Therefore, a feedforward control 

(Figure 2.30) was applied, whose aim was to find a position that was most likely the 

best for the next period. Adjustments were dependent on the indoor air temperature 

and the time of the day, and were made in periods without occupation. Further, the 

opening area was decreased by a correction factor dependent on the external 

temperature to avoid the risk of draught. 

Figure 2.30: Feedforward control during occupied office time (source: [106]). 

Without occupation, a self-adapting feedback algorithm is active, which tries to keep 

the temperature at the cooling setpoint. Without considering current comfort due to 

the absence of inhabitants, the window position is the result of a proportional integral 

algorithm divided by the temperature difference. 

Night cooling was realised by the predictive cooling day control as mentioned above, 

but with a starting setpoint of 24 °C, which in the second night of operation was then 

decreased to 20 °C, and in the third night further down to 18 °C. 

NiteCool tool 

NiteCool [108] is an easy to use night ventilation pre-design tool especially 

developed for UK office buildings. It was programmed with the objective to keep the 

user input at minimum and to facilitate fast simulation time for the tool-integrated 

sensitivity analysis. 

The tool combines heat transfer (third-order lumped-parameter method [109]) and 

ventilation and is based on a pre-configured single zone model with dimensions 10 m 

width, 6 m depth and 3 m height in the middle of a row of offices on the middle floor 
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of a 3-storey building. The building can be described by design options such as air 

tightness, orientation, solar control, glazing ratio, thermal mass, site location, and 

internal heat gains. 

Dynamic simulations are either carried out for a month or over the cooling season 

from May to September. Internal temperatures are only simulated for seven days 

each month, and energy data is then multiplied by using factors. The hourly weather 

data is calculated from data in the CIBSE guide [110]. Sinusoidal external 

temperatures can be adapted for each weekday by editing the daily minimum (night) 

and maximum (day) temperatures or by setting percentage risk factors for excess 

temperatures. 

It covers a range of natural ventilation strategies, which are single-sided single 

opening, single-sided double opening, cross ventilation, and stack ventilation 

(buoyancy and wind). To achieve certain airflow, openings for all strategies can be 

sized automatically by the inverse solver method [111,112] or by user-specifications 

of size and position. Default pressure coefficients can be edited. 

It is possible to choose cooling systems for day and night separately. Besides the four 

natural ventilation systems described earlier, there are three mechanical ventilation 

and two active cooling systems available, which are characterized by their fan power, 

system performance, and setpoint temperature.  

The tool allows the user to customise the control strategy of the night cooling system 

by setting operation times, system initiation rules (e.g., previous day peak, average or 

initial temperature for inside, outside, or slab) and system continuation to avoid 

overcooling. 

Energy savings can be evaluated by setting a reference HVAC system (displacement 

ventilation or fan coil units), which is considered to be a standard solution with no 

night cooling. The setpoint can be a constant temperature or the program can choose 

a setpoint similar to the resulting internal temperature calculated for the low energy 

design strategy. 

2.5.5 IAE Annex 5: AIVC (ongoing since 1979) 

In 1979, the ‘Air Infiltration and Ventilation Centre’ (AIVC) started as the 5th IAE 

research project (Annex 5) in the context of the Energy in Buildings and 
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Communities Programme (EBC), running even today. Originally focusing on the 

energy impact of air infiltration in buildings, ventilation was introduced in the  

mid-80s as the interest moved towards indoor air quality concerns. Today, AIVC 

serves as a source of information (AIRBASE), holds annual conferences and 

workshops, publishes papers and reports, maintains a large database of publications, 

and shifted its focus to networking activities of multiple stakeholders. The centre also 

collaborates with the venticool programme (see § 2.5.7), focusing on ventilative 

cooling strategies in buildings.  

Since its creation, the AIVC has produced a series of publications such as the 

guidebook ‘A Guide to Energy Efficient Ventilation’ [113], and the important and 

comprehensive book ‘Building Ventilation - The State of the Art’ [114]. 

2.5.6 IEA Annex 35: HybVent (1998-2002) 

2.5.6.1 Introduction 

Annex 35 HybVent ‘Hybrid Ventilation in New and Retrofitted Office Buildings’ 

was a worldwide research project with about 30 research institutes, initiated by the 

IEA Implementing Agreement ‘Energy Conservation in Buildings and Community 

Systems (ECBCS)’. 

Targets of the project were the development of control strategies and performance 

predicting methods, the selection of measurement techniques, and the promotion of 

hybrid ventilation systems for offices and educational buildings.  

These objectives were met by the production of various publications. The state-of-

the-art report reviewed hybrid ventilation technologies, controls, and analysis 

methods. It identified barriers and the lack of knowledge, and contained a survey of 

22 buildings. As a final product of the research project, the booklet ‘Principles of 

Hybrid Ventilation’ [50] was intended for newcomers. Several technical reports and 

research papers give detailed information on the topic. 

The project was divided into three subtasks, each devoted to a specific area of 

interest. Subtask A focused on the development of control strategies. Subtask B 

emphasised theoretical and experimental methods for performance analysis. Subtask 

C investigated monitoring results of case studies. The buildings surveyed are low to 

medium-rise buildings, and the Meiji University Tower in Tokyo. 
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The International Energy Agency Annex 35 aimed to develop control strategies for 

hybrid ventilation systems for newly built and retrofitted office and educational 

buildings. Various control strategies for hybrid ventilation and their integration in 

building management systems were analysed [3], and different simulation tools were 

evaluated [115]. 

2.5.6.2 Results 

Principles 

Hybrid ventilation is defined as a two-mode system using both natural and 

mechanical ventilation [50]. It can switch between or combine these two modes to 

exploit the benefits of each mode while maintaining the desired airflow rate and 

airflow pattern. Hybrid ventilation systems all aim to provide fresh air for the IAQ 

aspects, and some also contribute to passive cooling for the establishment of thermal 

comfort in warm periods. An intelligent control system is intended to minimise the 

energy consumption and to provide acceptable indoor air quality and thermal 

comfort. Compared to mechanical ventilation and air conditioning systems, energy 

savings can been achieved mainly because of a very substantial reduction in energy 

use for fans and active cooling by using mechanical forces only when natural 

potentials do not suffice. 

The mechanical systems in a hybrid-ventilated building can range from simple 

exhaust fans to balanced ventilation or even to full air conditioning systems 

depending on the climate, the building behaviour, and the comfort requirements. 

In cold climate, the natural ventilation mode in a hybrid system most probably 

dominates the summer temperature control, while in warm climate the passive 

cooling potential is mainly exploitable in the intermediate season, and may assist 

active summer cooling by night ventilation [3]. 

The three main hybrid ventilation principles are: 

• The natural and mechanical ventilations as two autonomous systems, where the 

control switches between the modes depending on the season or occupation of 

the building;  
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• The fan-assisted natural ventilation, where natural ventilation is combined with a 

supply or exhaust fan. Here the fan assists the system by enhancing the pressure 

differences during periods with weak natural driving forces or increased 

demands;  

• The natural driving forces can partly account for the necessary pressure 

differences in wind-assisted and stack-assisted mechanical ventilation systems 

with low-pressure losses. 

Controls 

The ‘Principles of Hybrid Ventilation’ booklet [50] summarises the research findings 

and the lessons learned from the case studies [116] as follows: ‘The main challenge 

in the design of control systems for hybrid ventilated buildings is to find the right 

balance between implementation costs, operation costs, energy use, indoor climate, 

comfort, users’ satisfaction and robustness. The development of an “optimal” 

control strategy for a specific building will depend not only on technical parameters 

… but also on parameters such as dress code, user attitudes and user expectations.’ 

Manual versus automatic control 

• Individual control should be maintained even if it can conflict with guaranteeing 

a specific level of indoor thermal comfort or air quality; 

• During occupancy, automatic control is beneficial to support the user; 

• Users are more tolerant with respect to thermal climate if controlled by 

themselves; 

• Automatic control is required in times of non-occupation to save energy and to 

precondition the rooms; 

• Automatic control is necessary to reset manual controls; 

• Rooms occupied by several people (e.g., landscaped offices) need a higher 

degree of automation; 

• Automatic control during working hours was discovered to be difficult for user 

acceptance due to high draught risks; 

• The control strategy should be easy to understand by the users and by the 

maintenance staff; 

• Users want rapid feedback of the system when they manually change the 

conditions. 
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Climate and season 

• The control strategy should be separated in different modes for summer, winter 

and intermediate season; 

• Winter control (during heating season) focuses on IAQ issues; 

• Summer control (during cooling season) concerns the maximum temperature; 

• Intermediate season control occasionally switches between IAQ and temperature 

concerns; 

• The control strategy is strongly influenced by the climate; 

• In cold climate the control concentrates to minimise energy consumption for 

fresh air supply and to achieve good thermal comfort in summer without 

mechanical cooling; 

• In warm climate the strategy should focus on reducing the energy consumption 

for mechanical cooling in summer. 

IAQ control during occupancy 

• Flow rates for IAQ can be either controlled manually by the occupants, time 

control via a schedule, presence detection, IAQ measurement or by a 

combination of these; 

• CO2 sensors indicate IAQ where people are the governing pollution source; 

• In small rooms with few people, the users are capable of controlling the IAQ 

manually; 

• For large rooms (e.g., landscaped offices) with many people and for occasionally 

used rooms (e.g., meeting room), automatic IAQ control is necessary; 

• Energy consumption for IAQ control can be reduced by limiting the operating 

hours and the ventilation rate according to the occupancy pattern; 

• Good user control in combination with automatic back up based on IAQ is the 

optimum strategy, but might be expensive. 

IAQ control during non-occupancy (only for tight buildings) 

• Necessary to remove build-up pollution from day; 

• Necessary to supply fresh air before occupation; 

• Necessary to remove pollution from materials and cleaning. 
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Temperature control during occupied hours in summer 

• Manual control in small rooms is possible because people do have a clear sense 

of their own thermal comfort; 

• May only have a limited cooling potential, if ΔT between Tin and Text is small; 

• High air change rates can assist the body cooling potential (evaporation chill); 

• Ventilation may increase Tin, if Text > Tin; 

• In combination with automatically controlled mechanical cooling, there is a risk 

that once activated the system will stay in active mode; 

• Automatic control is necessary if the mode is mechanical cooling and/or 

ventilating. 

Temperature control during summer nights 

• Is very important to achieve thermal comfort in buildings without mechanical 

cooling; 

• Is very important to reduce energy consumption in buildings with mechanical 

cooling; 

• Aim is to cool down the building structure as much as possible without creating 

discomfort at the start of occupation; 

• It is possible but not recommended to manually control night ventilation (only if 

the users receive clear and easy-to-understand instructions); 

• Can be established for a room or can be central for a group of rooms or for the 

entire building; 

• If a representative room is chosen to control several rooms, the room selection is 

of great importance; 

• If mechanical ventilation is on, the cooling potential (depending on ΔT) must be 

weighed against the fan power consumption. 

Additional control systems 

• The supply air may be preheated to reduce the risk of draught (even when 

cooling is needed) based on temperature control (Text) but should be treated 

separately from the room heating; 

• During severe weather conditions (e.g., storm, rain) normal controls must be 

overwritten by closing the windows and raising the external sunshades; 
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• Sunshades should be user overwritable, automatic controlled based on solar 

radiation intensity on the façade. 

A technical report on advanced control strategies [117] introduces different strategies 

briefly, stating that the performance of control is particularly sensitive to the quality 

of sensor information, the efficiency of actors, and the quality of controls to meet the 

objectives of the system. The advanced controls listed are (1) rule based control, 

which is most frequently implemented in Building Energy Management Systems, (2) 

the optimum and predictive control, (3) neural networks, and (4) the fuzzy logic 

control. 

Rule based controls can simultaneously browse and control several parameters, and 

they are based on e.g., IF, OR, AND, THEN commands. The definition of rules 

depends on expert knowledge, and is a good opportunity for combined control of 

mechanical and passive components. Figure 2.31 exemplarily shows a rule based 

control over the room air temperature control based on a hybrid strategy taking 

control over active heating and cooling, mechanical and natural ventilation, active 

heating, and controlled solar shading devices. 

 

Figure 2.31: Rule-based control of indoor air temperature (mixed-mode example) [117]. 
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At the time of the report, optimum and predictive controls were not widely 

implemented as no industrial development followed the scientific research. Optimum 

control is based on a mathematical model of the system to be controlled such that 

certain optimality criterion is achieved. It deals with finding a control law for a given 

system via differential equations describing the cost paths of the variables that 

minimises the cost function (in the context of hybrid ventilation, it is the balance 

between energy and comfort). Model predictive control includes a forecast of 

external, climatic variables based on a statistical analysis of meteorological data 

gathered, or on the weather forecast. This control is very effective for improving 

night ventilation and to avoid overcooling in the morning hours due to time-shifted 

heat exchange of thermal mass. 

Early stage design tool 

Fracastoro et al. [118] developed a simple tool to assess the feasibility of hybrid 

ventilation systems in the early stages of building design. The procedure aims to 

determine suitable ventilation design from a few known building parameters and the 

local climate data for the heating season. It includes a statistical prediction technique 

for estimating the relationship between two variables, where regression analysis is 

applied. The efficient pressure difference among the envelope as a function of the 

temperature difference between inside and outside, and the wind speed was found 

using the AFN simulation engine COMIS [69]. These two parameters again depend 

on the building typology and surrounding terrain. 

The procedure is to first calculate the frequency distribution of pressure difference 

across the envelope for each hour with typical weather data TRY [119]. In the second 

step, the required minimum effective pressure difference, depending on a typical 

building tightness value, is determined to achieve a certain air change rate as a 

function of the building’s envelope area and gross volume. Next, the time percentage 

for which the required ventilation rate will be satisfied by natural ventilation can be 

evaluated. Finally, if the time percentage by natural ventilation is too low, the 

permeability should be increased by additional openings, or a mechanical system 

should be introduced, or both these options should be employed. 
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2.5.7 IAE Annex 62: Venticool (ongoing 2014 - 2017) 

The IEA Energy in Buildings and Communities programme (IEA EBC) recently 

approved Annex 62 Ventilative Cooling ‘Venticool’. This new Annex is an ongoing 

worldwide research project with about 13 countries participating from Europe, Japan, 

China, and the US. It refers to the new challenges in design and construction towards 

nearly-zero energy buildings, and the increased need for cooling in highly insulated 

and airtight buildings. Focusing on energy efficient ventilative cooling solutions, the 

research aims to develop design methods and tools to predict, evaluate and eliminate 

the risk of overheating in buildings. One of the objectives of the ‘IEA ECBCS Annex 

62 Ventilative cooling’, started in 2014, is to give guidelines for integration of 

ventilative cooling in energy performance calculation methods and regulations (e.g., 

DIRECTIVE 2010/31/EU [7]). 

2.6 Regulatory Framework 

Buildings greatly contribute to the climate change, since 40% of the energy is used in 

buildings. With the Energy Performance Buildings Directive (EPBD) DIRECTIVE 

2010/31/EU [7] the European Union has set ambitious goals to improve the 

sustainability of the built environment. The aim is to move towards new and 

retrofitted nearly-zero energy buildings by 2020, and by 2018 in the case of public 

buildings. It also targets the application of a cost-optimal methodology for setting 

minimum requirements for both the envelope and the technical systems.  

Article 9 requires that ‘Member States shall ensure that by 31 December 2020 all 

new buildings are nearly zero-energy buildings; and after 31 December 2018, new 

buildings occupied and owned by public authorities are nearly zero-energy 

buildings’. Member States shall furthermore ‘draw up national plans for increasing 

the number of nearly zero-energy buildings’ and ’following the leading example of 

the public sector, develop policies and take measures such as the setting of targets in 

order to stimulate the transformation of buildings that are refurbished into nearly 

zero-energy buildings’. 

Building airtightness and energy efficient ventilation systems will implicitly become 

a mandatory point of attention. The usage of natural ventilation to improve thermal 
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comfort and/or reducing cooling need (ventilative cooling), and to assure indoor air 

quality will significantly increase. 

However, the existing European standards consider natural ventilation mainly as a 

measure to provide good indoor air quality but not as a cooling strategy. The 

following subsections provide a summary of the codes focusing on the area relevant 

to naturally ventilated buildings across several European countries.  

2.6.1 BS 5925 

The British Standard BS 5925: 1991 [10] gives recommendations for designing 

natural ventilation systems. It outlines the main reason for building ventilation, and 

recommends quantitative airflow rates. The standard provides basic factors which 

influence the choice between natural and mechanical systems. A comprehensive 

section examines the design of natural ventilation systems.  

This includes the basic physics of natural ventilation including the flow 

characteristics of openings, the generation of pressure differences, the definition of 

meteorological variables, and gives equations for the determination of natural 

ventilation rates. This relatively old standard is the only one with clear focus on 

natural ventilation including ventilation requirements and flow rate calculations. The 

standard provides analytical solutions for wind and buoyancy induced ventilation for 

simple buildings without internal flow resistance, or for a space with openings on 

one orientation only (Table 2.2). For a space with openings on one orientation only, 

the resulting flow rate is the maximum value of either wind or buoyancy. 
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Table 2.2: Determination of natural ventilation rates [10] reproduced from [120] (unit symbols 
adapted according to the nomenclature of this work). 

natural ventilation of a simple building 
(a) wind only 
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natural ventilation of spaces with openings on one wall only 
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where J(Φ) is varied with the opening angle for side-hung centre-
pivoted windows (further details see [10] 

* vr = reference wind speed

BS 5925 also provides:  

• an approach to calculate the vertical wind profiles depending on the roughness of 

the terrain and cumulative frequency of meteorological wind speed; 

• mean surface pressure coefficients for vertical walls of rectangular buildings; 

• values for the metabolic rate of different activities (W/person); 
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• the production rate of carbon dioxide depending on the metabolic rate of the 

occupants (0,00004 litres/W); 

• correction to the dry resultant upper temperature limits to take account of air 

movement.  

However, the design of mechanical ventilation systems is not included.  

2.6.2 EN 13779 

The European Standard EN 13799: 2007 [55] focuses on achieving a comfortable 

and healthy indoor environment with mechanical ventilation systems.  

The standard indicates typical CO2 concentration levels in outdoor air for different 

locations (e.g., city centres), together with a suggestion on how to categorize the 

quality. The standard also classifies the indoor air quality from IDA 4 (low IAQ) up 

to IDA 1 (high IAQ), typically by determining the CO2 concentration. CO2 is the 

product of human respiration, and is therefore good indicator of effective ventilation, 

but not of absolute air quality. Another approach established is to specify the rate of 

outdoor air supply for each person in litres per second and person.  

These values in practice are often used to size the mechanical ventilation systems, 

but can also be utilised to size and control natural ventilation systems together with 

CO2 sensors or flow rate estimations based on analytical flow rate calculations 

according to the BS 5925 (see § 2.6.1).  

Table 2.3 lists the typical ranges for CO2 levels and the recommended flow rates for 

external air supply to realise different categories of indoor air quality. 

Table 2.3: Concentration levels of outdoor air and classification of indoor air quality [41]. 

external air 
description of the 
location 

typical CO2 
concentration level 

 indoor air quality 
 classification category 

description CO2 concentration 
level 

outdoor 
airflow rate 

in ppm  in ppm above 
external air 

in litre·s-1 

·person-1 
rural areas with no 
significant sources 

350 
 IDA 1 high IAQ < 400 20 
 IDA 2 medium IAQ 400 - 600 12,5 

smaller towns 400  IDA 3 moderate IAQ 600 - 1000 8 
city centres 450  IDA 4 low IAQ > 1000 5 

2.6.3 EN 15251 

The EN 15251: 2012 [41] specifies indoor environmental input parameters for design 

and assessment of energy performance of buildings addressing indoor air quality, 

thermal environment, lighting, and acoustics. It includes comfort criteria for the 
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implementation of the European Directive for Energy Performance of Buildings 

(EPBD) according to the Commission Delegated Regulation (EU) No 244/2012 [56]: 

‘The selected energy efficiency measures shall be compatible with air quality and 

indoor comfort levels according to CEN standard 15251 on indoor air quality or 

equivalent national standards. In cases where measures produce different comfort 

levels, this shall be made transparent in the calculations.’ 

Describing the philosophy behind EN 15251, Olesen states [48]: ‘The energy 

consumption of buildings depends significantly on the criteria used for the indoor 

environment, which also affect health, productivity and comfort of the occupants. An 

energy declaration without a declaration related to the indoor environment makes no 

sense. … energy-saving measures should not sacrifice people’s comfort and health.’ 

According to the standard, the comfort criteria for naturally ventilated buildings 

without active cooling systems can be specified differently than those with 

mechanical acclimatisation. This is because of the fact that the expectation of 

occupants regarding the room climate is different; moreover, the occupants adapt 

according to the prevailing conditions. The categorisation of acceptable summer 

temperatures is used for the building design in terms of finding suitable measures 

against overheating. Passive measures involve appropriate building orientation, 

suitable shading elements, and the effective use of thermal mass and natural 

ventilation with sufficient ventilation rate. 

Acceptable temperature setpoints should be calculated following the adaptive 

comfort limits, which are defined in the standard as operative zone temperatures, 

which are the arithmetic mean of the zone mean air and the zone mean radiant 

temperature. This is because radiation is an important physical factor that influences 

comfort, as people standing in the sun, under a hot ceiling, or near hot walls feel 

hotter than what the air temperature alone indicates. 

The operative room temperature is allowed to increase in naturally ventilated, non 

air-conditioned buildings, with rising ambient air temperatures. Depending on the 

exponentially weighted running mean of the daily mean ambient air temperature 

series of the previous week, recommended operative temperatures are calculated for 

different comfort categories. The criteria were obtained through investigations in 

office buildings with user-operated windows. 
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The running mean daily ambient temperature Trm is obtained from the mean external 

temperatures of the day before, and the weighted temperatures of the previous days 

of the week. 

Using this mean temperature makes the calculations of admissible lower and upper 

boundaries of the operative temperature for different categories possible. 

category 1 upper limit: Tc1,max = 0,33·Trm + 18,8 + 2 (2.21)

category 1 lower limit: Tc1,min = 0,33·Trm + 18,8 − 2 (2.22)

category 2 upper limit: Tc2,max = 0,33·Trm + 18,8 + 3 (2.23)

category 2 lower limit: Tc2,min = 0,33·Trm + 18,8 − 3 (2.24)

category 3 upper limit: Tc3,max = 0,33·Trm + 18,8 + 4 (2.25)

category 3 lower limit: Tc3,min = 0,33·Trm + 18,8 − 4 (2.26)

Outside the limiting values of Trm < 10 °C or Trm > 30 °C for the upper limits, and 

Trm < 15 °C or Trm > 30 °C for the lower limits, a fixed and non-adaptive boundary 

temperature is assumed. 

 

Figure 2.32: Design values of the operative room temperature for buildings without mechanical 
cooling as a function of the weighted ambient temperature according to [41]. 

A short description of the categories is shown in Table 2.4. 
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Table 2.4: Description of the categories used in the adaptive thermal comfort model [41]. 

Category Explanation 
I High level of expectation and is recommended for spaces occupied by very sensitive and 

fragile persons with special requirements, e.g., handicapped, sick, very young children 
and elderly persons 

II Normal level of expectation and should be used for new buildings and renovations 
III An acceptable, moderate level of expectation and may be used for existing buildings 
IV Values outside the criteria for the above categories. This category should only be 

accepted for a limited part of the year 

This thesis will consider category II as comfort limit temperatures. As examples, the 

annual adaptive thermal comfort limits were calculated with the ASHRAE IWEC 

‘typical’ climate data for three reference locations Istanbul / Turkey, Turin / Italy and 

Stuttgart / Germany (see § 5.1.4). In Istanbul and Turin, operative temperature levels 

over 30 °C are briefly allowed for hot ambient air summer conditions. 

2.6.4 EN 15242 

The European standard EN 15242: 2007 [28] defines the way to calculate airflows 

due to the ventilation system and infiltration. 

It specifies a direct method for calculating manually operated, single-sided 

ventilation through open windows for airing or achieving thermal comfort in 

summertime. The method is intended for calculating the opening angle for a given 

bottom-hung window. The formulae below are only suitable for the single-sided 

volume flow calculations. The volume flow rate 9:: cd is calculated using three 

coefficients for wind turbulence (Ct = 0,01), wind speed (Cw = 0,001), and thermal 

buoyancy (Cst = 0,0035): 

9:: cd = 3,6 ∙ 500 ∙ (cde�� ∙ �� ∙ �f�� ∙ �
� ∙ ℎ�%% ∙ |Δ�| (2.27)

Subsequently, the necessary structural area AEN of a bottom-hung window is 

calculated according to: (cd = �g+∝- ∙ ( (2.28)

with Ck(α) as a polynomial approximation (cf. Figure 2.33): �g+α- = 2,60 ∙ 10ij ∙ αP − 1,19 ∙ 10iQ ∙ α + 1,86 ∙ 10i ∙ α (2.29)
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Figure 2.33: Effective area of a bottom-hung window scaled by the fully opened window with equal 
area according to [28]. 

2.7 Conclusions 

A brief summary of the significant observations based on the literature survey carried 

out are listed as follows: 

• The aim of natural ventilation is to provide good indoor air quality (with rather 

low air change rates) as well as good thermal comfort in summer (with increased 

airspeeds during daytime and high night-time air change rates). 

• The recommended CO2 concentrations should not exceed about 1000 ppm, but 

there is still no uniform limit. Measurements in densely populated rooms are 

often higher. 

• With manually controlled natural ventilation, good indoor air quality cannot be 

guaranteed, especially in densely populated rooms (schools, offices). 

• The analysis of non-residential buildings in international projects has shown that 

warm and moderate climates with large day/night temperature differences of 10-

12 °C are suitable for natural night ventilation. In temperate climates, a good 

thermal comfort can be achieved by night cooling while reducing cooling loads 

through sun protection or similar. In hot climates with moderate night 

temperatures natural night ventilation can be used to reduce energy consumption 

of the active cooling system. Typical room temperature reductions by night 

ventilation are of the order 1-3 °C (up to 6 °C). 
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• Natural ventilation in humid climates is not recommended for cooling (with 

water content of air of more than 15 g/kg). Cooling by natural ventilation in 

buildings alone works with rather low cooling loads (<30 W/m²) and enough 

thermal mass (>75 kg/m²). 

• Naturally ventilated buildings can also offer good thermal comfort in hot 

summer conditions. For example, in the summer of 2003 the office building 

Lamparter had less than 10% of the hours of use above 26 °C. Atria can easily 

overheat. 

• The air change rates achievable through natural ventilation with correct sizing of 

the openings are significantly higher than those with mechanical ventilation for 

night cooling, and without electrical energy input. 

• For high-rise building shapes, the challenges in terms of designing the envelope 

and its openings are greater, primarily because of the building height and the 

width. The potential magnitudes of driving forces become bigger, and their 

relative magnitudes can vary over a wider range. Simple flow path 

configurations are not suitable due to building widths bigger than recommended 

for cross ventilation.  

• Automatic control of openings is essential during non-occupation of office and 

school buildings to allow night-time ventilation. 

• Depending on the ventilation strategy, typical opening cross-sections are 

approximately 1-3% of the floor area. 

• During occupation, a complex control system, especially in open plan offices, is 

important; in single offices, ventilation can also be user-controlled. 

• Preliminary evaluation tools and instruments for effective vent sizing are 

available only for a few building and ventilation designs, especially in moderate 

climate. Characteristics of the building and ventilation design may only be rarely 

adapted. They allow the prediction of maximum indoor temperatures, energy 

savings, and corresponding maximum removal of cooling capacity. 

• Specific and systematic statements on annual energy savings achievable through 

natural ventilation are rare. The saved electrical energy consumption for 

mechanical ventilation, the possible cooling energy by night ventilation with 

increased air changes rates, and the energy losses due to missing heat recovery in 

winter as well as auxiliary energy requirements must be considered. 
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3. METHODOLOGY 

Passive measures for cooling are employed to reduce heat gains, to store night cold 

in the fabric, and to naturally exhaust heat. These measures along with a simplified 

building operation are considered in an integrated manner at the early design stage in 

order to assist the delivery of a sustainable office tower design with a high energy 

performance rating.  

A software tool named ‘HighVent’ was developed to design and size natural 

ventilation systems for high-rise office buildings with a relatively small number of 

input parameters. In two steps, this prototypical tool is capable of designing a flow 

path for a wide-shaped building segment up to ten floors. Optimization targets are to 

reach minimal system sizes with respect to the comfort and flow path criteria 

developed. In the first step, the electric analogy between electrical and flow circuits 

is used to compute opening dimensions for a given air change rate under unchanging 

climate and location specific boundary conditions. Off-design calculations can be 

conducted apart from take-off for altered boundary conditions and design 

specifications to check for the best suitable solutions. In the optional second step, a 

dynamic design day heat balance approach is used to evaluate the comfort 

performance in a higher flexibility of measures to also see the effect of other building 

design parameters (e.g., heat gains and thermal mass). A graphical visualisation of 

the resulting output aims to quickly access the capabilities of the passive cooling 

system. The validation of the results against EnergyPlus simulations in § 3.2.3 proves 

the calculation capabilities of the tool in the design of passive cooling in office 

buildings. 

The tool outputs, which are primarily design parameters for the positioning and 

sizing of openings in the flow path, are then further used or ‘post-processed’ as 

inputs for detailed weekly and annual building energy performance simulations 

including airflow networks. EnergyPlus simulations are run to access detailed 

information about the comfort reached depending on the ventilation rates and to 

modify the output parameters of the tool when necessary. This detailed design 
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development also includes the model calibration and the developed natural 

ventilation controls. Moreover, some parametric analyses are intended to show the 

influence of important design parameters on the passive cooling performance of the 

approach developed. 

3.1 Conceptual Design 

For the purpose of passive cooling, in literature it is common for natural ventilation 

to be applied along with other measures for the reduction of heat loads. Passive 

cooling is therefore realised by controlled intense day and night natural ventilation, 

flanked by the reduction of solar heat gains, and by thermal mass activation to store 

night cold in the building fabric. Focusing on natural ventilation, the design 

presented here is especially developed for wide-shaped high-rise buildings where 

simple cross ventilation or single-sided ventilation is impractical to realise. The basic 

strategies that are available, and their limitations are described in § 2.2.2. As the 

inner volume of a building is an expensive resource, the design is intended to 

minimise the system dimensions by optimal exploitation of natural driving forces, 

i.e., wind and buoyancy, and by reduction in the flow resistances whenever possible. 

3.1.1 Natural ventilation 

Keeping the building shape in mind, and focusing on the possible flow path design, 

cross ventilation from one façade orientation throughout the building to the other 

orientation is not an option as the building type concerned is typically shaped too 

wide. According to § 2.2.2.2, the maximum depth (Figure 3.1 (a)) should not be 

higher than 5 times the ceiling height [26] (occupied space).  

Another strategy option is single-sided ventilation with a maximum penetration 

depth of 2,5 times the ceiling height (see § 2.2.2.1). Therefore, the inner part of a 

wide shaped building cannot be ventilated by deploying this strategy (Figure 3.1 (b)). 

Assuming all the office space is assembled at the building’s perimeter, single-sided 

ventilation could be an option to ventilate the office area, but there are some other 

concerns. First, single-sided ventilation is mostly based on buoyancy, and controlled 

natural ventilation cannot be assisted by wind forces. Openings therefore need to be 

sized relatively larger, which also affects the second concern, that strong  
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local wind turbulences without wind shielding elements (like a double skin façade) at 

high storey heights may cause problems. 

 
Figure 3.1: Maximum penetration depth (green area) for different ventilation strategies applied to a wide, exemplarily square 

shaped office-tower (plan view) with a ceiling height of 2,7 m, which are (a) wind  driven cross ventilation, (b) buoyancy driven 
single-sided ventilation and (c) central void ventilation. 

As a third alternative, a central chimney or void design as described in § 2.2.2.3 is 

suitable in general for wide building shapes. Buoyancy is usually the main driving 

force for air circulation. Central chimney or atrium design is practical for wide 

buildings because the occupied space is cross-ventilated towards a central void, from 

where the warm air rises upwards, towards a high level exhaust (Figure 3.1 (c)). To 

increase the driving forces, this strategy is often combined with solar heated buffer 

zones (e.g., atrium or solar chimney) or wind catcher, in dry climates sometimes 

together with evaporative cooling. To support the thermal chimney effect by wind 

forces, the best possible solution is positive wind pressure at the inlets together with 

negative wind pressure at high level outlets. As the wind pressure changes sign with 

the wind direction, the only way to generate positive loads at the inlet is to position 

all inlets at the windward façade orientation.  

The initial strategy in the context of the passive approach developed here thus is an 

upward cross-flow ventilation design for tall buildings, for which the design idea is 

taken from Etheridge [40], but with further improvisations. The building is vertically 

segmented for different reasons. Concerning a building without segmentation and 

containing one single chimney for all floors, as stated by Etheridge [40]: ‘For 

buoyancy alone, the pressure drop is greatest at the lowest opening. For a building 

of height 200 m with a temperature difference of 20 °C, the pressure difference 

across the envelope at ground level would be 160 Pa. The forces required to open 

external doors and windows at the lower levels would be unacceptable.’ 

Another problem considering a single segment design for buoyancy alone is that the 

range of opening areas required is significant. This is because the pressure drop 
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across the lowest storey openings can be many times than that across the highest 

storey openings, and to keep the flow direction on the highest floor inward, the 

dimensions of the outlet easily become excessive. In the present work, it has been 

observed that even the chimney size in terms of its cross-sectional area increases by 

the number of floors it supplies. With a single chimney to ventilate e.g., 25 floors, 

the size of the ventilation system would be too big to be realised in practice. 

According to Etheridge [40], a possibility to overcome these issues is the building 

segmentation. If the building consists of isolated segments such as shown in  

Figure 3.2, each segment can then be treated as a low-rise or medium-rise building. 

 

Figure 3.2: Building segmentation of a high-rise building with multiple floors for each segment  
(here 5 storeys each) and with a commonly used exhaust stack. 

Upon further investigation of the segmented building design of one segment, the 

wind pressure distribution depending on the orientation becomes a design difficulty. 

At the inlet openings, which need to be distributed across all façade orientations, 

wind pressure is positive at the windward side only. At all the other orientations, the 

resulting wind pressure is negative and therefore counteracting the intended flow 

direction, from the office space to the core and then upward the chimney towards the 

exhaust opening. As this flow direction needs to be guaranteed, the initial design 

developed by Etheridge [40] needs some further adjustments to ensure a similar 

pressure distribution at all the inlets. Two possibilities were found, which are wind 

blocking devices (like a double skin façade), or a commonly used windward supply 

inlet. Each possibility has pros and cons but the driving forces (pressure drop from 
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the inlet to the outlet) would benefit more from a positive pressure inlet than from a 

neutral wind-blocking design. To generate a negative pressure field at the chimney 

exhausts is less critical since most orientations of a building create a negative 

pressure field (see also Figure 2.2 and wind tunnel experiments in Appendix A).  

Bearing in mind all the above mentioned considerations, the adapted building is 

divided into modular multi-storey building segments stacked on top of each other. 

The derivation of the design approach is based on the building shape discussed.  

The occupied space of each storey is connected to a central fresh air supply chimney 

and a central exhaust chimney. The stack effect in this commonly used central void 

pulls air from the office perimeter of each floor. Fresh air enters the offices at floor 

level via a sub-slab distribution system, leaving the space subsequently via openings 

at ceiling level to the core, and from there to the exhaust chimney. 

The intermediate ‘wind floors’ between the segments each have two wind adapting 

openings in opposite direction – the windward orientation and the leeward 

orientation. The windward opening with a positive wind pressure field is intended as 

the supply inlet for the segment above, whereas the leeward opening is the exhaust of 

the segment below. As wind passes the building, a negative pressure field on the 

leeward façade orientation creates suction, further pulling the warm air from the 

chimney void. The wind driving forces thus support the thermally driven buoyancy 

forces of the warm air column within the building. 

3.1.2 Solar heat gain reduction 

As an accompanying measure, good shading of building fenestration is important, 

especially in the warm season. In summer, the higher sun can be kept from south-

facing windows by overhangs. But in mornings and afternoons, the sun become 

hotter and reaches under overhangs. To avoid overheating, windows that face west as 

well as east should be well shaded according to the sun angle.  

3.1.3 Thermal mass activation 

Another accompanying possibility to assist passive cooling is night-time ventilation 

of the building mass. Whenever the night-time outdoor air temperature is low 

enough, ventilation can be used to cool the exposed thermal mass of a building in 
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order to provide a heat sink during the following day. The basic idea of the concept is 

described in § 2.2.4.2. 

3.2 Preliminary Design and Tool Development 

Achieving the required strategy is largely dependent on the flow path design and 

opening dimensioning for certain design conditions, such that they enable adequate 

control. The ‘HighVent’ design tool developed aims to ‘fast-forward’ study the 

natural ventilation potential and thermal comfort consequences for a passive summer 

approach. 

It is intended to fill the gap between very simple actual tools like graphical charts 

from the NatVent study [16] and the detailed dynamic building energy and airflow 

network simulation tools as with EnergyPlus [1], both of which are found to be 

lacking in the ability to evaluate the functionality of controlled natural ventilation in 

the system design and sizing phase. 

Simple design tools (such as presented in § 2.5.4) are intended to lower critical 

barriers for implementing natural ventilation by recommending the sizing for natural 

ventilation systems depending on the building concerned. However, these tools have 

a lot of limitations, especially in terms of flexibility in the design and consequences 

on comfort. They are mostly limited to a certain climate (e.g., northern European); 

they are restricted to simple ventilation designs like cross ventilation, single-sided 

ventilation or chimney ventilation for a specific small number of rooms; and they are 

not applicable for more complex flow paths such as multi floor chimneys with 

combined wind and buoyancy driving forces as shown in Figure 3.2 and Figure 6.2. 

They often fail to include internal flow resistances or different zone temperatures, 

e.g., for solar chimney applications. Moreover, other crucial parameters like internal 

and solar heat gains as well as the thermal mass distribution as a sink for diurnal 

night cooling are treated in a very simplified way. Finally, they do not consider 

hybrid approaches, ventilation control, and actual standards for thermal comfort in 

naturally ventilated buildings. 

On the other hand, complex dynamic building performance simulation programs 

including airflow networks (see § 3.3.1) are qualified to reflect all these parameters, 

but they do not give any indication to the designer on how to size and locate the most 
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crucial parameters for a good natural ventilation design, e.g., opening sizing, flow 

path design, thermal mass in combination with glazing, shading devices, and internal 

heat gains for a specific climate. In summary, airflow networks already integrated in 

building energy performance simulation packages like Airnet in EnergyPlus are 

capable of calculating airflows but give no advice on sizing natural ventilation 

systems. They are thus more suitable for the detailed design analysis phase with 

annual simulations including the predicted energy consumption. The results of the 

design tool developed in this thesis are therefore especially suitable as inputs for 

‘post-processing’ with complex dynamic building simulation programs. 

The spread-sheet based design tool developed uses electrical circuit analogies for 

both ventilation and the thermal model. The tool aims to study the main parameters 

influencing the potentials of uncontrolled natural ventilation. It proves the 

functionality of a certain design, and recommends passive cooling when possible and 

a hybrid approach whenever needed. 

 

Figure 3.3: Simplified thermal-circuit model of the tool developed exclusive radiative heat transfer. 

The tool targets to find an optimum passive design, neither oversizing nor 

undersizing the related components, that leads to minimum overheating for a specific 

type of building in a certain climate. It is especially intended for application in the 

context of high-rise office buildings as in Figure 3.2, but can also be utilised for 

simpler building types. 

In the first step, the natural ventilation system design is realised by a newly 

developed steady state electric analogy model. Unchanging boundary conditions are 

the temperature difference between indoor and outdoor, and the wind velocity. For 

calculating the airflow rates, the advantage of this model compared to other 
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simplified analytical calculations as described in other papers by the thesis author 

[77,121] is that it is able to represent a multi-storey flow path, e.g., for a segment of 

an office tower, by calculating the pressure drops on each opening. According to the 

pressure distribution, openings can be sized for each cell of the model (e.g., a storey 

of the building or exhaust chimney) to reach a certain steady airflow rate for all cells 

under the boundary conditions defined. 

  

Figure 3.4: Example of the steady state (ΔT=3°°C, vmet = 5 m/s) ventilation design major outputs for a 
5-storey building segment with a internal chimney, sized for 13 air changes per hour 

In the second step, this initial natural ventilation design is originally integrated into a 

dynamic, thermal simulation for a specific climate, summer design day (gathered 

according to 5.3.3) with changing boundary conditions (e.g., external temperature). 

The simulation is looped (3 times iterated) to get good initial conditions. Together 

with other parameters, the design air change rate may here be further adapted in 

terms of opening sizing to fulfil the thermal comfort requirements of the maximum 

allowable operative cell air temperature, or to stay within psychrometric boundaries 

depending also on humidity levels. It is clear that the extent of the glazed area in the 

façade as well as the internal thermal mass directly affects the indoor ambience. 

Therefore, in addition to the ventilation system including basic controls, other crucial 

parameters must also be investigated to see their influence on the passive design. 

These parameters include (i) the thermal mass distribution e.g., in the walls and the 

floor especially for night cooling, which in the model is realised by a multi-layered 

lumped capacity approach, (ii) building operation and related internal heat gains, (iii) 

external heat gains transmitted into the cell depending on the properties of the 

envelope – wall and window heat resistances, glazing ratio, window solar 

coefficients, and external shading, and (iv) chimney heat gains, which is an optional 
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feature for additional solar or internal system (like data-centres) heat gains, raising 

the air change rates.  

Due to the perceived model complexity, some parts of the calculation method were 

implemented in a simplified way. The dynamic thermal behaviour of the model is 

only analysed for one storey (cell) of the building segment analysed in step one 

(opening sizing). This is done due to the assumption that the heat gains, the mass 

distribution and the ventilation rates are equal in all storeys of the segment 

investigated. If heat gains differ significantly from storey to storey, the pre-design 

may be repeated for each floor. Another simplification is that the tool needs some 

amount of ‘pre-processed’ data input. This involves the typical inputs describing the 

simulation problem, and the solar heat gains entering the building cell, and the 

summer design day climatic description depending on the climatic location and 

adaptive comfort acceptance. 

 

Figure 3.5: Example of the ‘HighVent’ design tool’s major thermal outputs. 

In summary, the passive model (except with optional mechanical ventilation) 

comprises multiple major heatflow paths, keeping it simple whenever possible, but 

complex enough for full flexibility in the system design.  

3.2.1 Ventilation model calculation method 

This involves determining the sizes and positions of external and internal openings. 

The way chosen here is an originally compiled electric analogy model, which defines 

the ventilative driving forces as voltage source, the openings as resistances, and the 

volumetric airflow as current. By knowing the positions of the openings and their 

sizes, the flow pattern can be calculated for dynamic conditions with the thermal 

electric analogy model using the explicit method of solution. Since unsteady 
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conditions are important for strategies involving night cooling and free-running 

systems, dynamic thermal modelling is required as described in § 3.2.2. 

3.2.1.1 Driving forces 

As described in § 2.2.1, the driving forces for natural ventilation in rooms and 

buildings are pressure differences caused by buoyancy and wind. Ventilation rates 

are dependent on the magnitude and direction of these forces, and flow resistance of 

the flow path. The magnitudes of driving forces change with atmospheric variation 

over height. 

Wind pressure difference 

The pressure distribution around the building depends on pressure coefficients (see 

§ 2.2.1.2), and the local wind speed and direction at the height of the openings. The 

pressure on the building at a certain height and orientation due to wind forces is: �� = 0,5 ∙ �c ∙ �� ∙ �� (3.1)

Within the preliminary approach developed in the context of this thesis and in 

EnergyPlus simulations, the ASHRAE power law estimation [27] calculates the local 

wind speed depending on the height of the opening, the terrain roughness, and the 

meteorological wind speed. This is of special importance in high-rise buildings, 

where the wind speed significantly changes depending on the local height level of the 

openings. 

With this approach, local wind velocities are derived from the local opening height 

(centroid), the wind profile coefficients δ and β (terrain characteristics), and wind 

speed [27,122], where 10 m is the assumed height of the meteorological station: 

��+t- = �f��+t- ∙ .mf��10m5opqr ∙ . sm
���5oturq
 (3.2)

Table 3.1: Terrain-dependent coefficients [27]. 

terrain exponent β Layer thickness δ in m 
ocean 0,10 210 
flat, open country, meteorological station 0,14 270 
rough, wooded country, urban, industrial, forest  0,22 370 
towns and cities 0,33 460 
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Figure 3.6: Local wind speed profiles depending on terrain, meteorological wind speed, and height. 

The wind pressure difference between two façade orientations at different height 

levels is (see also § 2.2.1.2): ∆�� = 0,5 ∙ �" ∙ �" ∙ ��," − 0,5 ∙ � ∙ �  ∙ ��,  (3.3)

Stack pressure difference 

Stack pressure differences due to buoyancy forces depend on the magnitude of 

density and height differences: ∆�? = ∆�v ∙ 
 ∙ ∆s� (3.4)

The density differences are mostly affected by temperature differences. In the 

context of office building ventilation, the humidity ratio in kg water per kg air (HR), 

both outside and inside the building, can be assumed to be relatively constant. 

Nevertheless, a comprehensive method for determining the air density was chosen 

including humidity and barometric pressure.  

The density of air is dependent on temperature, moisture content, and barometric 

pressure. The moist air density may be calculated by [123]: 

�c,� = �?��w,�xy  ∙ ����,� ∙ 1 + [x1 + [x ∙ x�x�  (3.5)
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The barometric pressure is calculated at the start height of the building segment. The 

external temperature at local height is calculated at the height level of the openings. 

Including the gas constant of air and water vapour (Ra = 286,9 J kg-1 K-1 and 

Rw = 461,5 J kg-1 K-1), the equation for the moist air density of the external air 

density becomes: 

�c,� = �?��w,�286,9 Jkg ∙ K  ∙ �c,� ∙ 1 + [x1 + [x ∙ 1,609 (3.6) 

For simplicity of the model, it is assumed that the humidity ratio of the external air is 

equal to the humidity ratio of the internal air (only sensible internal heat gains). 

Then, the internal air density becomes: 

�v = �?��w,�286,9 Jkg ∙ K  ∙ �v ∙ 1 + [x1 + [x ∙ 1,609 (3.7)

As mentioned before in § 2.2.1.1, for flow rate calculations or the sizing of opening 

areas it is important to use a relatively accurate value for the density difference Δρ. 

The absolute value for the density is less important. Therefore, it is practicable to 

assume dry air conditions whenever the humidity level is unknown.  

According to the U.S. Standard Atmosphere model, the external air temperature 

decreases with height at a rate of approximately 1 °C per 150 m. In the pre-design 

stage, this is of minor importance when considering relatively lower height building 

segments. But as a side note, it should be also mentioned that 1°C lower supply air 

temperature will make a difference in thermal comfort aspects.  

At altitude z above ground, according to the U.S. Standard Atmosphere model the 

external temperature is: 

�c,� = �f��– 0,0065 Km ∙ Z 6,36 ∙ 10~m ∙ s�6,36 ∙ 10~m + s� − 6,36 ∙ 10~m ∙ sf��6,36 ∙ 10~m + sf��\ (3.8) 

With an assumed height of the meteorological station at 1,5 m: 

�c,� = �f��– 0,0065 Km ∙ Z 6,36 ∙ 10~m ∙ s�6,36 ∙ 10~m + s� − 6,36 ∙ 10~m ∙ 1,5m6,36 ∙ 10~m + 1,5m\ (3.9)
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where 6,36·106 m is the radius of the earth and -0,0065 K/m is the air temperature 

gradient in the troposphere. 

 

Figure 3.7: Local external temperature profiles depending on the height. 

The local barometric pressure above sea level can be calculated as [122,124]: 

�?��w,� = 101325 ∙ �1 − 2,25577 ∙ 10i� ∙ +s
��� + s�-��, ���
 (3.10)

where 101 325 Pa is the reference pressure, which is the standard atmospheric 

pressure at sea level. 

 

Figure 3.8: Local atmospheric pressure profiles depending on the height. 

The buoyancy pressure difference between two height and temperature levels is (see 

also § 2.2.1.1): ∆�? = +�" − � - ∙ 
 ∙ +s" − s - (3.11)
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Steady state boundaries 

For the design of natural ventilation strategies, it is common practice to first design 

and size the system by fixed boundary conditions depending on the climate and the 

building location. 

The wind velocity passive cooling design condition chosen is the climate specific, 

average wind velocity in the hottest 91 days of the year (see § 5.3.3). The local wind 

speed is then calculated according to the terrain and the local height of the openings. 

The temperature difference chosen is 3 °C between inside and outside, which is the 

value recommend by CIBSE [26] for the minimum hygienic air change and for 

passive cooling in summer.  

Optionally the chimney temperatures may be adapted. Additional chimney heats 

gains (to cell B Figure 3.9), usually from solar radiation or from internal heat 

sources, lower the chimney air density, and therefore increase the upward buoyant 

flow. Additional chimney heats loss (from cell A Figure 3.9), usually from 

mechanical cooling but could also be considered from evaporation cooling or due to 

underground ducts, increases the chimney air density, and in turn increases the 

upward buoyant flow due to higher temperature differences. 

Pressure differences on each storey 

Total pressure drop from the chimney inlet to the outlet (for the whole flow path): ∆�A = ∆�?," + ∆�?, + ∆�?, + ∆�� (3.12)

Pressure differences due to buoyancy forces, exemplary for the 3rd storey (F) of the 

building segment: ∆�?," = +�� − ��- ∙ 
 ∙ +s� − s"- (3.13)

∆�?, = +�� − ��- ∙ 
 ∙ +s"" − s�- (3.14)

∆�?,P = +�� − ��- ∙ 
 ∙ +s − s""- (3.15)

Pressure difference due to wind forces: ∆�� = 0,5 ∙ �c ∙ �" ∙ ��," − 0,5 ∙ �c ∙ �  ∙ ��,  (3.16)
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Figure 3.9: Pressure drops across the whole flow path from the supply inlet to the exhaust outlet. 

3.2.1.2 Electric airflow analogy model 

The building ventilation model is based on a set of resistances, generators, and flows. 

Pressure is analogous to voltage, electrical current is analogous to volumetric airflow 

rate, and electrical resistance is analogous to airflow resistance [125]. Potential 

differences can be generated by sources like mechanical fans or by the natural forces 

of wind and buoyancy. 

 

Figure 3.10: Electric circuit (a) and airflow analogy (b). 

This approach provides a useful framework when developing computer software for 

calculating airflow through complex networks with multiple inlet and outlet openings 

and when internal flows occur through a network of flow paths. Models, among 

others, are based on electrical circuit analogies such as Kirchhoff's first and second 

laws, and Atkinson's equation originally published in 1886 for mine ventilation 

[126]. Concerning airflow circuits, Kirchhoff's first law states that the quantity of air 

leaving a node must be equal to the quantity of air entering the node. The second law 
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states that the sum of pressure drops around any closed path must be equal to zero. 

Atkinson's equation relates the pressure losses at an orifice at which turbulent airflow 

occurs proportionally to the square of the volume flow. 

The use of a solver goal seeking values as available in MS visual basic integrated in 

Excel 2010, is very convenient for this purpose because it allows equations not to be 

written in an explicit form. 

Model components 

As described before, pressure supply sources in natural ventilation systems are 

buoyancy and wind: ∆�A = ∆�? + ∆�� (3.17)

The laminar-flow pressure losses are linear and analogous to the electric potential 

difference between two points according to the Ohm’s law. Unlike in electrical 

engineering, for turbulent airflows through orifices, the Atkinson's equation relates 

the pressure losses in an airway proportionally to the square of the volumetric airflow 

rate through the airway, with the constant of proportionality being the resistance of 

the airway: ∆� = x ∙ 9:   (3.18)

 

Figure 3.11: Pressure head at differently sized openings (Cd=0,61) depending on the volume flow 
according to Atkinson's equation for turbulent flow [126]. 

Thus, the volumetric airflow rate through an orifice such as a wall opening or 

window is: 

9: = <∆�x  (3.19)
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Resistors are used to model pressure drops due to an orifice. The airflow resistance 

of orifices can be expressed in terms of their discharge coefficients, the density of 

air, and the effective area of the opening: 

x = �2 ∙ �; ∙ (�%%  (3.20)

When airflow passes through a number of sequential openings with resistances, the 

equivalent resistance for all the openings in series can be calculated by the sum of the 

individual resistances: xA = x" + x + xP+. . . +x� (3.21)

When airflow passes through a number of parallel connected openings with 

resistances, the reciprocal of the equivalent resistance for all the openings in parallel 

can be calculated by the sum of the reciprocal individual resistances: 1xA = 1x" + 1x + 1xP +. . . + 1x� (3.22)

Considering air change rates necessary to meet the comfort criteria, the opening areas 

are defined according to the design air volume flow rate, the orifice resistance, the 

pressure drop at the opening, and the air density: 

(� = 9:��;,�M2 ∙ |∆��|�B
 (3.23)

Flow path specifications  

Exemplary, for a five-storey per segment scenario, some specifications are necessary 

to properly size the natural ventilation system. The specifications aim to achieve a 

uniform airflow throughout the building and a constant cross-sectional area of the 

central chimney. The following rules are implemented in the ventilation model of the 

pre-design tool based on electric analogy:  

1) The air volume flow rate on each storey of the building segment is defined to 

be equal: 

 9:� = 9:� = 9:� = 9:� = 9:� (3.24)
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2) Due to the conservation of mass (Kirchhoff’s first law analogy), and not 

modelling the infiltration, the total mass flow rate through the chimney inlet 

and outlet is the sum of the mass flows through each storey: 

 9:� ∙ �� = 9:� ∙ �� + 9:� ∙ �� + 9:� ∙ �� + 9:� ∙ �� + 9:� ∙ �� = 9:� ∙ �� (3.25)

3) The chimney’s vertical cross-sectional area is defined to be constant 

throughout the building segment. This is realised by keeping all inlet areas 

from the chimney to the offices of a specific storey equal to the outlet area 

from the offices to the chimney. For example: 

 (P = (� (3.26)

4) Moreover, the chimney’s air inlet from and outlet to the environment are 

initially defined to be equally sized as the sum of the office inlets and outlets, 

and is therefore equal to the internal vertical chimney’s cross-section - but 

can be adapted by a sizing factor k. With a sizing factor other than 1, the 

chimney’s supply opening area and exhaust opening area will be sized as 

bigger and smaller than the internal chimney cross-sectional area, 

respectively: 

 � ∙ (" = (P + (~ + (� + (" + ("� = (� + (� + ("" + ("Q + ("Q = � ∙ (  (3.27)

5) Finally, to reduce the internal flow resistance, the area of the internal 

overflow openings from the offices to the core are initially set twice (factor 

K = 2) the area of storey outlets to the chimney. A high value of K will 

increase the overflow opening area and therefore decrease the internal flow 

resistance. For example: 

 � ∙ (Q = (� (3.28)

The schematic in Figure 3.12 shows the arrangement of the openings and the flow 

path arrangement as specified before. 
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Figure 3.12: Schematic overview of the exemplary 5 storey per segment for volume flow 
calculations. 

Flow path dimensioning / system sizing 

The openings in the flow path are sized according to pressure differences, target air 

change rates, and flow path resistances. Planners can simply dimension openings, 

chimneys, and overflow air vents for the provision of fresh air and passive cooling in 

office buildings.  

Although the tool developed can handle one to ten storeys per building segment, 

equations are exemplarily derived for the five-storey base-case scenario shown in 

Figure 3.13. This scenario is an eight-cell model with a well-mixed air assumption in 

each cell. The internal openings divide the envelope into seven internal cells. 

Overflow openings from the offices to the core area only represent an additional 

resistance. Cell A and Cell B can be considered as two conical stacks, one for fresh 

air supply and one for exhaust. The airflow rates satisfy the continuity equation for 

each cell and for the total envelope. 

The model developed in the context of this thesis differs significantly from the 

envelope flow model developed by Etheridge [26]; the notation used is loosely based 

on that used by his models, i.e., the openings in the external envelope are denoted by 

lower number subscripts, the internal openings by higher numbers, and the segment 

cells by capital letter indices. 
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Figure 3.13: Configuration for applying the electric analogy method to upward flow ventilation  
of a seven-cell model of a five storey building segment. 

The wind pressure share of the original equations integrates the ‘local wind speed’ 

(see § 3.2.1.1) on inlet and outlet opening heights instead of a constant value 

(without wind profile) for all openings as in the approach developed by Etheridge 

[26]. The external barometric pressure, the air temperature, and the density for moist 

air are calculated at start height of each building segment (see Figure 3.13) instead of 

a fixed reference external air density and temperature. 

Integrating the design specification into the electric analogy model developed before, 

the resulting flow circuit model for an exemplary five-storey per building segment 

can be summarised as shown in Figure 3.14. 

The resistance of flow paths for each storey is dependent on the openings’ flow 

resistances in series. Upon starting the iterating solvers described below, the 

‘HighVent’ tool then automatically adapts the opening areas according to the design 

specifications to maintain the intended flow rates. 

 
 
 
 

w ≤ 5,0·h 

<<<<<<<<<<< 

 
 
 
 

<<<<<<<<<<< 

 
 
 
 

E 

C 

D 

F 

G 

H 

C 

D 

F 

G 

H 

E 

z6 

z8 

ρC 

3 

z1 

ρE 

6 

1 

9 

2 

 
 
 
 

 
 
 

5 

8 

14 

17 

5 

8 

14 

17 

3 

6 

9 

z2 

ρD 

ρF 

ρG 

ρH 

TC 

TD 

TF 

TG 

TH 

start height of the segment 
v1 

v2 

ρB 

A 

B 

ρA TE 

4 4 

7 7 

13 13 

10 10 

16 16 

15 15 

12 12 

11 11 



 

101 

 

Figure 3.14: Fixed sizing boundary conditions natural ventilation model exemplarily for a segment 
including two chimney and five storey cells. 

The solver seeks for a solution for each storey of the segment to fulfil Kirchhoff’s 2nd 

law and the sizing specification defined before. Because each storey also influences 

the other storeys, the procedure is looped five times.  

For the five-storey example of Figure 3.14, the changing parameters are the opening 

areas A3, A6, A9, A12 and A15; the other areas and all pressure drops change 

accordingly.  

1st storey: ∆�� = ∆�" + ∆� + ∆�P + ∆�Q + ∆�� (3.29)

2nd storey: ∆�� = ∆�" + ∆� + ∆�~ + ∆�j + ∆�� (3.30)

3rd storey: ∆�� = ∆�" + ∆� + ∆�� + ∆�"B + ∆�"" (3.31)

4th storey: ∆�� = ∆�" + ∆� + ∆�" + ∆�"P + ∆�"Q (3.32)

5th storey: ∆�A = ∆�" + ∆� + ∆�"� + ∆�"~ + ∆�"j (3.33)
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where for upward flow direction, the reference density ρ0 for the calculation of the 

pressure drop at the openings is 

for Δp1: �B = �c (3.34)

for Δp2: �B = �� (3.35)

for Δpi=[3,6,9,12,15]: �B = �� (3.36)

for all other Δpi: �B = �v (3.37)

where ρI is the density of specific office cells. 

3.2.2 Thermal model calculation method 

Apart from the previously discussed air change rates, which directly influence air 

quality, thermal comfort is a crucial indicator in the evaluation of natural ventilation 

concepts. If thermal comfort can be guaranteed, then significant cooling and 

ventilation energy conservation can be achieved. The dynamic design day heat 

transfer model aims to provide guidance for the design, especially the system sizing 

of passive ventilated buildings by relating the system dimensions (Tool ‘Step 1’) to 

the comfort requirements reached (Tool ‘Step 2’). It dynamically reflects the climate, 

the internal and solar heat gains, the passive air driving forces, the thermal mass, the 

conduction through the envelope, and the impact of these parameters on internal 

temperatures and humidity. A matter of particular interest is the interaction of natural 

ventilation potentials and the diurnal cooling capacity of thermal mass with different 

sizing parameters, levels of heat gains, and simple control strategies for night-time 

ventilation only. This is in combination with fresh air for indoor air quality issues or 

with a strategy that allows increased air change rates even during daytime. 

In this section, only a brief overview of the heat transfer models involved is given; 

the in-depth model description including equations is given in Appendix B. The ‘pre-

processed’ summer design days referred to here are calculated according to the 

methodology described in § 5.3.3. A procedure with three iterations assumes that the 

design day is preceded by an infinite number of identical days of the same idealised 

weather. 
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3.2.2.1 Model components 

Heat transfer in the model consists of a radiant share, a convective share, and a 

ventilative share. The radiant fraction is added to the thermal mass, which increases 

the surface temperature.  

Internal air 

The interior air space is treated as well-mixed with uniform air temperature 

distribution. For simplicity of the model, all heat gains or losses to the internal air are 

treated as sensible heat. The dynamic internal room air temperature includes the 

reservoir effect of the volumetric heat capacity of the cell air. The ventilative and 

convective fractions of the heat transfer are added to the air heat capacity, which 

results in the raising or lowering of internal air temperature. 

 

Figure 3.15: Schematic of the internal air heat balance. 

Ventilation 

In the dynamic thermal model of ‘Tool Step 2’, the flow rate is calculated according 

to fixed opening areas pre-calculated in ‘Tool Step 1’ for only one storey. Heat gains 

and losses due to ventilation per timestep (Δt = 60 s) are a function of the mass flow 

rate multiplied by the enthalpy difference between the external and the internal air. 

The mass flow rate per timestep is the volume flow rate multiplied by the mean air 

density between inside and outside.  
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External wall 

The external wall is the opaque façade area depending on the façade’s glazing ratio. 

A lumped capacity model manages the wall internal heat conduction and storage 

process, and is described below. The construction’s heat gains and losses are treated 

according to Figure 3.16. 

 

Figure 3.16: Schematic of the external wall heat balance model. 
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External window 

All windows are combined to a single glazing model, where the window’s total area 

is the façade area multiplied by the glazing ratio. Radiation incident on the external 

envelope is backcalculated from the ‘pre-processed’ transmitted solar radiation 

according to simple window indices. The construction’s heat gains and losses are 

treated according to Figure 3.17. 

 

Figure 3.17: Schematic of the external window heat balance model. 

The lumped capacity model for the glazing shown in Figure 3.18 has only two 

capacities, one for each pane. This is due to the material properties, which are high 

conductivity and low heat capacity of thin glass. A resistance was added between the 

panes to account for the thermal resistance of the gas fill, which is calculated 

according the U-Value of the window minus the film coefficients on both sides of the 

window. 

 

Figure 3.18: RC-model for the windows. 
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Internal floor / ceiling 

The internal floor and ceiling of one storey are combined to one single construction 

with equal adjacent inside air conditions on both sides (and hence treated adiabatic). 

Again, a five layer lumped capacity model manages the internal heat conduction and 

storage process. The construction’s heat gains and losses are treated according to 

Figure 3.19. 

 

Figure 3.19: Schematic of the internal floor / ceiling adiabatic construction heat balance model. 

Internal ‘additional’ mass 

The tool developed also includes two ‘extra’ surfaces of one construction, which is 

called the ‘extra’ or ‘additional’ thermal mass construction. As an example, one of 

the uses of this construction would be to account for the heavyweight partitions 

within a space. As a general definition, the ‘extra’ thermal mass should be sized to 

represent all fabric within the space that is exposed to air, except the walls, the 

ceiling, the floor, and the windows. Figure 3.20 gives a schematic overview of the 

‘extra’ mass model heat balance. 
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Figure 3.20: Schematic of the internal ‘extra’ mass construction heat balance model. 

3.2.2.2 Heat transfer calculation methods 

Convection 

The surfaces’ convective heat transfer is realised by Newton’s law of cooling, which 

includes a constant heat transfer coefficient. The law states that the rate of heat loss 

of a body is proportional to the difference in temperatures between the body and its 

surroundings. In contrast, the convection model allows heat flow from the 

surroundings into the body, if the ambient air temperature is higher than the 

construction’s surface temperature. The external heat transfer coefficient is 

calculated for each timestep according to the Mobile Window Thermal Test 

(MoWiTT) method [127], and the internal heat transfer coefficient for each surface is 

a constant input value. 

Radiation 

Contrary to convective or conductive heat transfer, radiative heat transfer does not 

require any material medium for transport. The emitting rate depends on the absolute 

surface temperature and the surface emissivity. In the model, the grey body equation 

for two parallel surfaces is the governing equation, which approximates that the 

interaction between a given surface of a construction and the rest of the surfaces of 

an enclosure can be described as the interaction between the two surface elements. 
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One of these two surfaces has the surface temperature of the construction element, 

and the other surface has the mean radiant temperature of the surrounding elements, 

which here is the mean radiant temperature of a half sphere facing the surface. For 

internal heat exchange, the half sphere consists of all other construction surfaces 

facing the surface; for external heat exchange, the half sphere consists of the ground, 

the sky, and the atmosphere. 

 
 

Figure 3.21: Long wave radiation exchange 
at the interior surfaces. 

Figure 3.22: Long wave radiation exchange 
at the exterior surfaces. 

Solar heat gains 

The solar radiation incident on the construction surfaces has a direct component and 

a diffuse component. Surfaces either absorb or reflect a fraction of incident radiation. 

The transmitted solar radiation entering the cell is a ‘pre-processed’ hourly input 

value, which a user may gather from auxiliary building simulation programs like 

EnergyPlus (for inputs for the Kanyon building, see Appendix B). This is to avoid a 

time consuming and comprehensive calculation that includes the position of sun at 

each moment. Based on the position and optical properties of windows in the space, 

and with the consideration of multiple angular reflections, the fraction of the solar 

radiation entering the space that is incident on each surface is determined. 90% of the 

‘pre-processed’ transmitted direct solar radiation is assumed to irradiate the floor 

surface. The other 10% direct solar radiation is uniformly distributed to the other 

internal surfaces facing the windows together with the diffuse transmitted solar 

radiation share. The diffuse transmitted solar radiation share is absorbed or reflected 

by all internal surfaces facing the windows depending on their areas and absorptance 

values. 
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Figure 3.23: Direct solar beam distribution on 
interior surfaces. 

Figure 3.24: Diffuse solar beam distribution on 
interior surfaces. 

Exterior solar radiation is absorbed, reflected, or if the surface is a window also 

transmitted by the surface. Values incident on the external envelope are 

backcalculated from the transmitted solar radiation according to simple window 

indices. 

Internal heat gains 

The internal heat sources are occupants, lights and equipment. Internal heat gains are 

a direct input to the design tool based on hourly value schedules, consisting of both 

convective and radiative shares. Internal heat gains are considered to be grey bodies 

that participate in the thermal radiation exchange, and sources of sensible heat for the 

heat and moisture balance in the room air module. 

 

Figure 3.25: Internal heat gains distribution. 

Thermal mass 

Thermal mass is equivalent to thermal capacitance of a body, which is the ability to 

store thermal energy. Thermal mass can serve to flatten out the daily temperature 

fluctuations. This is because the thermal mass absorbs thermal energy when the 

surroundings are higher in temperature, and give thermal energy back when the 
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surroundings are cooler. Thus, thermal mass has the capability to time shift and 

lower the amplitude of indoor air peak temperatures.  

The Lumped Capacitance Model (LCM) was utilised for the prediction of dynamic 

thermal behaviour. The model strongly reduces the complexity in the thermal model 

that is needed to represent the thermal response of multi-layered constructions. The 

LCM is however able to keep the overall accuracy of the full model, and is therefore 

utilised to facilitate the transient heat transfer process within a construction including 

mass. The LCM is an analytical one-dimensional network model, which employs the 

well-known analogies between the thermal and the electrical laws. With this analogy, 

the conductivity of the materials is interpreted as electric conductivity of a resistor, 

and the thermal mass as electrical capacity of a capacitor. The simple RC-network 

aims to solve the heat conduction/storage equation for solid layers by connecting 

construction layers to each other via a number of nodes (Figure 3.26).  

  

Figure 3.26: Layers of the Lumped Capacity Model  
(LCM) construction. 

Figure 3.27: The heat flux 
balance at the surface node. 

3.2.2.3 Adaptive comfort assessment 

Operative temperature 

With rising ambient air temperatures, the operative temperature is allowed to 

increase in naturally ventilated, non air-conditioned buildings. The average internal 

operative temperature of the space is the average of the internal mean air temperature 

and the internal mean radiant temperature [41,128]. It is a rough approximation as 

the influence of direct sunlight and air velocity is not reflected. Recommended 

operative temperatures are calculated for different comfort categories according to 

EN 15251 (for more details, see § 2.6.3). Because the design tool considers only one 

summer design day, which is out of the running timeframe context, the upper 

comfort limits are calculated only according to the mean external dry-bulb 

temperature of the design day itself. Figure 3.5 shows the adaptive comfort limits of 

EN 15251 category II for a typical summer design day. 
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Psychrometrics 

The most widely used thermal comfort standards including air humidity account for 

the occupants of air-conditioned buildings, and have narrow thermal limits. They 

discourage the use of naturally ventilated passive solar buildings, where occupants 

have more relaxed expectations and can tolerate a wider temperature swing. The 

EN 15251 standard [41] accounts for personal adaptation by extending the thermal 

comfort limits depending on external conditions, but does not include the effect of 

humidity and air velocity.  

To fill this gap, the design tool developed also includes psychrometric charts. A 

psychrometric chart graphically represents the thermodynamic properties of moist 

air. Humidity affects which temperatures are comfortable for the building occupants. 

People are most comfortable within appropriate ranges of temperature, relative 

humidity, and airflow. Daytime ventilation with higher indoor airspeeds directly 

affects the cooling sensation of building occupants when the temperature is felt as 

too warm. People naturally cool themselves by evaporation; higher humidity levels 

are more stressful.  

Martinez et al. [129] developed extended comfort boundaries for hot summer 

conditions in office buildings. The occupants’ adaptive behaviour has been 

investigated considering changes in airspeed, clothing level and transmitted solar 

radiation. It was found that the presence of diffuse solar radiation shifts the comfort 

limits towards cooler air temperatures by about 2 °C. Contrarily, increasing airspeed 

leads to an acceptance of warmer conditions, but this effect becomes less effective as 

the air velocity continues to rise. Moreover, increasing air velocities were found to be 

more effective in the presence of solar radiation. Figure 3.28 and Figure 3.29 show 

psychrometric adaptive comfort assessment limits of the tool developed according to 

Martinez et al. along with an exemplarily calculated diurnal course of internal moist 

air properties for a typical summer design day in Istanbul. 
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Figure 3.28: Exemplary indoor air conditions together with predicted comfort limits for 0 W/m² of 
solar radiation and different air velocities [129]. 

 

Figure 3.29: Exemplarily indoor air conditions together with predicted comfort limits for 50 W/m² of 
solar radiation and different air velocities [129]. 

3.2.2.4 Setting amounts of air for opening dimensioning 

Natural ventilation serves to guarantee good indoor air quality and passive cooling in 

warm periods in order to achieve good thermal comfort without mechanical cooling 

systems. Therefore, the minimum design air change rate for a passive approach must 

be intense enough to guarantee the criteria defined for both IAQ and comfort (e.g., 

95% of the occupied time in the category IDA II). 
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In terms of IAQ and according to the EN 13779 standard [55], 12,5 litres per second 

per person is sufficient to achieve medium air quality (IDA 2). To guarantee this 

hygienic volume flow rate during occupancy, the flow must also occur during the 

absence of wind, and design conditions are thus purely buoyancy driven. 

High summer air change rates are desirable for passive ventilative cooling, e.g., 

removal of heat and cooling the building structure at night (according to Figure 2.19 

up to 20 h-1 or more based on the volume of the building [43]). Here, combined wind 

and buoyancy forces can be assumed for the design. The amount of colder external 

air needed for cooling is not a fixed value but is dependent on the building, the 

usage, the operation, and the climate the building is located in. Therefore, to  

‘fast-forward’ analyse the ventilative cooling potential of the natural ventilation 

system, in the ‘Tool Step 1’, the flow path is sized for a specific air change rate with 

unchanging boundary conditions including average local wind velocities for the 

hottest 91 days of the year. In the ‘Tool Step 2’, the dynamic thermal response of the 

building is investigated. The aim is to size the natural ventilation system in a way to 

stay within acceptable comfort boundaries since thermal comfort is a crucial 

indicator for evaluating the natural ventilation concepts. Based on the summer design 

days defined before (see SWMD approach in § 5.3.3), for this sizing-design 

assessment two requirements need to be achieved, as follows: 

• The internal operative temperature stays within the category III comfort 

boundaries during the local climate extreme summer design day. 

• The internal operative temperature stays within the category II comfort 

boundaries during the local climate typical summer design day. 

Results of the tool can be found in passive cooling case-study application 

section § 6.2. 

3.2.3 Tool validation 

The sizing and design tool developed is validated against EnergyPlus [1] simulations. 

‘Tool Step 1’ is validated against ‘pseudo’ steady state Airflow Network simulations 

with fixed boundary conditions, whereas ‘Tool Step 2’ is validated with dynamic 

design day boundaries according to § 5.3.3. Care was taken to set identical input and 

climate information for both the developed ‘High-Vent’ tool and EnergyPlus. 
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Steady state (‘Tool Step 1’) 

To validate ‘Tool Step 1’ of the developed design tool, based on electric analogies 

against the airflow network of AIRNET (integrated into the EnergyPlus 

environment), a simple EnergyPlus simulation model is created for fixed boundary 

conditions.  

As the internal and external temperatures in each simulation are stable throughout the 

whole run period (defined in the E+ design day object), different ventilation 

strategies can be analysed as if ventilation was decoupled from the building. This 

was realised first for the environment by setting up a design day object and then for 

the internal zones via ‘ideal loads’ –  heating and cooling system objects with equal 

fixed setpoint temperatures. 

The unchanging external wind velocities at the meteorological station are set 

5,24 m/s, 2,11 m/s, and 0,85 m/s (design day values from § 5.3.3). The external air 

temperature is chosen as 25 °C. Including the atmospheric variation over height, the 

local air temperature at the inlet opening of the segment (49,75 m above ground 

level) is 24,68 °C. Adding the design temperature difference between inside and 

outside, the storey zones’ air temperature is 27,68 °C and the temperature in the 

exhaust chimney is 28,68 °C. 

To simplify the validation process, some model adaptations are equally made for 

both the electric analogy model and the AFN validation model. All other 

specifications are consistent with the design application scenario defined in § 6.3.  

• Only one zone is simulated for each storey with two linkages to the inlet and the 

exhaust chimney. The internal flow resistance is set to zero to combine the core 

and the office zones into a single zone for each storey. In the electric analogy 

model, the factor K (resistance from office to core of each storey) was set to 

1000, resulting in resistance values very close to zero. In the AFN model, the 

internal opening is simply not present. 

• The inlet height from the supply chimney to the storeys is 0,50 m above the floor 

level height instead of 0,00 m to easily set up the model geometries without 

horizontal openings (i.e., with only vertical openings). 

• The outlet opening from the storeys to the exhaust chimney are set to 3,00 m 

above the floor level height instead of 2,66 m. 
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Figure 3.30: View from the inlet side on 12 zone AFN model representing one building segment. 

Table 3.2: Deviation from 10 h-1 design air change rate (+ % indicates higher values from the AFN). 

cell (storey) scenario 1 scenario 2 scenario 3 
index I vmet = 5,24 m/s vmet = 2,11 m/s vmet = 0,85 m/s 
H 0,1% 3,3% 14,3% 
G -0,1% 1,8% 3,9% 
F -0,1% 0,8% 1,5% 
D -0,3% 0,2% 0,3% 
C -0,4% -0,3% -0,4% 
mean deviation -0,2% 1,2% 3,9% 

The model developed fits reasonably well, especially for combined wind and 

buoyancy driven flows with high wind velocities as in the case of scenario 1. For 

buoyant flow as the main driving force, and with low exhaust stack heights for the 

upper storeys 4 and 5 of the segment, it was figured out that there were some 

problems within the EnergyPlus AFN buoyant model. Together with the EnergyPlus 

support team and the responsible person for the AFN5, it was concluded that the 

buoyancy forced calculations were partly buggy, and right now buoyancy alone may 

not always provide meaningful solutions. More precisely, a warning was given from 

the EnergyPlus support, that the model in some cases just gave a rough estimation. 

Further compounding the problem, the author of this thesis found a bug in the code. 

The AFN does not calculate the local temperature at the opening node height; 

instead, the local temperature is taken from zero height (ground level). To overcome 

this problem, temperature in the inlet chimney is reduced by a system of ideal loads 

to virtually adapt the inflow external air temperature towards the temperature at local 

                                                 
5 Staff: Lixing Gu 
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height. All other E+ modules except the AFN seem to consider the temperature 

variation over height. The EnergyPlus support is slated to fix the bug in a future E+ 

version. 

Dynamic design day (‘Tool Step 2’) 

To validate ‘Tool Step 2’ of the tool developed, another EnergyPlus simulation – a 

three zones, one-storey model (3rd storey of a segment at 51 m start height), is 

created for dynamic design day boundary conditions (from § 5.3.3) with unchanging 

wind velocity. More details of the simulation setup can be found in § 6.3.1.  

In the first assessment, external conditions used in the developed tool are compared 

to the design day inputs used in the EnergyPlus simulation. As they are both based 

on the SWMD-approach developed before, they show identical properties as shown 

in Figure 3.31. 

 

Figure 3.31: Tool validation dynamic environmental input parameters  
for Istanbul extreme summer design day. 

The outcome of the most important test is shown in Figure 3.32. The comfort related 

parameters are compared to each other. Especially during occupancy, a good 

agreement was reached between the EXCEL-tool based simulations and EnergyPlus 

simulations. For Istanbul design day conditions, the most crucial parameter for 

system sizing, the peak internal operative temperature, has an aberration smaller than 

0,1 °C. Also, the internal humidity fits well, especially during the building 

occupation hours. 
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Figure 3.32: Tool validation dynamic internal output for Istanbul extreme summer design day  
and naturally ventilated base-case scenario. 

Finally, the dynamic electric analogies model is validated against the airflow 

network of AIRNET. A good agreement was achieved here as well, as shown in 

Figure 3.33. 

 

Figure 3.33: Tool validation dynamic air change rate for Istanbul extreme summer design day. 

3.3 Detailed Design Development through Energy Simulation 

To assess the potential of controlled natural ventilation in high-rise office buildings, 

the ‘HighVent’ design tool outputs, which are primarily the design parameters – the 

positioning and sizing of openings in the flow path, are ‘post-processed’ as inputs for 

detailed Building Energy Performance Simulations (BEPS) including AirFlow 

Networks (AFN).  

BEPS tools predict the energy performance of a given building and thermal comfort 

for its occupants. They support the understanding of how a building operates and 

allows comparisons of different design alternatives. Limitations apply to almost 

every available program of this kind today, and hence it is necessary to understand 

basic principles of energy simulation.  

Simulations are run to access long-term information about comfort, energy 

consumption and environmental impact. In contrast to the sizing tool developed, the 

overall annual performance for a specific climate including the mechanical systems 
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and controls can be considered. The simulations produce more data so that the active 

building performance can be compared to the passive approach developed. During 

the calculation process, the simulation takes into account the external climatic factors 

(see § 5.1), the internal heat sources, the Energy Management System (EMS) 

controls, the building constructions, the natural ventilation, and the mechanical 

systems to more accurately model the building. Building energy performance 

simulation therefore is a powerful method for studying the performance of buildings 

and for evaluating the architectural design decisions made.  

Simulation outputs indicate difficulties and guide the designer to modify the initial 

sizing parameters gathered from the ‘HighVent’ design tool if necessary. This 

detailed design development also includes the original natural ventilation controls 

developed and the hybrid cooling as a design alternative.  

Moreover, parametric analyses are intended to show the influence of system sizing 

parameters on the performance of the developed approach. The system can be resized 

by conducting a sensitivity analysis to study the relative impact of the design 

characteristics. 

3.3.1 Simulation environment 

The simulations are performed using the whole building energy performance 

simulation program EnergyPlus version 8.1. The program can model natural 

ventilation systems using an airflow network approach. EnergyPlus is an open source 

thermal simulation code developed for the United States Department of Energy. The 

availability of several software interfaces and the increasing number of models 

included contributes to the use of this tool both in design and research contexts. 

3.3.1.1 Building energy performance simulation 

EnergyPlus is modular in structure and uses the heat balance technique to 

dynamically simulate thermal loads with timesteps of less than one hour. In many 

aspects of the model, the level of detail is variable, e.g., calculation of solar gains and 

their distribution, surface convection algorithm, controls, adiabatic boundaries or full 

model, detailed mechanical systems or net load supply, number of timesteps per 

hour, etc. [122,128].  
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3.3.1.2 Airflow network 

EnergyPlus contains a fully-integrated network model for calculating building 

airflows and their impact on comfort and building energy use. The Airflow Network 

(AFN) consists of a set of nodes linked by airflow components and represents a 

simplified airflow model. The flow elements correspond to openings and calculate 

the airflow rates, and buoyancy flows are calculated by air density differences. 

The actual AFN model can be used for simulating the impacts of multi-zone airflows 

due to wind pressure and stack effects. The multi-zone airflow calculations are 

performed at the HVAC system timestep which, among other benefits, allows for 

modelling hybrid ventilation systems [130]. It can simulate several key components 

which influence airflow, e.g., cracks, ducts, fans, flow controllers, vertical large 

openings (windows and/or doors), horizontal openings, and passive stacks. With a 

well-mixed assumption, a building is subdivided into zones with homogeneous air 

properties. 

The EnergyPlus AFN is mainly based on the algorithms AIRNET [67] and COMIS 

[69]. EnergyPlus program was linked in an early version with COMIS including 

airflow in the zone load calculations [78]. In a later version, the AIRNET/CONTAM 

model was introduced in EnergyPlus and replaced most of the previous links [130].  

3.3.1.3 Building energy management system 

Starting from 2009, the relatively new Energy Management System (EMS) feature 

[131] in EnergyPlus provides a way to develop custom rule-based control routines 

allowing fine details of how the model runs basically with defined sensors and actors 

(such as temperature sensors and opening damper actors). This high-level, 

supervisory control can override or extend some annoying predefined behaviour and 

therefore solve many problems faced by energy modellers. A small programming 

language called EnergyPlus Runtime Language (Erl) is used to describe the control 

algorithms.  

3.3.1.4 Geometry editor 

The Open Studio plug-in for Google’s SketchUp was also created by the National 

Renewable Energy Laboratory for the U.S. Department of Energy. It is mainly a 

geometry editor for EnergyPlus. It allows creating the building geometry from 
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scratch by adding, modifying or deleting, e.g., thermal zones, heat transfer surfaces, 

windows, and other openings or shading surfaces. The plugin can read EnergyPlus 

input files, whether or not they were drawn with the plugin.  

3.3.1.5 Model limitations and surface convection 

There are several assumptions to be made from the program internal calculations and 

by the person using the simulation environment. Weather data and user input such as 

internal heat gains and the thermodynamic concepts for energy simulation are 

already based on assumptions. These assumptions are necessary so that complex 

interactions can be simplified and managed. The program user needs to be aware of 

this fact and must be able to decide whether they are reasonable for the specified 

simulation task. Therefore, for the generation of realistic and reliable simulation 

results, thermal processes need to be understood, and limitations of the programs 

need to be known. Easy-to-use interfaces alone therefore do not make energy 

analysis available to everyone. Building energy performance simulation is typically 

used to compare design alternatives, rather than to predict the actual energy 

performance of buildings. To discuss all limitations within the simulation program 

would exceed the scope of this thesis. Maile et al. [132] documented approximations, 

assumptions, and simplifications in Building Energy Performance Simulation. Lixing 

Gu [130] described the input objects, calculation procedures, model validation, and 

example results for the airflow network model in EnergyPlus. 

For example, one parameter mainly affecting the performance of night-time 

ventilation is the heat transfer at the internal room surfaces. The surface convective 

heat transfer is simulated separately from radiation by a convective heat transfer 

coefficient and by the temperature difference between the room air and the internal 

surface. Especially, the assessment of heat transfer by convection is strongly 

simplified when compared to the current state of modelling of radiation and 

conduction [133], and is a high priority research topic [134]. BEPS programs like 

EnergyPlus assume isothermal surfaces, approximating a complete zone by only one 

air node and select an appropriate value for the convective heat transfer coefficient 

(CHTC) at each timestep and for each surface. Algorithms based on ACH or supply 

air temperature are developed for mechanical systems, and therefore have to be used 

with care when natural ventilation (E+ internally processed as infiltration) is applied 
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since the CHTC calculations might be based on wrong parameters. When simulating 

a building with night ventilation, this becomes increasingly problematic because 

convective cooling is a major parameter. Increased convection can be expected due 

to high forced airflow rates and the possibility of a cold air jet flowing along the 

ceiling, but the magnitude of these effects is hard to predict [2]. Moreover, 

experiments with displacement ventilation supplying the cool air at the floor level by 

diffusers showed that to a large extent the convective heat transfer occurs at the floor 

surfaces. For example, for this configuration Novoselac et al. [38] measured a 

convective heat flux at the floor surface from 51 to 82% of the total convective 

surface heat flux. By cooling down the floor, this surface then represents a radiative 

sink for the other room surfaces. Thus, correlation formulae or values are only rule-

of-thumb formulae, and may not take into account the specific flow details in the 

regions adjacent to the walls and the spatial variability. However, Artmann et al. 

[135] found significant sensitivity to heat transfer only for total heat transfer 

coefficients below about 4 - 8W/m2-K depending on the level of thermal mass.  

The European standard EN ISO 13791 provides general criteria and calculation 

procedures for the summer thermal performance of buildings without mechanical 

cooling. Values for the convective heat transfer coefficients for internal surfaces are 

given with 2,5 W/m²-K for vertical surfaces (e.g., wall), 5,0 W/m²-K for horizontal 

surfaces (e.g., ceiling and floor) with upward heat flow (e.g., temp. floor > air), and 

0,7 W/m²-K for horizontal surfaces with downward heat flow (e.g., temp. ceiling > 

air). The CIBSE traditional average value of 3 W/m²-K for all internal surfaces can 

be considered close but less detailed compared to the ones provided by 

EN ISO 13791. 

However, in this study and for the adapted passive and hybrid cases as specified in 

the overview in Table 6.3, the convective heat transfer coefficients of the 

EN ISO 13791 standard are applied to the simulation model. These values are used 

as this study is intended to generally determine the night-cooling potential for 

naturally ventilated buildings, without going too much into the details of how the 

flow is exactly distributed (e.g., via displacement, mixing or cross ventilation). 

Moreover, for the horizontal surfaces the CHTC is programmed by the author of this 

thesis dynamically with the EMS Runtime Language, depending on the heat flow 

direction.  
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For the mechanically operated as-built reference case, the EnergyPlus default TARP 

[122] algorithm was employed. TARP is a comprehensive natural convection model 

derived by Walton [136] based on ASHRAE literature [92]. 

Another fundamental simplification of the thermal zone calculation method utilised 

is the so-called well-mixed assumption. This treats that the air in each zone is 

modelled as well-mixed with uniform temperature throughout. Moreover, the surface 

temperatures are treated to be uniform, and the long and short wave irradiation and 

heat conduction are one dimensional. [137] 

3.3.1.6 Thermal Comfort 

To assess the thermal comfort, the European CEN 15251 standard ‘Indoor 

environmental input parameters for design and assessment of energy performance of 

buildings addressing indoor air quality, thermal environment, lighting and acoustics’ 

[41] is applied. These parameters account for people’s clothing adaptation in 

naturally conditioned spaces by relating the acceptable range of indoor temperatures 

to the outdoor climate. EnergyPlus version 8.1 is able to report directly the thermal 

comfort based on the adaptive comfort criteria as output for each zone.  

In addition to the CEN standard, and since air humidity is a driving factor for thermal 

comfort, the resulting indoor air properties during building occupancy are also 

analysed by psychrometric charts and by the occurrence frequency during 

occupancy. 

3.3.2 Control strategies for the naturally ventilated offices 

The control strategy for natural ventilation developed here serves to ensure 

acceptable air quality, compliance with the limits of comfort, and a best possible 

energy efficient building operation. Energy efficiency is achieved by means of 

passive cooling and by optimal fresh air control during winter operation. However, 

for the sake of simplicity, the following rule-based prediction is utilised. The EMS 

(Energy Management System) control algorithm is implemented in the EnergyPlus 

simulation model and serves the following components: 

• Indoor air quality control by replacing polluted air by external air during 

occupation. 
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• Advective daytime ventilation to directly cool building interiors by replacing 

warm indoor air with cooler outdoor air when conditions are favourable. 

• Personal daytime ventilation to directly cool building occupants by directing 

cool outdoor air over building occupants at sufficient velocity to enhance 

convective transport of heat and moisture from the occupants in the hottest 

season. According to Givoni [8] (see § 5.2.2), a breeze of about 2 m/s effectively 

enhances convective transport of heat and moisture from the occupants. Also, the 

external temperature should not be colder than 20 °C. As the models utilised in 

this study calculate the volume flow rather than the air velocities, these internal 

air velocities are considered here with an intense target ventilation rate of 15 h-1.  

• Night ventilation to precool the building’s structure by exploiting cool ambient 

temperatures. Care must be taken not to overcool the building, especially for the 

next morning. 

Table 3.3: Overview of the modelled natural ventilation controls. 

IAQ control advective cooling personal cooling precooling 
enable criteria 

• during occupation 
• if hybrid systems = off 

• during occupation 
• if hybrid systems = off 

• during occupation 
• if hybrid systems = off 

• during non-occupation 
• if previous day 

average afternoon 
external air  
temp. > 16 °C 

start operation criteria 
• if number of  

occupants > 0 
• if indoor temp. > min. 

temp. (Figure 3.35) 
• if indoor temp. > min. 

temp. (Figure 3.35) 
• if external air  

temp. > 20 °C 

• if indoor temp. > min. 
temp. (Figure 3.35) 

• if external air  
temp. > 12 °C 

end operation criteria 
• if number of  

occupants = 0 
• if indoor temp. < min. 

temp. (Figure 3.35) 
• if indoor temp. < min. 

temp. (Figure 3.35) 
• if external air  

temp. < 20 °C 

• if indoor temp. < min. 
temp. (Figure 3.35) 

• if external air  
temp. < 12 °C 

operation period 
• enable operation 

during entire period 
• enable operation 

during day  
from 7-19h 

• enable operation 
during day  
from 11-19h 

• enable operation 
during night  
from 19-7h 

target air change rate 
• 14 litres per second 

per person 
• 0 - 10 air changes per 

hour 
• 10 - 15 air changes per 

hour  
• 0 - 15 air changes per 

hour 

3.3.2.1 Rules on indoor air quality 

This is the primary winter control mode during times of occupation. The main 

difficulty is to provide sufficient, but not excessive background ventilation while 

avoiding draughts. Moreover, ventilative heat losses should be minimised. Therefore, 
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to keep the ventilation rates sufficient but at a minimum level, ventilation occurs 

only during occupation of the office space. The amount of ventilation required is 

defined by 14 litres per second per person, which is the initial amount the HVAC 

systems control was planned for by ARUP6. This volume flow is at the upper limit 

for medium indoor air quality according to the EN 13779 standard [55], which is 

15 l/s-person. So, the control does not again reflect the actual usage (2 ACH 

according to § 4.2.4) of the building but only the initial design values. To avoid 

droughts, the naturally forced incoming air in the heating season is preheated to 

17 °C in the sub-floor distribution system, which is also the setback temperature 

setpoint of the office zones during night. 

3.3.2.2 Rules on cooling 

During daytime 

Field tests in the RADEX-building in the context of the NatVent study [106] (see 

§ 2.5.4) showed that the occupants would not accept frequent adjustment positions of 

the windows. Therefore, to avoid such frequent adjustments, the windows of the 

prototype developed were not controlled by simple feedback control. Instead, a 

predictive control system was applied, which aims to put the tilt angle of the 

openings in a position that is most likely the best for stabilising the internal operative 

temperature for the next period. Windows were adjusted only at proper moments 

when the office space was not occupied. 

The control algorithms developed in the context of this research, to some extent are 

adapted from the feedforward controls described. The apertures should be opened 

and closed in such a way that the building can be kept between the limits of comfort, 

and in hot season should be able to cool the occupants by directing the cool outdoor 

air at sufficient velocity. However, the control can adjust every 10 minutes, which is 

the timestep of simulations. But because of the thermal reservoir or capacity of the 

office space, the control cannot end up in an on/off situation and is only slowly 

adapting according the internal temperature. Besides this, the opening control does 

not target a window opening angle with an unknown air exchange, but a target air 

change rate, which is based on pre-calculated pressure drops and flow resistances 

between the inlets and the outlets (see § 3.3.2.3 below). The maximum target air 

                                                 
6 ARUP, Kanyon office block mechanic installation report, 2003, Turkey 
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change rate is 15 ACH if the external air temperature is above 20 °C and 10 ACH if 

below 20 °C. 

The ventilation rate is controlled in a way to keep internal temperature within the 

comfort limits. If the operative temperature exceeds the lower limit of comfort, 

category I (Tc1,min) [41], but not smaller than 21,75 °C (so as not to drop below the 

heating setpoint), ventilation for cooling is switched on. The control therefore does 

not target a static lower boundary setpoint but the adaptive comfort limit, depending 

on the weighted mean external temperature of the previous week (see § 2.6.3). The 

more this lower temperature limit is exceeded, the higher the target air change rate 

will be. Two amplifiers are intended to raise the target air change rate: one 

exponentially (ε = 2) raises the value depending on the operative temperature above 

the comfort lower comfort limit; the other, is linear (λ according to Figure 3.34), 

dependent only on the external air temperature and aims to reduce the risk of 

draught, and also assists to prevent overcooling: 

(�[������ = � ∙ ��w� − ��",f��� 
 (3.38)

 

Figure 3.34: Linear amplifier correction factor λ dependent on the external temperature. 

For example, if the operative indoor temperature is 1,5 °C above comfort category I 

and the external air temperature is 17,0 °C, then the openings are controlled in such a 

way as to achieve 6,5 air changes per hour.  

The two amplifiers can be adapted depending on the climate, and building design and 

operation (e.g., heat gains from interiors and the transmitted solar radiation). 

Theoretically, if the occupant does not accept these air change rates, they can be 

manually overridden. 
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the next day the indoor climate can be kept between the comfort limits. The 

temperature limits are set below comfort conditions because comfort is then not a 

relevant factor. The control therefore first targets to keep the temperature below 

comfort conditions if the external conditions are suitable. External conditions are 

assumed as suitable only if the previous day’s afternoon temperature was above 

16 °C. It then raises the temperature to comfortable conditions before the morning 

hours so as not to create discomfort at the beginning of occupation. Again, the 

algorithm adapts itself to account for the colder inside air. By this procedure, the 

building is precooled and prepared to withstand heat gains during the office hours. 

 

Figure 3.35: Ventilative cooling lower temperature limit for night-time ventilation in warm period. 

3.3.2.3 Placement of sensors and actors 

The openings are controlled by sensors and actors, included into the virtual building 

energy management system, which for the aim of this study is programmed inside 

EnergyPlus with the Runtime Language. The objective of the control algorithm is to 

achieve relatively constant air change rates by control of the flow resistance as 

described in § 3.2.1.2, and from the knowledge of actual driving forces as described 

in § 3.2.1.1. For predicting the dynamic driving forces (pressure differences), sensors 

have to be placed outside and inside the building. In the model, external sensors 

measure the wind speed and the temperature.  

If the hybrid cooling and ventilation in the office rooms is operating, then the inlet 

chimney is connected to the outlet chimney by a bypass to remove the heat directly 

from the data centres (see Figure 3.36). 
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Table 3.4: List of sensors for flow control in the EMS model. 

sensors 
external wind velocity vz m/s 
external temperature TE °C 
supply chimney temperature (if ≠ TE) TA °C 
office internal temperatures TI °C 
exhaust chimney temperature (if ≠ TI) TB °C 

The wind pressure difference between the inlets and the outlets can then be 

calculated together with the wind pressure coefficient gathered from the wind tunnel 

experiments. The buoyant pressure differences are calculated according to the 

differences in height and temperature. With the knowledge of adjustable flow 

resistance or pressure drop of each opening, the volume flow can be controlled 

according to the target air change rates of each cell. 

9:: = �; ∙ (�%% ∙ <2 ∙ |∆�|����  (3.39)

To control the unintended infiltration through the building envelope, the openings are 

controlled at the inlets and the outlets of each storey. This has the advantage that the 

openings are controlled at low stack heights, e.g., not pulling air from the storey 

envelop to the high level chimney exhaust during winter operation, when buoyancy 

forces due to large temperature differences are very strong. 

 

Figure 3.36: Placement of the controlled openings (actors). 
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In real world applications of this approach, the EMS might not have all the 

information necessary to predict the resulting air change rate and to control effective 

opening areas. In such cases, local pressure sensors may fill the knowledge gap, e.g., 

the local wind speed and the pressure coefficients. Also, if the external conditions are 

not measured locally but globally, e.g., at the top of the building, the wind sensor has 

to be placed in a free stream region not to be influenced by local turbulences. Global 

environmental sensor inputs can then be used to calculate the local conditions at the 

supply chimney inlet and the exhaust chimney outlet of each building segment 

according the method described before (see § 3.2.1.1). Internal temperature and 

pressure sensors have to be carefully placed, which in the dynamic EnergyPlus 

model is less critical due to a well-mixed air temperature assumption in each zone. 

3.3.2.4 Operation Examples 

Figure 3.37 and Figure 3.38 give insight into the EMS natural ventilation control 

over the course of typical design weeks. According to the controls described, 

intended natural airflow is on if (i) the building is occupied, or (ii) the internal lower 

operative temperature limit is exceeded. During nights, with a previous day afternoon 

mean external temperature above 16 °C, night ventilation operates at lower 

temperature limits. Ventilations rates stay low for providing fresh air only, rising fast 

in warm periods when the internal temperatures are high. 

 

Figure 3.37: Resulting EMS controlled air change rate for a typical spring week in Istanbul. 
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If the natural driving forces are too small to achieve the target air change rate, the 

resulting air change rate corresponds to this smaller amount of air exchange as 

exemplarily shown in Figure 3.38. 

 

Figure 3.38: Resulting EMS controlled air change rate for a typical summer week in Istanbul. 

3.3.3 Final natural ventilation system sizing 

As the volume of a building is an expensive resource, the designer needs to do a 

weighting between the expected adaptive comfort and the size of the natural 

ventilation system. Design alternatives should be analysed and discussed climate 

specific. If a hybrid approach is applied, the mechanical system installation and 

energy consumption is also a parameter to be taken into consideration. 

3.3.3.1 Natural ventilation potentials 

Achievable air change rates depend on the climate and season, the chosen system 

size, and the ventilation controls. In winter, natural ventilation is mainly used to limit 

the CO2 levels. For a detailed dynamic analysis of the flow potential for natural 

ventilation systems, the entire system including controls has to be simulated, since 

the ventilation is not driven just by external conditions, but by an interaction of 

internal and external conditions, e.g., ambient and indoor temperatures, and dynamic 

wind velocity (for driving forces, see § 3.2.1.1).  

3.3.3.2 Adaptive thermal comfort 

Apart from the air change rates, which directly influence air quality, thermal comfort 

is a crucial indicator for evaluating the natural ventilation concepts. The orifice 
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dimensions can be resized until certain comfort expectations are fulfilled by 

simulation. 

Recommended criteria for acceptable deviations in comfort, investigated by whole 

year computer simulations, are given in the EN 15251 standard [41]. According to 

the informative Annex G in this standard, the indoor environment of the building 

meets the criteria of a specific category when ‘the parameter in the rooms 

representing 95% of the occupied space is not more than as example 3% (or 5%) of 

occupied hours a day, a week, a month and a year outside the limits of the specified 

category.’ Further, ‘By dynamic computer simulations it is possible for 

representative spaces in a building to calculate the space temperatures, ventilation 

rates and/or CO2 concentrations. It is then calculated how the temperatures are 

distributed between the 4 categories. This is done by a floor area weighted average 

for 95 % of the building spaces.’ 

3.4 Design Evaluation 

The most important factors influencing passive and hybrid cooling performance are 

ventilation rates, controls, heat gains, building mass and climatic conditions. It can 

be assumed that if thermal comfort can be guaranteed without air-conditioning, then 

significant cooling and ventilation energy conservation can be achieved [64]. The 

assessment can be carried out with the help of performance indicators, and the results 

are intended to assist decision making in the design phase. Indicators proposed to 

evaluate the functionality are the energy consumption compared to that of 

mechanical ventilation and cooling systems, and compliance with the thermal 

comfort limits for users; additional aspects are the ventilation rates and the indoor air 

quality reached. 
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Figure 3.39: Performance evaluation wheel developed to access simulated passive cooling design. 

Thermal comfort expectations (e.g., adaptive with a wider range of conditions) must 

be discussed and ultimately accepted by all the project stakeholders. The reference 

thermal comfort standard recommended as baseline is the EN 15251 standard [41], 

which accounts for both buildings with and without mechanical cooling systems. In 

this standard, in addition to the indoor operative temperatures, recommended air 

humidity levels are considered only if humidification or dehumidification systems 

are installed. Nevertheless, humidity levels have a big impact on comfort. Therefore, 

to support the feasibility assessment of energy efficient building design, these should 

also be reported for free-running situations, thus paying attention to the most 

important thermal comfort mechanisms for a given climate. 

For the estimation of energy conservation, simulation outputs for the passive and the 

hybrid scenarios must be compared to those of active scenarios with mechanical 

ventilation and cooling systems. Based on the energy savings, the environmental 

benefit can be calculated from the country-specific data from the Global Emission 

Model for Integrated Systems (GEMIS) database [138]. 

The design evaluation is structured as shown in Figure 3.39: 

• Weekly design profiles give insight into the functioning of natural ventilation 

systems and are helpful in analysing the opening control and the quality of 

indoor air. 

• Annual assessment gives insight into the overall functionality of naturally 

controlled and hybrid operation throughout the year. 
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3.5 Conclusions 

For the building type and climate considered, natural ventilation is not a stand-alone 

solution for good summer comfort. Instead, ventilative cooling must be brought in 

with other measures to reduce heat gains, and to use the building as heat sink for 

night-time ventilation. Hence, a building must be first conceptually adapted to reduce 

heat gains and to provide a sufficient amount of accessible mass for night-ventilation. 

Focusing on natural ventilation, a design concept was developed for wide-shaped 

high-rise buildings where simple cross ventilation or single-sided ventilation is 

impractical to realise. A central void design was found best suited, as it allows cross-

ventilation of the occupied space towards a central chimney in the core, from where 

warm air rises upwards, towards a high level exhaust. The building is also virtually 

cut into modular segments to restrict the system dimensions (e.g., chimney diameter) 

and the peak pressure drops in winter (at high temperature differences). With a single 

chimney the size of the ventilation system simply would be too big to be realised in 

practice, but with isolated segments, each segment can be treated as a low-rise or 

medium-rise building. To guarantee the intended flow direction from the perimeter 

towards the core, besides a commonly used, leeward chimney exhaust, also a 

commonly used windward supply inlet is recommended. Intermediate ‘wind floors’ 

between the segments are outlined with two wind adapting openings in windward 

(positive wind pressure supply) and leeward (negative wind pressure exhaust) 

orientation. The central chimney is therefore designed to serve the occupied space 

with fresh air supply and exhaust.  

The spread-sheet based ‘HighVent’ design tool was developed to size the openings 

of a flow path, especially in the context of segmented, high-rise office buildings. 

Simple electrical circuit analogies, for both ventilation and thermal models, were 

found to be suitable to pre-design the natural ventilation systems. This includes 

advice if a certain adaptive thermal comfort criteria can be reached for a summer 

design day. The correctness of the results could be proved by a comparative 

validation against the EnergyPlus building energy simulation program, which was 

found to be in good agreement. Considering the conceptually adapted buildings, 

uncontrolled design air change rates are estimated. The ventilation systems are then 

sized dependent on this design air change rate and average local wind velocities. 
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To assess the overall annual performance for a specific climate, in a next step, the 

building is modelled with Building Energy Performance Simulation (BEPS) along 

with the passive approach design adaptations developed. The ‘HighVent’ design tool 

outputs are ‘post-processed’ as inputs for detailed simulations including the 

mechanical systems. The custom natural ventilation system control, targets to 

achieve (i) good indoor air quality according to EN 13779 [55], and (ii) stay within 

adaptive comfort limits according to EN 15251 [55]. During ventilative cooling 

operation (day and night), the system target air change rate is increased the more the 

lower adaptive temperature limit (category I) is exceeded. Two amplifiers are 

intended to raise the target air change, one exponentially dependent on the operative 

temperature above the lower comfort limit; the other one is linear and dependent only 

on the external air temperature. At night, the system aims to precool the building by 

lowering the indoor temperature below comfort conditions, and raising the 

temperatures again before the beginning of occupation. The mean monthly air 

change rates are then dependent on the climate and season, and on the chosen system 

size. The target air change rate represents the amount of air the EMS control aims to 

realise, whereas the reached air change rate is the smaller amount of ventilation 

appearing in the simulation.  

However, thermal comfort is the most crucial indicator for evaluating passive 

cooling concepts. Recommended criteria for acceptable deviations in comfort, 

investigated by whole year computer simulations are given in the EN 15251 standard 

[55]. The operative temperatures are distributed between the 4 categories and 

occupied space should not be more than 3% (or 5%) outside the limits of the 

specified category (defined as category II). The annual comfort distribution is first 

accessed for opening sizes according to the design tool outputs. By repeating the 

simulations without improved shadings and/or without mass activated construction 

elements, the influence of those measures could be investigated separately. For the 

final system sizing, the simulations can be repeated with different orifice sizes (flow 

path resistances); for example with reduced natural ventilation system sizes 

according to architectural sizing limits if necessary. 
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4. THE KANYON CASE-STUDY BUILDING 

For an in-depth investigation of the objectives laid out in the thesis framework, the 

Kanyon high-rise office tower, situated in Istanbul (41,0°N, 28,6°E), Turkey, has 

been selected as the benchmark case-study building. This location has been chosen 

because of its highest density of high energy consuming office buildings in Turkey. 

Also, access to the building related data was readily provided by the management of 

the Kanyon-Multiplex. This chapter describes the main characteristic features of this 

building. The following is a generic description of the building according to the 

building architects7: ‘Kanyon, one of Europe’s largest mixed-use districts, introduces 

a new concept for urban living in Levent, Istanbul’s central business district. The 

Jerde Partnership and Tabanlioglu Architects designed the state-of-the-art project to 

combine 2.74 million sq ft of modern offices, luxury residences with local and 

upscale retailers in an organic, open-air design that includes an amphitheatre, 

plazas and rooftop park spaces where workers, residents and visitors can gather’. 

4.1 Site 

The Kanyon multiplex rises on an area of 29 500 m² in Levent, Istanbul’s central 

business district. Its mixed-use includes 33 000 m² of residential space, 31 000 m² of 

office space, an 8 000 m² entertainment area including a cinema, 37 500 m² of 

rentable retail space, and parking for 2 300 cars (Figure 4.2 to Figure 4.4). 

 

Figure 4.1: Location (purple dot in the map) of the case-study site (Source: Apple Maps). 

                                                 
7 The Jerde Partnership (http://www.jerde.com/news/68.html) and Tabanlioglu Architects 
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Figure 4.2: Kanyon site with the office tower cross and longitudinal sections  
(Source: The Jerde Partnership). 

 

Figure 4.3: Kanyon site plan at height of the residential / cinema floor  
(Source: The Jerde Partnership). 

 

Figure 4.4: Pictures of the Kanyon multiplex including the office tower  
(Source: The Jerde Partnership and Google’s free access building models for SketchUp). 
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4.2 Office Tower 

Location: Istanbul, Turkey 

Architect: The Jerde Partnership 

 Tabanlıoğlu Architects 

Engineer: Arup Ltd. 

Year of completion: 2006 

Building function: Office space 

Height8: 118 m above ground 

Stories: 28 above ground / 25 offices 

Total gross area: about 34 000 m2 above ground 

Conditioned area:  about 28 000 m2 above ground 

Gross internal area: 1 229 m2 per floor (100%) 

Net internal area9: about 1 000 m2 per floor (81%) 

Gross office area:  935 m2 per floor (100%) 

Net office area9: about 850 m2 per floor (91%) 

Structural material: Concrete 

Plan depth: 8 to 11 m (from central core) 

Storey height:  4,00 m (office floors) 

Ceiling height: 2,90 m (offices) to 3,00 m (core) 
Figure 4.5: Kanyon office tower 

cross-section. 

4.2.1 Introduction 

The Kanyon office tower is a 28-level tower with a curved, highly glazed façade. 

The transparent glass increases visibility and offers the benefit of maximum natural 

light in the work areas. A shading system on the south side of the tower is intended 

to reduce the heat impact from the sun. The building includes modular office spaces 

that offer flexibility for the needs of the companies. Open plan geometry around the 

core (Figure 4.6) was therefore chosen to allow the floor space to be used for 

different sized units, i.e., for individual, combined, and open plan offices. The floor 

spaces are arranged around a central services core with a depth of approximately 8 to 

11 m, and provide the flexibility to accommodate a range of functions. The storey 

height, apart from the two ground floors (5,5 m), is 4,0 m.  

                                                 
8 From the ground level at street height where also the building’s main entrance is located 
9 The floor area contained within the building measured less the floor areas taken up by the external and internal walls, enclosed 
machinery rooms, stairs and escalators, mechanical and electrical services, columns, ducts and risers. 
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Figure 4.6: Kanyon storey plan geometry (dark grey = core area / light grey = office area). 

 

 

Figure 4.7: Exemplary office plan. Figure 4.8: Exemplary office section. 

 

Figure 4.9: Three pictures taken from an exemplary office storey interior (shot by the author). 

4.2.2 Construction elements 

Typical of the high-rise building type, the framework was built with steel and 

concrete from which curtain walls are suspended, rather than load-bearing walls of 

conventional construction. The core and the floors therefore employ a steel skeleton 
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construction made of reinforced concrete. The curtain wall envelope is highly glazed 

by Low-E double glazing with a ratio of approximately 89%. 

4.2.2.1 Opaque construction elements 

From the architectural drawings, the following major composite construction 

elements, as shown in Table 4.1, were first gathered and then specified in the 

building energy simulation model. 

Table 4.1: Thermal properties of the building construction elements also incorporated to the model. 

construction name material name thickness in m layer 
curtain wall aluminium 0,0020 outside layer 
u-value = 0,29 W/m²-K xps extruded polystyrene 0,0200 layer 2 

wall air space 0,1000 layer 3 
mw stonewool rolls 0,1000 layer 4 
stainless steel 0,0010 inside layer 

internal floor gypsum plasterboard 0,0125 outside layer 
u-value = 0,98 W/m²-K ceiling air space 0,9900 layer 2 

concrete reinforced 0,1250 layer 3 
ceiling air space 0,1700 layer 4 
plywood 0,0300 layer 5 
carpet 0,0060 inside layer 

heavyweight internal wall oak wood 0,0130 outside layer 
u-value = 1,40 W/m²-K wall air space 0,0250 layer 2 

concrete reinforced  0,4000 layer 3 
wall air space 0,0250 layer 4 
oak wood 0,0130 inside layer 

lightweight internal partition gypsum plasterboard 0,0125 outside layer 
u-value = 4,00 W/m²-K wall air space 0,0500 layer 2 
 gypsum plasterboard 0,0125 inside layer 

The thermal properties of the building construction materials are collected from 

different sources and are summarised in Table 4.2. 

Table 4.2: Thermal properties of the building construction materials also incorporated to the model. 

name source conductivity 
in W/m-K 

specific heat  
in J/kg-K 

density  
in kg/m³ 

aluminium ISO 10456 160 880 2 800 
XPS extruded polystyrene Uralita S.A. 0,034 1 400 35 
MW stone wool rolls Uralita S.A. 0,040 840 30 
stainless steel ISO 10456 17 460 7 900 
gypsum plasterboard ISO 10456 0,250 1 000 9 00 
concrete reinforced ISO 10456 2,5 1 000 2 400 
plywood ASHRAE 05 0,12 1 210 544 
carpet ISO 10456 0,060 1 300 200 
oak-wood ASHRAE 05 0,17 1 630 704 
name source thermal resistance in m2-K/W  
wall air space ASHRAE 05 0,15  
ceiling air space ASHRAE 05 0,18  
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4.2.2.2 Window glazing 

According to the manufacturer, the highly glazed façade of the office tower was 

designed to provide maximum daylight transmittance for the occupants. To reduce 

heat gains, the tempered outer glazing was coated by invisible silver low-emittance 

(low-E) coating. This is a glazing type with microscopically thin and virtually 

invisible metal or metallic oxide layers deposited on the glazing surface, primarily to 

reduce radiative heat flow. An optimum low-E coating is transparent to the visible 

solar spectrum to provide maximum light, and reflective of long-wave infrared 

radiation to block solar heat gains. The design also provides the necessary resistance 

against high wind loads and sets a security system by preventing any injuries that 

would occur if a window bursts. The partly tempered inner glazing is composed of 

two layers of polyvinyl butyral (PVB) laminated glazing. 

Table 4.3: Thermal and visual properties of the window glazing10. 

LoE doulble glazing initial values as 
specifications 

from the planners 

catalogue values 
6 mm IMF 170 
+ 12 mm AB  
+ 6mm DC 

adapted actual combination 
8 mm IMF 170  
+ 16 mm AB  

+ (4+1,52+4mm) 
daylight transmittance 70% 70% 68% 
daylight reflectance 10% 13% 12% 
shading coefficient 0,54 0,56 0,51 
solar transmission (SHGC) 0,47 0,487 0,444 
U-Value (EN 673 is used) 1,4 W/m2-K 1,7 W/m2-K 1,4 W/m2-K 
emissivity < 0,20 0,07 0,07 

4.2.2.3 Shading devices 

Both internal and external devices shade the office zones. The uniform external 

shading device in summer only partly shades the windows due to their size and also 

due to the fact that the devices were not selected according to the orientation of the 

windows. 

External 

The uniform, external shading devices are designed to allow a free view for the 

office occupants and to support the architectural appearance of the building 

composition. Less importance was given to shade the windows and to reduce the 

incoming heat and the risk of overheating.  

                                                 
10 Technical specifications from the glazing production company Trakya Cam Sanayii A.Ş. 
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The seven differently sized horizontal shading devices (Figure 4.10 and  

Figure 4.11) on each floor are mounted from south-west till south-east façade (see 

Figure 4.7). They are made of beige-silver coloured stainless steel and mounted by a 

rigid façade suspension. Because of the solar path of the sun, the highly glazed 

façade is only party shaded, depending on the season, time and orientation. 

Horizontal shading devices generally work best for south mountings. For east and 

west aspects, the sun will be low in the sky for long periods. This means that the sun 

will come in underneath the horizontal shading devices, making them more 

ineffective compared to the south orientation. Therefore, with the actual shading 

devices a partial overheating due to intense solar beam gains occurs with clear sky 

from external windows. 

  

Figure 4.10: Shading devices from inside. Figure 4.11: External shading device drawing detail. 

Simulations done in the context of this study indicate that the actual shading devices 

reduce the building’s overall transmitted solar gains only by 11% in the cooling 

season (for the definition of cooling season, see § 5.1.4) compared to a case without 

any external shading devices. 

 

Figure 4.12: Simulated effectiveness of the actual shading devices in a typical summer and winter 
week period according to the ASHRAE IEWC weather data (storey net floor area = 1 000m²). 
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Internal 

Internal vertical blinds successfully control light, block glare, and provide privacy 

but do not achieve effective heat control unlike external blinds. The semi-transparent 

rolled up interior sunblinds used in the Kanyon building are made of textile (Figure 

4.9). According to the Kanyon management, the sunblinds are automatically 

controlled by the solar intensity, but setpoints and position of the irradiance meter are 

not known. For the simulation model, it was assumed that the internal shades do not 

significantly influence the heat balance of the building, and as such are not 

investigated further. 

4.2.3 Internal heat gains 

The building's heat balance, besides the solar heat gains, is strongly affected by its 

internal heat gains. From interviews with the energy management and from the 

energy metering data of 2007 to 2009, it can be concluded that the building has high 

internal heat gains. From the available data, the internal heat gains are assumed as 

summarised in Figure 4.13. Further information on the underlying approximations is 

given in the following paragraphs. 

 

Figure 4.13: Mean actual internal heat gains modelled related to the total net storey area including the 
core and data centres. 

People 

Interviews with the Kanyon’s building energy management indicated that there are 

approximately 62 persons working on each storey, which is a rather light occupant 

density per area. The heat gain rate from people working in the office is assumed to 

be 108 W person-1, which is the E+ default value, and is consistent with typical office 
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work according to the ASHRAE HoF [27]. The radiant fraction is assumed to be 

50%, which again is the E+ default value. The offices are assumed to be occupied 

from 7 am to 7 pm on working days. 

Lights 

From the available as-built drawings of the Kanyon office tower’s 23rd storey, the 

installed approximate lighting power densities are 8,8 W/m² in the office space and 

5,0 W/m² in the core space.  

According to interviews with the Kanyon’s management, the central energy 

management system controls the lights of the core and the inner part of the office 

area, which is a corridor around the core region, to be on from 7 am to 7 pm. At 

nights and during weekends, the power density is reduced to a level of about 25% in 

the core space and 5% in the office space.  

For 80% of the office area from 7 am to 7 pm lighting is controlled by the occupants. 

It is assumed that the occupants turn the lights on and off at 500 lux at desk level in 

the centre of the office area in two steps. The first step reduces the amount of 

artificial light by 50% and the second step turns the light off. 

Equipment 

Interviews with the Kanyon’s energy management team, and metering protocols 

from 2007 to 2009 also indicate that the equipment loads are medium heavy, even if 

the people density per workspace is low. Because the equipment was not separately 

metered, a density with 12 W/m² is taken into consideration, which is close to the 

medium load recommended by ASHREA HoF [27].  

Table 4.4: Recommended [27]equipment load factors for various office types according to [139]. 

load density 
of the office 

load factor  
in W/m² 

description 

light 5,4 assumes 15,5 m²/workstation (6,5 workstations per 100 m²) with 
computer and monitor at each plus printer and fax. computer, 
monitor, and fax diversity 0,67, printer diversity 0,33 

medium 10,8 assumes 11,6 m²/workstation (8,5 workstations per 100 m²) with 
computer and monitor at each plus printer and fax. computer, 
monitor, and fax diversity 0,75, printer diversity 0,50 

medium/heavy 16,1 assumes 9,3 m²/workstation (11 workstations per 100 m²) with 
computer and monitor at each plus printer and fax. computer and 
monitor diversity 0,75, printer and fax diversity 0,50 

heavy 21,5 assumes 7,8 m²/workstation (13 workstations per 100 m²) with 
computer and monitor at each plus printer and fax. computer and 
monitor diversity 1,0, printer and fax diversity 0,50 
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IT-Rooms 

The Kanyon office tower building comprises data centre rooms for different 

companies. The IT equipment is mostly located in the core of the building. Even on 

some storeys, the companies extend the area towards the office area outside the core 

(see Figure 4.6). At least within the core, the IT rooms are insulated; there are no 

solar gains, and they are mostly unoccupied and operate 24 hours a day. The room 

requires no mechanical heating system due to its high internal heat gains from the 

computer equipment. There is an additional mechanical cooling system installed to 

cool the rooms when the rest of the building does not require any cooling. From the 

metering, 10 kW electricity load is roughly assumed as the mean IT-load for each 

storey.  

4.2.4 Mechanical HVAC systems 

The HVAC system consists of gas condensing boilers for heating, constant flow 

mechanical ventilation, a latent heat recovery, main water to water chiller with 

cooling towers, and supporting water to air chiller. The preconditioned room air 

temperatures can be manually set by four-pipe fan coil units. In the survey on the 

building’s actual operation and usage, it became clear that in many situations, 

heating and cooling systems operate simultaneously. This is most probably due to the 

manual setpoint adaptation (±3 °C) in the different rooms in combination with open 

doors. This circumstance is assumed to create a ‘fight of the systems’ by interzonal 

air mixing and poor internal insulation, and also from the strong effect of solar heat 

gains on one side of the building. 

According to the management, the air-conditioning system ventilates fresh air 

throughout the building all day at a rate of approximately two air changes per hour. 

The minimum requirement according to the initial design is 14 litres per second per 

person11. The building is conventionally ventilated in a way to supply fresh air from 

the exterior and to extract polluted air with a balanced mechanical ventilation system, 

consisting of fans and ductwork. The system also comprises filters, dampers, 

silencers, and heat exchangers together with the ductwork, creating a relatively high 

pressure drop. Such systems are able to deliver a stable supply of fresh air, which 

ensures an air quality and thermal comfort that is independent of outside conditions. 

                                                 
11 ARUP, Kanyon office block mechanic installation report, 2003, Turkey 
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However, the ventilation system is quite complex and expensive to install and 

operate. A common trend towards higher indoor air quality standards has resulted in 

a ventilation system that requires an increasingly larger share of the building costs. 

The ventilation system also consumes considerable amount of electricity for fans. 

The complexity of such ventilation systems creates many opportunities for 

malfunctions. 

Further details concerning the modelled building operation can be found in Table 

6.3. The simulation model setup is described in § 6.3.1. 

4.2.5 Metered energy consumption 

The building’s measured annual energy consumption for 2008 was recorded12 as 

2 040 MWh of natural gas and 7 292 MWh of total electricity. This corresponds to 

approximately 68 kWh gas consumption and 243 kWh electricity consumption per 

m² conditioned floor area. Natural gas within the office tower is exclusively used for 

room heating.  

Unfortunately, the meters were set in a way aimed mostly at energy billing. It is 

therefore very difficult, if not impossible, to investigate the individual consumption 

for different applications, e.g., cooling or ventilation, as the consumption is often 

summed together with that of different other consumers. 

Table 4.5: Natural-gas and electricity consumption of the Kanyon office tower in 2008. 

2008 natural gas electricity 
m3* kWh kWh/m2** kWh kWh/m2** 

Jan 38 313 418 177 14 512 500 17 
Feb 41 899 457 317 15 481 000 16 
Mar 28 806 314 410 10 516 000 17 
Apr 19 243 210 033 7 496 500 17 
May 14 830 16 1866 5 616 000 21 
Jun 651 7 106 0 637 000 21 
Jul - - - 779 500 26 
Aug - - - 744 000 25 
Sep - - - 613 000 20 
Oct 6 130 66 907 2 740 500 25 
Nov 15 934 173 916 6 587 500 20 
Dec 21 185 231 229 8 568 500 19 
Sum 186 991 2 040 961 68 7 292 000 243 

* specific calorific value of natural gas assumed with 10,915 kWh/m³ 
** consumption in kWh per m² conditioned space (about 30 000 m²)

                                                 
12 by the building’s energy management group 
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4.3 Conclusions 

The Kanyon office tower geometrically has a uniform building structure of 25 office 

storeys with a net internal area of about 1 000 m² and 2,9 m ceiling height each. The 

envelope is highly glazed with Low-E glazing (solar heat gain coefficient of 0,444). 

External shading elements only partly shade the façade in summer and reduce the 

building’s overall transmitted solar gains by approximately 11% in the cooling 

season. The internal heat gains are high especially due to highly energy consuming 

data centres mostly situated in the core area of the building. The internal equipment 

loads are assumed to be 12 W and heat loads from lighting are about an average of 

3 W per net floor area during building occupancy. The data centres are assumed with 

10 W/m² operating for 24 hours a day throughout the whole year. All the building 

thermal mass, e.g., the concrete layer in the ceiling constructions, is sealed, and can 

thus only be poorly exploited as a heat sink (e.g., by night-time ventilation). The 

building internal environment is controlled by complex, high energy consuming 

mechanical systems. The occupant behaviour (setpoint adaptation together with open 

doors) tends to create a fight of the systems (cooling vs. heating) especially in the 

intermediate seasons when heating and cooling operate simultaneously. The 

mechanical ventilation rates are high (2 ACH) considering a rather light occupant 

density per area. The annual metered energy consumption of 243 W/m² of electricity 

and 68 W/m² of natural gas is high, which indicates a big potential for energy saving 

measures for this type of building.  
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5. THE CLIMATE ASSESSMENT 

One of the most important issues in determining the potential of natural ventilation 

systems is the suitability of climate. The relevant climatic input parameters for 

passive system design and dynamic simulation are: ambient temperature, humidity, 

solar radiation, and wind velocity and direction.  

In this work, the same building is considered to be situated in three different climates 

to evaluate the functionality of a controlled naturally ventilated high-rise office 

building under various external conditions (ranging from those of central to southern 

Europe). Besides, the building could serve as a benchmark to test if the control 

algorithms do a good job in different climatic regions, addressing a universal 

validity. The climatic charts that follow provide information from all the three 

climatic sites. 

The main climatic location of concern is Istanbul, Turkey, as the building is actually 

located here. The same building model will also be positioned in Turin, Italy, which 

is the host university of the thesis co-adviser as well as in Stuttgart, Germany, which 

is the project coordination location of the Marie-Curie Research Training Network, 

where the research was carried out. 

Figure 5.1 shows the European portion of the authoritative classification map first 

developed by Wladimir Köppen (1846-1940). This was updated and modified by 

several geographers, and continues to be a benchmark for the world climate 

information in use today. Its categories are based on the annual and monthly 

averages of temperature and precipitation. Accordingly, all the three locations 

considered are situated in moist mid-latitude climates with mild winters (major 

group C), and are considered as humid (second letter f). Only in Stuttgart, the 

warmest month average temperature stays below 22 °C (third letter b), whereas in 

Istanbul and Turin this temperature is exceeded (third letter a).  
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Figure 5.1: The geographical locations of Istanbul, Turin, and Stuttgart shown on a Köppen climate 
classification map for Europe (source: Peel et al. [140]). 

The weather data for this study was downloaded from the EnergyPlus webpage in the 

EPW format. It represents a Typical Meteorological Year 2 (TMY2) weather format 

from ASHRAE IWEC [141]. This generic data from the weather files is usually 

measured at the airports, and is not further adapted in this study to account for the 

local microclimate or climate change, e.g., the heat island effect, the local terrain 

wind flow or the rising temperatures due to global warming.  

As regards the wind, the shielding effect of neighbouring buildings is modelled by 

wind tunnel experiments and is therefore reflected by the wind pressure coefficients 

gathered (see Appendix A). The city centre terrain roughness will be modelled 

subsequently (see the method in § 3.2.1.1) by wind speed calculations at the local 

heights of openings. The atmospheric temperature drop with height above ground, 

which can be significant for high-rise buildings, is subsequently adapted according to 

§ 3.2.1.1.  

Besides the three climates, different time periods are investigated. Long term 

simulations, e.g., over the course of a year, are best suited for comparing the energy 

performance. For a general overview, monthly averages and wind occurrence values 

are shown for the whole year. The adaptive comfort limits, also indicating assumed 
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cooling periods, are calculated according to § 2.6.3, and are presented in § 5.1.4. As 

the focus of this thesis is on passive cooling and comfort during summer, the cooling 

period is further evaluated to infer the climatic cooling potentials and to address 

humidity effects on comfort (see § 5.2). Finally, for the natural ventilation and 

passive cooling preliminary design according to § 6.2, summer design weeks are 

analysed and then further processed to generate meaningful design days as input for 

the developed ‘HighVent’ design tool. A design day assessment is often used for 

load calculations or equipment sizing. The short-term simulations are best suited for 

comparing the cooling performance and can be used when quick answers are 

required, and where simulations using a typical meteorological year cannot be easily 

done or justified.  

The following sections are therefore intended to provide the different climatic 

aspects of the three locations, and provide design day values for the sizing of passive 

cooling systems. 

5.1 Whole Year 

5.1.1 Overview 

Figure 5.2 gives an overview of the three climates considered in this study. Average 

monthly temperatures, global horizontal radiation, and wind velocities are the highest 

in Istanbul. Also, Turin has a warm summer period with temperatures above 22 °C. 

The average relative humidity in both climates almost reaches 80% in summer, at 

which level constant breezes would be necessary for comfort. Stuttgart has a moist 

continental climate with warm summer, cold winter, and no dry season. 

 

Figure 5.2: Typical monthly average temperature, wind speed, relative humidity, and solar radiation 
for Istanbul, Turin, and Stuttgart at meteorological station [141]. 
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The EnergyPlus weather converter program can use a full year weather data file to 

calculate the ASHRE standard 90.1 Normative Appendix B [142] climatic 

classification. Accordingly, Istanbul can be classified as warm-marine (type 3C), 

Turin as mixed-humid (type 4A), and Stuttgart as cool-humid (type 5A). 

5.1.2 Wind 

The annual frequencies of wind velocity distribution in the three climate zones 

considered are summarised in Figure 5.3. The arithmetic mean wind speed values for 

the whole year are 4,8 m/s in Istanbul, 0,97 m/s in Turin, and 2,8 m/s in Stuttgart. 

The weather data from Turin seems to be broken since for 45% of the year the entries 

for wind speed and wind direction are zero in the weather data. This is most probably 

due to calm wind conditions, especially in summer, which are below the detection 

limit of the measurement instruments.  

 

Figure 5.3: Annual wind speed frequency distribution for Istanbul, Turin, and Stuttgart [141]. 

Prevalent wind directions are given in Table 5.1. The knowledge of statistical wind 

directions is important to orient the openings towards prevailing breezes. The 

prevailing wind directions and average velocities for the cooling period are given in 

§ 5.2.1. 

Table 5.1: Annual wind velocity and direction statistics for Istanbul, Turin, and Stuttgart [141]. 

wind from to annual (Jan-Dec) wind from to annual (Jan-Dec) 
Beaufort scale m/s m/s Istanbul Turin Stuttgart direction   Istanbul Turin Stuttgart 
zero wind * =   0,0 3% 45% 3% - - - 3% 45% 3% 
0 calm >0,0 0,3 0% 9% 4% north 337,5 22,5 18% 12% 5% 
1 light air 0,3 1,6 7% 47% 31% northeast 22,5 67,5 37% 7% 10% 
2 light breeze 1,6 3,4 25% 34% 32% east 67,5 112,5 8% 8% 12% 
3 gentle breeze 3,4 5,5 29% 6% 22% southeast 112,5 157,5 4% 6% 8% 
4 moderate breeze 5,5 8,0 27% 2% 9% south 157,5 202,5 9% 6% 9% 
5 fresh breeze 8,0 10,8 11% 1% 2% southwest 202,5 247,5 14% 4% 25% 
6 strong breeze 10,8 13,9 1% 0% 0% west 247,5 292,5 5% 6% 20% 
7 high wind 13,9 16,9 0% 0% 0% northwest 292,5 337,5 3% 7% 9% 

* zero wind in the weather data interpreted as wind speed too low for measurement instruments
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There are strong winds in Istanbul during the whole year. Though there are many 

winds that buffet Istanbul, there are two major ones: The Poyraz and the Lodos. The 

Poyraz blows from the northeast and hits the northern shores of the city. It brings 

cool air from off the black sea. The Lodos is a dry and warm Mediterranean wind 

that blows from the southwest. In Istanbul, a ventilation strategy based on wind 

forces is suitable if the local orography and neighbouring buildings permit this. 

 

Figure 5.4: Average daily mean (black bar), daily maxima and daily minima wind velocity in Istanbul 
according to [141]. 

Turin climate is characterised by lull wind, especially in the warm cooling period 

from July till October. Due to these calm conditions, it would be a vain endeavour to 

choose a wind driven ventilation strategy. 

 

Figure 5.5: Average daily mean (black bar), daily maxima and daily minima wind velocity in Turin 
according to [141]. 

The Stuttgart climate also features wind poverty, limited not just to the valley 

location of the city, which is not reflected in the weather data file due to its airport 

location origin. The entire basin of the Neckar region is known for relative low wind 

speeds at a high frequency of calms. Due to the orography, the wind is very non-

homogeneous. The Stuttgart Airport meteorological station is suitable to describe the 
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regional wind. In Stuttgart, wind forces most likely may assist natural ventilation. A 

ventilation strategy only based on wind is not recommended. 

 

Figure 5.6: Average daily mean (black bar), daily maxima and daily minima wind velocity in 
Stuttgart according to [141]. 

5.1.3 Temperature 

In addition to the monthly average temperature presented before, temperature 

maxima and temperature swing of the external air between day and night are 

meaningful information for planning the night-time ventilative cooling. As 

mentioned before in § 2.2.4.2, the larger the outdoor temperature swings, the bigger 

the potentially positive influence of thermal mass storage capacity on thermal 

comfort. High temperature differences are best suited for using the mass as a night-

time heat sink. Figure 5.7 shows that temperature swings in summer are high in 

Stuttgart (>10 °C), medium in Turin (>8 °C), and relatively low in Istanbul (>7 °C).  

The cooling period temperature maxima will be further discussed in § 5.2.3. 

 

Figure 5.7: Average daily temperature swing between day and night [141]. 
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5.1.4 Adaptive thermal comfort limits 

The annual adaptive thermal comfort limits were calculated with the TMY2 climate 

data for the three reference locations according to the EN 15251 standard when 

applicable, as described in § 2.6.3. These are shown in Figure 5.8 through Figure 

5.10. As regards category II, operative temperature levels of about 30 °C are 

temporarily allowed for hot ambient air summer conditions in Istanbul and Turin. 

The term ‘cooling period’ in this study is assumed as the period from which the 

upper thermal comfort boundary category II is continually calculated above 26 °C. 

Comparing this assumption with the cooling demand for the actual case-study 

building in Istanbul (see Figure 6.22), this season fits reasonable well. 

The basis for the passive ventilation and cooling system design in § 6.2 is the 

typical/extreme summer periods determined from the ASHRAE weather data statistic 

files, which are automatically processed by EnergyPlus while running a simulation 

(E+ see § 3.3.1). These summer design weeks are shown in Figure 5.8 through 

Figure 5.10 below. Detailed values for the summer design weeks concerned may be 

found in § 5.3.2.  

 

Figure 5.8: Adaptive thermal comfort boundaries according to [41] for Istanbul [141]. 

 

Figure 5.9: Adaptive thermal comfort boundaries according to [41] for Turin [141]. 
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Figure 5.10: Adaptive thermal comfort boundaries according to [41] for Stuttgart [141]. 

5.2 Cooling Period 

According to the approximation made before in § 5.1.3, a typical year’s cooling 

season in Istanbul is from 24th April till 10 th November, in Turin from 24th April till 

30th October, and in Stuttgart from 7th May till 12th October. This section gives a 

deeper insight into the characteristics of this season. 

5.2.1 Wind 

High ventilation rates due to wind pressure are of special importance for temperature 

control during the cooling period, when temperature differences between inside and 

outside are relatively low. Table 5.2 and Table 5.3 below give a detailed view on the 

wind conditions within the cooling period of the climates considered. As regards the 

determination of optimum opening orientations for cross ventilation according to the 

prevailing wind directions, in Istanbul they should be positioned northeast and 

southwest. In Turin, due to calm wind conditions the situation is less clear, and the 

design should rely more on a thermally driven strategy. The predominant wind 

directions in Stuttgart are west and east. Keeping in mind the valley location (see 

§ 5.1.2) of the city, the ventilation design should not rely only on wind forces even 

though they can be responsible for higher air change rates. Summing up, only in 

Istanbul the ventilation design may be based on wind forces with predominant 

direction. Average wind velocity values for the whole cooling season are 5,1 m/s in 

Istanbul, 0,83 m/s in Turin, and 2,3 m/s in Stuttgart. 
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Table 5.2: Cooling period wind direction statistics for Istanbul, Turin and Stuttgart [141]. 

wind from to day 7 am - 7 pm night 7 pm -7 am 
direction degree ° degree ° Istanbul Turin Stuttgart Istanbul Turin Stuttgart 
zero wind 0% 41% 1% 2% 56% 4% 
north 337,5 22,5 13% 12% 5% 21% 11% 6% 
northeast 22,5 67,5 45% 13% 12% 49% 5% 4% 
east 67,5 112,5 10% 14% 15% 9% 4% 5% 
southeast 112,5 157,5 5% 7% 7% 3% 4% 10% 
south 157,5 202,5 8% 5% 9% 5% 4% 11% 
southwest 202,5 247,5 14% 3% 18% 5% 3% 24% 
west 247,5 292,5 4% 2% 22% 3% 6% 22% 
northwest 292,5 337,5 2% 3% 12% 2% 8% 14% 

Table 5.3: Cooling period wind velocity statistics for Istanbul, Turin and Stuttgart [141]. 

wind from to day 7 am -7 pm night 7 pm -7 am 
Beaufort scale m/s m/s Istanbul Turin Stuttgart Istanbul Turin Stuttgart 
zero wind = 0,0 0% 41% 1% 2% 56% 4% 
0 calm >0,0 0,3 0% 8% 1% 1% 9% 8% 
1 light air 0,3 1,6 3% 44% 24% 10% 46% 48% 
2 light breeze 1,6 3,4 21% 39% 42% 31% 40% 33% 
3 gentle breeze 3,4 5,5 26% 8% 23% 33% 5% 10% 
4 moderate breeze 5,5 8,0 32% 1% 10% 22% 1% 1% 
5 fresh breeze 8,0 10,8 16% 1% 1% 4% 0% 0% 
6 strong breeze 10,8 13,9 1% 0% 0% 0% 0% 0% 
7 high wind 13,9 16,9 0% 0% 0% 0% 0% 0% 

5.2.2 Psychrometrics 

Humidity determines which temperatures are comfortable for the building occupants. 

People are most comfortable within appropriate ranges of temperature, relative 

humidity, and airflow. Psychrometric charts can show the boundaries of temperature 

and humidity within which comfort can be achieved at a certain indoor airspeed. 

Daytime ventilation with higher indoor airspeeds directly affects the cooling 

sensation of building occupants when temperature is felt too warm. People naturally 

cool themselves by evaporation; higher humidity levels are more stressful. At high 

humidity levels up to 90%, a breeze is needed to provide relief. Above 90% 

humidity, even a stiff breeze will not remove excess body heat. The simple strategy 

of providing high ventilation rates during occupancy is termed comfort ventilation as 

described in § 2.2.4.1. 

Building Bio-Climatic Charts (BBCC) suggest boundaries of climatic conditions 

within which indoor comfort can be provided without air conditioning. Givoni [8] 

defined boundaries for the outdoor air temperature and humidity within which indoor 

thermal comfort can be provided by comfort ventilation. Diurnal comfort cooling 

with high flow rates in warm season is possible with external temperatures above 

20 °C.  
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If a building is ventilated with high flow rates, the internal temperature closely 

follows the external temperature, but usually stays above. With higher internal 

temperatures, the relative humidity content will fall compared to external conditions 

(e.g., from 70% to 60%). Internal temperature can stay below the external by 

exploiting heat sinks or mechanical systems. 

The following psychrometric charts in Figure 5.11 through Figure 5.13 show external 

boundaries within which comfort can be achieved, and also provide hourly 

information of the three climates considered in this study. The climatic data again is 

according to ASHRAE IWEC ‘typical meteorological year’ [141]. The time period 

investigated is the cooling period (according to § 5.1.3) during occupancy hours 

(7 am to 7 pm). 

The humidity content of the external air in Istanbul is the highest. Especially in 

August, external temperatures above 25 °C are coupled with humidity values above 

70%. This may restrict the applicability of a pure passive cooling approach for the 

building type concerned. 

 

Figure 5.11: Boundaries [8] of external temperature and humidity within which indoor comfort can 
be provided by natural ventilation during day at high air change rates with indoor airspeed at about 

2 m/s and daytime (7am-7pm) climatic data for Istanbul [141] during cooling period. 

In Turin, in addition to the temperature, the humidity content in summer is a little 

lower than that in Istanbul, but still considerable. Especially in July and August, 

summer peak temperatures above 26 °C occur together with a relative humidity 

content above 70%. 
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Figure 5.12: Boundaries [8] of external temperature and humidity within which indoor comfort can 
be provided by natural ventilation during day at high air change rates with indoor airspeed at about 

2 m/s and daytime (7am-7pm) climatic data for Turin [141] during cooling period. 

Stuttgart climate is less critical, where summer peak temperatures above 25 °C 

seldom exceed a relative humidity content of above 50%. 

 

Figure 5.13: Boundaries [8] of external temperature and humidity within which indoor comfort can 
be provided by natural ventilation during day at high air change rates with indoor airspeed at about 

2 m/s and daytime (7am-7pm) climatic data for Stuttgart [141] during cooling period. 

5.2.3 Excess temperatures 

Reduction of excess temperatures must be based on effective heat gain protection 

(e.g., solar shading), and cooling must be only a complement, not the opposite. 

Daytime ventilation with high flow rates cannot fully cover the impact of excess 

temperatures, as the internal temperature follows the external temperature but will 
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hardly stay below. Ventilating the building at night can reduce the rate of indoor 

temperature rise at day by cooling the fabric. Thus, night-time ventilation can 

contribute to keeping the internal temperature below the external temperature during 

hot summer. During occupancy, even if the inside temperature is lower, the airflow 

rate should not be reduced since a breeze will remove excess body heat. 

Investigating the temperature excess of the three locations selected, Istanbul is the 

hottest, followed by Turin and Stuttgart. 

 

Figure 5.14: Excess frequency of fixed outdoor temperature [141] limits. 

Concerning the adaptive comfort limits according to EN 15251, the excess frequency 

of the different locations somewhat reverses. This is due to the adaptive approach 

with temperature limits based on the external running mean of the previous days 

described in § 2.6.3. The temperature excess depends on the temperature fluctuation 

in summer than on external maxima. It can be concluded that people in Stuttgart need 

to adapt faster to the fluctuating external conditions than in the warmer and steadier 

climates of Istanbul and Turin. 

 

Figure 5.15: Excess frequency of outdoor temperature [141] limits above climate specific upper 
adaptive comfort category limits [41]. 
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5.2.4 Cooling potentials 

For a rough estimation of the climatic cooling potential due to natural ventilation, the 

temperature difference between the adaptive comfort limits [41] and the external air 

temperature in the cooling period are first considered as shown in Figure 5.16 

through Figure 5.18. A distinction is made between daytime and night cooling. These 

diagrams indicate, depending on the period and climate, an average temperature 

difference during the day and during the night.  

It is assumed that even the internal temperature during the day and in warm periods, 

due to control stays somewhere within the lower and upper adaptive comfort 

boundaries. The internal reference temperature for the whole cooling period is 

therefore the ideal indoor operative temperature, or comfort temperature, as 

determined by the EN 15251 adaptive comfort model. 

It is also assumed that the slab temperature during the night and in warm periods also 

stays somewhere within the lower and upper adaptive comfort limits. For an extreme 

summer week period, higher internal temperatures are expected than for a typical 

summer week.  

 

Figure 5.16: Daily cooling potentials in the cooling period for Istanbul [141]. 

 

Figure 5.17: Daily cooling potentials in the cooling period for Tornio [141]. 
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Figure 5.18: Daily cooling potentials in the cooling period for Stuttgart [141]. 

As summarised in Table 5.4, average temperature differences indicating the cooling 

potentials in Istanbul are relatively small with 3,2 to 3,8 °C during the day and with 

6,6 to 6,8 °C during the night. In the Turin climate, the temperature differences 

during day is higher for typical summer weeks (5,2 °C) than for extreme summer 

weeks (3,5 °C), indicating that the extreme summer week is hot compared to the 

typical summer week. Night-time cooling potentials are only slightly higher than in 

Istanbul, indicating a relative similar diurnal temperature swing. In Stuttgart, 

ventilative cooling potentials are the highest. Even during extreme summer 

conditions considered, temperature differences at daytime (4,9 °C) are one third 

smaller than those for a typical summer (7,4 °C); the absolute values are significantly 

higher compared to the climate of Istanbul and Turin. Also, the potentials for night-

time ventilation are highest indicating a large temperature swing between day and 

night. Therefore, in the Stuttgart climate, the air change rates may be smaller to 

remove the same amount of heat with a higher enthalpy difference compared to the 

other climates considered. 

Table 5.4: Average temperature difference at day and night between external air, and indoor operative 
comfort criteria indicating the climatic ventilative cooling potentials. 

timeperiod Istanbul Turin Stuttgart 

 
  

EN 15251 comfort 
category 

EN 15251 comfort  
category 

EN 15251 comfort 
category 

 
  ideal I II III ideal I II III ideal I II III 

    in °C in °C in °C in °C in °C in °C in °C in °C in °C in °C in °C in °C 

d
ay

 cooling season 3,9 5,9 6,9 7,9 5,0 7,0 8,0 9,0 6,3 8,3 9,3 10,3 
typical summer  1,8 3,8 4,8 5,8 3,2 5,2 6,2 7,2 5,4 7,4 8,4 9,4 
extreme summer 0,2 2,2 3,2 4,2 0,5 2,5 3,5 4,5 1,9 3,9 4,9 5,9 

n
ig

h
t cooling season 6,8 8,8 9,8 10,8 7,6 9,6 10,6 11,6 9,7 11,7 12,7 13,7 

typical summer  4,8 6,8 7,8 8,8 5,7 7,7 8,7 9,7 8,7 10,7 11,7 12,7 
extreme summer 3,6 5,6 6,6 7,6 3,7 5,7 6,7 7,7 7,4 9,4 10,4 11,4 
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5.3 Summer Design Days 

In this study, design day calculations are performed in § 6.2 to size the natural 

ventilation systems and to obtain a quick view of the passive building systems 

performance under summer conditions for a specific climatic location. According to 

ASHRAE [27], ‘the designer, engineer, or other user must decide which sets of 

conditions and probability of occurrence apply to the design situation under 

consideration’. Design day conditions recommended by ASHRAE were generally 

developed for mechanical plant sizing, in which due to strict comfort requirements, 

the conditions set are relatively close as for a peak load calculation. In contrast, 

naturally ventilated buildings can be operated with a wider comfort range as the 

occupants would adapt and expect stronger fluctuations in temperature and humidity 

[48,62,143]. The sizing of a passive cooling design analogous to mechanical 

systems’ climatic boundary conditions would result in highly expensive, huge 

dimensioned systems; or else, the comfort requirements cannot be reached. 

Therefore, the selection criterion addresses the balance between the need to minimise 

the effort and expenses for passive systems, and the number of hours of comfort 

requirements not met. The term passive systems here refers to the natural ventilation 

sytem, the shading devices and the amount of accessible thermal mass. 

In the following chapter, it is described how a design day for passive cooling system 

sizing calculations can be selected for any location. The basis for the assessment is 

the ASHRAE International Weather for Energy Calculations (IWEC) ‘typical’ year 

weather data files [141], which may be downloaded without charge from the 

EnergyPlus webpage. The typical/extreme period determination and temperature 

occurrence values are gathered directly from the weather data statistic output files 

computed by EnergyPlus. 

The design day boundary conditions gathered in § 5.3.3 will be utilised as input 

values for system design and sizing in § 6.2.2. The ASHREA Cooling Design Day 

(CDD) method is only discussed here as a basis for the SWMD approach developed, 

but will not be followed up by further research. 

5.3.1 ASHRAE cooling design day approach 

A widespread design day method used for the sizing of mechanical HVAC systems is 

the cooling design day approach described in the ASHRAE’s climatic design 
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information chapter in the Handbook of Fundamentals (HoF) [27]. The method 

solely covers the external dry-bulb temperature profile with a maximum temperature 

for a percentage cumulative frequency occurrence for one year as the period of 

record.  

There is no recommendation for the maximum dry-bulb temperature to be utilised for 

passive ventilative cooling design. But in general, the maximum dry-bulb 

temperatures for cooling design are treated corresponding to a percentage cumulative 

frequency of occurrence for the hottest month. Percentages mentioned are 0,4%, 1%, 

2%, and 10%. The values for the three locations concerned may be found in Table 

5.5 and Figure 5.20.  

Table 5.5: Cooling peak temperatures and temperature ranges [141] for design day calculations. 

location 
 

hottest month 
 

dry-bulb range 
in °C 

0,4% value 
in °C 

1,0% value 
in °C 

2,0% value 
in °C 

Istanbul August 7,7 31,1 30,0 28,9 
Turin July 10,1 31,0 29,8 28,3 
Stuttgart July 10,6 29,3 27,6 25,8 

The environmental dry-bulb-temperature profiles can then be modelled analogous to 

the methodology from the ASHRAE HoF 2009. Three parameters describe the 

current hourly external air temperature Tcurrent for the design day of a specific climate 

location, which are the maximum peak temperature Tmax, the temperature range 

Trange, and the range multiplier Tmultiplier:  ���VV��� = ��y� − �Vy��� ∗ ����� O� �V (5.1)

The temperature range or swing is defined as the mean of the difference between the 

daily maximum and the daily minimum dry-bulb temperatures for the hottest month 

of the year. Range multipliers are designed according to the local solar time, which 

may be different from local time zone’s time. 

 

Figure 5.19: Daily temperature multiplier profile (source: [122]). 
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For the three climatic locations of concern, the resulting daily dry-bulb temperature 

profiles for 2,0% occurrence are shown in Figure 5.20. 

 

Figure 5.20: Dry-bulb temperature profile for Istanbul, Turin and Stuttgart climate according to the 
ASHRAE 2,0% occurrence value Cooling Design Day (CDD) approach. 

However, there is no recommendation for the maximum temperature to be utilised 

for passive ventilative cooling design for a certain climatic location. The occurrence 

design values tend to oversize the equipment, and are only recommended for very 

temperature-critical operation. Because of the adaptive passive approach of the 

ventilative cooling system investigated in this study, the CDD method in general 

tends to unnecessarily oversize the passive systems, and is therefore not 

recommended. 

5.3.2 ASHRAE summer design weeks 

Besides the CDD design day approach, ASHRAE also recommends the utilization of 

summer design weeks. Typical and extreme summer 7-day periods are chosen 

according to the IWEC weather data statistic file, and are shown in Figure 5.21 

through Figure 5.23. 

 

Figure 5.21: Typical/extreme period according to the ASHRAE IEWC weather data and the related 
statistics for Istanbul [141] climate. 
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Figure 5.22: Typical/extreme period according to the ASHRAE IEWC weather data and the related 
statistics for Turin [141] climate. 

 

Figure 5.23: Typical/extreme period according to the ASHRAE IEWC weather data and the related 
statistics for Stuttgart [141] climate. 

5.3.3 SWMD approach 

To help passive cooling building designers evaluate the severity of climatic 

problems, the newly developed Summer design Week Mean Day (SWMD) approach 

organises average temperature, humidity, and radiation information for extreme hot 

and typical summer design weeks (see § 5.3.2). As the ASHRAE cooling design day, 

developed for mechanical HVAC system sizing was found not suitable for passive 

system sizing including adaptive comfort expectations, the summer design days pre-

processed in this section are intended to give meaningful design boundary conditions 

for passive cooling, primarily system sizing. SWMD values are calculated by the 

mean values of the same timestep of seven days in the examined design week (Figure 

5.21 to Figure 5.23). Pre-processed SWMD profiles along with further information 

are explained in the following paragraphs and will then be used as input for passive 

system design in the developed ‘HighVent’ design tool (see § 6.2). 
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Temperature 

Design day temperature values are pre-processed for the external dry-bulb 

temperature at the height of the meteorological station. 

Table 5.6: SWMD peak temperature and temperature range for design day calculations. 

location week period dry-bulb range in °C dry-bulb maximum in °C 
Istanbul typical 6.Jun-12.Jun 7,0 29,1 
 extreme 3.Aug-9.Aug 6,0 26,7 
Turin typical 22.Jun-28.Jun 8,1 25,1 
 extreme 20.Jul-26.Jul 7,1 28,7 
Stuttgart typical 22.Jun-28.Jun 11,3 26,6 
 extreme 10.Aug-17.Aug 8,4 21,8 

 

Figure 5.24: SWMD temperature profiles. 

Solar radiation 

Design day solar radiation values are pre-processed for direct and diffuse radiation. 

Besides the hourly direct-beam and diffuse radiation intensities, the sun path is of 

interest to further predict the solar transmitted heat gains of the glazed area. The solar 

position is simply derived from middle date (4th day) of the design week, and is 

chosen together with the geographic location.  

 

Figure 5.25: SWMD external horizontal direct solar radiation profiles. 

 

Figure 5.26: SWMD external horizontal diffuse solar radiation profiles. 
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Table 5.7: SWMD solar path information for design day calculations. 

location week period solar day used highest solar altitude angle in ° 
Istanbul typical 6.Jun-12.Jun 9.Jun 71,9 
 extreme 3.Aug-9.Aug 6.Aug 65,9 
Turin typical 22.Jun-28.Jun 25.Jun 68,2 
 extreme 20.Jul-26.Jul 23.Jul 64,8 
Stuttgart typical 22.Jun-28.Jun 25.Jun 64,7 
 extreme 10.Aug-17.Aug 13.Aug 56,2 

Humidity 

Again, the humidity ratio in kg water per kg air is simply the mean daily value of the 

same timestep in the examined design week. 

 

Figure 5.27: SWMD external humidity ratio profiles. 

Wind speed 

Because the meteorological wind speed is more of stochastic and unpredictable 

nature, hourly data is not interpolated as is done for temperature, radiation, and 

humidity. Due to a lack of suitable information in literature, a new ‘average 25% 

summer wind approach’ is utilised. This is intended to cover the hottest period of the 

year, when natural ventilation is most needed to provide thermal comfort over a term 

long enough so as not to account for extreme wind conditions of a specific day or 

week. 

The approach covers the hottest 91 days of the year, which are 25% time of the year 

as a fragmented period of record. For these days, hourly average wind occurrence 

values are computed for the subsequent developed passive cooling design, and have a 

direct impact on the natural ventilation system sizing (e.g., opening areas).  

For the three locations considered, average wind velocities for the hottest periods of 

the year are shown in Figure 5.28. Due to very calm conditions in Turin summer, the 

natural ventilation design relies mostly on thermal buoyancy forces. 
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Figure 5.28: Wind speed [141] daily mean occurrence frequencies and 91 day period averages  
for the hottest 25% days of the year. 

5.4 Conclusions 

Istanbul and Turin have warm, unbearably humid periods in summer, but passive 

cooling is possible. In contrast, Stuttgart has less humid air during daytime. Turin 

and Stuttgart have extreme summer periods, significantly hotter than a typical 

summer, whereas Istanbul has a more stable summer with the warmest monthly 

average temperatures (>24 °C). Average summer temperature swings between day 

and night are distinct in Stuttgart (>10 °C), smaller in Turin (>8 °C), and the smallest 

in Istanbul (>7 °C). Considering EN standard 15251 category II, operative 

temperature levels of about 30 °C are temporarily allowed for hot ambient air 

summer conditions in Istanbul and Turin. Wind velocities differ strongly: Istanbul 

has outstanding strong winds throughout the whole year (average about 5 m/s at the 

airport at 10 m height) with clear prevailing wind directions (northeast and 

southwest). Stuttgart has lesser wind (2,3 m/s in the cooling season), and Turin is 

very calm, especially in hot summer periods (0,8 m/s in the cooling season). Thus, 

ventilation strategy in Istanbul may be based on wind forces, and wind can assist in 

Stuttgart. In Turin, pressure differences as the driving force for natural ventilation are 

most likely achievable based on temperature differences. 

The climatic classification design day boundary conditions are developed for passive 

cooling design day calculations. It is concluded that the classic design day 

temperatures for mechanical plant sizing are too strict for passive cooling system 

design as they are close to the peak values and do not reflect the adaptive comfort 

approach. Instead, a new summer week mean day computation method was 

developed for typical and extreme summer periods. The method was applied to the 

three climatic locations of concern, and resulting profiles for temperature, humidity, 

radiation, and wind are utilised as input for the ‘HighVent’ design tool in § 6.2. 
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6. THE APPLIED PASSIVE COOLING APPROACH 

A case-study building was presented to explore an approach, which uses building 

simulation technology to evaluate passive cooling measures, with the main focus on 

natural ventilation. The approach developed in § 3 is here explained through virtual 

case-study integration, which is the adapted Kanyon building introduced in § 4 . The 

building will be evaluated for the climates of Istanbul, Turin and Stuttgart according 

to § 5. In § 6.1 the Kanyon case-study building is conceptually adapted towards the 

design presented in § 3.1, especially developed for the wide-shaped high-rise 

building type. In § 6.2 the ‘HighVent’ tool, developed in § 3.2, is utilized to 

preliminary design and size the passive system components. Finally, for the detailed 

development of the passive design approach including the controls, in § 6.3, a BEPS 

model of Kanyon tower is simulated on annual basis along with the preliminary 

passive design outputs from § 6.2 according the approach developed in § 3.3.  

6.1 Conceptual Case-Study Design Adaptations 

To assess the potential of controlled natural ventilation in high-rise office buildings, 

the Kanyon building is taken into account as described in § 4, and conceptually 

adapted towards a more sustainable naturally ventilated and cooled building design. 

6.1.1 Natural ventilation 

In the case of the Kanyon building, the maximum penetration depth for cross-

ventilation is of only about 14,5 m (Figure 6.1 (a)); and is in case of single-sided 

ventilation only of about 7,3 m (Figure 6.1 (b)). A big share of the building cannot be 

ventilated bSimulated electricity consumption of the mechanically and passively cooledy 

deploying these relatively simple strategies. Therefore, a central chimney or void 

design as described in § 3.1.1 is chosen suitable for wide building shapes (Figure 

6.1 (c)).  
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(a) 

 
(b) 

 
(c) 

Figure 6.1: Maximum penetration depth (olive) for different ventilation strategies applied to the 
Kanyon, which are (a) wind (exemplarily from NNW) driven cross ventilation, (b) buoyancy driven 

single-sided ventilation and (c) central void ventilation. 

Bearing in mind all the above considerations mentioned in § 3.1.1, the adapted 

Kanyon building developed is divided into modular multi-storey building segments 

stacked on top of each other. The derivation of the design approach is based on the 

building shape discussed. In the following passive cooling base-case scenarios, each 

segment consists of five storeys (see Figure 6.2). 

 

Figure 6.2: Modular five storey base-case natural ventilation building segment. 
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6.1.2 Solar heat gain reduction 

To further reduce the transmitted solar gains, the Kanyon’s actual shading elements 

(see § 4.2.2.3) are virtually replaced in the adapted base-case scenarios by setpoint 

controlled exterior window blinds, which are a slat-type horizontal shading devices 

with fixed slat angle shown in Figure 6.3. The blinds are controlled in a way that the 

shading is on if the beam plus diffuse solar radiation incident on the façade exceeds 

the setpoint of 250 W/m².  

 

Figure 6.3: Side view of the enhanced shading window blind with horizontal slats showing slat 
geometry as modelled in the adapted base-case scenarios for passive cooling. 

Simulations indicate that the on/off controlled blinds in the cooling period in Istanbul 

(cooling period see § 5.1.4) reduce the amount of solar radiation entering the window 

by 31% compared to the actual shading elements shown in Figure 4.11 and by 39% 

compared to no external shading. Figure 6.4 indicates the effectiveness of the 

enhanced, slat-type shading devices in comparison to the actual, horizontal shading 

devices over the course of a typical summer and a typical winter design week 

according to the ASHRAE IEWC weather data. The transmitted solar radiation in 

W/m² net floor area refers to the average value of the whole building. 

 

Figure 6.4: Simulated effectiveness of the controlled blinds compared to the actual shading devices in 
a typical summer and winter week period. 
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6.1.3 Thermal mass activation 

Three different levels of thermal mass are defined for parametric modelling and a 

reverse arrangement of the ceiling/floor construction. These arrangements represent 

an actual as-built light-weight (suspended ceiling), a medium-weight (mass exposed 

concrete ceiling), a reverse medium-weight (mass exposed concrete floor), and a 

heavy-weight (mass exposed concrete ceiling, solid sand–lime partitions, and mass 

activated load bearing wall) construction. The detailed layers of the elements and the 

thermal properties of the building materials are given in Table 6.1. The last four 

columns in the table contain the total (Cm) and areal diurnal (χm) storage capacities of 

the internal construction elements when the surfaces are exposed to a varying 

temperature, excluding the surface resistance. The effective capacities are calculated 

according to the simplified calculation method in EN ISO 13786 [144], which is 

done by assuming a sinusoidal temperature variation with a one day time period.  

Table 6.1: Thermal properties of composition elements for three different levels of thermal mass 

scenario Ai materials di dT ρi ci Cm Cm χm χm 
index n in m² - in m in m in kg/m³ in J/kg-K in J/K in Wh/K in kJ/m²-K in Wh/m²-K 

suspended floor 1,2,4 1.000 carpet 0,006 0,006 200 1.300 1.560.000 433 2 0 
1,2,4 1.000 plywood 0,030 0,030 544 1.210 19.747.200 5.485 20 5 

mass activated floor 3 1.000 concrete 0,125 0,100 2.400 1.000 240.000.000 66.667 240 67 
suspended ceiling 1,3 1.000 plasterboard 0,013 0,013 900 1.000 11.250.000 3.125 11 3 
mass activated ceiling 2,4 1.000 concrete 0,125 0,100 2.400 1.000 240.000.000 66.667 240 67 
suspended internal wall 1,2,3 477 oak wood 0,013 0,013 704 1.630 4.881.062 1.356 7 2 
mass activated wall 4 477 concrete 0,400 0,100 2.400 1.000 81.668.640 22.686 114 32 
internal columns 1,2,3,4 163 concrete 0,500 0,071 2.400 1.000 27.709.535 7.697 28 8 
light internal partitions 1,2,3,4 460 plasterboard 0,013 0,013 900 1.000 5.179.500 1.439 5 1 
heavy partitions 4 460 sand–lime 0,150 0,075 2000 1.000 69.060.000 19.183 69 19 
SUM n=1 (actual) χm=Cm/Afloor 72 20 
SUM n=2 (ceiling activated) χm=Cm/Afloor 301 84 
SUM n=3 (floor activated) χm=Cm/Afloor 291 81 
SUM n=4 (heavy) χm=Cm/Afloor             473 133 

Figure 6.5 shows the resulting diurnal heat storage capacity for the three different 

levels of thermal mass, and classifies them according to their heaviness of 

construction [145]. The medium level thermal mass capacity case with mass exposed 

ceilings (index n=2) in the following is treated as the adapted building design base-

case scenario (as mentioned in Table 6.3) with a dynamic heat capacity of  

84 Wh/m²-K. The light-weight case (index n=1) represents the actual as-built 

scenario with a diurnal heat capacity per unit floor area of 20 Wh/m²-K. The mass 

activated floor case (81 Wh/m²-K) and the heavy-weight case with a dynamic heat 

capacity of 133 Wh/m²-K serve as a scenario for the detailed design parametric 

analysis regarding thermal mass (see § 7.2.2.1). 
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Figure 6.5: Effective heat capacity for a one day period (EN ISO 13786 [144]; excluding surface 
resistance) of building elements for four different levels of thermal mass and classification [145]. 

6.2 Preliminary Design 

The ‘HighVent’ design tool developed in § 3.2, in this section is applied, to ‘fast-

forward’ study the systems necessary, to passively cool the Kanyon tower. The high-

rise office case-study building is situated in three different climates to size and 

evaluate the functionality of a naturally ventilated building under various external 

conditions. Optimization targets are to reach minimal system sizes with respect to the 

comfort and flow path criteria developed. Results are presented in detail. Examples 

of the application for the Kanyon building are given subsequently.  

6.2.1.1 Driving forces 

The wind pressure coefficients of the Kanyon tower including the neighbouring and 

potentially wind shielding buildings was tested in wind tunnel experiments. The lab 

setup including a 1:300 sized model, and the detailed results of the Cp values 

gathered may be found in Appendix A. Average wind pressure coefficients measured 

in the lab are 0,70 on the windward (Cp,1) and -0,76 on the leeward façade (Cp,2) 

orientations. The resulting wind pressure differences for the Kanyon building shape 

depending on the meteorological wind velocity and with the roughness 

characteristics of city centre terrain on the envelope of the 5 storey segments  

base-case example shown in Figure 6.2, are as shown in Figure 6.6. 
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Figure 6.6: Total wind pressure difference across the flow paths from the inlet to the outlets 
(for the exemplary 5 building segments with a ΔCp = 1,46 and in city terrain). 

Resulting stack pressure differences dependent on different exhaust chimney heights 

and temperature differences are assumed equal for all segments and are shown in 

Figure 6.7. 

 

Figure 6.7: Total stack pressure difference across the flow paths from the inlet to the outlet 
(for the 5 storeys of each building segment). 

Steady state boundaries 

The wind velocity design conditions chosen for the three climates considered are the 

average wind velocities in the hottest 91 days of the year (see § 5.3.3), and the city 

centre terrain roughness. According to the weather files, the corresponding wind 

velocities are 5,25 m/s in Istanbul (base-case scenario), 0,85 m/s in Turin and 

2,11 m/s in Stuttgart. The local wind speed is then calculated according to the terrain 

and the local height of the openings. 
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For the minimum hygienic air change and for passive cooling in summer, CIBSE 

[26] recommends a temperature difference of 3 Kelvin between inside and outside.  

Additional chimney heats gains (to cell B), usually from solar radiation but here 

considered from data centres, lower the chimney air density, and therefore increase 

the upward buoyant flow. An increase of 1 °C is assumed in the exhaust chimney due 

to high heat load of the IT-systems generated in the core of the case-study building 

with approximately 10 kW per storey (see § 4.2.3). 

Additional chimney heats loss (from cell A), usually from mechanical cooling but 

could also be considered from evaporation cooling or due to underground ducts, 

increases the chimney air density, and in turn increases the upward buoyant flow due 

to higher temperature differences. This temperature drop is integrated into the tool, 

but is not considered as a design option for the Kanyon building. Therefore, the inlet 

chimney has equal air properties as the external air.  

Pressure differences on each storey 

Figure 6.8 shows the total pressure drop from the chimney inlet to the outlet (for the 

whole flow path). In Turin the buoyant share is the dominating design pressure 

difference, whereas in Istanbul the wind pressure is far more predominant due to 

high wind velocities (see also § 5.3.3). 

 

Figure 6.8: Pressure drop across the flow paths from the supply inlet to the exhaust outlet for each 
storey of five segments with 5 storeys each, calculated according the unchangeing design boundary 

conditions. 
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6.2.1.2 Electric airflow analogy model 

The following exemplary input parameters are chosen for the Kanyon building 

application example. The wind pressure coefficients were gathered in wind tunnel 

experiments, and the discharge coefficients for sharp edged openings are from 

literature according to § 2.2.3. The discharge coefficient for the sub-slab distribution 

system is a rough estimation dependent on the practical implementation, and needs 

further investigation. 

Table 6.2: Inputs made for the flow path sizing pre-design with fixed boundary conditions. 

symbol unit Istanbul Turin Stuttgart 
number of storeys per segment n - 5 
storey height h m 3,50 
ceiling height h m 2,90 
office cell inlet height above floor level h m 0,00 
office cell outlet height above floor level h m 2,66 
intermediate floor height (between the segments) h m 2,50 
meteorological summer design wind velocity vmet m/s 5,24 0,85 2,11 
site terrain for wind profile - - city centre 
meteorological temperature (minor relevance) TE °C 25,00 
office cell temp. above supply chimney temp. ΔTI °C + 3,00 
supply chimney temp. below external temp. ΔTA °C ± 0,00 
exhaust chimney temp. above office cell temp. ΔTB °C + 1,00 
internal overflow openings size factor K - 2 
chimney external openings size factor k  1 
wind pressure coefficients Cp,1 - 0,70 (windward) 
 Cp,2 - -0,76 (leeward) 
discharge coefficients Cd,1-2 - 0,61 (external chimney openings) 

Cd,3… - 0,50 (sub-slab inlet distribution) 
Cd,4… - 0,61 (overflows offices to core) 
Cd,5… - 0,61 (exhaust chimney inlets) 

The following diagrams are obtained from the design tool developed in § 3.2, and 

show the major outputs for a one-storey cell model (the 3rd storey of the 3rd building 

segment) of the case-study building. The three base-cases investigated here all 

include uncontrolled natural ventilation, improved shading, and activated ceiling 

mass. The design air change rate was adapted in 1 h-1 steps until the requirements 

were fulfilled. So as not to oversize the system, the smallest design ACH value was 

taken.  
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Figure 6.9: Outputs for extreme summer 
conditions in Istanbul  

sized for 13 ACH ≙ Achi = 29,4 m². 

Figure 6.10: Outputs for typical summer 
conditions in Istanbul  

sized for 13 ACH ≙ Achi = 29,4 m². 

  

Figure 6.11: Outputs for extreme summer 
conditions in Turin  

sized for 13 ACH ≙ Achi = 93,4 m². 

Figure 6.12: Outputs for typical summer 
conditions in Turin  

sized for 13 ACH ≙ Achi = 93,4 m². 

  

Figure 6.13: Outputs for extreme summer 
conditions in Stuttgart  

sized for 5 ACH ≙ Achi = 23,3 m². 

Figure 6.14: Outputs for typical summer 
conditions in Stuttgart  

sized for 5 ACH ≙ Achi = 23,3 m². 

Istanbul is located in the hottest of the three climates considered, and hence requires 

significant ventilation rates with a design value at about 13 ACH to stay within the 

desired comfort categories. Because of high average meteorological wind velocities 

of about 5,2 m/s (see § 5.3.3), the ventilation system according to this first design 
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assessment can be sized adequately small in size. The size here first is expressed by 

the needed internal chimney cross-sectional area of the third building segment, which 

is about 29 m² (details for all the five building segments are given in § 6.2.2). Even 

the typical summer conditions are relatively close to the extreme and the daily 

external temperature swing is small; the results indicate that the size is sufficient to 

stay below category II comfort upper limit during a typical summer day. 

Turin has a trickier climate in that it has an extremely hot summer period almost 

without wind (average value of 0,9 m/s). This results in a high ventilation demand 

identical to the one for Istanbul, but mostly driven by buoyancy forces. To achieve 

the ventilative objectives, the system size needs to be huge with an internal chimney 

cross-section of about 93 m², which is almost 10% of the net floor area. As the 

typical summer conditions are considerably lower in temperature than the extreme 

conditions, the system seems to be a bit oversized for most of the warm season. 

Figure 6.15 and Figure 6.16 show the outputs with reduced natural ventilation system 

sizes. This scenario will be further discussed in § 6.3.2. 

  

Figure 6.15: Outputs for extreme summer 
conditions in Turin  

sized for 7 ACH ≙ Achi = 50,0 m². 

Figure 6.16: Outputs for typical summer 
conditions in Turin  

sized for 7 ACH ≙ Achi = 50,0 m². 

Stuttgart is situated in the coldest summer climate, which results in a much smaller 

ventilation demand of 5 ACH. Since even the average wind velocity in the hottest 

period of the year is less than half of that in Istanbul, the ventilation system can be 

sized the smallest. As the typical German summer climate is much colder than the 

extreme period, the second requirement can be easily fulfilled. Care must be taken 

not to overcool in the morning hours, which is discussed in § 3.3.2. In comparison, 

the Stuttgart climate seems less critical. 
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6.2.2 Case-study application 

The approach developed is now virtually applied to all the five adapted case-study 

building segments at heights from 11 to 111 m, considering the summer design 

climates of Istanbul, Turin and Stuttgart (Kanyon building introduced in § 4, and for 

adaptations see § 6.1).  

The size of the chimney here is assumed to be the sum of the opening areas 

connected to the chimney.  

 

Figure 6.17: Plan view of one storey of Kanyon including an central chimney (here with 50 m² area). 
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Figure 6.18 gives an overview of the opening sizes calculated in ‘Tool Step 1’ and 

the design air change rate necessary calculated in ‘Tool Step 2’.  

 

Figure 6.18: Outputs of the flow path sizing pre-design with fixed boundary conditions for each 
segment and the three climates considered. 

Opening sizes in general get smaller at high building segment levels because of the 

wind profile. This circumstance is further assisted by the external temperature 

variation with height - also influencing the indoor thermal environment in a way it is 

easier to cool the space with less incoming air. 
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6.3 Detailed Design Development through Energy Simulation 

To assess the potential of controlled natural ventilation in high-rise office buildings, 

an existing case-study building as described in Chapter 3 was taken and modelled 

along with the passive approach design adaptations developed in Section 6.1 (for an 

overview, see Table 6.3). The ‘HighVent’ design tool outputs from § 6.2, which are 

primarily the design parameters – the positioning and sizing of openings in the flow 

path, are ‘post-processed’ in this section as inputs for detailed Building Energy 

Performance Simulations (BEPS) including AirFlow Networks (AFN). Moreover, 

some parametric analyses are intended to show the influence of system sizing 

parameters on the performance of the developed approach and to support decision 

making.  

The calibration of the as-built simulation model is necessary and crucial for the 

accuracy and usability of the energy simulation model, which is then adopted 

towards the passive design approach. The current building performance will be 

compared to the passive approach developed in the context of the design evaluation 

Chapter 7. 

6.3.1 Simulation setup 

The following Table 6.3 summarises the thermal properties and operation of the 

existing building (see also § 4), and highlights the adaptations made in the model 

towards a passively operated or hybrid operated building. The two adapted base-case 

scenarios are identical with the only difference being that one of them is purely 

passive cooled and ventilated, whereas the other is modelled with a hybrid backup 

system for summer temperature peaks. Hybrid systems are emphasised by square 

brackets within the right column of the adapted approach. The design adjustments of 

the base-case scenarios are described in more detail in Sections 6.1 through 6.2. 
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Table 6.3: Brief overview of the simulation setup for the as-built and the adapted scenarios. 

 as-built building base-case adapted for passive cooling 
climate Istanbul (ASHRAE IEWC 'typical' climate) 
building Kanyon high-rise office tower with 28 storeys and 118 m height 
storeys modelled 25 office storeys from 11-111 m height 
  detailed assessment of the 3rd segment at 51-71 m height  
storey geometry gross internal area 1 150 m² / 4 m storey height 

net usable area 1 010 m² (850 m² offices and 160 m² core) / 2,9 m ceiling height  
external glazing 465 m²/storey LoE double glazing uniform distributed to all orientations  

≈ 91,8% glazing ratio / U-value 1,4 W/m²-K / SHGC 0,444 / visible transmittance 0,68 
external wall 40 m² metal panelled lightweight curtain wall with a U-value of 0,29 W/m²-K 
foor / ceiling 
construction 

sealed double floor 
carpet (0,006m) / plywood (0,030m) 

air space (0,156m) / concrete (0,125m) 
airspace (0,770m) / plasterboard (0,013m) 

mass activated ceiling 
carpet (0,006m) / plywood (0,030m) 

air space (0,439m) / concrete (0,125m) 

'additional' thermal 
mass 

internal heavyweight but sealed partitions with an area of 373m² (area for one side) 
oak wood (0,013m) / air (0,025m) / concrete (0,40m) / air (0,025m) / oak wood  (0,013m) 

ventilation system mechanical ventilation 
weekdays 2 ACH from 6-21h 
weekend 2 ACH from 8-18h 

max. 4 ACH during economiser operation 

natural ventilation 
sized for passive cooling according to § 6.3.2 

controlled according to § 3.3.2 
[14 l/s-person during hybrid operation] 

infiltration 1,0 ACH at 50 Pa pressure difference between in- and outside (n50 value 1,0 h-1) 
wind pressure coef. mean windward Cp of 0,70 and mean leeward Cp of -0,76 
occupancy 62 people per storey during weekdays 7-19h  

producing 108W heat per person and 0,0000000382 m³/W-s CO2  
internal equipment 12 W/m² during weekdays 7-19h 

3 W/m² during night from 19-7h and during weekend  
external shading 
devices 

uncontrolled horizontally attached shadings 
mounted on southeast through southwest 

façade orientations 

setpoint controlled venetian blinds 
(on/off setpoint 250 W/m² solar on façade) 

mounted on all façade orientations 
lighting system installed power density is 8,8 W/m² in the office space and 5,0 W/m² in the core space 

18% luminous efficacy (fluorescent tube) 
power density reduced by 2-stepped 500 lux setpoint dimming in 80% of the office space 

measured in the centre of the office zones during weekdays from 7-19h 
power density reduced to 0,44 W/m² in the office space and 1,25 W/m²  

at night from 19-7h and during weekend  
IT-systems 10 kW per storey in the core 10 kW per storey in the exhaust chimney 
heating system central natural gas fired hot water boiler with a efficiency of 0,8 

local fan coil units and  
preheated air from central air handling unit 

air temperature setpoint 
weekday: 22°C±3°C (6-21h) / 18°C (21-6h) 
weekend: 22°C±3°C (8-18h) / 18°C (18-8h) 

local baseboard heating and 
preheated air from sub floor distribution 

operative temperature setpoint  
weekday: 21°C (6-21h) / 18°C (21-6h) 
weekend: 21°C (8-18h) / 18°C (18-8h) 

cooling system central water cooled (cooling tower) electric chiller with a COP of 3,2 
 local fan coil units and 

cooled air from central air handling unit 
air temperature setpoint  

weekday: 24°C±3°C by occupants (6-21h) 
weekend: 24°C±3°C by occupants (8-18h) 

 
[cooled air from central air handling unit] 

[operative setpoint temperature] 
[weekday: 26°C (7-19h)] 
[weekend: 26°C (8-18h)] 
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To reduce the simulation effort to a feasible degree, only one segment of the building 

including five storeys and the chimney, is modelled as shown in Figure 6.19. Two 

horizontal cuts decouple the building segment from the rest of the building and are 

defined with adiabatic properties. The resulting simulation model consists of 

27 zones, including 20 office zones (four per storey), 5 core zones, one air supply 

zone, and one air exhaust zone. The zones in the model are connected by conductive 

and ventilative heat transfer.  

 

Figure 6.19: Geometrical representation of the simulation model (third building segment). 

 

Figure 6.20: Geometrical representation of the model zones and orientation. 

For the simulation of the current as-built reference case, the ventilation rate is 

defined outside the AFN in the ‘outdoor air design specification’ object. This object 

is connected to the HVAC model, which supplies heating and cooling in addition to 

the outdoor air according to the setpoints defined.  
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For the adapted models, various EMS ‘subroutine’ objects calculate a target air 

change rate intended to provide good comfort and air quality. Considering the 

dynamic driving forces for natural ventilation, the ‘venting availability’ schedules 

and ‘opening factors’ are then controlled in a best possible way to reach the target air 

change rates with a maximum value of 15 ACH. In the heating period or during 

hybrid cooling mechanical operation, the outdoor airflow rate with 14 litres per 

second per person is automatically calculated according to the occupation schedule 

multiplied by the number of people per zone. 

6.3.1.1 HVAC systems 

The building’s mechanical systems are simulated based on EnergyPlus HVAC-

template objects, which provide an easy starting point for users to develop inputs 

with automatically generated node names. HVAC templates are not handled by 

EnergyPlus directly. Instead, they are pre-processed by a program called 

ExpandObjects [128]. There are two loops for plant equipment – a primary loop for 

supply equipment such as boilers and chiller, and a secondary loop for heat rejection 

equipment such as cooling towers.  

In the context of this study, the ‘HVACTemplate:Zone:VAV:FanPowered’ simulates 

a variable air volume HVAC configuration with a constant minimum outdoor airflow 

rate during building occupation. The total pressure drop for all fans (supply, exhaust, 

and terminal unit) is approximated with 1 500 Pa and a primary supply air maximum 

design airflow rate of about 4 ACH. 

The chilled water loop is supplied by centrifugal chiller with an assumed nominal 

Coefficient of Performance (COP) of 3,2. The condensers are water cooled, and work 

in conjunction with two speed cooling towers. The chilled water loop pump control 

type has intermittent operation. 

The hot water loop is supplied by natural gas fuelled boilers with intermittent pump 

control. The assumed boiler efficiency is 0,8. 

The rated head of the primary water pumps for chilled and hot water is set to 

500.000 Pa, which is equivalent to 50 m H2O. The rated head for the cooling towers 

secondary loop is set to an equivalent of 20 m. 
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There are some distinctions made in the HVAC simulation setup between the as-built 

and the adapted passive cooling scenarios (see also Table 6.3). 

As-built scenario 

When weather conditions are favourable, an economiser cycle is used to increase the 

amount of outside air introduced into the system to offset mechanical cooling energy. 

Local fan powered units include reheat. When heating is required, the terminal unit 

will activate the hot water reheat coils first, and then increase the airflow. The design 

outdoor air change rate during occupancy is 2 ACH. The specific setpoint 

temperature of a zone is controlled by the traditional approach using air 

temperatures. The zones are controlled by slightly different setpoints to account for 

the actual user behaviour and to create a fight of the systems dominated by interzonal 

air exchange. 

Adapted scenarios 

For the passive approach models developed, local fan powered units do not include 

reheat and are only used for cooling. Instead, the air is heated inside the naturally 

ventilation sub-floor distribution system using the baseboard heating option. In 

winter, no mechanical ventilation is applied to the model. The target outdoor air 

change rate here is set to 14 l/person instead of 2 ACH, which reduces the ventilation 

rate due to a light occupation density. The specific setpoint temperature of the zones 

is equally controlled by operative temperature thermostat objects. For hybrid cooling 

approach, the chilled water loop serves only during the cooling period (except for 

data centres). Hybrid systems for cooling and mechanical ventilation are operated by 

schedules dynamically overwritten by EMS routines. 

Data centres 

In contrast to the rest of the building, the cooling of data centres is modelled by the 

‘HVACTemplate:Zone:FanCoil’ object. Because of the high heat gains of the IT-

systems, no heating system is needed. 

According to the data gathered and discussed in § 4.2.3, each of the 25 office storeys 

on average has approximately 10 kW equipment load from the IT-systems running 

for 24 h a day throughout the year. As in the case of the original Kanyon building, 

the data centres in the model are cooled by an independent air to air chilling system. 

The chilled water loop here is supplied by air cooled electric reciprocating chiller. 
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Again, the ‘nominal COP’ of the chiller is assumed to be consistent with the E+ 

default value of 3,2 W/W. 

A resulting waste heat (‘chiller condenser heat transfer rate’) of approximately 

12,5 kW per storey is rejected from the condensers. In the adapted natural ventilation 

scenarios, this waste heat is added to the air in the exhaust chimneys, and is modelled 

by using an internal ‘ElectricEquipment’ object. This load therefore further increases 

the chimney effect of each building segment by raising the air temperature. For the 

as-built scenarios without natural ventilation approach, the condenser heat is ejected 

directly to the environment. 

6.3.1.2 Construction elements 

Two types of construction objects are used to specify the material parameters and 

area of items within the space defined in § 4.2.2 and § 6.1.3.  

Constructions, which are necessary geometrically, are first defined as 

‘BuildingSurface:Detailed’ objects. For this type, the outside boundary condition 

depends on the actual surface type. Options used are outside, another surface (the 

backside of the construction towards another zone), or adiabatic properties. 

EnergyPlus will apply the same conditions to each side of the construction (inside 

and outside of the zone) so that there is no temperature difference across the surface. 

All heat transfer into the surface is a result of the dynamic response of the 

construction so that an adiabatic wall or floor can still store energy if the construction 

materials are defined to include thermal mass. 

Constructions that are important to heat transfer calculations but not necessarily 

important geometrically, are then defined. These ‘InternalMass’ objects only 

exchange energy with the zone in which they are described. Concrete columns and 

partitions within the space are modelled as internal mass to provide good accuracy 

and to speed up the EnergyPlus calculations. 

6.3.1.3 Airflow network 

In this study, a complex AFN is used to simulate one building segment. The model 

consists of one air node for each zone linked by openings with additional 

uncontrolled cracks. Internal cracks, doors and stairways allow zone air mixing. The 

network is defined as a ‘multi-zone without distribution’ system, since the 
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mechanical ventilation system, if applied, is assumed to be without leakage losses. It 

can thus operate in ‘parallel’ with the AFN infiltration model. This reduces the code 

and the simulation time.  

Large external openings such as chimney inlets and outlets as well as the overflow 

openings and the core to chimney exhausts are defined as ‘detailed opening’ objects 

with a constant discharge coefficient of 0,61. This also allows flow movement 

simultaneously in two different directions depending on stack effects and wind 

conditions. Complex geometrical properties of bottom-hung windows for the internal 

overflow openings with tilt angles cannot be entered in this object directly. But with 

application of the equations from § 2.2.3.1, they can be converted to rectangular, 2-

dimensional openings with Aeff and heff values as geometrical input in the ‘detailed 

opening’ object.  

For simplicity, the opening control zones are the southeast office zones, and 

openings in parallel are sized according to the net floor area of the zone (see also 

§ 6.3.2).  

The sub-floor distribution system on the other hand is modelled by ‘horizontal 

opening’ objects to account for the inlets to the office zones at floor level. Here, a 

constant discharge coefficient with a value of 0,50 is used as a guess, intended to 

account for flow resistances higher than for the other ventilation system elements. 

Wind pressure coefficients are set to be input values from the wind tunnel 

experiments (see Appendix A), and are in the AFN structure associated with the 

leakage components via an ‘array’ (definition of the Cp values corresponding wind 

directions) and external air nodes with local height definition. At these nodes, the 

local wind pressure calculations are set to be calculated depending on the roughness 

characteristics of the surrounding terrain defined as ‘city’ in the ‘building’ object, 

based on the ASHRAE power-law calculation [92] (see also § 3.2.1.1).  

The infiltration which is due to the building’s air tightness is realised by the 

definition of a ‘crack’ object. This object requires a flow coefficient (Cq in kg/s per 

m at 1 Pa pressure difference) and a flow exponent of 0,65, which is the E+ default 

value. The flow coefficient in this work is a function [128] of the expected 

infiltration mass flow rate at 50 Pa pressure difference between inside and outside. 

The expected infiltration flow rate is calculated from the net volume of a storey, 
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which is 2900 m³ multiplied by an n50 value of one per hour13 at 50 Pa between 

inside and outside (blower-door measurement conditions). The following power law 

form is used, which gives infiltration airflow through the crack as a function of the 

pressure difference across the crack: 

9:��% = �¢ ∙ ∆�B,~� ∙ ���� (6.1)

with a mass flow coefficient, which for each storey is approximated according to: 

�¢ = £:∆�� = 1,03600s ∙ 2900m³ ∙ 1,2 kgm³50PaB,~� = 0,07602 kgs  @ 1Pa (6.2)

This total flow coefficient for one storey is then distributed to the four office zones 

according to their net floor area.  

The wind driven share of the pressure difference across the crack is calculated again 

according to the averaged wind pressure coefficients for each zone orientation with 

values from wind tunnel experiments (see Appendix A), which in the airflow 

network are connected to the cracks in the ‘surface’ object. 

Table 6.4: Mean wind pressure coefficients as AFN input for ‘crack’ infiltration calculations. 

wind direction in ° SE office zone SW office zone N office zone E office zone 
0 -0,81 -0,85 0,63 -0,85 
45 -0,80 -0,78 -0,43 0,62 
90 -0,70 -0,87 -0,88 0,39 
135 0,26 -0,97 -0,71 -0,74 
180 0,11 -0,18 -0,78 -0,96 
225 -1,10 0,65 -0,79 -0,76 
270 -0,89 0,06 -0,28 -0,64 
315. -0,72 -1,22 0,67 -0,85 

6.3.1.4 Model calibration and as-built assessment 

The calibration of the as-built simulation model is necessary and crucial for the 

accuracy and usability of the energy simulation model. Within the calibration 

process, the results of the simulation are compared with the measured data. The 

simulation is tuned in a realistic range until its results closely match the measured 

data, especially to reflect the real user behaviour, e.g., setpoint adaptations. The 

results in Figure 6.21 show a reasonable agreement between the metered and the 

simulated energy consumption. As a limitation, it must be stated that the metered 

                                                 
13 ARUP Kanyon office block mechanic installation report, 2003, Turkey 
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energy consumption is from the year 2008, whereas the simulated values are for a 

typical year and the results of one segment are multiplied by a factor of five to 

account for the consumption of the whole building. Figure 6.22 is intended to give an 

insight into the current building’s energy consumption. 

  

Figure 6.21: Comparison of the monthly metered 
(2008) and simulated energy consumption (typical 

year) of the as-built scenario. 

Figure 6.22: Monthly simulated electricity  
consumption of the different consumers. 

6.3.2 Final natural ventilation system sizing 

The orifice dimensions from § 6.2.2 can be resized until certain comfort expectations 

according to § 3.3.3.2 are fulfilled by annual simulation. For simplification in the 

simulation model investigated, the opening area share for the differently orientated 

office zones on each storey (in parallel, see § 3.2.1.2) is distributed only according to 

the net floor area and not according to the cooling needs. The target air change rate in 

the controls however is not identical for all office zones. The EMS subroutines 

calculate this dynamic value according to the operative temperature of each zone. 

Depending on the cooling needs, the passive systems (e.g., opening sizes, shading 

devices, and thermal mass) could also be sized in more detail for each zone, but due 

to complexity of the optimization solution, this was not implemented. Also, the size 

of natural ventilation system here is expressed only by the cross-sectional area of the 

internal chimney (see Figure 6.17) of the 3rd building segment. The natural 

ventilation system size here is restricted to a cross-sectional chimney area of 50 m², 

which is 5% of the net internal floor area of one storey. More detailed sizes of the 

openings in a flow path gathered from the design tool can be found in Figure 6.18.  
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6.3.2.1 Natural ventilation potentials 

For a detailed dynamic analysis of the flow potential for natural ventilation systems, 

the entire system including controls had to be simulated, since the ventilation is not 

driven just by external conditions, but by an interaction of internal and external 

conditions, e.g., ambient and indoor temperatures, and dynamic wind velocity (for 

driving forces, see § 3.2.1.1). The ventilation control strategy for combined airflow 

and thermal simulations was described in § 3.3.2. Figure 6.23 through Figure 6.25 

show how the achievable mean monthly air change rates depend on the climate and 

season, and the chosen system size. In winter, natural ventilation is mainly used to 

limit the CO2 levels. 

Air change rates increase with higher passive cooling demands in Istanbul and Turin 

more than in Stuttgart. The target air change rate represents the amount of air the 

EMS control aims to realise, whereas the reached air change rate is the smaller 

amount of ventilation appearing in the simulation (see also Figure 3.38). The target 

and the reached air change rates are in a dynamic dependence with each other. In an 

ideal system, both lines for the target and the reached air change rate would be 

identical. The longer the distance between each other, the lesser the cooling needs 

that can be satisfied by the system.  

 

Figure 6.23: Ventilation potentials and control targets for Istanbul climate. 

Because of strong wind forces in Istanbul, the ventilation potentials are high even 

with a small system size. Because of the warm climate, the control targets high 

ventilation rates. Relatively small system sizes from 20 to 40 m² already give good 

response to fulfill the targets. 
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Figure 6.24: Ventilation potentials and control targets for Turin climate. 

In the relatively warm Turin summer climate, the same relatively small system sizes 

as in the case of Istanbul, would provide only a limited air change rate, not sufficient 

for passive cooling. Due to the lack of wind, natural ventilation is mainly driven by 

thermal forces, and the systems need to be sized bigger.  

 

Figure 6.25: Ventilation potentials and control targets for Stuttgart climate. 

In the colder climate of Stuttgart, the control targets much smaller average air change 

rates. For wind velocities in between those of Istanbul and Turin, the ventilation 

system can be sized smaller, which is sufficient for passive cooling. 

Table 6.5 summarises the ventilation potentials depending on the climate and the 

system size. Cross-sectional chimney area bigger than 50 m² is considered to be too 

big, and simulation outputs are therefore written in grey. 
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Table 6.5: Simulated derivation between the EMS target and reached ACH in the month with the 
highest target ventilation rates depending on the natural ventilation system size. 

   Achi 10 m² 20 m² 30 m² 40 m² 60 m² 80 m² 100 m² 
Istanbul Target ACH 14,94 14,65 13,95 13,80 13,72 

Reached ACH 5,11 7,43 11,64 12,38 12,76 
  derivation 65,7% 50,2% 18,3% 11,1% 7,2% 
Turin Target ACH 14,73 14,34 13,79 13,44 12,94 12,66 12,52 

Reached ACH 2,59 4,11 5,21 6,14 7,89 9,25 10,25 
  derivation 84,3% 73,0% 63,0% 54,3% 39,0% 27,0% 18,1% 
Stuttgart Target ACH 12,10 9,69 8,78 8,40 8,10 8,02 

Reached ACH 2,96 4,54 5,54 6,17 6,90 7,29 
  derivation 75,5% 53,1% 37,0% 26,5% 14,8% 9,2% 

6.3.2.2 Adaptive thermal comfort 

Apart from the previously discussed air change rates, which directly influence air 

quality, thermal comfort according to § 3.3.3.2 is a crucial indicator for evaluating 

the natural ventilation concepts. If not explicitly stated in the result of this thesis, the 

mean value for all office zones in the third storey (middle) of the building segment 

considered is reported. 

Design tool sizing inputs and conceptual design 

Figure 6.26 shows the detailed simulation output of annual comfort distribution 

during occupancy (3.108 hours per year) in Istanbul and Stuttgart for opening sizes 

according to the ‘HighVent’ design tool outputs. As the natural ventilation system 

size is restricted to a cross-sectional chimney area of 50 m², the size for Turin was 

reduced according to the sizing limit shown in Figure 6.17. Scenario (a) represents 

the results of the adapted base-case scenario for passive cooling operation according 

to Table 6.3. The weighted average of all office zones stay below the 5% comfort 

limit benchmark mentioned, except the southwest facing zones in Turin. Also the 

southwest zones for the Istanbul scenario tend to be slightly closer to the benchmark 

due to higher solar heat gains entering these zones. Best thermal comfort is provided 

by the east and north zones especially in Stuttgart. 
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Figure 6.26: Floor area weighted average, zone minimum and zone maximum adaptive annual 
comfort criteria reached in respect to the three climates investigated for (a) the naturally ventilated 

base-case scenario, (b) a scenario without the improved shading, and (c) a scenario without the 
thermal mass activation at the ceiling. 

To separately investigate the conceptual passive design adaptations made in terms of 

solar heat gain control (see § 6.1.2) and thermal mass heat sink activation (see 

§ 6.1.3), comfort simulations are repeated without these measures. Depending on the 

measure and the climate, the comfort reached differs quite significantly from the 

passive base-case scenario investigated, and limits can no longer be maintained 

according to the 5% benchmark. Especially for the scenarios without improved 

shading devices the comfort distribution also strongly differs depending on the 

orientation of the office zones. For example, in Istanbul climate, category II can be 

maintained for 94% of the year in the north oriented zones but only for 88% in the 

southwest oriented zones. Therefore, if the heat balance of the building or part of the 

building is changed by increasing heat gains, all other passive measures have to be 

reconsidered, sized, and controlled accordingly; else, hybrid cooling becomes 

unavoidable. 

Parametric sizing assessment 

For each of the three climates considered, the passive cooling base-case scenario is 

simulated with different chimney cross-sectional areas (and associated opening areas 

as described in § 6.2.2). Figure 6.27 provides the annual comfort simulation outputs 

for this parametric analysis. Considering the 5% benchmark from EN 15251, 

generally good agreement is found for all the design tool sizing suggestions. The 

initial passive system sizes for Turin are considered to be too huge for practical 

implementation, and are therefore reduced to the maximum size of 50 m², but still the 

floor area weighted average stays within the 5% benchmark limits (Table 6.6). For 
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Istanbul and Stuttgart, the sizing values gathered from the design tool can be directly 

taken with good agreement.  

 

Figure 6.27: Natural ventilation system sizing sensitivity analysis in respect to  
the annual area weighted mean adaptive comfort distribution during occupancy (3.108 h/a). 

If the 5% occurrence criterion of occupied hours per year is not reached, a hybrid 

cooling system is necessary (red area in Figure 6.28). Within 5% and 3%, hybrid 

cooling assistance is not mandatory – but is dependent on the comfort expectations of 

the occupants (yellow area in Figure 6.28). Optimum passive cooling, while keeping 

the system sizes appropriate, can be reached below 3% occurrence and 50 m² cross-

sectional chimney area (green area in Figure 6.28). For a building design without 

proper passive cooling, the associated line in the diagram would stay outside the 

limits in the red zone. For example, this could be a scenario for Turin without 

improved shading devices as shown in Figure 6.26 (b). For Stuttgart, a building 

design without a mass activation at the ceiling can provide reasonable results as 

shown in Figure 6.26 (c). 
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Figure 6.28: Natural ventilation system sizing sensitivity analysis in respect to  
the annual area weighted mean adaptive comfort distribution during occupancy. 

Table 6.6 summarises the results of parametric analysis. The final sizes taken for the 

design evaluation (§ 7) in are marked in grey (base-case scenarios). 

Table 6.6: Floor area weighted average adaptive comfort criteria reached for the adapted base-case 
scenario (a) during occupied hours depending on the natural ventilation system sizing. 

   Achi 5m² 10m² 15m² 20m² 23m² 29m² 30m² 40m² 50m² 60m² 80m² 93m² 100m² 
Istanbul category III 30,8% 14,4% 7,2% 4,6%  3,1% 3,1% 2,6%  2,4% 2,4%   2,4% 

category IV 24,2% 6,7% 2,0% 0,8%  0,3% 0,3% 0,2%  0,1% 0,1%   0,1% 
  sum 55,0% 21,1% 9,1% 5,4%  3,5% 3,4% 2,7%  2,5% 2,5%   2,5% 
Turin category III 34,1% 19,7% 12,4% 9,4%    6,2% 4,4% 3,6% 3,1% 2,4% 2,1% 2,1% 

category IV 28,0% 13,5% 8,4% 5,7%    2,8% 1,7% 1,2% 0,9% 0,5% 0,4% 0,4% 
  sum  62,2% 33,2% 20,8% 15,1%    9,1% 6,1% 4,8% 3,9% 2,9% 2,5% 2,5% 
Stuttgart category III 16,8% 5,3% 2,6% 2,0% 1,8%  1,5% 1,3%  1,2% 1,2%   1,2% 

category IV 10,7% 2,2% 1,0% 0,7% 0,6%  0,6% 0,6%  0,5% 0,5%   0,5% 
  sum 27,5% 7,5% 3,6% 2,7% 2,4%  2,1% 1,8%  1,7% 1,7%   1,7% 

6.4 Conclusions 

For the Kanyon office-tower in the three climates considered, natural ventilation is 

not a stand-alone solution for good summer comfort. Instead, ventilative cooling 

must be brought in with other measures to reduce heat gains, and to use the building 

as heat sink for night-time ventilation. Hence, the Kanyon building was first 

conceptually adapted to reduce penetration from sun by means of enhanced shading 

elements, and the suspended ceiling’s mass was activated to let the cold night air 

directly circulate around the structural concrete. Focusing on natural ventilation, a 
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central void design allows cross-ventilation of the occupied space towards a central 

chimney in the core, from where warm air rises upwards, towards a high level 

exhaust. The building was also virtually cut into modular segments (5-storeys per 

segment) to restrict the system dimensions (e.g., chimney diameter) and the peak 

pressure drops in winter (at high temperature differences). With a single chimney to 

ventilate 25 floors, the size of the ventilation system simply would be too big to be 

realised in practice, but with isolated segments, each segment can be treated as a 

low-rise or medium-rise building. To guarantee the intended flow direction from the 

perimeter towards the core, besides a commonly used, leeward chimney exhaust, also 

a commonly used windward supply inlet is modelled. Intermediate ‘wind floors’ 

between the segments each have two wind adapting openings in windward (positive 

wind pressure supply) and leeward (negative wind pressure exhaust) orientation. The 

central chimney is therefore designed to serve the occupied space with fresh air 

supply and exhaust.  

The spread-sheet based ‘HighVent’ design tool was developed to size the openings 

of a flow path in § 3.2. Considering the conceptually adapted Kanyon building 

inclusive of enhanced sun shading elements and mass activated ceilings, uncontrolled 

design air change rates necessary for passive cooling are estimated for each climate 

considered (13 ACH for Istanbul and Turin / 5 ACH for Stuttgart). The ventilation 

systems are then sized dependent on this design air change rate and average local 

wind velocities. Due to the lack of wind in Turin, the initial system size is 3,2 times 

bigger than in Istanbul. Due to the colder climate in Stuttgart (where the design air 

change rates are smaller) the system can be sized smallest, even when average wind 

velocities are relatively low. Depending on the height of the segment in the building, 

the chimney cross sectional area requires about 5% and 2% of the total net floor area 

in Istanbul, 3% and 2% in Stuttgart and 11% to 7% in Turin. The dimensioning for 

Turin is considered as to be too big to be realised in practice (5% maximum). 

To assess the overall annual performance for a specific climate, in a next step, the 

Kanyon building was taken and modelled in EnergyPlus along with the passive 

approach design adaptations developed. The ‘HighVent’ design tool outputs were 

‘post-processed’ as inputs for detailed simulations including the mechanical systems 

and the custom natural ventilation controls. Air change rates increase with higher 

passive cooling demands in Istanbul and Turin more than in Stuttgart. Because of 
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strong wind forces in Istanbul, the ventilation potentials are high even with a small 

system size. Because of the warm climate, the control targets high ventilation rates. 

Relatively small system sizes already give good response to fulfil the targets. In the 

warm Turin summer climate, the same system sizes as in the case of Istanbul would 

provide only a limited air change rate, not sufficient for passive cooling. Due to the 

lack of wind, the systems need to be sized bigger. In the colder climate of Stuttgart, 

the control targets much smaller average air change rates. For wind velocities in 

between those of Istanbul and Turin, the ventilation system can be sized smallest.  

The annual comfort distribution according to the EN 15251 standard [55] was first 

shown for opening sizes according to the design tool outputs. For Turin, the natural 

ventilation system size was reduced according to the sizing limit. The results indicate 

that for the passive cooling base-case scenarios including improved shading devices 

and thermal mass activation, the comfort benchmarks barley can be reached for all 

zone orientations in all climates except in Turin. By repeating the simulations 

without improved shadings and/or without mass activation at the ceilings, the 

influence of those measures could be investigated separately. Only in Stuttgart the 

design was capable of staying within the comfort requirements with light accessible 

thermal mass. For the final natural ventilation sizing, the system was simulated in 

different sizes. Considering the 5% comfort benchmark from EN 15251 [55], 

generally good agreement is found for the entire design tool sizing suggestions. For 

Istanbul and Stuttgart, the sizing values gathered from the design tool can be directly 

taken with good agreement.  
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7. DESIGN EVALUATION 

In this section, the fully mechanical as-built Kanyon building operation is compared 

with an operation based on the controlled passive and the hybrid cooling approach 

developed. The following results refer to the office tower case-study building from 

§ 4, adapted for passive summer operation according to Table 6.3, with natural 

ventilation system dimensions from § 6.3.2. The most important factors influencing 

passive and hybrid cooling performance such as ventilation rates, controls, heat 

gains, building mass, and climatic conditions are evaluated according to the general 

approach developed in § 3.4. It is assumed that if thermal comfort can be guaranteed 

without air-conditioning, then significant cooling and ventilation energy conservation 

can be achieved [64]. Design alternatives are here analysed and discussed for 

different climates. Performance indicators used to evaluate the functionality are the 

energy consumption compared to that of mechanical ventilation and cooling systems, 

and compliance with the thermal comfort limits; additional aspects are the ventilation 

rates and the indoor air quality reached. 

7.1 Weekly Profiles 

Design week simulations with dynamic boundary conditions give insight into the 

functioning of natural ventilation systems, and are helpful for the analysis of opening 

controls. This section examines the performance differences for design weeks. The 

factors considered are the operative room temperature in relation to the limits of 

comfort, the room and ambient air temperatures, the CO2 level, and the air change 

rates. 
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A good functioning is attested if the following performance indicators are satisfied: 

1) The operative zone temperature stays within the comfort limits category 2 [41]; 

2) The internal CO2-level stays below the IAQ limits category 2, which is 500 ppm 

above the external level [41,55]. 

Multiple simulations were performed to access information for mechanical, passive, 

and hybrid building operation scenarios (base-case scenarios according to  

Table 6.3). The focus is on passive control over comfort. Except for the three base-

case scenarios, all simulations are performed with switched-off heating and cooling 

units. This section observes the effects of parametric changes (e.g., natural 

ventilation controls) on the internal comfort which utilises neither heating nor 

cooling. The results show the performance for one representative office zone (3rd 

segment / 3rd storey / southeast office zone). Except for the base-case scenarios for 

passive cooling, weekly profiles are evaluated only for Istanbul. 

7.1.1 Mechanical approach 

The mechanical operation scenarios with actual shading devices and thermal mass 

distribution are intended to reflect the actual building behaviour. They also indicate 

the internal temperatures if the mechanical heating and cooling operation are set off. 

The constant limits of comfort chosen from the EN 15251 standard are for buildings 

without natural ventilation and occupant adaptation, and are therefore independent of 

the external temperature. 
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7.1.1.1 As-built (base-case) 

The first weekly profiles are simulated for the as-built scenario and are intended to 

reflect the actual building behaviour. The detailed simulation setup is described in 

§ 6.3.1.  

 
(a) typical winter week 

 
(b) typical spring week 

 
(c) typical summer week 

 
(d) extreme summer week 

 

Figure 7.1: Design week simulation outputs of the as-built case in Istanbul. 

The results show relatively constant room air temperatures between 22 °C and 24 °C 

throughout all the seasons (Figure 7.1 (a)-(d)). The small fluctuation in temperature 

is due to personal setpoint adaptation of the occupants together with interzonal air 

mixing due to open doors. The CO2 concentration stays below 200 ppm above 

external level, and can be classified as low in accordance with EN 13779 (IDA 1 

≤ 400 ppm above external level). Air change rates provided by fan operation are 

stable at the demand driven design value of 2 h-1, but sometimes exceed this value at 

midday (Figure 7.1 (b)) or in the morning hours (Figure 7.1 (c)) due to economiser 

operation at low ambient temperatures. 
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7.1.1.2 Ventilation only 

The second scenario is intended to show weekly profiles of comfort that could be 

reached with only mechanical ventilation. The operation is simulated without 

mechanical heating and cooling. The ventilation system, besides indoor air quality 

control, includes an outdoor air differential economiser with a maximum ventilation 

rate of 4 ACH. 

 
(a) typical winter week 

 
(b) typical spring week 

(c) typical summer week (d) extreme summer week 

 

Figure 7.2: Design week simulation outputs of mechanical ventilation only case without heating and 
cooling in Istanbul. 

As there is no cooling system available, the results show a room air temperature that 

is far above all the admissible comfort temperatures (Figure 7.2 (c)-(d)) for both 

mechanically and naturally ventilated offices [41]. The CO2 concentration can again 

be classified as low. In contrast, temperatures in winter are too low without heating 

(Figure 7.2 (a)), but in spring (Figure 7.2 (b)) the operation is possible only with 

fanning. 
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7.1.2 Passive approach 

The free-running, passive cooling scenarios include the conceptual design 

adaptations made for reducing solar gains and thermal mass activation at the ceilings 

(see § 6.1). Natural ventilation system sizes depend on the climate and correspond to 

the values gathered in § 6.3.2, which are simplified, expressed by the cross-sectional 

chimney area with values of 29 m² for Istanbul, 50 m² for Turin and 23 m² for 

Stuttgart. To focus on the influence of ventilation controls, simulations are conducted 

in the free-running mode rather than the conditioned mode. The limits of thermal 

comfort chosen from EN 15251 [41] are for buildings with natural ventilation and 

occupant adaptation, and are therefore in dynamic dependence to the external 

temperature whenever the adaptive approach is applicable.  

7.1.2.1 Uncontrolled approach 

The first scenario tested is the uncontrolled natural ventilation, which means that the 

orifices are 100% open throughout.  

 
(a) typical winter week (b) typical spring week 

(c) typical summer week (d) extreme summer week 

 

Figure 7.3: Design week simulation outputs of the base-case scenario for passive cooling but with 
uncontrolled ventilation and without heating in Istanbul. 

Uncontrolled ventilation often results in too low indoor temperatures, especially in 

the mornings. The air change rates are in a range up to about 25 h-1 and may cause 

discomfort by draughts, especially if the ambient temperature is low. The CO2 
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concentrations are very low due to the increased air exchange with a maximum of 

about 50 to 100 ppm above the ambient level.  

7.1.2.2 Controlled approach 

Night-time ventilation 

As a second natural ventilation scenario, the uncontrolled night-time ventilation 

(defined as: openings fully open during no occupancy, and closed during occupancy) 

is simulated.  

 
(a) typical winter week 

 
(b) typical spring week 

 
(c) typical summer week 

 
(d) extreme summer week 

 

Figure 7.4: Simulation results of the base-case scenario for passive cooling but with night-time 
ventilation only and without heating in Istanbul. 

Here, the temperatures in summer (Figure 7.4 (c)-(d)) are unacceptably high because 

daily heat loads are not removed by ventilation, and the thermal mass is not 

sufficient. Due to the closed windows during occupancy times, unacceptably high 

CO2 concentrations are obtained (up to 2000 ppm above the external levels). The 

infiltration through the building envelope of approximately 0,1 h-1 is simply not 

enough. 

400

600

800

1 000

1 200

1 400

1 600

1 800

2 000

0

5

10

15

20

25

30

35

40

8.12 9.12 10.12 11.12 12.12 13.12 14.12 15.12

C
O

2 
co

n
ce

n
tr

a
tio

n
 in

 p
p

m
 

ai
r 

ex
ch

a
n

ge
 in

 h-1
  t

em
p

er
at

u
re

 in
 °C

 

weekend 
400

600

800

1 000

1 200

1 400

1 600

1 800

2 000

0

5

10

15

20

25

30

35

40

12.4 13.4 14.4 15.4 16.4 17.4 18.4 19.4

C
O

2 
co

n
ce

n
tr

at
io

n
 in

 p
p

m
 

ai
r 

ex
ch

an
ge

 in
 h-1

  t
em

p
er

at
u

re
 in

 °C
 

weekend 

400

600

800

1 000

1 200

1 400

1 600

1 800

2 000

0

5

10

15

20

25

30

35

40

6.6 7.6 8.6 9.6 10.6 11.6 12.6 13.6

C
O

2 
co

n
ce

n
tr

a
tio

n
 in

 p
p

m
 

ai
r 

ex
ch

a
n

ge
 in

 h-1
  t

em
p

er
at

u
re

 in
 °C

 

weekend 
400

600

800

1 000

1 200

1 400

1 600

1 800

2 000

0

5

10

15

20

25

30

35

40

3.8 4.8 5.8 6.8 7.8 8.8 9.8 10.8

C
O

2 
co

n
ce

n
tr

a
tio

n
 in

 p
p

m
 

ai
r 

ex
ch

an
g

e 
in

 h-1
  t

em
p

er
at

u
re

 in
 °C

 

weekend 

operative temp. day ACH mechanical EN15251 category III exernal air temp.
operative temp. night ACH natural target EN15251 category II
internal air temp. ACH natural reached EN15251 category I CO₂ concentration 



 

205 

Daytime ventilation 

Daytime ventilation is defined as the period in which the offices are occupied 

(weekdays only). The openings are opened during the day at 100 % and closed at 

night.  

(a) typical winter week (b) typical spring week 

(c) typical summer week (d) extreme summer week 

 

Figure 7.5: Simulation results of the base-case scenario for passive cooling but with daytime 
ventilation only and without heating in Istanbul. 

The operative room temperatures are often outside the comfort zone in accordance 

with EN 15251. This is because at daytime they are always above the outdoor 

temperature, and heat from the fabric is not removed at night, which demonstrates 

the limits of natural daytime ventilation, especially at temperature peaks. In summer, 

the pure daytime ventilation is only suitable for building ventilation to supply fresh 

air to the rooms. The CO2 concentrations are classified as low due to continuous air 

exchange during the occupancy at values below 100 ppm above the external level.  
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Fixed temperature setpoint control 

The next scenario examined is a temperature-controlled scenario with fixed setpoint 

control. Here the ventilation openings are opened when the room temperature is 

higher than the ambient temperature and exceeds 20 °C.  

 
(a) typical winter week (b) typical spring week 

(c) typical summer week (d) extreme summer week 

 

Figure 7.6: Simulation results of the base-case scenario for passive cooling but with fixed-setpoint 
ventilation and without heating in Istanbul. 

A limitation for this simple setpoint control is that there might also occur on/off 

control in situations close to the 20 °C setpoint temperature. This effect is even 

stronger as shown in the hourly interpolated charts. The temperature limits (category 

II) are far less exceeded than in the other two cases before. The CO2 levels in the 

warm season are constantly low but increase in the cold season. Results for a typical 

winter week (Figure 7.6 (a)) show that the thermal comfort can almost be provided 

without heating, if the air change rate is low. Since temperatures in the morning are 

rarely too low (Figure 7.6 (b)-(c)), this control seems to be a feasible choice for the 

design weeks here, but is dependent on the climate, the season, the construction, and 

the ventilation potential of the design.  
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Adaptive temperature amplifier control (base-case controls) 

To overcome the above limitations and dependencies, the final controls for passive 

cooling are now based on adaptive comfort temperature benchmarks. The aimed air 

change rate is dependent on the internal and external temperatures (definitions given 

in Section 3.3.2). As this is the final control applied in the passive cooling models, all 

the three climates are evaluated.  

For all the three climates, this control is more robust in terms of adapting the 

required flow rates for passive cooling without frequent high adjustments. In winter 

(Figure 7.7 (a)), the CO2 concentrations consistently stay below 300 ppm above the 

external level. 

(a) typical winter week (b) typical spring week 

(c) typical summer week (d) extreme summer week 

 

Figure 7.7: Simulation results of the base-case scenario for passive cooling with adaptive temperature 
amplifier control but without heating in Istanbul. 

The time dependent limits for night-time and daytime ventilation ensure that the 

upper and the lower comfort limits in Istanbul are barely exceeded  

(Figure 7.7 (b)-(d)). Due to consistent high temperatures in summer  

(Figure 7.7 (c)-(d)), the air change rates aimed by the control are mostly high. 

Because of strong winds, these targets can often be reached especially in extreme 

summer conditions. This indicates that the flow path dimensions are sufficient. In 
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typical winter (Figure 7.7 (a)) the operative temperature during occupancy falls only 

slightly below the comfort limit, which results in a relatively small heating demand.  

(a) typical winter week (b) typical spring week 

(c) typical summer week (d) extreme summer week 

 

Figure 7.8: Simulation results of the base-case scenario for passive cooling with adaptive temperature 
amplifier control but without heating in Turin. 

For the Turin climate, similar results were found except for the extreme summer 

design week (Figure 7.8 (d)). Due to the absence of wind, air change rates aimed by 

the controls to effective cool the building cannot be satisfied by the natural 

ventilation system. In this relatively short period, the upper comfort boundaries are 

strongly exceeded (degree hours) than in Istanbul. To provide comfort, further 

passive cooling design adaptations or a hybrid cooling concept might be necessary. 

In typical winter (Figure 7.8 (a)), the indoor temperatures reached without heating 

are slightly lower than in Istanbul, which indicates a somewhat higher heating 

demand. 
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(a) typical winter week (b) typical spring week 

(c) typical summer week (d) extreme summer week 

 

Figure 7.9: Simulation results of the base-case scenario for passive cooling with adaptive temperature 
amplifier control but without heating in Stuttgart. 

The colder climate of Stuttgart seems best suited for passive cooling. Even smaller 

air change rates provided by the natural ventilation system are suitable for effectively 

cooling the building except for some summer days with high peak temperatures 

(Figure 7.9 (c)-(d)). During such days, indoor temperatures can stay below the 

external level because of high temperature differences between day and night. In 

typical winter (Figure 7.9 (a)), internal temperatures reached are lower than in 

Istanbul and Turin, which indicates the highest heating demand for Stuttgart. 

7.1.2.3 Conceptual design adaptations 

In the previous figures, the influence of conceptual design adaptations made 

according to § 6.1 was not shown. Nevertheless, it is worth pointing out that the 

enhanced solar shading elements as well as the exposed concrete ceiling were found 

to have great influence on the extreme summer design weeks’ peak operative 

temperatures reached. Table 7.1 summarises these reductions. The measures are 

found to have the largest impact for the southwest zones in all the climates.  
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Table 7.1: Extreme summer operative temperature reduction by design adaptations according to § 6.1. 

adaptive shading devices mass activated ceiling combination of both 
E SE SW N E SE SW N E SE SW N 

Istanbul -0,73 -0,60 -1,83 -0,35 -0,42 -0,43 -0,46 -0,43 -0,95 -0,92 -2,54 -0,72 
Turin -1,31 -1,01 -2,38 -1,07 -0,78 -0,84 -1,01 -0,82 -1,55 -1,36 -3,22 -1,64 
Stuttgart -1,89 -2,35 -4,55 -1,40 -1,38 -1,56 -2,02 -1,45 -2,35 -2,82 -6,01 -2,26 

Especially in Stuttgart, internal temperatures are extreme without enhanced solar 

shading. For all orientations in all the climates, a positive effect was found for both 

the measures with a peak temperature reduction minimum of 1 °C approximately, 

and a maximum of 6 °C approximately, depending on the climate and the orientation 

of the zone in the model. 

 

 

  

Figure 7.10: Extreme summer design week simulation results for the southwest zones indicating the 
effectiveness of the passive cooling conceptual design adaptations from § 6.1. 

7.1.3 Hybrid approach 

The mixed-mode ventilation and cooling scenarios also include the conceptual 

design adaptations made in § 6.1. The natural ventilation system sizes are equal to 

those of the passive cooling concept. Fans are smaller sized than in the as-built 

approach as no economiser operation is needed. 
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The base-case hybrid operation is controlled in a very simple way: 

1) If the internal operative temperature exceeds 26 °C, mechanical ventilation and 

cooling replace passive ventilation until the end of occupancy. 

2) If internal relative humidity exceeds 60%, natural ventilation is reduced to a 

level only to provide fresh air for the occupants until relative humidity again 

falls below 55% or the operative temperature exceeds 26 °C. 

To focus on the influence of hybrid controls, the design week simulation outputs 

shown in Figure 7.11 are simulated in the conditioned mode. There are ongoing 

discussions in research and standard-making communities about the applicability of 

adaptive comfort approach for hybrid operated buildings that utilise a combination of 

natural ventilation and mechanical cooling [64]. The limits of thermal comfort 

plotted here are those for buildings with natural ventilation. 

(a) typical winter week (b) typical spring week 

(c) typical summer week (d) extreme summer week 

 

Figure 7.11: Design week simulation outputs of the base-case scenario for hybrid cooling and 
ventilation in Istanbul. 

Hybrid operation can exploit the benefits of each mode. For example, in spring 

(Figure 7.11 (b)), natural ventilation with mostly low ventilation rates is sufficient to 

provide both thermal comfort and good indoor air quality. In summer  

(Figure 7.11 (c)-(d)), natural ventilation is mostly suited for night cooling, but also 

contributes to reduce the period of mechanical operation in the morning hours. In 
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contrast, passive humidity control extends the time of mechanical operation by 

minimising the natural ventilation rates even if cooling is needed. In Istanbul extreme 

summer conditions (Figure 7.11 (d)), passive cooling can only be provided when the 

building is not occupied. Cooling the building structure at night with natural 

ventilation contributes to the reduction of mechanical cooling loads. The CO2 levels 

stay low in both modes. In winter (Figure 7.11 (a)), preheated fresh air is provided 

naturally and without heat recovery systems. 

7.2 Annual Assessment 

The dynamic annual simulation gives insight into the overall functionality of 

controlled natural ventilation throughout the year. Indicators used to evaluate the 

functionality are the relative energy consumption (compared to that of mechanical 

ventilation and cooling), and the compliance with thermal comfort limits for the 

users. 

By dynamic computer simulations it is possible to calculate the space temperatures, 

the ventilation rates, and the CO2 concentrations. The temperature distribution 

among the 4 categories are then calculated.  

The parameters investigated are: 

• cooling and ventilation strategy (full mechanical, hybrid, passive) 

• climate (Stuttgart/Germany, Turin/Italy and Istanbul/Turkey) 

• zone orientation (east, southeast, southwest, north) 

• equipment load density of the office 

• effectiveness of external solar shading devices 

• levels of thermal mass (light, medium, heavy) 

• convective heat transfer 

• size of the ventilation system (see § 6.3.2) 

The evaluation of the as-built operated case-study building with mechanical cooling 

and ventilation considers only the energy consumption, which can be compared with 

the consumption of controlled natural ventilation in order to evaluate the energy 

conservation. An evaluation of the thermal comfort and indoor air quality is assumed 

unnecessary because of a fixed mean room air temperature and an outside airflow 

rate control. 
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7.2.1 Ventilation rates 

The two main functions of ventilation concepts are (i) the provision of good indoor 

air quality, and (ii) the improvement of thermal comfort in summer by increased 

daytime airspeed and high night ventilation rates. The monthly average air change 

rates are dependent on the following parameters: 

• minimum ventilation rate to guarantee indoor air quality 

• maximum ventilation rate to avoid draughts 

• external dry-bulb temperature  

• internal dry-bulb or operative temperature (and humidity for hybrid operation) 

• optimum comfort temperature during occupancy 

• driving forces (e.g. fan, wind, buoyancy pressure) 

• flow path resistance (e.g. ducts, openings) 

For mechanically ventilated buildings, the air change rates reached are mostly 

dependent on the minimum amount of fresh air necessary for indoor air quality 

control. If economiser operation is included, the amount of external air can rise, 

whenever external conditions are suitable, especially in spring and autumn. The 

suitability of the climate for the use of economiser ventilation for cooling also 

depends on the energy saved for mechanical cooling. Maximum air change rates are 

restricted due to relative small system sizes (4 ACH). 

For naturally ventilated buildings the air change rate reached in the heating period, as 

in the case of mechanically ventilated buildings, is mostly dependent on the 

minimum amount of fresh air necessary for indoor air quality control. However, the 

scenario is different in the cooling period: ventilation rates for passive cooling no 

longer depend on the energy saved for mechanical cooling. In summer, the air 

change rates increase with higher passive cooling demands, and are only restricted to 

avoid draughts (e.g., papers flying). Natural ventilation systems are sized much 

bigger (10-15 ACH). 

Considering hybrid ventilation, at least in this study, natural ventilation is intended 

for indoor air quality control, but also acts as a big sized economiser with high 

ventilation rates and without electricity demand for fan operation. To reduce the 

indoor peak temperatures in the hot season whenever passive cooling is not possible, 

mechanical fanning always acts together with mechanical cooling and only operates 
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during the building occupation. Maximum mechanical mode outdoor air change rates 

are restricted only to small system sizes designed for fresh air supply  

(14 l·s-1·person-1).  

For a dynamic analysis of the ventilation rates, the entire system including controls 

must be simulated. Figure 7.12 shows how the achievable air change rates are 

dependent on the climate, the type of the ventilation concept, the system sizes, and 

the control strategy (for natural ventilation, see § 3.3.2). 

  

Figure 7.12: Simulated controlled air change rates (monthly averages) over the course of an year. 

The seasonal variation of the air change rate was found to be highest for the natural 

ventilation cases and smallest for the full mechanical ventilation. In Istanbul winter, 

both the as-built (2 h-1) and the adapted HVAC (14 l·s-1·person-1) scenarios have 

higher ventilation rates than the naturally ventilated and the hybrid ventilated 

scenarios because of increased economiser operation due to the absence of proper 

shading devices. In summer, the natural ventilation air change rates increase more in 

Istanbul than in Turin and Stuttgart. In Turin climate, the biggest sized natural 

ventilation system provides only a limited air change rate due to relative low wind 

velocities. In contrast, the ventilation rates in Stuttgart are smaller mostly because of 

lower passive cooling demands. Hybrid operation differs from passive operation only 

in the hot season, most distinctive in Istanbul, where the natural ventilation share is 

mostly due to night ventilation. In Stuttgart, the hybrid operation mechanical share is 

very limited due to few hot days in summer.  
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7.2.2 Thermal comfort 

In this work, the acceptable temperature for the naturally ventilated design scenarios 

were calculated following the adaptive comfort limits defined in the European 

standard EN 15251 [41]. In the standard, operative zone temperatures are used, 

which are the arithmetic mean of the zone mean air temperature and the zone mean 

radiant temperature. The operative temperature is allowed to increase in naturally 

ventilated, non air-conditioned buildings with rising ambient air temperatures 

according to § 2.6.3. The theory suggests that outdoor connections and control over 

their local environment allows occupants to adapt to a wider range of thermal 

conditions than is generally considered comfortable. The meaning of the different 

categories is also explained in § 2.6.3. The annual adaptive thermal comfort limits as 

well as the simulations are calculated with the ASHRAE IWEC [141] ‘typical’ 

climate data for the three reference locations –  Istanbul in western Turkey, Turin in 

northern Italy and Stuttgart in southern Germany (see §5.1.4). Operative temperature 

levels over 30 ° C are allowed for very hot ambient air summer conditions (e.g., see 

Istanbul in Figure 5.8). 

The mechanical reference systems with active cooling and ventilation (fans) are 

mainly used to determine the annual energy conservation of the passive and hybrid 

approaches.  

The more sophisticated weighted temperature excess method includes additional 

parameters such as air velocity, internal vapour pressure, metabolism, and clothing 

resistance [62]. As these values are difficult to obtain (especially the local air 

velocity), in this work the operative temperature excess method plotted as ‘exceeding 

frequency’ and ‘heat map’ charts is considered as evaluation baseline for the passive 

cooling approach developed.  

The internal relative humidity is also plotted as ‘exceeding frequency’ chart for 

passive and mixed-mode operations (the fully mechanical operation will not exceed). 

Finally ‘psychrometric’ charts are intended to give insight into the humidity versus 

temperature relationship for all the scenarios including the fully mechanical-operated 

reference case. 
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7.2.2.1 Exceeding frequencies 

The temperature excess method cumulates the hours with room temperatures above a 

given setpoint and compares them with the limiting values, for example 5% of all 

office hours. In designing system options, the thermal comfort analysis may indicate 

that a system performs very well, except for a small range of time, perhaps 

coinciding with an annual extreme weather event. A small percentage of hours out of 

the acceptability range may be permissible, but should be discussed. Recommended 

criteria for acceptable deviations in comfort, investigated by whole year computer 

simulations, are given in the EN 15251 standard [41]. According to annex G, the 

indoor environment of the building meets the criteria of a specific category when the 

rooms representing 95% of the occupied space are not more than 3% (or 5%) outside 

the limits of the specified category (see § 6.3.2.2). 

Figure 7.13 considers the annual exceedance only for occupied hours. The average 

distribution in the different categories is weighted by the floor area of the different 

office spaces in the building. The minimum and maximum values represent the 

single office zone (space zoning see Figure 6.20) with the fewest and the most 

exceedance, respectively.  

 

Figure 7.13: Comfort analysis for the passive cooling approach in different climates according to 
EN 15251 [41] comfort categories during occupancy. 

For the passive cooling base-case scenario simulated with Istanbul climatic data, the 

frequency of exceedance in all office zones stays below the 5% benchmark with an 

average of 3,5% (referred to 3 084 occupancy hours per year). The zone operative 

temperature exceeds the EN 15251 adaptive comfort category II for 97 hours, and 

that of category III for 10 hours. With a value between 3% and 5%, further design 

adaptations or a hybrid cooling concept are reasonable but not mandatory. Turin 
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climate with low winds is the most critical. One of the four zones even exceeds the 

5% benchmark by 1,1%. Therefore, further passive design adaptations (e.g., a 

smaller glazing ratio or more accessible thermal mass) or a hybrid cooling concept is 

recommended here. Stuttgart climate is less critical and the average frequency of 

exceedance stays well below 3%. Only the southwest zone very slightly exceeds with 

a value of 3,1%. The base-case passive cooling approach works well in the climate of 

Stuttgart, and no further design adaptations or hybrid cooling are necessary. 

Relative humidity 

To extend the picture on comfort beyond the adaptive comfort criteria of the 

EN 15251 standard, the internal relative humidity is also plotted as ‘exceeding 

frequency’. As regards the relative humidity, the standard only provides 

recommended design criteria for the humidity in occupied spaces if humidification or 

dehumidification systems are installed. These values are taken into consideration 

here. Figure 7.14 shows the simulation output for passive and mixed-mode 

operations. Since the relative humidity does not change significantly for the 

differently orientated zones, there is no distinction made.  

 

Figure 7.14: Comfort analysis for the passive and hybrid cooling approch in different climates 
according to the internal relative humidity level during occupancy. 

In Istanbul and Turin, the passive cooling base-case scenario suffers from high 

humidity values mostly in the range between 60 to 70%. Humidity values above 80% 

are only reached for 3 hours in Istanbul. In contrast, the humidity levels reached in 

Stuttgart are very low. That the humidity values meet the comfort expectations must 

be discussed and ultimately accepted by all the project stakeholders; else, a hybrid 

approach might be a good alternative. 
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Sensitivity analysis 

Sensitivity analysis is fundamental for the model development and is used in this 

thesis to ensure a correct use of the models, and to get insights about the subject of 

interest. It is also a technique for systematically changing parameters in the model to 

determine how the input variation affects the output, thereby indicating how the 

model behaves in response to changes in its inputs. It is useful in supporting decision 

making in terms of general design alternatives and optimization of the control 

strategy, and also increases the understanding of the system. In this section, 

deviations from the passive cooling base-case scenario are analysed. Subsequently, 

the base-cases for controlled natural ventilation are modified to show the influence of 

individual parameters (shading, internal heat gains, thermal mass, climate data, etc.) 

on the system functionality. 

The influence of natural ventilation system size (flow path dimensions) was already 

discussed in § 6.3.2, and is not repeated here. 

To have a higher contribution of thermal mass for good thermal comfort, the 

designer must take a closer look at the diurnal capacity of the mass as a heat sink, 

and also on the achievable heat exchange. Different levels of thermal mass (diurnal 

capacity) were defined for parametric modelling in the conceptual case-study design 

adaptations in Section § 6.1.3. 

Figure 7.16 graphs the annual comfort simulation outputs for this parametric 

analysis, again in accordance to the benchmarks from EN 15251 [41]. Accessible 

thermal mass is crucial for all the simulated scenarios. Considering the convective 

heat transfer according to EN 13791, a mass exposed concrete floor in comparison to 

a mass activated ceiling results in slightly better results. A heavyweight construction 

for all the climates results in good thermal comfort below the 3% excess frequency 

benchmark.  
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Figure 7.15: Thermal mass distribution scenarios sensitivity analysis w.r.t. the annual area weighted 
average adaptive comfort distribution during occupancy. 

The heat exchange rate of the mass with the surrounding air is defined with 

Convective Heat Transfer Coefficient (CHTC) depending on the orientation of the 

mass, the local flow speed, the surface roughness, and the temperature differences. In 

the base-case scenarios, the convective heat transfer is dynamically simulated in 

accordance to EN 13791 (see § 3.3.1.5). The effect of different, unchanging CHTCs, 

equally distributed to all internal surfaces, on thermal comfort reached is shown in 

Figure 7.16. The CHTCs from EN 13791 give results close to a fixed value of above 

CHTC = 2 W/m²-K. If the CHTC could be enhanced by design measures, e.g., by 

better distribution of cool air flowing along the slabs, the comfort can be enhanced.  

 

Figure 7.16: Thermal mass convective heat transfer sensitivity analysis w.r.t. the annual area 
weighted average adaptive comfort distribution during occupancy. 
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Preventive techniques are crucial for passive cooling and aim to provide protection 

and/or prevention of external and internal heat gains. This parametric analysis shows 

the effect of such techniques, and therefore indicates the permissible heat gains. 

Table 7.2 gives the simulated solar gain scenarios.  

Table 7.2: Parametric solar gain reduction scenarios for the thermal comfort evaluation. 

scenario index n external shading on façade facade glazing ratio 
1 no shading devices ≈ 91,8% 
2 actual shading devices ≈ 91,8% 
3 adaptive venetian blinds ≈ 91,8% 
4 adaptive venetian blinds ≈ 45,9% 

Figure 7.17 shows the outputs of the thermal comfort evaluation. It indicates that 

enhancing the actual external solar shading devices and/or reducing the glazing ratio 

has great impact on the thermal comfort criteria. However, the designer needs to be 

aware of the reduced daylight entering the office zones and the visual aspects. The 

actual shading devices together with the highly glazed façade system are not a good 

choice for passive cooling. 

 

Figure 7.17: Protection of external heat gains sensitivity analysis w.r.t. the annual area weighted 
average adaptive comfort distribution during occupancy. 

To assess the influence of internal equipment loads, loads in the office space are 

reduced and increased from 5 W to 30 W per net floor area. Equipment loads are 

defined excluding lighting loads and from 7 am-7 pm (during occupancy). At night, 

25% of the daytime values are scheduled in the simulations. The equipment loads in 

the core area are not part of the analysis and stay constant with base-case value of 

12 W/m² during occupancy, and 3 W/m² whenever the building is unoccupied. 

Figure 7.18 shows that the functionality of the passive cooling approach developed is 
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very sensitive to heat gains, especially in the warmer climate of Istanbul and Turin, 

where internal equipment loads above 12 W/m² are not recommended. If equipment 

loads above are unavoidable, other passive cooling parameters (e.g., thermal mass, 

sun protection, and air change rates) should be reconsidered for enhancement; else 

hybrid cooling is the best choice. 

 

Figure 7.18: Prevention of equipment heat gains sensitivity analysis w.r.t. the annual area weighted 
average adaptive comfort distribution during occupancy. 

7.2.2.2 Heat maps 

One effective graphical option utilised to demonstrate thermal comfort results, uses a 

heat map of interior conditions, and is shown in Figure 7.19 through Figure 7.22. 

This illustrates thermal comfort performance for every hour of every day of the year 

with a thermal comfort colour code to represent areas when conditions are within the 

thermal comfort criteria, and when they are marginally or greatly outside these 

bounds. The colour code reports the operative temperature comfort category defined 

according to the adaptive comfort boundaries for naturally ventilated buildings from 

the European Standard EN 15251 [41]. Hours when the adaptive temperature 

approach is not applicable or whenever the office zones are assumed to be 

unoccupied are not considered (white coloured areas).  

For Istanbul, all office thermal zones are chosen for review to also show the effect of 

different zone orientations (for space zoning, see Figure 6.20).  
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* standard time refers to the time without the offset for daylight saving time 

 

Figure 7.19: Heat maps of comfort hours for the passive cooling base-case scenario when adaptive 
comfort criteria from EN 15251 is applicable in Istanbul. 

In the morning hours for all the orientations, the operative temperature very seldom 

falls below comfort category II. The controls do not tend to overcool the building. 

Nevertheless, a predictive control including the weather forecast, besides preventing 

overcooling, could also optimise the effect of night ventilation, especially in rapidly 

changing seasons or climates (see also weekly profiles in § 7.1.2.2). 

The overheating hours in Istanbul are widely spread throughout most of the cooling 

period and for all orientations that take place in the afternoon. Comfort category III is 

far less exceeded than category II (see also Table 7.3). It is also observable that the 

different zones similarly often exceed comfort category II. This is because the heat 

gains (with setpoint controlled external blinds on all orientations) and also the 

thermal mass are relatively equally distributed among all the zones. Therefore, the 

simple flow path dimensioning only in linear dependency to the zone net floor area 

(and the volume) does work well here. If the zones differ significantly, a different 

passive approach or system sizing has to be considered for each zone.  
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Figure 7.20 and Figure 7.21 show the comfort distribution for the reference southeast 

zone located in Turin and Stuttgart. Except the flow path dimensions, all the basic 

parameters (base-case scenarios) are equal to those in Istanbul. 

 
* standard time refers to the time without the offset for daylight saving time 

 

Figure 7.20: Heat map of comfort hours for the passive cooling base-case scenario when adaptive 
comfort criteria from EN 15251 is applicable in Turin. 

For both passive cases in Turin and in Stuttgart, overcooling in the morning hours is 

not a problem. In Turin, the period in which heavy overheating occurs is compact 

and intense (end of July till mid-August). In contrast, the overheating periods in 

Stuttgart are much shorter but more widely distributed. This is because of the rapidly 

changing external temperatures in this climate. 

 
* standard time refers to the time without the offset for daylight saving time 

 

Figure 7.21: Heat map of comfort hours for the passive cooling base-case scenario when adaptive 
comfort criteria from EN 15251 is applicable in Stuttgart. 

Table 7.3 summarises the hourly heat map values for the passive cooling base-case 

scenarios in all the three climates on annual basis.  

Table 7.3: Passive cooling base-case comfort hours below and above category II when the adaptive 
temperature approach is applicable [41] for 4 office zone orientations and in 3 climates. 

Istanbul Turin Stuttgart 
E SE SW N E SE SW N E SE SW N 

w
ar

m
 

category IV 5,2 6,0 19,2 8,7 27,0 35,2 51,7 29,3 16,2 19,7 27,5 16,3 
category III 65,7 74,2 99,0 102,5 66,8 73,8 83,0 69,8 31,7 36,3 39,8 32,0 

co
ld

 

category III 0,5 0,2 0,3 0,3 2,5 2,7 3,7 1,0 0,3 0,5 0,8 0,2 
category IV 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

Finally in Figure 7.22, the simulation output is displayed for the naturally ventilated 

scenario in Istanbul, but without the enhanced solar heat gain reduction (with actual 

shading devices) and without the thermal mass activation at the ceiling (sealed 
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concrete). As a design scenario not suitable for implementation, the heat map 

indicates excessive overheating in the afternoon, spread over the whole cooling 

season. 

 
* standard time refers to the time without the offset for daylight saving time 

 

Figure 7.22: Heat map of comfort hours for an inappropriate passive cooling scenario with the actual 
as-built shading devices and without thermal mass activation at the ceiling when adaptive comfort 

criteria from EN 15251 is applicable in Istanbul. 

7.2.2.3 Psychrometrics 

Historically, thermal comfort in buildings has been controlled by simple internal dry-

bulb temperature settings. For more sophisticated low energy building systems that 

make use of alternative systems such as natural ventilation, a more complete 

understanding of human comfort is recommended for both design and control, to 

determine whether local humidity effects require special consideration. 

Even in this study, design evaluation is mostly based on the adaptive comfort 

standard EN 15251 [41]. There are other important variables not included in the 

standard. Besides the operative temperature (combination of the air and radiant 

temperatures), included are the humidity level, the air velocity, the activity level, and 

the clothing thermal resistance. Psychrometric charts show temperature versus 

humidity, and can be used to express human thermal comfort.  

This evaluation provides a comparative visualisation of the different building 

operation strategies including the design adaptations and the climates simulated. 

Comfort boundaries are not shown here, but are described in § 3.2.2.3 or in the 

ASHRAE Standard 55 [63] (based on PMV instead of the adaptive approach). 

Figure 7.23 shows the hourly simulation outputs of the office space psychrometrics 

(dry-bulb temperature versus humidity) during occupancy for Istanbul. The display 

format is intended to contrast the functionality of the different approaches with the 

controls incorporated. The as-built scenario Figure 7.23 (a) was simulated with full 

mechanical cooling and ventilation and with fixed dry-bulb temperature setpoints of 
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22/24 °C. The hybrid strategy (Figure 7.23 (b)) was first simulated with an operative 

cooling setpoint of 26 °C. If hybrid cooling is on, the air change rate is reduced to 

only account for fresh air supply. In the second hybrid scenario (Figure 7.23 (d)), the 

final hybrid cooling control including the passive humidity control is introduced 

(base-case controls of the hybrid approach). Natural ventilation during occupancy is 

now also reduced to a level only sufficient for fresh air supply (IAQ) if the internal 

relative humidity exceeds a level of 60%, and enhanced again if the humidity level is 

below 55%. Finally the result for the free running, passive cooling approach  

(Figure 7.23 (c)) is shown where the internal conditions are only controlled by the 

amount of natural ventilation. In the charts, only the internal conditions of the 

southeast zone are shown. 

  
(a) as-built (b) hybrid approach without humidity control 

  
(c) free running passive cooling approach (d) hybrid approach including passive humidity control 

Figure 7.23: Simulation results of the office space psychrometrics during occupancy and in the 
cooling period for Istanbul climate. 

As expected, the air temperature versus humidity dispersion is the smallest for full 

mechanical air-conditioning (Figure 7.23 (a)). Hybrid operation  

(Figure 7.23 (b) and (d)) gives the opportunity to reduce the peak temperature while 

100% 
90%

80%

70%

60%

50%

40%

30%

20% 

10%

60kJ/kg 

70kJ/kg 

90kJ/kg 

80kJ/kg 

100kJ/kg 

0

5

10

15

20

25

30

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

g/kg 

°C                                                              

operative temperature 
setpoint: mech. cooling on 



 

226 

exploiting the advantages of natural ventilation whenever feasible. The introduction 

of passive humidity control (Figure 7.23 (d)) slightly enhances the air temperature 

during passive cooling operation, and drastically reduces the peak humidity levels, 

but is not suitable to control humidity to a specific level at any situation. Free 

running passive cooling operation (Figure 7.23 (c)) has by far the widest spread 

scatter values, and a psychrometric chart alone cannot fully indicate the functionality 

of the approach. But it is worth mentioning that the relative humidity in Istanbul is 

quite often between 60% and 70% at air temperatures between 25 °C and 30 °C. The 

statistical relative humidity dispersion of the different scenarios was also analysed in 

Figure 7.14. 

Figure 7.24 and Figure 7.25 indicate the functionality of the hybrid and passive 

cooling approach as simulated in the climate of Turin and Stuttgart. 

  
(c) passive cooling approach (d) hybrid approach including passive humidity control 

Figure 7.24: Simulation results of the office space psychrometrics during occupancy and in the 
cooling period for Turin climate. 

  
 (c) passive cooling approach (d) hybrid approach including passive humidity control 

Figure 7.25: Simulation results of the office space psychrometrics during occupancy and in the 
cooling period for Stuttgart climate. 
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While passive cooling in Turin (Figure 7.24 (a)) in the hot periods (>25 °C internal 

air temperature) creates high internal humidity throughout (>50% relative humidity), 

in Stuttgart the hot period is much shorter (less scatter points) in combination with 

lower humidity (mostly <50%).  

7.2.3 Energy consumption 

The model of the Kanyon office tower (according to § 4) is utilised as fully 

mechanical operated reference case with active cooling and ventilation (fans). To 

determine the associated annual energy conservation for controlled natural 

ventilation in moderate European climate, the passive and the hybrid cooling 

concepts are compared to this as-built benchmark scenario. 

Energy efficiency is achieved by means of passive cooling, natural ventilation and by 

optimal control during winter operation. The following results refer to the parameter 

changes from the as-built scenario towards the hybrid and the passive base-cases 

defined in Table 6.3.  

In addition to the simulation of the site energy demand in § 7.2.3.1, the total Primary 

Energy Input (PEI) and Global Warming Potential (GWP) values representing the 

annual building operation are calculated in § 7.2.3.2 and § 7.2.3.3. Again, the actual 

as-built Kanyon tower operation is compared to different adapted design scenarios in 

different climates. The environmental impacts are calculated using the values from 

the Global Emissions Model for Integrated Systems (GEMIS) [138] database, hosted 

by the International Institute for Sustainability Analysis and Strategy (IINAS). 

7.2.3.1 Site energy input 

The site energy is the amount of natural gas and electricity consumed by the building 

as reflected in the utility bills. Figure 7.26 shows the simulated site energy 

consumption of the actual Kanyon building base-case model for a typical year. The 

metered energy consumption was given in § 6.3.1.4. 
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Figure 7.26: Simulated energy consumption of the as-built Kanyon building base-case. 

Subsequently, in addition to the as-built case (Figure 7.27 (a)), a case without manual 

setpoint adaptation (see § 4.2.4) and less fresh air supply (14 l/s-p instead of 2 ACH) 

is simulated (Figure 7.27 (b)). This is done to demonstrate the insufficiency of actual 

controls and the related energy saving potential. All electrical equipment loads 

including the data centres and their air-conditioning are assumed to be stable 

throughout all the simulated scenarios. The electricity consumption for lighting, in all 

climates, slightly rises because of the redesigned shading elements  

(Figure 7.27 (c) (d)). Figure 7.27 plots the simulated annual electricity consumption 

of the twelve cases analysed. 

 

Figure 7.27: Simulated electricity consumption of the mechanically and passively cooled base-case 
scenarios. 

Comparing the results of the hybrid (Figure 7.27 (c)) and the passively cooled 
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(Figure 7.27 (a)-(b)), energy conservation is found to be significant. In the 

considered and applicable cases with enhanced external shading devices and mass 

activated ceilings, the electricity savings, depending on the climate, are in the range 

between 51 to 72 kWh/m² per year for hybrid operation, and 56 to 91 kWh/m2 per 

year for passive operation. 

Included in the savings is a malfunction, which was indicated for the actual building 

controls. HVAC systems are fighting each other by shuttling between heating and 

cooling, which especially increases the natural gas consumption. With fixed heating 

and cooling setpoints, an increased dead band (21 °C / 26 °C instead of 22 ±3 °C / 

24 ±3 °C) along with reduced fresh air supply (14 l/s and person instead of 2 ACH), 

the electricity consumption can be reduced by 11 to 21 kWh/m² per year. 

 

Figure 7.28: Simulated natural-gas consumption of the mechanically and passively cooled base-case 
scenarios. 

The results of natural gas consumption mostly indicate the malfunction of the actual 

controls, and the climate the building is situated in (66 to 75 kWh/m² net floor area). 

Nevertheless, small energy savings could be achieved by reduction of fresh air 

supply during occupancy. Also, a small difference of gas consumption between 

hybrid and passive cooling is achieved due to different system sizes (e.g., pumps, 

boilers). 

7.2.3.2 Primary energy input 

The amount of energy resources required to provide the energy supply is defined as 

the PEI. This value refers to raw energy supply involved without any conversion or 

transformation processes from a life-cycle perspective. A primary energy source 

refers to the energy forms required by the energy sector to generate the supply of 

energy carriers used in building operation, such as electrical energy. To calculate the 
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PEI, the simulation outputs from § 7.2.3 are post-processed by multiplying the end 

energy usage with the PEI conversation values gathered for the three locations 

considered (see Table 7.4). 

Table 7.4: Primary energy input of electricity and natural gas in kWh primary energy per kWh end 
energy usage according to GEMIS database [138]. 

electricity generation (mix 2010) natural gas 
in kWh/kWh in kWh/kWh 

Turkey 2,15 1,18 
Italy 2,24 1,12 

Germany 2,71 1,11 

The primary energy input for the whole building in Istanbul can be reduced by about 

5 900 MWh per year by a hybrid cooling, and 6 900 MWh per year by applying a 

passive cooling approach (see Figure 7.29). This is a reduction of approximately 

34% and 40%, respectively. 

 

Figure 7.29: Comparative whole building annual primary energy input analysis. 

Focusing on the simulated HVAC system loads in Figure 7.30, which are directly 

influenced not only by the free-running passive approach developed but also by the 

setpoint adjustments, the primary energy input is reduced by up to 97% in Istanbul. 

 

Figure 7.30: Comparative only HVAC system annual primary energy input analysis. 
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7.2.3.3 Global warming potential 

GWP is a measurement that accounts for the relative climate effects of greenhouse 

gases. Carbon dioxide (CO2), the most important greenhouse gas, is used as a 

reference parameter with a set GWP value of 1. The CO2 equivalent (CO2e) 

describes how much a greenhouse gas contributes to the greenhouse effect. The value 

depends on the gas heat absorption properties and the persistence of the gas in the 

atmosphere. This equivalent amount of CO2 in kg per kWh is calculated for different 

energy sources, and is dependent on a life cycle assessment of each energy source 

incorporated. Table 7.5 summarises the electricity generation mix for Turkey, Italy, 

and Germany including renewable and conventional energy sources [146]. 

Table 7.5: Electricity generation mix in 2010 according to GEMIS database [138]. 

supplier Turkey Italy Germany 
coal 19,4% 16,3% 19,0% 

brown coal 30,0% - 23,4% 
heavy oil 1,5% 5,6% 1,3% 
palm oil - - 0,2% 

natural gas 22,6% 55,2% 13,5% 
furnace gas - 1,4% 2,7% 

biogas - - 1,9% 
sewage gas - - 0,2% 
landfill gas - - 0,2% 

waste - 3,9% 1,5% 
nuclear - - 22,7% 

wood waste - - 2,2% 
geothermic - 2,1% 0,0% 
photovoltaic - 0,6% 1,9% 

wind - 2,0% 5,9% 
water 25,6% 12,8% 3,3% 

biomass 0,8% - - 

Table 7.6 gives an overview of the resulting life cycle emissions of natural gas and 

the electricity supply mix for these countries in 2010 [138]. 

Table 7.6: Global warming potential (GWP) of electricity mix and natural gas in kg CO2e per kWh 
end energy usage in 2010 according to GEMIS database [138]. 

electricity generation  natural gas 
in kg/kWh in kg/kWh 

Turkey 0,586 0,199 
Italy 0,506 0,199 

Germany 0,588 0,201 

For the calculation of environmental benefits of hybrid and passive cooling, the 

simulation outputs from § 7.2.3 are post-processed by multiplying the end energy 

usage with the GWP conversation values in kg CO2e per kWh energy supply, 

gathered for the three locations considered (see Table 7.4). The CO2 equivalent for 
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the whole building in Istanbul can be reduced by about 1 400 tonnes by a hybrid 

cooling approach, and 1 700 tonnes per year by applying a passive cooling approach 

(see Figure 7.31), which is a reduction of approximately 31% and 37%, respectively. 

 

Figure 7.31: Comparative whole building annual global warming potential analysis. 

Focusing on the simulated HVAC system loads, which are directly influenced by the 

free running passive approach developed and by the setpoint temperature adjustment, 

the global warming potential is reduced by up to 97% in Istanbul (see Figure 7.30). 

 

Figure 7.32: Comparative only HVAC system annual global warming potential analysis. 

7.3 Conclusions 

Thermal comfort 

Thermal comfort plays a major role in evaluating the function of controlled naturally 

ventilated, passively cooled offices. Comfort was basically evaluated with the annual 

excess frequency (in hours) of the comfort criteria during office occupation 

according to EN 15251 [41]. As expected for the passive cooling approach 
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developed, the upper comfort limit (category II) is usually exceeded in the hottest 

months – July and August. Depending on the design and climatic case investigated, 

the comfort limit is exceeded more or less. A drop below the comfort criteria will 

very rarely take place throughout the year, since the opening controls prevent it, and 

the heating system is correspondingly controlled in the heating season. 

In the base-case for Istanbul, the comfort range is exceeded by an average of 3,5%. 

With a value between 3% and 5%, further design adaptations or hybrid cooling are 

reasonable but not mandatory. Turin climate with low winds is the most critical. The 

southwest oriented office zone even exceeds the 5% excess frequency benchmark by 

1,1%. To satisfy high comfort expectations, further passive design adaptations (e.g., 

smaller glazing areas, lower internal heat gains, or more accessible thermal mass) or 

a hybrid cooling concept is necessary here. Stuttgart climate is less critical and the 

average frequency of exceedance stays well below 3%. Only the southwest zone very 

slightly exceeds with a value of 3,1%. It can be concluded that the base-case passive 

cooling approach works well in the climate of Stuttgart and no further design 

adaptations or hybrid cooling is necessary. In Istanbul and Turin, the passive cooling 

base-case scenario also suffers from humidity values mostly in the range 60 to 70% 

at air temperatures between 25 °C and 30 °C. Humidity values above 80% are only 

reached for 3 hours in Istanbul. In contrast, the humidity levels reached in Stuttgart 

are low. That the humidity values meet the comfort expectations must be discussed 

and ultimately accepted by all the project stakeholders, else a hybrid operation 

approach might be a good alternative. 

The thermal comfort simulations can be summarised as follows: 

• With proper design, the use of controlled natural ventilation shows a good 

functionality, and the comfort limits of the EN 15251 category II are rarely 

exceeded. 

• Night ventilation, especially in combination with a heavy building construction, 

along with a medium heavy construction complies significantly with the 

adaptive temperature limits. 

• The reduction of internal (equipment) and external heat sources (solar radiation) 

is of crucial importance. This can be achieved through the use of external sun 

protection and adaptive light dimming. For the cases computed, equipment loads 

(without lighting) should not be higher than 10-15 W/m². 
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• Care must be taken to establish adequate ventilation rates. They are highly 

dependent on the natural ventilation design. In summer, the natural ventilation 

air change rates increase more in Istanbul (monthly average of 11 ACH) than in 

Turin (monthly average of 7 ACH) and Stuttgart (monthly average of 5 ACH). 

In Turin climate, the biggest sized natural ventilation system provides only a 

limited air change rate due to relative low wind velocities. In contrast, the 

ventilation rates in Stuttgart are smaller mostly because of the lower passive 

cooling demands. Hybrid operation differs from passive operation only in the hot 

season, most distinctive in Istanbul. In Istanbul, the natural ventilation share 

mostly results by night ventilation. In Stuttgart, the hybrid operation mechanical 

share is very limited due to few hot days in summer. 

• Different climatic conditions for the cases considered have a great influence, but 

may be compensated by passive design adaptations. 

• The orientation of a room affects its functionality. Proper external shading 

devices must be applied. 

Energy conservation 

Apart from thermal comfort, energy conservation plays the next major role in 

evaluating the function of controlled naturally ventilated offices. Energy 

conservation of purely passively cooled and ventilated office spaces is significant. 

Due to passive cooling and ventilation with controlled natural ventilation, there is no 

energy consumption for cooling and ventilation. In the considered applicable cases 

with enhanced shading devices and with mass activated ceilings, depending on the 

climate, the electricity savings are in a range between 51 to 72 kWh/m² per year for 

hybrid operation and 56 to 91 kWh/m2 per year for passive operation. The hybrid 

strategies were found to be capable of exploiting the biggest share of passive cooling 

energy conservation by providing a maximum operative temperature limit of 26 °C. 

Included in the savings above is a malfunction, which was indicated for the actual 

building controls. HVAC systems are fighting each other by shuttling between 

heating and cooling, which especially increases not only the natural gas consumption 

but also the electricity consumption. With fixed heating and cooling setpoints and an 

increased dead band (21 °C / 26 °C instead of 22 ±3 °C / 24 ±3 °C) along with 

reduced fresh air supply (14 l/s and person instead of 2 ACH during occupation), the 
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electricity consumption can be reduced by 11 to 21 kWh/m²-a, and the natural-gas 

consumption by 66 to 75  kWh/m²-a.  

Without this malfunctioning, low heating loads result (8 to 22 W/m²-a) due to high-

quality building façade system with low U-values, high solar transmittance, 

relatively high internal heat gains, and good building air tightness. 
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8. CONCLUSIONS 

8.1 Introduction 

The core premise of the thesis is that it is possible to design and construct sustainable 

buildings through the appropriate application of passive technologies. The existing 

barriers for practically implementing passive technologies in high-rise buildings can 

be lowered by creating a quantifiable framework that accounts for all the relevant 

input parameters in the design process. Towards this end, the thesis sets out to 

explore the concept of natural ventilation in high-rise office buildings, focusing on 

passive cooling in summer. A methodology has been developed for planning the 

natural ventilation scheme with different analysis tools and case-study integration. A 

sequential progression of the thesis work is recapitulated in this section.  

Before natural ventilation can be widely adopted as a passive cooling and ventilation 

strategy, the underlying phenomena governing the flow patterns and temperature 

distribution had be understood, and design concepts needed to be developed for the 

building type concerned. Accordingly, a literature survey was conducted. It was 

concluded that the preliminary evaluation tools and instruments for effective vent 

sizing were available only for a few building and ventilation designs, and were not 

suitable for complex flow path design. There was a definitive need for investigating 

the ventilation strategy and the size of elements involved in the flow path design. It 

was found that the passive cooling approach can rely not only on intense natural 

ventilation but also on the reduction of heat gains, and on night cold storage systems. 

The EN 15251 standard was found to best cover the comfort criteria for naturally 

ventilated buildings, and is especially suitable for whole year computer simulations.  

The method was developed in three steps, including  

(i) the conceptual design considerations with focus on the architectural consequences 

on the building type of concern,  

(ii) the original development of a preliminary design tool based on electrical circuit 

analogies for sizing the natural ventilation system, and  
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(iii) a more detailed design development based on annual building energy 

performance simulations including custom ventilation control.  

The applicability of the methodological approach was demonstrated and evaluated by 

virtually adapting the existing state-of-the art Kanyon office-tower that has high 

comfort expectations and high energy consuming mechanical systems.  

• Through virtual monitoring, modelling, and simulation, the methodology was 

able to predict the temperature distribution and airflow patterns in the prototype 

of a naturally ventilated office-tower building.  

• The results indicate that properly designed and controlled natural ventilation 

shows a good functionality, and the adaptive comfort limits of the EN 15251 

category II are rarely exceeded.  

• Comparisons were made between the resulting performance of passive, hybrid, 

and active operation.  

• Significant reduction in the energy consumption can be noticed due to the 

proposed approach. The impact of different climatic conditions was brought 

forward through comparative performance assessment of a case-study building 

in three different climate locations, thus supporting the ambitious goals the 

European Union has set in the Energy Performance of Buildings Directive.  

8.2 Summary and Conclusions from the Design Approach 

Step 1 of the Design Approach 

In the first step of the design methodology, a general concept was developed for 

passive cooling of the office tower building type. The research question concerning 

the effective passive cooling design approach put focus on the architectural 

consequences of passive cooling with intense natural ventilation. The findings are 

based on the investigations made for the specific building type considered, 

supplemented with findings from the investigation on the Kanyon case-study 

building in Chapter 4, and climate assessment in Chapter 5.  

During the conceptual design process for wide-shaped office towers, several 

difficulties emerged. Design solutions addressing these challenges are summarised 

and discussed in Table 7.1 below. Bearing in mind all the mentioned considerations, 

the virtually adapted Kanyon building was designed accordingly.  
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Table 7.1: Design difficulties identified for passive cooling and the conceptual design adaptations 
proposed.  

 design challenges conceptual design solutions 
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building width  central chimney ventilation 
For effective ventilation, the room depth in case 
of single-sided ventilation should not be higher 
than 2,5 times the room height and in case of 
cross ventilation 5 times the room height. 

A void design is suitable for wide building 
shapes, as the occupied space is cross-ventilated 
from all orientations towards a central chimney, 
from where the warm air rises towards the 
exhaust. 

building height segmentation 
With a single chimney to ventilate an office 
tower, the size of the ventilation system would 
be either too big to be realised or the resistance 
of the flow path would be too high to reach high 
ventilation rates desired. Also the buoyant 
pressure drops across the envelope (e.g. at 
ground level), would be unacceptably high, 
especially in winter with high temperature 
differences. 

The building is horizontally cut into few-storey 
modular segments to restrict the system 
dimensions and peak pressure differences. As 
with isolated segments, each segment can then 
be treated as a medium-rise building. 

wind pressure distribution opposed ventilative inlet (+) and outlet (-) 
The wind pressure is not uniformly distributed 
at the differently orientated façade orientations. 
Thus, if the inlet openings are distributed 
directly in the façade, wind pressure is positive 
at the windward side only. At all the other 
orientations, the resulting wind pressure is 
negative and therefore counteracting the 
intended flow direction from the perimeter 
towards the core. 

To guarantee the intended flow direction and to 
maximise the wind pressure difference, a 
leeward chimney exhaust and windward supply 
inlet is recommended. Intermediate ‘wind 
floors’ between the segments each have two 
wind adapting openings in windward and 
leeward orientation. The central chimneys serve 
the occupied space as fresh air supply (via sub-
slab distribution) and exhaust. 

o
th
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solar heat gains improved external shading 
A curtain wall envelope often is highly glazed. 
Measures to reduce the solar heat transmittance 
such as Low-E glazing and shading devices are 
usually inefficient to reduce the overall 
transmitted solar gains to practical support 
passive cooling. Thus, the building tends to 
overheat. 

Setpoint controlled exterior window blinds, 
which are slat-type horizontal shading devices 
are capable of reducing the amount of overall 
solar radiation entering the building in the 
cooling season. Thus, there is efficient 
protection from overheating. 

thermal mass structural mass activation 
By assuming a sinusoidal temperature variation 
with a one day time period, suspended ceilings, 
floors and walls end up in a light-weight 
building construction. These arrangements are 
inefficient to provide a heat sink for night-time 
ventilation. 

By exposing the structural mass (concrete) of 
the building, night-time ventilation can be used 
to cool the thermal mass. With activated 
concrete ceilings, the sum of all arrangements 
represents a medium-weight building 
construction.  

m
al
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n
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n
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actual control efficient operation 
In Kanyon building, heating and cooling 
systems operate simultaneously by shuttling 
between heating and cooling, thus creating high 
energy demand. This is due to the manual 
setpoint adaptation in the rooms and due to high 
solar heat gains on one side of the building in 
combination with open doors and low internal 
insolation. Also, the air-conditioning system 
ventilates fresh air at a rate above the minimum 
requirement according to the initial design. 

Due to passive cooling and ventilation with 
controlled natural ventilation, there is no energy 
consumption for cooling and ventilation. With 
fixed setpoints along with adaptive comfort 
expectations and with reduced fresh air supply, 
the energy consumption can be reduced. Thus, 
energy conservation is significant. Hybrid 
strategies are found to be capable of exploiting 
the biggest share of passive cooling energy 
conservation.  
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Step 2 of the Design Approach 

In the second step of the passive cooling design approach, the ‘HighVent’ planning 

tool was introduced with the aim to determine the design air change rate and system 

sizes necessary for climate specific, pre-processed passive cooling summer design 

days. The tool is intended to replace trial-and-error evaluation of “what-if” options in 

building design. 

• Simple electrical circuit analogies, for both ventilation and thermal models, are 

found to be suitable in supporting the passive system planning with emphasis on 

natural ventilation systems.  

• The correctness of the results is proved by a comparative validation against the 

EnergyPlus building energy simulation program, which is found to be in good 

agreement.  

• As it is concluded that the classic design day conditions for mechanical plant 

sizing are too strict for passive cooling system design and do not reflect the 

adaptive comfort approach, meaningful design boundary conditions have been 

provided by the original development of Summer Week Mean Days profiles. 

The approach organises average temperature, humidity, radiation, and wind 

information for extreme hot and typical summer periods. 

• Openings can be sized automatically by the inverse solver method including an 

optimization process or by user-specifications of size and position. The method 

proposes correction factors for the terrain, and the floor height. Default pressure 

coefficients and flow resistances can be edited. For the Kanyon building, 

pressure coefficients are from wind tunnel measurements. 

• The program first calculates the flow-path design for a given airflow rate with 

unchanging boundary conditions. These values from the first module are then 

provided to the thermal module, which calculates the dynamic thermal comfort. 

The procedure is then repeated till the system size is sufficient for passive 

cooling. 

• The building can be described by design options such as air tightness, 

orientation, solar control, glazing ratio, thermal mass, site location, and internal 

heat gains. Dynamic design day simulations including the thermal model are 

carried out for a single zone model. They allow the impact assessment of the 

chosen ventilation strategy and size on the thermal behaviour of the building. 
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• The tool outputs include advice if certain adaptive thermal comfort criteria can 

be reached for a summer design day: in case of the extreme summer day it is 

category III and in case of the typical summer day the level is category II.  

Step 3 of the Design Approach 

In the third step of the passive cooling approach development, the annual 

performance of the adapted Kanyon building was exemplarily modelled with 

EnergyPlus building energy performance simulations including airflow networks. 

This includes the ‘HighVent’ tool preliminary ventilation design outputs, further 

‘post-processed’ as model inputs, the conceptual adaptations made for improved 

shading and thermal mass activation, and the remaining features of the as-built 

Kanyon building in accordance with the data provided by the management as 

discussed in Chapter 4. It allows the users to perform sensitivity analysis for the 

investigation of the impact of specific parameters. The custom ventilation control 

was programmed with the Energy Management System (EMS) feature in 

EnergyPlus. The control dynamically targets to achieve (i) good indoor air quality 

according to EN 13779, and (ii) stay within adaptive comfort limits according to 

EN 15251.  

• The mean monthly air change rates reached are dependent on the climate and 

season, and on the chosen system size. Accordingly, air exchange rates increase 

with higher passive cooling demands in Istanbul and Turin more than in 

Stuttgart.  

• The target air change rate represents the amount of air the EMS control aims to 

realise, whereas the reached air change rate is the smaller amount of ventilation 

appearing in the simulation.  

• Annual thermal comfort is the most crucial indicator for evaluating passive 

cooling concepts, and is therefore proposed for final decision making.  

• During winter, the EN 15251 standard is mostly not applicable and mechanical 

heating is intended to raise the temperatures above a fixed temperature limit.  

• The results of annual comfort distribution indicate that for the passive cooling 

base-case scenarios, the comfort benchmarks can be reached for all zone 

orientations in all climates with excess frequencies between 5% and 2%.  

• Considering the 5% exceedence benchmark from EN 15251, generally good 

agreement is found for the entire design tool sizing suggestions.  
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• The natural ventilation system size gathered from the ‘HighVent’ tool was 

reduced to the sizing limit in cases where the initial size is considered to be too 

huge for practical implementation. 

• As the volume of a building is an expensive resource, the designer needs to do a 

weighting between the expected adaptive comfort and the size of the natural 

ventilation system. The system can be resized by conducting a sensitivity 

analysis to study the relative impact of the design characteristics. If a hybrid 

approach is applied, the mechanical system installation and energy consumption 

are also the required parameters to be taken into consideration. 

8.3 Summary and Conclusions from the Design Evaluation 

The passive cooling design approach developed for the Kanyon office tower was 

further evaluated in Chapter 7. The level of functioning was attested by the usage of 

performance indicators to classify building energy performance simulation outputs 

according to categories from European standards or other benchmarks as applicable. 

• Control over the openings is found to be crucial for all the cases; otherwise 

ventilation rates can get too high, and the office rooms tend to cool down way 

too much even in summer conditions. As expected for the controlled passive 

cooling operation, the upper comfort limit (category II) is usually exceeded in 

the hottest months – July and August.  

• A drop below the comfort criteria will very rarely take place throughout the year, 

since the opening controls prevent this from happening, and the heating system 

is correspondingly controlled in the heating season.  

• With comparative design week simulations, it is shown that the ‘adaptive 

temperature amplifier’ control algorithm developed is more robust than 

simplistic controls in terms of adapting the required flow rates for passive 

cooling without overcooling and frequent high adjustments. 

• For all the simulated controlled cases, high indoor air quality is achieved in 

accordance to EN 13779, with CO2 levels less than 400 ppm above the level of 

outdoor air. This is due to mechanical and natural ventilation system sizes 

sufficient enough to provide the required outdoor air flow rates, defined with at 

least 14 litres per second and person. 
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• The comfort criteria for passive cooling design has been mainly benchmarked by 

the excess frequency during office annual occupation in which adaptive comfort 

category II (normal level of expectation) could be reached according to the 

EN 15251 standard.  

• It is concluded that in the climate of Stuttgart, no further design adaptations or 

hybrid cooling is necessary. In Istanbul, with an average excess frequency 

between 3% and 5%, further design adaptations or hybrid cooling are reasonable 

but not mandatory. However, to satisfy the comfort expectations in Turin, there 

is a necessity for further passive design adaptations or a hybrid cooling concept. 

Sensitivity analysis shows that if the glazing area or the equipment heat gains are 

reduced to half or a heavyweight building construction is realised, the average 

excess frequency in Turin can be reduced to a value below 3%.  

• That the humidity values meet the comfort expectations must be discussed and 

ultimately accepted by all the project stakeholders, else a hybrid operation 

approach might be a good alternative. 

• Apart from thermal comfort, energy conservation plays the next major role in 

evaluating the function of controlled naturally ventilated offices.  

To systematically study the possible energy conservation while maintaining thermal 

comfort, identical buildings with different variants (passive/hybrid/active) were 

compared by simulation for different climates (Istanbul/Turin/Stuttgart). The energy 

consumption was benchmarked against the as-built scenarios.  

• The primary energy input for the Kanyon office-tower building is reduced by 

approximately 30% to 40% for passive operation and by 28% to 34% for hybrid 

operation. For passive cooling including controlled natural ventilation, there is 

no energy consumption for cooling and ventilation, and pump operation is 

limited to heating season. This verifies the initial assumption that energy 

conservation of purely passively cooled and ventilated office spaces is 

significant, especially when compared to highly energy consuming state-of-the-

art office towers. 

• The hybrid strategies are found to be capable of exploiting the biggest share of 

passive cooling and ventilation energy conservation by providing a maximum 

operative temperature limit of 26 °C. 
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• The reduction in annual global warming potential accounts for approximately 

1 200 tonnes CO2 equivalents in Stuttgart, 1 300 tonnes CO2 equivalents in Turin 

and 1 700 tonnes CO2 equivalents in Istanbul.  

8.4 Limitations and Ideas for Future Work 

The following is a list of further research ideas to take forward the work done in this 

thesis: 

• Tool capabilities and integration: The ‘HighVent’ design tool could be 

extended for different building types and ventilation strategies. As a 

computerised searching tool for passive cooling “optimisation”, it focuses on the 

architectural aspects of flow path design. The tool could be directly coupled to 

the simulation engine of EnergyPlus, which would address an extended 

multivariate and multicriteria “optimisation” including a large amount of 

modules. This along with a sophisticated graphical user interface would 

contribute to overcome the spreadsheet based limitations of automated 

optimisation along with trial-and-error evaluation in building energy 

performance simulation.  

• Simulation: Further research is needed to fully validate the proposed 

methodology in the thesis. Energy savings by natural ventilation can mostly only 

be evaluated when simulation tools are used, as two identical buildings with 

different ventilation and climatisation strategies are rarely available for 

monitoring. The savings on mechanical ventilation, heating, and cooling energy 

can be determined by comparing natural ventilation strategies (while maintaining 

thermal comfort) with an identical office building for which mechanical 

ventilation is used. Building energy performance simulation is typically used to 

compare design alternatives, rather than to predict the actual energy performance 

of buildings. Limitations apply to almost every available program of this kind 

today, and hence it is necessary to understand basic principles of energy 

simulation.  

• Weather data: Typical year weather data has been usually processed from 

measurements at the airports years ago, and is not further adapted to account for 

the local microclimate or climate change, e.g., the heat island effect, the local 

terrain wind flow, or the rising temperatures due to global warming. 
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• Manual control:  Individual control should be maintained even if it can conflict 

with guaranteeing a specific level of indoor thermal comfort or air quality, as 

users are more tolerant with respect to thermal climate if controlled by 

themselves with rapid feedback. Automatic control is necessary to reset manual 

controls, especially in rooms occupied by several people. To integrate manual 

ventilation controls into the model, and also for real world application, further 

investigation is needed on the user behaviour and the control options together 

with the mechanisms of different strategies also supported by automatic controls. 

Individual controls should be outlined in a way that is easy to understand.  

• Comfort assessment: According to the Fanger's approach, six primary factors 

affecting thermal sensation are either environmental or personal parameters: air 

temperature, mean radiant temperature, air velocity, humidity, metabolic rate, 

and clothing. The EN 15251 standard mainly employed in this thesis accounts 

for personal adaptation in naturally ventilated buildings by extending the thermal 

comfort limits depending on external conditions, but do not include the effect of 

humidity and air velocity. On the other hand, the most widely used thermal 

comfort standards (e.g., ISO 7730) account for the occupants of air-conditioned 

buildings including the effect of humidity, but have narrow thermal limits. These 

rigid limits do not account for the effects of expectation, personal control, and 

psychological adaptation. They discourage the use of naturally ventilated passive 

buildings, where occupants have more relaxed expectations and can tolerate a 

wider temperature swing. Considering buildings in warm and humid climate, 

adaptive comfort criteria inclusive of humidity and applicable to plot 

psychrometric charts in the context of building energy performance simulation 

needs further investigation. As the BEPS models calculate the volume flow 

rather than the air velocities, simple rule of thumb air velocity models based on 

room geometry, air change rates, and orifice dimensions could be applied to 

complement the scenario.  
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• Flow path resistance: The discharge coefficients for sharp edged openings are 

taken from the literature. Especially for complex shaped sub-slab distribution 

and chimney systems, the coefficients are based on a rough estimation. In reality, 

these coefficients are dependent on the practical implementation, and further 

investigation is mandated. The flow path resistances for the proposed ventilation 

strategy should be experimentally determined by tracer gas concentration 

measurements where accessible. Where configurations are not accessible, 

detailed CFD simulations or measurements with reduced scaled models could be 

employed. 

• Acoustic separation: As a limitation, the possibilities for acoustic separation 

from the office areas towards the core area are relatively low since the internal 

openings are big in size.  

• Risk of draughts: With insufficient and poorly positioned openings natural 

ventilation systems run the risk of causing draughts in winter. To avoid this risk, 

the incoming fresh air could be pre-heated in the e.g., central intake or sub-slab 

air distribution system.  

• Convective heat transfer: One parameter mainly affecting the performance of 

natural night-time ventilation is the heat transfer at the internal surfaces. 

Algorithms based on air change rate or supply air temperature are developed for 

mechanical systems only, and therefore cannot be used with natural ventilation. 

The surface convective heat transfer for naturally ventilated buildings is 

typically highly simplified. Simulations in this thesis have been carried out by 

using heat transfer coefficients for cases without mechanical cooling according 

to the EN ISO 13791 standard. Increased convection can be expected due to high 

airflow rates and the possibility of a cold air jet flowing along a case specific 

surface, but the magnitude and location of these effects are hard to predict with a 

well-mixed zone air assumption. Thus, they are not included in actual models. 

When simulating a building with night ventilation, this becomes increasingly 

problematic because convective cooling is a major parameter and therefore a 

high priority research topic for the future.  
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• Policy implication: Energy efficiency in the building sector is one of the key 

objectives to meet the ambitious 2020 objectives of the European policies to 

address the challenges of energy security and climate change. Ventilative 

cooling however is poorly rewarded in regulations in most EU countries. To 

push forward the development, it is essential to give guidelines for integration of 

ventilative cooling in design development and energy performance calculation 

methods and regulations (e.g., DIRECTIVE 2010/31/EU). Policy makers and 

standard bodies should take steps together with the implementation of the EPBD 

recast to accelerate the uptake of this technology. 

8.5 Conclusion 

The results of this research work are intended to help the building planner in better 

understanding and implementing passive cooling measures. It is envisioned that the 

recommendations put forward in this thesis will contribute to the furthering of much 

needed sustainable building practices. 
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Nomenclature 
C : coefficient dimensionless 
p : pressure Pa 
v : velocity m s-1 
ρ : density kg m-3 

Subscripts 
p : pressure 
w : wind 
z : local height from start height 
∞ : free stream region without any disturbance 

 

A.1 Introduction 

A wind tunnel is a tool used in aerodynamic research. It is used to study the effects 

of air moving past solid objects. Measurements are often carried out to study the 

pressure distribution at certain points of structures. 

In building science, wind tunnel tests are a reliable method (e.g., [1]) for estimating 

wind pressure coefficients of complex buildings. Wind pressure coefficients are non-

dimensional and therefore can be used in the design of natural ventilation systems for 

any wind speed. 

The relationship between the dimensionless coefficient and the measured 

dimensional numbers without simulating the atmospheric boundary layer (wind 

profile depending on the terrain roughness) simply is [2]: 

�� = ��$ (A.1)
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Tests were carried out for the Kanyon building modelled with a scale of 1:300 at 98 

points of the building façade structure. The points correspond to fourteen nodes on 

each storey, one node for each façade orientation, and on seven different storey 

levels. Besides the Kanyon building, adjacent buildings were also modelled to 

include their possible local shielding effect. The measurements were repeated for 

eight wind directions. 

The aim of the experiment is to pre-process Cp data as an input for the developed 

‘HighVent’ design tool and for dynamic AFN simulations with EnergyPlus. As 

stated before, the atmospheric boundary layer reflecting the terrain roughness is not 

simulated in the wind tunnel tests, but is added in the subsequent analysis tools. In 

those tools, the local pressure is dependent on the wind speed at local height and may 

be estimated by: �� = 0,5 ∙ ���� ∙ ��  (A.2)
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A.2 Lab Setup 

The wind tunnel studies were realised in the Physical Environment Control 

Laboratory of the architectural faculty at the Istanbul Technical University under 

supervision of Prof. Vildan Ok. The laboratory is further supported by the 

mechanical engineering faculty. 

A.2.1 Wind tunnel unit 

The wind tunnel is an open (without return duct), sub sonic (low speed), suction 

tunnel with a closed test section. This so called jet Eiffel type has a total length of 

12,55 m. 

Figure A.1: Wind tunnel  
air inlet. 

Figure A.2: View from the wind 
tunnel inside  

(from narrowing square down). 

Figure A.3: Wind tunnel air 
outlet and fan. 

The incoming air is introduced in the tunnel by a large bell shaped opening with 

dimensions of 2,50 · 2,50 · 0,30 m, followed by a flow shaping module with 

dimensions of 2,00 · 2,00 · 0,92 m. An adaptor with 1,30 m in length connects this 

inlet part to the observation module by a narrowing square from 2,00 · 2,00 m to 

1,05 · 1,05 m in section.  

The test section has dimensions of 1,00 · 1,00 · 3,00 m. The side parts are made of 

acrylic glass and the horizontal surfaces of fibreboard.  

The diffuser part behind the test section is 5,96 m in length, passing the air stream 

from the observation room in square section to a circular section with 1,64 m in 

diameter. At the very end of the tunnel, a fan is attached with a blade radius of 

0,52 m. The axial fan’s maximum power is 4 kW with a rotor speed of 2 905 rpm.  
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The placement of the wind tunnel in the laboratory is shown in plan and in section in 

Figure A.4 and Figure A.5. 

 

Figure A.4: I.T.U. Arch. Fac. Phy. Env. Cont. Lab. wind tunnel unit layout in plan. 

 

Figure A.5: I.T.U. Arch. Fac. Phy. Env. Cont. Lab. wind tunnel unit layout in section. 

A.2.2 Measuring Instruments 

The different instruments used for the measurements are described in detail below. 

Figure A.6 gives an overview of the measurement unit. 

 

Figure A.6: Schematic measuring station layout (not true to scale). 
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Pitot-tube 

A Pitot-tube is a pressure measurement instrument used to 

measure fluid pressure and flow velocity. The basic Pitot-

tube simply consists of a tube pointing directly into the fluid 

flow. As this tube contains air, a pressure can be measured as 

the moving air is brought to rest. This pressure is the 

stagnation pressure of the air, also known as the total 

pressure. 

Figure A.7: Pitot-Tube. 

The measured stagnation pressure cannot of itself be used to determine the dynamic 

pressure. But since Bernoulli's equation states that the stagnation pressure is the sum 

of static pressure and the dynamic pressure, the dynamic pressure can simply be 

derived by the difference between the stagnation pressure and the static pressure. 

Diaphragm 

The diaphragm pressure gauge uses the elastic deformation of a diaphragm 

(membrane) to measure the difference between an unknown pressure and a reference 

pressure. 

  

Figure A.8: Diaphragm. Figure A.9: Typical diaphragm pressure gauge. 

A typical diaphragm pressure gauge contains a capsule divided by a diaphragm, as 

shown in Figure A.9. One side of the diaphragm is open to the external targeted 

pressure and the other side is connected to a known reference pressure. The pressure 

difference mechanically deflects the diaphragm. 
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Demodulator 

Demodulation is the act of extracting the original 

information-bearing signal from a modulated carrier 

wave. The demodulator is an electronic circuit used to 

recover the information content from the modulated 

carrier wave.  

Figure A.10: Demodulator. 

Wind speed control unit 

The wind speed control system is designed to control 

the wind speed in the wind tunnel. In this project, all 

tests are carried out keeping constant wind tunnel 

speed. As recommended from the staff also 

concerning the Reynolds Numbers, a good value for 

the measurements is 40% of the fan power, which 

corresponds to 6,6 m/s.  

Figure A.11: Fan Control-Unit. 

Valve control unit 

This rather old control unit opens the 16 valves in the 

ScaniValv one by one in an interval of 5 or 10 

seconds. 10 seconds was used in the experiment in 

order to provide enough time to average the pressure 

data for 5 seconds and also to manually control the 

software in synchronic. 

 

Figure A.12: Valves control unit. 

Analogue / digital converter 

This converts the analogue electronic signal from the

demodulator output to a digital signal for the computer 

input. 

 

Figure A.13: Valves control unit. 
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ScaniValve 

This tube pressure input control unit opens one out of 

the 16 input tubes coming from within the wind 

tunnel. This makes it possible to measure the pressures 

in a row one by one. The opened tube pressure output 

is sent to the diaphragm. One of the 16 pressure inputs 

is the total pressure measured by the Pitot-tube, and is 

used for the calibration of the diaphragm. The valves 

are controlled by the valve control unit. 
 

Figure A.14: ScaniValve. 

Computer 

The PC acts as a digital interface for data collection and for data post processing, e.g. 

in ‘Matlab’ or ‘MS Excel’. Consequently, the computer is the last unit in the 

breadboard construction used for data processing and imaging. 

A.3 Kanyon Model 

The model was built in a scale of 1:300. For the modelling of the site including the 

tower, original ‘AutoCAD’ drawings were used. The neighbouring buildings were 

approximately modelled according to information from ‘Google Maps’ and from 

photos. 

 

Figure A-15: The model of the tower including the measurement points and tubes. 

 

Figure A.16: Constructing the Kanyon site model on a turntable plate. 
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During the measurement the model was turned in 45° steps according to the wind 

directions north, northeast, east, southeast, south, southwest, west and northwest. 

 

Figure A.17: Kanyon floor plan and façade orientations pertaining to the measured wind directions. 

A.4 Results 

The resulting wind pressure coefficient data gathered from the measurements is 

shown in the figures below. The coloured values indicate the wind direction, as 

positive values are measured at the windward side and negative values at the leeward 

side and the side faces. The values of the highest floor measured (at 117 m) are not 

coloured as they are of unpredictable nature, most probably due to the heliport 

modelled on the roof and local turbulences. 

 

Figure A.18: Pressure coefficients measured at 0° (north) wind direction. 
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Figure A.19: Pressure coefficients measured at 45° (northeast) wind direction. 

 

Figure A.20: Pressure coefficients measured at 90° (east) wind direction. 

 

Figure A.21: Pressure coefficients measured at 135° (southeast) wind direction. 
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Figure A.22: Pressure coefficients measured at 180° (south) wind direction. 

 

Figure A.23: Pressure coefficients measured at 225° (southwest) wind direction. 

 

Figure A.24: Pressure coefficients measured at 270° (west) wind direction. 
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Figure A.25: Pressure coefficients measured at 315° (northwest) wind direction. 

A.5 Discussion 

As predicted, the wind striking the building induces a positive pressure on the 

windward face, and negative pressures on opposing faces and in the wake region of 

the side faces.  

Average Cp value for the windward facing façade orientations is 0,70, and -0,76 for 

the opposite leeward facing façade orientations. The average here refers to mean 

value over the height of the building (29-105 m) of the two façade orientations 

closest facing the wind direction and the counterpart on the leeward side, 

respectively. Dependent on the wind direction, these Cp values fluctuate from 0,49 to 

0,89 and from -0,60 to -0,82, respectively.  

The negative values of Cp in the wake region of the side faces are even lower with 

average values over height from -0,92 to -1,76, depending on the wind direction. 

Except in the region close to the roof, the Cp values measured are relatively 

consistent over the height of the building, at least at heights from above 29 m up to 

105 m. Surrounding buildings therefore seem to have minor shielding influence on 

the wind pressure distribution.  

As a limitation, it should be mentioned that the pressure distribution close to the roof 

and the ground would need further investigation in order to see if it is of special 

interest. This study did not further investigate the roof and ground regions of the 

building, as they are not of special interest for the natural ventilation design 

developed. 
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The derived pressure coefficients are further used as input for the ‘HighVent’ design 

tool developed and for the dynamic AFN-simulations with EnergyPlus. 
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Nomenclature 
A : area m2 
c : specific heat capacity J kg-1 K-1 
C : thermal capacity J K-1 
d : thickness m 
F : thermal radiation view factor - 
h : heat transfer coefficient W m-2 K-1 
H : enthalpy J kg-1 
HR : humidity ratio kg water per kg air 
k : thermal conductivity W m-1 K-1 
ṁ : mass flow kg s-1 
q : heat flux  J m-2 
q̇ : heat flux rate W m-2 
Q̇ : heat transfer rate J/Δt = J/60s 
R : thermal resistance m² W K-1 
SHGC : solar heat gain coefficient dimensionless 
t : actual timestep - 
t-1 : previous timestep - 
T : temperature °C 
U : U-value of a construction W m-2 K-1 
V : volume m³ 
v : velocity m s-1 
V̇ : volume flow m³ s-1 
α : absorptivity dimensionless 
ε : emissivity dimensionless 
σ : Stefan-Boltzmann constant, which equals to 5,67·10-8  W m-2 K-4 
ρ : density kg m-3 
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τ : time constant s 
τ : window solar transmittance at normal incidence dimensionless 

Subscripts 
% : faction 
c : convection 
chi : exhaust chimney 
cell : zone modelled in the tool 
dif : diffuse radiation share 
dir : direct radiation share 
ext : external 
fab : fabric = all internal mass objects 
i : thermal mass layer number placeholder 
in : Internal air 
int : internal gains 
m : additional thermal mass 
mr : mean radiant 
r : radiation 
s : surface 
se : surface external 
si : surface internal 
sol : solar 
v : ventilation 
wi : winter 
win : window 
su : summer 
z : local height from start height 
τ : window transmitted radiation 
∞ : facing surfaces 
→ : radiation emitted or reflected 
← : radiation absorbed ⇆ : radiative heat exchange 

B.1 Introduction 

Appendix B gives supplementary information about the ‘HighVent’ tool underlying 

dynamic calculation method, which is not fully covered in the preliminary design 

tool development Section § 6.2. It provides pre-simulated solar transmitted heat gains 

for different shading configurations according to § 6.1.2, which are used as 

scheduled input for the tool. The building construction library provides lumped 

capacity model constructions with different levels of mass according to § 6.1.3. 
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B.2 Internal Air Model 

The dynamic internal air temperature calculated by: 

���+t- = ���+t- 1- + «:�,���+t- 1- + «:�,%�?+t- 1- + «:¬+t- 1-���+t- 1- ∙ ∆­ (B.1)

where (t-1) indicates the value from the previous timestep (Δt = 60 s). The 

volumetric heat capacity of the cell’s air is calculated by: ���+t- = 9��®® ∙ ���+t- ∙ ¯��� (B.2) 

The chimney air temperature is optionally increased by heat gains from IT or solar. 

The density of the internal moist air is calculated similar to the method described in 

§ 3.2.1.1. For simplicity of the model, it is assumed that the humidity ratio of the 

external air (scheduled design day input) is equal to the humidity ratio of the internal 

air (only sensible internal heat gains). 

 

Figure B.1: Typical external, internal and chimney moist air densities. 

The total convective heat gain rate from all internal sources to the cell air is: 

«:�,���+t- = «:�,��w�+t- + «:�,®��°�+t- + «:�,�¢±��+t- (B.3)

The convective heat transfer rate from all internal surfaces (termed fabric) to the cell 

air is: 

«:�,²y�+­- = «:�,G ,³y��+­- + «:�,G ,³ �+­- + «:�,²�´´V+­- + «:�,�� �+­- + «:�,�"+­- + «:�,� +­- (B.4)
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Figure B-2: Typical heat flux balance of the cell air per m² net office floor area (850 m²). 

As a measure of the total energy, the enthalpy includes the sensible heat of the dry air 

and the latent heat of the evaporated water [1]:  [��� = ¯��� ∙ ���� + [x ∙ +¯�¬ ∙ ���� + [��- (B.5)

The specific heat capacity of air (cair) at constant pressure is assumed with  

1 006 J kg-1 K-1, the specific heat of water vapour (cwv) at constant pressure with 

1 840 J kg-1 K-1, and the evaporation heat of water (Hwe) with 2 502 000 J kg-1 [1]. 

The external air enthalpy is calculated at local height of the cell (centroid): 

[���,�+t- = 1006 µ Jkg ∙ K¶ ∙ ����,�+t- + [x+t- ∙ .1840 µ Jkg ∙ K¶ ∙ ����,�+t- + 2502000 µ Jkg¶5 (B.6)

Assuming that all internal heat gains are from sensible heat, the enthalpy of the 

internal air is: 

[ �+­- = 1006 µ ¸�
 ∙ �¶ ∙ � �+­- + [x+­- ∙ .1840 µ ¸�
 ∙ �¶ ∙ � �+­- + 2502000 µ�̧
¶5 (B.7)
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Figure B-3: Enthalpy of the external, internal, and moist air (E+ validation case). 

B.3 Heat Transfer Models 

B.3.1 Convection 

Internal 

Internal convection occurs at all construction (lumped capacity model) surfaces 

facing the internal air. Assuming that the cell’s floor and ceiling are both internal and 

the temperature on each storey is equal, there is no air temperature difference across 

the construction, which therefore can be treated as adiabatic. All heat transfer into the 

surface is a result of the dynamic response of the construction, and therefore this 

adiabatic construction can still store or release energy. All internal convective heat 

exchange is dynamically computed by constant convective heat transfer coefficients: 

«:�,
�+t- = ℎ�,
� ∙ +���+t- 1- − �
�+t- 1-- ∙ (
� ∙ ∆­ (B.8)

External  

The external convection is realised again by the classical formulation for convective 

heat transfer, but includes a dynamically calculated exterior surface convective film 

coefficient: 

«:�,
�+t- = ℎ�,
�+t- 1- ∙ �����,�+t- 1- − �
�+t- 1-� ∙ (
� ∙ ∆­ (B.9)

The convective film coefficient depends on the outside air temperature and on the 

wind velocity. It is calculated according to the Mobile Window Thermal Test 

(MoWiTT) method [2] for smooth surfaces. The original model has been modified 

according to Booten et al. [3] so that it is sensitive to the local wind speed which 
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varies with the height. For simplicity half of the façade area is treated as windward 

side, and the other half as leeward side, resulting in a uniform average heat exchange 

over the overall façade surface: 

ℎ�,
�+t- = <Z0,84 ∙ �!����,�+t- − �
�+t-!�"P\ + +3,26 ∙ ��B,��- 2 + 

                + <Z0,84 ∙ �!����,�+t- − �
�+t-!�"P\ + +3,55 ∙ ��B,~"j- 2  

(B.10) 

B.3.2 Thermal radiation 

According to ASHREA [4], it is reasonable to assume for a ‘grey body’ that 

emissivity and absorptivity are equal, and are constant over wavelength 

(0 < α = ε < 1). The heat transferred is equal to the radiation entering minus the 

radiation leaving surface. The grey body equation for two parallel surfaces is the 

governing equation, which can be expressed as: 

«:
,"⇆
, = ¹ ∙ º ∙ ��
,"Q−�
, Q� ∙ (
 ∙ Δ­ (B.11)

Most building materials (including glazing) have high emissivity of the order of 0,9. 

Highly reflective materials such as polished metals have emissivity of the order of 

0,1. A typical value for the absorptivity of clear glass is 0,84 [3]. 

Internal 

Assuming that all the walls forming the enclosure have the same emissivity, the grey 

body equation governing the internal radiative heat exchange between the surfaces is: 

«:
�⇆$+t- = ¹ ∙ º ∙ +�$+t- 1-Q − �
�+­- 1-Q- ∙ (
�  ∙ ∆­ (B.12)

where one surface is at the surface temperature of the construction and the other is at 

the mean radiant temperature of all other surrounding surfaces. The mean radiant 

temperature of the half sphere facing the construction surface is the weighted mean 

radiant temperature of the surrounding elements only dependent on their areas. For 

simplicity, view factors representing the orientations and reflectance are not 
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included. Only the surfaces of the inner side of the external walls and windows are 

modelled as not facing each other. Typically, the weighted mean radiant temperature 

of the half sphere surrounding the inner side of the external wall is: 

�$⇆
�,��®®+t- �
�f�+t- # (%,��®® ∙ �
�,��®®+t- # (%,��� ∙ �
�,���+t-

1 # (%,��®® # (%,���
 (B.13)

The equations for the other surrounding surfaces are analogous, but are not shown 

here. 

External 

The external thermal radiation exchange including few factors is a simple standard 

formulation essentially identical to the ones utilised in EnergyPlus [5] and TARP [6]. 

The external surfaces exchange heat to the sky, the air, and the ground [6,7], though 

the ground is assumed to be at the same temperature as the ambient air [5]. A rough 

approximation made for simplicity is that the sky temperature is assumed to be the 

ambient air temperature minus 12 °C. The total heat flux at the exterior surface (e.g., 

window, wall) is the total absorbed thermal radiation from the sky, the air, and the 

ground, minus the thermal radiation emitted:  

«:
�⇆$+t- � +¼
�←$+t- # ¼
�→$+t-- ∙ (
� 	 ∙ ∆­ (B.14)

with the absorbed long wave radiation also dependent on the surface properties: 

¼
�←$+t- � ¿
� ∙ º ∙ �'
gÀ ∙ +����+t- 1- # 12	ÁKÂ-Q � '��f ∙ ����+t- 1-Q � '��; ∙ ����+t- 1-Q� (B.15)

and the emitted long wave radiation: 

¼
�→$+t- � ¹
� ∙ º ∙ �
�+t- 1-Q (B.16)

The view factors are dependent on the tilt angle of the surface [3]. For the façade the 

view factors are 0,500 facing the ground, 0,146 to the atmosphere and 0,354 to the 

sky:  

«:
�⇆$+t- � ¹
� ∙ σ ∙ +0,354 ∙ +����+t- 1- # 12Á°CÂ-Q � 0,646 ∙ ����+t- 1-Q # �
�+t- 1-Q- ∙ (
 ∙ ∆­ (B.17)

The thermal radiation long wave transmittance of windows is assumed to be zero, 

and therefore windows can be treated like opaque walls. 
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B.3.3 Solar radiation 

Internal 

The ‘pre-processed’ total transmitted solar radiation (see § B.4) is further processed 

for the distribution of heat flux to all the internal surfaces. Incoming hourly 

transmitted radiation values are first interpolated depending on the timestep, and then 

further split into diffuse and direct beams according to the shading devices selected 

(see § B.4). Internal fabrics absorb and reflect the incoming beam, depending on 

their surface properties. 

All entering direct beam is initially added to the floor construction’s surface only 

dependent on the floor’s reflectance, which is the share not absorbed. The reflected 

beam is treated as diffuse radiation incident on all the other surfaces including the 

window glazing. 

The direct solar heat flux absorbed by the floor is: 

«:Å,;��,%®ww� = ¿%®ww� ∙ «:Å,;�� (B.18)

The direct solar heat flux reflected by the floor and absorbed by the other surfaces is 

dependent on their absorptivity weighted area. The total absorption weighted area 

facing the reflected direct radiation by the floor surface is: ($←;��,%®ww� = ¿���® ∙ (���® + ¿
�,��®® ∙ (��®® + ¿
�,��� ∙ (��� + 2 ∙ ¿f ∙ (f (B.19)

For example, the reflected direct solar heat flux absorbed by the ceiling is: 

«:Å,;��,���® = ¿ceil ∙ (���®($←;��,%®ww� ∙ +1 − ¿floor- ∙ «:Å,;�� (B.20)

The equations for the other floor facing surfaces are analogous, but are not shown 

here. 

The diffuse beam is distributed to all the internal surfaces facing the windows, 

depending on their area and absorptivity. There is no reflection modelled back to the 

inner faces of windows or walls. 
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The total absorption/reflectance weighted area facing the windows for the calculation 

of the diffuse solar beam distribution is: ($←;�%,��� = +¿%®ww� + ¿���®- ∙ (%®ww� + ¿f ∙ 2 ∙ (f (B.21)

The diffuse solar heat flux absorbed by the internal, window-facing surfaces is again 

dependent on their absorptivity weighted area. For example, for the ceiling: 

«:Å,;�%,���® = ¿���® ∙ (���®($←;�%,��� ∙ «:Å,;�% (B.22)

The equations for the other window facing surfaces are again analogous, but not 

shown here. 

External 

Solar radiation absorbed by the external envelope is backcalculated from the ‘pre-

processed’ transmitted solar (see § B.4) according to the simple window indices 

method definition in EnergyPlus [8]. This dependency was chosen due to the 

predominant impact of the transmitted solar energy compared to the radiation 

absorbed on the exterior envelope, assuming that glazed facades with relatively low 

U-values have good thermal insulation. 

Simple window indices are converted into an equivalent single layer window. The 

technical procedure to determine the absorbed solar radiation by the windows is 

separated into four steps, where the first three steps are taken from the original 

method by Arasteh et al. [8], and the last step is newly developed to adapt the 

method for the approach of this tool. 

Step 1: For windows with U-values smaller than 5,85, the film coefficients in winter 

are: 

x
�,���,�� = 10,359073 ∙ ln+È���- + 6,949915 (B.23)

x
�,���,�� = 10,025342 ∙ È��� + 29,163853 (B.24)
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The window inner resistance is: 

x��� = 1
È���

# x
�,���,�� # x
�,���,�� (B.25)

Step 2: For windows with U-values smaller than 3,4 and with a SHGC bigger than 

0,15, the solar transmittance at normal incidence can be approximated by: É = 0,085775 ∙ Ê[Ë� � 0,963954 ∙ Ê[Ë� # 0,084958 (B.26)

Step 3: For windows with U-values smaller than 3,4 the film coefficients in summer 

are: 

x
�,���,
± �

�
1

199,8208128 ∙ +Ê[Ë� # É-P # 90,639733 ∙ +Ê[Ë� # É- � 19,737055 ∙ +Ê[Ë� # É- � 6,766575
(B.27)

x
�,���,
± �
1

5,763355 ∙ +É # x
�,���,
±- � 20,541528
 (B.28)

The inward flowing fraction of the absorbed solar radiation is: 

¿%,���,�� �
x
�,���,
± � 0,5 ∙ x���

x
�,���,
± � x��� � x
�,���,
±
 (B.29)

The total solar radiation absorptivity of the windows at normal incidence is: 

¿��� �
Ê[Ë� # É
¿%,���,��

 (B.30)

Step 4: A factor of 1,2 roughly transforms the angular transmittance value to the 

solar transmittance at normal incidence. The factor was gathered from E+ test 

simulations for the Kanyon building during summer. 

For simplicity in the model, half of the absorbed solar radiation is absorbed at the 

external pane and the other half at the internal pane of the double glazing: 

«:
w®,
�,��� � «:
w®,
�,��� � 0,5 ∙
¿���

1,2
∙ «:Å (B.31)
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Table B-1: Simple glazing model parameters for the Kanyon Lo-E double glazing. 

inputs  interim result  
Uwin 1,400 W/m²-K Rwin 0,539 m²-K/W 
SHGC 0,444 - τ 0,360 - 
   αwin 0,190 - 

The solar radiation absorbed by external walls is calculated as a direct function of the 

E+ pre-processed window transmitted solar radiation. The surface mean outside face 

incident solar radiation absorbed is the transmitted solar radiation multiplied by a 

factor to convert the transmitted radiation to total radiation on the surface, further 

multiplied by the wall’s absorption coefficient: 

«:
w®,
�,��®® = «:ÅÉ1,2 ∙ (��®®(��� ∙ ¿��®® (B.32)

B.3.4 Internal gains 

Internal heat gains are based on hourly value schedules and are not interpolated. The 

total convective internal heat gains are: 

«: ���,� = «:��w�,� + «: ®��°�,� + «:�¢±��,� (B.33)

The total radiative internal heat gains are: 

«: ���,� = «:��w�,� + «: ®��°�,� + «:�¢±��,� (B.34)

The total absorption/reflection weighted area for the calculation of the internal heat 

gains beam distribution is: 

($← ��,V = �¿²�´´V + ¿�� �� ∙ (²�´´V + 2 ∙ ¿� ∙ (� + ¿³y�� ∙ (³y�� + ¿³ � ∙ (³ � (B.35)

The heat flux absorbed by the internal surfaces is again dependent on their 

absorptivity weighted area. For example, for the ceiling: 

«: ���,�,���® = ¿���® ∙ (���®(∞←int,r ∙ «: ���,� (B.36)

The equations for the other surfaces are again analogous, but not shown here. 
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People 

People’s heat gain rates for office work are pre-set at 108 W person-1. The radiant 

fraction is assumed to be 50%, which again is the E+ default value. General densities 

of people densities in offices per m²/workstation according to ASHRAE may be 

found in § 4.2.3. 

Lights 

Heat gain rates from the lights are scheduled values in W/m² net floor area. They 

values may be pre-processed by E+, if dimmers are applied in the case studied. The 

radiant fraction assumed is 37%, which is the E+ default value. 

Equipment 

Heat gain rates from the equipment are again scheduled values in W/m² net floor 

area. The radiant fraction assumed is 20%, which again is the E+ default value.  

B.3.5 Thermal mass 

In general and in rectangular coordinates, temperature is a function of space and 

time: T = f(x,y,z,t). In a Lumped Capacitance Model LCM (also lumped system 

analysis), it is assumed that the temperature at any time is uniform within the body 

and therefore discretised in space: T = f(t).  

A thermal body has the properties mass, volume, density and the initial temperature 

Tini which in the model is the temperature from the previous timestep. The body 

object is exposed to the outside temperature T∞ by the total film resistance to the 

outside, which depending on the type of heat transfer is the convective resistance 

Rc=1/hc or the radiative resistance Rr=1/hr plus the internal resistance from the 

surface to the heat capacity of the body. 

 

Figure B-4: Basic RC Lumped Capacitance Model. 

The temperature of a solid body with capacity as a function of time is: 

� ∙ d�d­ = � − �$x  (B.37)
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After separation of the variables and derivation: 

ln .�+�- − �$���� − �$5 = − ­� ∙ x (B.38) 

�+�- − �$���� − �$ = ei �Î∙Ï (B.39) 

With the time constant (see below): É = x ∙ � (B.40)

The basic lumped equation for the temperature of a solid with the initial condition 

temperature becomes: 

�+t- = ei�Å ∙ +�+t- 1- − �$- + �$ (B.41)

The LCM was utilised for the prediction of thermal behaviour in various studies like 

[9-14], but a full set of the formulae could not be found by the author, and is 

therefore given in in the following section for the simple LCM applied in the tool. 

The LCM outlined for the design tool is capable of representing a five layered LCM 

construction as shown in Figure 3.26. This simplified model is chosen due to its low 

computational effort and stability, which is therefore especially suited for a dynamic 

spread sheet application. Because of the simplified approach, the tool must be used 

with care if there are several heavyweight layers in one construction, since the 

number of layers (in terms of heat capacity) is restricted to five and at least one layer 

represents the surface layer on each face. The dominant mass layer can be further 

subdivided into sub-layers in order to guarantee to a certain extent that the 

temperatures inside these sub-layers do not vary significantly in space. Therefore, it 

is recommended only to use constructions with an obvious thermal mass distribution 

(or to extend the model if necessary). In the following, the index i indicates the layers 

of the LCM from 1 to 5. ‘Pre-processed’ examples of real multi-layered 

constructions converted into five-layered LCMs may be found in the building 

constructions library § B.5. 

The time constant τ is a measure of the time needed by a slab of thermal mass to 

react to a change in the input. The lower the time constant, the faster the heating or 
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cooling of a solid. Two time constants are calculated for each side of the LCM-layer 

with the resistance multiplied by the capacitance: τ ," � x ," ∙ �  (B.42)

τ , � x , ∙ �  (B.43)

where the resistances on each side of the LCM-layers capacity are calculated by: 

x ," � �  ∙ Ñ 
2

�
� i" ∙ Ñ i"

2
 (B.44)

x , �
�  ∙ Ñ 
2

�
� Ò" ∙ Ñ Ò"

2
 (B.45)

and the heat capacities of the LCM-layers are calculated by: �  = �  ∙ ¯  ∙ Ñ  (B.46)

A lumped capacitance model is valid for Biot-Numbers much smaller than 1. The 

Biot number Bi is an index of the ratio of the heat transfer resistances that indicates if 

the thermal resistance of the fluid interface exceeds that thermal resistance within the 

body or material. If Bi is much smaller than 1 (in literature often smaller than 0,1), 

then the temperatures inside a body will not vary significantly in space. 

Thermal loads are raising or lowering the thermal capacitance of an LCM layer from 

both sides. Therefore, the temperature shift for each timestep with a certain interval 

(here 60s) is calculated from one side and superposed by the other side: 

��+t- � e
i ∆Ó
Ôu,Õ ∙ ���+t- 1- # ��i"+t- 1-� � ��i"+t- 1- �  ei ∆Ó

Ôu,Ö ∙ ���+t- 1- # ��Ò"+t- 1-� � ��Ò"+t- 1- − ��+t- 1-  (B.47)

where index i indicates the position of the three inner LCM layers from 2 to 4. The 

calculations are based on adjacent temperatures from the previous timestep. 

For building internal constructions, the external LCM layers are calculated from the 

inner side of the body and the sum of internal heat fluxes incident: 

�"+t- �  ei ∆�
ÅÕ,Ö ∙ ��"+t- 1- # � +t- 1-� � � +t- 1- �

«:
�⇆$+t- � «: ���,�,
�+t- � «:Å,;��,
�+t- � «:Å,;�%,
�+t-�«:�,
�+t-
�" ∙ (
�

 (B.48)

��+­- � ×
i ∆�
ØÙ,Õ ∙ ���+­- 1- # �Q+­- 1-� � �Q+­- 1- �

«: 
�⇆$+t- � «: ���,�,
�+t- � «:Å,;��,
�+t- � «:Å,;�%,
�+t-�«:�,
�+t
�� ∙ (
�

 (B.49)
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From the solid side, the change in temperature is calculated depending on the inner 

temperature, the conductivity, and capacity of the body like described before. Heat 

exchange from the exposed side is from convection and radiation (see Figure 3.27). 

The building internal surface temperatures are calculated from the closest inner mass 

temperature and the adjacent air temperature via the resistors in series electrical 

analogy. R is half the resistance of the first LCM sub-layer: 

�
�,"+t- = �"+t- 1- − �"+t- 1- − ���+t- 1-�" ∙ Ñ"2 + 1ℎ� ∙ �" ∙ Ñ"2  (B.50)

�G ,�+­- = ��+­- 1- − ��+t- 1- − � �+­- 1-�� ∙ Ñ�2 + 1ℎ� ∙ �� ∙ Ñ�2  (B.51)

For building external constructions, the external LCM layer (i=1) temperature is 

calculated from the inner side of the body and the sum of external heat fluxes 

incident: 

�"+­- = ×i ∆�ØÕ,Ö ∙ ��"+­- 1- − � +­- 1-� + � +­- 1- + «:G�⇆$+­- + «:G´�,G�+­-+«:�,G�+­-�" ∙ (G�  (B.52)

The building external surface temperatures are calculated from the closest inner mass 

temperature (here for the LCM layers i=1) and the adjacent air temperature: 

�G�+­- = �"+­- 1- − �"+­ − 1- − � �+­- 1-�" ∙ Ñ"2 + 1ℎ� ∙ �" ∙ Ñ"2  (B.53)

 

Figure B.5: Typical temperature distribution of an lightweight, insulated external wall. 
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Figure B.6: Typical temperature distribution of an internal floor/ceiling LCM construction including 
12,5 cm concrete as the ceiling layer and a suspended carpet/plywood tile as the floor layer. 

The average internal mean radiant temperature of the internal space is a measure of 

the combined effects of temperatures of all the internal surfaces. It is calculated 

assuming that the occupant is in the centre of the cell with no weighting for any 

particular surface: 

�f�+t-= = �
�,��®®+t- ∙ (��®® + �G ,³ �+t- ∙ (��� + +�%®ww�+t- + ����®+t-- ∙ (%®ww� + ��
�,f"+t- + �
�,f +t-� ∙ (f(��®® + (��� + 2 ∙ (%®ww� + 2 ∙ (f  (B.54)

B.3.6 Natural ventilation 

Heat gains and losses due to ventilation per timestep are a function of the mass flow 

rate multiplied by the enthalpy difference between the external and the internal air. 

The mass flow rate per timestep is the volume flow rate multiplied the mean air 

density between inside and outside: 

«:¬+t- = |£: +t-| ∙ �[���,�+t- − [��+t-� (B.55)

£: +t- = 9: +t- ∙ ����,�+t- + ���+t-2  (B.56)

Heat losses occur if the external temperature is lower than the internal temperature.  
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Figure B.7: Moist air total ventilative heat exchange (E+ validation case). 

B.4 Transmitted Solar Heat 

Pre-processed transmitted solar radiation values Q̇τ, used as design tool input, were 

simulated by E+ BEPS. The simulation setup was a simple one zone model 

(Figure B.8) using the E+ design day object including the sun path along with the 

scheduled SWMD solar radiation profiles from § 5.3.3.  

 

Figure B.8: EnergyPlus simulation model for gathering the transmitted solar radiation of one storey 
of the Kanyon building with the as-built external shading and the glazing ratio of ~ 91 % (~ SE view). 

Nine cases were investigated and results are shown in Figure B.9 through 

Figure B.11. E+ simulations have to be repeated for each case. However the 

transmitted solar gains for each case are in linear dependence to the overall glazing 

ratio.  

 
(a) 

 

(b) 

Figure B.9: Hourly SWMD (a) total transmitted solar radiation for Kanyon building without external 
shading devices per m² net office floor area and (b) the direct beam solar radiation share. 
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(a) 

 

 
(b) 

Figure B.10: Hourly SWMD (a) total transmitted solar gains for Kanyon building with the actual 
shading devices per m² net office floor area and (b) the direct beam solar radiation share. 

 
(a) 

 

 
(b) 

Figure B.11: Hourly SWMD (a) total transmitted solar gains for Kanyon building with adaptive 
blinds per m² net office floor area and (b) the direct beam solar radiation share. 

  

Simulations showed that for the Kanyon case-study building, about 10-35% of the 

daily mean incoming radiation is direct beam depending on the external shading 

device. The more effective the shading devices are, the more they block direct 

radiation entering the windows. For simplicity, the fraction of transmitted direct 

beam solar from the total transmitted solar radiation chosen for the tool calculations 

is independent on time: 30% for windows without external shades, 20% for buildings 

with external overhangs, and 10% for buildings with adaptive setpoint controlled 

blinds. 

B.5 Building Constructions Library 

B.5.1 Floor / ceiling 

Table B.2: Material properties of the floor / ceiling construction layers. 

 case1 d in m ρ in kg/m³ cp in J/kg-K k in W/m-K R in m²-K/W C in J/K-m² 
carpet 1/2 0,0060 288 1390 0,06 0,100 2.402 
plywood 1/2 0,0300 544 1210 0,12 0,250 19.747 
airspace 1/2 0,1700 - - - 0,180 - 
concrete 1/2/3 0,1250 1920 840 1,10 0,114 201.600 
airspace 1/3 0,9900 - - - 0,180 - 
plasterboard 1/3 0,0125 800 1090 0,58 0,022 10.900 

1 case 1: actual floor / ceiling 
 case 2: mass activated ceiling 
 case 3: mass activated floor 
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Table B.3: LCM properties of the floor / ceiling construction calculated. 

layer actual floor / ceiling mass activated ceiling mass activated floor 
i C in J/m²-K R in m²-K/W τ in s C in J/m²-K R in m²-K/W τ in s C in J/m²-K R in m²-K/W τ in s 
1,1  0,225   0,175   0,014  
1 22 149   22 149   50 400   
1,2  0,324 7 176  0,374 8 284  0,028 1 411 
2,1  21 773  18 850  1 411 
2 67 200   50 400   50 400   
2,2  0,038 2 544  0,028 1 432  0,028 1 411 
3,1  2 544  1 432  1 411 
3 67 200   50 400   50 400   
3,2  0,038 2 544  0,028 1 432  0,028 1 411 
4,1  2 544  1 432  1 411 
4 67 200   50 400   50 400   
4,2  0,210 14 112  0,028 1 432  0,205 10 332 
5,1  2 289  1 432  2 235 
5 10 900   50 400   10 900   
5,2  0,011   0,014   0,011  

B.5.2 External wall 

Table B.4: Material properties of the wall construction layers. 

 case1 d in m ρ in kg/m³ cp in J/kg-K k in W/m-K R in m²-K/W C in J/K-m² 
metal 1 0,0020 7824 500 45,280 0,000 7 824 
xps extruded polystyrene 1 0,0200 35 1400 0,034 0,588 980 
wall air space 1 0,1000 - - - 0,150 - 
mw stone wool rolls 1 0,1000 30 840 0,040 2,500 2 520 
metal 1 0,0010 7824 500 45,280 0,000 3 912 

1 case 1: actual lightweight wall 

Table B.5: LCM properties of the wall construction calculated. 

layer actual lightweight wall 
i C in J/m²-K R in m²-K/W τ in s 
1,1 0,000022 
1 7 824 
1,2 

0,540 
4 225 

2,1 630 
2 1 167 
2,2 

1,079 
1 259 

3,1 1 259 
3 1 167 
3,2 

1,079 
1 259 

4,1 1 259 
4 1 167 
4,2 

0,540 
630 

5,1 2 112 
5 3 912 
5,2 0,000011 

B.5.3 Internal partitions 

Table B.6: Material properties of the partition construction layers. 

 case1 d in m ρ in kg/m³ cp in J/kg-K k in W/m-K R in m²-K/W C in J/K-m² 
oak wood 1 0,013 1630 608 0,150 0,087 12 884 
wall air space 1 0,025 - - - 0,150 - 
concrete reinforced  1/2 0,400 1920 840 1,100 0,364 645 120 
wall air space 1 0,025 - - - 0,150 - 
oak wood 1 0,013 1630 608 0,150 0,087 12 884 

1 case 1: actual partitions 
 case 2: mass activated partitions 
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Table B.7: LCM properties of the internal partition constructions calculated. 

layer  actual partitions mass activated partitions 
i C in J/m²-K R in m²-K/W τ in s C in J/m²-K R in m²-K/W τ in s 
1,1 0,043  0,036  
1 12 884 129 024   
1,2 

0,254 
3 273  

0,073 
9 384  

2,1 54 620  9 384 
2 215 040 129 024 

 
 

2,2 
0,121 

26 020  
0,073 

9 384 
3,1 26 020  9 384 
3 215 040 129 024 

 
 

3,2 
0,121 

26 020  
0,073 

9 384 
4,1 26 020  9 384 
4 215 040 129 024 

 
 

4,2 
0,213 

54 620  
0,073 

9 384 
5,1 3 273  9 384 
5 30 336 129 024 

 
 

5,2 0,043  0,036  
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