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A METHODOLOGY FOR ENERGY OPTIMIZATION OF BUILDINGS 

CONSIDERING SIMULTANEOUSLY BUILDING ENVELOPE 

 HVAC AND RENEWABLE SYSTEM PARAMETERS 

SUMMARY 

Energy is the vital source of life and it plays a key role in development of human 

society. Any living creature relies on a source of energy to exist. Similarly, machines 

require power to operate. Starting with Industrial Revolution, the modern life clearly 

depends on energy. We need energy for almost everything we do in our daily life, 

including transportation, agriculture, telecommunication, powering industry, heating, 

cooling and lighting our buildings, powering electric equipment etc. Global energy 

requirement is set to increase due to many factors such as rapid industrialization, 

urbanization, population growth, and growing demand for higher living standards. 

There is a variety of energy resources available on our planet and non-renewable 

fossil fuels have been the main source of energy ever since the Industrial Revolution.  

Unfortunately, unsustainable consumption of energy resources and reliance on fossil 

fuels has led to severe problems such as energy resource scarcity, global climate 

change and environmental pollution. The building sector compromising homes, 

public buildings and businesses represent a major share of global energy and 

resource consumption. Therefore, while buildings provide numerous benefits to 

society, they also have major environmental impacts. To build and operate buildings, 

we consume about 40 % of global energy, 25 % of global water, and 40 % of other 

global resources. Moreover, buildings are involved in producing approximately one 

third of greenhouse gas emissions. Today, the stress put on the environment by 

building sector has reached dangerous levels therefore urgent measures are required 

to approach buildings and to minimize their negative impacts. 

We can design energy-efficient buildings only when we know where and why energy 

is needed and how it is used. Most of the energy consumed in buildings is used for 

heating, cooling, ventilating and lighting the indoor spaces, for sanitary water heating 

purposes and powering plug-in appliances required for daily life activities. 

Moreover, on-site renewable energy generation supports building energy efficiency 

by providing sustainable energy sources for the building energy needs. The 

production and consumption of energy carriers in buildings occur through the 

network of interconnected building sub-systems. A change in one energy process 

affects other energy processes. Thus, the overall building energy efficiency depends 

on the combined impact of the building with its systems interacting dynamically all 

among themselves, with building occupants and with outdoor conditions. Therefore, 

designing buildings for energy efficiency requires paying attention to complex 

interactions between the exterior environment and the internal conditions separated 

by building envelope complemented by building systems. 

In addition to building energy and CO2 emission performance, there are also other 

criteria for designers to consider for a comprehensive building design. For instance, 
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building energy cost is one of the major cost types during building life span. 

Therefore, improving building efficiency not only addresses the challenges of global 

climate change but also high operational costs and consequent economic resource 

dependency. However, investments in energy efficiency measures can be costly, too. 

As a result, the economic viability of design options should be analysed carefully 

during decision-making process and cost-effective design choices needs to be 

identified. Furthermore, while applying measures to improve building performance, 

comfort conditions of occupants should not be neglected, as well. 

Advances in science and technologies introduced many approaches and technological 

products that can be benefitted in building design. However, it could be rather 

difficult to select what design strategies to follow and which technologies to 

implement among many for cost-effective energy efficiency while satisfying equally 

valued and beneficial objectives including comfort and environmental issues. Even 

using the state-of-the-art energy technologies can only have limited impact on the 

overall building performance if the building and system integration is not well 

explored. Conventional design methods, which are linear and sequential, are 

inadequate to address the inter-depended nature of buildings. There is a strong need 

today for new methods that can evaluate the overall building performance from 

different aspects while treating the building, its systems and surrounding as a whole 

and provide quantitative insight information for the designers. Therefore, in the 

current study, we purpose a simulation-based optimization methodology where 

improving building performance is taken integrally as one-problem and the 

interactions between building structure, HVAC equipment and building-integrated 

renewable energy production are simultaneously and dynamically solved through 

mathematical optimization techniques while looking for a balanced combination of 

several design options and design objectives for real-life design challenges. 

The objective of the methodology is to explore cost-effective energy saving options 

among a considered list of energy efficiency measures, which can provide comfort 

while limiting harmful environmental impacts in the long term therefore financial, 

environmental and comfort benefits are considered and assessed together. During the 

optimization-based search, building architectural features, building envelope 

features, size and type of HVAC equipment that belong to a pre-designed HVAC 

system and size and type of  considered renewable system alternatives are explored 

simultaneously together for an optimal combination under given constraints. 

The developed optimization framework consists of three main modules: the 

optimizer, the simulator, and a user-created energy efficiency measures database. 

The responsibility of the optimizer is to control the entire process by implementing 

the optimization algorithm, to trigger simulation for performance calculation, to 

assign new values to variables, to calculate objective function, to impose constraints, 

and to check stopping criteria. The optimizer module is based on GenOpt 

optimization environment. However, a sub-module was designed, developed and 

added to optimization structure to enable Genopt to communicate with the user-

created database module. Therefore, every time the value of a variable is updated, the 

technical and financial information of a matching product or system equipment is 

read from the database, written into simulation model, and fed to the objective 

formula. The simulator evaluates energy-related performance metrics and functional 

constraints through dynamic simulation techniques provided by EnergyPlus 

simulation tool. The database defines and organizes design variables and stores user-

collected cost related, technical and non-technical data about the building energy 
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efficiency measures to be tested during the optimization. An updated version of 

Particle Swarm Optimization with constriction coefficient is used as the optimization 

algorithm. 

The study covers multi-dimensional building design aims through a single-objective 

optimization approach where multi objectives are represented in a ε-Constraint 

penalty approach. The primary objective is taken as minimization of building global 

costs due to changes in design variables therefore it includes minimization of costs 

occur due to operational energy and water consumption together with ownership 

costs of building materials and building systems. Moreover, a set of penalty 

functions including equipment capacity, user comfort, CO2 emissions and renewable 

system payback period are added to the main objective function in the form of 

constraints to restrict the solution region to user-set design target. Consequently, 

multi-objective design aims are translated into a single-objective where the penalty 

functions acts as secondary objectives.  

The performance of the proposed optimization methodology was evaluated through a 

case study implementation where different design scenarios were created, optimized 

and analysed. A hypothetical base-case office building was defined. Three cities 

located in Turkey namely Istanbul, Ankara and Antalya were selected as building 

locations. Therefore, the performance of the methodology in different climatic 

conditions was investigated. An equipment database consists of actual building 

materials and system equipment commonly used in Turkish construction sector was 

prepared. In addition, technical and financial data necessary for objective function 

calculation were collected from the market. The results of the case studies showed 

that application of the proposed methodology achieved giving climate-appropriate 

design recommendations, which resulted in major cost reductions and energy 

savings.  

One of the most important contributing factors of this thesis is introducing an 

integrative method where building architectural elements, HVAC system equipment 

and renewable systems are simultaneously investigated and optimized while 

interactions between building and systems are being dynamically captured. 

Moreover, this research is distinctive from previous studies because it makes 

possible investigating actual market products as energy efficiency design options 

through its proposed database application and a sub-program that connect 

optimization engine with the data library. Therefore, application of the methodology 

can provide support on real-world building design projects and can prevent a 

mismatch between the optimization recommendations and the available market 

solutions.  

Furthermore, another contributing merit of this research is that it achieves 

formulating competing building design aims in a single objective function, which can 

still capture multi-dimensions of building design challenge. Global costs are 

minimized while energy savings are achieved, CO2-equivalent emission is reduced, 

right-sized equipment are selected, thermal comfort is provided to users and target 

payback periods of investments are assured. 

To conclude, the proposed methodology links building energy performance 

requirements to financial and environmental targets and it provides a promising 

structure for addressing real life building design challenges through fast and efficient 

optimization techniques. 
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BİNALARDA YAPI KABUĞU, MEKANİK SİSTEMLER VE 

YENİLENEBİLİR ENERJİ SİSTEMLERİ PARAMETRELERİNİN  

EŞ ZAMANLI ENERJİ OPTİMİZASYONU İÇİN BİR YÖNTEM 

ÖZET 

Temel yaşam kaynağımız olan enerji insanlığın gelişiminde can alıcı bir rol 

oynamaktadır. Ekosistemi oluşturan tüm canlılar varlıklarını sürdürebilmek için 

enerjiye ihtiyaç duyarlar. Benzer şekilde makinelerin işleyebilmesi için de dış bir 

enerji kaynağına ihtiyaçları vardır. Sanayi devrimi ile birlikte modern hayatta 

enerjiye olan bağımlılığımız her geçen gün artmaktadır. Günlük hayatta ulaşım, 

iletişim, tarım, sanayi faaliyetleri, binalarımızı ısıtmak, soğutmak ve havalandırmak, 

cihazlarımızı çalıştırmak gibi neredeyse tüm temel işlemleri yerine getirebilmek için 

enerjiye gereksinim duymaktayız.  

Günümüzde, küresel enerji ihtiyacı sanayileşme, kentleşme, nüfus artışı ve bireylerin 

daha iyi yaşam kalitesi beklentisi gibi çeşitli sebeplerden ötürü hızlı bir artış 

göstermektedir. Uluslararası Enerji Ajansı’nın verilerine göre enerji ihtiyacı 

önümüzdeki yıllarda daha da ivmelenerek artacaktır.  

Dünyamızda çok çeşitli enerji kaynakları mevcuttur fakat konvansiyonel fosil 

yakıtlar artan talebi karşılamada birinci sırada yer almaktadırlar. Günümüzde, enerji 

kaynaklarının bilinçsiz tüketimi ve enerji ihtiyacının fosil yakıtlara dayalı olarak 

karşılanıyor olması, küresel iklim değişikliği, fosil yakıtların tükenmesi ihtimali ve 

çevresel tahribat gibi tüm insanlığı tehdit eden ciddi sorunlara yol açmaktadır. Enerji 

bilinci ile geliştirilen yeni politikalar, enerjinin verimli kullanılmasına dair yürütülen 

kampanyalar, ulusal ve uluslararası boyutta çıkarılan bağlayıcı direktifler ile 

standartlar, temiz enerji teknolojilerine yapılan yatırımlar gibi pek çok önlem ise 

küresel sorunlarla başa çıkabilmede önemli potansiyele sahiptir. Ancak, sorunlarla 

mücadele için geliştirilecek stratejilerin tanımı ve içeriği uygulanacağı alana göre 

değişiklik göstermektedir. Uluslararası Enerji Ajansı’nın çalışmaları konutlar, iş 

yerleri ve kamu binalarını kapsayan yapı sektörünün küresel enerji ve kaynak 

tüketiminde oldukça önemli bir paya sahip olduğunu göstermektedir. Binaların 

toplumsal ihtiyaçları karşılamada önemli bir işlevleri olmasına karşılık çevresel 

olarak yol açtığı sorunlar artık göz ardı edilemez. Binaların yapım ve işletme 

dönemlerinde küresel enerjinin % 40’ı, küresel su tüketiminin % 25’i  ve 

diğerküresel kaynakların % 40’ı tüketilmektedir. Dahası küresel CO2 emisyonlarının 

üçte biri binalardan kaynaklanmaktadır. Dolayısıyla bu günlerde yapı sektörünün 

tabiat üzerinde oluşturduğu baskı tehlikeli seviyelere ulaşmıştır ve binaların neden 

olduğu olumsuz etkilerin azaltılmasını sağlayacak önlemler acilen alınmalıdır. 

Binalarda tüketilen enerjinin büyük bölümü bina kullanıcılarına gerekli  ısıl ve görsel 

konfor şartlarını sağlayabilmek niyetiyle iç mekanları ısıtmak, soğutmak, 

havalandırmak ve aydınlatmak için kullanılmaktadır. Ayrıca kullanıcılar için sıcak su 

hazırlamak ve ev veya ofislerimizdeki elektrikli cihazları çalıştırmak için de önemli 

miktarlarda enerji tüketilmektedir. Enerji ihtiyacı düşük ve enerjiyi verimli kullanan 
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binaların tasarlanması binanın enerjiye nerede, ne zaman ve ne için ihtiyaç 

duyacağının önceden belirlenmesi ve enerjinin nasıl kullanılacağının öngörülmesi ile 

mümkün olabilir.  Enerji kullanımına ek olarak yenilenebilir sistemler ile yerinde 

enerji üretimi bina enerji ihtiyacının karşılanmasında sürdürülebilir çözümler sunar 

ve binanın toplam enerji verimliliği üzerinde önemli bir etkisi vardır. Dolayısıyla, 

binalarda enerjinin üretim ve tüketimi, birbiriyle ve binayla bağlantılı alt 

sistemlerden oluşan bir ağ üzerinde gerçekleşir. Bir enerji sürecinde oluşan bir 

değişim diğer tüm süreçleri etkiler. Bu nedenle, binanın toplam verimi, binanın 

kendisinin, alt sistemler, bina kullanıcıları ve dış ortam koşulları ile olan bütünsel ve 

dinamik etkileşimine bağlıdır ve enerji etkin bina tasarımı çevresel etmenlerin, iç 

koşulların, iç ve dış ortamı birbirinden ayıran yapı kabuğunun ve tamamlayıcı bina 

sistemlerinin bütünleşik olarak ele alındığı bir tasarım sürecini gerektirir.  

Yüksek performanslı bina tasarlarken binanın enerji ve CO2 emisyonu kriterleri 

açısından gösterdiği performansa ek olarak, başka göz önünde bulundurulması 

gereken kriterler de mevcuttur. Örneğin, binaların enerji maliyeti binanın işletme 

dönemindeki en büyük maliyet giderlerinden birini oluşturur. Bu nedenle enerji 

verimliliğini artırmak yalnızca iklim değişikliği ile mücadele etmeye destek olmakla 

kalmaz aynı zamanda enerji maliyetlerinin düşürülmesi, enerjide dışa bağımlılığın 

azaltılması ve dolayısıyla ekonomik olarak da güçlenmeyi beraberinde getirir. Ne var 

ki, enerji verimliliği alanında yapılan yatırımların da maddi olarak bir bedeli vardır. 

Bu nedenle bina tasarımı sürecinde binanın enerji performansına etki eden tasarım 

kararlarının ve seçilen sistemlerin ekonomik anlamda elverişliliğinin de incelenmesi 

ve maliyet-etkin enerji çözümlerinin belirlenmesi önemlidir.  

Maliyetlere ilaveten enerji verimliliğini artırıcı önlemler planlanırken binanın 

kullanıcılarına sağlayacağı konfor düzeyinin de göz önüne alınması gereklidir. 

Konfor koşulları kullanıcı sağlığı ve esenliği ile doğrudan ilişkilidir. Ayrıca, örneğin 

ofis binaları gibi kullanıcıların maaş giderlerinin diğer kalamlere göre yüksek olduğu 

bina tiplerinde konfor koşullarının kurumsal maliyetlere de ciddi anlamda etkisi 

olacaktır.  

Günümüzde bilim ve teknoloji alanındaki ilerlemeler enerji etkin bina tasarımında 

faydalanılabilecek yeni yaklaşımlar ve ürünleri ortaya çıkardı.  Fakat ele alınan bir 

bina için çok çeşitli seçeneklerin arasından hangi tasarım stratejilerinin izlenmesi 

gerektiği ve hangi teknolojik ürünlerin kullanılmasının maliyet-etkin enerji 

verimliliğini sağlarken, binanın CO2 emisyonlarını azaltacağı ve aynı zamanda da 

bina kullanıcılarına gerekli konforu sağlayacağını saptamak oldukça güç olabilir. 

Eğer bina ve sistem entegrasyonu erken tasarım aşamasında araştırılarak 

planlanmamışsa, sadece son teknoloji ürünlerin kullanılması istenilen performansta 

binaların yapılması için yeterli olmayacaktır.  

Genel manasıyla karar verme, çeşitli seçenekler arasından birbiriyle çatışan hedefleri 

ve kısıtları en uygun şekilde sağlayan seçeneği bulmayı gerektirir. Bina tasarım 

sürecinde ise binanın enerji davranışının kompleks olması, bina performansına etki 

eden çok sayıda parametrenin bulunması ve enerji, maliyet, çevresel performans, 

kullanıcı konforu gibi tasarım hedeflerinin birbirleriyle çelişiyor olması gibi 

nedenlerden dolayı tüm beklentileri karşılayan tasarım seçeneğini bulmak tasarımcı 

açısından oldukça zorlu bir karar verme sürecidir. Mimarlar, makine mühendisleri, 

aydınlatma tasarımcıları ve yenilenebilir enerji mühendisleri gibi tasarım sürecinde 

görev alan çeşitli uzmanların sırasıya kendi uzmanlıkları açısından katkılarını ortaya 

koydukları doğrusal ve ardışık olan mevcut tasarım yaklaşımları zaten kompleks bir 
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doğaya sahip binalarda enerji verimliliğini sağlamada yetersiz kalmaktadırlar. 

Günümüzde, bina ve sistem tasarımını bütüncül olarak ele alırken bina performansını 

farklı açılardan değerlendirebilecek ve nicel verilerle tasarımı destekleyecek 

yenilikçi yöntemlere ihtiyaç vardır. Bu nedenle mevcut çalışmada, binanın kendisi, 

bina mekanik sistemleri ve binaya entegre yenilenebilir enerji sistemleri arasındaki 

bağlantıyı bütüncül bir bakış açısıyla ele alabilen, enerji verimliliğini birbirleriyle 

çelişen farklı tasarım hedeflerini dengeleyerek sağlayabilen ve en ideal tasarım 

seçenekleri birleşimini matematiksel arama teknikleri ile simultane ve dinamik 

olarak hesaplayabilen bir simülasyona dayalı optimizasyon yöntemi önerilmektedir. 

Geliştirilen yöntemin temel amacı, binanın enerji performansına etki eden binaya ve 

bina sistemlerine dair farklı alanlardan çeşitli tasarım seçeneklerini içeren bir listeden 

binanın işletme döneminde enerji verimliliğini maliyet-etkin, konforlu ve çevreye 

etkisi azaltılmış şekilde sağlacak en ideal kombinasyonu matematiksel optimizasyon 

teknikleri ile belirlemektir. Yöntemin optimizasyon temelli arama sürecinde, binaya 

dair en uygun mimari etmenler, yapı kabuğu seçenekleri, ön seçimi yapılmış önerilen 

bir mekanik sistemin cihazlarının tipi ve cihaz kapasiteleri ve binaya entegre edilecek 

yenilenebilir enerji sistemlerine ait cihazların tipi ve kurulu güçleri verilen sınır 

koşullar altında eş zamanlı olarak araştırılır.  

Ayrıca, maliyet-etkin enerji verimliliğine ek olarak binadaki mekanik sistemlerin su 

tüketme performansının iyileştirilmesi de bir tasarım amacı olarak göz önüne alınır 

ve binanın su tüketimi alanındaki verimliliğine de katkı sağlanır.  

Geliştirilen optimizasyon yöntemi optimizör, simulatör ve kullanıcı tarafından 

hazırlanan ve enerji verimliliği önlemlerine dair seçenekler içeren veritabanı 

uygulaması olmak üzere üç ana modülden oluşmaktadır.  

Optimizör modülü tüm süreci yönetir, optimizasyon algoritmasını çalıştırır, 

performans hesabı için simulasyon uygulamasını başlatır, karar değişkenlerine yeni 

değerler atar, amaç fonksiyonunu hesaplar, sistem kısıtlarını uygular ve durdurma 

kriterinin sağlanıp sağlanmadığını denetler. Optimizör, GenOpt yazılımı temel 

alınarak geliştirilen bir optimizasyon altyapısına sahiptir. GenOpt’un mevcut 

yapısına yazar tarafından geliştirilen bir alt modül eklenerek optimizasyon 

algoritmasının tasarlanan veritabanı modülü ile dinamik etkileşimde olması 

sağlanmıştır. Böylelikle optimizasyon esnasında karar değişkenine yeni bir değer 

atandığında, bu değerin temsil ettiği bir enerji verimliliği çözümü ve çözüme dair 

teknik ve ekonomik veriler veritabanından okunarak simülasyon modeline aktarılır 

ve amaç fonksiyonuna iletilir.  

Simulatör modülü, bina performansına dair ölçütleri ve fonksiyonel kısıtları 

EnergyPlus enerji modelleme  motorunu kullanarak dinamik olarak hesaplar.  

Veritabanı modülü ise optimizasyon esnasında test edilecek karar değişkenlerine yani 

dolayısıyla enerji verimliliği çözümlerine dair mali, teknik ve teknik olmayan verileri 

tanımlar, düzenler ve saklar.  

Optimizasyon süreci, tasarımcı tarafından tanımlanan ve başlangıç koşullarını temsil 

eden referans bir binaya performans iyileştirici önlemlerin geliştirilmesi motivasyonu 

ile başlar. Optimizör modülü tanımlanan optimizasyon yapısının arama prensiplerine 

göre karar değişkenlerine yeni değerler atayarak enerji verimliliği çözümleri 

kombinasyonları yaratır ve alternatif tasarım senaryoları üretir. Her optimizasyon 

iterasyonunda, binaya dair mimari etmenler, kabuk seçenekleri ve mekanik sistem 

cihazlarına (birincil enerji dönüşümü yapan cihazlar örn. kazan, soğutma grubu) ait 
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seçenekler arasından arama prensipleri uyarınca yeni bir kombinasyon oluşturulur. 

Oluşturulan kombinasyon için öncelikle yaz ve kış tasarım günleri için bina ısıl 

yükleri ve gerekli cihaz kapasitesitelerini tahmin etmek üzere boyutlandırma hesabı 

koşturulur. Yük ve kapasite belirlendikten sonra binaya önerilmiş olan cihazlar ile 

binanın ihtiyacının uyumlu olup olmadığı tesbit edilir. Düşük veya yüksek kapasiteli 

cihaz önerileri kısıt fonksiyonları kullanılarak çözüm uzayından elenir. Elenmeyen 

kombinasyonlar için pik yükün karşılanabilir olmasının yanında, yıl boyunca tam ve 

kısmi yükte de en ideal dinamik performansı gösteren cihazın seçilmesi hedeflenir. 

Ayrıca, birincil enerji dönüşümü yapan cihazların yanında, soğutma kulesi, fan coil 

üniteleri gibi sistemi tamamlayıcı bağımlı cihazların da boyutlandırma hesabı yapılır. 

Bina mekanik sistemine ek olarak, aynı adımda binaya entegre edilmesi hedeflenen 

yenilenebilir enerji sistemi alternatifleri için de kurulu güç/ boyut hesabı yapılır ve 

sistemlerin temel bileşenleri olan panel/modül gibi elementler yine veritabanındaki 

cihaz kütüphanesinden tüm yıllık performansı göz önüne alınarak seçilir. 

Optimizasyon önceden tanımlanmış durdurma kriterine ulaşana kadar iterasyona 

devam eder. 

Bu çalışmada, çok yönlü olan bina tasarım hedefleri, seçilen ana amaç dışında kalan 

hedeflerin, ε-Kısıtı yaklaşımıyla ceza fonskiyonları olarak tanımlandığı tek amaçlı 

optimizasyon problemi olarak formülize edildi. Önerilen yöntemin ana amaç 

fonksiyonu binanın işletme döneminde enerji tüketimi maliyeti, su tüketimi maliyeti 

ve binada enerji verimliliği önerileri kapsamında kullanılan yapı kabuğu malzemeleri 

ve binayı ısıtma soğutma amaçlı kullanılan mekanik sisteme ait cihazların toplam 

sahip olma maliyetlerini içerir. Optimizasyonun hedefi ise toplam maliyetin 

minimize edilmesidir. Bunun dışında, mekanik sistem cihazlarının sağlaması gereken 

kapasite aralığı, binanın kullanıcıya sağladığı ısıl konfor düzeyi, binanın enerji 

tüketimi sebebiyle yaydığı CO2 emisyonu miktarı ve binaya entegre edilen 

yenilenebilir enerji sistemi alternatifinin geri ödeme süresi ceza fonksiyonları 

biçiminde ikincil amaçlar olarak ana amaç fonksiyonuna eklenir ve çözüm uzayını 

kullanıcı tarafından belirlenen mümkün bölgeye doğru taşır. Çalışma, maliyeti 

yüksek fakat verimliliği artırıcı yapı kabuğu ürünleri, mekanik sistem cihazları gibi 

önerilere hangi dereceye kadar yatırım yapmanın akıllıca olacağı, binanın mimari 

özellikleri ile mekanik sistem çözümlerinin nasıl entegre edilmesi gerektiği, enerji 

üreten yenilenebilir enerji sistemi uygulamaları ile enerji tüketen bina sistemlerinin 

ideal bileşiminin nasıl olması gerektiği gibi sorulara erken tasarım sürecinde cevap 

vermeyi hedeflemektedir. 

Önerilen yöntem arama tekniği olarak kısıtlama katsayıları kullanan Parçacık Sürü 

Optimizasyonu algoritmasını kullanmaktadır. 

Tez çalışması kapsamında, geliştirilen yöntemin başarısı ve uygulanabilirliği farklı 

tasarım seçeneklerinin optimize edildiği örnek vaka çalışmaları üzerinden 

değerlendirildi. Öncelikle enerji verimliliği kritlerleri göz önüne alınmadan 

tasarlanmış varsayılan bir ofis binası tanımlandı. İstanbul, Ankara ve Antalya 

şehirleri binanın alternatif konumları olarak seçildi böylelikle yöntemin performansı 

farklı iklim koşullarında değerlendirildi. Türkiye yapı sektöründe bina ve sistem 

tasarımında sıklıkla kullanılan yapı malzemeleri, mekanik sistem ve yenilenebilir 

sistem cihazlarının mali ve teknik bilgilerini içeren detaylı bir veri tabanı hazırlandı. 

Ek olarak, amaç fonksiyonu hesabında gerekli olan piyasalara ait ekonomik veriler 

ve enerji ve su kullanımına dair tarife bilgileri de edinildi. 
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Vaka çalışması kapsamında yapılan hesaplama sonuçları, geliştirilen yöntemin  

enerji ve toplam maliyetleri önemli ölçüde düşüren ve aynı zamanda iklim 

koşullarına uygun çözüm önerileri üretebildiğini gösterdi. Dahası önerilen tasarım 

seçenekleri aynı zamanda CO2 emisyon oranlarını da düşürerek  hedeflenenden daha 

iyi CO2 performansı elde edildi. Benzeri şekilde yeni öneriler kullanıcı ısıl konfor 

koşullarını iyileştirerek optimize edilmiş binada hedeflenen konfor aralığını 

yakalayabildi. 

Bu tez çalışmasının en önemli katkılarından birisi bina yapı kabuğu, mekanik 

sistemleri ve binaya entegre yenilenebilir enerji sistemleri cihazlarının bütünleşik ve 

eş zamanlı ele alınarak değerlendirilmesi ve birbirine bağlı bu elementler arası 

ilişkinin dinamik olarak gözlenerek optimizasyonun yürütülmesidir. 

Ayrıca, bu araştırmayı diğer araştırmalardan ayıran taraf veritabanı modülü ve de 

veri tabanını optimizasyon ortamı ile ilişkilendiren alt modülü sayesinde, piyasada 

mevcut gerçek malzeme ve cihazlara ait verileri kullanarak hesaplama yapabilmesi 

böylelikle gerçek hayatta karşılaşılan enerji verimliliğini artırıcı önlemler arasından 

söz konusu bir bina için en uygun seçeneği ve kombinasyonları bulmaya olanak 

tanımasıdır. Böylelikle optimizasyon sonucu geliştirilen öneriler ile gerçek hayatta 

mevcut seçenekler arasında eşleştirme yapılır ve farklar oluşmaz. Fakat, malzeme ve 

cihazlara dair veriler edinilirken doğru ve tutarlı verilerin toplanmasına özen 

gösterilmelidir. 

Buna ilaveten, bu çalışmanın bir diğer katkısı ise birbiriyle çelişen ve yarışan çok 

boyutlu bina tasarımı hedeflerini tek amaçlı fonksiyon olarak formüle edebilmesidir. 

Toplam global maliyetler en aza indirgenirken enerji verimi artırılır, eşdeğer  CO2 

hedeflenen değerin altına düşürülür ve kullanıcı ısıl konforu istenen aralığa çekilir, 

doğru boyutlandırılmış cihazlar seçilir ve yenilenebilir enerji sistemi yatırımlarından 

hedeflenen geri ödeme süresini yakalayabilen seçenekler belirlenir. 

Çoklu tasarım hedeflerini kapsamanın yanında, esneklik sağlayan veri tabanı yapısı 

sayesinde çok sayıda karar değişkeni aynı anda hesaba katılabilir.  

Bu çalışma Parçacık Sürü Optimizasyonu yöntemine dayalı olduğu için geniş bir 

çözüm uzayını otomatik olarak çok daha az sayıda arama teşebbüsü ile zamandan 

tasarruf ederek araştırabilir.  

Yöntemin uygulanması, binanın mimari öğeleri ile mühendislik sistemlerinin bir 

arada verimli bir şekilde çalışmasını sağlar. Yöntem her ikisi de oldukça güç karar 

verme süreçlerini içeren fakat enerji verimliliği için de önemli potansiyellere sahip  

yeni binaların tasarımı veya mevcut binaların yenileme çalışmaları kapsamında  

kullanılabilir. 

Sonuç olarak, geliştirilen yöntem bina enerji performansı ihtiyaçlarını mali ve 

çevresel hedefler ile ilişkilendirerek gerçek hayatta karşılaşılan tasarım güçlüklerini 

çözebilecek hızlı ve etkin bir optimizasyon yöntemi ortaya koyar. 
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1.  INTRODUCTION 

1.1 Background 

Energy is the vital source of life and it plays a key role in development of human 

society. Any living creature relies on a source of energy to exist. Similarly, machines 

require power to operate. Starting with Industrial Revolution, the modern life clearly 

depends on energy. We need energy for almost everything we do in our daily life, 

including transportation, agriculture, telecommunication, powering industry, heating, 

cooling and lighting our buildings, powering electric equipment etc.  

Global energy requirement is set to increase due to many factors such as rapid 

industrialization, urbanization, population growth, and growing demand for higher 

living standards. The data given in Figure 1.1, taken from BP Statistical Review of 

World Energy June 2012, displays an ever-increasing trend for global primary 

energy consumption from 1965 until 2011 (BP, 2012, p. 42).  

 

 World total primary energy consumption from 1965 to 2011 (Mtoe).  Figure 1.1 :

Similarly, global energy use is expected to increase 53 % by 2035 according to the 

projections in the International Energy Agency’s (IEA) 2011 International Energy 

Outlook (IEA, 2011a). 
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There is a variety of energy resources available on our planet and non-renewable 

fossil fuels have been the main source of energy ever since the Industrial Revolution. 

Global fuel shares given in 2011 Key World Energy Statistics book by International 

Energy Agency shows that in 2009 more than 80 percentage of the total primary 

energy supply share belonged to conventional fossil fuels (oil: 32.8 %, coal: 27.2 % , 

natural gas: 20.9 %, biofuels and waste: 10.2 %, nuclear: 5.8 %, other (includes  

geothermal, solar, wind, heat, etc.): 0.8 % (IEA, 2011b)). Moreover, many 

projections show that fossil fuels will most likely continue to dominate the global 

energy mix in the near future. 

Unfortunately, unsustainable consumption of energy resources and reliance on fossil 

fuels in the last century has led to severe problems such as energy resource scarcity, 

global climate change and environmental pollution. 

Fossil fuels are available on earth in limited quantity and excessive use of fossil fuels 

has introduced the risk of conventional resource depletion. Moreover, fossil fuels 

must be burnt to release their stored energy and the burning process leads to many 

environmental impacts and consequently health impacts from smog, acid rain, and 

toxic air pollution. Scientists believe that key factor in global climate change is 

increasing greenhouse gas (GHG) levels in the atmosphere due to fuel burning 

(IPCC, 2007a). The concentration of carbon dioxide (CO2) in the atmosphere is 

increasing at an accelerating rate from decade to decade. The average atmospheric 

CO2 level was at 315.97 parts per million (ppm) in 1959 and has risen to 395.93 ppm 

in October 2014 according to measurements of Mauna Loa Observatory (CO2Now, 

2014). 

Dealing with global climate change and energy resource scarcity is not an easy task. 

Fortunately, governments, corporations and individuals globally acknowledge that 

pressure on the environment caused by human activities requires urgent action. For 

instance, in 2007, European Union (EU) leaders agreed on an integrated approach to 

climate and energy policy and they committed to transforming Europe into a highly 

energy-efficient, low carbon economy. A unilateral commitment was made to cut 

Europe’s emissions by at least 20% of 1990 levels, increasing the share of 

renewables in the EU's energy mix to 20%, and achieving the 20% energy efficiency 

target by 2020 (EU, 2012). Since EU is on track to meet its 2020 target, even new 

goals are set such as 40% cut in greenhouse gas emissions compared with 1990 level 
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by 2030 and 80-95% cut by 2050 as announced in the “Roadmap for Moving to a 

Competitive Low Carbon Economy in 2050” guide (EU, 2011). 

Similarly, Turkey’s National Action Plan for Climate Change defines several goals 

that should be targeted for adapting to the effects of the climate change (IDEP, 

2012).  

A sustainable way of living supported by energy efficiency policies, binding 

standards, carbon quotas, information campaigns, investments on clean energy 

technologies, etc. offers a great potential to face global challenges. However, 

definition and the content of the strategies vary by sector they are applied to. 

Therefore, it is critical to understand where and how energy and other resources are 

consumed. According to numbers published by IEA, residential, commercial and 

public services together with agriculture represented 37% of the total global final 

energy consumption in 2009 followed by industry (27%), transport (27%) and non-

energy use (9%) (IEA, 2011b). 

The building sector compromising homes, public buildings and businesses represent 

a major share of global energy and resource consumption. The findings of the 4
th

 

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) shows 

that at present, buildings contribute as much as one third of total global greenhouse 

gas emissions. Therefore, the efficiency in the building sector has become a priority 

for countries across the globe (IPCC, 2007a). 

Unfortunately, building related GHG emissions are projected to grow if new 

strategies are not urgently adopted (IPCC, 2007a). However, energy efficiency in the 

buildings sector also offers a significant potential for reductions for greenhouse gas 

emission as well. IPCC estimated that there is global potential to avoid about 30 per 

cent of the projected GHG emissions in the building sector by 2020 if various 

technological options were introduced. They emphasize that since buildings consume 

great amounts of energy, even small improvements can make significant impacts 

(IPCC, 2007a). 

There is a growing interest in high energy performance building design, as it is now 

accepted as an encouraging solution to deal with the increasing pressure placed on 

environment by building sector.  The recast of European Energy Performance of 

Buildings Directive (EPBD) in 2010 targets for all new buildings in the EU to be 
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‘Nearly Zero-Energy Buildings’ from 2020 and for new buildings occupied and 

owned by public authorities by 2018 (EPBD, 2010). 

In addition to building energy performance and CO2 emission targets, there are also 

other criteria to consider when approaching buildings. For instance, building energy 

cost is one of the major cost types during building life span. Therefore, improving 

building efficiency not only addresses the challenges of global climate change but 

also high operational costs and consequent economic resource dependency. 

However, investments in energy efficiency measures can be costly, too. As a result, 

the economic viability of a design decisions should be analysed carefully during 

decision-making process. The recast of EPBD now obliges Member States to assure 

that minimum energy performance requirements for buildings or building units are 

set with a view to achieving cost-optimal level that is the energy performance level, 

which leads to the lowest cost during the estimated economic lifecycle (EPBD, 

2010).  

Furthermore, while applying measures to improve building performance, comfort 

conditions of occupants should not be neglected, as well. Comfort is linked with 

occupants’ health, well-being and productivity. Especially in commercial buildings, 

employee comfort reduce absenteeism and health-care costs, therefore it has an 

influence on operational business costs. However, providing comfort is also linked 

with energy consumption levels (Wyon, 1996).  

Advances in science and technology introduced many approaches and technological 

products that can be benefitted in building design. However, it could be rather 

difficult to select what design strategies to follow and which technologies to 

implement among many for cost-effective energy efficiency while satisfying equally 

valued and beneficial design objectives. Even using the state-of-the-art energy 

technologies can only have limited impact on the overall building performance if the 

building and system integration is not well explored.   

Whole Building Design concept, which refers to a design and construction technique 

that incorporates an integrated design approach and an integrated team process, is 

introduced in the last decade to support creation of high energy performance 

buildings (WBDG, 2014). Whole Building Design views the building as a system, 

rather than a collection of components and it requires a multi-disciplinary strategy 
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that effectively integrates all aspects of site development, building design, 

construction, and operations and maintenance. 

Creating a high energy efficiency building requires an in-depth understanding of the 

interrelationships between various building elements and the benefits or drawbacks 

of each design decision is required to be quantified in the context of the whole 

building design concept. Therefore, there is a strong need today for new methods that 

can evaluate the overall building performance from different aspects while treating 

the building, its systems and surrounding as a whole and provide quantitative insight 

information for the decision-making process.  

1.2 Research Objective 

We can design energy-efficient, comfortable, healthy and economic high 

performance buildings only when we know where and why energy is needed and 

how it is used. Buildings are very complex dynamic energy systems that energy is 

converted, transferred, used or even sometimes produced in a dynamic manner. Most 

of the energy consumed in buildings is used for heating, cooling, ventilating and 

lighting the indoor spaces to create a thermally and visually comfortable built-

environment for its occupants. Energy is also needed for sanitary water heating 

purposes and powering plug-in appliances required for daily life activities. 

Moreover, on-site energy generation supports building energy efficiency by 

providing sustainable energy sources for the building energy needs. Therefore, the 

production and consumption of energy carriers in buildings occur through the 

network of interconnected building sub-systems. As mentioned by Ziębik and 

Hoinka (2013) a change in one energy process affects other energy processes. Thus, 

the overall building energy efficiency depends on the combined impact of the 

building with its systems interacting dynamically all among themselves, with the 

building occupants and with outdoor conditions. Therefore, assessing building 

energy performance requires paying attention to complex interactions between the 

exterior environment and the internal conditions separated by building envelope 

complemented by building systems. 

Making a design decision in general involves selection of the best or the most 

suitable design option among all the feasible alternatives while satisfying multiple 

conflicting design objectives and constraints. Therefore, in building design problem, 
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due to the complex nature of building energy behaviour and numerous influential 

elements and conflicts in design aims such as energy, economy, environmental 

performance and user comfort, it is a serious challenge to find the best design option 

and system configuration that satisfies all the expectations. Conventional design 

methods, which are linear and sequential, are inadequate to address the inter-

depended nature of buildings (IPCC, 2007b). Thus, as highlighted by Ziębik and 

Hoinka (2013) energy carriers and their relations with outdoor and indoor conditions 

should be investigated as a whole and the building and system integration should be 

investigated starting from early stages of the design process. 

The physical phenomena of energy and mass flow occurring within a building can be 

described in detail through mathematical equations. The building energy model is 

then used to predict the behaviour of actual building under different boundary 

conditions. Building performance simulation is a computer-based solution of 

building energy model and it is becoming now an integral part of the design process 

to predict quantitative information about building performance (Crawley et al, 2005).  

When building performance is expressed as a function of input parameters, many 

design alternatives can be investigated for building lifetime from energy, economy 

and environment perspectives. However, designers still need to carry out hundreds of 

calculations to explore a very large design space and handle huge amount of data 

while looking for the optimal combination of several energy efficiency measures. 

This time-consuming and labour intensive trial-and-error process can lead to 

improved results but in many cases, it is extremely unlikely to achieve the best 

solution (Attia et al., 2013). 

In order to address the difficulties inherited in decision making via simulation, 

simulation-based optimization methods, which integrates optimization techniques 

into simulation analysis has been introduced. Coupling mathematical programming 

techniques with a simulation engine automate the search for the optimal or near 

optimal solutions in the design space, speed up the calculations and have a potential 

to improve iteratively the solutions to multi-objective, multi-criterion design 

problems in a variety of fields (Fu et al. 2005). Due to its potential to automate the 

input and output, assess many options, and perform many simulations by 

mathematical means, optimization techniques also caught the attention of the 
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building research community as a promising approach to multi-dimensional building 

design problem.  

There is a strong need today for fast and efficient optimization methods to address 

real-life building design challenges. Therefore, the focus of this research is to offer a 

simulation-based building design optimization methodology that can take into 

account the perspective of whole-building design concept and integration issues.  

The objective of the methodology is to explore cost-effective energy saving options 

among a considered list of energy efficiency measures, which can also provide 

comfort while limiting harmful environmental impacts in the long term therefore 

financial, environmental and comfort benefits are considered and assessed together. 

During the optimization-based search, building architectural features, building 

envelope features, size and type of HVAC equipment that belong to a pre-designed 

HVAC system and size and type of  considered renewable system alternatives are 

explored simultaneously together for an optimal combination under given 

constraints. 

The study covers multi-dimensional building design aims through a single-objective 

optimization approach where multi objectives are represented in a ε-Constraint 

penalty approach. The primary objective is taken as minimization of building global 

costs due to changes in design variables therefore it includes minimization of costs 

occur due to operational energy and water consumption together with ownership 

costs of building materials and building systems. Moreover, a set of penalty 

functions including equipment capacity, user comfort, CO2 emissions and renewable 

payback period are added to the main objective function in the form of constraints to 

restrict the solution region to user-set design target. Consequently, multi-objective 

design aims are translated into a single-objective where the penalty functions acted 

as secondary objectives. 

The method is based on a proposed database structure that includes technical and 

financial product information therefore; it allows for consideration of actual product 

constraints and can provide decision support in building design projects based on 

available technology options. Moreover, the methodology is designed to be capable 

of evaluating large number of parameters fast and effectively in a time-efficient 

manner. 
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The methodology aims to answer design questions such as to what extent it is wise to 

invest in expensive but higher efficiency products for building envelope and HVAC 

system equipment, how to integrate building architectural features with building 

systems, what are the optimal combinations of renewable energy options and energy 

conversion systems, as early as possible in the design process.  

The application of the methodology ensures that architectural elements and the 

engineering systems work efficiently together for true efficiency and it can be used 

as a decision-support tool for both new building design and renovation projects since 

both processes provide significant opportunities to improve building performance but 

also goes through a complicated decision making process.  

The developed optimization procedure implements a Particle Swarm Optimization 

technique and it is based on the combination of EnergyPlus simulation tool and an 

enhanced GenOpt based environment that is specifically designed to be in 

simultaneous interaction with a proposed database application that stores information 

on energy efficiency measures. 

Within the scope of the work, the motivation of the work is explained, the 

background that supports the methodology is introduced, the research gap is 

discussed, the  details of the  methodology is presented and the performance of the 

methodology is assessed through a case study application.  

1.3 Thesis Chapter Overview 

This thesis is organized as follows. 

Chapter 1 provides a background summary and explains the motivation of this thesis 

work.  

Chapter 2 includes a literature review on whole-building design approach. Basics of 

high performance building design are introduced with a focus on energy efficiency. 

The chapter also summarizes the most influential factors to consider for a successful 

building and system design including outdoor conditions, building architectural 

design characteristics, indoor conditions, building system characteristics and building 

integrated renewable system characteristics. Moreover, building simulation concept 

and its importance in energy efficient building design practices are discussed. 
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Chapter 3 investigates the optimization phenomenon and presents a review of the 

history of simulation-based building performance optimization and the most 

commonly used techniques by highlighting their relevant assets and limitations. 

Moreover, the current research status of simulation-based building performance 

optimization is introduced. The chapter also identifies the research gaps, and explains 

where the current research fits within what has already been accomplished. 

Chapter 4 includes the description of the proposed building performance 

optimization methodology and explains the essential steps of the developed structure.  

Chapter 5 includes the implementation of the proposed optimization model on a 

group of case studies. Comprehensive analyses were conducted through a 

hypothetical office building to quantify the success of the method in terms of thermal 

comfort, energy consumption, CO2 emission and economy. A detailed description of 

the case study building is given, the database that includes technical and financial 

information about the considered energy efficiency measures is explained and the 

results are documented. 

Chapter 6 summarizes current concept, major accomplishments achieved in this 

thesis and conclusions drawn from the work. It also discusses the limitations of work 

and outlines the future directions of research in order to improve the proposed 

methodology. 
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2.  HIGH ENERGY PERFORMANCE BUILDINGS 

2.1 Introduction 

Buildings served as a protective shelter to people for many centuries but they also 

respond to several needs of society nowadays. People of modern life spend most of 

their time indoors for several activities including living, working, shopping, 

entertainment etc. and buildings are expected to provide comfortable and healthy 

indoor conditions to the people who are using it. 

While buildings provide numerous benefits to society, they also have major 

environmental impacts. To build and operate buildings, we consume about 40% of 

global energy, 25% of global water, and 40% of global resources. Moreover, 

buildings are involved in producing approximately one third of greenhouse gas 

emissions (UNEP, 2011). Today, the stress put on the environment by building sector 

has reached dangerous levels therefore urgent measures are required to approach 

buildings and to minimize their negative impacts.  

Fortunately, there is a growing public awareness of environmental issues and human 

health concerns due to buildings. The professionals in the building sector are 

beginning to realize that conventionally designed, constructed and operated buildings 

are not sufficient to address global environmental challenges. As a result, new design 

concepts are being developed and high energy performance buildings, which exceed 

current requirements of basic building standards, are evolving.  

In this chapter, main definitions and requirements of building performance will be 

explained with a special focus on energy-efficiency in the built environment. The 

main factors that influence building energy performance will be introduced and 

methods and tools for assessing building performance will be summarized. 

2.2 Basics of High Performance Building Design 

There is not a single globally acknowledged definition of building performance 

because it is an ever-evolving process. A report on terms and definitions for high-



12 

performance buildings by Erhorn and Kluttig (2011) shows that there are 23 different 

terms are used in 14 different European Union Member States for high-performance 

buildings. The terms relate mostly to one of the three following options: low energy 

consumption, low emissions and sustainable or green aspects. According to the 

report, “low energy house”, “passive house” and “energy saving house” are the terms 

used in the highest number to refer to building energy performance attribute. There 

are also other popular terms such as “eco-building”, “green building” and 

“sustainable building” used frequently to underline building ecological performance. 

United States Energy Independence and Security Act expands the scope of the high 

performance attributes and defines a high-performance building as a building that 

integrates and optimizes on a life-cycle basis all major high-performance attributes, 

including energy conservation, environment, safety, security, durability, 

accessibility, cost-benefit, productivity, sustainability, functionality and operational 

considerations (Public Law 110 – 140, 2007).  

Regardless of different terminology used in different countries, the main expectations 

from high performance buildings are very similar: to use as minimum energy and 

resources possible, to improve the health, comfort and productivity of their occupants 

and to limit the harmful environmental effects during building entire lifespan.  

Whole Building Design Guide by the United States National Institute of Building 

Sciences (NIBS) mentions six fundamental principles for sustainable design to 

achieve high performance buildings: Optimize Site Potential, Optimize Energy Use, 

Protect and Conserve Water, Optimize Building Space and Material Use, Enhance 

Indoor Environmental Quality (IEQ), and Optimize Operational and Maintenance 

Practices (NIBS, 2014). 

Land development for construction can contributes to flooding, deforestation, and 

loss of biodiversity, therefore creating High Performance buildings should start with 

sustainable site selection and planning (NIBS, 2014). 

Moreover, buildings consume large amounts of energy during construction and 

operation phases therefore, it is essential to reduce energy use, apply passive solar 

techniques, increase efficiency, and maximize the use of renewable energy sources 

(NIBS, 2014). 
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Similarly, buildings use a large portion of municipally supplied water for cleaning, 

personal hygiene, heat transfer, and for landscaping however, water efficiency 

receives little attention in building design and operation. Potable water also has 

embedded energy due to the effort to bring drinkable water to our buildings. To 

address water related environmental concerns, high performance building should use 

water efficiently, and reuse or recycle water for on-site use, when feasible (NIBS, 

2014).  

In addition, energy and water are used not only during building operation but also 

during production of building materials or equipment.  There is embodied energy to 

mine or harvest natural resources and raw materials; to manufacture the products; 

and to transport them to building site and to install. Moreover, during material and 

equipment life-cycle, other natural resources are consumed, landscapes are 

destroyed, and pollutants are released into the nature as well where raw materials are 

extracted from the earth, are transformed into the concrete, steel, glass, rubber, and 

other construction materials. Therefore, in high performance buildings, sustainably 

produced and recyclable materials that minimize life-cycle environmental impacts 

and contribute to occupant safety and health should be used (NIBS, 2014). 

A healthy indoor environment promotes comfort, productivity, health and well-being 

of the building users therefore; the physical, chemical and biological properties of the 

indoor air must be assured at all times. Hazardous gases such as volatile organic 

compounds from building materials, products, and furnishings should be avoided by 

appropriate ventilation and moisture control and selection of non-toxic materials. 

Moreover, appropriate levels of thermal, visual and acoustic comfort must be 

provided to ensure the total quality of the indoor environment (NIBS, 2014). 

Lastly, operational phase of a building starts after completion of construction 

however, operating and maintenance issues should be planned at early design stages 

for better integration and consequently for improved overall performance. The 

operational phase of building is quite longer than the design and construction phases 

and the lifecycle cost of the operational life could be highest in whole building life 

cycle. Therefore, to operate a high performance building, professionals need make 

sure that the building would perform as it is intended. High performance operation 

requires good planning, integration and control of occupants, processes, mechanical, 

electrical, renewable energy systems and, information technology (NIBS, 2014). 
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As explained above, high performance building design requires simultaneous 

realization of several objectives including life-cycle economics, energy-efficiency, 

environmental impact, occupant productivity and health, durability and building 

functionality.  

The economic and environmental performance of the building is strongly influenced 

by building energy behaviour. Moreover, building energy consumption and 

occupant’s comfort are closely related, too. Therefore, within many of the high-

performance building attributes the energy-efficiency lies at the heart. An assessment 

report on high performance buildings by U.S National Institute of Building Sciences 

(2008) says, “Energy efficiency should be a cornerstone of a high-performance 

building. All energy consuming systems and products should be designed to achieve 

the highest level of energy efficiency consistent with the other design attributes” 

(p.13).  

The focus of this current work is therefore to develop a methodology for addressing 

building performance challenges with a special emphasis on building operational 

energy efficiency. 

2.3 Building Energy Performance 

Operational energy is the dominant part of the energy consumption due to the long 

building lifetimes. Therefore, the intent of the current study is to directly target the 

reduction of the dominant operational energy component. Therefore, the embodied 

energy component is neglected in this research for simplification. 

Most of the energy consumed in building operational phase is used for heating, 

cooling, ventilating and lighting the space to create a thermally and visually 

comfortable built-environment for its occupants, and water heating and powering 

plug-in appliances needed for daily life activities. 

The thermal and visual performance of a building involves complex interactions 

between the exterior environment and the internal environment separated by building 

envelope. Moreover, Heating, Ventilating and Air-Conditioning (HVAC) and 

lighting systems complement the architectural design and they are adopted to control 

and adjust the internal environmental factors such as temperature, humidity, 

illuminance when necessary.  
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The building energy performance includes the integrated effects of the whole 

building with its lighting, mechanical systems and control systems interacting 

dynamically all among themselves and with the building occupants. Moreover, on-

site energy generation supports building energy efficiency by providing sustainable 

methods of heating, cooling, and powering the building.  

Identification and determination of the best combinations of building and system 

parameters, which influence building energy balance, is key to the whole building 

energy efficiency. However, there are many factors drive energy demand and 

consequent consumption in buildings. Understanding the effect of individual factor is 

at vital importance.  

Buildings interact with their external environment through complex dynamic 

processes and respond to the continually changing outdoor and indoor conditions. 

How buildings interact with the environment creates building’s need for energy. The 

fundamental physics encountered within and around a building includes various 

thermal forces at play including the heat of the sun entering the building, the heat 

generated by building occupancy and appliances, and the transfer of energy across 

the building enclosure due to the difference in temperature between building and the 

environment (Nasrollahi, 2009). 

The process of determining what energy changes are occurring in the environment 

inside a structure is called building energy balance. In order to reduce the energy 

demand, it is first important to understand how energy demand is created, how 

energy is distributed throughout a building, and how each parameter contributes to 

the building energy balance (Ziębik and Hoinka, 2013).  

The following sections mention only the most influential elements for a successful 

energy-efficient building and system design, where a detailed analysis is beyond the 

scope of this work. Influential factors are mentioned under five main categories: 

outdoor environment, building architectural design characteristics, indoor 

environment, building system characteristics and renewable energy system 

characteristics. 

2.3.1 Outdoor environment 

Macro and micro climate surrounding a building have a major effect on building 

energy performance and the integration of climatic data is a driving factor in the 
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building design. Macro-climate represents the climate of a larger area such as a 

region or a country where micro-climate is the localized climate in building site 

(ESRU, 2006). 

The successful design of buildings relies on an appropriate understanding and 

controlling of climatic influences at the building site through prevailing climatic 

conditions when unwanted and benefiting when useful. When designing an 

individual building the outdoor climate is to be regarded as a given condition. 

Cooling and heating loads are partially driven by weather patterns specific to a 

particular climate region. Lovell (2009) explain that different locations in the world, 

with their specific climatic conditions, certainly present different priorities and they 

require different design approaches.  

As climatic elements change dynamically, buildings respond to the changes 

simultaneously. The main climatic elements that affect building heat balance are 

solar radiation, ambient temperature, air humidity, precipitation, air movement, and 

sky condition. The influence of climate on building performance was explored in 

many studies (Erell et al., 2003; Lam et al., 2005; Ochoa and Capeluto, 2008; 

Manioglu and Yilmaz, 2008) and the design strategies that needs to be incorporated 

into the process for different climatic zones are discussed. The studies highlights that 

dynamic nature of the environment must be incorporated into a design response in 

the form of daily, seasonal, and annual cycles of heat transfer, air pressure changes, 

and humidity levels. 

Furthermore, site conditions have an important role in the building design among 

numerous factors. Each building site offers its own conditions and imposes limits on 

the design flexibility.  

The building site might limit the size and shape of the building. Moreover, careful 

site selection and building placement are essential for optimal daylight and solar 

utilization.  

The variations in localized climate around a building create the site-specific 

microclimate. The environmental conditions at the site area are a combination of 

macroclimate as well as the microclimate. Therefore, building site also affects the air 

movement, temperatures, rain penetration, humidity etc. around the building through 

vegetation and topography. 
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Taking advantage of the physical features of the building site and microclimate 

reduces heating and cooling loads, and therefore lowers overall energy consumption 

as mentioned in the literature studies. 

Akbari et al (1997) documented the dramatic differences in cooling-energy 

requirement between houses on landscaped and unlandscaped sites. 

Parker (1981) measured the cooling-energy savings from well-planned landscaping 

and found that properly located trees and shrubs around a mobile trailer reduced the 

daily air-conditioning electricity use by as much as 50%. 

Robitu et al (2006) introduced a numerical approach based on coupling the CFD 

model of airflow, in which the influence of trees is considered as source terms, and 

the radiation exchange, completed with thermal conduction. 

Therefore, site conditions should be considered carefully and necessary arrangements 

need to be realized prior to building design.  

2.3.2 Building architectural design characteristics 

2.3.2.1 Orientation 

Building orientation is one of the main factors in reducing building energy demand 

and keeping the interior conditions in comfort range. Decisions made in adjusting the 

building orientation will have impacts on the energy performance of the building 

over its entire life cycle mainly with regard to solar radiation and wind. Proper 

building orientation can diminish the unwanted effects of severe weather a great deal. 

Therefore, it is very important to orient a building to optimize the effects of the 

nature (Nasrollahi, 2013). 

Orientation of building determines the amount of radiation the building receives. A 

good orientation should allow maximum access to the sun when needed; or, likewise, 

eliminate it when unwanted. Moreover building orientation should provide maximum 

natural light in all climatic conditions. 

The best orientations for a building can literally vary from location to location and 

should be evaluated accordingly. The past studies by Yohanis and Norton (2002), 

Jaber and Ajib (2011); Al-Tamimi et al., (2011) showed approaches for optimal 

orientation selection in different climate zones. 
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2.3.2.2 Building form 

Building form is one of the basic determinants of the building energy performance 

and the comfort of residents. Form refers to the shape or configuration of a building 

and it is mainly determined by the building’s height, width, and depth (Harvey, 

2012).  

The building form also defines the building footprint, building volume, floor-to-floor 

height and more importantly, the size and the orientation of the exterior envelope 

exposed to the outdoor environment. 

The surface area to volume ratio (S/V) is a significant factor determining the 

magnitude of the heat transfer in and out of the building. The larger the S/V ratio, the 

greater the heat gain or loss for a given volume of space is. 

There is a trade-off between a compact form that minimizes conductive heat transfer 

through the envelope and a form that facilitates daylighting, solar gain, and natural 

ventilation therefore it should be developed considering the trade-offs. 

The role of building form in energy consumption has been investigated by several 

researchers including Depecker et al.(2001); AlAnzi et al. (2009),  Danielski et al. 

(2012); Ling at al., (2007) where their work showed that the building morphology is 

an important design parameter in the process of energy-efficient building design. 

2.3.2.3 Building envelope 

Building envelope thermally and physically separates the interior and the exterior 

building environments. It includes the outer elements of a building such as 

foundations, walls, roof, windows, doors and floors. 

Building envelope is an integral part of a building and functions as a thermal shell. It 

regulates how well the building can benefit from solar radiation, daylight, wind and 

natural ventilation and provides the ability to control of solar radiation, heat flow, 

airflow and moisture. Therefore, appropriate selection and arrangement of building 

envelope elements can enhance the comfort and energy performance a great deal 

(Harvey, 2012).  

Building envelope consists of the following elements: 
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Opaque building elements 

As summarized by Harvey (2012), opaque elements of the building include walls, 

roof, floor etc. Thermo-physical properties of the layers comprising the building 

elements determine the energy-flow behaviour and the energy storage capacity of the 

building. 

Heat transfer through the opaque building elements is a combination of convective, 

radiative and conductive processes. 

Building elements such as walls, roofs consist of multi layers and total heat transfer 

coefficient (U-value, W/m2.K) is used to estimate how much heat can be transferred 

through a building element.  

In addition to heat transfer, thermal mass enables building materials to absorb, store, 

and later release thermal energy. Due to thermal mass buildings can absorb and store 

excess thermal energy when the building’s thermal load is high and release the 

energy when the load is low. This way, thermal mass moderates temperature swings 

inside a building. Appropriately sized thermal mass can help buildings manage their 

thermal energy resources 

Radiation is a significant component of heat transfer in buildings in both heating and 

cooling. Solar radiation incident on building envelope can be absorbed, reflected and 

transmitted depending on the surface characteristics and consequently it influences 

interior and exterior surface temperatures, heat flow entering the building, light 

distribution and the occupant’s comfort. For opaque components, reflectivity, 

absorptivity, emissivity and long wave radiation behaviour characterize the surface 

behaviour.  

Abundant literature is available on impact of the thermal resistance of building 

envelope against heat flow (e.g. Kim and Moon, 2009) and many studies shows how 

to determine the appropriate values for the overall heat transfer coefficients for 

building opaque elements. (e.g. Farhanieh and Sattar, 2006; Sanea and Zedan, 2011; 

Al-Homoud, 2005; and Bojic et al., 2002). These studies reveal that appropriate 

arrangement of thermal resistance of building envelope significantly reduces building 

loads. 

Similarly, there is significant research carried out about the relationship between the 

building thermal mass and the thermal performance. Gregory et al (2008), Balaras 
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(1996), Al Sanea et al (2012), Cheng et al (2005), and Zhou et al (2008) investigated 

the different aspects and applications of building thermal mass. The results conclude 

that thermal mass has the ability to significantly reduce the building energy 

requirements and improve internal temperatures. Optimum amount of thermal mass 

should be estimated for true energy efficiency. 

The significance of total solar reflectance and optical properties of the exterior 

facade has been well studied by Joudi et al (2011), Filho et al. (2010), Berdahl et al 

(2008), Synnefa et al (2007), and Stathopoulou at al. (2009). 

Shading 

Nasrollahi (2009) explains that solar shading is a part of building envelope and it 

controls the amount of sunlight that strikes and enters into a building. Accordingly, it 

blocks the solar radiation incident on the exposed surfaces of a building and reduces 

heat gain, modifies thermal gains and influences daylighting levels. Shading of 

surfaces can be achieved by the self-shading profiles of buildings such as in H-type 

or L-type buildings or by integrated building shading elements. The use of well-

designed sun controls save energy, reduce heat and glare, improve occupant’s 

comfort. 

Solar and visual transmittance, thermal resistance, location and dimensions of 

shading element together with any control strategy associated with it determines the 

performance of the shading device in term of energy and visual performance.  

The performance of building solar shading in terms of energy and daylighting and 

optimal shading design for better Indoor thermal environmental conditions was 

explored deeply by many researcher such as Ho et al (2008), Alzoubi and Al-Zoubi 

(2010), Palmero-Marrero and Oliveira (2010), Kim et al (2012), Bessoudo et al 

(2010), and Datta (2001).  

Finally, there is extensive research about control strategies for shading devices. 

Moeseke and de Herde (2007) investigated the impact of control rules on the 

efficiency of shading devices and free cooling for office buildings. Guillemin and 

Molteni (2002) explored energy-efficient controller for shading devices self-adapting 

to the user wishes. Tzempelikos and Athienitis (2007) discussed the impact of 

shading design and control on building cooling and lighting demand. 
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Transparent building elements 

Transparent elements such as windows and skylights allow the direct admittance of 

solar gains into the building. Major portion of the solar radiation is transmitted 

directly to the interiors, while the remaining small fraction is absorbed and/or 

reflected back. Furthermore, an element may also be openable (e.g. skylight, 

window, door, etc.), thereby allowing for air exchanges between the building and its 

surroundings. Thus, the transparent buildings components affect the building energy 

balance a great deal  

Nasrollahi (2009) mentions that according to the diurnal changes in sun’s position, 

the intensity of solar radiation differs considerably among the exterior surfaces of the 

building. Therefore location and orientation of transparent elements changes the 

amount of solar radiation enter the building. 

Nasrollahi (2009) also explains that the area of the transparent elements also 

influences the building energy performance. The dimension of transparent elements 

(with and length) and the ratio between the total glazed area of the building and the 

total wall area which is called as window-to-wall ratio (w-t-w) are the influential 

parameters. 

Heat is transferred through the transparent components by conduction, convection 

and radiation. 

Solar heat gain coefficient (SHGC) refers to the fraction of incident solar heat 

admitted through a window glazing both directly transmitted, and absorbed and 

subsequently released inward. 

Visible transmittance (Tvis) refers to the fraction of visible light transmitted through 

a window glazing. It is an optical property that indicates the amount of visible light 

transmitted.  

U-Value is a rate of non-solar heat transfer through transparent components and it 

measures the ability of the component to reduce heat gain.  

Air leakage defines heat loss and gain occurs by infiltration through cracks in the 

assembly of transparent components. It is indicated by an air leakage rating 

expressed as the equivalent m3 of air passing through a square meter of window area. 
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In addition to the air leakage there is also natural ventilation can be provided to the 

building through operable transparent building elements such as windows. 

Ventilation lets in the fresh air and exhausts room air. This way heat is transported 

by the convective means and: the thermal energy is associated with the air replaced. 

The studies about the impact of glazing area on building energy performance appear 

frequently in the literature. For example, Kontoleon and Bikas (2002) discussed the 

influence of glazed openings percentage and type of glazing on the thermal zone 

behaviour. Su and Zhang (2010) highlight the environmental performance 

optimization of window-to-wall ratio for different window type in hot summer and 

cold winter zone in China based on life cycle assessment. Hassouneh et al (2010) 

explore influence of windows on the energy balance of apartment buildings in 

Amman highlighting the selection of the optimum window size for each direction. 

Furthermore, visual and energy performance of windows regarding solar and optical 

properties were deeply investigated in a wide scope as well. Nilsson and Roos (2009) 

review the evaluation of optical and thermal properties of coatings for energy 

efficient windows Karlsson and Roos (2001) inspect the heating and cooling energy 

impact of low thermal emittance values for architectural glazings. Johnson et al. 

(2004) systematically explores the influence of glazing systems on component loads 

and annual energy use in prototypical office buildings.  

Nabinger and Persily (2011) describe the retrofits and the results of the pre- and post-

retrofit assessment of building airtightness, ventilation, and energy use. Hassan et al, 

(2007) investigate the effects of window combinations on ventilation characteristics 

for thermal comfort in buildings. 

2.3.3 Indoor environment 

Indoor conditions are another factor significantly influences the thermal behaviour 

and thermal comfort inside a space and as mentioned by Nasrollahi (2009) buildings 

are expected to provide an environment that does not harm the health of its 

occupants.  

Internal loads which are generated within the building itself impact the building 

energy balance a great deal. In buildings, the main source of internal heat gain is 

artificial lighting, occupants, and plug loads such as equipment and appliances.  
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Occupants generate both sensible and latent heat components according to the 

activity level. Activity level of people together with dynamic change in density 

determines the heat gain from the people occupy a space.  

The influence of occupancy is shown in many studies. For example, Davis and 

Nutter (2010) investigate the occupancy profiles to characterize occupancy factors 

for common university building types. Diaconu (2011) explores the effect of 

occupancy pattern and ventilation on the energy savings potential of a Phase Change 

Material (PCM) wall system. Richardson et al. (2008) presents a thorough and 

detailed method for generating realistic occupancy data for United Kingdom 

households, based upon surveyed time-use data. Kwok et al. (2011) discuss the 

critical role of building occupancy rate in building cooling load prediction and how it 

significantly improves predictive accuracy. 

Interior lighting is a basic requirement of buildings and it constitutes a major fraction 

of the building's internal load. A lighting system is set up in order to create required 

illuminance levels inside. The installed interior lighting power (W) or lighting power 

density (W/m2) determines the amount of electricity consumed by the lighting 

system and the heat given off at the same time. In the literature Yun et al. (2012) 

investigates the effects of occupancy and lighting use patterns on lighting energy 

consumption. Lam et al. (2006) discusses the impacts of lighting density on heating 

and cooling loads in different climates in China. Linhart and Scartezzini (2011) 

explore the influence of Lighting Power Density on visual comfort and. energy 

efficiency. They conclude that energy-efficient lighting with Lighting Power Density 

of less than 5 W/m2 is already achievable in today’s office rooms without 

jeopardizing visual comfort and performance. 

Similarly, plug loads that are a proportion of the building loads contribute a great 

deal to building energy balance. Equipment Power Density (W/m2) that comes from 

a careful estimate of the amount, size, and type of the equipment will determine the 

amount of heat realized by the equipment and the amount of electricity consumed. 

Yao and Steemers (2005) propose a method of formulating energy load profile for 

domestic buildings in the United Kingdom. Turiel et al (1987) discusses the 

estimation of energy intensity by end-use for commercial buildings. Srinivasan et al. 

(2011) establishes plug-load densities for use in energy simulation of K-12 schools. 
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In addition to interior loads, the operational patterns of each building (days building 

is open and schedule for typical start and end of day), the target comfort levels, 

temperature set points etc. influence the building energy behaviour.  

2.3.4 Building system characteristics 

As explained in the previous section, a building itself act as a system and depending 

on its interaction with outside environment energy is required to maintain the internal 

conditions. The amount of required energy depends on the building architectural 

characteristics, climate and building site and it can be lowered or sometimes 

eliminated by designing buildings in harmony with its surroundings. On the other 

hand, sometimes it may not be possible to achieve the ultimate building load-

avoidance on every building by only arranging design parameters, especially where it 

is obliged to maintain buildings in a narrow temperature range. In this case, the 

required heating, cooling, ventilation and lighting should be provided through 

building systems and a good architectural design will help to reduce the number of 

hours during the year when the systems are needed. Therefore, building systems 

must work in concert with the building shape, orientation, envelope, electrical 

equipment, and site characteristics (Harvey, 2012).  

The energy performance of building systems depends on the properties of each 

system. 

2.3.4.1 HVAC system 

HVAC is an acronym that stands for "heating, ventilating and air conditioning." The 

main purpose of an HVAC system is to regulate the climate within a residential or 

commercial environment to keep its occupants comfortable. An HVAC System 

consists of a chain of components designed to heat, ventilate or cool a specific area 

while maintaining defined environmental conditions. HVAC systems come in a 

broad range of sizes and complexity from the simplest fireplace, used for comfort 

heating, to the extremely reliable total air-conditioning systems that can be found in 

complex buildings (Grondzik and Furst, 2000).  

Today, HVAC systems account for a large portion of national and global energy 

consumption and represent an opportunity for significant energy savings. 
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HVAC systems are used for indoor climate control and they can include functions 

such as heating, cooling, supply of fresh air, air movement, filtration and where 

required by the climate, humidification and dehumidification. 

Heating, Ventilating and Air Conditioning is a huge field and there is a large variety 

of HVAC systems available today. A detailed discussion of HVAC systems is 

beyond the scope of this work. Only the most commonly used types of HVAC 

systems will be briefly mentioned and the parameters that influence the energy 

efficiency of systems will be highlighted.  

For the purposes of this study, HVAC system types are broken down into two broad 

categories as central systems and local systems.  

Central systems 

As explained by Grondzik and Furst (2000), central systems serve multiple spaces 

from one base location. They use a series of equipment to distribute cooling/heating 

media to exchange heat and supply conditioned air from one point to more than one 

room. Central systems are built-up systems assembled and installed on the site. 

A central HVAC system may serve one or more thermal zones and has its major 

components located outside of the zone or zones being served, usually in some 

convenient central location in, on, or near the building. Central HVAC systems will 

have as many points of control (thermostats) as there are zones.  

Central HVAC systems come in a variety of different types and most conventional 

centralized systems fall within one of the following three categories depending on 

the nature of the thermal energy transfer medium used by the system: All-Air 

System, All-Water System, or Air-Water System (Westphalen and Koszalinski, 

2001a). 

All-air systems are central systems, which provide complete sensible and latent 

heating and cooling of the air supply and deliver cooled or heated air from a central 

point via ducting, distributing air through a series of grilles or diffusers to the room 

or rooms being served. 

All-water hydronic system delivers the hot or cold-water from a chiller or heating 

boiler to individual heat transfer devices (terminal units) located in each room of the 

building through a network of pipes. When heating is required, the terminal units 
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draw heat from the water and when cooling is required these reject heat to the water. 

All-water systems only control indoor temperature. 

An air-water system is a hybrid system of all-air and all-water type of systems. Air-

and-water systems condition spaces by distributing both conditioned air for primary 

ventilation and water to local terminal units installed in the spaces for additional 

conditioning. 

The components of a central system fall into two broad categories: "primary 

components" and "secondary components. 

Primary components, often called "central plant" equipment, convert energy from 

fuel or electricity into heating and cooling energy in the form of hot water, steam, 

chilled water or refrigerant: Refrigeration equipment options include water chillers 

and direct-expansion equipment. A refrigeration system must also reject the heat that 

it removes using a water cooling or air cooling. Water-cooled chillers require 

condenser water pumps and cooling towers to reject heat. 

Boilers produce hot water or steam to distribute to heating coils. Pumps circulate 

chilled water, hot water, and cooling tower water. 

Secondary components, sometimes called "system" equipment, deliver heating and 

cooling to occupied spaces: Air handling equipment may be centrally located or 

several air handlers may be distributed throughout a facility. Ducts, plenums and 

shafts distribute air. Terminal units are devices at the end of a duct or pipe that 

transfer desired heating or cooling to the conditioned space. Some types commonly 

used with central HVAC systems include fan-coil units, induction units, and 

convectors (Grondzik and Furst, 2000). 

Controls are used to make components work together efficiently. 

Local systems 

Local air-conditioning systems are self-contained factory made assemblies consisting 

of a heat and/or cool source (depending on climate and occupancy demands), a fan, a 

filter, and control devices. The most common local air-conditioning systems include 

window units, package air-conditioners, rooftop units and heat pumps (Grondzik and 

Furst, 2000). 
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The cooling is delivered directly to the supply air in a refrigerant evaporator coil. 

These units are sometimes also referred as direct-expansion units. 

HVAC energy performance 

HVAC systems utilize energy in many forms. Fuel sources for generation of heating 

and cooling include electricity, coal, natural gas, propane, oil etc. Furthermore, 

energy is also required to distribute heating and cooling within a building, reject the 

heat discharged by cooling systems to the environment, and move air for ventilation 

purposes. (Westphalen and Koszalinski, 2001a) 

As Westphalen and Koszalinski discuss (2001a) the energy performance of HVAC 

systems depends on several factors including system type, system size, efficiency of 

plant equipment, efficiency of distribution system components, system control etc. 

Estimation of HVAC energy use is strictly tied to the system type and the systems 

choice depends mainly on system constraints, architectural constraints and financial 

constraints. 

Haines and Myers (2010) explains that determining the correct size of HVAC 

equipment is key to achieving energy efficiency moreover it also influences first cost 

and operating costs. For HVAC systems, the thermal loads come primarily from five 

sources including building envelope, lighting, occupancy, plugged-in equipment and 

ventilation and they should be all taken into account during sizing calculations. A 

proper HVAC system should always be able to effectively satisfy the peak heating 

and cooling loads that the building experiences throughout the year. Overcapacity 

equipment has a higher initial cost, costs more to operate, and may be less effective 

than optimally sized equipment thus safety sizing factors should be chosen carefully. 

As highlighted by Westphalen and Koszalinski (2001a), the efficiency of plant 

equipment is another factor that determines the energy performance of HVAC 

systems. Equipment efficiency is a measure of how much energy is effectively 

converted into heating and cooling the built environment. More efficient systems use 

less energy to achieve the same degree of conditioning.  Efficiency ratios such as 

Energy Efficiency Ratio (EER) or coefficient of performance (COP) is determined at 

full load and under standard test conditions however, many central plant units spend 

a significant part of their operating life at below full load. Therefore, part load off-

reference equipment efficiency due to changing building load and environmental 

conditions should be also considered. 
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Similarly, the full load and part load-efficiency of the distribution system equipment 

including fans and pumps affects overall HVAC energy performance significantly. 

Good part-load efficiency for distribution systems often involves variable speed 

drives along with components to allow drives to operate at lower frequencies as often 

as possible.  

Application of HVAC control helps operating the building systems in strict 

accordance with demand; thereby it avoids unnecessary use of energy. Supply fan 

speed controls, cooling capacity controls, demand-controlled ventilation supports 

increasing the operational efficiency. 

HVAC energy performance was deeply investigated in several studies. 

Salsbury and Diamond (2000) proposed a method for performance validation and 

energy analysis of HVAC systems using simulation. 

Wang et al. (2011) explained an approach for energy performance comparison of 

heating and air-conditioning systems for multi-family residential buildings. 

Lombard et al. (2011) reviewed energy related aspects of HVAC systems with the 

aim of establishing a common ground for the analysis of their energy efficiency. The 

paper focused on the map of energy flow to deliver thermal comfort: the HVAC 

energy chain. 

Shahrestani et al. (2013) attempted to characterize the performance of 36 HVAC&R 

systems based on the simultaneous dynamic simulation. 

Haniff et al. (2013) provided a detailed review on heating, ventilation and air 

conditioning (HVAC) scheduling techniques for buildings towards energy-efficient 

and cost-effective operations. 

Vakiloroaya et al. (2014) investigated and reviewed the different technologies and 

approaches, and demonstrates their ability to improve the performance of HVAC 

systems in order to reduce energy consumption.  

The studies concluded that several factors such as climatic conditions, expected 

thermal comfort, initial and capital cost, the availability of energy sources and the 

application of the building must be considered to properly design and select an 

energy-efficient HVAC system. 
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2.3.4.2 Lighting system 

Lighting plays a key role in our daily lives where it makes possible to carry out 

activities at night, or where natural light is not available. However, providing 

artificial light consumes, almost one fifth of the globally generated electricity (IEA, 

2006). Moreover, artificial lighting also introduces heat into the space and increase 

building cooling loads. Therefore, lighting system significantly impacts a building’s 

overall energy consumption and operating costs. 

Sustainable Design Guide by Los Alamos National Laboratory (LANL, 2013) 

mentions that the lighting energy use depends on several factors including the area of 

the lighted space, lighting needs, the efficiency of the lighting system, daylighting 

availability, lighting control as well as the number of hours of use. 

Boreham and Hadley (2009) summarize that luminaries and control units together 

form a lighting system. A luminaire is a complete lighting unit, comprised of a light 

source (lamp or lamps), together with the parts that distribute the light, position and 

protect the lamps, and connect the lamps to the power supply. Lighting efficiency 

measures the lamps ability to convert input electric power into luminous power. 

Therefore, using more efficient lamps consumes less energy to produce same 

illuminance levels as a less efficient lamp. There are various lamp types are available 

today with varying efficiencies including  Incandescent, tungsten halogen, 

fluorescent, metal halide, low-pressure sodium, high-pressure sodium, light emitting 

diodes.  

Moreover, as Ander (2003) explains, building’s ability to benefit from daylight also 

influences the need for artificial lighting. Daylighting is the controlled admission of 

natural light (direct sunlight and diffuse skylight) during daylight hours into a 

building through building openings such as windows and skylights. A building 

designed to take advantage of daylighting will have electric lighting system controls 

that turn the electric lights off or dim them when sufficient daylighting is available. 

The electric lights operate only to maintain set lighting conditions that the 

daylighting cannot meet. Therefore, an electric lighting system integrated with 

building architectural design and daylighting controls reduce the lighting demand 

and consequently the energy consumption. 
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In the literature, many research studies investigated the influence of a variety of 

factors on the building lighting consumption.  

Krarti et al. (2005) developed a simplified method to estimate energy savings of 

artificial lighting use from daylighting 

Doulos et al. (2008) aimed to quantify energy savings in daylight responsive systems 

and explored the role of dimming electronic ballasts. 

Li et al. (2008) studied the lighting and cooling energy performances for a fully air-

conditioned open-plan office when solar control films together with daylight-linked 

lighting controls are being used. 

Mardaljevic et al. (2009) reviewed the historical basis of current compliance methods 

for achieving daylit buildings, proposes a technical basis for development of better 

metrics, and provides two case study examples to stimulate dialogue on how metrics 

can be applied in a practical, real-world context. 

Yun et al. (2012) investigated the effects of occupancy and lighting use patterns on 

lighting energy consumption through field survey. 

Shen et al. (2014) carried out energy and visual comfort analysis of lighting and 

daylight control strategies and they compared the energy and visual comfort 

performance of seven independent and integrated lighting and daylight control 

strategies. 

2.3.4.3 Water heating system 

Water heating accounts for approximately 17 % of a residential building energy use 

in USA (EIA, 2013), and 14 % in Europe (ODYSSEE-MURE, 2009) and after 

heating and cooling, it is typically the largest energy user in the home. In commercial 

buildings, however water heating forms a small fraction of energy consumption and 

it comes last after space conditioning, lighting and powering office equipment.  

American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE) Handbook HVAC System and Equipment (2008) mentions three main 

categories of water heating systems including instantaneous (tankless) water heaters 

storage water heaters, combination of space and water heating systems. 
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Demand (tankless or instantaneous) water heaters heat water directly circulating 

water through a large coil and there is no storage tank continuously maintaining hot 

water. Demand systems produce a limited amount of hot water 

Storage water heaters heat and store water in an insulated storage tank ready for use 

at all times. Many fuel options are available, including electricity, natural gas, oil, 

and propane.  

Combination space and water heating systems use a boiler plant as the heat source by 

circulating hot water from the boiler through a heat exchanger in a well-insulated 

water heater tank. 

Moreover, as mentioned by Ibrahim et al. (2014a) there are also renewable energy 

supported water heater systems such as heat pump water heaters where a heat pump 

transfers energy from the surrounding air or ground to water in a storage tank and 

solar water heaters where energy of sun is used as the heat source. 

The energy consumption due to water heating depends on several factors including 

hot water demand, water heater temperature, first-hour rating (FHR) and energy 

factor (fhr). 

The FHR measures the amount of hot water the heater can supply per hour (starting 

with the tank full of hot water.  

The EF indicates overall unit efficiency based on the amount of hot water produced 

per unit of fuel consumed over a typical day 

There are several studies in the literature concerning the energy and economic 

performances of several water-heating options.  

Hegazy (2007) investigated the effect of inlet design on the performance of storage-

type domestic electrical water heaters for energy conservation. 

Carboni and Montanari (2008) proposed a quantitative approach able to forecast the 

profitability of the introduction of domestic solar thermal systems operating in 

parallel with the most common systems for heating domestic sanitary water. 

Nikoofard et al. (2014) evaluated the impact on energy consumption and GHG 

emissions as well as the techno-economic feasibility of retrofitting solar domestic hot 

water (DHW) heating systems to all houses in the Canadian housing stock. 
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Ibrahim et al. (2014b) presented the dynamic modelling of a domestic hybrid water 

heating system. The system is composed of a solar collector, a heat pump water 

heater, a wind turbine, a battery and a hot water storage tank 

Hepbasli and Kalinci (2009) reviewed heat pump water heaters systems in terms of 

energetic and exergetic aspects.  

2.3.5 Building integrated renewable system 

As explained in previous sections, improving buildings energy efficiency requires 

climate responsive building design for demand reductions, application of more 

efficient building systems. Moreover, a good integration between building and its 

systems is also essential. 

While working on strategies for demand-side efficiency it is also equally important 

to develop supply-side solutions. One approach to making buildings more energy-

efficient is to require the use of renewable energy systems capable of generating 

power or energy that can be used by the building occupants. As the term suggests, 

renewable technologies rely on the resource being constantly renewed 

Building-related renewable energy provides an opportunity to reduce building 

environmental impact and bring energy directly and efficiently to end users. As 

explained by Bronin (2012), building-related renewable energy is primarily solar 

heating, photovoltaic, wind, biomass and geothermal technologies, which are 

incorporated into inhabited structures and used by those structures’ occupants. The 

amount of energy that can be acquired from building related renewables are limited 

to what sources are available on or around the building. 

The energy output of the renewable systems depends on energy production 

capabilities of each technology and the site conditions.  

Building integrated renewable technologies were frequently studied from many 

different perspectives. 

Kalogirou (2004) evaluated the performances of a solar water heating and a solar 

space/water heating system. 

Ardente et al. (2005) studied the energy and the environmental performances of the 

solar thermal collector for sanitary warm water demand. A life cycle assessment 
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(LCA) was performed following the international standards of series International 

Organization for Standardization (ISO) 14040. 

Dalton et al (2009) presented an analysis of the technical and financial viability of 

grid-only, Renewable Energy System-only and grid/ Renewable Energy System 

hybrid power supply configurations for a large-scale grid-connected hotel. 

Cucchiella et al. (2012) presented a model to define the profitability of a 

Photovoltaic (PV) building integrated system. 

Marino et al. (2013) presented an energetic, economic and environmental analysis of 

two different configurations of a self-sufficient system for energy production from 

renewable sources in buildings. 

Fong and Lee (2014) proposed a hybrid renewable cooling system for office building 

application by utilizing both the solar energy and the ground source. 

Oh et al. (2014) suggested a cost-effective method for integration of existing grids 

with new and renewable energy sources in public buildings in Korea. 

The studies highlighted that a good integration of renewable systems with the 

building for a better efficiency is required starting with the early design phases. 

2.4 Building Performance Simulation  

As discussed in previous sections, overall building performance depends on several 

factors, which are related with characteristics of climate, building site, building 

architectural characteristics, indoor conditions, building HVAC systems, and on-site 

energy generation. Moreover, all the design factors are in constant interaction. 

Therefore, designing buildings for energy efficiency is a challenge. Clear and reliable 

information on the buildings performance is required for understanding the building 

behaviour and addressing the needs of building design. 

Built environment is becoming more complex, as the expectations from buildings 

increasing due to economic, environmental and social pressures. High energy 

performance buildings cannot be designed using only conventional knowledge, rules 

of thumb, or traditional methods, which are mono-disciplinary, restricted in scope 

and static in time domain. Therefore, computerized building simulation has been 
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introduced over the last fifty years to provide support for evaluating buildings 

performance (Hensen and Lambert, 2011).  

According to Fishwick (1995), computer simulation is the discipline of designing a 

model of an actual theoretical system, executing it on a digital computer and 

analysing the execution output. A simulation model is actually a mathematical model 

acting as the imitation of the operation of a real-world process or system over time. It 

allows describing and analysing the behaviour of a system, calculating the impact of 

certain inputs and decisions on outcomes, therefore, asking “what if” questions about 

the real system, and aiding the design process by providing insight data. 

Until the mid-1960s only simple hand-calculation methods were available for 

calculating energy consumption in buildings. However, as the power of computers 

grew, more resourceful building simulations tools started to appear. Since the first 

introduction of the building simulation discipline, it has been constantly evolving and 

as a result, a large variety of Building Performance Simulation (BPS) tools which are 

scientifically and internationally validated are available today (Hensen and Lambert, 

2011). 

Building performance simulation can model the thermal, visual, ventilation and other 

energy consuming processes taking place within a proposed design in response to 

changing climate conditions and provide information about how the building is 

expected to perform. Moreover, BPS can support decision making by providing 

information on building environmental impact, thermal and visual comfort, 

daylighting benefits and related costs as well.  By doing so, designers can preview 

and improve the performance of interdependent building features such as orientation, 

shape, building envelope, various mechanical systems and building related 

renewables and can effectively integrate the building envelope and systems for cost-

effective design solutions. Therefore, computer simulation tools are an essential 

component of the whole-building design process.  

Building performance simulation can be used not only in the design stages of new 

energy efficient buildings, but also in the planning stages of energy retrofits for 

existing buildings, and the development of building energy codes and standards. 

There are quite a big number of tools in use nowadays and their capabilities vary in a 

wide range (DOE, 2014). Some tools focuses on only certain issues inherited in 
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building energy problems while others provide a more general view. The core tools 

in the building energy field are the whole building energy simulation programs that 

can provide users with building performance indicators such as energy use and 

demand, temperature, humidity, and costs (Crawley et al., 2008). These tools can 

carry out not only energy efficiency calculations but also daylighting and comfort 

calculations. 

Crawley et al., (2008) compared the features and capabilities of twenty major 

building energy simulation programs namely BLAST, BSim, DeST, DOE-2.1E, 

ECOTECT, Ener-Win, Energy Express,Energy-10, EnergyPlus, eQUEST, ESP-r, 

IDA ICE, IES/VES, HAP, HEED, PowerDomus, SUNREL, Tas, TRACE and 

TRNSYS in the following 14 categories: General Modeling Features, Zone Loads, 

Building Envelope and Daylighting, Infiltration, Ventilation and Multizone Airflow, 

Renewable Energy Systems, Electrical Systems and Equipment, HVAC Systems, 

HVAC Equipment, Environmental Emissions, Economic Evaluation, Climate Data 

Availability, Results Reporting, Validation, and User Interface, Links to Other 

Programs, and Availability. Their study concluded that even among the ‘mature’ 

tools, there is not a common language to describe what the tools could do. 

Identification of simulation needs is essential in determining the simulation tool.  

They encourage users to consider adopting a suite of tools, which would support the 

range of simulation needs. Lastly, validation of simulation results is key to correct 

tool selection. Therefore, BESTEST-like procedures can support users with detailed 

information on the accuracy of the considered tools. 

Whole-building simulation has been used in a wide variety of research attempts in 

the last decade and only a few of them are mentioned below: 

Griffith et al. (2003) employed EnergyPlus to study the influence of some advanced 

building technologies over the building performance of a building in Teterboro 

airport and DOE-2.1E to analyse the effect of such common measures as optimized 

envelope system and schedules. 

Ibanez et al. (2005) evaluated the influence of the phase change materials on 

different parts of the envelope of a room through TRNSYS Program.  
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Ellis and Torcellini (2005) carried out research on the reliability of EnergyPlus in 

simulating tall buildings and the outcomes from their research proved accuracy and 

reliability of EnergyPlus in simulating on a tall building. 

Griffith and Crawley (2006) used EnergyPlus to propose a methodology for 

evaluating the energy performance for the United States commercial building sector 

to estimate the technical potential of zero-energy buildings. 

Kalogirou (2011) used TRNSYS Program to see how the energy demand behaves 

with a hybrid photovoltaic-thermal solar system in a building in Nicosia, Cyprus and 

determined overall the energy consumption. 

Zhai et al. (2011) studied the effects of the ventilation in summer with the 

EnergyPlus simulation software. They compared experimental and simulated 

measures of indoor temperature in three distinct building offices. 

Bojić et al. (2011) compared energy consumption, energy costs and environment 

impact of three systems used for space heating, and space cooling of an office 

building in Kragujevac, Serbia. Three investigated systems are a system with a 

natural gas boiler and convective baseboard heaters for water space heating and 

window air conditioners for air space cooling, a system with a natural gas boiler and 

individual air reheaters for air space heating and a chiller plant for air space cooling, 

and an air-to-air heat pump for air space heating, and cooling. The systems are 

modeled and simulated by using EnergyPlus software. 

Zhou and Park (2012) demonstrated how much energy use will be reduced if the 

simulation -assisted building energy management and control system is applied to a 

representative large office building. 

Boyano et al. (2013) explored the energy saving potentials in office buildings across 

Europe by simulating several currently available scenarios. 

Ochs et al. (2013) used the simulation tools MATLAB Simulink and TRNSYS 17 to 

model a renovated multi-family house. 

Xiaoqi et al. (2014) proposed an innovative Energy Saving Alignment Strategy 

(ESAS) to reduce building energy demands. They explored the application of ESAS 

in the context of public housing through EnergyPlus simulation.  

http://0-www.sciencedirect.com.divit.library.itu.edu.tr/science/article/pii/S0378778814006082#bib0020
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Mohamad et al. (2014) calculated the annual energy load of the windows offset 

thermal bridges for a typical French house by combining a developed MATLAB 

code and EnergyPlus energy simulation program. 

Gustafsson et al. (2014) used dynamic simulation to compare the energy 

performance of three innovative HVAC systems: (A) mechanical ventilation with 

heat recovery (MVHR) and micro heat pump, (B) exhaust ventilation with exhaust 

air-to-water heat pump and ventilation radiators, and (C) exhaust ventilation with air-

to-water heat pump and ventilation radiators, to a reference system: (D) exhaust 

ventilation with air-to-water heat pump and panel radiators. System A was modelled 

in MATLAB Simulink and systems B and C in TRNSYS 17. 

Building simulation supports the understanding of how a given building operates 

according to certain criteria and enables comparisons of different design alternatives. 

The application of whole-building simulation and analysis has demonstrated a 

significant energy efficiency potential in many research studies. However, high 

energy performance building design involves handling the complex relationship 

between building and systems while considering numerous design parameters.  

Many simulation runs, which are based on a trial-and-error approach, are required to 

be carried out by designer until finding a satisfactory solution. The success of this 

human-driven approach is based on skills and experience of the designer and it 

requires a significant amount of time to scan the entire design space.  

To achieve an optimal design solution with less time and labour, the building 

simulation models can be solved iteratively by automated computer programming 

methods. This procedure is known as simulation-based optimization and it offers a 

great potential for overcoming the drawbacks of impracticality of simulation only 

methods (Nguyen et al. (2014). 

2.5 Summary 

Buildings are expected to create necessary conditions for its occupants. In order to 

create healthy environments, some internal environmental factors need to be 

controlled and adjusted.  

Heat needs to be added to or removed from a space by passive or active means to 

maintain thermal comfort. Light needs to be provided to ensure visual comfort. 
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Indoor spaces need to be supplied with fresh air for good indoor air quality. All these 

vital requirements determine the building demand for energy.  

Many studies suggest that energy performance of buildings is multi-dimensional and 

depends on several factors that are related to building architectural characteristics, 

indoor conditions, building systems, building-related renewable systems and site and 

climate conditions. Moreover, combined impact of these elements determines the 

building overall performance. A wide range of literature exists regarding the 

parameters influence building energy behaviour and how these parameters should be 

adjusted for better energy efficiency. However as a result of the inter-dependent 

interactions between building elements and the large number of parameters that 

impacts the building energy efficiency, it can be rather difficult to find the optimum 

design solution for a particular building that will satisfy many competing design 

objectives including energy efficiency, user comfort, cost, environmental impacts.  

Building performance simulation tools are introduced in order to overcome the 

complexity of design problem of complex buildings. Such tools simulate the 

proposed design’s response to climate and season. Therefore, designers can preview 

and improve the performance of interdependent building features such as orientation, 

building envelope, and various mechanical systems. Application of simulation in 

design process let different design scenarios be explored, analysed and compared for 

better efficiency. However, this task can be quite complicated and difficult due to 

complex nature of building energy behaviour and conflicts in economical, energy 

and comfort aspects. Many simulation attempts might be required until finding the 

best combination of many performance measures. It is believed that on the way to 

better building energy performance, this obstacle can be tackled with combination of 

mathematical optimization techniques with building performance simulation to 

automate the search for an optimal design. 
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3.  SIMULATION-BASED BUILDING OPTIMIZATION 

3.1 Introduction 

Computer simulation is a powerful tool in analysis of complex real systems where 

models of systems are expressed in mathematical equations and then the behaviour 

of the models are observed under different conditions. As explained in the previous 

chapter, the simulation studies allow users to calculate and analyse the performance 

of a system in consideration. However, in real world complex problems, the 

performance usually depend on several factors and decision making often involves a 

challenge of simultaneously satisfying many conflicting objectives. Therefore, 

although proven effective, still the traditional scenario-based manual simulation 

methods can be quite labour-intensive and weak at finding the best solution for 

complex system problems.  

In order to address the difficulties inherited in decision making via simulation, 

simulation-based optimization methods, which integrates optimization techniques 

into simulation analysis has been introduced (Fu, 2002). Optimization is a field of 

mathematics that deals with finding the extreme values of a function, subject to 

various constraints. During a simulation-optimization process, a simulation model 

and an optimization solver interact dynamically to explore a search space until an 

optimal solution based on an objective function and established constraints is 

obtained. The output of simulation corresponds to the function that is aimed to be 

minimized or maximized. The solver iteratively changes the values of the variables 

of the simulation model according to a search strategy. Therefore, simulation-based 

optimization techniques introduce the possibility of finding the best input variable 

values from among all possibilities without explicitly evaluating each possibility 

(Carson and Maria, 1997). 

The integration of optimization techniques with simulation automate the search for 

the optimal or near optimal solutions in the design space, speed up the calculations 

and improve the solutions to multi-variable, multi-objective, and multi-criterion 
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problems. Therefore, in parallel with the advances in computing power in the last 

decade, the possibility of optimizing simulation models started to draw a significant 

attention in research community (Fu et al. 2005). Today, simulation-based 

optimization methods are successfully applied to a wide range of fields including 

engineering design in mechanical, civil, and chemical engineering, economics, 

production operations, transportation engineering, manufacturing, molecular biology, 

and finally building and systems design. (Papadrakakis and Lagaros, 2002; Qi et al, 

2014; Gansterer et al., 2014; Chaudhry and Drake, 2009; Wells et al, 2012; 

Fesanghary et al., 2012). 

Buildings are complex energy systems that consist of several interacting sub-

systems, and as summarized in Chapter II, energy performance of buildings depends 

on numerous factors. Application of simulation-based optimization methods in 

building design started to draw attention of researchers especially in the last decade 

in order to support the development of cost-effective, environmentally friendly, 

highly energy-efficient buildings by bridging the gap between the steps of whole 

building design process.  

This chapter introduces the basics of the optimization phenomenon. The following 

sections give main definitions; introduce optimization techniques and shares 

background on building design optimization. The optimization theory is discussed 

from building performance perspective and optimization tools and performance 

optimization methods which are used frequently for building design optimization are 

highlighted. Finally, the most recent studies in building design optimization field are 

summarized and the research gap is identified. 

3.2 Simulation-based Optimization Basics 

3.2.1 Main definitions 

Carson and Maria (1997) explain that when the mathematical model of a system is 

studied using simulation, it is called a simulation model. In simulation-based 

analyses, system behaviour at specific values of input variables is evaluated by 

running the simulation model and the influence of some specific changes to design 

parameter values are tested manually by the user through a simulation experiment. 

However, when large numbers of input variables are involved and the simulation 
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model is complex, the simulation experiment may become computationally 

unfeasible.  

As discussed by Dellino et al. (2014), simulation–optimization approach, which is 

based on the merging of optimization and simulation techniques, introduced the 

possibility of repeated analysis of the problem until finding a set of design 

parameters providing the best simulated performance. 

A dictionary definition of the term optimization is an act, process, or methodology of 

making something (as a design, system, or decision) as fully perfect, functional, or 

effective as possible (Merriam-Webster, 2013). In mathematics, optimizations is 

defined as a mathematical programming technique for finding the maximum or 

minimum values of a specified function of several variables subject to a set of 

constraints without having to enumerate all of the possibilities (Liberti, 2008).  

Any problem in which certain parameters need to be determined to satisfy constraints 

can be formulated as an optimization problem.  

As mentioned by Rao (2009), existence of optimization methods can be traced back 

to the days of Newton, Lagrange, and Cauchy. However, development of the simplex 

method by Dantzig in 1947 for linear programming problems was the first technique 

to be referred as optimization. Since then, different modeling techniques have been 

developed to meet the requirement of different type of optimization problems. 

The general single-objective, non-linear, constrained optimization problem can be 

written in the following generic form (Venter, 2010): 

 Minimize : f(x) 

Subject to gj(x) ≤ 0, 

hk(x) = 0, 

         𝑥𝑖𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑈  

    R
n
→ R 

    j = 1, . . . , m. 

    k = 1, . . . , p. 

    k = 1, . . . , n. 

(3.1) 

In the equation 3.1, function f(x) represents the objective function, the functions gi(x) 

and hj(x) are the inequality and equality constraint functions, respectively. The vector 

x = (x1, . . . , xn) represents n design variables that are varied to reach the optimum. 

They are also called independent variables. The search space is defined by the upper 

and lower bounds, xiL and xiU, of the design variables, as side constraints. 



42 

The optimization problem in this equation is an abstraction of the problem of making 

the best possible choice of a vector in Rn from a set of candidate choices. The 

variable x represents the choice made; the constraints represent firm requirements or 

specifications that limit the possible choices and the objective value f(x) represents 

the cost of choosing x.  

Objective function represents an equation to be maximized or minimized in the 

optimization theory under certain constraints. It defines the relationship between the 

design variables and quantifies the performance of the design. The efficiency and 

success of any optimization problem is greatly influenced by the properties and the 

formulation of the objective function. 

Yang (2013) explains that for any optimization problem, the integrated components 

of the optimization process are the optimization algorithm, an efficient numerical 

simulator and a realistic-representation of the physical processes that designer wish 

to model and optimize. Carson and Maria (1997) illustrate a generic simulation 

optimization scheme as given in Figure 3.1. The optimization problem is introduced 

to the optimizer module as input. The optimizer module implements optimization 

algorithms and calls simulation model to generate the data. The output of the 

simulation model is used by the optimization strategy to provide feedback. This in 

turn guides further input to the simulation model. The simulation output is checked 

against an optimization criteria and a decision is made to accept the proposed 

solution or to continue the search process. The loop lasts until a stopping criterion is 

satisfied. Once the optimization process starts, it runs automatically without user 

interference. When the optimization is completed optimum or near-optimum 

solutions are returned. 

Simulation 

Model

Optimization 

Strategy

Feedback on progress

Input Output

 

Figure 3.1 : A generic simulation-based optimization scheme. 
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Yang (2013) mentions three main issues in the simulation-driven optimization 

approach to consider carefully, and they are the efficiency of an algorithm, the 

efficiency and accuracy of a numerical simulator, and assigning right algorithms to 

the right problem.  

As Yang (2013) further explains, simulations could be the most laborious part in an 

optimization process as they often require the evaluation of objective function many 

times using extensive computational tools.  Therefore, an efficient solver is crucial. 

Moreover, an efficient optimizer is very important to ensure the optimal solutions are 

reachable.  

However, despite its importance, there are no agreed guidelines for choosing the 

right algorithms for the right problems and no universally efficient algorithms for all 

types of problems are available. The choice of the algorithm largely depends on the 

type of the problem, the nature of an algorithm, the desired quality of solutions, the 

available computing resource, time limit, availability of the algorithm 

implementation, and the expertise of the decision-makers (Yang, 2013).  

3.2.2 Classification of optimization problems 

Formulating a real life problem as an optimization case strictly depends on the nature 

of the particular problem and there are many dimensions to consider before selecting 

solution techniques. There is not a definite classification of optimization problems in 

the literature and the classification can be carried out based on several different 

criteria as illustrated by Yang (2010), Raphael and Smith (2013) and Rao (2009) . 

However, in the current work the optimization problem is sorted into five broad 

categories following the common literature: nature of variables, shape of objective 

function, type of data, number of objectives, and type of constraints.  

3.2.2.1 Nature of variables 

As Yang (2010) explains, design variables can be continuous variables or discrete 

variables. A continuous variable can take any numerical value in some interval (with 

lower and upper bounds). However, a discrete variable can take only distinct, 

separate values typically from a list of permissible values. Both continuous and 

discrete variable could exist together in an optimization problem. 
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3.2.2.2 Shape of objective function 

Based on the nature of equations for the objective function and the constraints, 

optimization problems can be classified as linear and nonlinear programming 

problems. If the objective function and all the constraints are linear functions of the 

independent variables, the optimization problem is called a linear programming 

problem; if not then it is called non-linear programming. Geometric and quadratic 

programming problems belong to the class of non-linear programming problems 

(Yang 2010). 

3.2.2.3 Type of data 

Based on deterministic nature of the variables, optimization problems can be 

classified as deterministic or stochastic programming problems. In, deterministic 

programming problems all the design variables are deterministic and the output of 

the simulation model can be fully determined by the parameter values and the initial 

conditions. On the other hand, stochastic optimization problems include random 

variables that can be expressed probabilistically. Therefore, problems having 

stochastic elements are generally not solved analytically (Ohnari, 1998). 

3.2.2.4 Number of objectives 

Based on the number of objective functions, optimization problem can be classified 

as single-objective and multi-objective problems. As previously explained in 

equation 3.1 that there is only a unique objective function to satisfy in single-

objective optimization problem. However, multi-objective optimization deals with 

the task of simultaneously optimizing two or more conflicting objectives (Yang, 

2010).  

As summarized by Bandyopadhyayand and Saha, (2013), single objective 

optimization problems can be solved by application of calculus-based techniques, 

enumerative techniques and random techniques and it is possible to determine 

between any given pair of solutions if one is better than other is. 

Multi-objective optimization problem can be described in mathematical terms as in 

equation 3.2 (Rao, 2010): 
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𝐹𝑖𝑛𝑑 𝑥 = {

𝑥1

𝑥2

…
𝑥𝑛

} 

Which minimizes 𝑓1(𝑥),  𝑓2(𝑥), … ,  𝑓𝑘(𝑥) 

Subject to 𝑔𝑗(𝑥) ≤ 0       𝑗 = 1, 2, … , 𝑚 

(3.2) 

Where k denotes the number of objective functions to be minimized. Any or all of 

the functions may be nonlinear.  

As Rao (2010), Caramia and Dell'Olmo (2008) and many others discuss, no solution 

vector x exist that minimizes all the k objectives simultaneously. Therefore, Pareto 

optimum solution concept is introduced in the literature. A feasible solution x is 

called Pareto optimal if there exist no other feasible solution y such that 𝑓𝑖(𝑦) ≤

𝑓𝑖(𝑥) for 𝑖 = 1, 2, … , 𝑘 with 𝑓𝑖(𝑦) < 𝑓𝑖(𝑥) for at least one 𝑗. Thus, a feasible vector x 

is called Pareto optimal if there is no other feasible solution y that would reduce 

some objective function without causing a simultaneous increase in at least one other 

objective function. In other words, in the Pareto frontier none of the components can 

be improved without deterioration of at least one of the other components. Therefore, 

there is no single optimal solution but rather a set of optimal trade-offs exists.  

Adding more than one objective to an optimization problem adds complexity. There 

are quite a number of methods available for solving a multi-objective optimization 

problem in the literature however only a short summary will be given. 

Bandyopadhyayand and Saha (2013) categorize the approaches for solving multi-

objective optimization problem as aggregating approaches, population-based non-

Pareto approaches and Pareto-based approaches.  

Aggregating approaches belongs to traditional methods where a multi-objective 

problem is often solved by combining its multiple objectives into one single-

objective scalar function (Caramia and Dell’Olma, 2008). This group mainly 

includes weighted-sum approach, ε-Constraint approach, goal programming-based 

approach, and goal attainment-based approach.  

In weighted-sum approach different objectives are combined using some weights 𝑤𝑖 , 

i = 1, . . . , n (where n is the number of objectives). Then using these weights the 
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objective functions are merged into a new single function to be optimized as shown 

in equation 3.3. 

 
𝑚𝑖𝑛 ∑ 𝑤𝑖. 𝑓𝑖(𝑥)

𝑛

𝑖=1

 

∑ 𝑤𝑖 = 1          𝑤𝑖 > 0,    𝑖 = 1 … . . 𝑛      𝑥 ∈ 𝑆,

𝑛

𝑖=1

 

(3.3) 

The weighted-sum approach is simple and easy to implement however, there are two 

major drawbacks. As explained by Caramia and Dell’Olma (2008), the appropriate 

selection of the weights, which is up to the decision maker could be a challenge. 

Moreover, non-convex parts of the Pareto set cannot be reached by minimizing 

convex combinations of the objective functions. 

In ε-Constraint approach designer chooses one objective out of n as the primary 

objective function to be minimized; the rest of the objectives are then constrained to 

be less than or equal to given target value, εi . 

If 𝑓𝑗(𝑥) is taken as the objective function to be minimized, constraint approach takes 

the following form given in equation 3.4: 

 𝑚𝑖𝑛𝑓𝑗(𝑥) 

𝑓𝑖(𝑥) ≤ 𝜀𝑖,    ∀𝑖 ∈ {1, … , 𝑛}\{𝑗}        𝑥 ∈ 𝑆  
(3.4) 

ε-Constraint approach is efficient, easy to implement and it is able to achieve 

efficient points in a non-convex Pareto curve. However, selecting appropriate values 

for the ε vector is required to be addressed carefully (Bui and Alam, 2008). 

In Goal programming-based approach designer assigns targets or goals (𝑇𝑖) that 

wishes to achieve for each objective (𝑓𝑖(𝑥)). The optimum solution is then defined as 

the one that minimizes the deviations from the set goals as shown in equation 3.5 

(Rao, 2009). 

 

𝑚𝑖𝑛 ∑|𝑓𝑖(𝑥) − 𝑇𝑖|            𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑋,

𝑘

𝑖=1

 (3.5) 
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In Goal attainment-based approach the designer is required to provide, along with the 

target vector, a weight vector wi, relating the relative under- or overattainment of the 

objectives (Bandyopadhyayand and Saha, 2013). 

Population-based non-Pareto approaches and Pareto-based approaches belong to 

metaheuristics Evolutionary Methods, (Zitzler, 1999). As stated by Surry et al. 

(1995), population-based search algorithms consider trying to use the population to 

hold solutions that represent different trade-offs. 

Bhuvaneswari (2014) explains that, in Population-based non-Pareto approaches, the 

population of an evolutionary algorithm is used to diversify the search for the 

different objectives. Subpopulations are used to optimize each objective 

independently which are then shuffled together to obtain a new population to work 

on. Bandyopadhyayand and Saha, (2013) introduces some example to this approach 

as following: Vector evaluated genetic algorithm (number of subpopulations are 

generated by applying proportional selection according to each objective function in 

turn.), Lexicographic ordering (the objectives are ranked in order of importance by 

the user. The optimization is performed on these objectives according to this order.), 

Game theory-based approach (a player is associated with each objective.). 

Bhuvaneswari (2014) sees the main disadvantage of this approach generally as not 

directly incorporating the concept of Pareto dominance. 

In Pareto-based approach, as described by Bhuvaneswari (2014), the aim is to 

determine an entire Pareto optimal solution set or a representative subset by 

attempting to promote the generation of multiple non-dominated solutions by making 

use of the actual definition of Pareto-optimality. Pareto optimal sets can be of varied 

sizes but the size of the Pareto set usually increases with the increase in the number 

of objectives. There are a few examples mentioned here representing Pareto-based 

approaches as given by Bandyopadhyayand and Saha, (2013): 

Multiple objective genetic algorithm (MOGA): An individual is assigned a rank 

corresponding to the number of individuals in the current population by which it is 

dominated. This method has a very slow convergence rate, and there are some 

problems related to niche size parameters. 

Niched Pareto genetic algorithm (NPGA): Pareto dominance-based tournament 

selection with a sample of the population is used to determine the winner between 
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two candidate solutions. This method suffers from the problem of selecting an 

appropriate value of the niche size parameter.  

Non-dominated sorting genetic algorithm (NSGA): All non-dominated individuals 

are classified into one category, with a dummy fitness value proportional to the 

population size. This method has a very high convergence rate, but it also suffers 

from problems related to the niche size parameter. 

Strength Pareto evolutionary algorithm (SPEA): This algorithm implements elitism 

explicitly by maintaining an external population called an archive. Its most limiting 

aspect is the use of clustering. 

Strength Pareto evolutionary algorithm 2 (SPEA2): the fitness assignment is entirely 

based on the strength of the archive members. This method suffers from 

computationally expensive fitness and density calculations. 

Elitist non-dominated sorting genetic algorithm (NSGA-II): The individuals in a 

population undergo nondominated sorting as in NSGA, and individuals are given 

ranks based on this. 

Bui and Alam (2008) explain two major issues with application of Multi-objective 

Evolutionary Methods: how to get close to the Pareto optimal front since this is not 

an easy task, because converging to the Pareto optimal front is a stochastic process. 

In addition, how to keep diversity among the solutions in the obtained set is 

underlined. Evolutionary algorithms cannot guarantee finding optimal solutions in a 

finite amount of time and population approach may be computationally expensive. 

Moreover, a good parameter tuning is also required for maintaining a diverse 

population in order to prevent premature convergence (Zitzler 1999). 

3.2.2.5 Type of constraints 

Constrained optimization is the minimization of an objective function subject to 

constraints on the possible values of the design variables. However, some 

optimization problems do not involve any constraints and such problems are called 

unconstrained optimization problems (Rao, 2009).  

In general, the constraints represent some functional relationships among the design 

variables and other design parameters. Constraints can be either equality constraints 

or inequality constraints.  
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There are several methods are available for solving an unconstrained nonlinear 

optimization problem and they are classified into two broad categories by Rao (2009) 

as direct search methods and descent (gradient) methods. Direct methods cover 

random search method, grid search method, univariate search methods, and pattern 

search method. Descent methods include Steepest descent (Cauchy) method, 

Fletcher–Reeves method, Newton’s method, Marquardt method, Quasi-Newton 

methods. 

There are also many methods available to deal with constrained nonlinear 

optimization problem. Rao (2009) classifies all the methods into two broad 

categories: direct methods and indirect methods. Direct methods include Random 

search methods, heuristic search methods, objective and constraint approximation 

methods, methods of feasible directions, generalized reduced gradient method. 

Indirect methods include transformation of variables technique and sequential 

unconstrained minimization techniques. In this work, only the penalty function 

methods that belong to sequential unconstrained minimization techniques will be 

discussed. 

As mentioned by Weise (2009) the penalty methods are one of the most popular 

approaches for dealing with constraints. The idea of a penalty function method is to 

solve the general constrained optimization by first converting it to an equivalent 

unconstrained form. Then, this equivalent unconstrained problem is solved using a 

suitable unconstrained algorithm (Venter, 2010).  

As explained by Rao (2010), the constraints are combined with the objective function 

f(x) in equation 3.6, resulting in a new function φ (x) which is then actually 

optimized. 

 𝐹𝑖𝑛𝑑 𝑥 𝑡ℎ𝑎𝑡 minimizes 𝑓(𝑥) 

Subject to 

𝑔𝑗(𝑥) ≤ 0,       𝑗 = 1,2, … . , 𝑚 

(3.6) 

This problem is converted into an unconstrained minimization problem by 

constructing a function of the form in equation 3.7. 
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φ𝑘 = φ(𝑋, 𝑟𝑘) = 𝑓(𝑥) + 𝑟𝑘 ∑ 𝐺𝑗[𝑔𝑗(𝑥)]

𝑚

𝑗=1

 (3.7) 

Where 𝐺𝑗 is some function of the constraint, 𝑔𝑗, and 𝑟𝑘 is a positive constant known 

as the penalty parameter. The second term of the on the right side of the equation 3.7 

is called penalty term.  

Combining objective function with constraints is done in a way to ensure that an 

infeasible solution candidate has always a worse φ𝑘value than a feasible one with the 

same objective values. 

The penalty function formulations for inequality constrained problems can be 

divided into two categories: interior and exterior methods. 

In the interior penalty function methods, which are also called barrier methods, a new 

function (φ function) is constructed by augmenting a penalty term to the objective 

function. The penalty term is chosen such that its value will be small at points away 

from the constraint boundaries and will tend to infinity as the constraint boundaries 

are approached. The main formula for barrier methods has the following form in 

equation 3.8: 

 
φ(X, 𝑟𝑘) = 𝑓 (𝑋) − 𝑟𝑘 ∑

1

𝑔𝑗(𝑋)

𝑚

𝑗=1

 (3.8) 

In the exterior penalty function method, the φ function is generally taken as in 

equation 3.9 

 

φ(X, 𝑟𝑘) = 𝑓 (𝑋) +  𝑟𝑘 ∑(𝑔𝑗(𝑋))

𝑚

𝑗=1

𝑞

 (3.9) 

where 𝑟𝑘 is a positive penalty parameter, the exponent q is a nonnegative constant, 

and the bracket function (𝑔𝑗(𝑋)) is defined as in equation 3.10 

 (𝑔𝑗(𝑋)) = 𝑚𝑎𝑥(𝑔𝑗(𝑋), 0) 

= {
𝑔𝑗(𝑋)        𝑖𝑓 𝑔𝑗(𝑋) > 0(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑)

0                  𝑖𝑓 𝑔𝑗(𝑋) ≤ 0(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑)
 

(3.10) 
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Equation 3.9 shows that the effect of the second term on the right side is to increase 

φ(X, rk) in proportion to the q
th

 power of the amount by which the constraints are 

violated. Thus there will be a penalty for violating the constraints, and the amount of 

penalty will increase at a faster rate than will the amount of violation of a constraint 

for q >1. 

Gunaratne and Wu (2011) highlights the advantage of using a penalty function 

method that it is easy to implement, and does not require solving a nonlinear system 

of equations in every time step. However, the biggest drawback of these methods is 

related to the value of the penalty parameter. Jensen and Bard (2003) explain that this 

influence of penalty term is counterbalanced by f(x). Therefore, if the magnitude of 

the penalty term is small relative to the magnitude of f(x), minimization of φk may 

not result in feasible solutions. Moreover setting penalty term extremely large may 

lead to numerical ill-conditioning (Venter, 2010). However, if the value of the 

penalty term is made suitably large, the penalty term will exact such a heavy cost for 

any constraint violation that the minimization of the augmented objective function 

will yield a feasible solution (Jensen and Bard, 2003). 

Weise (2009) discusses that a penalty for infeasibility can be integrated into the 

objective functions for several ways including static and dynamic approaches. 

Similarly, Deb and Agrawal (1999) claim that “although many researchers use 

adaptive variation of penalty parameters and penalty functions, the general 

conclusion is that these variations are specific to a problem and cannot be 

generalized”. Therefore, contributions of the penalty terms are recommended to be 

adjusted relative to the magnitude of the objective function through design of 

experiment studies. 

3.2.3  Optimization Algorithms 

Deb (2012) describes an optimization algorithm as a procedure, which is executed 

iteratively by comparing various solutions until an optimum, or a satisfactory 

solution is found. The optimization algorithms require repetitive application of 

certain procedures therefore; they are executed through computers. The optimization 

field has advanced rapidly in the past few decades due to the development of 

computer power and as explained by Deb (2012), several new optimization methods, 
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computational techniques, and algorithms have been introduced to solve various 

problems that vary in nature.  

There are many classification systems of optimization algorithms available in the 

literature however, in this research; the algorithms will be broadly classified into two 

distinct types, local algorithms and global algorithms, as suggested by Venter (2010). 

3.2.3.1 Local optimization algorithms 

Gaspero (2003) explains that the local optimization techniques are based on the 

iterative exploration of a solution space where a single design point is updated from 

one iteration to the next by applying local changes. According to Venter (2010), 

many of the local optimization algorithms are gradient-based where algorithms make 

use of gradient information to find the optimum solution. Therefore, the gradient-

based approach requires a mathematical expression of the objective function. Some 

popular algorithms are mentioned below. 

For the one-dimensional search, some of the popular algorithms include the Golden 

Section search, the Fibonacci search, and many variations of polynomial 

approximations. 

One of the classical gradient-based optimization algorithms is Newton’s algorithm. 

Newton’s algorithm is an unconstrained algorithm that is derived from a second-

order Taylor series expansion of the objective function about an initial design point. 

For unconstrained problems, two very popular methods are the Fletcher-Reeves and 

the Broyden- Fletcher-Goldfarb-Shanno (BFGS) methods. The Fletcher-Reeves 

method makes use of conjugate search directions to reach the optimum. 

For constrained optimization problems, Sequential Unconstrained Minimization 

Techniques and direct (or constrained) methods are available. The direct methods 

directly solve the non-linear constrained optimization problem. Sequential Linear 

Programming algorithm, the Modified Method of Feasible Directions algorithm, and 

the Sequential Quadratic Programming algorithm are commonly encountered in 

engineering. 

Even though few in number, Venter (2010) also mentions that there are also non-

gradient based local search algorithms are available such as Powell’s algorithm, 
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Nelder-Mead simplex algorithm and Rosenbrock algorithm. They all are capable of 

solving non-linear, unconstrained optimization problems. 

Local optimization algorithms are suitable for optimization problems with large 

numbers of design variables and they assure finding good results in reasonable 

calculation times, however they are trapped in local optimum. 

3.2.3.2 Global optimization algorithms 

The objective of global optimization is to find the globally best solution in the 

possible or known presence of multiple local optima. Venter (2010) argues that 

global optimization algorithms provide a much better chance of finding the global or 

near global optimum than the local algorithms. However, no algorithm can guarantee 

convergence on a global optimum in the general sense.  

Global optimization algorithms are generally classified as either deterministic or 

stochastic algorithms. 

Yagan and Tham (2006) mention that in classical deterministic optimization, it is 

assumed that perfect information is available about the objective function and this 

information is used then to determine the search direction in a deterministic manner 

at every step of the algorithm.  However, such information may not be available for 

many design problems.  

Deterministic methods for global optimization include branch methods, Cutting 

plane methods, and Interval methods. One popular general-purpose deterministic 

global optimization algorithm is the DIRECT algorithm. The algorithm locates 

promising sub-regions in the design space and then further explores each sub-region 

by using a local search technique (Venter, 2010). 

Spall (2004) highlights that stochastic methods use randomness to be able to escape 

local optima, therefore the search for the optimal solution involves uncertainty due 

random nature of variables. The objective function is written as an expected value 

based on the random variables with probability distributions. A variety of 

computational methods then can be used to maximize or minimize the expected 

value. 

Stochastic algorithms are mostly random search algorithms that use a population set. 

Examples include simulated annealing, tabu search, genetic algorithms, evolutionary 
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programming, particle swarm optimization, ant colony optimization, cross-entropy, 

stochastic approximation, multi-start and clustering algorithms (Zabinsky, 2003). 

Population-based algorithms do not require any gradient information and they 

concern a population of solutions at a time. These methods are typically inspired by 

nature. 

Liberty (2008) explains that stochastic algorithms are suitable for problems that are 

highly nonlinear, high dimensional, or otherwise inappropriate for classical 

deterministic algorithms.  They are robust algorithms but they also require high 

computational time and power. 

To summarize, an optimization problem can be approached by a number of different 

ways and there is no single optimization algorithm exists to solve all optimization 

problems.  

All search methods have at least some limitations therefore, it is important to 

investigate and understand the nature of the problem first, and then select a suitable 

algorithm. 

3.3 Simulation-based Building Design Optimization  

Today buildings are becoming even more complex both in architectural and system 

design due to the constraints put on building performance by regulations. For 

instance, as explained by Attia (2013), the recast of the European Performance of 

Buildings Directive (EPBD) requires all new buildings to be “nearly zero energy” 

buildings (nZEB) by 2020, including existing buildings undergoing major 

renovations. The expectations from the building performance is increasing now and 

in order to achieve higher levels of building performance, there are more energy use-

reducing options and technologies now has to be taken into account.  

Making a design decision in general involves selection of the best or the most 

suitable design option among of all the feasible alternatives while satisfying multiple 

conflicting design objectives and constraints. In building design problem, due to the 

complex nature of building energy behaviour, numerous influential elements and 

conflicts in design aims such as economy, environmental performance and user 

comfort, it is a serious challenge to find the best design option and system 

configuration that satisfies all the expectations.   
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Building regulations, energy efficiency guidelines, and rule-of-thumb design 

methods has been used for conventional building design for years but they are now 

found to be inadequate addressing the requirements of highly energy-efficient 

building design.  

Dynamic building simulation has become a powerful tool nowadays to evaluate the 

overall building performance. With support of simulation tools designers can 

investigate many design alternatives and a better design is iteratively proposed based 

on the performance of previous designs. However, this iterative trial-and-error 

process that is carried out manually cannot efficiently guide the design process to an 

optimal solution especially for complicated designs. 

Simulation-based optimization techniques have been successfully applied to many 

real-world engineering design problems to support the complicated decision-making 

process (April et al., 2003; Ding et al., 2006; Fu et al., 2005). Moreover, due to its 

potential to automate the input and output, assess many options, and perform many 

simulations by mathematical means, it caught the attention of the building research 

community as well. In a building optimization study, the optimization process is 

usually occurs as the coupling between a building simulation program and an 

optimization ‘engine’ which may consists of one or several optimization algorithms 

or strategies as illustrated in Figure 3.2 by Nguyen et al. (2014). 

Objective functionsObjective functions Optimization settingsOptimization settings

Optimization 
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Optimization 
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Run simulationRun simulationOutput filesOutput files Input filesInput files
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BUILDING SIMULATION PROGRAM
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NO

OPTIMIZATION PROGRAM

CALL

Simulation output 

retrieval

 

Figure 3.2 : The generic coupling loop applied to simulation-based optimization 

in building performance studies. 
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Earliest study in the field is conducted in a PhD research by Wright (1986) about the 

design optimization of HVAC systems in 1986. He implemented direct search 

methods to building simulation. Since then many researchers investigated the nature 

of the building design optimization problem and have studied the potential and 

applicability of simulation-based building optimization methods and possible 

obstacles were discussed from different perspectives in several studies including 

Palonen  et al. (2001), Wright and Farmani (2001), Holst (2003), Wang et al (2005), 

Nassif et al. (2005), Caldas (2006), Fong et al. (2006), Hasan et al. (2008), Castro-

Lacouture et al. (2009), Wright and Mourshed (2009), Mossolly et al. (2009), Kämpf 

and Robinson (2010), Bambrook et al. (2011), Fesanghary et al., (2012), Rapone and 

Saro (2012), Evins et al. (2012), Eisenhower et al. (2012), Nguyen and Reiter (2013), 

Wright et al. (2013), Nguyen et al. (2014), Petri et al. (2014), Ramallo-González and 

A. P, Coley (2014).  

Nyungen et al. (2014) explored the trend of international optimization studies in the 

field of building science within the last two decades and he concluded that the 

interest on optimization techniques among building research has increased sharply 

since the year 2005 although the first efforts were found much earlier. 

3.3.1 Optimization variables, design objectives and design space 

Attia et al. (2013) reviewed 165 publications in building performance optimization 

field and found out that most frequently used variables are either energy related or 

economic related. According to their study, most common design variables includes 

building layout and form, geometry, position and density of fenestration, building 

envelope and fabric constructions, daylighting performance and automated control of 

solar shadings, natural ventilation strategies, shape and functional structure of 

buildings as well as heat source utilization, heating, ventilating, and air-conditioning 

(HVAC) systems sizing, HVAC system control parameters and/or strategy, thermal 

comfort, HVAC system configuration synthesis, managing of energy storage and 

automated model calibration. simultaneous optimization of building envelope and 

HVAC elements, simultaneous optimization of building construction, HVAC system 

size, and system supervisory control, simultaneous optimization of building 

construction, HVAC elements and energy supply system including renewable energy 

systems. 
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Evins et al. also contributed that, out of the 74 building performance optimization 

studies that they reviewed, the most frequently addressed category was building 

envelope in nearly 40% of works, followed by form, systems and renewables each 

accounted for around 20% of works, with controls and lighting occurring in very few 

cases. 

Nguyen et al. (2014) explains that in building design optimization, design variables 

with integer or discrete values could be used. Discrete variables generally make the 

optimization problem nonconvex and cause the simulation output to be disordered 

and discontinuous. Therefore, solving optimization problems with discrete variables 

could be more difficult. Moreover, even with optimization problems where all inputs 

are continuous parameters, the nature of the building simulation programs itself 

could generate discontinuities in the simulation output. 

In the literature, several optimization objectives were adopted in single or multi-

objective form. Machairas et al. (2014) and Evins et al. (2013) mention in their 

review studies that the most frequently addressed design objectives are building 

energy consumption, life cycle cost, initial and operating costs, CO2 emission, 

environmental impact, and user comfort. Moreover, Nguyen et al. claim that about 

60% of the building optimization studies used the single objective approach.  

Attia et al. (2013) discussed in their building performance optimization review that 

the size and complexity of the addressed solution spaces vary in a wide range since 

some studies in the literature used detailed building simulation tools while others 

used simplified ones. There are three common strategies adopted in order to reduce 

the simulation time:  using custom simplified thermal model instead of existed 

detailed software, using detailed simulation tools simulating geometrically simplified 

models: and finally, using detailed simulation tools for simulating a model only for a 

representative period. 

A survey carried out by Nguyen et al. (2014) tells that EnergyPlus and TRNSYS are 

the mostly-used dynamic building simulation programs in optimization studies. 

3.3.2 Search methods for building design optimization 

Various optimization algorithms are available to couple with building simulation 

tools. Each algorithm has its own benefits as well as limitations therefore selection of 
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optimization algorithm directly depends on the nature of the optimization problem in 

consideration. 

As explained previously, in simulation-based building optimization, the objective 

function is estimated using building simulation and since simulation tools make 

approximation of reality, it causes objective function to be non-linear, non-smooth 

and discontinuous for some parameters. As highlighted by Attia (2013) the 

deterministic algorithms need the evaluation functions to have particular 

mathematical properties like the continuity and the derivability consequently, 

methods might fail to contribute reliable results while handling discontinuous 

building and HVAC problems with highly constrained characteristics and multi-

objective functions. Alternatively, gradient-free methods are based on stochastic 

approaches are more suitable to building applications since they allow exploration of 

the whole search space, eventually focusing on regions of interest only, and finally 

converging towards a near-optimal solution. With methods of this type, no 

hypothesis about the regularity of objective functions is necessary. This makes them 

easier to couple to building assessment tools. Therefore, as mentioned by Nguyen et 

al. (2014), stochastic population-based algorithms are the most frequently used 

methods in building performance optimization. 

The performance of several optimization algorithms were tested and analysed in 

some studies. Wetter and Wright (2004) compared the performance of nine 

optimization algorithms using numerical experiments. Their study dealt with four 

main optimization classes: direct search algorithms (the coordinate search, the 

Hooke–Jeeves, and two versions of the Nelder–Mead simplex algorithm), stochastic 

population-based algorithms (a simple genetic algorithm (GA) and two particle 

swarm optimization (PSO) algorithms), a hybrid particle swarm Hooke–Jeeves 

algorithm and a gradient-based algorithm (the discrete Armijo gradient algorithm). 

The analyses are carried out through a simple and a complex simulation model. 

Direct search methods do not require any information on the derivatives of the 

objective function. A General Pattern Search (GPS) algorithm defines some point 

around the current point and aims at the point with an objective function more 

desirable than the current point’s and searches along each coordinate direction for a 

decrease in objective function.  
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The Hooke–Jeeves algorithm has the same convergence properties on smooth cost 

functions as the coordinate search algorithm. However, it makes progressively bigger 

steps in the direction that has reduced the cost in previous iterations. 

Stochastic population-based algorithms studied in the work belong to the family of 

evolutionary algorithms.  

Genetic algorithm (GA) is a population-based algorithm that mimics the process of 

natural evolution. It generates solutions to optimization problems using techniques 

inspired by natural evolution, such as inheritance, mutation, selection, and crossover. 

PSO algorithm was proposed first by Eberhart and Kennedy (1995). Individuals are 

here called particles, and they move round in the search-space according to simple 

mathematical formula over the particle's position and velocity. The change of each 

particle from one iteration to the next is modeled based on the social behaviour of 

flocks of birds or schools of fish.  

The hybrid global optimization algorithm does a PSO on a mesh for the first 

iterations. Afterwards, it starts the Hooke–Jeeves algorithm. 

The Nelder Mead simplex algorithm attempts to minimize a scalar-valued nonlinear 

function of n real variables using only function values, without any derivative 

information. 

Armijo is a line search method, which can be used to minimize smooth functions. It 

approximates gradients by finite differences, with the difference increment reduced 

as the optimization progresses.  

The analysis by Wetter and Wright (2004) showed that the gradient-based Armijo 

method failed far from the optimal solution even for the simpler problem. Similarly, 

the Nelder–Mead algorithm did not perform well on the test problems as well. It 

required a high number of simulations, and in one test case, it failed far from the 

minimum. Neither of the algorithms is recommended for building performance 

optimization problems. 

Moreover, according to results the coordinate search algorithm tends to fail far from 

the minimum if the detailed simulation model is used. On the same problems, the 

Hooke–Jeeves algorithm also jammed less frequently compared to the coordinate 

search algorithm, which may be due to the larger steps that are taken in the global 

exploration. 
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Both GA and PSO algorithms performed well, where the simple GA got close to a 

solution with a low number of simulations. However, the biggest cost reduction was 

obtained with the hybrid PSO-Hooke Jeeves algorithm but it required a greater 

number of simulations. 

Similarly, Kämpf  et al. (2010) analysed the performance of two hybrid algorithms 

that are Particle swarm optimization coupled with Hooke Jeeves (PSO-HJ) and 

covariance matrix adaptation evolution strategy coupled with hybrid differential 

evolution  algorithms (CMAES/HDE) in optimizing 5 standard benchmark functions 

through EnergyPlus simulation tool. The results showed that CMAES/HDE 

performed better than the PSO-HJ in solving the benchmark functions with 10 

dimensions or less. However, if the number of dimensions is larger than 10, the PSO-

HJ performed better.  

Moreover Brownlee et al. (2011) investigated the performance of five multi- 

objective algorithms, namely IBEA, MOCell, NSGA-II, SPEA2 and PAES on a 

multi-objective problem concerning window placement. The results showed that 

NSGA-II showed the best performance among all.  

3.3.2.1 Building performance optimization tools 

There are several computer tools are available to solve an optimization problem once 

it has been properly formulated. Numerous decent algorithms are implemented in 

these programs to deal with different kind of optimization issues. 

Some tools include optimization algorithm libraries that can search for best design 

option for general optimization problems.  

Nyungen et al. (2014), Machairas et al. (2014) and Attia et al. (2013) explored the 

stand-alone optimization tools used in building optimization studies and the most 

frequently mentioned tools are found to be GenOpt, Matlab Optimization Toolbox, 

and modeFrontier. Some less frequent tools are named as GENE_ARCH, Dakota, 

jEPlus, Topgui and Toplight.  Moreover Nguyen et al. (2014) mentioned a new free 

tool, MOBO, as showing promising capabilities to become the major optimization 

engine in coming years. 

In this study, only the tools that caught the most of the attention of research 

community will be introduced shortly. 
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GenOpt® 

GenOpt is a generic optimization program developed at Lawrence Berkeley National 

Laboratory that has implemented a number of optimization algorithms (GenOpt, 

2012). It is a stand-alone program that is designed to be coupled with any simulation 

program that reads from and writes to text files. GenOpt is designed to work with 

programs where the derivative of the cost function is not available or may not even 

exist. GenOpt can handle single-objective optimization with continuous and discrete 

variables and some constraints.  

The algorithms that are available in GenOpt’s library are: Coordinate Search 

Algorithm, Hooke-Jeeves Algorithm, Multi-Start GPS Algorithms, Discrete Armijo 

Gradient, Particle Swarm Optimization, Hybrid Generalized Pattern Search 

Algorithm with Particle Swarm Optimization Algorithm, Simplex Algorithm of 

Nelder and Mead with the Extension of O’Neill, Interval Division Algorithms, and 

Algorithms for Parametric Runs. 

Since one of GenOpt’s main application fields is building energy use or operation 

cost optimization, GenOpt has been designed such that it addresses the special 

properties of optimization problems in this area. 

GenOpt has been used in several building optimization studies including  Wetter and 

Wright (2004), Djuric et al. (2007), Coffey  (2008), Hasan et al. (2008), Magnier et 

al. (2009), Kämpf et al. (2010), Coffey et al. (2010), Seo et al. (2011), 

Boonbumroong et al. (2011), Stephan et al. (2011), Asadi et al. (2012),  Rapone and 

Saro (2012), Bigot et al. (2013),  Ali et al. (2013), Cvetković and Bojić (2014), 

Ferrara (2014), Joe et al. (2014). 

MATLAB® Optimization Toolbox 

Optimization Toolbox™ extends the MATLAB® technical computing environment 

with tools and widely used algorithms for standard and large-scale optimization. 

These algorithms solve constrained and unconstrained continuous and discrete 

problems. The toolbox includes functions for linear programming, quadratic 

programming, nonlinear optimization, nonlinear least squares, solving systems of 

nonlinear equations, multi-objective optimization, and binary integer programming 

Moreover, MATLAB Global Optimization Toolbox includes global search, 

multistart,  pattern search, genetic algorithm, and simulated annealing solvers 

(Matlab, 2012a).  
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MATLAB optimization environment has been used in a variety of studies including 

Shea et al. (2006), Jacob et al. (2010), Hamdy et al. (2011), Asadi et al. (2012), 

Trubiano et al. (2013), Asadi et al. (2014), Murray et al. (2014). 

modeFRONTIER® 

modeFRONTIER is an integration platform for multi-objective and multi-

disciplinary optimization. It provides a seamless coupling with third party 

engineering tools, enables the automation of the design simulation process, and 

facilitates analytic decision making. modeFRONTIER  has a rich optimization 

algorithm library covering deterministic, stochastic and heuristic methods for both 

single and multi-objective problems including Levenberg-Marquart, Broyden–

Fletcher–Goldfarb–Shanno, Sequential quadratic programming, Multi-objective 

Genetic Algorithm (MOGA-II),Adaptive range Multi-objective Genetic Algorithm 

(ARMOGA), Fast Multi-objective Genetic Algorithm (FMOGA-II), Non-dominated 

Sorting Genetic Algorithm (NSGA-II), Multi-objective Particle Swarm Optimization  

and Multi-objective Simulated Annealing (Esteco, 2014). 

MATLAB optimization environment has been used in a variety of studies including 

Suga et al. (2010), Hoes et al. (2011), Shi (2011), Loonen  et al. (2011), Padovan and 

Manzan (2014), Manzan (2014), Baglivo et al. (2014). 

3.3.3 Research gap 

The literature review carried out within the scope of this work reveals that building 

performance optimization studies centres around two main aims: to develop  

mathematical search techniques and optimization algorithms that can effectively 

address building design optimization problem, and to develop approaches that can 

more efficiently formulate the building optimization problem. 

Some of the studies regarding the development of advanced search techniques are 

briefly mentioned below. 

Wright and Zhang (2005) introduced a new evolutionary algorithm operator (an 

ageing operator) that prevents topology dominance by penalizing solutions that have 

a dominant topology through a synthesis of HVAC system configurations. 

Hamdy et al. (2009), aimed to evaluate how combinations of optimization algorithms 

can achieve faster and/or better solutions for multi-objective optimization problems.  
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Kamps and Robinson (2009) developed a hybrid of the covariance matrix adaptation 

evolution strategy (CMAES) and hybrid differential evolution (HDE) algorithms 

coupled with an efficient backwards ray tracing technique. They concentrated on the 

formulation of the new hybrid algorithm and its testing using standard benchmarks as 

well as a solar optimization problem. 

Evins et al. (2010) investigated the configuration of a Genetic Algorithm for 

optimization of solar gain, in terms of various seeding, selection and fitness options 

as well as different parameter values. 

Caldas and Norford (2012) used the concepts of generative and goal-oriented design 

to propose a computer tool that can help the designer to generate and evaluate certain 

aspects of a solution towards an optimized behaviour of the final configuration by 

adopting a micro-GA procedure. 

Eisenhower et al. (2012) developed an approach to perform optimization of building 

energy models using a meta-model generated from sample design and operation 

scenarios of the building around its baseline. 

Tresidder et al. (2012) used Kriging surrogate modelling optimization techniques on 

a building design problem with discrete design choices through comprehensive 

analysis using a multi-processor computer. 

In addition to efforts aimed at improving search techniques, there are also several 

studies concerning definition and mathematical formulation of building design 

optimization problem. As introduced in the previous sections, building performance 

optimization is a multi-parametric and multi-dimensional problem with constraints 

and discontinuities. Wide range of parameters are available as independent variables 

from different perspectives such as building architectural design elements (e.g. 

building envelope constructions, building form, orientation, aspect ratio), HVAC 

system elements (e.g. system type, equipment type, efficiency, and operation 

characteristics), and energy generation (e.g. system type, equipment type, efficiency, 

and operation characteristics). Moreover, as far as objective functions are concerned, 

most of the time they are energy consumption, energy cost, capital cost, lifecycle 

cost environmental impact and the occupant’s comfort in single or multi-objective 

form. Therefore, the studies in building performance optimization field vary in a 
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wide range from single-objective problems with involvement of fewer variables to 

multi-objective holistic approaches as briefly summarized below. 

Application of optimization techniques for building architectural design has received 

a notable attention in the research community.  

Al-Homoud (2005) presented an optimization model that utilizes a direct search 

optimization technique incorporated with an hourly building energy simulation 

program for the optimum thermal design of building envelopes for minimum annual 

source energy use. Design variables of the study included siting, building shape, 

glazing, wall and roof construction, massing, infiltration, and operational parameters 

(lighting, equipment and occupancy load). 

Wang et al. (2005) presented a multi-objective optimization model that could assist 

designers in green building design based on genetic algorithm. Life cycle analysis 

methodology is employed to evaluate design alternatives for both economic and 

environmental criteria. Life cycle environmental impacts are evaluated in terms of 

expanded cumulative exergy consumption. Variables in the model included building 

orientation, aspect ratio, window type, window-to-wall ratio, wall layer, roof type, 

and roof layer. 

Znouda et al. (2007) presented an optimization method that coupled genetic 

algorithms, with a simplified tool for building thermal evaluation (CHEOPS) for 

minimizing the energy consumption of Mediterranean buildings.  The aim of the 

optimization was to identify the best envelope configurations from both energetic 

and economic points of view. Dimensions of the building envelope and its shape, 

types of roofing and walls and solar protection represented by solar factors were 

investigated as design variables. 

Yi and Malkawi (2009) developed a new method for performance-based form-

making. The research proposed a new representation for building geometry, 

controlled by introducing hierarchical relationships between points (nodes) to allow 

the user to explore the building geometry without being restricted to a box or simple 

form. The Genetic Algorithm was used as the technique for optimization. The 

objective function for the evaluation included targets surface heat flow, heat gain, 

heat loss, and volume. 
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Tuhus-Dubrow and Krarti (2010) developed a simulation–optimization tool based on 

genetic algorithm to optimize building shape (including rectangle, L, T, cross, U, H, 

and trapezoid) and building envelope features (including wall and roof constructions, 

foundation types, insulation levels, and window types and areas) in order to 

minimize energy use for residential buildings.  

Gagne and Anderson (2010) developed a genetic algorithm based methodology for 

determining the set of facade parameters (window-to-wall ratio, glazing 

transmissivity, overhang depth, among others) that, for a given massing model, 

maximizes the space's illuminance within a specified range, while minimizing the 

space's glare potential. Their approach used the Lightsolve Viewer coupled with an 

approximation of the Daylighting Glare Probability. 

Fesanghary et al. (2012) developed a multi-objective optimization model based on 

harmony search algorithm to minimize the life cycle cost (LCC) and carbon dioxide 

equivalent (CO2-eq) emissions of the buildings by varying building constructions 

including wall, roof, ceiling and floor construction materials as well as glazing type. 

Jin and Jeong (2014) proposed a free-form building shape optimization process based 

on the genetic algorithm. Geometric modeling of a model free-form building was 

performed using a parametric design method with Rhinoceros. Their study showed 

that the proposed process could rapidly predict and optimize the variation of the heat 

gain and loss characteristics that was caused by changing the building shape. 

Furthermore, application of optimization techniques to design and control of HVAC 

systems has been addressed in several studies.  

Wright et al. (2002) investigated the application of a multi-objective genetic 

algorithm (MOGA) search method in the identification of the optimum pay-off 

characteristic between the energy cost of a building and the occupant thermal 

discomfort through the design of a single zone “all outside air” HVAC system. The 

problem variables were formed from the control system set points and the size of the 

HVAC components, which was represented by the width, height, number of rows, 

and number of water circuits of each coil and the supply fan diameter. The maximum 

water flow rate to each coil was also a problem variable.  

Lu et al. (2004) proposed a model-based optimization strategy for the condenser 

water loop of centralized heating, ventilation and air conditioning (HVAC) systems. 
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The objective of the work was to minimize the total energy consumption of the 

condenser water loop. Based on the mathematical models of related components, the 

operating characteristics of cooling towers, the effects of different ambient 

environment and the interactions between chillers and cooling towers, the energy 

efficiency of the condenser water loop was maximized by both variable water flow 

rate and air flow rate. A modified genetic algorithm was used to search for optimal 

values of the independent variables.  

Nassif et al. (2005) also used multi-criteria GAs to explore optimal control strategies 

for HVAC systems for the objective functions of energy cost and thermal comfort.  

Fong et al. (2006) proposed a simulation-optimization approach for the effective 

energy management of HVAC system where it is necessary to suggest optimum 

settings for different operations in response to the dynamic cooling loads and 

changing weather conditions throughout a year. A metaheuristic simulation–EP 

(evolutionary programming) coupling approach was developed using evolutionary 

programming for minimizing energy consumption. The problem parameters to be 

optimized included chilled water supply temperature of chiller and supply air 

temperature of Air Handling Unit. 

Fong et al. (2009) introduced a robust evolutionary algorithm (REA) to tackle this 

nature of the HVAC simulation models. REA is based on one of the paradigms of 

evolutionary algorithm, evolution strategy, which is a stochastic population-based 

searching technique emphasized on mutation. The REA, which incorporates the 

Cauchy deterministic mutation, tournament selection and arithmetic recombination, 

would provide a synergetic effect for optimal search. By using REA for optimization, 

a monthly reset scheme of both chilled water supply temperature and supply air 

temperature of a centralized HVAC system was recommended. T The objective was 

to minimize the monthly energy consumption with both the optimal or an installed 

centralized heating, ventilating and air conditioning (HVAC) system, appropriate 

energy management measures would achieve energy conservation targets through the 

optimal control and operation. 

Kusiak et. al. (2011a) presented a data-driven approach for the optimization of a 

heating, ventilation, and air conditioning (HVAC) system in an office building. A 

neural network (NN) algorithm was used to build a predictive model. The NN-
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derived predictive model is then optimized with a strength multi-objective particle-

swarm optimization (S-MOPSO) algorithm. The relationship between energy 

consumption and thermal comfort measured with temperature and humidity was 

discussed. The control settings derived from optimization of the model minimize 

energy consumption while maintaining thermal comfort at an acceptable level. 

Parameters including air handling unit supply air temperature set point and supply air 

duct static pressure set point were taken as design variables. The solutions derived by 

the S-MOPSO algorithm pointed to a large number of control alternatives for an 

HVAC system, representing a range of trade-offs between thermal comfort and 

energy consumption. 

Kusiak et al. (2011b) presented a data-mining approach for the optimization of a 

HVAC (heating, ventilation, and air conditioning) system. A predictive model of the 

HVAC system is derived by data-mining algorithms, using a dataset collected from 

an experiment conducted at a research facility. To minimize the energy while 

maintaining the corresponding indoor air quality within a user-defined range, a 

multi-objective optimization model is developed. The solutions of this model are set 

points of the control system derived with an evolutionary computation algorithm.  

Kusiak and Xu (2012) proposed an optimization model derived by a dynamic neural 

network based on the concept of a non-linear autoregressive with external input. The 

energy consumption of a heating, ventilating and air conditioning (HVAC) system is 

optimized by using a data-driven approach while maintaining indoor room 

temperature at an acceptable level. The model is solved with three variants of the 

multi-objective particle swarm optimization algorithm. 

Vakiloroaya et al. (2014) developed an optimization methodology to explore the 

influence of the thermo-economical design optimization of the finned-tube condenser 

coil on system cost and energy consumption in an existing direct expansion rooftop 

package air conditioning system. Using this method, the frontal area of the condenser 

coil is maintained as constant, while other geometrical parameters of the thermal and 

economic performance of the system are varied and investigated.  A mixed heuristic–

deterministic optimization algorithm was implemented to determine the synthesis 

and design variables that influence the cost and energy efficiency of each 

configuration.  
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In addition to the optimization studies regarding building and HVAC system 

elements, renewable energy generation and building integration was studied in 

several research work as well. 

Optimization of sizes, components and control strategies of stand-alone renewable 

energy systems such as PV and/or Wind and/or Diesel systems has been investigated 

in the works of Borowy and Salameh (1995), Ashari and Nayar (1996), Chedid and 

Saliba (1996), Kaiser et al. (1997), Morgan et al (1997), Dufo-Lopez and Bernal-

Agustin (2005), and Koutroulis et al (2006). Typically, the optimum design is carried 

out minimizing the Net Present Cost or by minimizing total cost of the entire hybrid 

system divided by the energy supplied by the hybrid system.  

Smilarly, Boonbumroong et al. (2011) presented a technique on how to optimize the 

configuration of a typical AC-coupling stand-alone hybrid power system with 

particle swarm optimization. The minimization of the objective function was 

evaluated using TRNSYS 16 in assistance with GenOpt optimization program. 

While most of current research concentrates on stand-alone renewable system, there 

appears to be a few studies on grid-connected renewables including feasibility 

analysis of integrating PV systems into the grid or the optimization of PV panel 

design for its long-term operation (Ashraf et al, 2004; Celik, 2006; Liu et al, 2012). 

Efficiency of building integrated renewable systems is directly related to the dynamic 

performance of the buildings they serve to.  In addition to optimization studies about 

stand-alone or grid connected renewable systems there has been some attempts to 

evaluate renewable system performance together with buildings they are integrated.  

Charron and Athienitis (2006) conducted a theoretical investigation in order to 

optimize performance of double façades with integrated photovoltaics and motorized 

blinds. Key parameters affecting the overall performance of building-integrated 

photovoltaic thermal (BIPV/T) double façades have been investigated.  

Zogou and Stapountzis (2011a) investigated the transient thermal behaviour of the 

basic structural module of a double-skin photovoltaic façade in real insolation 

conditions. The results are employed in the validation and further improvement of 

integration of a BIPV concept to the HVAC system of a building. 

Moreover, they examined an improved concept of incorporating PV modules to the 

south façades of an office building, exploiting both the electricity produced and the 
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heat rejected by the module, to increase building energy efficiency (Zogou and 

Stapountzis, 2011b). 

Talebizadeh et al. (2011) proposed a Genetic Algorithm based approach to calculate 

the optimum slope and surface azimuth angles for solar collectors to receive 

maximum solar radiation. The optimum angles and the collector input solar energies 

for these angles are calculated in hourly, daily, monthly, seasonally and yearly bases 

respectively.  

Bornatico et al.  (2012) presented a methodology for finding the optimal size of the 

main components for a solar thermal system where particular attention is given to the 

optimization framework. The use of the PSO algorithm is proposed. They used a 

weighted-sum approach to combine the objectives of solar fraction (maximized), 

with energy use and construction cost (minimized). The variables of the study 

included collector area, tank volume and auxiliary power unit size. 

Griego et al. (2012) aimed to evaluate various combinations of energy efficiency and 

thermal comfort measures to arrive at an optimum set of recommendations for 

existing residential and new construction residential buildings. The two renewable 

energy technologies including solar domestic hot water systems and photovoltaic 

systems evaluated in the study. The optimum point is the minimum annualized 

energy related costs and the corresponding annual source energy savings. 

A simultaneous optimization of building architectural elements, HVAC system 

design and control and building integrated energy generation would be the most 

desirable target. However, the problem arises in dealing simultaneously with these 

potentially conflicting objectives and numerous design variables. There are some 

studies aimed at developing holistic approaches to combine some of these aspects. 

Wright and Farmani (2001) studied the simultaneous optimization of building’s 

fabric construction, the size of heating, ventilating and air conditioning system, and 

the HVAC system supervisory control strategy with respect to the operating energy 

cost of the HVAC system. The optimization problem has been solved using a 

Genetic Algorithm search method through design day calculations. The design 

variables included ONN/OFF status of the HVAC system, coil width and height, 

number of rows and water circuits, water flow rate, fan size, building weight, glazing 

type, glazing area.   
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Wright et. al. (2002) investigated the application of a multi-criterion genetic 

algorithm in the search for a non-dominated (Pareto) set of solutions to pay-off 

between energy cost and occupant discomfort. Optimization variables included 

HVAC system size (coil and supply fan sizes) and control strategy (supply air 

temperature and flow rate setpoints for each hour of the day).  

Bichiou and Krarti (2011) developed an energy simulation environment to optimally 

select HVAC system type and its operation settings but together with building 

envelope features to minimize the life cycle cost of operating a residential building. 

A wide range of HVAC system types was considered in the study to meet heating 

and cooling requirements for single-family residential buildings. The considered 

design variables were: building orientation, building aspect ratio and shape 

(rectangle, L, T, cross, trapezoid), foundation insulation, wall insulation, roof 

insulation, infiltration, window type, window-to-wall ratio, thermal mass, overhang 

dimensions, heating and cooling set points, heating efficiency and HVAC system 

type. Three optimization algorithms were considered in the simulation environment 

including Genetic Algorithm, the Particle Swarm Algorithm and the Sequential 

Search algorithm. Different HVAC system types are investigated separately and prior 

to comparisons. 

Chantrelle et al. (2011) aimed to develop a multicriteria tool, MultiOpt, for the 

optimization of renovation operations, with an emphasis on building envelopes, 

heating and cooling loads and control strategies. MultiOpt is based on existing 

assessment software and methods: it uses a genetic algorithm (NSGA-II) coupled to 

TRNSYS, and economic and environmental databases. The design variables included 

external wall type, roof type, ground floor type, intermediate floor type, partition 

wall type and window type, shade control, namely the threshold value for the 

illumination of the facade and the dead band associated with the on–off controller. 

He objective of the optimization was to minimize the values of four criteria: 

environmental impact, cost, energy consumption and thermal discomfort. 

Hamdy et. al. (2011) evaluated the impact of the Finnish national adaptive thermal-

comfort criteria on energy performance in an office building. Two fully mechanically 

air-conditioned single offices are taken as representative zones. A simulation based 

optimization scheme (a combination of IDA-ICE 4.0 and a multi-objective genetic-

algorithm from MATLAB-2008a) was employed to determine the minimum primary 
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energy use and the minimum room cooling-equipment size required for different 

thermal comfort levels. The applicability of implementing energy-saving measures 

such as night ventilation, night set-back temperature, day lighting as well as optimal 

building envelope and optimal HVAC settings were addressed by investigating 

design variables including supply air temperature profile, night ventilation control 

strategy, maximum power of the cooling beam, radiator set-point and night set-back 

temperature, window U-value, internal shading darkness. 

Evins et al. (2012) optimized the cost and energy use of a modular building for 

different climate types. The variables included constructions (U-values, shading), 

HVAC and renewables (PV, solar thermal). The objectives were carbon emissions 

and construction cost, and the optimization was performed using a multi-objective 

genetic algorithm. Shading was optimized using a local search, which was embedded 

in the Genetic Algorithm used for all other variables. The heating and cooling 

systems were modelled in the thermal simulation as ideal loads systems. The 

different system choices were then applied using the efficiencies and carbon factors. 

Energy available from solar hot water and PV systems was modelled based on the 

available incident solar radiation on an angled surface present in the model. 

Ihm and Krarti (2012) applied a sequential search technique to optimize the design of 

residential buildings in Tunisia in order to minimize their life cycle energy costs 

while maximizing energy efficiency and thermal comfort. In the analysis, design 

features including orientation, window location and size, glazing type, wall and roof 

insulation levels, infiltration levels, lighting fixtures, appliances, and efficiencies of 

heating and cooling systems are investigated as pre-defined energy efficiency 

measures. 

Asadi et al. (2012) proposed a simulation-based multi-objective optimization 

scheme, a combination of TRNSYS, GenOpt and a Tchebycheff optimization 

technique, developed in MATLAB to optimize the retrofit cost, energy savings and 

thermal comfort of a residential building. A wide decision space is considered, 

including alternative materials for the external walls insulation, roof insulation, 

different window types, and solar collector types. 

Fesanghary et al. (2012) aimed to develop a multi-objective optimization model 

based on harmony search algorithm to find an optimal building envelope design that 
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minimizes the life cycle costs and carbon dioxide equivalent (CO2-eq) emissions of 

the buildings. Several building envelope parameters including wall, roof, ceiling and 

floor construction materials as well as glazing type are taken as the design variables.  

All phases of the life of a building including pre-use, use and end-of-life was 

considered in the study. A series of Pareto optimal solutions was identified, which 

can help designers to get a better understanding of the trade-off relation between the 

economic and environmental performances. 

Rapone and Saro (2012) studied a typical curtain wall facade of an office in order to 

find the configuration of parameters including type of glass installed, percentage of 

glazed surface, depth of the louvers and spacing of the louvers that minimizes the 

total carbon emissions arising from building operation. A real HVAC system is not 

modeled instead, an overall annual efficiency of the heating system and a coefficient 

of performance of the cooling system were assumed to convert the building loads to 

consumption values. A PSO algorithm coupled to EnergyPlus dynamic energy 

simulation engine.  

To conclude, the literature review showed that building performance optimization 

has received a great deal of attention in building research community and there is 

certain amount of work has been done on a variety of issues. Some of the research 

efforts mainly focused on developing efficient search techniques and algorithms 

suitable for the building design optimization problem while majority of the studies 

concentrated on problem formulation.  

Most of the problem formulation approaches focused mainly on optimal design of 

building architectural design characteristics (construction/envelope parameters). 

Moreover, HVAC system design and efficient operation of individual devices 

through optimization has been investigated, too. There are also some studies 

proposed to address renewable system and component design with application of 

optimization. However, holistic approaches that aim to combine building 

architectural features, HVAC system features and renewable generation features 

simultaneously while taking into account various dimensions of building 

performance are in limited number.  

In previous studies when a high number of design variables regarding building 

architectural design elements are addressed, usually predefined and simplified 
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HVAC and/or renewable energy generation models were used for investigating the 

system side. Therefore, the optimal capacities of the HVAC system equipment were 

explored at only on-reference conditions neglecting the equipment dynamic 

performance. Similarly, when dynamic system models were integrated, only 

supervisory control of an entire system, optimal set-point configurations, and the 

optimal start time were mainly explored. Moreover, balancing HVAC and renewable 

system options were not deeply investigated and integrated into the optimization 

models. 

Moreover, in many of the studies, design variables are defined in a continuously 

varying range because of the difficulty for numerical optimization methods to deal 

with discrete variables. However, this may result in a mismatch between the 

optimization recommendations and actual products and optimization results may lead 

to unfeasible solutions by market standards. Even some studies addressed building 

envelope options as limited discrete parameters still no work provided an approach 

that can deal with fully dynamic HVAC and renewable operation conditions.  

Furthermore, the environmental issues, such as CO2 emissions and the interaction of 

building with electricity grid have not been taken into account in most studies. 

In addition to design variable definition, majority of the studies focused on two 

objectives either in weight-sum single objective or in multi-objective forms. For 

instance, carbon dioxide equivalent emissions and investment cost, carbon dioxide 

equivalent emissions and life cycle cost, energy demand and thermal comfort are 

sought together. In few cases, some studies proposed three objectives such as energy 

demand, carbon dioxide equivalent emissions, investment cost, or energy demand, 

thermal comfort and investment cost are examined together.  

In order to address the above mentioned limitations and to contribute to the building 

design optimization field, a simulation based optimization method that can 

quantitatively and simultaneously assess combinations of building architectural 

design elements together with actual technology choices from building envelope, 

HVAC system equipment and renewable energy generation systems is aimed to be 

developed.  
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3.4 Summary 

Efficient building design requires is a multi-disciplinary integrated design approach 

starting from the early design phases. Optimization of building performance through 

coupling computerized building simulations tools with optimization algorithms 

provides a promising approach to the practice of high performance building design.  

The literature review revealed that there is an ever-increasing interest on building 

design optimization studies. The application of optimization techniques for the 

design of the building characteristics, design of building HVAC systems, design of 

building integrated renewable systems, and design of control strategy setting were 

investigated in several research studies. 

As mentioned earlier, today many optimization methods are available. However, 

when coupled with building simulation tools; a fast, effective and consistent 

algorithm would be preferred. Gradient-based algorithms are limited to differentiable 

functions, can converge to local optimum and consequently, display several 

weaknesses when coupled with simulation tools. On the other hand, gradient-free 

algorithms such as GA and PSO have proven to be efficient in terms of building 

optimization, and are more suitable. 

Many design objectives such as life cycle costs, energy consumption, greenhouse gas 

emissions, indoor air quality, and occupant comfort were aimed to be improved via 

aggregated single-objective or multi-objective approaches. Studies showed that 

adding objectives also adds complexity to the design optimization problem. 

In the literature, a certain amount of work has been done on optimizing building 

architectural design characteristics. Moreover, HVAC system design and operation 

through optimization has been deeply investigated, too. Best combinations of 

building envelope and HVAC system features were explored in a few studies. There 

are studies available that aim to address renewable system and component design 

with application of optimization.  

Although the body of literature on building simulation-optimization is extensive, 

very limited studies have been attempted to include the various dimensions of 

building performance in one single approach. There is still a strong need for an 

integrated optimization of building design, HVAC systems, building integrated 

renewable systems design simultaneously and dynamically. 
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4.  THE METHODOLOGY 

4.1 Introduction 

There is a growing interest in high energy performance building design, as it is now 

accepted as an encouraging solution to deal with the increasing pressure placed on 

environment by building sector.  Advances in building science and technology have 

introduced many approaches and options today that can help improving building 

performance; however, designing buildings for energy efficiency is still not 

straightforward. Although buildings have commonalities, they are also unique in the 

sense that they are built to satisfy different needs in different locations for different 

purposes. As discussed previously in Chapter II, many studies suggest that energy 

performance of buildings is a multi-dimensional issue and depends on several factors 

that are related to building architectural characteristics, indoor conditions, building 

systems, building integrated renewable systems and site and climate conditions. 

Moreover, combined impact of these elements determines the building overall 

performance. A good balance of several design objectives is required to be 

established through adjusting all the influential building design elements. 

In addition to energy efficiency, decision-makers also need to carefully assess 

economic viability of the energy efficiency measures, and the resulting 

environmental and comfort performances as well. For instance, the recast of the 

European Energy Performance of Buildings Directive (2010/31/EU) proposes to 

define the energy performance of buildings “with a view to achieving cost-optimal 

levels”. Similarly, the directive also targets for all new buildings in the EU to be 

‘Nearly Zero-Energy Buildings’ from year 2020. The cost-optimality and nearly 

zero-energy perspectives links building performance requirements to energy, 

environmental and financial targets therefore, it could be rather difficult for designers 

to select what design strategies to adopt and which technologies to implement among 

many, while satisfying several equally valued and beneficial objectives driven by 

individual building needs.  
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Today, conventional building design practices where team members with different 

specialties consecutively realize different project goals independent of each other are 

not capable of addressing the requirements of high energy performance buildings. In 

conventional approaches, for instance, architect initially works on building 

architectural design characteristics mainly focusing on building form, massing, 

orientation, general exterior appearance and envelope.  Once the main decisions are 

made and the concept is complete, the mechanical engineers, lighting designers and 

renewable energy specialist are invited to design appropriate systems for the building 

in consideration and to select suitable equipment. Building architectural and 

envelope design have significant impacts on building energy, lighting, and comfort 

performance since building loads are directly affected by the overall thermal 

performance of the building structure. Therefore, even using the state-of-the-art 

energy technologies at this stage can only have limited impact on the overall 

efficiency because the passive solar potential of the building is not well explored and 

integrated with the rest of the building systems. Compensating for an inefficient 

design later with mechanical systems can be quite costly. Similarly, contributions 

from renewable systems can be diminished due to late integration and poor planning. 

The overall energy efficiency depends on the appropriate combination of different 

design options therefore if the building and system integration is not well considered, 

the opportunity to design a true high energy performance building can be missed. 

Aitken (1998) defines the whole-building concept as “a method of siting, design, 

equipment and material selection, financing, construction, and long term operation 

that takes into account the complex nature of buildings and user requirements, and 

treats the overall building as an integrated system of interacting components” (p.3). 

Moreover, he emphasize that ”a whole building approach requires participation by all 

stakeholders in the design and building process, including material and equipment 

manufacturers; designers, builders and developers; building trades and code officials; 

and end users”(p.3). The definition of whole-building concept reveals that 

interactions between building and sub-systems are required to be well captured in an 

integrative manner starting with the early stages for high energy performance 

building design. Today, new building design methods, which can simultaneously 

take into account building and system integration, address several influential design 
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parameters and provide quantitative inside information about the building 

performance, are highly required to achieve high performance building targets. 

As presented in Chapter III, the application of simulation-based optimization 

methods in building design field started to draw attention of researchers especially in 

the last decade in order to support the development of cost-effective, 

environmentally friendly, highly energy-efficient buildings by bridging the gap 

between the steps of whole building design process. During a simulation-

optimization process, a simulation model of a building design scenario and an 

optimization solver interact dynamically to explore a search space until an optimal 

solution based on an objective function and established constraints is obtained. 

There is certain amount of work has been done through optimization applications on 

a variety of building design issues. Some of the research efforts in the literature 

mainly focused on developing efficient search techniques and algorithms suitable for 

the building design optimization problem while majority of the studies concentrated 

on problem formulation. The literature review revealed that although effective 

methodologies presented so far to address building and system design issues, there is 

still a research need for holistic approaches that aim to combine building 

architectural features, HVAC system features and renewable generation features 

simultaneously while taking into account various dimensions of building 

performance. 

Therefore, in the current study, we purpose a simulation-based optimization 

methodology where improving building performance is taken integrally as one-

problem and the interactions between building structure, HVAC equipment and 

building-integrated renewable energy production are simultaneously and dynamically 

solved while looking for a balanced combination of several design options and 

design objectives for real-life design challenges. 

The proposed methodology is capable of simultaneously taking into account several 

influential factors on energy performance including outdoor conditions, building 

envelope parameters, indoor conditions, HVAC and renewable systems 

characteristics. During the search for an optimal design scenario, building 

architectural features, building envelope features, size and type of HVAC equipment 
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belong to a pre-designed HVAC system and size and type of considered renewable 

system alternatives are explored together through optimization search techniques. 

The objective of the methodology is to explore cost-effective energy efficiency 

options, which can also provide comfort while limiting harmful environmental 

impacts in the long term therefore financial, environmental and comfort benefits are 

considered and assessed together. The methodology specifically aims at supporting 

cost-effective building and system design for real-world design challenges by 

minimizing investment and operational costs in long term while ensuring required 

thermal comfort is provided to user within minimized CO2 emission rates. Moreover, 

the cost-effective design choices which provide the energy performance level that 

leads to the lowest cost during the estimated economic lifecycle are presented to the 

designer. 

Moreover, the methodology not only aims at contributing to cost-effective  energy 

efficiency but also to water conservation by taking into account the influence of 

HVAC design on mechanical system water use. While the cost of water is generally 

lower than the cost of energy, conservation of water is no less important since water 

sources on earth are limited, too.  

The methodology aims to answer design questions such as to what extent it is wise to 

invest in expensive but higher efficiency products for building envelope and HVAC 

system equipment, how to integrate building architectural features with building 

systems, what are the optimal combinations of renewable energy options and energy 

conversion systems, as early as possible in the design process. The methodology can 

be used as a decision-support tool for both new building design and renovation 

projects since both processes provide significant opportunities to improve building 

performance but also goes through a complicated decision making process.  

The proposed optimization procedure implements a Particle Swarm Optimization and 

it is based on the combination of EnergyPlus simulation tool and an enhanced 

version of GenOpt environment that is developed by the author to be in simultaneous 

interaction with a database, which provides technical and financial information on 

existing building materials, HVAC and renewable system equipment. Therefore, the 

performances of actual materials, equipment and system could be assessed. As a 
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result, the methodology allows designers to design buildings as an engineered system 

and supports them in creating true energy-efficient buildings for real-life challenges.  

The study cover multi-dimensional building design aims through a single-objective 

optimization approach where multi objectives are represented in a ε-Constraint 

penalty approach. 

The methodology allows evaluating large number of parameters fast and effectively 

in a time-efficient manner. 

The following sections introduce the details of the methodology and describe the 

steps that should be taken for a successful implementation. The limitations of the 

current work are also addressed and the boundary of the methodology is given. 

4.2 Optimization Procedure 

The success of any optimization study strongly depends on the identification of 

problem characteristics and development of an approach that can address the needs 

of the problem. Figure 4.1 illustrates the essential steps taken in this study for setting 

up the proposed building design optimization model. Each step of the optimization 

formulation is described in the following sections. The decisions made at each step 

may influence other steps so the interactions are taken into account carefully.  

To define optimization problem

To choose design variables

To formulate objective function

To choose optimization algorithm

To define optimization structure

To obtain solution
 

Figure 4.1 : Steps of setting up the proposed building design optimization model. 
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4.2.1 Problem domain and optimization structure 

Before making an attempt to structure an optimization methodology, it is necessary 

first to define the problem of interest clearly and completely.  

Building thermal performance involves complex dynamic interactions between the 

exterior environment and the internal loads occurring through building envelope and 

satisfied by building systems. As explained in Los Alamos National Laboratory 

Sustainable Design Guide (LANL, 2013), “The difficulty is that these various 

external and internal load conditions and associated utility loads are constantly 

changing from hour to hour and season to season. Also, the number of potential 

interacting design alternatives and possible trade-offs is extremely large” (p.53). 

Therefore, the main problem of the current study is to tackle the difficulty in building 

design complexity while searching for the optimum combinations of building’s 

architectural characteristics, the size and type of HVAC equipment belong to a pre-

designed HVAC system and the size and type of building integrated renewable 

system component, simultaneously as a whole.  

Figure 4.2 depicts the adapted generic building and system energy calculation 

scheme for the problem formulation. As figure demonstrates, indoor conditions, 

outdoor conditions and building characteristics all together create building thermal 

and ventilation requirements. The thermal loads and building ventilation needs are 

then served by an HVAC system that consists of a primary and a secondary side. The 

primary side of the system represents components and equipment that convert 

primary energy to a useful form such as chillers and boilers. Primary side equipment 

is connected by a network to the secondary side equipment where a conditioned 

medium is brought to the space of intention (delivered energy) to satisfy the building 

loads and to provide comfort to occupants. Secondary system equipment could 

include fans, fan coils, radiators, air handling units, etc.  

In addition to building and HVAC system integration, artificial lighting and building 

daylighting potential are integrated into the calculation procedure as well. Building 

daylighting potential has impact on the building lighting load and it is directly 

influenced by properties of building envelope. Moreover, there is a trade-off with 

heating and cooling load due to artificial lighting use and consequent heat gain. 

Therefore, the methodology takes into account the interactions between building 
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envelope, daylighting potential, artificial lighting and HVAC system, too and it 

certainly contributes to the optimization of natural daylight into the buildings. 

Furthermore, the hot water need of the building is served by a water heating system 

and it is included in the calculation scheme. Sanitary hot water could be produced 

with the same system used for space heating or it can also be supplied by combined 

systems or separate systems. 

Building Architecture & 

Envelope

Indoor 

Conditions

Outdoor 

Conditions

Building Thermal 

& Ventilation Load

Lighting 

Requirement

Secondary Side of 

HVAC System 

(Distribution)

Primary Side of 

HVAC System 

(Plant)

Energy Sources

Renewable 

Energy

Electricity From 

Grid

Primary Energy 

As Fuel

Lighting System

Loads not met by plant 

and system

Hot Water 

Requirement

Water Heating 

System

 

Figure 4.2 : Energy use calculation scheme. 

The full coupling of thermal load, secondary system, plant and energy sources where 

there is a feedback from the supply-side to the demand-side is required for a better 

understanding of how a building responds to the changing indoor and outdoor 

environmental factors, as it attempts to meet the dynamic building thermal loads. 

Therefore, as depicted in the figure, the interactions between the thermal building 

loads, secondary system models, primary plant models and energy production 

models are taken into account and closely linked in the methodology.  
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The building elements and building systems (HVAC, lighting and water heating) 

interact dynamically and the systems naturally require energy to operate. However, 

each energy efficiency measure comes with an investment and operating cost. 

Therefore in the methodology, the energy performance level which leads to the 

lowest global cost during the building service life is explored. In addition to the 

building energy performance, the proposed methodology also considers building 

operational water consumption by especially focusing on HVAC system water use. 

Due to the system energy use, the building emits greenhouse gases depending on the 

energy sources and CO2 emission level is therefore taken as a design restriction in 

the methodology. 

Similarly, the thermal comfort that is provided indoors is taken as a restriction as a 

measure of how well the building and the systems is designed and integrated. 

The aim of the proposed optimization framework is therefore to configure building 

architectural and construction options (such as the degree of orientation, amount of 

insulation material, type of roof coating, type of glazing units, amount of glazed area 

so on.) and to select elements of a pre-designed HVAC system (such as size, full-

load and part-load efficiency of primary side HVAC primary equipment matching an 

actual equipment available in the market, and size of dependent HVAC equipment 

including cooling tower, fan coil units etc.) and to select elements of considered 

renewable energy systems (such as type, efficiency and power of photovoltaic 

systems and/or solar thermal systems) for cost-effective energy efficiency in the long 

term while emitting less than a user-set target CO2 level and providing comfort. The 

mathematical formulization of the objective function representing the building 

performance is introduced in detail in the following sections. 

Figure 4.3 illustrates the main architecture of the proposed optimization framework. 

The framework requires interactive collaboration of three main elements: an 

optimization engine, a dynamic simulation tool and a database where technical and 

financial information about several alternative energy efficiency measures are kept 

and fed to the optimization environment.  
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The optimization process starts with a pre-processing phase where the designer 

creates a generic simulation model of a base case building scenario that includes 

information about climate, building location, site information, three dimensional 

building view, building envelope, plug loads, occupancy type and pattern, pre-

designed building systems for comfort heating and cooling, and pre-designed 

renewable systems to integrate. The base case building constitutes a starting point in 

the search space and provides an initial reference for comparisons. 

Once the base case building is established, the designer selects a variety of energy 

efficiency measures to investigate therefore prepares a variable list accordingly.   

Moreover, a database containing technical and financial information about the each 

energy efficiency measure including a variety of construction products and system 

component options is also prepared. 

The designer then runs test of optimization experiments to determine possible 

dimensions of the main element of the objective function and imposed constraints. 

Thus, appropriate optimization parameters related to objective function formula that 

will lead to a balance between different objectives are determined. Moreover, 

designer also obtains appropriate optimization algorithm settings suitable for the 

design problem in consideration through test runs.  

The once the required parameters and settings are determined, optimization process 

starts with the motivation to improve the performance of the base case building, 

which is calculated through dynamic building simulation, based on the defined 

objectives and criteria. 

At every iteration step of the optimization search, optimization algorithm proposes 

different values for each optimization variable according to variable definition and 

optimization search principles. Variables represent actual energy efficiency measures 

that are stored in the database. Therefore each time a new combination of different 

measures are proposed by optimization algorithm, the technical information of that 

technology alternative is read from the database and a corresponding energy model 

object is created and inserted into the building simulation model. Similarly financial 

information belongs to that measure is again read from the database and transferred 

to the objective function formula. 
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Once the building simulation model of the new design scenario is complete, firstly a 

design day simulation for summer and winter periods is run to predict the building 

peak heating and cooling loads due to changes in architectural design variables. 

Within the same iteration, after the load is established, the optimization algorithm 

seeks to determine if the proposed HVAC equipment at this step is within the 

capacity range. If an over or under capacity equipment is proposed by the 

optimization, then this design combination is eliminated from the search space 

through application of constraint functions. Therefore it is made sure that suitable 

plant equipment (boiler, chiller) that can satisfy the calculated thermal load among 

the user-created equipment database is chosen. In addition, the required capacity of 

dependent equipment (such as cooling tower, radiator, fan coil units etc.) is also 

calculated with an aim to complement the design suitably.  

If the proposed equipment capacity is within the required capacity range, then the 

optimization runs an annual simulation considering the full-load and part-load 

equipment performance. The database contains variety of primary equipment options 

with varying on-reference and off-reference efficiencies represented by performance 

curves. Therefore, before final equipment selection, all around the year performance 

of actual equipment under varying load conditions is observed. At same instance, 

optimization module also searches the energy generation potential of the considered 

renewable technologies, evaluates, and compares the performance of different 

components such as photovoltaic module types or installed power capacity to find 

the optimal configuration that maximizes the benefit.  

The energy and economic performance of the proposed EEM combination is checked 

against the optimization criteria, and the optimizer module then initiates creating new 

design scenarios automatically by combining the variable options according to 

optimization search principles. The iterative search continues until an optimum 

solution that can balance the design aims while satisfying the optimization 

constraints is established. Therefore, a right-sized HVAC system that is capable of 

providing necessary occupant comfort, operating efficiently throughout the year, 

costing, and emitting less and balanced with renewable technologies is configured 

among several equipment options. 

The simulation module of the developed scheme evaluates energy-related 

performance metrics and functional constraints. Finally, the database defines and 
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organizes design variables, contains technical and financial information about design 

options and stores related non-variable optimization data.  

The application of the methodology allows exploring, sizing, comparing and finally 

selecting equipment options only for one pre-designed HVAC system type during a 

single optimization run.  However, the performances of different HVAC systems can 

be investigated and compared if they are included in separate optimization runs.  

The optimization generates several design alternatives from the assessed packages 

and marks the energy and water performance level leading to the lowest cost during 

the estimated economic lifecycle as economic optimum. However, a cost versus 

primary energy consumption curve is also created from eligible optimization results 

and cost-effective alternative options for the building in consideration are identified. 

4.2.1.1 The optimizer 

The responsibility of the optimization module is to regulate the entire process by 

implementing the optimization algorithm, triggering simulation for performance 

calculation, interacting with the database, assigning new values to variables to create 

alternative scenarios, calculating objective function, imposing constraints, and 

checking stopping criteria.  

The literature reviews by Nguyen et al. (2014), Machairas et al. (2014), and Evins 

(2013) inform that there are several optimization environments available to solve a 

building optimization problem once it is formulated. Many decent algorithms are 

implemented in these tools to deal with different kinds of optimization issues.  

In this study, a GenOpt based optimization environment is developed and used as the 

optimizer module of the proposed study.  

The structure of GenOpt allows running multiple simulations in parallel. Parallel 

computation is an important means to improve an algorithm’s efficiency since it can 

drastically reduce computation time. Moreover, GenOpt can easily be coupled with a 

building simulation program and its rich algorithm library, capability to handle 

discrete variables and flexible format to add new subroutines makes it a suitable tool 

for the methodology.  

However, GenOpt alone is not capable of interacting with a database to acquire 

information about design variables and transfer them to building simulation module 
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for analysis therefore, in the methodology, GenOpt environment is enhanced to 

communicate with a user-created database through a proposed sub-module.  

The general structure of the developed optimization environment is depicted in 

Figure 4.4. 
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Log
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Figure 4.4 : The structure of GenOpt based enhanced optimization environment. 

The initialization file specifies the location of input files, output files, log files, etc. It 

includes the objectives function formula. Moreover, it also shows what number in the 

simulation output file is a cost function value, and which simulation program is being 

used.  

The command file specifies decision variables’ names, initial values, upper/lower 

bounds, optimization algorithm, etc.  

The configuration file contains information related only to the simulation program 

used.  

Simulation input template the location of decision variable in the building simulation 

input file. 

Finally, the database connection module interacts with the database and simulation 

program to rewrite simulation input file with actual product information.  
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When the optimization algorithm creates new design combinations based on the 

variable information written in the command file, the dedicated communication 

module reads the assigned variable value and matches it with a product in the 

database. Then all the necessary technical information about that specific product is 

read from the database and directly written into the simulation input file for the 

dynamic simulation step. Therefore, technical information regarding actual market 

products is transferred into the simulation file and they are evaluated with their 

dynamic performances at every iteration during optimization. 

Once the simulation model of the new design combination becomes complete, 

simulation is run and the simulation output is used for calculating the objective 

function value along with other necessary data read from the database. 

4.2.1.2 The simulator 

The main purpose of the simulation module is to calculate performance metrics 

required for the objective function formula. Due to the integrated nature of the 

proposed whole-building solution scheme, the simulation module must be capable of 

calculating building thermal loads, daylighting potential, equipment capacities, 

energy consumption, CO2 emission, user comfort index, and on-site energy 

production simultaneously.  

As highlighted in Chapter II there are a great number of simulation tools available 

with varying capabilities and level of calculation accuracy. However, not many of 

them have the ability to capture dynamic interactions between building and systems.  

As expressed by Trcka and Hensen (2010) “The integration of building and HVAC 

system models is accomplished at different levels. The models can be sequentially 

coupled (many duct/pipe sizing tools, BLAST, DOE-2, etc.) – without system model 

feedback to the building model or fully integrated (ESP-r, EnergyPlus, IDA ICE, 

TRNSYS, etc.) – allowing the system deficiencies to be taken into account when 

calculating the building thermal conditions” (p.95). 

Among the few dynamic building simulation tools, EnergyPlus is employed as the 

simulation environment in this study due its integrated solution manager, which 

ensures building, system, and plant interaction. Moreover, EnergyPlus is compliant 

with the requirements of ANSI/ASHRAE Standard 140-2004 and meets also the 

general technical requirements of the European Directive on the Energy Performance 
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of Building therefore it produces reliable results. Furthermore, EnergyPlus offers 

wide choices for HVAC and renewable system models and its text-based input and 

output format allows coupling with optimization module. 

The comprehensive and powerful qualities of EnergyPlus make it a suitable 

simulation engine for the proposed methodology. 

4.2.1.3 Database 

Building design optimization is a multi-variable problem and it requires substantial 

numerical input. The data needs to be well defined and handled therefore a dedicated 

database module is developed for organizing input parameters. 

The parameters are categorized under two titles: non-variables and variables. Non-

variable parameters are required to successfully calculate the objective function; 

however, they are fixed during a whole optimization run. For instance, energy tariffs, 

water tariff, discount rates, etc. are handled in this category. 

On the other hand, dependent and independent optimization parameters fall under 

variables category.  Independent optimization parameters are design variables that 

take a numerical input that is allowed to change during the optimization process to 

find its most favourable value. For example, thickness of insulation material, type of 

roof coating, type of boiler or chiller equipment is handled as independent variables. 

Since the main aim of the methodology is to optimize real-world design challenges, 

the technical and financial information of the actual market products including 

building envelope materials, HVAC system equipment and renewable system 

equipment are stored in the database. Each product or a component is assigned with a 

unique Identification (ID) number under a product category. During the optimization 

run, when a product matching the requirements of the design variable is called from 

the database, all the necessary information related with that ID number is read and 

technical product information is written into simulation file and the related financial 

information is fed into the objective function formula. 

Dependent variables take new values at each optimization iteration based on the 

assigned value of the independent variable. For instance, size of cooling tower 

capacity, or opaque area of wall component is calculated based on the assigned value 

of chiller capacity or window-to-wall ratio, respectively. 
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4.2.2 Design variables 

Design variables are the input factors within an optimization model that need to be 

determined and they constitute a design space on which the optimization algorithm 

will work. Each decision variables has a domain, which is a set of all possible values 

available for the variable and in the whole-building performance optimization 

problem, decision variables reflect the whole set of alternative measures that are 

available for the design of a building and systems. 

In the proposed methodology, the optimization problem is addressed as a purely 

discrete optimization problem where design options are completely described by 

discrete strings. There are two approaches adopted to define discrete variable sets.  

First approach introduces a constraint set of finite, non-zero n discrete integers for 

each variable as represented by V = {V1, . . . , Vn}. This approach is used to address 

equipment and component type as a design option. Admissible discrete values of 

variables are the ID number of equipment from the database that designer wants to 

investigate through optimization.  

In the second approach, the continuous variables are discretized into a discrete set 

through definition of lower and upper bonds for each variable and the number of 

intervals. This strategy is used for representing design options that vary in a stepwise 

manner such as insulation thickness. 

Commonly, deciding on the design variables is one of the hardest and crucial steps in 

formulating any optimization problem. Creative variable definition and selection can 

dramatically improve the calculation performance in terms of accuracy, computation 

time and consequently decreases the complexity of the problem. Therefore, 

eliminating unavailable and insignificant variables is highly required for the success 

of any optimization procedure. The sensitive parameters can be determined through 

experience of the designer, common knowledge, and sensitivity analysis.  

In a real-life building design optimization problem, there is large number of 

influential parameters however; some parameters may not be always available for 

every optimization attempt due to natural causes. Project-specific constraints can 

limit the design space therefore; the designer should explore the availability of the 

parameters first, when setting up an optimization model.  
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Furthermore, among the available decision variables, some can only have a limited 

impact on the design objectives. Therefore, when the available parameters are 

determined, the degree to which an input parameter affects the model output can be 

evaluated through sensitivity analysis.  

4.2.2.1 Sensitivity analysis for variable selection 

Sensitivity analysis is performed to investigate the relationships between the input 

and output parameters of a system and to quantitatively compare the changes on the 

output with respect to the changes in the input. Therefore, designer can determine the 

most influential parameters or the parameters with insignificant impacts. 

Hamby (1994) reviews a large number of sensitivity techniques available for simple 

to complex models. In this study, the Sensitivity Index method, which is a simple and 

straightforward technique, is adapted for the variable subset selection. The method 

calculates the sensitivity index (SI) of the variables that is the output percentage 

difference when varying one input parameter at a time, from its minimum value to its 

maximum value as given in equation 4.1. 

 
𝑆𝐼 =

𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥
 (4.1) 

In the equation, Dmax and Dmin represent the maximum and minimum output values 

resulting from varying the input over its entire range. 

In the methodology, the influence of the input parameters on the building heating, 

cooling and overall operating energy consumption is taken as the sensitivity index 

criteria.  

The main reason to select a local, one-at-a-time technique instead of a global analysis 

that examines sensitivity with regard to the entire parameter distribution is to reduce 

the number of trials to a manageable size. The priority is given to obtaining non-

sensitive variables within the given boundary conditions and parameter correlation is 

neglected for simplification. 

4.2.3 Objective function and the constraints 

Objective function translates a real-word problem to an objective and a constraint 

equation. The presented model aims at maximizing economic benefits from energy 
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efficiency investments during a selected time period and to therefore ensure cost-

effective energy efficiency is achieved. Moreover, CO2 emission released during 

building operation is aimed to be limited to a user-set target while required 

occupancy thermal comfort is provided. Thus, there are four main performance 

criteria to consider including economy, energy and water consumption due to HVAC 

operation, environmental impact due to building energy use, and indoor user thermal 

comfort.  

Adding objectives to an optimization problem adds complexity. For instance, 

Ishibuchi et al. (1997) mentions that although evolutionary multi-objective 

optimization algorithms work very well on two-objective problems their search 

ability is severely deteriorated by the increase in the number of objectives. In the 

current study; therefore, even though the nature of the problem is multi-objective, the 

problem is reformulated as a single-objective optimization with some of the 

objectives acting as constraints. The secondary objectives are introduced in the form 

of penalty functions based on ε-Constraint method where adding a penalty for 

infeasibility forces the solution to feasibility and subsequent optimum. 

Single-objective formulation takes advantage of being less computationally 

expensive and providing the best solution directly for a given objective. Moreover, 

there are a wide range of well-studied heuristic methods that are capable of dealing 

with this complexity in single-objective optimization.  

In the study, the primary objective is taken as minimization of building lifetime 

global costs including operational cost for energy, water, and ownership cost for 

building envelope and building system equipment, in comparison to a user-defined 

base case building. The total global cost is calculated according to the European 

Standard EN 15459:2007 Energy performance of buildings - Economic evaluation 

procedure for energy systems in buildings. This method results in a discounted value 

of all costs for a defined calculation period (EN 15459, 2007).  

Global cost is a key economic indicator to show the long term behaviour of a 

building and it mainly includes initial investment costs, running costs (energy, water, 

maintenance etc.) replacement costs, disposal costs, residual value at end of life. In 

addition to the European definition, running water costs due to HVAC system 

operation and hot water use is also included in the formulation.  
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Energy and water costs account for the largest share of the building running costs 

occur during building lifespan therefore they have the high sensitivity and priority in 

optimization process. Thus, the efficiency of building resource use is incorporated 

into the formulation.  

The secondary objectives in the form of penalty constraints include user discomfort 

index, CO2 gas emissions and payback period for renewables. 

The general formula to calculate objective function is expressed in equation 4.2 

where the constraints are combined with the original objective function (dGC), 

resulting in a new function of h(x). The function h(x) is then attempted to be 

optimized by the algorithm that is adopted within this study. 

 

ℎ(𝑥)   = 𝑑𝑮𝑪 + ∑ 𝜇𝑘𝑃𝐸𝑁𝑘

4

𝑘=1

 (4.2) 

Where, 

ℎ(𝑥) : Main objective function, 

𝑑𝐺𝐶 : Global cost difference between any design combination, which is created 

automatically during optimization and a user-defined base case scenario,  

𝑃𝐸𝑁𝑘 : Main penalty value that is the summation of all sub-penalties, where each 

one evaluates a unique building aspect, 

𝜇𝑘 : Penalty parameter. 

Comparing the building performance of each alternative to a base case allows 

investigating only the influences of design variables; therefore, the cost occurring 

due to fixed parameters can be avoided. 

In the calculation, if a constraint is violated, the cost function dGC is penalized by 

addition of a large positive value. This way, infeasible solution candidates have 

always a worse overall objective value than a feasible one and excluded from 

candidate solutions so that the search direction is pushed back towards to the feasible 

region.  

However, the difficulty of this approach is due to determination of suitable penalty 

parameter. Each penalty constraint is multiplied by a penalty parameter and summed 

together. If the magnitude of the each penalty term PENk multiplied by its penalty 
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factor is small relative to the magnitude of main objective dGC, the minimization of 

overall objective function h(x) will not result in a feasible solution. However, if the 

value of the penalty parameter is made suitably large, the penalty term will impose a 

heavy cost for any constraint violation that the minimization of the overall objective 

function will yield a successful solution.  

The severity of the penalty depends on the penalty parameter. If the penalty value is 

too large, the optimization might create enormously steep valleys at the constraint 

boundaries and converge to a feasible solution very quickly even if it is far from the 

optimal. Similarly, if the penalty value is too small penalty can spend so much time 

in searching an unfeasible region. Therefore, the largeness of the penalty parameter 

should be decided depending on the particular design problem. 

In the methodology, penalty factors are determined experimentally. An optimization 

test case is conducted during pre-optimization phase to obtain the likely magnitude 

of objective and the constraints. Then suitable factors, which reflect the priorities of 

the designer, are chosen to balance main objectives where penalty does not dominate 

the objective function nor remains ineffective. 

Figure 4.5 shows a graphical representation of the objective function formula.  
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Figure 4.5 : Main objective function calculation algorithm. 

Building material and system equipment represent the energy efficiency measures 

(variables) that will be investigated within the course of the optimization. Dependent 

material and equipment represent non variables that take values based on the changes 
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in optimization variables. The each element of the algorithm will be explained in 

detail in the following sections. 

4.2.3.1 Global cost calculation 

In the methodology, the main objective, the global cost, is calculated according to 

net-present value approach, which is a financial analysis technique where all future 

costs and benefits are discounted to the present to obtain a common reference for 

comparing competing alternatives in a long-term perspective (Fuller and Petersen, 

1995).  

There are numerous types of costs occur during service life of a building. In this 

research however, cost breakdown includes long-term energy costs due to HVAC 

operation, water heating and lighting energy consumption; water costs due to HVAC 

system water use and occupancy hot water use; ownership costs due to buying, 

installing, maintaining and disposing building envelope material and/or HVAC 

system equipment.  

Moreover, if a renewable system alternative is considered, its ownership cost is also 

added to equipment cost category and energy cost benefits are reflected in energy 

category. The calculation time period is set by the designer. 

All the cost elements of the equation are expressed in net-present value (NPV) and 

the main formula is given in equation 4.3:  

𝐺𝐶 = ∑ 𝑁𝑃𝑉𝐸𝑛𝑒𝑟𝑔𝑦 + ∑ 𝑁𝑃𝑉𝑊𝑎𝑡𝑒𝑟
𝑛
1 + ∑ 𝑁𝑃𝑉𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 + ∑ 𝑁𝑃𝑉𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

𝑛
1

𝑛
1

𝑛
1   (4.3) 

The financial calculation are carried out from and user perspective therefore all the 

costs are the prices paid by the customer including VAT and charges. 

Net present value of energy cost 

Net present value of energy cost is a recurring annual cost that changes from year to 

year at a constant price escalation rate, and it is calculated for each energy source 

that is consumed in the building according to the algorithm illustrated in Figure 4.6: 
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Figure 4.6 : NPV energy cost calculation algorithm. 

The NPV cost of each energy source is calculated separately based on the annually 

recurring cost with an escalation rate formula given in equation 4.4: 

 
𝑁𝑃𝑉𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐸0

(1 + 𝑒𝑒)

(𝑑 − 𝑒𝑒)
[1 − (

1 + 𝑒𝑒

1 + 𝑑
)𝑛] (4.4) 

Where,  

𝑁𝑃𝑉𝐸𝑛𝑒𝑟𝑔𝑦  : Net present value of energy cost for each energy source, 

𝐸0  : Annually recurring energy cost at base-date price, 

𝑛  : Study period (number of years which energy consumption recurs), 

𝑑  : Real discount rate,  

𝑒𝑒   : Real constant price escalation rate for energy. 

Annual energy cost for each energy source is calculated as a multiplication of annual 

end-use energy consumption (site energy) obtained through a yearly energy balance 

calculation performed by EnergyPlus simulation engine and its associated energy 

tariff stored in the user-created database. Energy cost includes cost due to heating, 

ventilation air conditioning, artificial lighting, plug loads and water heating purposes. 

The real discount rate, d, is used in the formula to discount future costs to the present 

and is calculated based on the interest rate of an alternative investment corrected with 

regard to the inflation rate as given in equation 4.5,  
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𝑑 =

1 + D

1 + 𝐼𝑛𝑓
− 1 (4.5) 

Where, 

𝑑 : Real discount rate, 

D : Nominal discount rate, 

𝐼𝑛𝑓 : Inflation rate. 

Nominal discount rate can be estimated based on market interest rate. 

Similarly, the real constant price escalation rate for energy can be calculated 

according to the following formula: 

 
𝑒𝑒 =

1 + E

1 + 𝐼𝑛𝑓
− 1 (4.6) 

Where, 

E : Nominal escalation rate, 

𝐼𝑛𝑓 : Inflation rate. 

Net present value of water cost 

Net present value of water cost is also a recurring cost that changes from year to year 

at a constant price escalation rate and it is calculated for each water end-use type 

according to the algorithm illustrated in Figure 4.7. 
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Figure 4.7 : NPV water cost calculation algorithm. 
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The NPV cost of each end-use type is calculated based on the annually recurring cost 

with an escalation rate formula given in equation 4.7. 

 
𝑁𝑃𝑉𝑊𝑎𝑡𝑒𝑟 = 𝑊0

(1 + 𝑒𝑤)

(𝑑 − 𝑒𝑤)
[1 − (

1 + 𝑒𝑤

1 + 𝑑
)𝑛] (4.7) 

Where,  

𝑁𝑃𝑉𝑊𝑎𝑡𝑒𝑟  : Net present value of water cost, 

𝑊0  : Annually recurring water cost at base-date price, 

𝑛  : Study period (number of years which water consumption recurs), 

𝑑  : Discount rate, 

𝑒𝑤   : Constant price escalation rate for water. 

Annual water cost is calculated as a multiplication of annual water consumption 

obtained through building simulation and its associated water tariff. In the 

methodology the water cost especially focuses on water use due to HVAC system 

operation. 

Net present value ownership of material, HVAC and renewable system 

equipment cost 

The net-present value ownership cost of different energy efficiency measures 

(independent and dependent building material, HVAC or renewable system 

equipment) is calculated according to the algorithm illustrated in Figure 4.8.  

The financial information about each material/equipment is stored in a user-created 

database; therefore at each optimization run, the data is read from the database and 

transferred to the objective function equations. 
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Figure 4.8 : NPV material/equipment ownership cost calculation algorithm. 

The algorithm is based on the NPV of initial, maintenance, replacement and scrap 

cost for the material/equipment life, as given in equation 4.8. 

 𝑁𝑃𝑉𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙/𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 = 𝐼 + 𝑅𝑒𝑝 + 𝑀 − 𝑆 (4.8) 

Where, 

𝐼 : Present-value investment cost, 

𝑅𝑒𝑝 : Present-value capital replacement cost, 

𝑀 : Present-value maintenance cost, 

𝑆 : Present-value scrap cost. 

The investment costs include costs for purchasing and installing building envelope 

material and/or system equipment. The investment takes place in the present 
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therefore the net present value of the investment cost is equal to the sum of the 

investment costs, for each material or equipment as given in equation 4.9. 

 

𝐼𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙/𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 = ∑ 𝐼𝑘

𝑘

𝑗=1

 (4.9) 

Replacement costs occur due to shorter lives of building components than the 

building and hence they are required to be replaced during the building service life.  

The replacement cost of a component can be considered as an extra expense equal to 

the initial investment cost for the component occurring when the service life of the 

component ends. The present value of replacement cost, which occurs at irregular or 

non-annual intervals, is calculated according to the formula given in equation 4.10.  

 
𝑅𝑒𝑝𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙/𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 = 𝑅0

1

(1 + 𝑑)𝑡
 (4.10) 

Where, 

𝑅𝑒𝑝𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙/𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 : Present-value of replacement cost occur at year t, 

𝑅0    : Replacement cost at base-date price, 

𝑑    : Real discount rate, 

𝑡    : Future cash occurs at the end of year t (service life). 

The building components need regular maintenance in order to remain functional 

during its life span and it is a recurring cost element of the GC.  The equation 4.11 

below is used to calculate the present-value of annual routine maintenance costs.   

 
𝑀𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙/𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 = 𝑀0 ×

(1 + 𝑑)𝑛 − 1

𝑑(1 + 𝑑)𝑛
 (4.11) 

𝑀𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙/𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 : Present-value of replacement cost occur at year t, 

𝑀0   : Annually recurring uniform maintenance cost, 

𝑛   : Study period (number of years which maintenance recurs), 

𝑑   : Discount rate. 
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Scrap cost is a one-time amount cost that occurs once at end of products service life 

and can include scrap value and removal cost. In this study, however, the removal 

cost is neglected. The base-date value of scrap cost is estimated as a user-defined 

percentage of the purchase price. The equation to calculate scrap value is as given 

below: 

 
𝑆𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙/𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 = 𝑆0

1

(1 + 𝑑)𝑡
 (4.12) 

Where: 

𝑆𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙/𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 : Present-value of scrap cost occur at year t, 

𝑆0   : Salvage cost at base-date price, 

𝑑   : Discount rate, 

𝑡   : Future cash occurs at the end of year t (service life). 

In the current study, the NPV ownership cost is calculated through two different 

approaches: 

The change in cost due to change in the value of discrete variable with stepwise 

definition is calculated based on the multiplication of unit value of the variable with 

its current value. For example, adding insulation to a wall is calculated as the amount 

of insulation (m
3
) times unit value of the insulation (TL/m

3
).  

On the other hand, the change in cost due to change in the value of a standard 

discrete variable is calculated based on the actual price of the component. For 

instance, while selecting a boiler, all the cost information of the equipment at that 

instance is directly obtained from the equipment database. By doing so, optimization 

algorithm can individually evaluate the economic performance of each component in 

the database. 

4.2.3.2 Penalty functions 

In the current study, the constraints regarding the HVAC equipment sizing, 

greenhouse gas emissions, indoor comfort levels and renewable system payback 

period are imposed in the form of penalty functions. 
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The equation 4.13 shows the elements of main penalty function: 

 ∑ 𝑃𝐸𝑁 = 𝜇𝑒𝑐𝑃𝐸𝑁𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 + 𝜇𝑒𝑚𝑃𝐸𝑁𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝜇𝑐𝑓𝑃𝐸𝑁𝐶𝑜𝑚𝑓𝑜𝑟𝑡

+ μpbPENPayBack 
(4.13) 

Equipment capacity 

In the current study, ideal primary side HVAC equipment is aimed to be selected via 

optimization with rest of the design variables from a database, simultaneously. As 

explained previously, the optimization algorithm firstly combines design variables, 

runs a design day simulation, and determines the required equipment loads. Then, it 

tries to assess the annual performance at the same instance.  In the equipment library, 

there exists a wide range of equipment with varying capacities and dynamic 

performances. Therefore, to prevent a capacity mismatch between the recommended 

equipment’s actual capacity and the required capacity occurs due to new combination 

of design variables, a penalty is added to the main objective every time an equipment 

violates sizing rules set by the designer.  The calculation steps of the equipment 

capacity penalty function are depicted in Figure 4.9. 
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Assume 
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Figure 4.9 : Equipment capacity penalty value calculation algorithm. 
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The penalty calculation formula is based on equation 4.14. 

 𝐸𝐶𝑎𝑢𝑡𝑜𝑠𝑖𝑧𝑒 ∗ 𝑆𝐹𝐿𝑜𝑤𝑒𝑟 ≤ 𝐸𝐶𝑎𝑐𝑡𝑢𝑎𝑙 ≤ 𝐸𝐶𝑎𝑢𝑡𝑜𝑠𝑖𝑧𝑒 ∗ 𝑆𝐹𝑈𝑝𝑝𝑒𝑟 (4.14) 

Where, 

𝐸𝐶𝑎𝑐𝑡𝑢𝑎𝑙 : Capacity of the actual equipment in database,  

𝐸𝐶𝑎𝑢𝑡𝑜𝑠𝑖𝑧𝑒 : Required equipment capacity determined via autosizing calculation, 

𝑆𝐹𝐿𝑜𝑤𝑒𝑟  : User-defined sizing factor to determine undersizing limit, 

𝑆𝐹𝑈𝑝𝑝𝑒𝑟  : User-defined sizing factor to determine oversizing limit.  

Therefore, the penalty function for equipment capacity becomes as following: 

𝑃𝐸𝑁𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝜇𝑚𝑎𝑥𝑐𝑎𝑝 (𝑚𝑎𝑥 (0,  (𝐸𝐶𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐸𝐶𝑎𝑢𝑡𝑜𝑠𝑖𝑧𝑒 ∗ 𝑆𝐹𝑈𝑝𝑝𝑒𝑟 )))
𝑞

+ 𝜇𝑚𝑖𝑛𝑐𝑎𝑝 (𝑚𝑎𝑥(0,  (𝐸𝐶𝑎𝑢𝑡𝑜𝑠𝑖𝑧𝑒 ∗ 𝑆𝐹𝐿𝑜𝑤𝑒𝑟 − 𝐸𝐶𝑎𝑐𝑡𝑢𝑎𝑙)))
𝑞

 

(4.15) 

Where, 

𝑃𝐸𝑁𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  : Calculated penalty for being above or below user-set capacity limits, 

μmaxcap  : User-assigned maximum equipment capacity penalty parameter, 

μmincap   : User-assigned minimum equipment capacity penalty parameter, 

𝑞  : Nonnegative constant as penalty power factor. 

CO2 emission 

A good environmental performance of a building is aimed to be assured by setting a 

minimum-achievable performance target in the form of penalty. Therefore, while 

optimization searches for the optimum combination of design variables in terms of 

economic viability, it also makes sure the proposed building emits less than a target 

level during operational phase. 

There are several different types of greenhouse gases with varying levels of global 

warming potential. The major ones are carbon dioxide, water vapour, methane, and 

nitrous oxide; however, in this study the target emission is restricted only to CO2 

because CO2 remains in the atmosphere longer than the other major heat-trapping 

gasses and is the dominant source of global warming. 
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The metric used in the penalty function equation is described as the overall annual 

amount of carbon dioxide equivalence emitted by the building in kg due to the 

operational energy consumption from different energy sources. When the emitted 

overall CO2 emission exceeds the target, a penalty which is calculated according to 

steps illustrated in Figure 4.10 is added to the main objective function. 
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Figure 4.10 : CO2 emission penalty value calculation algorithm. 

The equation 4.16 describes mathematically the penalty formulation. 

 
𝑃𝐸𝑁𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝜇𝑒𝑚 (𝑚𝑎𝑥 (0,  (𝐶𝑂2𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐶𝑂2𝑡𝑎𝑟𝑔𝑒𝑡)))

𝑞

 (4.16) 

Where, 

PENEmission : Penalty value due to violation of CO2 emission criteria, 

𝐶𝑂2𝑎𝑐𝑡𝑢𝑎𝑙  : Proposed building overall CO2 emission amount, 

𝐶𝑂2𝑡𝑎𝑟𝑔𝑒𝑡 : User set overall CO2 emission target, 

𝜇em  : User-assigned CO2 emission penalty parameter, 

q   : Nonnegative constant as penalty power factor. 

The overall building CO2 emission amount, for either actual case or base case, is a 

summation of CO2 emission due to different energy sources used in the building and 

is calculated according to the equation 4.17: 
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𝐶𝑂2𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = ∑ 𝐶𝐼𝑖𝐸𝑛𝑖

𝑖

1

 (4.17) 

Where, 

𝐶𝑂2𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛  : Overall building CO2 emission amount, 

𝐶𝐼𝑖   : Carbon dioxide equivalent intensity index in kg.EqCO2/kWh for 

each available energy source, 

𝐸𝑛𝑖   : Energy consumptions in different fuel forms. 

The carbon dioxide equivalent intensity indexes are determined by public bodies 

according to the nature of the national energy market. 

User thermal comfort 

When performing a building design optimization, it is also crucial to maintain 

thermal comfort in the building. For instance, if the thermal comfort is not included 

in the calculations, it is very likely that the design that turns up as cost-effective, 

could lead to overheating or underheating problems. Therefore, in the current study, 

thermal comfort is added to the objective function as a penalty to make sure that 

design alternatives, which violate a user-set thermal comfort criterion is eliminated 

from design alternatives and the solution region is restricted to a comfort zone. 

The penalty function for thermal comfort is defined mathematically as following:  

 
𝑃𝐸𝑁𝐶𝑜𝑚𝑓𝑜𝑟𝑡 = 𝜇𝑐𝑓 (𝑚𝑎𝑥 (0,  (𝑇𝐶𝑎𝑐𝑡𝑢𝑎𝑙−𝑇𝐶𝑡𝑎𝑟𝑔𝑒𝑡)))

𝑞

 (4.18) 

Where, 

𝑃𝐸𝑁𝐶𝑜𝑚𝑓𝑜𝑟𝑡 : Penalty value due to violation of comfort criteria, 

𝑇𝐶𝑡𝑎𝑟𝑔𝑒𝑡  : Target thermal comfort metric set by designer, 

𝑇𝐶𝑎𝑐𝑡𝑢𝑎𝑙  : Calculated thermal comfort metric for proposed building, 

𝜇𝑐𝑓   : User-assigned weighting factor for thermal comfort penalty function, 

𝑞  : Nonnegative constant. 

Thermal comfort can be defined as ‘that condition of mind which expresses 

satisfaction with the thermal environment’ (EN ISO 7330, 2006).  The determination 
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of thermal comfort level is not straight forward since it results from a combination of 

environmental factors and personal factors including air and radiant temperature, 

humidity, air velocity, activity level of occupant and clothing insulation. There are 

many techniques available for estimating likely thermal comfort. In this study, 

however, Predicted Mean Vote (PMV) and Percentage People Dissatisfied (PPD) is 

adapted as suggested by EN ISO 7730 (2006), EN ISO 15251 (2007) and ASHRAE 

55 (2004) standards. PPD is a quantitative measure of the thermal comfort of a group 

of people at a particular thermal environment and described as the percentage of 

occupants that are dissatisfied with the given thermal conditions. PPD is calculated 

according to equation 4.19 given in EN ISO 7330. 

 𝑃𝑃𝐷 = 100 − 95𝑒−(0.03353𝑃𝑀𝑉4+0.2179𝑃𝑀𝑉2) (4.19) 

The PPD can be deduced from the Predicted Mean Vote (PMV) as suggested in EN 

ISO 7730 given in equation 4.20: 

 𝑃𝑀𝑉 = (0.303𝑒−0.036𝑀𝑒𝑡 + 0.28)(𝐻 − 𝐿) (4.20) 

Where,  

𝑀𝑒𝑡 : Metabolic rate, 

𝐻  : Internal heat production rate of an occupant per unit area, 

𝐿 : All the modes of energy loss from body. 

PMV is representative of what a large population would think of a thermal 

environment using a seven-point thermal sensation scale. It is derived from the 

physics of heat transfer and empirical correlations.  

Accordingly, when the thermal comfort criterion is taken as PDD index, the penalty 

function takes the following mathematical form: 

 
𝑃𝐸𝑁𝐶𝑜𝑚𝑓𝑜𝑟𝑡 = 𝜇𝑐𝑓 (𝑚𝑎𝑥 (0,  (𝑃𝑃𝐷𝑎𝑐𝑡𝑢𝑎𝑙−𝑃𝑃𝐷𝑡𝑎𝑟𝑔𝑒𝑡)))

𝑞

 (4.21) 

Where, 

𝑃𝐸𝑁𝐶𝑜𝑚𝑓𝑜𝑟𝑡 : Penalty value due to violation of comfort criteria, 

𝑃𝑃𝐷𝑎𝑐𝑡𝑢𝑎𝑙  : calculated PPD index for proposed building, 
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𝑃𝑃𝐷𝑡𝑎𝑟𝑔𝑒𝑡  : Target PPD index set by designer, 

q  : nonnegative constant. 

The PMV-PPD indices are included in the national and international thermal comfort 

standards. Therefore, the designer can select the target PPD metric according to 

recommended values and can define the boundaries of the comfort zone.  

The PDD index of actual building is however computed through building simulation 

at each optimization step. For multi-zone buildings, PDD is calculated for each zone 

during occupied times and then each PPD can be used as an individual comfort 

penalty otherwise an average PPD of all zones representing the whole building can 

be adopted. 

Figure 4.11 represents calculations steps for comfort penalty through an average PPD 

index approach. 
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Figure 4.11 : User thermal comfort penalty value calculation algorithm. 

Setting up a thermal comfort metric requires taking into account a range of 

environmental and personal factors however in the current study, it is assumed that 

all environmental factors other than air temperature and radiant temperature are 

constant. Commonly, control strategies are implemented in building simulation to 

maintain air temperatures within standard-defined comfort limits. However, in the 

optimization study HVAC plant equipment is selected from the equipment library 

based on a capacity calculation. Therefore, a capacity mismatch can be prevented 

through comfort criteria check, too. Moreover, radiant temperature is influenced a 

great deal by the change in building envelope design variables and thermal comfort 

can be improved based on radiant temperature.   
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Payback period for renewable systems 

The payback period is the time in which the initial cash outflow of an investment is 

expected to be recovered from the cash inflows generated by the investment. 

Therefore, payback period measures the time required to recover initial investment 

costs. The payback period of a given investment is an important measure of whether 

or not to undertake the investment, since longer payback periods are typically not 

desirable for investors. 

In the current study, a penalty is added to the main objective to set a limit on the 

payback period of a considered renewable system based on designer’s expectancy. 

The simple payback method is used to calculate payback period as explained in 

Figure 4.12. 
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Figure 4.12 : Renewable payback period penalty value calculation algorithm. 

The calculation algorithm is based on the equation 4.22. 

 
𝑃𝐸𝑁𝑝𝑎𝑦𝑏𝑎𝑐𝑘 = 𝜇𝑝𝑏 (𝑚𝑎𝑥 (0,  (𝑆𝑃𝐵𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑆𝑃𝐵𝑡𝑎𝑟𝑔𝑒𝑡)))

𝑞

 (4.22) 

Where, 

𝑃𝐸𝑁𝑝𝑎𝑦𝑏𝑎𝑐𝑘  : Penalty value due to violation of payback time criteria, 

𝑆𝑃𝐵𝑎𝑐𝑡𝑢𝑎𝑙  : Calculated simple payback index for proposed building, 

𝑆𝑃𝐵𝑡𝑎𝑟𝑔𝑒𝑡  : Target simple payback index set by designer, 
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𝜇𝑝𝑏   : Payback period penalty parameter, 

𝑞  : Nonnegative constant. 

The simple payback (SPB) is formulated as in equation 4.23 for renewable system 

investments in the study (Fuller and Petersen, 1995): 

 
𝑆𝑃𝐵 =

𝑑𝐼0

[𝑑𝐸0 + 𝑑𝑀0]
 (4.23) 

Where, 

𝑑𝐼0 : Additional investment cost,   

𝑑𝐸0 : Savings in energy cost in year t, 

𝑑𝑀0 : Difference in maintenance cost in year t. 

SBP is a practical method and it does not use discounted cash flows in the payback 

calculation. For instance, dE and dM are assumed to be the same every year, which 

means price escalation is not taken into account. Moreover, non-annually recurring 

additional costs such as replacements costs are ignored in SPB, too. 

4.2.4 Optimization Algorithm 

It is well known that all optimization methods have at least some limitations 

therefore, selecting a good algorithm is strictly depends on the nature of the 

considered problem.  

In this study, the considered building design optimization problem has a multi-

dimensional nature with multi-constraints expressed in single-objective formulation. 

There are a large number of variables involved and they are all represented in 

discrete form. Thus, objective function is likely to be discontinuous. There is no 

derivative information available and many local optima might occur.  

The main expectations from the optimization algorithm in this study are the 

following: being capable to deal with above mentioned problem nature, being able to 

manage black box functions provided by building simulation tools, providing 

reduced computation time, being simple, robust and easy to implement.  

As discussed in pervious chapter population based heuristic techniques are found to 

be effective dealing with constraint discrete optimization problems where they 
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provide the ability of escaping from local plateau. Particle Swarm Optimization 

belongs to the population-based evolutionary algorithms class and it is successfully 

applied to the building design optimization problem in the literature. It has its own 

pros and cons. However, in this research Particle Swarm Optimization is chosen as 

computation technique due to following advantages over other similar techniques: 

PSO is a simple but powerful search technique that can rapidly converge towards an 

optimum.  It is easier to implement PSO and there are fewer parameters to adjust. It 

is free from the complex computation. Moreover, several studies suggest that PSO 

has the same effectiveness for finding the true global optimal solution for single-

objective optimization as the Genetic Algorithms but with significantly better 

computational efficiency (Hassan et al., 2005; Panda and Padhy, 2008; Yang et al., 

2008; Peyvandi et al., 2011).  

4.2.4.1 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a population based stochastic optimization 

technique introduced originally by Kennedy and Eberhart in 1995. It is inspired by 

social behaviour and movement dynamics of birds flocking or fish schooling. PSO 

has been applied successfully to a wide variety of search and optimization problems. 

Rao (2009) explains that while birds are searching for food in an area, they have no 

prior knowledge of the food source. They start at random locations in the field and 

might go together or scatter to locate food. During the search, they share information 

of the locations they have been to and when a good food source is discovered, they 

eventually flock to the place. 

As far as Particle Swarm Optimization is concerned, each potential solution 

represents a bird and is called a particle. Particles fly through the problem space by 

following the current optimum particles at a velocity dynamically adjusted according 

to the historical behaviours of the particle and its companions.  

The basic PSO algorithm is shown in Figure 4.13. All the particles have a fitness 

value, which are evaluated by the fitness function to be optimized. PSO is initialized 

with a group of random particles and then searches for optima by updating 

generations. The particles have memory and each particle keeps tracks of its 

coordinates in the problem space, which are associated with the best solution 

achieved so far by that particle. This personal best value is called as pbest. Another 
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best value that is tracked by the particle swarm optimizer is the best value obtained 

so far by any particle in the neighbours of the particle. This local value is called 

lbest. When a particle takes all the population as its topological neighbours, the best 

value is a global best and is called as gbest.  
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for each particle
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new pBest
Keep previous pBest

Assign best particle’s 

pBest value to gBest

Calculate velocity for 
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Use each particle’s 

velocity value to update 

its data values

Target or maximum 

epochs reached?

End

Yes No

Yes

No

 

Figure 4.13 : Flowchart of the particle swarm optimization algorithm. 

Particles attempts to change its location to a point where it had a better fitness value 

(pbest) at previous iterations, which models cognitive behaviour, and in a direction 

where other particles had a better fitness value (lbest), which models social 

behaviour. The velocity and position of each particle are updated after each 

successive iteration with following equations, respectively. 
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 𝑉𝑖
𝑘+1 = 𝑉𝑖

𝑘 + 𝑐1𝑟1
𝑘(𝑝𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑥𝑖
𝑘) + 𝑐2𝑟2

𝑘(𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑥𝑖
𝑘) (4.24) 

 𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑉𝑖
𝑘+1 (4.25) 

Where, 

𝑉𝑖
𝑘  : Velocity of particle i at iteration k, 

𝑉𝑖
𝑘+1  : Velocity of particle i at iteration k+1, 

𝑥𝑖
𝑘  : Position of particle i at iteration k, 

𝑥𝑖
𝑘+1  : Position of particle i at iteration k+1, 

𝑝𝑏𝑒𝑠𝑡𝑖
𝑘
 : pbest of particle I, 

𝑔𝑏𝑒𝑠𝑡  : gbest of the group, 

𝑐1  : Cognitive acceleration coefficient, 

𝑐2  : Social acceleration coefficient, 

𝑟1, 𝑟2  : Uniformly distributed random number between 0 and 1. 

Although being a powerful technique, PSO shows some disadvantages, too: it 

sometimes is easy to be trapped in local optima, and the convergence rate decreased 

considerably in the later period of evolution. Several attempts have been made to 

overcome the limitations and to improve the performance of the PSO algorithm 

(Yang et al., 2007).  

Shi and Eberhart (1998) proposed an inertia weight ω, which improves the 

performance of the original PSO algorithm by modifying equation 4.26 to: 

 𝑉𝑖
𝑘+1 = 𝜔𝑉𝑖

𝑘 + 𝑐1𝑟1
𝑘(𝑝𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑥𝑖
𝑘) + 𝑐2𝑟2

𝑘(𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑥𝑖
𝑘) (4.26) 

where ω ≥ 0 is defined as inertia weight factor.  

As explained by Yang et al. (2007) “Empirical studies of PSO with inertia weight 

have shown that a relatively large x have more global search ability while a relatively 

small x results in a faster convergence”. 
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Moreover, Clerc and Kennedy (2002) introduced a new version of PSO with a 

constriction coefficient χ. The constriction coefficient reduces the velocity according 

to the following formula:  

 𝑉𝑖
𝑘+1 = χ{𝑉𝑖

𝑘 + 𝑐1𝑟1
𝑘(𝑝𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑥𝑖
𝑘) + 𝑐2𝑟2

𝑘(𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑥𝑖
𝑘)} (4.27) 

Where, 

 

𝜒(κ, φ) ≜ {

2κ

|2 − 𝜑 − √𝜑2 − 4𝜑|
, 𝜑 = 𝑐1 + 𝑐2 > 4

κ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.28) 

Since the newer version of PSO is found to be more effective than originally 

proposed algorithm, the updated versions of PSO is used as optimization algorithm in 

this research. 

The parameters used in the definition of particle swarm optimization control the 

behaviour of a swarm and they have a strong influence on the overall performance of 

the algorithm. The most influential parameters are swarm size, inertia weight, 

constriction coefficient and acceleration coefficient. However, there is not an 

established approach for correct selection of the PSO parameters. Past studies in 

similar domains can serve as a good basis thus, it may certainly be beneficial to tune 

the parameters based on the individual problem at hand.  

In the proposed methodology, the parameters of PSO algorithm are chosen in 

advance during pre-optimization phase based on the expertise of the authors, 

previous authoritative studies and design of experiments methods. Design of 

experiment methods considers the run of an algorithm as an experiment, gaining 

insightful conclusions into the behaviour of the algorithm and the interaction and 

significance of its parameters. Once the parameters are established, they are kept 

fixed during the calculation.  

4.3 Summary 

In this chapter, the proposed simulation based-optimization methodology, which is 

aimed to be developed for supporting the whole-building design process from energy 

efficiency perspective, is presented. 
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The whole-building design is a multi-disciplinary approach that aims to integrate all 

aspects of site development, building and system design, construction, and operations 

in order to create energy-efficient, resource conscious, environmentally responsible 

and comfortable built-environments. Today, common design approaches are not 

sufficient to meet the requirements of high energy performance buildings and there is 

a strong need for new approaches that attempt to bridge the gap between different 

steps of building design process. Therefore, in the current study, an integrative 

simulation-based optimization methodology was proposed. In the solution approach, 

improving building performance was taken integrally as one-problem and the 

interactions between building structure, HVAC systems and building-integrated 

renewable energy production were simultaneously and dynamically solved while 

looking for a balanced combination of several design options.  

The method specifically aimed at supporting cost-effective building and system 

design for real-world design challenges via mathematical computation by minimizing 

global costs in long term while ensuring required thermal comfort is provided to user 

within minimized CO2 emission rates. The methodology had the capability to right 

size then chooses HVAC and renewable system equipment that is balanced with 

building architectural design options. The study covered multi-dimensional building 

design aims through a single-objective optimization approach where multi objectives 

are represented in a ε-Constraint penalty approach. 

The optimization scheme was realized through the collaboration of updated and 

enhanced generic optimization environment GenOpt, a dynamic building simulation 

tool EnergyPlus, and a user-created dedicated database. 

The objective of the optimization is formularized as a single-objective optimization 

with constraints. The main criterion is taken as global cost where building CO2 

emissions and occupancy thermal comfort are imposed as constraints. Moreover, 

when evaluating renewable systems together with building and HVAC system design 

alternatives, payback period of the considered renewable technology is also taken 

into account in the form of penalty function. 

The PSO technique, which is capable of dealing with complex optimization problems 

where discrete and continuous variables exits with discontinuities, was adopted as 

the optimization algorithm of the study. 
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The definitions of decision variables, the formulation of objective function and 

constraints, and finally the selection of appropriate solution computation techniques 

were explained in detail within the chapter. 

One of the most important contributing factors of this methodology is that it can 

efficiently handle large number of variables with different nature. For instance, the 

best combinations of building architectural characteristics, envelope features, and 

HVAC system equipment and building related renewable systems are sought 

simultaneously while taking into account dynamic interaction between building loads 

and building systems. Moreover, variables are represented in discrete form and all 

the variable related information is stored in a user-created database that can interact 

with the optimization engine therefore, the economic and energy performances of 

actual market products can be easily tested and compared as design options. In 

addition, the single objective formulization of objective function supported with 

penalty functions provides quick convergence opportunities. 

In order to test the efficacy and applicability of the proposed methodology and to 

assess its advantages and disadvantages, a case study has been carried out as the next 

step of the current work. 
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5.  CASE STUDY RESULTS AND DISCUSSION 

5.1 Introduction 

This chapter illustrates how the proposed simulation-based optimization 

methodology can be applied to the building design projects to provide decision 

support for evaluating different design alternatives for cost-effective energy 

efficiency. The functioning and the effectiveness of the optimization framework are 

assessed through a case study implementation where different design scenarios are 

created, optimized and analysed. 

Following sections firstly introduces a hypothetical base case building that serves as 

an initial reference for calculations, and then the test cases of interest are explained. 

Optimization scenarios are described in terms of design variables, objective function, 

optimization algorithm, financial data and parameter settings.  

Finally, optimization analyses are carried out and the results are presented. The 

boundary of the methodology is discussed and recommendations for future 

improvements are suggested. 

5.2 Case Study 

5.2.1 Base case building description 

The base case building serves as a baseline reference for comparison and evaluation 

in the optimization analysis therefore; the establishment of the base case building 

model is one of the main steps of the proposed methodology. The building model 

definition should include all the details about building architectural characteristics 

and building system characteristics in consideration.  

In this study, the methodology is intended to be applied to a hypothetical generic 

office building. Three cities in Turkey including Istanbul, Ankara and Antalya are 

selected as building locations hence, the performance of the methodology under 

different climatic conditions can be observed.  
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The prototypical building represents common construction practices where buildings 

are designed without giving attention to building energy performance. Since the base 

case building is non-existing, the building model is developed based on the 

conventional building stock in Turkey.  

The data about the envelope structures, schedules, and internal gains etc. are obtained 

from the National Building Energy Performance Calculation Methodology for 

Turkey. Moreover, it has been benefited from an expert opinion to highlight HVAC 

system types and equipment that are frequently used in Turkey. 

The description of the base case building model covers the following subjects: 

weather conditions, general building description, building envelope, occupancy, 

interior lighting, plugged-in equipment, HVAC system and water heating system. 

5.2.1.1 Climate 

Three cities in Turkey, which are Istanbul (latitude N 40° 58' and longitude E 28° 

49'), Ankara (latitude N 39° 56' and longitude E 32° 52’) and Antalya (latitude N 36° 

53' and longitude E 30° 43'), are selected as main locations of the base case building. 

The Istanbul’s climate is characterized as a warm, marine and subtropical. Summer 

weather in Istanbul is warm, where a maximum daily average dry-bulb temperature 

is 24.2 °C occurring in August. Winters are cold and wet, where a minimum daily 

average dry-bulb temperature is 4.9 °C occurring in February. Spring and autumn are 

mild, but often wet and unpredictable. Istanbul has persistently medium to high 

humidity. Hours of sunshine range between 2.6 hours per day in January and 11.6 

hours per day in July. 

Ankara’s climate is characterized as continental with the climatic features of a semi-

arid region. The summers are hot and winters are cold where relative humidity is 

higher in winter. The maximum daily average dry-bulb temperature is 21.5 °C 

occurring in July and the minimum daily average dry-bulb temperature is -2.4 °C 

occurring in January. 

The Antalya’s climate is characterized as a Mediterranean climate with hot and 

humid summers and mild and rainy winters. Around 300 days of the year are sunny, 

with over 3000 hours of sunlight per year. The maximum daily average dry-bulb 
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temperature is 29.2 °C occurring in July and the minimum daily average dry-bulb 

temperature is 10.1 °C occurring in January. 

In the study, International Weather for Energy Calculations weather data, including 

temperature, humidity, wind, and, solar radiation is used as input to simulation 

model. The weather information is obtained in annual hourly format representing the 

typical long-term weather patterns. The Figure 5.1 illustrates average outdoor air 

temperatures for Istanbul, Ankara and Antalya. The maximum and minimum 

monthly temperatures are given in APPENDIX A. 

 
Figure 5.1 : Monthly average outdoor air temperatures. 

Similarly, the Figure 5.2 summarizes average global horizontal solar radiation 

received in Istanbul, Ankara and Antalya on monthly basis. The graphics on monthly 

direct solar radiation is given in APPENDIX A. 

For design day equipment sizing calculations, the extreme weather conditions are 

taken as following: The maximum dry-bulb temperatures for summer design day are 

31.1
 
°C, 33

 
°C, and 38 °C for Istanbul, Ankara and Antalya, respectively. The 

minimum dry-bulb temperatures for winter design day are -2.6 °C, -15.7 °C, and 1.4 

°C for Istanbul, Ankara and Antalya, respectively.  

The details of summer and winter design day are given in APPENDIX A. 
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Figure 5.2 : Monthly average global solar radiation. 

5.2.1.2 General building description 

The building under study is a three-story office building with a total above-basement 

floor area of 8709 m
2
. It has a square L shape with main dimensions of 57.6 m by 

57.6 m. The building floor-to-floor height is 3 m and the floor-to-roof height is 9 m. 

The building is aligned with true north. A graphical representation of the base case 

building model can be seen in Figure 5.3. 

 

 

  

Figure 5.3 : The front and back 3D view of base case building model. 

Each building floor is divided into 3 conditioned zones, which makes, in total, 9 

thermal zones. All the zone space is assumed for office use. The building layout is 

illustrated in Figure 5.4. All the floors have the same footprint. The long axis is along 

the East-West direction and the front facade faces South direction. There are no 

adjacent buildings or trees surrounding the building. 
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Figure 5.4 : The layout of base case building. 

5.2.1.3 Building envelope  

Opaque constructions of the base case building include brick walls as external walls, 

an inverted concrete flat roof, a slab-on-grade floor, ceilings and interior partition 

walls.  

The brick wall element consists of the following sequence of layers from outside to 

inside: common exterior paint, exterior plaster, insulation, extra plaster, brick, 

interior plaster and interior paint. Buildings in each city are identical except for 

external wall exterior paint. To follow real life construction practices, a common 

dark colour exterior paint with a solar absorptivity of 0.7 is chosen for the base case 

buildings located in Istanbul and Ankara however, a light colour paint with a solar 

absorptivity of 0.4 is preferred for the base case building in Antalya. 

The roof type of the base case building considered in this case study is a 

conventional inverted flat roof system composed of the following sequence of layers 

from outside to inside: surface loading gravel, paving slab, geotextile, insulation, 

water proofing layer, screed floor, concrete deck, and interior plaster. The solar 

absorptivity of the outside layer that is composed of gravel is taken as 0.9. 

The thickness of insulation layers in external wall and roof elements are assumed 

zero to represent uninsulated initial design conditions however, the optimum 

insulation thickness will be investigated as an optimization design variable. 

The slab-on-grade floor consists of the following sequence of layers from outside to 

inside: Concrete deck, rigid insulation, plaster, and linoleum finish. 

North 
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The main construction elements are summarized in Table 5.1. These envelope 

constructions represent common building elements in Turkey and the materials are 

obtained from the product catalogues. 

Table 5.1 : Base case building construction elements. 

Building 

Elements 
Construction (from outside to inside) 

External 

Walls 

Exterior paint + Exterior  plaster (0.02m) + insulation (to investigate)+ Extra  

plaster (0.02m ) + Brick ( 0.19m) + Interior plaster (0.02m) 

Roof Gravel (0.03m) + Paving slab (0.05m)+ Geotextile (0.001m) + insulation (to 

investigate)+ water  proofing (0.006m) + Screed floor (0.15m) + Concrete 

deck (0.15m) + Interior plaster (0.02m) 

Floor Concrete deck (0.35m) + Rigid insulation (0.05m) + Plaster (0.05m) + 

Linoleum finish (0.01m) 

Ceiling Concrete deck (0.10m) + Air gap + Acoustic tile (0.01m) 

Interior 

wall 
Plaster (0.05m) + Brick (0.10m) + Plaster(0.05m) 

The U-values for, external walls, the roof and floor are 2.06, 2.161, and 0.45 W/m
2
K, 

respectively. Since no insulation is applied to external walls and roof, these building 

elements do not comply with the recommended numbers by national building 

standard TS 825 (2008). However, after the application of optimization, appropriate 

levels of insulation will be determined. 

The thermal properties of the building floor comply with the national standard. 

Transparent building construction includes windows with double pane glazing. 

Windows are distributed on each face of the building and all windows have a height 

of 1.5 m. The overall window-to-wall ratio of the base case building is set at 25%. 

Each glazing unit is made up of double windows with clear glass and 12 mm air 

space. U-value of the glazing unit is set to 2.9 W/m
2
K, SHGC is set to 0.75, and Tvis 

is set to 0.85, which represents a manufactured glazing unit commonly used in 

Turkey. The thermal performance of glazing unit is below the recommended levels 

of 2.4 W/m
2
K by TS 825 standard. However, a standard-complying unit will be 

explored during optimization process. The window frame is ignored for 

simplification. 

Building air infiltration through building elements is assumed 0.5 ach for all the 

zones. Furthermore, an infiltration schedule is assumed to vary the peak infiltration 
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rate given above with HVAC fan on/off operation, assuming that the building is 

positively pressurized when the HVAC fan is on. Therefore, the schedule assumes 

full infiltration when the HVAC system is scheduled off and 25% of the peak 

infiltration when the HVAC system is scheduled on. 

5.2.1.4 Occupancy 

The value of the peak occupancy for the base case building is set in accordance with 

National Building Energy Performance Calculation Methodology for Turkey. The 

national methodology identifies four levels of occupancy density based on floor 

space per person as given in Table 5.2. 

Table 5.2 : Density of people for office buildings. 

People Density Low Medium High Very high 

Floor area per person (m
2
/person) 15.5 11.6 9.3 7.8 

In this study, medium occupancy density (11.6 m
2
/person) is assumed for base case 

building model therefore, the actual number of maximum occupancy is about 750. 

The total heat gain from each occupant is set at 130 W per person for moderately 

active office work activity in offices. This value is taken from ASHRAE 2009 

Fundamentals Handbook, Table 1 of Chapter 18. The heat given off by people is 

directly added in building energy balance. 

Moreover, the base case building operating hours are assumed to follow typical 

office occupancy patterns in Turkey with peak occupancy occurring from 8 AM to 6 

PM weekdays and Saturday. In addition, a limited occupancy is assumed to include 

janitorial functions and after-hours workers beginning at 7 AM and extending until 7 

PM. For Sunday, the building is assumed to be closed. Hourly profile of occupation 

in the building during 24 hours is given in APPENDIX B. 

5.2.1.5 Interior lighting 

In order to achieve IESNA (Illuminating Engineering Society of North America) 

recommended illumination levels (500 lux) in the office space, 11 W/m2 lighting 

power density is applied to all zones in the base case model. This value is consistent 

with the Turkish National Calculation Methodology. A lighting schedule given in 

Appendix B is assumed to modify the given peak value in order to incorporate the 
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effect of the manual controls. The base case building does not include any dimming 

control of artificial lights based on indoor daylighting levels. 

Internal heat loads generated due to lighting is added directly in building energy 

balance. 

No exterior lighting assumed for this case study. 

5.2.1.6 Plugged-in equipment 

Office buildings have miscellaneous equipment plugged in to receptacles as plug 

loads, including office equipment (computers, monitors, copiers, fax machines and 

printers, etc.), and possibly refrigerators, coffee makers, and beverage vending 

machines.  

The value of the peak power of office equipment for the base case building is set 

again in accordance with National Building Energy Performance Calculation 

Methodology for Turkey. The methodology identifies four levels of interior load 

according to occupancy density as shown in Table 5.3.  For the base case building, 

medium level equipment load, which is 10.8 W/m
2
, is taken in coherence with 

previously selected occupancy density. 

Table 5.3 : Density of people vs equipment load for office buildings. 

People Density Low Medium High Very high 

Equipment load (W/m
2
) 5.4 10.8 16.1 21.5 

The peak loads are modified according to plugged-in load schedule given in 

Appendix B. The schedule follows occupancy schedule pattern. 

Internal heat loads generated due to plugged-in equipment is added directly in 

building energy balance. 

5.2.1.7 HVAC system 

The HVAC system of the base case building is developed based on the non-

residential reference building description given in Turkish National Building 

Performance Calculation Methodology, Appendix IV (BEP-TR, 2010). Moreover, an 

expert opinion is taken in selecting initial HVAC system equipment.  
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Reference building description of Turkey assumes central water heating system with 

natural gas boiler for space heating purposes. Cooling is provided through a chiller-

based system where Fan coil units are acting as secondary system elements. 

Ventilation is assumed to be brought into the building space through an air handling 

unit.  

Based on the acquired information, the heating, cooling and ventilation need of the 

base case building is assumed to be served by a central hybrid air-water HVAC 

system as illustrated in Figure 5.5. The heat exchange between the centrally 

conditioned water and room air is taking place through a four pipe fan-coil system 

located in each thermal zone where hot water is provided by a boiler and chilled 

water is provided by a chiller. Moreover, for ventilation purposes, a dedicated 

outdoor air system that is also served by the central plant equipment is adapted.  

Air 
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Figure 5.5 : HVAC system schematic. 



126 

The author investigated available system equipment in the Turkish market and 

determined the related equipment efficiency coefficients based on actual products 

dominating the market. 

The central heating plant equipment is a natural gas-fired hot water boiler, which 

provides hot water to the ventilation system main heating coil and fan-coil system 

heating coils. The nominal thermal efficiency of the plant is assumed 82%. 

Moreover, the efficiency is assumed to be varying during annual operation according 

to the boiler’s biquadratic efficiency curve where the efficiency is a function of part 

load- ratio and boiler leaving water temperature. 

The boiler nominal capacity is calculated first through sizing calculations based on 

the given design day weather information, then a market equipment that matches the 

calculated load is selected from the user-created equipment database.  

There is a hot water circulating pump with a motor efficiency set at 0.875 and it 

operates against a 179352 Pa head. Motor is located outside of fluid and adds no heat 

to fluid. Hot water loop piping is assumed to be perfectly insulated, so there is no 

heat loss from the loop. 

The central cooling plant equipment is a water-cooled electric chiller and it works 

together with an associated cooling tower. The chilled water is produced for the 

ventilation system main cooling coil and fan-coil system cooling coils. The initial 

rated Energy Efficiency Ratio (EER) of the chiller is assumed 4.45 kW/kW. The 

chiller nominal capacity is then calculated through sizing calculation based on given 

design day weather information. However, after establishing the required equipment 

capacity, actual market equipment that matches the calculated cooling load is 

selected from the user-created equipment database and the EER is updated 

accordingly. Moreover, EER is assumed to be varying during annual operation 

according to the chillers three efficiency curves that are Cooling Capacity Function 

of Temperature Curve, Cooling Capacity Function of Temperature Curve and 

Electric Input to Cooling Output Ratio Function of Part Load Ratio Curve. The 

curves are created based on manufacturers’ equipment technical data sheets.  

There is a variable speed chilled water pump with a motor efficiency of 90% 

operates against a 179352 Pa head. Motor is located outside of fluid and adds no heat 

to fluid. There is also a variable speed condenser water pump with a motor efficiency 
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of 87% operates against a 197740 Pa head. Motor is located outside of fluid and adds 

no heat to fluid. Chilled water and condenser water flows are assumed to be varying 

so that the temperature leaving the chiller matches a set point. Chilled water and 

condenser water loop piping are assumed to be perfectly insulated so there is no heat 

loss. 

There are four-pipe fan coil units serving each zone. The units include cycling type 

fans so the fan is cycled to match unit output with the load. Heating and cooling 

capacities of the units are obtained through sizing calculations. 

There is one central dedicated outdoor air system, which supplies 100% outdoor air 

to the building zones during operation hours when required.  There are air terminal 

units in each room. The ventilation system’s heating and cooling coils are also served 

by the central plant equipment. The main supply fan is a variable air volume fan and 

the total fan efficiency is 61%. The electric power input varies according to a 

performance curve as a function of flow fraction. 

Outdoor air ventilation rate is chosen 0.0125 m3/second per person, which satisfies 

related ventilation standards such as ASHRAE 62.1-2010: Ventilation for Acceptable 

Indoor Air Quality and EN 15251: Indoor environmental input parameters for design 

and assessment of energy performance of buildings - addressing indoor air quality, 

thermal environment, lighting and acoustics. 

HVAC system main operation is assumed to follow occupancy schedule. When the 

systems are on, the ventilation fan run continuously to supply the required ventilation 

air, while the fan coils cycle on and off to meet the building’s cooling and heating 

loads. During off hours, each system will shut off, and only cycle on when the 

corresponding setback thermostat control calls for heating or cooling to maintain the 

setback temperature.  

The HVAC systems maintain 21 °C heating setpoint and 24 °C cooling setpoint 

during occupied hours. During off hours, a thermostat setback control strategy is also 

applied, assuming a 15 °C for heating and 50 °C for cooling. Moreover, the HVAC 

system schedules allow earlier startup times to bring the space to the desired 

temperature at the beginning of normal occupancy. The heating and cooling is 

available all around the year whenever there is need. 
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The HVAC schedule pattern together with set point schedules are given in 

APPENDIX B. 

5.2.1.8 Water heating system 

A stand-alone storage water heater is adopted for the case study building to prepare 

required hot water for occupancy use. The system consists of a storage tank and a 

natural gas burner unit. Hot water requirement in the case study building is to supply 

lavatories during the day and for clean-up during the evening. The hot water 

consumption is assumed 7.5 litres per person per day and since there are 750 people, 

the daily hot water consumption is around 5625 litres. The peak flow rate is assumed 

0.000469 m
3
/s and a modifying hot water use schedule is used as given in 

APPENDIK B to obtain hourly flow rates. 

The water is assumed to be heated to 50 °C. The volume of the tank and the heater 

capacity is sized based on peak draw, assumed start and finish temperatures and a 

user defined time for recovery. After establishing the hot water load, equipment that 

matches the calculated needs is selected from the equipment database. 

The schematic of water heating system is given in Figure 5.6. 

WHCP

Water Heater 

& Storage 

Tank

Hot Water Demand

WHCP : Water Heater Circulation Pump
 

Figure 5.6 : Water heating system schematic. 

5.2.2 Design variables 

5.2.2.1 Variable description 

The definition of design variables highly depend on the limitations imposed by the 

simulation tool that is coupled with the optimization algorithm. Therefore, in this 

study, decision variables are formed based on the structure of the EnergyPlus 

simulation tool. 
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As mentioned in previous chapters, there are three main factors that determine a 

building’s demand for energy: exterior load, interior load and building heat loss or 

gain. Moreover, HVAC system type, equipment efficiency and control strategies 

affect the amount of energy consumption and indoor comfort level. Similarly, 

characteristics of renewable systems together with outdoor conditions determine the 

level of energy generation. Therefore, in this study, the considered variables are 

categorized into three main groups: building-related variables, HVAC-related 

variables and renewable system-related variables. It is assumed that building loads 

are served by the reference central HVAC system explained in the previous section 

and the renewable energy production will be supplied by photovoltaic and solar 

thermal systems. 

The possible values of the design variables are prepared based on the actual materials 

and system equipment available in the Turkish construction market.  

5.2.2.2 Building-related variables 

Orientation 

Orientation is defined by the azimuth angle between the true north and the building 

north axis. The orientation is measured in degrees and it is considered to be varying 

from 0 to 360 degrees by user defined steps. 

In this case study implementation, the orientation is set as a discrete variable varying 

between 0 and 360 degrees with a step of 10 degrees. The initial value of the 

orientation is set to 0 degree. 

The corresponding variable name is assigned Ort. 

Insulation level for building main elements 

Insulation level and consequent overall heat transfer coefficient of the building main 

structures are defined by the thickness of insulation layer exists within each structure. 

The lower value is taken zero, which represents no insulation condition. Insulation 

thickness is then varied in user defined steps, up to a user-defined maximum value. 

In the case study, insulation thickness of external wall and roof elements are 

investigated as design variables. 

For wall insulation, the thickness of only one type of wall insulation material which 

is extruded polystyrene is investigated. The insulation thickness within the external 
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wall construction is set to be varying between 0 and 0.15 meter with an incremental 

step of 0.005 meter. Insulation materials usually manufactured in 0.01 m thickness 

however, they can be also produced in 0.005m thickness on demand. Therefore, to 

increase the precision, 0.005m insulation thickness step is preferred.  The initial 

value is taken zero to start with a no-insulation case. The corresponding variable 

name is assigned iEW. 

Similarly, the thickness of only one type of roof insulation material which is 

extruded polystyrene is investigated.  The insulation thickness within the roof 

construction is set to be varying between 0 and 0.15 meter with an incremental step 

of 0.005 meter. The initial value is taken zero to consider a no-insulation case. The 

corresponding variable name is assigned iR. 

Solar reflectivity of roof system (roof type) 

Reflective surfaces can deliver high solar reflectance and high thermal emittance 

therefore; they can maintain lower roof temperatures. Therefore, the performance of 

roof systems depending on their ability to reflect solar radiation is investigated 

within the course of this study. In EnergyPlus, thermal, solar and visible absorptance 

values of materials can be user-defined, and consequent solar reflectance and Solar 

Reflectance Index (SRI) values for a particular layer then can be calculated. Thus, in 

the optimization scheme, the solar absorptance value of the outer layer of a given 

roof system is taken as discrete decision variable. The absorptance value of the each 

product to be tested must be between 0.0 and 1.0; however designer can test and 

compare as many products as required. 

In the case study, a reflective cool roof surface coating and a conventional dark-

coloured gravel surface are investigated and compared through optimization as 

discrete options.  

Roof layer 1 represents a dark coloured gravel layer for a conventional roof where 

the solar absorptivity is 0.9 (reflectivity is 0.1), emissivity is 0.9 and resulting SRI 

value is 6.  

Roof layer 2 represents a cool roof coating material produced in Turkey and 

available for national market. The coating has a solar absorptivity of 0.18 

(reflectivity of 0.82), emissivity of 0.9 and a resulting SRI value of 103. 

The corresponding variable name is assigned RT. 
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Glazing type  

In the methodology, glazing type is taken as a discrete variable where each possible 

integer number corresponds to a glazing unit ID number stored in the user-created 

database.  

Glazing ID number relates the variable to the actual product information including 

U-value, SHGC and visible transmittance value all together. Therefore, by this 

approach, the designer can test and compare the actual performances of as many 

glazing products as required.  

A database of actual glazing units available in the Turkish market has been prepared 

as given in Table 5.4. All the units are made of double-glazing with a filling gas and 

with variations of different coatings. 

There are twenty-seven products in the database covering a wide range of glazing 

types. The U value of the products varies between 2.9 W/m2K and 1.1 W/m2K while 

the total solar energy transmittance (SHGC) value ranges between 0.75 and 0.21 and 

visible transmittance value ranges between 0.8 and 0.21. The units have either an air 

or argon filling of 12mm or 16mm cavity. The solar and optical properties of the 

units vary based on different coatings and technologies applied.  

Table 5.4 : Glazing database. 

Glazing 

Type (ID) U Value SHGC Tvis 

Glazing 

Type (ID) U Value SHGC Tvis 

1 2.9 0.75 0.80 15 1.6 0.39 0.64 

2 2.8 0.46 0.64 16 1.6 0.29 0.45 

3 2.8 0.34 0.35 17 1.6 0.21 0.21 

4 2.8 0.28 0.21 18 1.3 0.56 0.79 

5 2.7 0.75 0.80 19 1.3 0.44 0.71 

6 2.7 0.46 0.64 20 1.3 0.39 0.64 

7 2.7 0.34 0.35 21 1.3 0.29 0.45 

8 2.7 0.28 0.21 22 1.3 0.21 0.21 

9 2.6 0.75 0.80 23 1.1 0.56 0.79 

10 2.6 0.46 0.64 24 1.1 0.44 0.71 

11 2.6 0.34 0.35 25 1.1 0.39 0.64 

12 2.6 0.28 0.21 26 1.1 0.29 0.45 

13 1.6 0.56 0.79 27 1.1 0.21 0.21 

14 1.6 0.44 0.71 

    
There are 27 values from 1 to 27 available as values of design variables. 
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The initial glazing type is taken Glazing 1 with a U-value of 2.9 W/m2K, SHGC of 

0.75 and Tvis of 0.8. 

The corresponding variable name is assigned GT. 

Window-to-wall ratio  

Window-to-wall ratio is defined by the varying window size. It is assumed that the 

external wall accommodates a single rectangular window placed at its centre and the 

window size is calculated based on the window width and height. 

Window-to-wall ratio is taken as a discrete variable where each possible design 

variable is a pre-defined window coordinate value corresponding to a w-t-w ratio. 

Therefore as each window coordinate changes, so does the percentage of the glazed 

surface.  

In the case study, six w-t-w ratio options that are 5%, 15%, 25%, 35%, 45%, and 

55% considered as decision variables.  

Building facades with different orientations may have different window-to-wall 

ratios however for each orientation the w-t-w is required to be same. 

In the case study, window height is fixed at 1.5 m. As illustrated in Figure 5.7, only 

the x coordinates of the window corners are allowed to vary. The maximum value of 

the window coordinates cannot exceed the coordinate values of the base walls that 

contain the window.  

 

Figure 5.7 : Window coordinates. 

The initial window-to-wall ratios of all windows are set to 25%. 

The corresponding variable name is assigned WTW. 

Artificial lighting control  

A building’s daylight potential and the answer to whether or not to integrate electric 

lights with a daylighting dimming control system is explored in discrete form where 

design variables are either 0 or 1. If the variable takes 0 there is only a manual 
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control system available, however if variable takes 1, a pre-defined daylighting based 

dimming control system is integrated into the building simulation model and building 

lights are allowed to be dimmed according to a user set daylighting control scheme. 

The corresponding variable name is assigned DL. 

In the case study, the predefined dimming control operates with a design value of 

500 lux and two points inside each zone at a height of 0.8 m (desk level) are selected 

as reference points as shown in Figure 5.8.  

 

Figure 5.8 : Location of daylighting reference points. 

At each time step the required power of the artificial lights is calculated according to 

the illuminance levels evaluated at the reference points and the parameters 

established by the control strategy. 

5.2.2.3 HVAC system-related variables 

In the current study, a selection of HVAC plant equipment is realized through 

optimization. Each chiller or boiler equipment has a unique ID number that relates it 

to the physical equipment information and related performance curves stored in the 

database. Therefore, optimization searches among discrete equipment ID numbers 

for the suitable equipment that can match the required capacity and load 

requirements while showing the best performance throughout the year. The 

developed optimization code makes sure at each iteration step the equipment 

capacity, reference efficiency ratio and off-reference equipment performance curves 

which define the dynamic equipment performance is read from the user-prepared 

equipment database and loaded to simulation model for the analysis. 
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The number of chiller or boiler equipment to investigate is set by the designer; 

however enough equipment that can cover a wide range of equipment capacities 

should be available in the database. 

In addition, the capacity of depending equipment such as cooling towers and fan coil 

units are calculated based on building loads and selected equipment simultaneously 

within the process as a depending variable. 

Chiller Type 

The chiller equipment type is taken as a discrete variable where given values of 

design variable is integers indicating chiller equipment stored in a user-created 

chiller database. The corresponding variable name is assigned CL. 

In the database, each chiller is defined with a nominal cooling capacity, full load 

energy efficiency ratio and off-reference performance curves including Capacity as a 

Function of Temperature curve (CAPFT), Energy Input Ratio as a Function of 

Temperature curve (EIRFT), and Energy Input Ratio as a Function of Part-load Ratio 

curve (EIRFPLR). 

CAPFT is a biquadratic performance curve that parameterizes the variation of the 

cooling capacity as a function of the leaving chilled water temperature and the 

entering condenser fluid temperature. EIRFT is again a biquadratic performance 

curve that parameterizes the variation of the energy input to cooling output ratio as a 

function of the leaving chilled water temperature and the entering condenser fluid 

temperature. Lastly, EIRFPLR is quadratic performance curve that parameterizes the 

variation of the energy input ratio (EIR) as a function of the part-load ratio. The EIR 

is the inverse of the COP, and the part-load ratio is the actual cooling load divided by 

the chiller’s available cooling capacity. The three curves define the impact of varying 

chilled water temperature, condenser temperature, and load on chiller performance 

and capacity. 

For case study under investigation, a chiller database including 44 chiller equipment, 

which are commercially available in Turkish market, is prepared. A sample the 

library is given in Table 5.5 below. The library covers a range of products with 

cooling capacities from 270 kW to 1750 kW. Moreover, there are two product 

categories based on their efficiencies: moderate-efficiency chiller category (average 

EER: 4.72) as shown in Group A of Table 5.5 and high-efficiency chiller category 
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(average EER: 5.63) as shown in Group B of Table 5.5. The initial chiller type is also 

selected after the base case sizing calculations from this database. 

Table 5.5 : A sample of chiller equipment database. 

Group A: Moderate-efficiency chillers 

Chiller  

Type 

Capacity 

(kW) 
EER  

Efficiency curves 

CAPFT EIRFT EIRFPLR 

1 287 5.04 CAP1 EIR1 EPLR1 

2 312 4.8 CAP2 EIR2 EPLR2 

3 349 4.85 CAP3 EIR3 EPLR3 

4 375 4.57 CAP4 EIR4 EPLR4 

... ... ... ... ... ... 

20 1420 4.7 CAP20 EIR20 EPLR20 

21 1630 4.76 CAP21 EIR21 EPLR21 

22 1750 4.73 CAP22 EIR22 EPLR22 

      Group B: High-efficiency chillers 

Chiller  

Type 

Capacity 

(kW) 
EER  

Efficiency curves 

CAPFT EIRFT EIRFPLR 

23 270 5.64 CAP23 EIR23 EPLR23 

24 304 5.61 CAP24 EIR24 EPLR24 

25 355 5.53 CAP25 EIR25 EPLR25 

26 380 5.6 CAP26 EIR26 EPLR26 

... ... ... ... ... ... 

42 1442 5.5 CAP42 EIR42 EPLR42 

43 1614 5.81 CAP43 EIR43 EPLR43 

44 1742 5.72 CAP44 EIR44 EPLR44 

Similarly, a sample of related chiller curves is also shared in Table 5.6. The curve 

coefficients are calculated by the author based on equipment test measurements 

published by manufacturers through application of appropriate curve fitting 

procedures. 

Table 5.6 : A sample of chiller performance curve database. 

Name CAPFT1 EIRFT1 EIRFPLR1 

Coefficient1 Constant 9.62E-01 7.96E-01 4.15E-02 

Coefficient2 x 4.01E-02 -1.25E-03 6.54E-01 

Coefficient3 x**2 8.71E-05 7.38E-04 3.04E-01 

Coefficient4 y -4.60E-03 -9.84E-03 N.A 

Coefficient5 y**2 -6.97E-05 8.11E-04 N.A 

Coefficient6 x*y -2.26E-04 -1.23E-03 N.A 

Minimum Value of x 5 5 0.25 

Maximum Value of x 12 12 1.01 

Minimum Value of y 25 25 N.A 

Maximum Value of y 40 40 N.A 
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The complete chiller database with physical product information and chiller 

performance curves can be found in APPENDIX C.  

Boiler type 

The boiler equipment type is taken as a discrete variable where given values of 

design variable are integers indicating a boiler equipment stored in the user-created 

boiler database. The corresponding variable name is assigned BL. 

Each boiler is defined with a nominal heating capacity, nominal thermal efficiency 

and a performance curve. 

The thermal efficiency-curve is called Normalized Boiler Efficiency Curve (NBEC) 

and it is required for describing the normalized heating efficiency (as a fraction of 

nominal thermal efficiency) of the boiler’s burner. NBEC parameterizes the boiler’s 

efficiency as a function of the part-load ratio and boiler outlet water temperature. 

For this case study, a boiler database including 54 boiler equipment, which are 

commercially available in Turkish market, is prepared by the author. A sample of the 

boiler library is given in Table 5.7 below. The library covers a range of products with 

heating capacities from 55 kW to 1210 kW. Moreover, there are two product 

categories based on their efficiencies: low-efficiency boiler category (efficiency: 

84%) as shown in Group A of Table 5.7 and high-efficiency boiler category 

(efficiency: 95%) as shown in Group B of Table 5.7. The initial boiler type is also 

selected after sizing calculations from this database. 

Table 5.7 : A sample of boiler equipment database. 

Group A: Low-efficiency Boilers 

 

Group B: High-efficiency Boilers 

Boiler  

Type 

Capacity 

(kW) 

Thermal 

Efficiency 

Efficiency 

Curve 

 

Boiler  

Type 

Capacity 

(kW) 

Thermal 

Efficiency 

Efficiency 

Curve 

1 55 0.84 BLE1 

 

28 58 0.95 BLE28 

2 76 0.84 BLE2 

 

29 70 0.95 BLE29 

3 93 0.84 BLE3 

 

30 85 0.95 BLE30 

… ... ... … 

 

... ... ... ... 

25 1025 0.84 BLE25 

 

52 1020 0.95 BLE52 

26 1115 0.84 BLE26 

 

53 1110 0.95 BLE53 

27 1210 0.84 BLE27 

 

54 1200 0.95 BLE54 

Similarly, a sample of boiler efficiency curve database is also shared in Table 5.8. 

The curve coefficients are generated by the author based on equipment test 
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measurement data published by manufacturer through imposing a curve fitting 

procedure. 

Table 5.8 : A sample of boiler curve database. 

Name BLE 

Coefficient1 Constant 1.112 

Coefficient2 x 7.86E-02 

Coefficient3 x**2 -4.00E-01 

Coefficient4 y 0 

Coefficient5 y**2 -1.57E-04 

Coefficient6 x*y 9.38E-03 

Coefficient7 x**3 2.34E-01 

Coefficient8 y**3 1.33E-06 

Coefficient9 x**2*y -4.45E-03 

Coefficient10 x*y**2 -1.22E-05 

Minimum Value of x 0.1 

Maximum Value of x 1 

Minimum Value of y 20 

Maximum Value of y 80 

The complete boiler library including physical product information and boiler 

performance curves can be found in APPENDIX C.  

5.2.2.4 Renewable system-related variables 

In the case study, sizing and equipment selection of Photovoltaic and solar water 

heating systems are carried out through proposed optimization scheme. 

Photovoltaic module type 

Photovoltaic technology is evolving quickly and as a result, new products are 

introduced to the market. Each module in the market has different dynamic 

performance characteristics. In the base case building, there is no PV system 

available. However, in order to investigate the ideal PV system that can complement 

the new design proposal, a generic PV system is added to the simulation-

optimization model and analyses are carried out. The generic system consists of a PV 

array and a simple inverter. Energy storage is ignored for simplification. In the 

optimization methodology, different PV module types and their physical and 

efficiency data are stored in the database by a unique ID number. PV module type is 

then taken as a discrete design variable therefore allowing designer to compare the 

performance of different products. The number of different PV modules to compare 

is up to the designer. The corresponding variable name is assigned PVtyp. 
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In the case study, the performance of two PV types, which are Poly Crystalline 

Silicon Cells and Thin Film Cells, are evaluated and compared. Table 5.9 shows the 

characteristics of the PV modules included in the database.  

Table 5.9 : Photovoltaic module library. 

Photovoltaic Type PV 1 PV 2 

Cell type 
Poly Crystalline 

Silicon 
Thin film 

Number of Cells in Series 60 90 

Active Area (m2) 1.46 0.9216 

Shunt Resistance (ohm) 1000000 400 

Maximum Power under standard test conditions 250 Wp 60 Wp 

Short Circuit Current (A) 8.64 1.19 

Open Circuit Voltage (V) 37.6 92 

Reference Temperature (
o
C) 25 25 

Reference Insolation 1000 1000 

Module Current at Maximum Power (A) 8.12 0.9 

Module Voltage at Maximum Power (V) 30.8 67 

Temperature Coefficient of Short Circuit Current 0.0029376 0.000895 

Temperature Coefficient of Open Circuit Voltage -0.12784 -0.2806 

Nominal Operating Cell Temperature Test Ambient 

Temperature 
20 20 

Nominal Operating Cell Temperature Test Cell 

Temperature 
46 46 

Nominal Operating Cell Temperature Test Insolation 800 800 

Module Heat Loss Coefficient 30 30 

Total Heat Capacity 50000 50000 

The data is obtained from technical data sheets of actual market products. The PV 1 

has a module efficiency of 14.91% and the PV 2 has a module efficiency of 6.3 % 

under standard test conditions. 

Number of available photovoltaic modules  

The optimization methodology can also calculate the optimum installed PV capacity 

and consequent power output for a particular building based on the total number of 

PV modules in an array. Therefore, the number of installed modules is taken as the 

design variable. The corresponding variable name is assigned PVnum. 

The minimum number of modules is assumed 1. The maximum number of modules 

is obtained based on the availability of the area for modules, module size and the 

minimum distance between the modules. In the case study, the building roof is 

considered as module location as shown in Figure 5.9. The rows of modules are 

arranged at a distance to each other such that the shadow from each module in no 
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case reaches the next row. Taking into account all the influential parameters, the 

maximum available module number is calculated as 858 for the base case building 

where 26 of them are connected in parallel and 33 of them are connected in series. 

The PV module orientation and inclination angle is set as a fixed parameter where 

modules are arranged facing south and tilted according to the latitude of each 

building location. 

 

Figure 5.9 : The PV system integrated into base case building. 

Solar thermal module type 

Using thermal storage systems to gain hot water is becoming very popular and there 

are many solar collector products available in the market. Solar collectors (SC) can 

have diverse thermal and optical properties therefore in the methodology the 

collector module characteristics including the coefficients for the energy conversion 

efficiency and incident angle modifier are stored in the library by an ID number 

together with physical module data. Module type is then taken as a discrete variable 

that can take the value of product ID number. 

In the base case building, there is no solar water heating system available. However, 

in order to investigate the ideal system configuration that can improve the 

performance of the base case building, a generic system is added to the simulation-

optimization model. The system consists of a collector array, a water tank and a 

backup system. 

Solar collector module type is taken as the discrete variable where possible variable 

values are integers indicating a collector module stored in a user-created collector 

database. The corresponding variable name is assigned SCtyp. 

In the case study, there are three glazed flat-plate solar collectors which are a high-

efficiency selective surface collector (SC1), a medium-efficiency selective surface 

collector (SC2) and a low-efficiency black painted collector (SC3) are evaluated and 
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compared. All three collectors have a gross area about 2.5 m
2
. The collector thermal 

performances are compared in Table 5.10 below based on kilowatt-hours thermal 

collector output per panel per day published by Solar Rating & Certification 

Corporation (SRCC).  

Table 5.10 : Solar collector thermal performance rating. 

Climate ->   High Radiation Medium Radiation Low Radiation 

Category  

(Ti-Ta)* 

Collector  

type 
(6.3 kWh/m².day) (4.7 kWh/m².day) (3.1 kWh/m².day) 

C (20 °C) 

SC 1 8.8 6 3.3 

SC 2 7.9 5.4 3 

SC 3 6.3 3.9 1.8 

          

D (50 °C) 

SC 1 5.8 3.3 1 

SC 2 5.1 2.9 0.9 

SC 3 2.5 0.8 0 
* difference between collector inlet fluid temperature (Ti) and the ambient air temperature (Ta).  

** C- Water Heating (Warm Climate) D- Space & Water Heating (Cool Climate. 

Moreover, the collector library that includes the thermal and optical characteristics of 

the solar collectors under consideration is given in Table 5.11. The data is obtained 

from actual market products.  

Table 5.11 : Solar collector database. 

Solar Collector Name SC 1 SC 2 SC 3 

Surface type 

Selective 

Surface 

High Efficiency 

Selective Surface 

Medium 

Efficiency 

Black painted 

Low 

Efficiency 

Gross Area (m2) 2.52 2.50 2.49 

Test Fluid water water water 

Test Flow Rate 0.0000498 0.0000471316 0.0000499400 

Test Correlation Type Inlet Inlet Inlet 

Coefficient 1 of Efficiency Equation 0.7162 0.708 0.659 

Coefficient 2 of Efficiency Equation -3.0562 -3.7334 -5.3999 

Coefficient 3 of Efficiency Equation -0.00674 -0.00591 -0.01871 

Coefficient 2 of Incident Angle 

Modifier 
-0.07070 -0.13886 -0.27781 

Coefficient 3 of Incident Angle 

Modifier 
-0.12320 -0.00901 -0.08253 
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Number of available solar thermal modules  

The total number of collector modules determines thermal output of the system. In 

EnergyPlus simulation engine, a solar collector is defined with an individual 

associated surface that determines the collector location, tilt, azimuth, and gross area. 

Therefore, the physical presence of an associated surface represents a module’s 

existence. The surfaces are defined in the 3D coordinate system (x, y, z) thus, the 

surfaces coordinates become design variables. In particular, when the x and y 

coordinate values of a module’s upper left and right corners equals to actual 

coordinates, the collector exist. However, when the x and z coordinates equal to the 

values of lower left and right corners, the collector does not exist. Thus, based on the 

user-specified coordinate values, the total number of available modules can be 

calculated. The corresponding variable name is assigned SCnum. 

The maximum number of modules is obtained based on the building water heating 

load, availability of the area for modules, module size and the minimum distance 

between the modules. In the case study, it was assumed that collectors would be 

installed next to the building site. Moreover, the rows of modules would be arranged 

at a distance to each other such that the shadow from each module in no case reaches 

the next row. Taking into account building occupancy density and hot water needs, 

the maximum available module number is assumed 140 for the base case building as 

shown in Figure 5.10. 

 

Figure 5.10 : The solar thermal system integrated into the base case building. 

The collector orientation and inclination angle is set as a fixed parameter where 

modules are arranged facing south and tilted according to the latitude of building 

location. 
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5.2.3 Objective function 

In the current investigation, the objective function is represented by the global cost 

per square meter building floor area difference between any design combination that 

is created through optimization and base case design, added with the sum of all the 

penalty functions due to constraint violations. Therefore, only the additional cost 

incurred to achieve a given level of energy savings can be determined and compared 

while considering design limitations. The objective formula is given in equation 5.1. 

ℎ(𝑥) =
𝑑𝐺𝐶𝑖

𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐹𝑙𝑜𝑜𝑟 𝐴𝑟𝑒𝑎
+ 𝑃𝐸𝑁 (5.1) 

Where 

𝑑𝐺𝐶𝑖 : Global cost difference between any design combination and base case 

building,  

𝑃𝐸𝑁  : Sum of all penalty function results. 

The reason to divide the GC to the floor area is to reduce the magnitude of the value 

for better readability.   

As explained previously in the methodology section, the purpose of this study is to 

assist designers in achieving cost-effective high performance building design, 

therefore the cost function was defined to minimize building energy, water, material, 

and system related service life costs while maintaining or improving user comfort 

and reducing building CO2 emission rates. The elements of the main objective 

function of the case study are therefore as given in equation 5.2:  

ℎ(𝑥)   = 𝑑(∑ 𝑁𝑃𝑉𝐸𝑛𝑒𝑟𝑔𝑦 + ∑ 𝑁𝑃𝑉𝑊𝑎𝑡𝑒𝑟
𝑛
1 + ∑ 𝑁𝑃𝑉𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 +𝑛

1
𝑛
1

∑ 𝑁𝑃𝑉𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡
𝑛
1 + ∑ 𝑁𝑃𝑉𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒

𝑛
1 )/𝐴𝑟𝑒𝑎 + ∑ 𝜇𝑥𝑃𝐸𝑁𝑘

𝑘4
1   

(5.2) 

Each cost component is discounted to the present considering the time value of 

money. The main function is then adapted specifically for the case studies and 

reformulated.  

5.2.3.1 Global cost components 

The energy component of the main formula includes net present value of end-use 

energy consumption due to operation of boiler, chiller, fans (including fan coils and 
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ventilation fans), circulation pumps, water heating, interior lighting and plugged-in 

equipment. Moreover, in cases with PV optimization, the net present value of the 

surplus electricity generated through PV system is subtracted from overall energy 

cost as a benefit. Equation 5.3 shows end use types and related energy sources. It is 

assumed that the building maintains its annual energy efficiency performance 

throughout the long-term calculation period. 

∑ 𝑁𝑃𝑉𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑁𝑃𝑉𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠
𝐵𝑜𝑖𝑙𝑒𝑟 + 𝑁𝑃𝑉𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦

𝐶ℎ𝑖𝑙𝑙𝑒𝑟

𝑛

1

+ 𝑁𝑃𝑉𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦
𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑡𝑜𝑤𝑒𝑟

+ 𝑁𝑃𝑉𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑦
𝐹𝑎𝑛𝑠 + 𝑁𝑃𝑉𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑦

𝑃𝑢𝑚𝑝𝑠 + 𝑁𝑃𝑉𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠
𝑊𝑎𝑡𝑒𝑟 ℎ𝑒𝑎𝑡𝑖𝑛𝑔

+ 𝑁𝑃𝑉𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦
𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔

+ 𝑁𝑃𝑉𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦
𝑃𝑙𝑢𝑔𝑔𝑒𝑑 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

− (𝑁𝑃𝑉𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦
𝑃𝑉 𝑆𝑢𝑟𝑝𝑙𝑢𝑠) 

(5.3) 

The water component of the main formula includes net present value of water use 

due to HVAC cooling tower operation and occupancy hot water use, as given in 

equation 5.4. 

∑ 𝑁𝑃𝑉𝑊𝑎𝑡𝑒𝑟 = 𝑁𝑃𝑉𝑊𝑎𝑡𝑒𝑟
𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑡𝑜𝑤𝑒𝑟

+ 𝑁𝑃𝑉𝐻𝑜𝑡 𝑊𝑎𝑡𝑒𝑟
𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 

𝑛

1

 (5.4) 

The material component of the main formula includes net present value of ownership 

costs of building materials tested through optimization including insulation for 

external walls and roof, roof cover layer, glazing unit and external wall element, as 

given in equation 5.5. As the window-to-wall-ratio of external wall varies, the cost of 

external brick wall also varies as a dependent variable; therefore, its influence is also 

taken into account. The net present value covers initial, installation, maintenance, 

replacement and disposal costs of each element. 

∑ 𝑁𝑃𝑉𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑁𝑃𝑉𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙
𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑤𝑎𝑙𝑙 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑛

1

+ 𝑁𝑃𝑉𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙
𝑅𝑜𝑜𝑓 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛

+ 𝑁𝑃𝑉𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙
𝑅𝑜𝑜𝑓 𝑐𝑜𝑣𝑒𝑟

+ 𝑁𝑃𝑉𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙
𝑊𝑖𝑛𝑑𝑜𝑤 + 𝑁𝑃𝑉𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑤𝑎𝑙𝑙 

(5.5) 

The equipment component of the main formula given in equation 5.6 includes net 

present value of HVAC equipment selected during optimization including boiler and 

chiller. Moreover net present value of depending equipment including cooling tower 
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and fan coils are taken into account as well. The cost of ventilation fans and 

circulation pumps are ignored for simplification. The formula also includes NPV of 

water heating equipment and lighting control system.  The value covers initial, 

installation, maintenance, replacement and disposal costs of each element. 

∑ 𝑁𝑃𝑉𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 = 𝑁𝑃𝑉𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡
𝐵𝑜𝑖𝑙𝑒𝑟

𝑛

1

+ 𝑁𝑃𝑉𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡
𝐶ℎ𝑖𝑙𝑙𝑒𝑟 + 𝑁𝑃𝑉𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑡𝑜𝑤𝑒𝑟

+ 𝑁𝑃𝑉𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡
𝑊𝑎𝑡𝑒𝑟 ℎ𝑒𝑎𝑡𝑒𝑟 + 𝑁𝑃𝑉𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

𝐹𝑎𝑛 𝑐𝑜𝑖𝑙 + 𝑁𝑃𝑉𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡
𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑜𝑙

 

(5.6) 

When the base case is integrated with the PV and solar water heating systems, 

renewable system component given in equation 5.7 is also added to the global cost.  

∑ 𝑁𝑃𝑉𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 = 𝑁𝑃𝑉𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒
𝑃𝑉

𝑛

1

+ 𝑁𝑃𝑉𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒
𝑆𝑊𝐻  (5.7) 

The renewable system component includes net present value of ownership of 

selected and sized renewable system equipment, namely photovoltaic and solar 

thermal collectors, and rest of the supporting equipment required for a successful 

implementation. The net present value covers initial, installation, maintenance, 

replacement and disposal costs of each equipment. 

5.2.3.2 Penalty function components 

There are four penalty functions, which are thermal comfort, CO2 emission rate, 

equipment capacity and payback period of renewables, used to restrict the design 

space to a user-defined eligible region. 

Equipment capacity 

The methodology requires the HVAC equipment to be sized first through a sizing 

calculation then, the optimization attempts to select a suitable equipment from the 

equipment database that can satisfy the autosized capacities while performing well at 

on and off-reference conditions. Sizing factors are applied to determine an allowable 

capacity range.  

In the case study, for boiler equipment, the capacity lower limit factor is set as 0.99, 

and the capacity upper limit is chosen as 1.25.  
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Thus, the capacity penalty equation for boiler takes the form in equation 5.8. 

𝑃𝐸𝑁𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐵𝑜𝑖𝑙𝑒𝑟

= 𝜇𝑏𝑙𝑚𝑎𝑥 (𝑚𝑎𝑥(0,  (𝐵𝐿𝐶𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐵𝐿𝐶𝑎𝑢𝑡𝑜𝑠𝑖𝑧𝑒 ∗ 1.25 )))
𝑞

+ 𝜇𝑏𝑙𝑚𝑖𝑛 (𝑚𝑎𝑥(0,  (𝐵𝐿𝐶𝑎𝑢𝑡𝑜𝑠𝑖𝑧𝑒 ∗ 0.99 − 𝐵𝐿𝐶𝑎𝑐𝑡𝑢𝑎𝑙)))
q

 

(5.8) 

Similarly, the capacity lower limit factor is set as 0.99, and the capacity upper limit is 

chosen as 1.15 for chiller equipment. Therefore, the capacity penalty equation for 

chiller is expressed as in equation 5.9. 

𝑃𝐸𝑁𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐶ℎ𝑖𝑙𝑙𝑒𝑟

= 𝜇𝑐𝑙𝑚𝑎𝑥 (𝑚𝑎𝑥(0,  (𝐶𝐿𝐶𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐶𝐿𝐶𝑎𝑢𝑡𝑜𝑠𝑖𝑧𝑒 ∗ 1.15 )))
q

+ 𝜇𝑐𝑙𝑚𝑖𝑛 (𝑚𝑎𝑥(0,  (𝐶𝐿𝐶𝑎𝑢𝑡𝑜𝑠𝑖𝑧𝑒 ∗ 0.99 − 𝐶𝐿𝐶𝑎𝑐𝑡𝑢𝑎𝑙)))
𝑞

 

(5.9) 

Penalty parameters   𝜇𝑏𝑙𝑚𝑎𝑥, 𝜇𝑏𝑙𝑚𝑖𝑛, 𝜇𝑐𝑙𝑚𝑎𝑥, 𝜇𝑐𝑙𝑚𝑖𝑛 and penalty power factor q are 

determined in the pre-optimization phase based on design of experiments.  

The application of capacity constraints makes sure that optimization selects right-

sized equipment. 

Thermal Comfort 

In thermal comfort penalty function, the target thermal comfort metric is chosen 

according to European standard EN 15251. The standard indicates four categories of 

state of comfort for mechanically heated and cooled buildings through PMV and 

PPD metrics, as shown in Table 5.12.  

Table 5.12 : Recommended categories for design of mechanically heated and 

cooled buildings according to EN 15251. 

Category PPD % PMV 

I       (high level of expectation), < 6 -0.2 < PMV < + 0.2 

II     (normal level of expectation), <10 -0.5 < PMV < + 0.5 

III    (moderate level of expectation), <15 -0.7 < PMV < + 0.7 

IV    (acceptable only for a limited 

part of the year). 
>15 

PMV < - 0.7; 

or + 0.7 < PMV 
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“Category II: normal level of expectation” is taken to define the boundaries of the 

comfort zone, therefore the target PPD index is determined as 10 per cent. Equation 

5.10 introduces the penalty formula used for the case study application. 

𝑃𝐸𝑁𝐶𝑜𝑚𝑓𝑜𝑟𝑡 = 𝜇𝑐𝑓 (𝑚𝑎𝑥(0,  (𝑃𝑃𝐷𝑎𝑐𝑡𝑢𝑎𝑙 − 10)))
𝑞

 (5.10) 

The PDD index of actual building is computed for each hour of the occupancy work 

schedule through the year for each thermal zone. For simplification, hourly PPD 

indices are averaged for the whole year. Then, an area-weighted average PPD of all 

zones is calculated to represent the comfort conditions in the entire building as given 

in equation 5.11.  

𝑃𝑃𝐷𝐴𝑐𝑡𝑢𝑎𝑙 =
∑ 𝑃𝑃𝐷 𝑛

𝐴𝑣𝑔
∗ 𝑍𝑜𝑛𝑒𝐴𝑟𝑒𝑎 𝑛

9
𝑛=1

∑ 𝑍𝑜𝑛𝑒𝐴𝑟𝑒𝑎 𝑛
9
1

 (5.11) 

Penalty parameter 𝜇𝑐𝑓 and power factor q are determined in the pre-optimization 

phase based on design of experiments.  

CO2 emission rate 

In CO2 emission penalty function, a penalty is applied to force the optimum solution 

into the target zone when the emitted overall building CO2 emission rate exceeds a 

user-set target. 

In the case study, 10 per cent reduction in building annual CO2 emission is aimed to 

be achieved therefore the final formula becomes as in equation 5.12. 

𝑃𝐸𝑁𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝜇𝑒𝑚 (𝑚𝑎𝑥(0,  (𝐶𝑂2𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐶𝑂2𝑏𝑎𝑠𝑒 ∗ 0.9)))
q

 (5.12) 

The actual amount of CO2 released from base case building due to energy 

consumption is obtained through application of appropriate carbon dioxide 

equivalent intensity indexes for each energy carrier. In this study, CO2 emission 

factor is set at 0.234 kg.eqCO2/kWh for natural gas and 0.617 kg.eqCO2/kWh for 

electricity in compliance with published national data by Ministry of Environment 

and Urbanization of Turkey.  
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Therefore, the actual amount of CO2 emission rate is formulated as in equation 5.13: 

𝐶𝑂2𝐴𝑐𝑡𝑢𝑎𝑙 = 0.617 ∗ ∑ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑦 + 0.234 ∗ ∑ 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐺𝑎𝑠     (5.13) 

Penalty parameter μem and power factor q are determined in the pre-optimization 

phase based on design of experiments.  

Payback period 

The payback period of a renewable system investment is limited according to a user 

set time-period. In the case study, 25 years period is chosen as maximum payback 

limit both for photovoltaic and solar thermal system applications and the related 

formula is expressed as in equation 5.14. The reason to choose a long period as 

payback time is to have an opportunity to observe the payback behaviour of 

renewable systems under different climatic conditions within building life-cycle and 

to compare climate responsive performances without eliminating systems unless they 

are not beneficial within the building life. 

𝑃𝐸𝑁𝑝𝑎𝑦𝑏𝑎𝑐𝑘 𝑃𝑉/𝑆𝐶 = 𝜇𝑝𝑏𝑃𝑉/𝑆𝐶 (𝑚𝑎𝑥(0,  (𝑆𝑃𝐵𝑎𝑐𝑡𝑢𝑎𝑙 − 25)))
q

 (5.14) 

Penalty parameter 𝜇𝑝𝑏 and power factor q are determined in the pre-optimization 

phase based on design of experiments.  

5.2.4 Financial data 

Cost analysis is only as valid as its data; therefore, it is crucial that data used for the 

calculations are accurate and representative of the present conditions. Calculating the 

global cost of a building is generally a complicated process involving factors such as 

product, installation and maintenance costs, predicted energy and water use and 

prices, discount rates, etc. The author of the study thus carried out an extensive 

market survey to collect cost data on design variables including building materials, 

HVAC system equipment and photovoltaic and solar thermal renewable systems. A 

price database has been established. Data regarding commonly used products in 

Turkish construction sector is collected directly from manufacturers and retail 

offices. When required, unit cost data which is published by Ministry of 

Environment and Urbanization of Turkey inside the Building Construction Unit Cost 



148 

Data Book was also used. Usually more than one price for a product group is 

obtained, therefore prices are averaged to represent generic market situation. 

Moreover, the historical time-series data about Turkish financial markets including 

inflation, market interest rate and price escalation rates were investigated, too. The 

year 2012 is selected as the representative year for financial indicators.  

The cost data libraries are introduced in the following sections. 

5.2.4.1 Financial market data 

Since the global cost calculation in the methodology is based on the net-present value 

approach, all the costs and revenues occur during building life span requires to be 

discounted to the present while considering the time value of money.  

Inflation rate and the market interest rate (normal discount rate) for Turkey are 

obtained from Central Bank of Turkey, as summarized in Table 5.13. Annual average 

inflation rate is calculated as 8.936 % based on monthly Consumer Price Index in 

2012 and market interest rate is calculated as 10.264 % based on Average Cost of 

Domestic Borrowing, Zero Coupon index. The case study uses constant dollars 

approach that is cost value after adjustment for inflation. As a result, real discount 

rate is calculated as 1.21 % based on the given information. After establishment of 

real discount rate, NPV of each cost or revenue can be calculated. 

Table 5.13 : Nominal discount rate and inflation rate for Turkey. 

Month (2012) Market interest rate 

(Annual Compound, %) 

Inflation rate  

(Year to Year % Changes) 

January 11.07 6.16 

February 11.38 6.37 

March 11.1 7.8 

April 10.84 9.19 

May 10.71 8.88 

June 10.87 9.07 

July 10.71 8.87 

August 10.39 8.28 

September 9.61 11.14 

October 9.15 10.43 

November 8.83 10.43 

November 8.51 10.61 

Average 10.264 8.936 
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5.2.4.2 Cost estimates for energy and water 

Annual energy and water cost due to building operation is calculated as a product of 

building operating source consumption which is estimated through simulation and a 

corresponding utility tariff. 

Utility rate for electricity is obtained from Turkish Electricity Distribution Company 

(TEDAS). The year 2012 average retail price of 0.32 TL/kWh (including Value 

added tax (VAT) and all other taxes) is used as building’s unit cost of electricity 

consumption. Moreover, the utility electricity prices since 1995 that are published by 

TEDAS were investigated and escalation rate for electricity is computed as 11% 

including inflation. When the price is adjusted for inflation, the real electricity price 

escalation rate is calculated as 1.89 %. 

To obtain the feed-in tariff applicable to renewable electricity production, it has been 

benefitted from national renewable energy regulation. Therefore, the unit price is set 

at 0.305 TL/kWh for electricity fed back into the electricity grid as recommended by 

the national bodies. 

Utility rate for natural gas is obtained from IGDAS (Istanbul Gas Distribution 

Industry and Trade Incorporated Company). The year 2012 average retail price of 

0.09 TL/kWh (including VAT and all other taxes) is used as building’s unit cost of 

natural gas consumption. Moreover, the utility gas prices since 2008 that are 

published by IGDAS were investigated and nominal price escalation rate for natural 

gas is computed as 14.4 % including inflation. When the price is adjusted for 

inflation, the real natural gas price escalation rate is calculated as 5 %. 

Utility rate for water is obtained from ISKI (Istanbul Water and Sewerage 

Administration). The year 2012 average retail price of 8.217 TL/m3 (including VAT 

and all other taxes) is used as building’s unit cost of water consumption. Moreover, 

the utility water prices since 2006 that are published by ISKI were investigated and 

escalation rate for water is computed as 11.7 % including inflation. When the price is 

adjusted for inflation, the real water price escalation rate is calculated as 2.58 %. 

5.2.4.3 Cost estimates for design variables 

In the building service life, costs are incurred in construction, operation, and disposal 

of a facility. Therefore, to perform global cost analyses for a building design project 
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initial, operating, maintenance and disposal costs for each design variable are 

needed.  

The initial cost for a building material including insulation, glazing type, roof cover, 

and wall construction is calculated as a product of unit price of the material and the 

amount that is actually required. Similarly cost for maintenance, replacement and 

disposal are also directly related with the amount of material used. 

On the other hand, each system equipment has a unique list price collected from the 

market. Maintenance, replacement and disposal costs are associated with the 

equipment itself. 

In the calculation, the study period is estimated 25 years. Therefore, in cases where 

the life expectancy of the equipment or material is shorter than building life, 

replacement costs are taken into account. 

Similarly, if the product life ends after building life, a scrap value is calculated based 

on percentage of remaining equipment life and corresponding initial cost. The 

present value of this value is subtracted from the final net present value. 

Cost data for each design element is given below. All the prices include VAT of 18 

percent. 

Orientation 

Variation in building orientation only influences building energy demand, energy and 

HVAC water consumption levels and consequent costs. There is no other cost 

associated with orientation variable. 

External wall / roof insulation 

The average market price of a Extruded polystyrene insulation panel with a density 

of 150 kg/m3 and a heat transfer coefficient of 0.031 W/m.K is used in the cost 

analysis. The panels can be applied to walls, floor and flat roof construction. The 

price of the insulation is calculated based on per m3 and it linearly increases as 

thickness grows. The unit price of the panel is obtained as 360 TL/m3. The 

installation cost is assumed as 9.56 TL/m2 including labour and installation material.  

Insulation is assumed to have no maintenance and repair requirements. The life 

expectancy of insulation panel is assumed as lifespan of the building therefore 

neither replacement cost nor scrap value occurs. 
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External wall element 

The area of external walls change with the variation in building window-to-wall ratio 

since it is one of the design variables of the study. Therefore, to take into account the 

cost of building external wall element, the price of a generic wall composition is 

created based on National Construction Data Book for Turkey. The insulation price 

is excluded from the sum as it is calculated and used separately in the analysis. The 

unit price for a brick wall construction is calculated as 95m2/TL based on the 

breakdown given in Table 5.14. 

Table 5.14 : External wall construction cost. 

Description of Steps Unit Unit Cost 

To paint the wall with emulsion paint M2 4.88 TL 

To plaster the wall with cement mortar  M2 19.36 TL 

To build the brick wall M2 34.00 TL 

To plaster the wall with mortar  M2 10.06 TL 

To paint the wall with emulsion paint M2 12.19 TL 

Total Cost 80.49 TL/m2 

Total Cost inc VAT 18% 95 TL/m2 

The external wall element is assumed to have no maintenance and repair 

requirements. The life expectancy of external wall is assumed as lifespan of the 

building therefore neither replacement cost nor scrap value occurs. 

Roof cover 

The prices of a conventional roof finish with gravel and cool roof paint are explored.  

The unit cost of gravel is obtained as 59TL/m3 including material and labour cost. 

Since the roof area is fixed at 2903 m2, the total initial cost for covering the flat roof 

in consideration with 0.08 m gravel becomes 13702 TL. The life expectancy of 

gravel layer is assumed as long as life span of the building and no maintenance is 

required during this period. Similarly, no scrap value is assumed. 

To cover the same roof with cool roof paint requires application of a base and a 

coating layer.  The price of base layer is 8.26 TL/kg and 315 kg is required for the 

case study building. The price of the paint layer is 6.49 TL/kg and 1188 kg is 

required for two layer application. Therefore, the total initial material cost is 

calculated as 10312 TL.  The labour cost for material application is obtained as 2.36 

TL/m2; therefore the total labour cost becomes 6851 TL. 
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The upper paint coating is required to be renewed in single layer in every five years 

because the solar reflectivity of the coating is decreased by time. The maintenance 

cost 6758 TL in total including material and labour cost and the value is required to 

be discounted to present value using appropriate discount factors. 

There is no scrap value associated with cool roof paint as well. 

Glazing units 

Cost of glazing systems vary based on the production technology and the type of the 

glass. The market survey taken aimed to cover commonly available and frequently 

used products in Turkey. Table 5.15 summarizes cost per square meter for all the 

glazing products available in the library. 

Table 5.15 : Glazing cost data. 

Glazing 

Type 
U Value SHGC Tvis 

Cost 

TL/m2 

Glazing 

Type 
U Value SHGC Tvis 

Cost 

TL/m2 

1 2.9 0.75 0.80 38.9 15 1.6 0.39 0.64 61.4 

2 2.8 0.46 0.64 46.6 16 1.6 0.29 0.45 88.5 

3 2.8 0.34 0.35 82.6 17 1.6 0.21 0.21 75.5 

4 2.8 0.28 0.21 64.9 18 1.3 0.56 0.79 48.4 

5 2.7 0.75 0.80 42.5 19 1.3 0.44 0.71 54.3 

6 2.7 0.46 0.64 53.1 20 1.3 0.39 0.64 64.9 

7 2.7 0.34 0.35 86.1 21 1.3 0.29 0.45 92 

8 2.7 0.28 0.21 68.4 22 1.3 0.21 0.21 79.1 

9 2.6 0.75 0.80 46 23 1.1 0.56 0.79 51.9 

10 2.6 0.46 0.64 56.6 24 1.1 0.44 0.71 57.8 

11 2.6 0.34 0.35 89.7 25 1.1 0.39 0.64 68.4 

12 2.6 0.28 0.21 72 26 1.1 0.29 0.45 95.6 

13 1.6 0.56 0.79 44.8 27 1.1 0.21 0.21 82.6 

14 1.6 0.44 0.71 50.7 

     

The cheapest glazing unit costs 38.9 TL per square meter and the most expensive 

glazing unit costs 95.6 TL per square meter. 

The installation cost for glazing system is assumed 80 TL/m2 including labour and 

installation material. The annual glazing maintenance cost is assumed 15 TL/m2. The 

life expectancy of glazing system is assumed as long as building life span therefore 

no replacement cost occurs. The glazing scrap value is ignored. 

The total cost of glazing installation is obtained as a product of unit price and current 

window-to-wall ratio. 
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Boiler  

A representative price list for low and high efficient boiler groups, which are 

available in Turkish HVAC market and used-frequently in design solutions, is 

prepared. Figure 5.11 illustrates the entire capacity-price range used in the study for 

low thermal efficiency and high-thermal efficiency boiler groups. 

 

Figure 5.11 : Boiler initial price curve. 

The Table 5.16 below demonstrates a sample of boiler cost library including 

equipment initial price. The full list is given in APPENDIX D. 

Table 5.16 : A sample of boiler cost library. 

Low efficiency category - Eff: 0.84 

 

High-efficiency category - Eff: 0.95  

Boiler  

Number 

Capacity 

(kW) 
Price (TL) 

 
Boiler  

Number 

Capacity 

(kW) 
Price (TL) 

1 55 2453 

 

28 58 6948 

2 76 2942 

 

29 70 7884 

3 93 3339 

 

30 85 9268 

4 111 3736 

 

31 105 11345 

… … …  … … … 

25 1025 21420 

 

52 1020 56112 

26 1115 23180 

 

53 1110 58012 

27 1210 25037 

 

54 1200 58147 

The costs for equipment installation and annual maintenance are calculated 

according to the data published in Building Construction Unit Cost Data Book. A 

curve fitting procedure is applied to the published data as shown in Figure 5.12, and 
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then the obtained capacity-installation price function is used to calculate the actual 

installation cost for each boiler in the library.  

 

Figure 5.12 : Boiler installation price curve. 

The annual maintenance cost is assumed as half of the installation cost that is in 

coherence with published data. 

Boiler life expectancy is assumed 25 years as recommended in Chartered Institution 

of Building Services Engineers (CIBSE) Guide M – Maintenance Engineering & 

Management Appendix 13.A1. 

For the 25-year calculation period, no replacement cost occurs. The replacement cost 

is equal to the sum of initial and installation costs discounted to present. 

For both cases, the equipment’s life ends with building span therefore no scrap value 

occurs. 

Chiller 

A representative price list for moderate and high efficiency chiller groups, which are 

available in Turkish HVAC market and used-frequently in design solutions, is 

prepared. Figure 5.13 demonstrates the entire capacity-price range used in the study 

for both equipment categories. The full load ERR value of moderate efficiency 

category varies between 4.45 and 5.05 with the average EER of 4.71. The full load 

ERR value of high efficiency category varies between 5.49 and 5.81 with the average 

EER of 5.63. 
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Figure 5.13 : Chiller initial price curve. 

The Table 5.17 below demonstrates a sample of chiller cost library including 

equipment initial price. The full list is given in APPENDIX D. 

Table 5.17 : A sample of chiller cost library. 

Moderate efficiency category 

 

High efficiency category 

Chiller  

Number 

Capacity  

(kW) EER 

Price  

(TL) 

 

Chiller  

Number 

Capacity  

(kW) 
EER 

Price  

(TL) 

1 287 5.04 123229 
 

23 270 5.64 151420 

2 312 4.8 124326 
 

24 304 5.61 152767 

3 349 4.85 125308 
 

25 355 5.53 153975 

4 375 4.57 126977 
 

26 380 5.6 156026 

…     …    

20 1420 4.7 323780 
 

42 1442 5.5 417272 

21 1630 4.76 355795 
 

43 1614 5.81 459320 

22 1750 4.73 380899 
 

44 1742 5.72 496423 

The costs for equipment installation and annual maintenance are calculated 

according to the data published in Building Construction Unit Cost Data.  

A curve fitting procedure is applied to the collected data as shown in Figure 5.14, 

and then the obtained chiller capacity-installation price function is used to calculate 

the actual installation cost for each chiller in the library.  

0

100000

200000

300000

400000

500000

600000

0 500 1000 1500 2000

P
ri

ce
 (

T
L

) 

Capacity (kW) 

Moderate efficiency EERavg:4.71 High efficiency EERavg:5.63



156 

 

Figure 5.14 : Chiller installation price curve. 

The annual maintenance cost is assumed about 22 % of the installation cost that is in 

coherence with published maintenance data. 

Chiller life expectancy is assumed 20 years as recommended in CIBSE Guide M. 

Therefore, the equipment is required to be renewed once in the 25-year calculation 

period. The renewal cost is equal to the sum of initial and installation cost discounted 

to present. 

At the end of the 25-year analysis period the chiller would still have 15 years of life 

remaining or 15/20 = 75 percent of its useful life due to the replacement at 20th year. 

Therefore 75 % of initial value can be assumed as scrap value and discounted to 

present. 

Cooling tower 

Cooling tower is a dependent equipment and it is capacity is related to the cooling 

load and selected chiller capacity.  

An equipment price list representing average market products is prepared.  

A tower capacity-price curve is established through curve fitting procedures as given 

in Figure 5.15 and therefore for each autosized cooling tower equipment, a 

corresponding product price can be calculated. 
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Figure 5.15 : Cooling tower initial price curve. 

Moreover, the costs for equipment installation and annual maintenance are calculated 

according to the data published in Building Construction Unit Cost Data book. A 

curve fitting procedure is applied to the collected data as illustrated in Figure 5.16, 

and then the obtained cooling tower capacity-installation price function is used to 

calculate the actual installation cost for each autosized tower equipment.  

 

Figure 5.16 : Cooling tower installation price curve. 

Similarly, when the published data for cooling tower annual maintenance costs is 

investigated, it was seen that the maintenance cost is usually equal almost 12% of 

installation cost. 

y = 0.015x2 + 52.616x + 5649.3 

R² = 0.9941 

0

10000

20000

30000

40000

50000

60000

70000

0 200 400 600 800 1000

P
ri

ce
 (

T
L

) 

Tower Capacity (kW) 

Price (TL) Poly. (Price (TL) )

y = 2E-12x5 - 7E-09x4 + 9E-06x3 - 0.0055x2 + 1.9032x + 

132.77 

R² = 0.9973 

0

100

200

300

400

500

600

0 500 1000 1500

P
ri

ce
 (

T
L

) 

Tower Capacity (kW) 

Installation Price Poly. (Installation Price )



158 

Cooling tower life expectancy is assumed 25 years as recommended in CIBSE Guide 

M. There is no replacement or scrap value occur during 25-year analysis as the 

equipment life ends with study period. 

Fan coil 

Fan coil is another dependent equipment and the number of required fan coils are 

calculated at each run based building load requirements. 

A generic, moderate-capacity fan coil unit with details given in Table 5.18 is selected 

as the representative equipment. Based on the calculated building loads and the total 

heating and cooling capacities of the considered equipment, the required number of 

fan coil units is calculated for each thermal zone. The price of the equipment is taken 

from the market as average. Then the initial system price is obtained as the product 

of equipment price and total number of equipment to install.  

Table 5.18 : Fan coil unit details. 

  
Total cooling capacity 

(kW) 

Total heating capacity 

(kW) 
Price (TL) 

Equipment Low  Medium  High Low  Medium  High 
 

Fan Coil Unit 6.34 7.33 8.19 8.24 9.3 10.15 1732 

The equipment installation cost is obtained from Building Construction Unit Cost 

Data Book as 29.5 TL per equipment. Similarly, the same source suggests 29.5 TL 

annual maintenance cost per equipment as well. 

Fan coil unit life expectancy is assumed 15 years as recommended in CIBSE Guide 

M. In 25-year analysis period, the fan coil units are required to be replaced once at 

the end of 15
th

 year. Replacement cost is equal to the sum of initial cost and 

installation cost. 

In 25-year analysis period, fan coil units would still have 5 years of life remaining at 

the end of 25
th

 year. Therefore 5/15= 33 percent of its useful life corresponding to 33 

% of initial equipment cost is assumed as scrap value and discounted to present. 

Water heater 

In the case study, the water heater includes a natural gas burner and a storage tank. A 

representative price list for this type of common water heater equipment, which is 
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available in Turkish HVAC market and used-frequently in design solutions, is 

prepared. A sample of the list is given in Table 5.19. 

Table 5.19 : Water heater price list. 

Water heating 

system 

Cap  

(kW) 

Heater Price 

(TL) 

Water Tank 

Price (TL) 

Total system 

price (TL) 

1 69.8 1300 3900 5200 

2 93 1745 4700 6445 

3 116 1880 5400 7280 

... ... ... ... ... 

The costs for water heater installation and annual maintenance are calculated 

according to the data published in Building Construction Unit Cost Data Book. A 

curve fitting procedure is applied to the published data as shown in Figure 5.17, and 

then the obtained heater capacity-installation price function is used to calculate the 

actual installation cost for each water heater in the library.  

The Building Construction Unit Cost Data Book suggests that same curve and 

function can be used to calculate annual maintenance cost. 

 

Figure 5.17 : Water heater installation price curve. 

Water heater life expectancy including water tank and burner is assumed 25 years as 

recommended in CIBSE Guide M. 

For the 25-year calculation period no replacement cost occurs. 

Moreover, the equipment’s life ends with building life span therefore no scrap value 

occurs, too. 
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Dimming lighting control system 

In the methodology two lighting control systems, namely manual control and a 

dimming control based on daylighting is investigated and compared. Based on the 

information including two sensors per zone, 11 W/m2 lighting load and 8709 m2 

floor area, two cost scenarios are prepared as given in Table 5.20 according to actual 

market prices.  

Table 5.20 : Lighting control cost breakdown. 

Cost breakdown (TL) Manual control Dimming  control 

Controller and sensor 2795 4554 

Ballast 183678 275517 

Total system price 186473 280071 

      

Sensor Installation 1035 1294 

Ballast installation 48774 65053 

Total Installation price 49809 66346 

The maintenance cost is ignored as it was equal in two cases. 

The life expectancy of lighting sensors and ballast are assumed 15 years and 20 years 

respectively, as recommended in CIBSE Guide M. 

In 25-year analysis period both sensors and ballasts are required to be renewed once, 

end of their equipment life. Replacement costs are equal to the sum of equipment and 

installation costs. 

In 25-year analysis period, sensors would still have 10 years of life remaining at the 

end of 25
th

 year. Therefore 5/15= 33 percent of its useful life corresponding to 33 % 

of initial equipment cost is assumed as scrap value and discounted to present. For the 

ballast however, 5 years of its useful life remains end of study period, which is equal 

to 5/20= 25 percent of initial equipment cost as scrap value. 

Photovoltaic system 

The average market cost for installing a PV system either with poly-crystalline 

silicon modules or with thin-film modules are investigated. The cost of a PV system 

is measured in price-per-peak-watt (TL/Wp). Watt peak is the amount of power that 

a PV module is able to supply when it receives 1000 watts per square meter of solar 

irradiance at standard test condition. Price per peak watt is the usual figure-of-merit 

that is used to measure the cost of solar electric installations inclusive the cost for 

module, inverter, construction, wiring and labour. The average market prices are 
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estimated at 5.699 TL/Wp for Poly-crystalline Silicon and 4.342 TL/Wp for thin-film 

systems. The cost breakdown is given in Table 5.21.  

Table 5.21 : Photovoltaic system cost breakdown. 

Price breakdown 
Polycrystalline 

(TL/Wp) 

Thin-Film 

(TL/Wp) 

PV Module  2.985 1.628 

Inverter  0.814 0.814 

Construction 0.814 0.814 

Cable- material 0.543 0.543 

Labour 0.543 0.543 

Total 5.699 4.342 

The annual maintenance cost is assumed 20 TL per module, which is in line with 

market prices. 

The module life span is assumed 25 years and inverter lifespan is assumed 12.5 years 

based on the information provided by manufacturers. 

In 25-year analysis period only the inverter is required to be renewed once. 

Replacement costs are equal to equipment cost plus installation cost including 1.09 

TL/Wp for modules and 0.27 TL/Wp for inverters.  

There is no scrap value assumed for the analysis period since equipment life ends 

with the study period. 

Solar water heating system 

In the case study, for water heating purpose three solar thermal systems with varying 

solar collector types are investigated and compared.  

A market survey is taken to obtain average prices for a selective surface high 

efficiency collector, selective surface moderate efficiency collector and a black paint 

low efficiency collector. Moreover, construction and installation prices are acquired, 

too.  
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The Table 5.22 introduces the solar thermal system cost data. 

Table 5.22 :  Solar thermal system cost breakdown. 

  

SC1 

(high efficiency) 
SC2 

(moderate efficiency) 
SC3 

(low efficiency) 

Module cost (TL) 1200 790 515 

Construction cost 

per module (TL) 
60 60 60 

Installation  cost 

per module (TL) 
40 40 40 

An average market price list for water tank is also prepared as given in Table 5.23.  

Table 5.23 : Water tank price list. 

Water storage number Volume( litre) Price (TL) 

1 1260 3900 

2 1690 4700 

3 2110 5400 

The annual maintenance cost is assumed 40 TL per collector. 

The life expectancy of both the collector and water tank is assumed 25 years. 

Solar thermal systems also require a backup system in case there isn’t sufficient 

sunlight. Initial cost, installation cost and maintenance cost for backup system is 

assumed same as the burner of the water heater system explained previously. 

For the 25-year calculation period no replacement cost occurs. 

Moreover, the equipment’s life ends with building life span therefore no scrap value 

occurs, too. 

5.3 Results and Discussion 

In this section, firstly, pre-optimization steps are taken and prerequisite calculations 

are carried out. Upon determination of necessary parameters, the formulated 

optimization problems of the study are run and the results are shared and discussed. 

Moreover, the results of the validation analysis are given and conclusions are drawn. 

5.3.1 Design variable refinement 

As explained in the methodology, the optimization problem becomes more complex 

as the number of design variables grows. Therefore, to reduce the size of the 
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optimization problem, a simple sensitivity analysis is carried out on the base case 

buildings. 

The aim of the analysis is to capture the influential parameters directly on building 

primary heating, cooling and lighting energy consumption. A parametric analysis 

using an EnergyPlus model of case study buildings is applied only to the candidate 

architectural design variables including, building orientation, wall and roof insulation 

thicknesses, roof reflectivity, glazing type, and window-to-wall ratio.  

The value of each parameter is varied from its minimum value to the maximum with 

user-defined steps while the rests of the parameters are kept constant at their initial 

values. Then the percentage of difference between minimum and maximum energy 

consumption values relative to the maximum value is calculated. 

The sensitivity of roof insulation thickness is investigated under two conditions 

depending on the roof SRI value: a high SRI value of 103 and a low SRI value of 6. 

The window-to-wall ratio of each façade (South, North, East and West) is 

investigated separately as they are independently optimized. 

Two sets of calculations are carried out for Istanbul, Ankara and Antalya cases. In 

the first set, there is no dimming control of artificial lighting according to 

daylighting. In the second set however, the impact of lighting control strategies on 

design variables are also taken into account. The percentage of sensitivity of each 

variable on boiler primary natural gas consumption, chiller primary electricity 

consumption, lighting primary electricity consumption and building overall source 

energy consumption are given separately.  

The Table 5.24 summarizes the calculated sensitivity indexes for Istanbul, Ankara 

and Antalya cases where no daylighting strategy and dimming control is applied.  

In all three cases, the most influential parameter on overall building source energy 

consumption is obtained as roof insulation thickness in both SRI conditions. Roof 

SRI value itself is the second most influential parameter among all.  

The least influential parameter is found as building orientation. The parameter 

sensitivity on boiler and chiller source energy consumption can differ for each 

parameter.  
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Window-to-wall ratios influence mostly energy consumption for cooling, especially 

in Southern and Western façades. However due to lack of dimming control; their 

overall influence is relatively small.  

Similarly, glazing type has a moderate importance since the building cannot benefit 

from a dimming control. 

Table 5.24 : Sensitivity index given in percentage for Istanbul, Ankara and Antalya 

cases where no dimming control available. 

C
a

se
s Energy  

End Use 

Ort Wall  

Ins 

Roof  

Ins 

Roof  

SRI 

Win  

Type 

W-W-R 

SRI1 SRI2 S W N E 

Is
ta

n
b

u
l N.G. Boiler  0.14 9.22 26.97 37.32 14.72 4.74 2.68 1.21 0.70 1.23 

Elc. Chiller 0.56 4.66 3.24 12.79 18.03 11.53 9.00 8.49 3.27 6.88 

Elc. Lighting 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total  P.Uses 0.14 0.46 4.97 5.04 0.43 1.95 1.54 1.57 0.48 1.1 

  

           

A
n
k
ar

a 

N.G. Boiler  0.20 10.38 28.49 39.63 16.62 5.14 2.80 1.34 0.66 1.42 

Elc. Chiller 1.16 9.02 5.01 22.00 29.85 17.20 12.20 11.57 4.70 11.41 

Elc. Lighting 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total  P.Uses 0.17 1.45 7.85 9.95 1.95 1.68 0.94 1.14 0.36 0.95 

  

           

A
n
ta

ly
a N.G. Boiler  0.52 9.75 18.88 44.08 31.42 6.42 5.66 2.51 0.88 2.52 

Elc. Chiller 0.90 3.69 10.34 8.59 20.66 10.47 8.64 9.27 2.78 7.58 

Elc. Lighting 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total  P.Uses 0.29 0.6 4.08 2.26 3.34 2.88 2.44 2.76 0.76 2.12 

When the dimming control is activated, the sensitivity indexes are updated due to the 

reduction in lighting consumption and consequent reduction in overall energy 

consumption, as given in Table 5.25.  

The roof insulation thickness is still the most influential parameter in all three cases. 

Similarly, the orientation is again the least influential parameter in all energy 

consumption categories.  

The glazing type and the window-to-wall ratio in all orientations become more 

significant in presence of dimming control. The influence of glazing type becomes 

almost five times higher in comparison to no dimming control condition. 
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Table 5.25 : Sensitivity index given in percentage for Istanbul, Ankara and Antalya 

cases where there is dimming control available. 

C
a

se
s Energy  

End Use 

Ort Wall  

Ins 

Roof  

Ins 

Roof  

SRI 

Win  

Type 

W-W-R 

SRI1 SRI2 S W N E 

Is
ta

n
b

u
l N.G. Boiler  0.18 9.46 27.64 38.36 15.43 3.19 1.71 0.46 0.20 0.47 

Elc. Chiller 0.77 3.37 5.99 9.96 17.77 6.65 6.05 5.69 1.58 4.53 

Elc. Lighting 0.67 0.00 0.00 0.00 0.00 25.60 17.30 16.32 10.35 14.91 

Total P. Uses 0.17 0.85 6.18 6.69 0.1 6.83 2.95 2.63 2.04 2.61 

  

 

          

A
n

k
ar

a 

N.G. Boiler  0.21 10.72 28.67 40.05 17.17 3.59 1.85 0.52 0.17 0.70 

Elc. Chiller 1.44 7.85 9.78 17.96 30.04 11.09 9.01 8.96 2.78 8.67 

Elc. Lighting 0.88 0.00 0.00 0.00 0.00 26.58 17.43 17.20 10.48 15.21 

Total  P.Uses 0.25 2.03 9.4 12.23 2.88 7.17 3.11 2.7 1.9 2.48 

  

 

          

A
n
ta

ly
a N.G. Boiler  0.70 10.29 20.99 47.01 33.42 4.11 4.80 1.58 0.42 1.69 

Elc. Chiller 0.95 2.65 12.72 6.25 20.77 6.24 6.18 6.46 1.28 5.68 

Elc. Lighting 1.29 0.00 0.00 0.00 0.00 30.66 18.68 19.58 10.90 17.25 

Total  P.Uses 0.37 0.39 5.3 3.5 3.04 7.97 2.53 2.5 1.95 2.22 

When all the results are analysed it was seen that the influence of variation in 

building orientation demonstrated an insignificant importance as a decision variable 

in all cases and in all energy consumption categories.  

The rest of the parameters however showed from high to moderate correlation at 

least in one energy consumption category. Therefore, only the building orientation 

was eliminated from candidate design variables. 

The final list of variables including building design parameters, HVAC and 

renewable system parameters used in this case study are listed in Table 5.26, which 

introduces the name, the symbol, and the range or value of each variable. 

In the column Range or Value, the boundary values are used for a discrete variable 

that is spaced linearly based on user specified number of intervals, and a series of 

admissible values are used for a discrete variable that denotes the indices in the 

library file corresponding to that discrete variable.  
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Table 5.26 : Final list of design variables. 

Variable Name Symbol Range or Value 

Building architectural characteristics 

External wall insulation thickness iEW [0 ; 0.15] (meter) 

Roof insulation thickness iR [0 ; 0.15] (meter) 

Roof SRI RT RT1, RT2 

Glazing type GT GT1 – GT27 

Window-to-wall ratio WTW 5, 15, 25, 35, 45, 55 % 

Building HVAC system characteristics 

Boiler type BL BL1 – BL54 

Chiller type CL CL1 – CL 44 

Building renewable system characteristics 

PV type PVtyp PV1, PV2 

Number of PV Modules PVnum [1 ; 858] 

Solar collector type SCtyp SC1, SC2 

Number of solar collectors SCnum [1 ; 140] 

5.3.2 Base case energy performance 

When all the necessary information is collected, the simulation models of the base 

case scenarios are developed in EnergyPlus which is the simulation engine adopted 

in the methodology. 

Firstly, base case sizing calculations are carried out to calculate initial building 

thermal loads and to determine required capacities of plant equipment including 

chiller, boiler and water heater. After the capacities are established, the sizing factors 

are applied and upper and lower limits of allowed capacity range for each equipment 

is obtained. Then, suitable equipment that has the lowest capacity within the capacity 

range are selected from the equipment database as initial base case equipment.  

The results of the boiler sizing calculations are given in Table 5.27. The required 

boiler thermal capacities for the buildings in Istanbul, Ankara and Antalya are 

determined as 591 kW, 857 kW, and 499 kW, respectively. It can be seen from the 

results that the impact of climate conditions is directly reflected on the capacities 

where the highest boiler capacity is required in Ankara and lowest in Antalya. The 

sizing factors of 0.99 and 1.25 are applied to determine the allowable lower and 

upper equipment capacity limits. Then, a low-efficiency boiler falls within the 

capacity range of each scenario is selected as base case equipment from the boiler 
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database given in APPENDIX C, Table C.1 where traditional low efficiency 

equipment are available.  

Boiler 18 that has a nominal capacity of 610 kW is selected for Istanbul, Boiler 23 

that has a nominal capacity of 878 kW is selected for Ankara and Boiler 16 that has a 

nominal capacity of 506 kW is selected for Antalya. Thermal efficiency of all the 

boilers is 84%. 

Table 5.27 : Calculated boiler capacity and selected boiler equipment. 

Cases 

Equipment sizing  

[kW] 

Equipment Selection 

[kW] 

Required 

Capacity 

Min allowed 

capacity  

(0.99 *ReqCap) 

Max allowed 

capacity  

(1.25*ReqCap) 

Equipment 

Library 

Number 

Equipment 

Capacity 

Istanbul 591 585 738 BL 18 610 

Ankara 857 848 1071 BL 23 878 

Antalya 499 494 624 BL 16 506 

The results of the chiller sizing calculations are summarized in Table 5.28. The 

required chiller nominal capacities for the buildings in Istanbul, Ankara and Antalya 

are determined as 712 kW, 583 kW, and 756 kW, respectively.  

Table 5.28 : Calculated chiller capacity and selected chiller equipment. 

Cases 

Equipment sizing  

[kW] 

Equipment Selection 

[kW] 

Required 

Capacity 

Min allowed 

capacity  

(0.99 *ReqCap) 

Max allowed 

capacity  

(1.15*ReqCap) 

Equipment 

Library 

Number 

Equipment 

Capacity 

Istanbul 712 705 819 CL 13 760 

Ankara 583 577 670 CL 10 599 

Antalya 756 749 870 CL 13 760 

The impact of climate conditions is also reflected on the chiller capacities where the 

highest capacity chiller is required in Antalya and lowest in Ankara, as expected.  

The sizing factors of 0.99 and 1.15 are applied to determine the allowable lower and 

upper equipment capacity limits. Then, a moderate efficiency chiller falls within the 

capacity range of each scenario is selected as base case equipment from the chiller 

database given in APPENDIX C, Table C.5,  where traditional equipment are 

available. 
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Chiller 13 with a capacity of 760 kW and an EER of 4.72 is chosen for Istanbul, 

Chiller 10 with a capacity of 599 kW and an EER of 4.68 is chosen for Ankara and 

finally, Chiller 13 again with a capacity of 760 kW and an EER of 4.72 is chosen for 

Antalya. The reason for the same chiller selected for Istanbul and Antalya is that 

there is no other smaller capacity equipment within the allowed capacity range in the 

equipment database suitable for the Istanbul case study. 

The sizing calculation is performed lastly for obtaining the power capacity and tank 

volume of water heaters.  

The capacity of the water heater depends on water use, flow rate and hot water set 

point. Since the hot water requirements are assumed same in all three cases, the 

required equipment capacities are also resulted in same values as given in Table 5.29 

below. 

Table 5.29 : Water heater sizing and selected equipment. 

Cases 

Required  

Capacity  

[kW] 

Water Heater Selection 

Equipment 

Library 

Number 

Equipment 

Capacity 

[kW] 

Storage 

Volume  

[m3] 

Istanbul 83 WH 2 93 1.69 

Ankara 83 WH 2 93 1.69 

Antalya 83 WH 2 93 1.69 

Once the boiler, chiller and water heater equipment are chosen, they are added to the 

simulation models together with their efficiency curves. Thus, the models became 

complete. Annual simulations are run now to evaluate the overall energy 

performances of the base case scenarios.  

Table 5.30 summarizes the base case annual site energy consumption per floor area 

for Istanbul, Ankara and Antalya based on fuel type and end use type. According to 

the numbers, heating is the dominant load in the base case buildings located in 

Istanbul and Ankara. However, in Antalya the cooling load becomes dominant. 
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Table 5.30 : Base case site energy consumption breakdown per floor area. 

End use type  

[kWh/m2] 
Istanbul Ankara Antalya 

Natural Gas Boiler 46.2 76.5 15.2 

Electricity Chiller 16.8 8.4 26.2 

Electricity Cooling Tower 0.6 0.2 1.0 

Electricity HVAC Fans 9.8 9.9 10.1 

Electricity HVAC Pumps 4.9 4.1 5.7 

Natural Gas Water Heating  7.6 9.1 6.3 

Electricity Interior Lighting 34.7 34.7 34.7 

Electricity Interior Equipment 32.9 32.9 32.9 

Moreover, energy consumption per conditioned floor area in source energy (primary) 

form is given in Table 5.31. National site-to-source energy conversion factors for 

Turkey of 2.36 is applied for electricity and of 1.0 applied for natural gas, as 

recommended by Ministry of Environment and Urbanization of Turkey.  The 

primary energy use intensity (PEUI) of the baseline buildings is found to be 288.9, 

298.2, and 282.3 kWh/m2/year for Istanbul, Ankara and Antalya respectively. 

Table 5.31 : Base case primary energy consumption breakdown per floor area. 

End use type  

[kWh/m2] 
Istanbul Ankara Antalya 

Natural Gas Boiler 46.2 76.5 15.2 

Electricity Chiller 39.6 19.8 61.8 

Electricity Cooling Tower 1.4 0.5 2.3 

Electricity HVAC Fans 23.2 23.3 23.8 

Electricity HVAC Pumps 11.5 9.7 13.5 

Natural Gas Water Heating  7.6 9.1 6.3 

Electricity Interior Lighting 81.8 81.8 81.8 

Electricity Interior Equipment 77.5 77.5 77.5 

Total End Uses 288.9 298.2 282.3 

The results also show that the most space heating energy consumption occurs in 

Ankara that is five times higher than Antalya and 1.6 times higher than Istanbul. The 

most space cooling energy consumption occurs in Antalya that is 3.1 times higher 

than Ankara and 1.5 times higher than Istanbul. The cooling tower energy 

consumption profile follows the energy profile of the chiller however, the amounts 

are very small. 

Fan energy consumption due to fan coils and ventilation system are similar in all 

three cases since they are mostly related to the operating hours. Energy consumption 

for lighting is equal in all three cases since same lighting power density is used in all 
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cases and there is no dimming control of artificial lights according to daylighting. 

Similarly, equal amount of energy is consumed by plugged-in equipment since the 

equipment power density is assumed same in all cases. Even though the hot water 

consumption, and capacity and volume of the water heaters are same in all three 

cases, the water heater energy consumption differs greatly due to the different 

outdoor conditions the buildings are exposed to. Energy need for water heating is 

highest in Ankara where mains water temperature, which depends on outdoor air 

temperature, is relatively colder than other cases. Electricity consumption of 

circulation pumps constitutes a small space in the overall energy use. 

There is not a building performance database currently covering buildings located in 

Turkey, therefore the base case final energy consumption values are compared to the 

values published in Data Hub for the Energy Performance of Buildings by Building 

Performance Institute Europe (BPIE, 2014).  According to their Europe’s Buildings 

Under the Microscope Report, which is a country-by-country review of the energy 

performance of European buildings, the average specific energy consumption in the 

non-residential sector is estimated 280kWh/m2 covering all end-uses. The values 

ranges from 200 kWh/m2 to 360 kWh/m2 for the buildings constructed between the 

years 1980-2000. 

The PEUI of base cases in Istanbul, Ankara and Antalya are higher than their average 

European counterparts. In general, the results show that PEUI of the base case 

models are within a reasonable range.  

The water consumption due to occupancy hot water use and HVAC cooling tower 

use is also given in Table 5.32 below. Highest amount of cooling tower water 

consumption occurs in Antalya followed by Istanbul and Ankara. Occupancy hot 

water use is equal in all cases since occupancy hot water requirements are assumed 

same in all three cases 

Table 5.32 : Water end use. 

Water Consumption 
Istanbul Ankara Antalya 

[m3/m2] [m3/m2] [m3/m2] 

Cooling Tower Water Use 0.191 0.140 0.337 

Hot Water Use 0.202 0.202 0.202 

Total Use 0.393 0.342 0.539 
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Annual CO2 emission rates for each base case building are calculated by application 

of national CO2 conversion factors of 0.234 for natural gas and 0.617 for electricity 

as given in Table 5.33.   

Table 5.33 :  Base case annual CO2 emission rates. 

End-use CO2 emission rate (kgCO2 /m2) Istanbul Ankara Antalya 

Electricity based CO2 rate 61.5 55.6 68.2 

Natural gas based CO2 rate 12.6 20.0 5.0 

Total CO2 emission rate 74.1 75.6 73.2 

According to BPIE survey, and Eurostat database, the average specific CO2 emission 

in Europe is 54 kgCO2/m
2
 where the national values of kgCO2 per floor space vary in 

the range from 5-120 kgCO2/m
2
. Therefore, the CO2 emission from base case 

buildings is within the range of European building stock. 

5.3.3 Parameter settings for the optimization algorithm 

For the case study optimization, the algorithm used the von Neumann topology, 40 

particles, 300 generations, a seed number of 1, a cognitive acceleration constant of 

2.8, a social acceleration constant of 1.3 and velocity clamping with a maximum 

velocity gain of 0.5. Since the updated version of PSO algorithm with constriction 

coefficient has been adopted in the study, 0.6 is assumed as constriction gain 

coefficient. 

The parameters are adjusted based on the literature review by Carlisle and Dozier, 

2001; Zhang et al., 2004 and the previous experience of the author based on 

experiments on a small case study building. 

5.3.4 Penalty parameter adjustment 

Before initializing the optimization, a test optimization case with a small PSO 

population size was created to establish the magnitude range that each penalty 

function and the global cost term of the main objective function is likely to have. 

Then penalty parameters are assumed and tuned with an aim to give each penalty an 

equal importance without being dominated among them or by the cost objective.  

The purpose of the current optimization study is to eliminate any design option that 

cannot satisfy all of the constraints simultaneously. Therefore, each time a constraint 
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is violated, a significant penalty value is aimed to be added to the objective function 

to create a jump from the unfeasible neighbourhood.  

∆CO2 (The difference between the CO2 emission rate of any design option and a 

target rate), ∆PPD (The difference between the PPD index of any design option and a 

target index), ∆CLmin (the difference between minimum allowed chiller capacity 

and recommended chiller equipment capacity), ∆CLmax (the difference between 

recommended chiller equipment capacity and maximum allowed chiller capacity), 

∆BLmin (the difference between minimum allowed boiler capacity and 

recommended boiler equipment capacity), ∆BLmax (the difference between 

recommended boiler equipment capacity and maximum allowed boiler capacity) 

value ranges are obtained for Istanbul, Ankara and Antalya cases.  

Then, the power of the penalty term is set as 2 to obtain quadratic penalty function 

values of each penalty constraint. Therefore the amount of penalty becomes 

proportional to the square of the amount of violation and it increase at a faster rate. 

Therefore, the penalty function returns zero when it is under the given limits but the 

penalty term becomes increasingly larger as solutions moves away from the feasible 

region. Once the magnitude ranges of quadratic penalty function values are obtained, 

suitable penalty parameters (µ) that can balance the contribution range of each 

penalty are selected by trial. 

The results of the test cases and the selected penalty parameters are given in 

APPENDIX D. 

5.3.5 Optimization results 

In this section, the ability of the proposed methodology to solve the whole building 

design optimization problem is investigated. Three case studies located in Istanbul, 

Ankara and Antalya demonstrate how the developed method can be used to generate 

least-cost and energy-efficient design recommendations among several options 

specific to a building, its use pattern, and its climate and location. 

In the first step of the case study analysis, the base case buildings are optimized 

without considering any renewable system integration possibility. Only the optimal 

combinations of building and HVAC system variables are sought simultaneously in a 

25-year service life analysis period. Then the photovoltaic and solar water heating 

system schemes, which are described in previous sections, are integrated into the 
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building models and the optimizations are re-run to find the best combination of 

building, HVAC and renewable system options together this time. 

The main objective function is the difference between the Global Cost (GC) per 

square meter building floor area of any design option that is created through 

optimization and base case design added with the sum of the all penalty functions 

due to constraint violations. Therefore, the additional cost incurred to achieve a given 

level of energy savings can be determined and compared practically while 

considering design limitations. Since the objective function is calculated relative to 

the base case, the dGC intends to go below zero as improvements are being made 

during search process when the GC of new design alternatives becomes smaller than 

GC of the base case. However, if the new design combinations worsen the total 

building performance, dGC then can take positive values. In addition, if a candidate 

solution violates any of the penalty criteria, a large penalty value is added to the main 

objective function therefore the total cost value of objective function is sharply 

increased to eliminate constraint-violating design recommendations. 

5.3.5.1 Istanbul case study 

The graphic given in Figure 5.18 illustrates the results of the optimization search in 

Istanbul case as a dense cloud of black circles where each circle represents a 

different combination of the optimization variables and the resulting objective 

function value.  

 

Figure 5.18 : Distribution of optimization results obtained with Istanbul case. 
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PSO search involves iteratively trying arbitrarily selected parameters while always 

remembering the best solution found in the process.  As the figure indicates, the 

solution space constitutes a wide range of possibilities due to the large number of 

variables involved.  

The main objective function for the initial case is calculated as 151071 where, after 

optimization, it was reduced to -248.  

Since the objective function is calculated based on building global cost (GC) 

performance and how well the building satisfies user-set penalty limitations, a 

breakdown of objective function is also illustrated in Figure 5.19, where dark blue 

circles represents dGC per floor area and orange circles represents the corresponding 

total penalty function value.  

 

Figure 5.19 : Breakdown of optimization results obtained with Istanbul case. 
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Figure 5.20 : Penalty values obtained with Istanbul case. 

The dGC per sqm value of the optimized case is calculated as -248 TL/m2 and the 

corresponding penalty value is obtained as zero. Therefore, the optimization was 

successful at reducing building GC without violating any of the optimization 

constraints. 

When the absolute GC per sqm values of base case and optimized cases are 

compared as given in Figure 5.21, it was found that in optimized case, 248 TL/m2 

GC saving has been achieved relative to base case and the application of 

optimization has achieved reducing the overall GC by 18.7 % in Istanbul case study.  

 

Figure 5.21 : Comparison of global cost breakdown obtained with Istanbul case. 

Total GC is a summation of net-present value of energy cost, water cost, building 
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The application of the proposed optimization methodology has reduced the NPV of 

energy cost by 25.6 %, and the NPV of water cost by 12.6 %. However, to improve 

building energy and HVAC water use efficiency, the NPV of building material cost 

has increased by 65.2 % and the NPV of building equipment cost has increased by 

9.2 % due to investments in new design alternatives. 

Table 5.34 provides the base case and final set of recommended design solutions 

obtained with the proposed optimization methodology for Istanbul case study. 

Table 5.34 : Base case and optimized case design options with Istanbul case. 

 

iEW 

(m) 

iR 

(m) 

RT 

 

GT 

 

WTW 

South  

(%) 

WTW 

West  

(%) 

WTW 

North  

(%) 

WTW 

East  

(%) 

BLtyp CLtyp DL 

B.C 0 0 1 1 25 25 25 25 18 13 0 

O.C 0.025 0.045 2 13 45 35 55 35 43 32 1 

According to the given numbers, the optimization recommended increasing the 

external wall insulation thickness from zero to 0.025 meters and the roof insulation 

thickness from zero to 0.045 meters.  

Moreover, optimization also recommended cool roof paint (RT2) instead of 

conventional gravel roof (RT1) as final layer of the roof element.  

The initial air filled double glazed glazing unit GT1 (U: 2.9 W/m2K, SHGC: 0.75, 

Tvis: 0.8, Cost: 38.9 TL/m2) was replaced with double glazed argon filled glazing 

unit GT13 (U: 1.6 W/m2K, SHGC: 0.56, Tvis: 0.79, Cost: 44.8 TL/m2).  

Furthermore, the moderate window-to-wall ratios were increased from 25 % to 45 % 

in Southern facade and to 35 % in Western and Eastern facades and to 55 % in 

northern facade. The increase in w-t-w ratios naturally let the net area of external 

wall decrease accordingly. 

The change in NPV due to the changes that occur in independent and dependent 

variables of building material category are summarized in Table 5.35. 

The improvements in building façade were also combined and supported with the 

improvements in building systems.  
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Table 5.35 : NPV breakdown of building material cost with Istanbul case. 

Building Materials Base case (TL/m2) Optimized case (TL/m2) 

External wall insulation 0.0 2.5 

Roof insulation 0.0 8.6 

Roof coating type 1.6 4.6 

Glazing type 26.2 45.2 

Wall composition 17.0 13.0 

Total Material Cost 44.8 73.9 

To begin with, the optimization selected dimming control of artificial lights 

according to daylight levels as a cost effective and energy-efficient design option 

over manual lighting control.  

The integration of dimming control of lights with the rest of the new design 

recommendations for building facade caused a decrease in building heating and 

cooling loads. The load reduction was simultaneously reflected both on chiller and 

boiler equipment sizes. The base case boiler equipment BL 18 (Capacity: 610 kW, 

Eff: 0.84, Cost: 13240 TL) was replaced with BL 43 (Capacity: 510 kW, Eff: 0.95, 

Cost: 31795 TL) which is in the high-efficiency equipment category. However, 

similar size lower-efficiency boiler BL10 (Capacity: 506 kW, Eff: 0.84, Cost: 11053 

TL) wasn’t found to be favourable even though its lower initial cost.  

Similarly, the base case chiller CL 13 (Capacity: 760 kW, EER: 4.72, Cost: 188210 

TL) was replaced with CL 32 (Capacity: 605, EER: 5.65, Cost: 192610) which is in 

the high-efficiency equipment category. Similar size lower-efficiency alternative CL 

10 (Capacity: 599 kW, EER: 4.68, Cost: 155377 TL) wasn’t found to be worth 

investing under circumstances.  

The penalty values due to boiler and chiller equipment allowable capacities are 

calculated as zero as given in Figure 5.20 before, which indicates that optimization, 

was successful at selecting right size equipment while considering the dynamic load 

changes. 

The reductions in building heating and cooling loads were also reflected on 

dependent equipment. The number of required fan coil units was decreased from 64 

to 47. Similarly, the required cooling tower capacity was decreased from 731kW to 

565 kW as well.  
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The change in NPV due to the changes that occur in independent and dependent 

building system variables are summarized in Table 5.36. 

Table 5.36 : NPV breakdown of building system cost with Istanbul case. 

Building Systems Base case (TL/m2) Optimized case (TL/m2) 

Lighting Control 36.7 53.4 

Boiler 2.4 4.4 

Chiller 33.1 32.7 

Cooling Tower 8.4 6.7 

Fan Coil Units  25.3 18.5 

Water Heater 2.5 2.5 

Total Equipment Cost 108.2 118.2 

The capital cost of the recommended boiler is more than twice the capital cost of 

recommended boiler. Moreover, the NPV of the recommended boiler is almost 

double the NPV of initial boiler. However, the improved thermal efficiency 

combined with reduced equipment capacity made the investment worth the cost. 

When the initial and recommended chiller equipment are compared it was found that 

even the capital cost of initial chiller (CL13) is lower than the capital cost of the 

selected chiller (CL43), the selected chiller shows a better NPV performance due to   

its lower installation and maintenance costs because of its lower capacity. In 

addition, the recommended chiller also offers improved energy performance and 

improved energy cost, which makes CL43 a suitable design option.  

The NPV of cooling tower decreased due to the reduction in cooling capacity and 

consequent equipment capacity. Similarly, NPV of fan coil units reduced in parallel 

to the reduction in the number of required units.  

The impact of optimization on 25-year operating energy costs are given in Table 

5.37.  

Table 5.37 : NPV breakdown of energy cost with Istanbul case. 

Energy Cost Type Base case (TL/m2) Optimized case (TL/m2) 

Electricity Cost 872.6 654.7 

Natural Gas Cost 206.5 148.5 

Total Energy Cost 1079.1 803.2 

The largest energy cost is due to electricity use, which is about more than 4 times 

natural gas cost in both cases. The recommended design strategies however 
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succeeded decreasing energy cost about 25 % for electricity and about 28 % for 

natural gas. 

The direct influence of optimization on annual building primary energy consumption 

is summarized in Figure 5.22. The application of the recommended design options 

achieved lowering total annual primary energy use from 288.9 kWh/m2 to 215.1 

kWh/m2 that is equal to 25.6 % reduction in total. The reduction occurred in every 

end use type except the natural gas use for water heating since there was not any 

design option influencing water heating system performance. 

 

Figure 5.22 : Comparison of annual primary energy consumption breakdown 

obtained with Istanbul case. 

The decrease in energy use also resulted in a decrease in the value of annual CO2-eq 

emission rate as shown in Figure 5.23.  

 

Figure 5.23 : Comparison of annual CO2 emission rate breakdown obtained with 

Istanbul case. 
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The overall annual building emission rate was decreased from 74 kg.Eq-CO2/m2 to 

55 kg.Eq-CO2/m2. The percentage of reduction is equal to 25.5 that is much higher 

than the minimum target reduction of 10 %. Therefore, the recommended design 

strategies are perfectly capable of satisfying CO2 emission constraint for the Istanbul 

case. 

The impact of optimization on NPV water cost is given in Table 5.38. The water cost 

because of cooling tower water use decreased by 26 % due to the reduction in 

building cooling needs. However, the available design strategies have no influence 

on building hot water use, which is only linked with building occupancy density. 

Therefore, the related water cost remained same in two cases. 

Table 5.38 : Comparison of  NPV breakdown of water cost and water end use 

with Istanbul case. 

Water End Use 

Type 

NPV water cost 

(TL/m2) 

Annual water consumption 

[m3/m2] 

Base case Optimized case Base case Optimized case 

Cooling tower  46.9 34.7 0.191 0.141 

Hot water  49.6 49.6 0.202 0.202 

Total 96.4 84.3 0.393 0.343 

In addition, the new design strategies also improved building comfort as the average 

building discomfort index of initial case has decreased from 10.45 PPD to 7.56 PPD. 

The optimization finds a single solution which is the energy and water performance 

level leading to the lowest cost during the estimated economic lifecycle as a result of 

combination of various energy efficiency measures available for the Istanbul case 

study. However, cost versus energy cloud of optimization search is very useful to 

determine a cost-effective range.  

Figure 5.24 shows global cost vs net primary energy performance of investigated 

design options that are capable of satisfying CO2 and comfort restrictions. The design 

combinations that cannot satisfy penalty criteria are filtered. The base case and 

optimized case scenarios are highlighted. The optimized case represents an economic 

optimum as it is the minimum global cost option among the considered energy 

efficiency measures for this particular building. The figure shows that optimization 

creates a sharp fall both in global cost and primary energy consumption levels in 

comparison to base case. 
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Figure 5.24 : Global cost vs primary energy cloud obtained with Istanbul case. 

Figure 5.25 focuses on the lower part of the cost-energy cloud where a frontier curve 

is represented in black dashes.  

Design options from optimized case (the economic optimum) within a 5% increase in 

global cost range towards minimum primary energy case following the frontier curve 

constitute a solution that can be considered as a cost-effective alternative range. 

Therefore, various types of solutions with reasonable low global cost, closed to the 

lower frontier of cost-energy cloud are investigated.  

 

Figure 5.25 : Cost-effective alternative solutions obtained with Istanbul case. 

The area of the curve to the right of the economic optimum represents solutions that 

underperform in both cost and energy. 
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Results show that, to save 2.22 kWh/m2.a primary energy, 7.61 TL/m2 extra global 

cost is required for 25 years calculation period. Lower primary energy alternatives 

required more investment in insulation and glazing type, larger windows resulting all 

together a smaller size boiler. Lower primary energy alternatives that have slightly 

higher global cost values than the economic optimum is presented in Table 5.39. 

Table 5.39 : Cost-effective alternative solutions with Istanbul case. 

 Net 

Primary 

Energy 

(kWh/m2.a) 

Global 

Cost 

(TL/m2) 

iEW 

(m) 

iR 

(m) 

RT GT WTW 

South  

(%) 

WTW 

West  

(%) 

WTW 

North  

(%) 

WTW 

East  

(%) 

BLtyp CLtyp DL 

1(Min.En) 212.86 1087.16 0.09 0.08 2 24 55 55 55 45 42 32 1 

2 212.90 1084.20 0.04 0.08 2 14 55 45 55 55 42 32 1 

3 212.99 1082.72 0.025 0.045 2 19 55 55 55 55 43 32 1 

4 213.08 1081.99 0.03 0.055 2 19 55 55 55 45 43 32 1 

5 213.17 1081.67 0.03 0.05 2 19 55 55 55 45 43 32 1 

6 213.27 1081.42 0.04 0.045 2 19 55 55 55 45 43 32 1 

7 213.36 1081.49 0.025 0.045 2 19 55 55 55 45 43 32 1 

8 214.09 1079.91 0.02 0.055 2 19 55 45 55 35 43 32 1 

9 214.17 1079.76 0.025 0.05 2 19 55 45 55 35 43 32 1 

10 (O.C) 215.08 1079.55 0.025 0.045 2 13 45 35 55 35 43 32 1 

In the second step of the investigation, the optimization problem was extended to 

optimize building, HVAC system and renewable systems simultaneously.  

First, the roof-mounted PV scheme described in previous section is added to building 

model and then, optimum PV capacity and PV type was searched simultaneously 

together with other design options. Table 5.40 introduces the initial and 

recommended design alternatives. 

Table 5.40 : Base case and optimized case design options after PV integration with 

Istanbul case. 

 iEW 

 

(m) 

iR 

 

(m) 

RT 

 

 

GT 

 

 

WTW 

South  

 

(%) 

WTW 

West  

 

(%) 

WTW 

North  

 

(%) 

WTW 

East  

 

(%) 

BLtyp 

 

CLtyp 

 

DL 

 

Pv 

Type 

PV 

Number 

B.C 0 0 1 1 25 25 25 25 18 13 0 - - 

O.C 0.025 0.045 2 13 45 35 55 35 43 32 1 1 858 

As numbers indicate, all the design recommendations including external wall 

insulation thickness, roof insulation thickness, roof coating type, window-to-wall 

ratios, dimming control system based on daylighting, chiller equipment and boiler 

equipment are remained same as the optimum case without PV integration.  
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The Figure 5.26 below shows the objective function values calculated with each PV 

type during the search process. The values obtained with PV2 are always much 

higher than the values obtained with PV1. Therefore, the optimization selected PV1 

(polycrystalline silicone cell) over PV2 (thin film cell) as ideal PV system for 

Istanbul case study. 

  

Figure 5.26 : Distribution of optimization results with each PV type obtained with 

Istanbul case. 

When the elements of the objective function are investigated it was seen that the 

design case with PV 2 is constantly penalized due to payback constraint because it is 

not able to satisfy 25-year payback criteria.  

However, the recommended system with PV1 has an average payback period of 21 

years that is less than the target period and no penalty due to time constraint was 

imposed. Therefore, the energy savings within building life span was able to pay 

back the ownership cost of the system PV1.  

Moreover, the annual cost benefits obtained with PV2 is less than PV1. The optimum 

number of PV modules is calculated as 858 that is the maximum number of modules 

that can be installed on rooftop based on physical constraints. 

The absolute GC per sqm of the optimized case with PV is calculated as 1053 TL/m2 

that is 508 TL/m2 less than initial case and 232 TL/m2 less then optimized case 

without a PV system. A comparison of absolute GC values is illustrated in Figure 

5.27.  
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Figure 5.27 : Global cost breakdown after PV integration with Istanbul case. 

The application of PV system has reduced the NPV energy costs by 47.1 % in 

comparison to base case and by 28.9 % in comparison to optimized case without PV. 

The NPV of equipment and material cost remained same in two optimized cases 

since rest of the design variables remained same. The recommended PV system has a 

214.5 kW installed peak-power and it is capable of annually producing 235,273 kWh 

electricity. 233,562 kWh of that amount directly satisfies the building electricity load 

that is equal to 35.7 % of the total building electricity need. Consequently, the 

building CO2 emission rate was decreased to 38.8 kg/m2.a that is equal to a 47.6% 

decrease in comparison to initial case and a 29.7 % decrease in comparison to 

optimized case without PV system as given in Figure 5.28.  

 

Figure 5.28 : Comparison of annual CO2 emission rate after PV integration 

obtained with Istanbul case. 
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maintenance and replacement of aging equipment. The cost of annual electricity 

saving is equal to 8.6 TL/m2. The annual surplus electricity generated back to the 

grid is 1711 kWh and is equal to a 0.047 TL/m2 income. When combined with 

annual electricity saving the annual cost benefit obtained from the PV system is 

equal to 8.65 TL/m2.  

Design variables related to PV system have no influence on building comfort 

therefore the discomfort index of the optimized case with PV system is obtained 

same as the discomfort index of optimized case without PV system, which was able 

to satisfy the comfort criteria. 

Lastly, the solar water heating (SWH) system described in previous section is added 

to the building model and the optimization is re-run for an aim to find the optimal 

solar collector type, and collector number. Since the so-called system is only for 

sanitary water heating and there is no HVAC interaction, the results are presented 

only for SWH system. The main objective function consists of NPV per sqm of 

ownership of SWH system, NPV per sqm of natural gas use due to water heating by 

backup system and penalty value in case the investment payback period is not 

satisfied.  

The Figure 5.29 below illustrates the optimization search space. As shown in the 

figure, the payback period of the solar thermal systems start exceeding the target 

period of 25 years with all three solar collector types after installation of 60 

collectors and large penalties occurs.  

 

Figure 5.29 : Optimization results with each solar collector type with Istanbul case. 
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performances of solar systems with all collector types is provided in Figure 5.30. 

According to the given numbers, the optimum collector type for this case study 

building is obtained as SC 2 (selective surface, moderate efficiency collector) and the 

optimum number of collector modules is obtained as 31.  

 

Figure 5.30 : Optimization results with each solar collector type within feasible 

region obtained with Istanbul case. 

Table 5.41 summarizes the cost performances of initial and recommended systems. 

As results shows the NPV ownership cost of the recommended solar water heating 

system is 2.6 times higher than the conventional natural gas water heating system. 

However, the contribution of the solar thermal system was capable of decreasing the 

natural gas annual energy use from 8 kWh/m2 to 3 kWh/m2 with a corresponding 

NPV energy saving of 60 % for water heating purposes. Therefore, the energy 

savings were able to pay back the investments cost in 6.2 years, which is less than 

the target value. 

Table 5.41 : Global cost breakdown of conventional and solar thermal water heating 

system obtained with Istanbul case. 

Cost type Conventional water heater 

system 

Solar thermal system 

NPV energy  29 11.4 

NPV system ownership 2.5 6.6 

Total GC 31.5 18 

In addition to cost saving benefits, the reduction in annual natural gas water heating 

requirement resulted in 1.1 kg-eq/m2 reduction in annual CO2 emissions. 
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The recommended SWH system is combined with rest of the recommended design 

options and the GC performance of different design cases are compared in Figure 

5.31.  

 
Figure 5.31 : Comparison of all design scenarios obtained with Istanbul case. 

If all design suggestions given by the proposed optimization method are adopted, the 

building overall energy consumption from non-renewables can be decreased by 44%, 

annual CO2 emission rate can be decreased by 49 % and the building global costs 

can be decreased by 21.7 % while improving the overall building comfort for the 

Istanbul case study. 

5.3.5.2 Ankara case study 

The graphic in Figure 5.32 illustrates the results of the optimization search in Ankara 

case as a dense cloud of black circles. 

 

Figure 5.32 : Distribution of optimization results obtained with Ankara case. 
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In the figure each black circle represents a different combination of the optimization 

variables and the resulting objective function value that includes dGC per floor area 

and total penalty value. 

As the figure indicates, many different combinations of design variables are created 

and investigated during optimization search therefore, the solution space covers a 

wide region. The main objective function for the base case is calculated as 223,568 

where, after optimization, it was reduced to -251. 

Since the objective function is based on building global cost performance and how 

well the building satisfies the user-set penalty limitations, a breakdown of objective 

function is also illustrated in Figure 5.33, where dark circles represents dGC per sqm 

and orange circles represents the corresponding total penalty function value.  

As Figure shows, a large portion of the solution space constitute invalid solutions 

due to violations of the problem constraints even some of the solutions show a better 

GC performance than the optimized case.  

 

Figure 5.33 : Breakdown of optimization results obtained with Ankara case. 

The dGC per sqm of initial case is calculated as zero since it is the reference point of 

the optimization. However, its corresponding penalty function is calculated as 
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Figure 5.34 : Penalty values obtained with Ankara case. 

The dGC per sqm of the optimized case is calculated as -251 TL/m2 and the 

corresponding penalty value is obtained as zero. Therefore, the optimization was 

successful at reducing building global cost without violating any of the optimization 

constraints.  

When the absolute GC per sqm values of base case and optimized cases are 

compared as given in Figure 5.35 it was found that in optimized case 251 TL/m2 

global cost saving has been achieved relative to base case and the application of 

optimization has achieved reducing the overall GC by 18.6 % in Ankara case study.  

 

Figure 5.35 : Comparison of global cost breakdown obtained with Ankara case. 
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The application of the proposed optimization methodology has reduced the NPV of 

energy cost by 25.6 %, and the NPV of water cost by 10.6 %. However, to improve 

building energy and water efficiency, the NPV of building material cost has 

increased by 74.4 % and the NPV of building equipment cost has increased by 11 % 

due to investments in new design options. 

Table 5.42 provides the base case and final set of recommended design options. 

Table 5.42 : Base case and optimized case design options with Ankara case. 

 iEW 

(m) 

iR 

(m) 

RT 

 

 

GT 

 

 

WTW 

South  

(%) 

WTW 

West  

(%) 

WTW 

North  

(%) 

WTW 

East  

(%) 

BLtyp 

 

CLtyp 

 

DL 

 

B.C. 0 0 1 1 25 25 25 25 23 10 0 

O.C. 0.05 0.085 2 13 45 45 45 25 45 30 1 

According to the given numbers, the optimization recommended increasing the 

external wall insulation thickness from zero to 0.05 meters and the roof insulation 

thickness from zero to 0.085 meters.  

Moreover, optimization also recommended cool roof paint (RT2) instead of 

conventional gravel roof (RT1) as final layer of the roof element.  

The initial air filled double glazed glazing unit GT1 (U: 2.9 W/m2K, SHGC: 0.75, 

Tvis: 0.8, Cost: 38.9 TL/m2) was replaced with double glazed argon filled glazing 

unit GT13 (U: 1.6 W/m2K, SHGC: 0.56, Tvis: 0.79, Cost: 44.8 TL/m2).  

Moreover, the moderate window-to-wall ratios were increased from 25 % to 45 % in 

Southern, Western and Northern facades. However, the window-to-wall ratio of 

Eastern facades remained the same. The increase in w-t-w ratios naturally let the net 

area of external wall decrease accordingly. 

The change in NPV due to the changes that occur in independent and dependent 

variables of building material category are summarized in Table 5.43.  

The improvements in building façade were also combined and supported with the 

improvements in building systems.  

To begin with, the optimization selected dimming control of artificial lights 

according to daylight levels as a cost effective and energy-efficient design option 

over manual lighting control.  
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Table 5.43 : NPV breakdown of building material cost with Ankara case. 

Building Materials Base case (TL/m2) Optimized case (TL/m2) 

External wall insulation 0.0 3.9 

Roof insulation 0.0 13.4 

Roof coating type 1.6 4.6 

Glazing type 26.2 42.5 

Wall composition 17.0 13.6 

Total Material Cost 44.8 78.1 

Moreover, when the lighting control was integrated with the rest of the new building 

façade recommendations, a decrease in building heating and cooling loads were 

obtained.  

The reduction in building loads was dynamically reflected both on chiller and boiler 

equipment sizes in the calculation. The base case boiler equipment BL 23 (Capacity: 

878 kW, Eff: 0.84, Cost: 18689 TL) was replaced with BL 45 (Capacity: 615 kW, 

Eff: 0.95, Cost: 38689 TL) which is in the high-efficiency equipment category. 

However, similar size lower-efficiency boiler BL18 (Capacity: 610 kW, Eff: 0.84, 

Cost: 13240 TL) wasn’t found to be favourable.  

Similarly, the bas case chiller CL 10 (Capacity: 599 kW, EER: 4.68, Cost: 155377 

TL) was replaced with CL 30 (Capacity: 505, EER: 5.63, Cost: 175251) which is in 

the high-efficiency equipment category. Similar size lower-efficiency alternative CL 

8 (Capacity: 510 kW, EER: 4.72, Cost: 142623 TL) wasn’t found to be worth 

investing under circumstances.  

The penalty values due to boiler and chiller equipment allowable capacities are 

calculated as zero which shows that optimization algorithm was successful at finding  

right-sized equipment while. 

The reductions in building heating and cooling loads were also reflected on 

dependent equipment. The number of required fan coil units was decreased from 66 

to 44. Similarly, the required cooling tower capacity has decreased from 577 kW to 

472 kW as well.  

The change in NPV due to the changes that occur in independent and dependent 

building system variables are summarized in Table 5.44. 
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Table 5.44 : NPV breakdown of building system cost with Ankara case. 

Building Systems Base case (TL/m2) Optimized case (TL/m2) 

Boiler 3.3 5.3 

Chiller 27.4 29.6 

Cooling Tower 6.7 5.7 

Fan Coil Units  26.0 17.4 

Water Heater 2.5 2.5 

Lighting Control 36.7 53.4 

Total Equipment Cost 102.6 113.8 

The recommended boiler has about twice the capital cost of initial boiler and 1.6 

times the global cost of initial boiler however, improved thermal efficiency was 

found to be worth investing in to decrease energy costs. 

When the initial and recommended chiller equipment are compared it was found that 

the capital cost of initial chiller (CL10) is lower than the capital cost of the selected 

chiller (CL30). Moreover, NPV of the initial chiller is also higher than the selected 

chiller. However, the energy efficiency due to the better EER of the recommended 

chiller makes the total investment worth the cost. 

The NPV of cooling tower decreased due to the reduction in equipment capacity. 

Similarly, NPV of Fan coil units reduced in parallel to the reduction in the number of 

required units.  

The impact of optimization on global energy costs are given in Table 5.45. The 

largest energy cost is due to electricity use, which is about more than twice the 

natural gas cost in both cases. The recommended design strategies however 

succeeded decreasing energy cost about 22 % for electricity and about 34.4 % for 

natural gas. 

Table 5.45 : NPV breakdown of energy cost with Ankara case. 

Energy Cost Type Base case (TL/m2) Optimized case (TL/m2) 

Electricity Cost 789.3 615.8 

Natural Gas Cost 328.1 215.2 

Total Energy Cost 1117.4 831.0 
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The influence of optimization on annual building energy performance is summarized 

in Figure 5.36. The application of the recommended design options achieved 

lowering total annual building primary energy use intensity from 298.2 kWh/m2 to 

222 kWh/m2 which is equal to 25.6 % decrease. The reduction occurred in every end 

use type except the natural gas use for water heating since there was not any design 

option directly influencing water heating system performance. 

 

Figure 5.36 : Comparison of annual primary energy consumption breakdown 

obtained with Ankara case. 

The reduction in energy use also resulted in a reduction in the value of annual CO2-

eq emission rate as shown in Figure 5.37.  

 

Figure 5.37 : Comparison of annual CO2 emission rate breakdown obtained with 

Ankara case. 
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strategies are perfectly capable of satisfying CO2 emission constraint for the Ankara 

case. 

The impact of optimization on NPV of water cost is given in Table 5.46. The service 

life water cost due to cooling tower water use decreased by 25.8 % due to the 

reduction in building cooling needs and consequent cooling tower operating hours. 

However, the available design strategies have no influence on building hot water use, 

which is only linked with building occupancy density. Therefore, the related water 

cost remained same in two cases. 

Table 5.46 : Comparison of  NPV breakdown of water cost and water end use with 

Ankara case. 

Water End Use 

Type 

NPV water cost 

(TL/m2) 

Annual water consumption 

[m3/m2] 

Base case Optimized case Base case Optimized case 

Cooling tower  34.3 25.4 0.140 0.103 

Hot water  49.6 49.6 0.202 0.202 

Total 83.8 75.0 0.341 0.305 

In addition, the new design strategies also improved building comfort as the average 

building discomfort index of base case has decreased from 12.69 PPD to 7.94 PPD. 

The optimization finds a single solution which is the energy and water performance 

level leading to the lowest cost during the estimated economic lifecycle as a result of 

combination of various energy efficiency measures available for the Ankara case 

study. However, cost vs energy cloud of optimization search is very useful to 

determine a cost-effective alternative range.  

Figure 5.38 shows global cost vs net primary energy performance of investigated 

design options that are capable of satisfying CO2 and comfort restrictions. The design 

combinations that cannot satisfy penalty criteria are filtered. The base case and 

optimized case scenarios are highlighted. The optimized case represents an economic 

optimum as it is the minimum global cost option among the considered energy 

efficiency measures for this particular building. The figure shows that optimization 

creates a sharp fall both in global cost and primary energy consumption levels in 

comparison to base case. 
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Figure 5.38 : Global cost vs primary energy cloud obtained with Ankara case. 

Figure 5.39 focuses on the lower part of the cost-energy cloud where a frontier curve 

is represented in black dashes. Design options from optimized case (the economic 

optimum) within a 5% increase in global cost range towards minimum primary 

energy case following the frontier curve constitute a solution that can be considered 

as a cost-effective alternative range. Therefore, various types of solutions with 

reasonable low global cost, closed to the lower frontier of cost-energy cloud is 

investigated.  

 

Figure 5.39 : Cost-effective alternative solutions obtained with Ankara case. 
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and glazing type, larger windows. Lower primary energy alternatives that have 

slightly higher global cost values than the economic optimum is presented in Table 

5.47. 

Table 5.47 : Cost-effective alternative solutions with Ankara case. 

 

Net 

Primary 

Energy 

(kWh/m2.a) 

Global 

Cost 

(TL/m2) 

iEW 

(m) 

iR 

(m) 

RT GT WTW 

South  

(%) 

WTW 

West  

(%) 

WTW 

North  

(%) 

WTW 

East  

(%) 

BLtyp CLtyp DL 

1(Min.En) 219.15 1104.84 0.075 0.100 2 24 55 55 55 55 45 30 1 

2 219.18 1104.44 0.065 0.100 2 24 55 55 55 55 45 30 1 

3 219.38 1102.90 0.040 0.115 2 24 55 55 55 45 45 30 1 

4 219.52 1102.19 0.055 0.100 2 24 55 55 55 45 45 30 1 

5 220.06 1100.48 0.040 0.095 2 24 55 55 55 35 45 30 1 

6 220.42 1099.75 0.040 0.085 2 19 55 55 55 35 45 30 1 

7 221.46 1098.04 0.040 0.085 2 18 45 45 55 25 45 30 1 

8 221.61 1097.91 0.040 0.080 2 18 45 45 55 25 45 30 1 

9 221.72 1097.92 0.045 0.075 2 18 45 45 55 25 45 30 1 

10(O.C) 222.00 1097.87 0.050 0.085 2 13 45 45 45 25 45 30 1 

In the second step of the investigation, the optimization problem was extended to 

optimize building, HVAC system and renewable systems simultaneously.  

First, the roof-mounted PV scheme described in previous section is added to building 

model and then, optimum PV capacity and PV type was searched simultaneously 

together with other design options. Table 5.48 introduces the initial and 

recommended design alternatives. 

Table 5.48 : Base case and  optimized case design options with PV integration with 

Ankara case. 

 

iEW 

(m) 

iR 

(m) 

RT 

 

 

GT 

 

 

WTW 

South  

(%) 

WTW 

West  

(%) 

WTW 

North  

(%) 

WTW 

East  

(%) 

BLtyp 

 

CLtyp 

 

DL 

 

Pv 

Type 

PV 

Number 

B.C 0 0 1 1 25 25 25 25 23 10 0 - - 

O.C 0.05 0.08 2 13 45 45 45 25 45 30 1 1 858 

As numbers indicate, all the design recommendations except external wall insulation 

thickness are remained same as the optimum case without PV integration. However, 

the optimum thickness of roof insulation is obtained as 0.08 m, which is half 

centimetre less than the case without PV system.  

The Figure 5.40 illustrates the objective function values calculated with each PV type 

during the search process. The values obtained with PV2 are much higher than the 
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values obtained with PV1 most of the time. Therefore, the optimization selected PV 

module type 1 (polycrystalline silicone cell) over PV module type 2 (thin film cell) 

as ideal PV system for the Ankara case study. 

  

Figure 5.40 : Distribution of optimization results with each PV type obtained with 

Ankara case. 

When the elements of the objective function are investigated it was seen that the 

design case with PV 2 is constantly penalized due to payback constraint because it is 

not able to satisfy 25-year payback criteria.  

However, the recommended system with PV1 has an average payback period of 18.8 

years that is less than the target period and no penalty due to time constraint was 

imposed. Therefore, the energy savings within building life span was able to pay 

back the ownership cost of the system PV1. Moreover, the annual cost benefits 

obtained with PV2 is less than PV1. 

The optimum number of PV modules is calculated as 858 that is the maximum 

number of modules that can be installed on rooftop based on physical constraints. 

The absolute overall GC per sqm of the optimized case with PV is calculated as 1050 

TL/m2 that is 539 TL/m2 less than base case and 252 TL/m2 less then optimized 

case without a PV system. A comparison of absolute GC values is illustrated in 

Figure 5.41.  
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Figure 5.41 : Global cost breakdown after PV integration with Ankara case. 

The application of PV system has reduced the NPV energy costs by 48.2 % in 

comparison to base case and by 30.4 % in comparison to optimized case without PV. 

The NPV of equipment cost remained same in two optimized cases since rest of the 

design variables remained same. However, NPV of material cost slightly decreased 

due to the 0.05m reduction in optimum roof insulation level. The recommended PV 

system has a 214.5 kW installed peak-power and it is capable of annually producing 

256,846 kWh electricity. 251,950 kWh of that amount directly satisfies the building 

electricity load that is equal to 40 % of the total building electricity need. 

Consequently, the building CO2 emission rate was decreased to 38.7 kg/m2.a that is 

equal to a 48.8 % decrease in comparison to base case and a 31.5 % decrease in 

comparison to optimized case without PV system as shown in Figure 5.42.  

 

Figure 5.42 : Comparison of annual CO2 emission rate after PV integration 

obtained with Ankara case. 
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The total NPV ownership cost of the selected PV system is calculated as 206 TL/m2 

for 25 years period. The initial investment requires 140 TL/m2 for PV modules, 

inverter and installation fees. The rest of the money is required for system 

maintenance and replacement of aging equipment. The cost equal of annual 

electricity saving is 9.4 TL/m2. The annual surplus electricity generated back to the 

grid is 4897 kWh and is equal to a 0.135 TL/m2 income. When combined with 

annual electricity saving the annual cost benefit obtained from the PV system is 

equal to 9.556 TL/m2. 

The change in design variables resulted in a decrease in the average building 

discomfort index where initial level was reduced from 12.69 PPD to 8 PPD. 

Lastly, the solar water heating system described in previous section is added to the 

building model and the optimization is re-run for an aim to find the optimal solar 

collector type, and collector number. Since the so-called system is only for sanitary 

water heating, the system is optimized without considering the building and HVAC 

system interaction. The main objective function consists of NPV per sqm of 

ownership of solar water heating system, NPV per sqm of natural gas use due to 

water heating by backup system and penalty value in case the investment payback 

period is not satisfied.  

The Figure 5.43 below illustrates the optimization search space. As shown in the 

figure, the payback period of the solar thermal systems start exceeding the target 

period of 25 years with all three solar collector types after installation of 70 

collectors and large penalties occurs. Therefore, the maximum value of feasible 

design region is obtained as 70 collectors. 

 

Figure 5.43 : Optimization results with each solar collector type with Ankara case. 
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The feasible design region is then investigated in detail and a comparison of the cost 

performances of solar systems with all collector types is provided in Figure 5.44. 

According to the given numbers, the optimum collector type for this case study 

building is obtained as SC 2 (selective surface, moderate efficiency collector) and the 

optimum number of collector modules is obtained as 34.  

 

Figure 5.44 : Optimization results with each solar collector type within feasible 

region obtained with Ankara case. 

Table 5.49 summarizes the GC performances of base case and recommended 

optimized case systems. As results shows the NPV of ownership of the 

recommended solar water heating system is 2.8 times higher than the conventional 

natural gas water heating system. However, the contribution of the solar thermal 

system was capable of decreasing the natural gas annual energy use from 9.1 

kWh/m2 to 3.8 kWh/m2 with a corresponding NPV energy cost saving of 58 %. 

Therefore, the energy savings were able to pay back the investments cost in 6.3 

years, which is less than the target value. 

Table 5.49 : Global cost breakdown of conventional and solar thermal water heating 

system with Ankara case. 

Cost type Conventional water heater 

system 

Solar thermal system 

NPV energy  34.8 14.6 

NPV system ownership 2.5 7.1 

Total GC 37.3 21.7 

In addition to cost saving benefits, the reduction in annual natural gas water heating 

requirement resulted in 1.2 kg-eq/m2 reduction in annual CO2 emissions. 
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The recommended SWH system is combined with rest of the recommended design 

options and the GC performance of different design cases are compared in Figure 

5.45. If all design suggestions given by the proposed optimization method are 

adopted, the building overall energy consumption from non-renewables can be 

decreased by 47.3%, annual CO2 emission rate can be decreased by 50.4 % and the 

building global costs can be decreased by 23.3 % while improving the overall 

building comfort for the Ankara case study. 

 

Figure 5.45 : Comparison of all design scenarios obtained with Ankara case. 

5.3.5.3 Antalya case study 

The graphic in Figure 5.46 illustrates the results of the optimization search in 

Antalya case as a dense cloud of black circles. 

 

Figure 5.46 : Distribution of optimization results obtained with Antalya case. 
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In the figure each black circle represents a different combination of the optimization 

variables and the resulting objective function that includes dGC per floor area and 

total penalty value. 

As the figure indicates, the solution space constitutes a wide range of possibilities 

due to the large number of variables involved. The main objective function for the 

base case is calculated as 209140 where, after optimization, it was reduced to -284.  

Since the objective function is based on building global cost performance and how 

well the building satisfies the user-set penalty limitations, a breakdown of objective 

function is also illustrated in Figure 5.47, where dark circles represents dGC per sqm 

and orange circles represents the corresponding total penalty function value. As 

figure shows, a large portion of the solution space constitute invalid solutions due to 

violations of the problem constraints even they show an improved GC performance 

than the base case.  

 

Figure 5.47 : Breakdown of optimization results obtained with Antalya case. 

The dGC per sqm of base case is calculated as zero since it is the reference point of 

the optimization. However, its corresponding penalty function is calculated as 

209140. The positive value indicates that the base case violates some penalty criteria.  

When the penalty values of base case are further investigated it was seen that base 

case violates comfort and CO2 emission criteria as given in Figure 5.48. 

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

-400

-300

-200

-100

0

100

200

0 1000 2000 3000
P

E
N

 (
T

L
/m

2
) 

d
G

C
 p

er
 s

q
m

 (
T

L
/m

2
) 

Iterations 

dGC per sqm PEN_All Base case Optimized case



203 

 

Figure 5.48 : Penalty values obtained with Antalya case. 

The dGC per sqm of the optimized case is calculated as -284 TL/m2 and the 

corresponding penalty value is obtained as zero. Therefore, the optimization was 

successful at reducing building global cost without violating any of the optimization 

constraints. 

When the absolute global cost per sqm values of base case and optimized cases are 

compared it was found that in optimized case 284 TL/m2 GC saving has been 

achieved relative to base case and the application of optimization has achieved 

reducing the overall global cost by 21.2 % in Antalya case study.  

Total global cost is a summation of NPV of energy, water, building material and 

system equipment and Figure 5.49 below shows how absolute values of each GC 

element contributed to the total value.  

 

Figure 5.49 : Comparison of global cost breakdown obtained with Antalya case. 

0

20000

40000

60000

80000

100000

120000

140000

160000

P
en

a
lt

y
 v

a
lu

e 
(T

L
/m

2
) 

Optimized case Base case

1050 

755 

132 

107 

45 

73 

111 

119 

0

200

400

600

800

1000

1200

1400

1600

Base case Optimized case

G
lo

b
a

l 
co

st
 (

T
L

/m
2

) 

NPV  Equipment

NPV  Material

NPV  Water

NPV  Energy

1338 

1054 



204 

The application of the proposed optimization methodology has reduced the NPV of 

energy cost by 28.1 %, and the NPV of water cost by 19.2 %. However, to improve 

building energy and water efficiency, the NPV of building material cost has 

increased by 62.8 % and the NPV of building equipment cost has increased by 7.6 % 

due to investments in new design alternatives. 

Table 5.50 provides the base case and final set of recommended design options for 

Antalya case study. 

Table 5.50 : Base case and optimized case design options with Antalya case. 

 iEW 

(m) 

iR 

(m) 

RT 

 

 

GT 

 

 

WTW 

South  

(%) 

WTW 

West  

(%) 

WTW 

North  

(%) 

WTW 

East  

(%) 

BLtyp 

 

CLtyp 

 

DL 

 

B.C 0 0 1 1 25 25 25 25 16 13 0 

O.C 0.02 0.03 2 19 45 45 45 35 42 32 1 

According to the given numbers, the optimization recommended increasing the 

external wall insulation thickness from zero to 0.02 meters and the roof insulation 

thickness from zero to 0.03 meters.  

Moreover, optimization also recommended cool roof paint (RT2) instead of 

conventional gravel roof (RT1) as final layer of roof construction.  

The initial air filled double glazed glazing unit GT1 (U: 2.9 W/m2K, SHGC: 0.75, 

Tvis: 0.8, Cost: 38.9 TL/m2) was replaced with double glazed argon filled glazing 

unit GT19 (U: 1.3 W/m2K, SHGC: 0.44, Tvis: 0.71, Cost: 54.3 TL/m2).  

Moreover, the moderate window-to-wall ratios were increased from 25 % to 45 % in 

Southern, Western and Northern façades. However, the window-to-wall ratio of 

Eastern facades was increased from 25 % to 35 %. The increase in w-t-w ratios 

naturally let the net area of external wall decrease accordingly. 

The change in NPV due to the changes that occur in independent and dependent 

variables of building material category are summarized in Table 5.51. 
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Table 5.51 : NPV breakdown of building materials with Antalya case. 

Building Materials Base case (TL/m2) Optimized case (TL/m2) 

External wall insulation 0.0 2.3 

Roof insulation 0.0 6.8 

Roof coating type 1.6 4.6 

Glazing type 26.2 46.1 

Wall composition 17.0 13.0 

Total material cost 44.8 72.9 

The improvements in building façade were also combined and supported with the 

improvements in building systems.  

To begin with, the optimization selected daylighting control system as a cost 

effective and energy-efficient design option over manual lighting control. When the 

lighting control was integrated with the rest of the building façade design 

recommendations, a decrease in building heating and cooling loads were obtained.  

The reduction in building loads have been reflected both on chiller and boiler 

equipment sizes.  

The base case boiler equipment BL 16 (Capacity: 506 kW, Eff: 0.84, Cost: 11053 

TL) was replaced with BL 42 (Capacity: 455 kW, Eff: 0.95, Cost: 29623 TL) which 

is in the high-efficiency equipment category. However, similar size lower-efficiency 

alternative boiler, BL15 (Capacity: 448 kW, Eff: 0.84, Cost: 10113 TL), wasn’t 

found to be favourable.  

Similarly, the base case chiller CL 13 (Capacity: 760 kW, EER: 4.72, Cost: 188210 

TL) was replaced with CL 32 (Capacity: 605, EER: 5.65, Cost: 192610) which is in 

the high-efficiency equipment category. Similar size lower-efficiency alternative CL 

10 (Capacity: 599 kW, EER: 4.68, Cost: 155377 TL) wasn’t found to be worth 

investing in under circumstances.  

The reductions in building heating and cooling loads were also reflected on 

dependent equipment. The number of required fan coil units was decreased from 72 

to 51. Similarly, the required cooling tower capacity has decreased from 731 kW to 

565 kW as well.  

The change in NPV due to the changes that occur in independent and dependent 

building system variables are summarized in Table 5.52. 
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Table 5.52 : NPV breakdown of building systems with Antalya case. 

Building Systems Base case (TL/m2) Optimized case (TL/m2) 

Boiler 2.0 4.1 

Chiller 33.1 32.7 

Cooling Tower 8.4 6.7 

Fan Coil Units  28.4 20.1 

Water Heater 2.5 2.5 

Lighting Control 36.7 53.4 

Total Equipment Cost 111.0 119.4 

The capital cost of the recommended boiler is almost three times higher than the 

initial boiler. Similarly it also has higher net-present value for service life.  However, 

the optimization found that improved thermal efficiency was worth investing in. 

When the base case and recommended chiller equipment are compared it was found 

that the capital cost of base case chiller (CL13) is slightly lower than the capital cost 

of the recommended chiller (CL32) even though the selected chiller is among the 

higher efficient and more expensive equipment category. This is because the 

optimization succeeded lowering building cooling load and selected smaller size 

equipment. When the net-present values of chiller equipment ownership are 

compared it was seen that smaller size new chiller is more economic due to smaller 

installation and maintenance costs. Moreover, when combined with the benefits of 

improved equipment efficiency, the recommended chiller was found to be a better 

investment. 

The NPV ownership of cooling tower decreased due to the reduction in cooling load 

and corresponding equipment capacity. Similarly, NPV ownership of Fan coil units 

reduced in parallel to the reduction in the number of required units.  

The impact of optimization on NPV energy costs are given in Table 5.53. The largest 

energy cost is due to electricity use, which is about ten times the natural gas cost in 

both cases. The recommended design strategies however succeeded decreasing 

energy cost about 29.2 % for electricity and about 15.3 % for natural gas. 

Table 5.53 : NPV breakdown of energy use with Antalya case. 

Energy Cost Type Base case (TL/m2) Optimized case (TL/m2) 

Electricity Cost 968.0 685.4 

Natural Gas Cost 82.4 69.8 

Total Energy Cost 1050.4 755.2 
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The influence of optimization on building annual primary energy performance is 

summarized in Figure 5.50. The application of the recommended design options 

achieved lowering total building annual primary energy use intensity from 282.3 

kWh/m2 to 202.9 kWh/m2 with a 28.1 % decrease. The reduction occurred in every 

end use type except the natural gas use for water heating since there was not any 

design option directly influencing water heating system performance. 

 

Figure 5.50 : Comparison of annual primary energy consumption breakdown 

obtained with Antalya case. 

The reduction in primary energy use also resulted in a reduction in the value of 

annual CO2-eq emission rate as shown in Figure 5.51. The overall annual building 

emission rate was decreased from 73.2 kg.Eq-CO2/m2 to 52.5 kg.Eq-CO2/m2. 

 

Figure 5.51 : Comparison of annual CO2 emission rate breakdown obtained with 

Antalya case. 
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The reduction is equal to 28.2 % that is much higher than the minimum target 

reduction of 10 %. Therefore, the recommended design strategies are perfectly 

capable of satisfying CO2 emission constraint. 

The impact of optimization on water costs are given in Table 5.54. The NPV water 

cost due to cooling tower water use decreased by 30.7 % because of the reduction in 

building cooling needs and consequent cooling tower operating hours. However, the 

available design strategies have no influence on building hot water use, which is only 

linked with building occupancy density. Therefore, the related water cost remained 

same in two cases. 

Table 5.54 : NPV breakdown of water cost and water end use with Antalya case. 

Water End Use Type 

NPV water cost 

 (TL/m2) Annual water consumption [m3/m2] 

Base case Optimized case Base case Optimized case 

Cooling tower  82.8 57.4 0.337 0.234 

Hot water  49.6 49.6 0.202 0.202 

Total 132.3 106.9 0.539 0.435 

In addition, the new design strategies also improved building comfort as the average 

building discomfort index of initial case has decreased from 12.5 PPD to 7.62 PPD. 

The proposed optimization methodology finds a single solution which is the energy 

and water performance level leading to the lowest cost during the estimated 

economic lifecycle as a result of combination of various energy efficiency measures 

available for the Antalya case study. However, cost vs energy cloud of optimization 

search is very useful to determine a cost-effective range. Figure 5.52 shows global 

cost vs net primary energy performance of investigated design options that are 

capable of satisfying CO2 and comfort restrictions. The design combinations that 

cannot satisfy penalty criteria are filtered. The base case and optimized case 

scenarios are highlighted. The optimized case represents an economic optimum as it 

is the minimum global cost option among the considered energy efficiency measures 

for this particular building. The figure shows that optimization creates a sharp fall 

both in global cost and primary energy consumption levels. 
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Figure 5.52 : Global cost vs primary energy cloud obtained with Antalya case. 

Figure 5.53 focuses on the lower part of the cost-energy cloud where a frontier curve 

is represented in black dashes. Design options from optimized case (the economic 

optimum) within a 5% increase in global cost range towards minimum primary 

energy case following the frontier curve constitute a solution that can be considered 

as a cost-effective alternative range. Therefore, various types of solutions with 

reasonable low global cost, close to the lower frontier of cost-energy cloud is 

investigated.  

The area of the curve to the right of the economic optimum represents solutions that 

underperform in both cost and energy. 

 

Figure 5.53 : Cost-effective alternative solutions obtained with Antalya case. 
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point. Lower primary energy alternatives required more investment in insulation and 

glazing type, larger windows. Lower primary energy alternatives that have slightly 

higher global cost values than the economic optimum is presented in Table 5.55. 

Table 5.55 : Cost-effective alternative solutions with Antalya case. 

 

Net 

Primary 

Energy 

(kWh/m2.a) 

Global 

Cost 

(TL/m2) 

iEW 

(m) 

iR 

(m) 

RT GT WTW 

South  

(%) 

WTW 

West  

(%) 

WTW 

North  

(%) 

WTW 

East  

(%) 

BLtyp CLtyp DL 

1 (Min.En) 202.03 1062.18 0.03 0.035 2 24 55 55 45 35 42 33 1 

2 202.21 1059.16 0.025 0.035 2 19 55 35 55 35 42 33 1 

3 202.26 1055.09 0.02 0.035 2 19 45 45 55 35 42 32 1 

4 202.31 1055.01 0.015 0.035 2 19 45 45 55 35 42 32 1 

5 202.40 1054.91 0.02 0.03 2 19 45 45 55 35 42 32 1 

6 202.45 1054.84 0.015 0.03 2 19 45 45 55 35 42 32 1 

7 202.53 1054.91 0.025 0.025 2 19 45 45 55 35 42 32 1 

8 202.74 1054.70 0.02 0.035 2 19 45 45 45 35 42 32 1 

9 202.78 1054.66 0.03 0.03 2 19 45 45 45 35 42 32 1 

10 (O.C) 202.85 1054.44 0.02 0.03 2 19 45 45 45 35 42 32 1 

In the second step of the investigation, the optimization problem was extended to 

optimize building, HVAC system and renewable systems simultaneously.  

First, the roof-mounted PV scheme described in previous section is added to building 

model and then, optimum PV capacity and PV type was searched simultaneously 

together with other design options. Table 5.56 introduces the base case and 

optimized case design alternatives. 

Table 5.56 : Base case and  optimized case design options with PV integration with 

Antalya case. 

 

iEW 

(m) 

iR 

(m) 

RT 

 

 

GT 

 

 

WTW 

South  

(%) 

WTW 

West  

(%) 

WTW 

North  

(%) 

WTW 

East  

(%) 

BLtyp 

 

CLtyp 

 

DL 

 

PV 

Type 

PV 

Number 

B.C 0 0 1 1 25 25 25 25 16 14 0 - - 

O.C 0.015 0.03 2 19 45 35 45 35 42 32 1 1 858 

As numbers indicate, all the design recommendations except external wall insulation 

thickness are remained same as the optimum case without PV integration. However, 

the optimum thickness of external wall insulation is obtained as 0.015 m that is half 

centimetre less than the optimized case without PV system. Moreover, w-t-w ratio of 

west wall is 10 % less than the optimum case without PV integration. 
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The Figure 5.54 below shows the objective function values calculated with each PV 

type during the search process. The lowest objective function value obtained with 

PV1 is -392 where lowest objective function value obtained with PV2 is -285 

Therefore, the optimization selected PV module type 1 (polycrystalline silicone cell) 

over PV module type 2 (thin film cell) as ideal PV system for this case study. 

  

Figure 5.54 : Distribution of optimization results with each PV type obtained with 

Antalya case. 

When the elements of the objective function are investigated it was seen that the 

design case with both PV types are not penalized due to PV system payback 

violation. PV1 has an average SPB time of 14.5 years where PV2 has 22.5 years. 

Therefore, the energy savings within building life span was able to pay back the 

ownership cost of the both PV systems in consideration. However, the annual cost 

benefits obtained with PV2 is less than PV1 therefore the optimization did not select 

it as the optimal option. 

The optimum number of PV modules is calculated as 858 that is the maximum 

number of modules that can be installed on rooftop based on physical constraints. 

The absolute GC per sqm of the optimized case with PV is calculated as 946 TL/m2 

that is 606 Tl/m2 less than initial case and 311 TL/m2 less then optimized case 

without a PV system. A comparison of absolute GC values is illustrated in Figure 

5.55.  
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Figure 5.55 : Global cost breakdown after PV integration obtained with Antalya 

case. 

The application of PV system has reduced the NPV energy costs by 57.7 % in 

comparison to initial case and by 41.2 % in comparison to optimized case without 

PV. The NPV ownership of equipment remained same in two optimized cases since 

rest of the design variables remained same. However, NPV ownership of material 

slightly decreased due to the 0.05m reduction in optimum external wall insulation 

level. The recommended PV system has a 214.5 kW installed peak-power and it is 

capable of annually producing 315,514 kWh electricity. 312,608 kWh of that amount 

directly satisfies the building electricity load that is equal to 46 % of the total 

building electricity need. Consequently, the building CO2 emission rate was 

decreased to 30.6 kg/m2.a that is equal to a 58.7 % decrease in comparison to initial 

case and a 41.9 % decrease in comparison to optimized case without PV system as 

shown in Figure 5.56.  

 

Figure 5.56 : Comparison of annual CO2 emission rate after PV integration 

obtained with Antalya case. 
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The NPV ownership of the selected PV system is calculated as 206 TL/m2 for 25 

years period. The initial investment requires 140 TL/m2 for PV modules, inverter 

and installation fees. The rest of the money is required for system maintenance and 

replacement of aging equipment. The cost equal of annual electricity saving is 11.6 

TL/m2. The annual surplus electricity generated back to the grid is 2906 kWh and is 

equal to a 0.08 TL/m2 income. When combined with annual electricity saving the 

annual cost benefit obtained from the PV system is equal to 11.68 TL/m2. 

The change in design variables resulted in a decrease in the average building 

discomfort index where initial level was reduced from 12.69 PPD to 7.54 PPD. 

Lastly, the solar water heating system (SHW) described in previous section is added 

to the building model and the optimization is re-run for an aim to find the optimal 

solar collector type, and collector number. Since the so-called system is only for 

sanitary water heating, the system is optimized without considering the building and 

HVAC system interaction. The main objective function, GC consists of NPV per 

sqm of ownership of solar water heating system, NPV per sqm of natural gas use due 

to water heating by backup system and penalty value in case the investment payback 

period is not satisfied.  

The Figure 5.57 illustrates the optimization search space. As shown in the figure, the 

payback period of the solar thermal systems start exceeding the target period of 25 

years with all three solar collector types and large penalties occurs after installation 

of 70 collectors. Therefore, the maximum value of feasible design region is obtained 

as 60 collectors. 

 

Figure 5.57 : Optimization results with each solar collector type obtained with 

Antalya case. 
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The feasible design region is then investigated in detail and a comparison of the GC 

performances of solar systems with all collector types is provided in Figure 5.58. 

According to the given numbers, the optimum collector type for this case study 

building is obtained as SC 2 (selective surface, moderate efficiency collector) and the 

optimum number of collector modules is obtained as 25.  

 

Figure 5.58 : Optimization results with each solar collector type within feasible 

region obtained with Antalya case. 

Table 5.57 summarizes the GC performances of base case and optimized systems. As 

results shows the NPV of ownership of the recommended solar water heating system 

is about twice the conventional natural gas water heating system. However, the 

contribution of the solar thermal system was capable of decreasing the natural gas 

annual energy use from 6.3 kWh/m2 to 1.4 kWh/m2 with a corresponding global 

energy cost saving of 77 %. Therefore, the energy savings were able to pay back the 

investments cost in 4.1 years, which is less than the target value. 

Table 5.57 : Global cost breakdown of conventional and solar thermal water heating 

system with Antalya case. 

 Cost type 
Conventional water heater 

system 
Solar thermal system 

NPV energy 24.3 5.5 

NPV system ownership 2.5 5.4 

Total GC 26.8 10.9 

In addition to cost saving benefits, the reduction in annual natural gas water heating 

requirement resulted in 1.1 kg-eq/m2 reduction in annual CO2 emissions. 
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The recommended SWH system is combined with rest of the recommended design 

options and the GC performance of different design cases are compared in Figure 

5.59.  

 

Figure 5.59 : Comparison of all design scenarios obtained with Antalya case. 
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57.5%, annual CO2 emission rate can be decreased by 60.3 % and the building 
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optimization methodology has resulted in different recommendations in different 

cities as summarized in Table 5.58. 

Table 5.58 : Comparison of base case and recommended design solutions for 

Istanbul , Ankara and Antalya cases.  

  iEW 

(m) 

iR 

(m) 

RT GT WTW 

South  

(%) 

WTW 

West  

(%) 

WTW 

North  

(%) 

WTW 

East  

(%) 

BLtyp CLtyp DL 

Is
ta

n
b

u
l 

B.C 0 0 1 1 25 25 25 25 18 13 0 

O.C 0.025 0.045 2 13 45 35 55 35 43 32 1 

             

A
n

k
ar

a B.C 0 0 1 1 25 25 25 25 23 10 0 

O.C 0.05 0.085 2 13 45 45 45 25 45 30 1 

             

A
n
ta

ly
a B.C 0 0 1 1 25 25 25 25 16 13 0 

O.C 0.02 0.03 2 19 45 45 45 35 42 32 1 

For instance, the external wall insulation was increased from uninsulated condition to 

0.025 m, 0.005 m, 0.02 m in Istanbul, Ankara and Antalya, respectively that is in line 

with climate requirements. 

Similarly, roof insulation was increased to 0.045 m, 0.085 m, 0.03 m in Istanbul, 

Ankara and Antalya, respectively. 

Introduction of insulation not only improved building thermal resistance to heat 

losses but also introduced an improvement of the mean radiant temperature of the 

inner surfaces of the external opaque envelope; therefore it also contributed to the 

thermal comfort. 

The cool roof paint (RT2) that was described in the previous sections was 

recommended for all three cases over roof gravel (RT1), as an economic option to 

deal with the building cooling load. Even in heating load dominated Ankara case, 

when combined with appropriate levels of roof insulation, the cool roof paint coating 

was found to be a cost-effective energy efficiency solution.  

In Istanbul and Ankara cases same glazing element, GT13 (U: 1.6 W/m2K, SHGC: 

0.56, Tvis: 0.79, Cost: 44.8 TL/m2) is found as the ideal glazing type and it replaced 

the initial glazing unit GT1 (U: 2.9 W/m2K, SHGC: 0.75, Tvis: 0.8, Cost: 38.9 
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TL/m2). GT13 has an improved U value of 1.6 W/m2K that provides required 

resistance to heat flow. SHGC of GT13 is 0.56, which is a moderate value however; 

it is lower than SHGC of the base case glazing. The moderate value prevents 

unwanted heat gain while still allowing the beneficial part of it in the building. 

Visible transmittance of GT13, 0.79, is one of the highest glazing units in the 

database. Therefore, it transmits most of the daylight that strikes the glazing. GT13 

also has mid-range price in comparison to other windows in the library. Therefore, 

when the glazing unit combined with the increased w-t-w ratio and a dimming 

control of lights according to daylighting, it showed the best performance in two case 

studies.  

GT19 (U: 1.3 W/m2K, SHGC: 0.44, Tvis: 0.71, Cost: 54.3 TL/m2) was obtained as 

the ideal glazing for the Antalya case study building and outperformed GT1. It has a 

U value of 1.3 W/m2K. The lower U value of GT19 yields lower peak cooling loads 

in summer therefore makes it a suitable glazing candidate for the Antalya climate. 

GT19 also has lower SHGC of 0.44 and it reduces heat gain from sun striking the 

glass in summer. However, visible transmittance of GT19 has high value of 0.71. 

Therefore, the building can still benefit from daylighting when combined with 

daylighting control system. Even though GT19 is more expensive than GT13, still its 

thermal and optical properties make it the ideal option for the Antalya case study. 

In addition to lowering thermal losses, the installation of the new heat resisting 

windows is also a contributing factor to thermal comfort through improving mean 

radiant temperature. 

The window-to-wall ratios for all façade orientations were mostly increased in 

addition to glazing improvements in all three cases. In the methodology,  w-t-w ratio 

is generally optimized based on the interacting influence of the solar and optical 

properties of the glazing unit, orientation of the glazing unit, climate conditions, net 

present value of the glazing unit, daylighting potential and the floor area of the lit 

space, artificial lighting power, dimming control strategy and net present value of the 

wall unit that holding the glazing.  

In all three cases, the w-t-w ratio of south exposed façade increased to 45 %. 

Combination of artificial lighting control according to daylighting with new 

recommended glazing units that have an improved U value, reduced SHGC and high 
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Tvis, allowed higher w-t-w ratios to be cost effectively realized. The glazing unit that 

was selected for Antalya case has a lower U-value and SHGC value than the 

windows selected for Istanbul and Ankara. Therefore, still 45% w-t-w ratio for south 

glazing in hot climate was feasible. 

Considering w-t-w ratio of north facing façade, in Istanbul case 55% was found to be 

optimal where, in Ankara and Antalya 45 % was ideal. Large northern windows 

compared to base case provided better daylighting potential and when combined with 

improved thermal and optical performances of glazing units, heat gain and losses 

were balanced.  

In eastern and western facades, the w-t-w ratios of Istanbul case were obtained both 

35%. However, in Ankara and Antalya western facade w-t-w ratios were obtained 

both 45 % where eastern w-t-w ratios were 25% and 35 % respectively. The non-

symmetrical L-shape of the building introduced shading effect on the eastern façade. 

Moreover when combined with glazing characteristics and  cost value of glazing and 

wall, there has been variation in the optimal w-t-w ratios. 

The base case boiler capacities for Istanbul, Ankara and Antalya cases were obtained 

as 610, 878 and 506 kW, respectively. The application of optimization methodology 

however reduced the heating loads and new boiler equipment was selected 

simultaneously from the database with the following capacities: 510 kW for Istanbul, 

615 kW for Ankara and 455 kW for Antalya. The penalties calculated based on upper 

and lower allowable equipment capacity range are equal to zero, therefore the 

optimization was successful at reducing building heating loads and choosing the right 

size boiler equipment for each case study building while maintaining the thermal 

comfort. All the recommended new boilers are from the high-efficient equipment 

category. The reduced equipment capacities combined with higher efficiency 

operating characteristics (therefore reduced service life energy consumption values) 

were able to compensate for the initial investment costs. 

The base case chiller capacities for Istanbul, Ankara and Antalya cases were obtained 

as 760, 599 and 760 kW, respectively. The application of optimization methodology 

however reduced the cooling loads and new boiler equipment was selected 

simultaneously from the database with the following capacities: 605 kW for Istanbul, 

505 kW for Ankara and 605 kW for Antalya. The penalties calculated based on upper 
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and lower allowable equipment capacity range are equal to zero, therefore the 

optimization was successful at reducing building cooling loads and choosing the 

right size chiller equipment for each case study building while maintaining the 

thermal comfort. All the recommended new equipment are from the high-efficient 

equipment category. The reduced equipment capacities combined with higher 

efficiency operating characteristics (therefore reduced service life energy 

consumption values) were able to compensate for the initial investment costs. 

The Table 5.59 summarizes the objective function values, which is the total global 

cost due to energy consumption for heating, cooling, ventilating and plugged load, 

water consumption for HVAC system use and hot water occupancy use, ownership 

of building materials and ownership of building HVAC and water heating systems 

for 25 year period. 

Table 5.59 : Comparison of base case and optimized case global cost breakdown for 

Istanbul, Ankara and Antalya cases. 

  Istanbul Ankara Antalya 

Global Cost 

element (TL/m2) 

Base 

case 

Optimized 

case 

Base 

case 

Optimized 

case 

Base 

case 

Optimized 

case 

NPV Energy  1079 803 1117 831 1050 755 

NPV Water  96 84 84 75 132 107 

NPV Material 45 74 45 78 45 73 

NPV Equipment 108 118 103 114 111 119 

GC Sum  1328 1080 1349 1098 1338 1054 

In all cases the energy costs constitutes the largest amount followed by 

water/equipment costs and finally material costs. Application of the optimization 

methodology resulted in a serious decrease in energy and water cost due to the 

investments is energy efficiency measures in materials and HVAC equipment 

category. In the end, total global costs were cut 18.7%, 18.6%, 21.2% for Istanbul, 

Ankara and Antalya cases, respectively.  

Table 5.60 summarizes the influence of optimization on building primary energy 

performance. The numbers show that the recommended design options achieved 

lowering building energy consumption significantly in all cases. In Istanbul case 

where cooling and heating is equally dominant, design options were able to decrease 

both natural gas use for boiler and electric use for chiller in a balance. In Ankara case 

where heating load is dominant, most reduction was occurred in natural gas boiler 
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use while still chiller electricity use was taken into account. Similarly, in Antalya 

case recommended design options achieved decreasing chiller electricity use 

considerably without increasing boiler natural gas use. 

Table 5.60 : Comparison of base case and optimized case primary energy consumption 

breakdown for Istanbul, Ankara and Antalya cases. 

Primary Energy 

Consumption 

[kWh/m2] 

Istanbul Ankara Antalya 

Base 

case 

Optimized 

Case 

Base 

case 

Optimized 

Case 

Base  

case 

Optimized 

Case 

N.g Boiler 46.2 31.1 76.5 47.0 15.2 11.9 

Elc. Chiller 39.6 18.4 19.8 10.0 61.8 27.9 

Elc. Cooling Tower 1.4 1.0 0.5 0.3 2.3 1.5 

Elc. HVAC Fans 23.2 22.8 23.3 22.8 23.8 23.0 

Elc. HVAC Pumps 11.5 9.4 9.7 8.2 13.5 10.2 

N.g Water Heating  7.6 7.6 9.1 9.1 6.3 6.3 

Elc. Interior Lighting 81.8 47.3 81.8 47.0 81.8 44.5 

Elc. Equipment 77.5 77.5 77.5 77.5 77.5 77.5 

Total End Uses 288.9 215.1 298.2 222.0 282.3 202.9 

The design optimization in this study also focused on finding the optimal renewable 

energy system sizes and photovoltaic and solar collector module types along with 

architectural and HVAC options. 

When the base case buildings are integrated with the PV system and optimization 

calculations are repeated, it was seen that photovoltaic module type 1, PV1 (Poly 

Crystalline Silicon), was recommended as ideal option for all three cases. In Istanbul 

and Ankara cases, PV2 (thin film) wasn’t able to satisfy 25-year pay-back criteria 

therefore it was eliminated from the feasible solution list through penalty function. In 

Antalya case, even though PV2 option satisfied the payback criteria, still the 

obtained cost benefits were less than PV1 thus it wasn’t selected as optimal.  

The ideal number of modules was obtained as 858 for all cases that is the maximum 

allowable module number and the consequent investment and running cost is 

calculated as 206 TL/m2. The installed peak-power of the recommended PV system 

is 214.5 kW. However, the annual electricity production obtained with each case 

study differs due to different climate conditions each city has. The most electricity 

was annually produced in Antalya case (315,514 kWh: 46 % of the total building 

electricity need), followed by Ankara case (256,846 kWh) and Istanbul case 

(235,273 kWh; 35.7 % of the total building electricity need).  
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Optimization of building, HVAC system and PV system together has let minor 

changes in building-side variables in Ankara and Antalya cases in comparison to 

building and HVAC optimization. In Ankara, optimal roof insulation thickness was 

lowered 0.005m. In Antalya, external wall insulation thickness was obtained 0.015m 

with PV installation which is 0.005m lower than without PV optimization case. 

Moreover, w-t-w of west facade was lowered 10%. 

Furthermore, when the initial buildings are integrated with the solar hot water system 

and optimization calculations are run once more, it was seen that collector module 

type 2 (SC2: selective-surface, moderate efficiency) was recommended as ideal 

collector for all three cases. However, optimal number of solar collector modules is 

found as 31, 34, and 25 for Istanbul, Ankara and Antalya case studies, respectively 

for same hot water requirements. 

Figure 5.60 illustrates a summary of the optimization results where design options of 

building architectural elements, HVAC systems and renewable systems are sought 

together.  The figure shows that the simultaneous optimization of building, systems 

and renewables decreased global cost per sqm values by 21.7%, 23.3%, and 30.4% 

for Istanbul, Ankara and Antalya cases. Moreover, the figure also demonstrates that 

the cost-effective solutions lead to consistent energy savings where global cost for 

energy sharply decreased. 

 

Figure 5.60 : Comparison of all design scenarios. 
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Table 5.61 summarizes the annual CO2 emission breakdown obtained with base case 

and optimized cases. Results show that the application of the proposed methodology 

successfully generated building, HVAC and renewable system design configurations 

that can emits less CO2 than the target level. Combination of PV and SWH systems 

together with more efficient HVAC and building envelope options resulted in a 

decrease of 49.2 %, 50.4% and 61.4% in annual kgEq CO2 emissions for Istanbul, 

Ankara and Antalya cases, respectively. 

Moreover, the building average discomfort indexes were improved from 10.46 to 

7.56 in Istanbul case, from 12.69 to7.94 in Ankara case and from 12.5 to 7.62 in 

Antalya case. Therefore, optimization methodology achieved giving design 

recommendations that can also provide thermal comfort to the building occupants. 

Table 5.61 :  Comparison of annual CO2 emission rate for base case and optimized 

cases for Istanbul, Ankara and Antalya. 

Case Base case Optimized case  

with PV & SWH 

Istanbul 74.1 37.7 

Ankara 75.6 37.5 

Antalya 73.2 29.5 

To conclude, the comparison of the three case studies shows that the proposed 

optimization methodology is capable of recommending cost-effective design options 

that are consistent with the climate and feasible to realize under actual market 

conditions. Any combination of design options that does not meet target thermal 

comfort requirements and CO2 emission rate is automatically eliminated from the 

possible optimal solutions by implemented penalty approach. Therefore, the 

application of the recommended design strategies achieved lowering building overall 

global cost, annual energy consumption and CO2 emission a great deal while 

improving building comfort for the all three case studies. 

5.3.6 Validation of the results 

The validation of the results obtained with the proposed methodology consists of two 

tasks: the validation of the simulation tool that acts as the calculation engine of the 

optimization scheme and the validation of the optimization output. 

In the methodology, EnergyPlus simulation engine is used to calculate objective 

function value and it is a validated tool according to industry standard methods 
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including ANSI/ASHRAE Standard 140-2011 criteria. Therefore, the simulation 

results are assumed to provide required calculation accuracy. 

A search space constitutes the combinations of all the possible values of design 

variables within their allowable ranges. In the current study, combination of design 

variables creates 3.19E11 design possibilities and calculating the objective value of 

all search points requires about 665820778 days on a high capacity computer. Since 

the number of cases to evaluate becomes far too large for this case study and for the 

most real-world problems, it becomes impossible to carry out a full enumeration 

search within a reasonable amount of time. Therefore, a simplified parametric 

approach is adopted for validation of the optimization study. 

In the proposed validation approach, each variable of the optimized design case is 

parametrically investigated within its given range while the rest of the variables were 

kept fixed at their optimized values. Therefore, variables were tested individually to 

see if there is a better option than its recommended value that can further improve the 

optimized case around the optimal neighborhood. 

5.3.6.1 Validation of Istanbul case study 

External wall insulation thickness (iEW)  

The application of the proposed optimization methodology to Istanbul case study 

recommended 0.025m of insulation for the external walls as the optimal thickness in 

combination with the rest of the design recommendations. The results of the 

parametric investigation in Table 5.62 demonstrate that the introduction of external 

wall insulation reduced the total global cost only until 0.025m, but then the GC 

started increasing with the increase in insulation thickness.  

Table 5.62 : Parametric analysis of external wall insulation thickness based on total 

global cost breakdown (TL/m2) for Istanbul. 

iEW 
PEN 

All 

Total  

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

0.010 0 1080.62 804.33 84.13 73.21 118.95 

0.015 0 1080.43 803.85 84.17 73.45 118.95 

0.020 0 1079.96 803.45 84.26 73.70 118.55 

0.025 0 1079.55 803.17 84.28 73.95 118.16 

0.030 0 1079.75 803.12 84.28 74.19 118.16 

0.035 0 1080.01 803.07 84.34 74.44 118.16 

0.040 0 1080.13 802.89 84.39 74.69 118.16 
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Moreover, the GC breakdown explains that increase in external wall insulation 

decreased NPV in energy and equipment cost categories however, NPV for water 

and material cost conversely increased. In addition, no penalty occurred within the 

tested insulation range. 

According to the Table 5.63 below, the increase in external wall insulation levels 

decreased boiler energy cost because of the reduction in associated energy 

consumption and heating loads. On the other hand, it also slightly increased chiller 

and cooling tower electricity costs and the related energy use. There were also minor 

changes in fan and pump energy costs due to the changes in building heating and 

cooling needs. The rest of the energy categories remained same. 

Table 5.63 : Parametric analysis of external wall insulation thickness based on NPV 

energy cost breakdown (TL/m2) for Istanbul. 

iEW 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV  

Elc. 

CTower 

NPV  

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

DWH 

NPV 

Elc. 

Lights 

NPV  

Elc. 

Equipment 

0.010 121.65 67.75 3.626 84.60 34.14 29.30 175.47 287.80 

0.015 120.63 67.93 3.625 84.59 34.51 29.30 175.47 287.80 

0.020 119.81 68.09 3.626 84.59 34.77 29.30 175.47 287.80 

0.025 119.17 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

0.030 118.73 68.41 3.630 84.58 35.19 29.30 175.47 287.80 

0.035 118.43 68.52 3.630 84.58 35.34 29.30 175.47 287.80 

0.040 118.03 68.61 3.630 84.58 35.47 29.30 175.47 287.80 

Table 5.64 summarizes the NPV cost breakdown for water. The water costs due to 

cooling tower use slightly increased as the insulation thickness increased. However, 

water costs due to hot water use remained unchanged since associated water use is 

kept fixed in the calculation. 

Table 5.64 : Parametric analysis of external wall insulation thickness based on NPV 

water cost breakdown (TL/m2) for Istanbul. 

iEW 
NPV  

CTower  

NPV  

Hot water  

0.010 34.57 49.56 

0.015 34.62 49.56 

0.020 34.70 49.56 

0.025 34.72 49.56 

0.030 34.73 49.56 

0.035 34.79 49.56 

0.040 34.84 49.56 
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Table 5.65 next shows that the decrease in NPV equipment cost is due to the 

decrease in Fan coil equipment ownership cost only as the required number of FCUs 

was reduced from 49 to 47 due to the reduction in heating loads that is the dominant 

load and determines the required number of FCUs. NPV ownership cost of boiler, 

chiller, cooling tower, water heating and lighting control remained same, as they 

were kept fixed in the parametric analysis.  

Table 5.65 : Parametric analysis of external wall insulation thickness based on NPV 

equipment cost breakdown (TL/m2) for Istanbul. 

iEW 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV  

FCU 

NPV  

WH 

NPV  

LC 

0.010 4.41 32.71 6.66 19.33 2.47 53.37 

0.015 4.41 32.71 6.66 19.33 2.47 53.37 

0.020 4.41 32.71 6.66 18.94 2.47 53.37 

0.025 4.41 32.71 6.66 18.54 2.47 53.37 

0.030 4.41 32.71 6.66 18.54 2.47 53.37 

0.035 4.41 32.71 6.66 18.54 2.47 53.37 

0.040 4.41 32.71 6.66 18.54 2.47 53.37 

Table 5.66 explains that the increase in NPV material cost is due to the increase in 

external wall insulation levels. Since the rest of the variables were kept fixed in the 

parametric analysis, the associated cost values remained unchanged. 

Table 5.66 : Parametric analysis of external wall insulation thickness based on NPV 

material cost breakdown (TL/m2) for Istanbul. 

iEW 
NPV  

EW Insul. 

NPV  

Roof Insul. 

NPV  

Roof layer 

NPV  

Glazing 

NPV 

EWOther 

0.010 1.80 8.59 4.64 45.17 13.01 

0.015 2.05 8.59 4.64 45.17 13.01 

0.020 2.29 8.59 4.64 45.17 13.01 

0.025 2.54 8.59 4.64 45.17 13.01 

0.030 2.79 8.59 4.64 45.17 13.01 

0.035 3.03 8.59 4.64 45.17 13.01 

0.040 3.28 8.59 4.64 45.17 13.01 

To conclude, the results showed that 0.025 m of external wall insulation was able to 

balance heating and cooling loads, associated energy costs together with the water 

cost due to cooling purposes and FCU ownership costs.  Therefore, the proposed 

optimization methodology was successful at recommending a cost-effective external 

wall insulation solution within the given boundaries for the Istanbul case study. 
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Roof insulation thickness (iR)  

The application of the proposed optimization methodology to Istanbul case study 

recommended 0.045m of insulation for the roof element as the optimal choice, in 

combination with rest of the design recommendations. The results of the parametric 

investigation in Table 5.67 demonstrate that the introduction of roof insulation 

reduced the total global cost only until 0.045m but then the cost started increasing 

with the increase in insulation thickness. The GC breakdown explains that increase in 

roof insulation levels decreased NPV in energy category only however NPV for 

water, material and equipment increased inversely. In addition, no penalty occurred 

within the tested insulation range. 

Table 5.67 : Parametric analysis of roof insulation thickness based on total Global 

Cost breakdown (TL/m2) for Istanbul. 

iR 
PEN 

All 
Total GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

0.030 0 1081.04 806.94 83.79 72.15 118.16 

0.035 0 1080.20 805.31 83.98 72.75 118.16 

0.040 0 1079.76 804.09 84.16 73.35 118.16 

0.045 0 1079.55 803.17 84.28 73.95 118.16 

0.050 0 1080.15 802.62 84.43 74.55 118.55 

0.055 0 1080.44 802.21 84.53 75.15 118.55 

0.060 0 1080.68 801.79 84.59 75.75 118.55 

According to the Table 5.68, the increase in roof insulation decreased the boiler 

energy cost because of the reduction in associated heating load and energy 

consumption.  

Table 5.68 : Parametric analysis of roof insulation thickness based on NPV energy 

cost breakdown (TL/m2) for Istanbul. 

iR 
NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV  

Elc. 

CTower 

NPV  

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

DWH 

NPV 

Elc. 

Lights 

NPV 

 Elc. 

Equipmen

t 

0.030 124.67 66.79 3.573 84.59 34.75 29.30 175.47 287.80 

0.035 122.41 67.35 3.594 84.58 34.81 29.30 175.47 287.80 

0.040 120.58 67.85 3.613 84.58 34.90 29.30 175.47 287.80 

0.045 119.17 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

0.050 118.09 68.64 3.641 84.59 35.10 29.30 175.47 287.80 

0.055 117.21 69.00 3.654 84.59 35.19 29.30 175.47 287.80 

0.060 116.42 69.29 3.664 84.60 35.26 29.30 175.47 287.80 
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On the other hand, it also slightly increased chiller and cooling tower electricity costs 

and related energy use due to the increase in cooling loads in summer period. There 

was also a minor increase in fan and pump electricity costs due to the changes in 

building heating and cooling needs. The rest of the energy categories remained same, 

as they do not interact with the insulation. 

Table 5.69 summarizes the NPV cost breakdown for water. The water costs due to 

cooling tower use slightly increased with the increase in insulation level and 

resulting cooling needs. However, NPV hot water cost remained unchanged since 

associated water use is kept fixed in the calculation. 

Table 5.69 : Parametric analysis of roof insulation thickness based on NPV water 

cost breakdown (TL/m2) for Istanbul. 

iR 
NPV  

CTower  

NPV  

Hot water  

0.030 34.231 49.558 

0.035 34.422 49.558 

0.040 34.603 49.558 

0.045 34.723 49.558 

0.050 34.873 49.558 

0.055 34.968 49.558 

0.060 35.030 49.558 

Table 5.70 below shows that there is only a minor increase in NPV ownership cost of 

FCUs after the application of 0.045m insulation, as the required number of FCU is 

increased from 47 to 48. The rest of the categories remain unchanged, as they were 

kept fixed in the parametric analysis.  

Table 5.70 : Parametric analysis of roof insulation thickness based on NPV 

equipment cost breakdown (TL/m2) for Istanbul.  

iR 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV  

FCU 

NPV  

WH 

NPV  

LC 

0.030 4.41 32.71 6.66 18.54 2.47 53.37 

0.035 4.41 32.71 6.66 18.54 2.47 53.37 

0.040 4.41 32.71 6.66 18.54 2.47 53.37 

0.045 4.41 32.71 6.66 18.54 2.47 53.37 

0.050 4.41 32.71 6.66 18.94 2.47 53.37 

0.055 4.41 32.71 6.66 18.94 2.47 53.37 

0.060 4.41 32.71 6.66 18.94 2.47 53.37 
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The increase in NPV material cost is due to the increase in roof insulation levels. 

Since the rest of the variables were kept fixed in the parametric analysis, the 

associated cost values remained unchanged as shown in Table 5.71. 

Table 5.71 : Parametric analysis roof insulation thickness based on NPV material 

cost breakdown (TL/m2) for Istanbul. 

iR 
NPV  

EW Insul. 

NPV  

Roof Insul. 

NPV  

Roof layer 

NPV  

Glazing 

NPV 

EWOther 

0.030 2.54 6.79 4.64 45.17 13.01 

0.035 2.54 7.39 4.64 45.17 13.01 

0.040 2.54 7.99 4.64 45.17 13.01 

0.045 2.54 8.59 4.64 45.17 13.01 

0.050 2.54 9.19 4.64 45.17 13.01 

0.055 2.54 9.79 4.64 45.17 13.01 

0.060 2.54 10.39 4.64 45.17 13.01 

To conclude, the results showed that 0.045 m of roof insulation was able to balance 

heating and cooling loads, associated energy costs together with the water cost due to 

cooling purposes and FCU ownership costs.  Therefore, the proposed optimization 

methodology was successful at recommending a cost-effective roof insulation 

solution within the given boundaries for the Istanbul case study. 

Roof type (RT) 

The application of the proposed optimization methodology to Istanbul case study 

recommended the cool roof coating (RT2) over conventional gravel layer (RT1) as 

the optimal choice, in combination with the rest of the design recommendations.  

The results of the parametric investigation given in Table 5.72 demonstrate that 

switching from conventional gravel roof to cool roof coating decreased total global 

cost. In addition, a penalty also occurred with RT1 because the recommended chiller 

used in the analysis was not able to meet the building cooling load. 

Table 5.72 : Parametric analysis of roof type based on total Global Cost breakdown 

(TL/m2) for Istanbul. 

RT 
PEN 

All 

Total  

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

1 188.05 1088.60 811.12 87.27 70.88 119.34 

2 0 1079.55 803.17 84.28 73.95 118.16 
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The GC breakdown table also explains that application of cool roof coating 

decreased NPV in energy, water and equipment categories however, NPV for 

material increased.  

According to the Table 5.73, the cool roof coating increased the boiler natural gas 

cost because of the increase in associated heating load and energy consumption. On 

the other hand, it also significantly decreased the chiller and cooling tower electricity 

costs and related energy use together with electricity cost for fans and pumps. The 

electricity cost due to artificial lighting and plugged-in equipment remained same in 

both cases since they were kept fixed in the analysis. 

Table 5.73 : Parametric analysis of roof type based on NPV energy cost breakdown 

(TL/m2) for Istanbul. 

RT 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV  

Elc. 

CTower 

NPV  

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

DWH 

NPV 

Elc. 

Lights 

NPV  

Elc. 

Equipment 

1 115.78 77.44 4.016 85.00 36.32 29.30 175.47 287.80 

2 119.17 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

Table 5.74 summarizes the NPV breakdown for water cost. The water costs due to 

cooling tower use decreased with cool roof coating in line with the decrease in chiller 

operation. However, hot water cost remains unchanged since associated water use 

was kept fixed in the calculation. 

Table 5.74 : Parametric analysis of roof type based on NPV water cost breakdown 

(TL/m2) for Istanbul. 

RT 
NPV  

CTower  

NPV  

Hot water  

1 37.707 49.558 

2 34.723 49.558 

Table 5.75 shows that the decrease in NPV equipment cost is due to the decrease in 

NPV ownership of fan coil equipment cost as the required number of FCU is reduced 

from 50 to 47 due to the reduction in cooling loads. NPV ownership cost of boiler, 

chiller, cooling tower, water heating and lighting control remained same, as they 

were kept fixed in the parametric analysis.  
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Table 5.75 : Parametric analysis of roof type based on NPV equipment cost 

breakdown (TL/m2) for Istanbul. 

RT 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV  

FCU 

NPV 

 WH 

NPV  

LC 

1 4.41 32.71 6.66 19.73 2.47 53.37 

2 4.41 32.71 6.66 18.54 2.47 53.37 

The increase in NPV ownership material cost is due to the switch from the gravel 

roof to cool roof coating only. Since the rest of the variables were kept fixed in the 

parametric analysis, the associated cost values remained unchanged as given in Table 

5.76. 

Table 5.76 : Parametric analysis of roof type based on NPV material cost breakdown  

(TL/m2) for Istanbul. 

RT 
NPV  

EW Insul. 

NPV  

Roof Insul. 

NPV  

Roof layer 

NPV  

Glazing 

NPV 

EWOther 

1 2.54 8.59 1.57 45.17 13.01 

2 2.54 8.59 4.64 45.17 13.01 

To conclude, the results showed that cool roof coating (RT2) was able to balance 

heating and cooling related costs together with water and equipment costs for a 

reasonable price. Therefore, it was successfully recommended by the proposed 

optimization methodology as the cost-effective solution for the Istanbul case study 

within the given boundaries. 

Glazing Type (GT) 

The application of the proposed optimization methodology recommended GT13 out 

of 27 glazing alternatives as the optimal glazing choice for Istanbul case study, in 

combination with the rest of the design recommendations. Table 5.77 summarizes the 

total global cost breakdown. GT13 has the lowest total GC value. Moreover, it also 

shows the best performance in NPV energy category as well.  According to the 

results GT1, GT5 and GT9 were penalized. When we further investigated the penalty 

breakdown, it was found out that all three glazing units have high U values, SHGC 

values and Tvis values and they were penalized because the capacity of the 

optimized chiller is not enough to meet the occurring building cooling load. 
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Table 5.77 : Parametric analysis of glazing type based on total Global 

Cost breakdown (TL/m2) for Istanbul. 

GT 
PEN 

All 

Total  

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

1 1390.49 1095.23 814.42 86.93 73.35 120.52 

2 0.00 1093.56 819.70 82.76 74.13 116.97 

3 0.00 1140.26 863.92 82.38 77.77 116.18 

4 0.00 1164.68 890.00 82.51 75.98 116.18 

5 1374.53 1095.68 814.35 87.09 73.71 120.52 

6 0.00 1094.22 819.66 82.81 74.79 116.97 

7 0.00 1140.73 863.95 82.47 78.13 116.18 

8 0.00 1165.10 889.99 82.59 76.33 116.18 

9 1367.06 1096.31 814.56 87.16 74.07 120.52 

10 0.00 1094.44 819.48 82.85 75.14 116.97 

11 0.00 1140.87 863.75 82.44 78.49 116.18 

12 0.00 1165.24 889.77 82.58 76.70 116.18 

13 0.00 1079.55 803.17 84.28 73.95 118.16 

14 0.00 1081.76 807.82 82.82 74.54 116.58 

15 0.00 1090.03 815.75 82.47 75.63 116.18 

16 0.00 1119.75 843.09 82.10 78.37 116.18 

17 0.00 1163.95 887.98 82.73 77.05 116.18 

18 0.00 1080.41 803.43 84.51 74.31 118.16 

19 0.00 1080.33 805.87 82.97 74.91 116.58 

20 0.00 1091.40 816.44 82.79 75.98 116.18 

21 0.00 1124.70 846.96 82.83 78.72 116.18 

22 0.00 1165.85 889.31 82.94 77.42 116.18 

23 0.00 1081.17 803.60 84.75 74.67 118.16 

24 0.00 1080.82 805.87 83.11 75.26 116.58 

25 0.00 1091.93 816.44 82.97 76.33 116.18 

26 0.00 1125.35 847.07 83.01 79.09 116.18 

27 0.00 1166.51 889.39 83.16 77.77 116.18 

GT13, GT14, GT19, GT23 and GT24 were selected for detailed inspection and 

comparisons.  

According to the Table 5.78 below, GT13 demonstrated a moderate performance in 

terms of boiler natural gas cost, which is in correlation with energy consumption. 

Building with GT23 required less boiler energy costs than GT13 however; it cost 

more for electricity due to chiller, cooling tower, fans and pump operation. Similarly, 

natural gas costs obtained with GT24 was less than with GT13; however, it cost more 

for electricity for lighting. 

Even GT13 does not show the best performance in heating and cooling related costs 

categories, it showed a good cost performance in terms of lighting. 
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Table 5.78 : Parametric analysis of glazing type based on NPV energy cost 

breakdown (TL/m2) for Istanbul. 

GT 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

 Elc. 

CTower 

NPV 

 Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

DWH 

NPV 

Elc. 

Lights 

NPV  

Elc. 

Equipment 

13 119.17 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

14 120.56 63.83 3.440 84.39 33.75 29.30 184.74 287.80 

19 119.41 64.17 3.445 84.39 34.13 29.30 183.22 287.80 

23 117.22 69.63 3.663 84.63 35.89 29.30 175.47 287.80 

24 118.55 64.62 3.455 84.41 34.50 29.30 183.22 287.80 

Table 5.79 summarizes the NPV cost breakdown for water. The building with GT13 

showed a moderate performance in cooling tower water cost category. The hot water 

cost remained unchanged with all windows since associated water use is kept fixed in 

the calculation. 

Table 5.79 : Parametric analysis of glazing type based on NPV water cost 

breakdown  (TL/m2) for Istanbul. 

GT 
NPV  

CTower  

NPV  

Hot water  

13 34.723 49.558 

14 33.264 49.558 

19 33.412 49.558 

23 35.191 49.558 

24 33.553 49.558 

Table 5.80 shows that the only NPV equipment ownership cost variation occurred in 

FCU category since the rest of the equipment is kept fixed in the parametric analysis. 

When we further investigated the number of required fan coils in detail, it was seen 

that 47 units were required with GT13 and GT23 and 43 units were required with 

GT14, GT19 and GT24. 

Table 5.80 : Parametric analysis of glazing type based on NPV equipment cost 

breakdown (TL/m2) for Istanbul. 

GT 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV  

FCU 

NPV  

WH 

NPV  

LC 

13 4.41 32.71 6.66 18.54 2.47 53.37 

14 4.41 32.71 6.66 16.97 2.47 53.37 

19 4.41 32.71 6.66 16.97 2.47 53.37 

23 4.41 32.71 6.66 18.54 2.47 53.37 

24 4.41 32.71 6.66 16.97 2.47 53.37 
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The increase in NPV material cost category is due to the variation in glazing type 

variable as Table 5.81 suggests. Since the rest of the variables were kept fixed in the 

parametric analysis, the associated cost values remained unchanged. The NPV 

ownership cost of GT13 is among the lowest. 

Table 5.81 : Parametric analysis of glazing type based on NPV material cost 

breakdown (TL/m2) for Istanbul. 

GT 
NPV  

EW Insul. 

NPV 

 Roof Insul. 

NPV 

 Roof layer 

NPV  

Glazing 

NPV 

EWOther 

13 2.54 8.59 4.64 45.17 13.01 

14 2.54 8.59 4.64 45.77 13.01 

19 2.54 8.59 4.64 46.13 13.01 

23 2.54 8.59 4.64 45.89 13.01 

24 2.54 8.59 4.64 46.48 13.01 

To conclude, the results showed that GT13 was able to balance building heating and 

cooling loads, lighting energy needs, associated energy costs and HVAC water costs 

for a reasonable price. Therefore, the optimization methodology was successful at 

recommending a cost-effective glazing solution for the Istanbul case study within the 

given boundaries. 

Window-to-wall ratio of southern façade (WTW S) 

The application of the proposed optimization methodology to Istanbul case study 

recommended 45 % of window-to-wall ratio for the south facing facade as the 

optimal solution, in combination with rest of the design recommendations.  

The results of the parametric investigation in Table 5.82 demonstrated that increasing 

w-t-w ratio reduced the total global cost until 45% but then the cost started 

increasing. 

Table 5.82 : Parametric analysis of southern façade window-to-wall ratio based on 

total Global Cost breakdown (TL/m2) for Istanbul. 

WTW 

S 

PEN 

All 

Total  

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

5 0 1096.55 830.13 83.42 66.02 116.97 

15 0 1087.76 819.27 83.51 68.00 116.97 

25 0 1082.42 811.38 83.69 69.98 117.37 

35 0 1080.39 806.37 83.90 71.97 118.16 

45 0 1079.55 803.17 84.28 73.95 118.16 

55 0.16 1080.45 801.36 84.61 75.93 118.55 
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Moreover, a penalty occurred at 55% because the cooling capacity of the 

recommended chiller became insufficient with the introduction of 55 % w-t-w ratio. 

The GC breakdown shows that larger windows decreased only NPV energy costs 

where NPV costs for water, material and equipment increased.  

When we further investigated the cost breakdown for the energy category given in 

Table 5.83, it was seen that increasing w-t-w ratio in the southern orientation 

decreased natural gas cost for boiler since larger windows provided more heat gain in 

the southern orientation and reduced heating loads in winter period. Similarly, 

increasing w-t-w ratio also decreased electricity cost for artificial lighting due to the 

enhanced daylighting potential of the building when combined with the dimming 

control. On the other hand, larger south facing windows increased electricity cost for 

chiller, cooling tower, HVAC fans, and circulation pumps due to the higher heat 

gains and resulting cooling load in the summer period. The cost for water heating and 

plugged-in equipment remained unchanged since they were kept fixed in the 

analysis. 

Table 5.83 : Parametric analysis of southern façade window-to-wall ratio based on 

NPV energy cost breakdown (TL/m2) for Istanbul. 

WTW

S 
N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV  

Elc. 

CTower 

NPV  

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

DWH 

NPV 

Elc. 

Lights 

NPV  

Elc. 

Equipment 

5 120.01 65.67 3.523 84.47 33.94 29.30 205.41 287.80 

15 119.90 65.98 3.537 84.49 34.06 29.30 194.22 287.80 

25 119.73 66.49 3.558 84.51 34.29 29.30 185.69 287.80 

35 119.54 67.24 3.587 84.55 34.62 29.30 179.74 287.80 

45 119.17 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

55 118.92 69.37 3.670 84.64 35.39 29.30 172.27 287.80 

Table 5.84 summarizes the NPV cost breakdown for water.  

Table 5.84 : Parametric analysis of southern façade window-to-wall ratio based on 

NPV water cost breakdown (TL/m2) for Istanbul. 

WTW_S 
NPV  

CTower  

NPV  

Hot water  

5 33.866 49.558 

15 33.950 49.558 

25 34.128 49.558 

35 34.337 49.558 

45 34.723 49.558 

55 35.053 49.558 



235 

The water costs due to cooling tower use increased as w-t-w ratio increased, which is 

in line with the increase in cooling load and consequent chiller operation. However, 

hot water cost remained unchanged since associated water use was kept fixed in the 

analysis. 

Table 5.85 shows that only the NPV ownership cost of FCUs increased with the 

variation in w-t-w ratio, which is in parallel with the increase in cooling load and the 

requirement for more FCUs. The number of the required FCUs was 44 at 5% w-t-w 

where it became 48 at 55%. However, the rest of the equipment cost categories 

remained unchanged, as they were kept fixed in the parametric analysis.  

Table 5.85 : Parametric analysis of southern façade window-to-wall ratio based on 

NPV equipment cost breakdown (TL/m2) for Istanbul. 

WTW_S 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV  

FCU 

NPV  

WH 

NPV 

 LC 

5 4.41 32.71 6.66 17.36 2.47 53.37 

15 4.41 32.71 6.66 17.36 2.47 53.37 

25 4.41 32.71 6.66 17.76 2.47 53.37 

35 4.41 32.71 6.66 18.54 2.47 53.37 

45 4.41 32.71 6.66 18.54 2.47 53.37 

55 4.41 32.71 6.66 18.94 2.47 53.37 

The increase in NPV material cost is due to the changes in wall area and glazed area 

as given in Table 5.86. When w-t-w ratio increased, the area of wall component that 

holding the glazing decreased, therefore the cost for wall insulation and the rest of 

the non-insulation wall materials decreased accordingly. Conversely, the cost of 

glazing material increased with the w-t-w ratio, as it was expected. 

The roof insulation and roof coating has no interaction with the w-t-w ratio therefore 

the associated cost values remained unchanged. 

Table 5.86 : Parametric analysis of  southern façade window-to-wall ratio based on 

NPV material cost breakdown (TL/m2) for Istanbul. 

WTW_S 
NPV  

EW Insul. 

NPV  

Roof Insul. 

NPV  

Roof layer 

NPV  

Glazing 

NPV 

EWOther 

5 2.98 8.59 4.64 34.54 15.27 

15 2.87 8.59 4.64 37.20 14.70 

25 2.76 8.59 4.64 39.85 14.14 

35 2.65 8.59 4.64 42.51 13.57 

45 2.54 8.59 4.64 45.17 13.01 

55 2.43 8.59 4.64 47.83 12.44 
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To conclude, the results showed that 45% of w-t-w ratio at the southern façade was 

able to balance heating and cooling loads, artificial lighting and daylighting potential 

together with the ownership cost for FCU, wall insulation, non-insulation wall 

materials and glazing cost itself. Therefore, the optimization methodology was 

successful at recommending a cost-effective w-t-w ratio solution for the Istanbul case 

study within the given boundaries. 

Window-to-wall ratio of western façade (WTW W) 

The application of the proposed optimization methodology to Istanbul case study 

recommended 35 % of window-to-wall ratio for the west-facing facade as the 

optimal solution, in combination with the rest of the design recommendations. The 

results of the parametric investigation in Table 5.87 demonstrated that increasing w-

t-w reduced the total global cost until 35% but then the cost started increasing. The 

GC breakdown explains that larger windows decreased only NPV energy costs where 

NPV costs for water, material and equipment increased. In addition, penalty values 

started occurring with the introduction of 45% of w-t-w ratio because the cooling 

capacity of the recommended chiller started to become insufficient to meet the 

resulting cooling load. 

Table 5.87 : Parametric analysis of western facade window-to-wall ratio based on 

total Global Cost breakdown (TL/m2) for Istanbul. 

WTW 

W 

PEN 

All 

Total  

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

5 0 1089.97 821.38 83.61 68.00 116.97 

15 0 1083.72 812.64 83.73 69.98 117.37 

25 0 1080.41 806.74 83.94 71.97 117.76 

35 0 1079.55 803.17 84.28 73.95 118.16 

45 4.18 1080.69 801.16 84.66 75.93 118.95 

55 105.33 1081.82 799.94 85.02 77.91 118.95 

When we further investigated the NPV cost breakdown for the energy category given 

in Table 5.88, it was seen that increasing w-t-w ratio in the western orientation 

slightly changed natural gas cost for boiler as a result of increased heat gain due to 

larger windows combined with the less heat gain from artificial lighting with 

dimming control. 

On the other hand, larger west facing windows increased electricity cost for chiller, 

cooling tower, HVAC fans, and circulation pumps due to higher heat gains and 
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resulting cooling load in the summer period. The cost for water heating and plugged-

in equipment remained unchanged since they were kept fixed in the analysis. 

Similarly, increasing w-t-w ratio also decreased electricity cost for artificial lighting 

due to the enhanced daylighting potential of the building when combined with the 

dimming control. 

Table 5.88 : Parametric analysis of western facade window-to-wall ratio based on 

NPV energy cost breakdown  (TL/m2) for Istanbul. 

WTW

W 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV  

Elc. 

CTower 

NPV  

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

DWH 

NPV  

Elc. 

Lights 

NPV  

Elc. 

Equipment 

5 119.03 66.08 3.526 84.48 34.76 29.30 196.41 287.80 

15 119.17 66.50 3.546 84.50 34.78 29.30 187.04 287.80 

25 119.21 67.27 3.582 84.53 34.87 29.30 180.18 287.80 

35 119.17 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

45 119.23 69.38 3.677 84.64 35.18 29.30 171.96 287.80 

55 119.20 70.62 3.731 84.70 35.39 29.30 169.20 287.80 

Table 5.89 summarizes the NPV cost breakdown for water. The water costs due to 

cooling tower use increased as w-t-w ratio increased, which is in line with the 

increase in cooling load and consequent chiller operation. However, hot water cost 

remained unchanged since associated water use was kept fixed in the analysis. 

Table 5.89 : Parametric analysis of western facade window-to-wall ratio based on 

NPV water cost breakdown (TL/m2) for Istanbul. 

WTW_W 
NPV  

CTower  

NPV  

Hot water  

5 34.054 49.558 

15 34.170 49.558 

25 34.378 49.558 

35 34.723 49.558 

45 35.101 49.558 

55 35.465 49.558 

Table 5.90 below shows that only the NPV ownership cost of FCUs increased with 

the variation in w-t-w ratio, in parallel with the increase in cooling load and the 

requirement for more FCUs. The number of required FCUs was 44 at 5% w-t-w 

where it became 49 at 55%. However, the rest of the systems were kept fixed during 

the analysis so there were no cost variations.  
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Table 5.90 : Parametric analysis of western facade window-to-wall ratio based on 

NPV equipment cost breakdown (TL/m2) for Istanbul. 

WTW_

W 

NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV  

FCU 

NPV  

WH 

NPV  

LC 

5 4.41 32.71 6.66 17.36 2.47 53.37 

15 4.41 32.71 6.66 17.76 2.47 53.37 

25 4.41 32.71 6.66 18.15 2.47 53.37 

35 4.41 32.71 6.66 18.54 2.47 53.37 

45 4.41 32.71 6.66 19.33 2.47 53.37 

55 4.41 32.71 6.66 19.33 2.47 53.37 

The increase in NPV material cost is due to the changes in wall area and glazing area 

as given in Table 5.91. When w-t-w ratio increased, the area of wall component that 

holding the glazing decreased accordingly, therefore the cost for wall insulation and 

the rest of the non-insulation wall materials decreased. Moreover, the ownership cost 

of glazing material increased with the w-t-w ratio as it was expected. 

The roof insulation and roof coating has no interaction with the w-t-w ratio therefore 

the associated cost values remained unchanged. 

Table 5.91 : Parametric analysis of western facade window-to-wall ratio based on 

NPV material cost breakdown (TL/m2) for Istanbul. 

WTW_W 
NPV  

EW Insul. 

NPV  

Roof Insul. 

NPV  

Roof layer 

NPV  

Glazing 

NPV 

EWOther 

5 2.87 8.59 4.64 37.20 14.70 

15 2.76 8.59 4.64 39.85 14.14 

25 2.65 8.59 4.64 42.51 13.57 

35 2.54 8.59 4.64 45.17 13.01 

45 2.43 8.59 4.64 47.83 12.44 

55 2.32 8.59 4.64 50.48 11.87 

To conclude, the results showed that 35% of w-t-w ratio at the western façade was 

able to balance heating and cooling loads, artificial lighting and daylighting potential 

together with the ownership cost for FCU, wall insulation, non-insulation wall 

materials and glazing cost itself. Therefore, the optimization methodology was 

successful at recommending a cost-effective w-t-w ratio solution for the Istanbul case 

study within the given boundaries. 

Window-to-wall ratio of northern façade (WTW N) 

The application of the proposed optimization methodology to Istanbul case study 

recommended 55 % of window-to-wall ratio for the north facing facades as the 

optimal solution in combination with the rest of the design recommendations. The 
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results of the parametric investigation in Table 5.92 demonstrated that increasing w-

t-w ratio reduced the total global cost with no penalties occurring. The GC 

breakdown explains that larger windows decreased only NPV energy costs where 

NPV costs for water, and material increased. The NPV equipment cost however 

remained same. 

Table 5.92 : Parametric analysis of northern facade window-to-wall ratio based on 

total Global Cost breakdown (TL/m2) for Istanbul. 

WTW 

N 

PEN 

All 

Total  

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

5 0 1085.12 819.03 83.89 64.04 118.16 

15 0 1083.35 815.26 83.91 66.02 118.16 

25 0 1081.63 811.48 83.99 68.00 118.16 

35 0 1080.44 808.24 84.05 69.98 118.16 

45 0 1079.74 805.44 84.17 71.97 118.16 

55 0 1079.55 803.17 84.28 73.95 118.16 

When we further investigated the NPV cost breakdown for the energy category given 

in Table 5.93, it was seen that increasing w-t-w ratio in the northern orientation 

increased natural gas cost for boiler a little because of thermal heat losses due to 

larger windows combined with the less heat gain from artificial lighting with 

dimming control. Since the U value of the glazing was improved, having large 

windows could be tolerated. 

Table 5.93 : Parametric analysis of northern facade window-to-wall ratio based on 

NPV energy cost breakdown (TL/m2) for Istanbul. 

WTW

N 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV  

Elc. 

CTower 

NPV  

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

DWH 

NPV 

Elc. 

Lights 

NPV  

Elc. 

Equipment 

5 118.68 66.99 3.565 84.52 34.87 29.30 193.31 287.80 

15 118.92 67.15 3.573 84.53 34.88 29.30 189.12 287.80 

25 118.89 67.39 3.586 84.54 34.91 29.30 185.05 287.80 

35 119.13 67.61 3.596 84.55 34.93 29.30 181.32 287.80 

45 119.18 67.90 3.611 84.57 34.95 29.30 178.12 287.80 

55 119.17 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

Moreover, larger north facing windows also increased electricity cost slightly for 

chiller, cooling tower, HVAC fans, and circulation pumps. The cost for water heating 

and plugged-in equipment remained unchanged since they were kept fixed in the 

analysis. 
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However, increasing w-t-w ratio decreased electricity cost for artificial lighting a 

great deal due to the enhanced daylighting potential of the building when combined 

with the dimming control. 

Table 5.94 summarizes the NPV cost breakdown for water. The water costs due to 

cooling tower use increased very slightly as w-t-w ratio increased, which is in line 

with the increase in chiller electricity costs. However, hot water cost remained 

unchanged since associated water use was kept fixed in the analysis. 

Table 5.94 : Parametric analysis of northern facade window-to-wall ratio based on 

NPV water cost breakdown (TL/m2) for Istanbul. 

WTW_N 
NPV  

CTower  

NPV  

Hot water  

5 34.332 49.558 

15 34.347 49.558 

25 34.428 49.558 

35 34.495 49.558 

45 34.613 49.558 

55 34.723 49.558 

Table 5.95 shows that no changes were observed in the NPV equipment ownership 

cost category. The changes in the building thermal loads were minor therefore there 

was no need to update the number of FCUs. Moreover, since the rest of the systems 

were kept fixed during the analysis, there were no cost variations as well.  

Table 5.95 : Parametric analysis of northern facade window-to-wall ratio based on 

NPV equipment cost breakdown  (TL/m2) for Istanbul. 

WTW_N 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV  

FCU 

NPV  

WH 

NPV  

LC 

5 4.41 32.71 6.66 18.54 2.47 53.37 

15 4.41 32.71 6.66 18.54 2.47 53.37 

25 4.41 32.71 6.66 18.54 2.47 53.37 

35 4.41 32.71 6.66 18.54 2.47 53.37 

45 4.41 32.71 6.66 18.54 2.47 53.37 

55 4.41 32.71 6.66 18.54 2.47 53.37 

The increase in NPV material cost is due to the changes in wall area and glazing area 

as given in Table 5.96. When w-t-w ratio increased, the area of wall component that 

holding the glazing decreased, therefore the cost for wall insulation and the rest of 

the non-insulation wall materials decreased accordingly. Moreover, the cost of 

glazing material increased with the w-t-w ratio as it was expected. 
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The roof insulation and roof coating has no interaction with the w-t-w ratio therefore 

the associated cost values remained unchanged. 

Table 5.96 : Parametric analysis of northern facade window-to-wall ratio based on 

NPV material cost breakdown (TL/m2) for Istanbul. 

WTW_N 
NPV  

EW Insul. 

NPV  

Roof Insul. 

NPV  

Roof layer 

NPV  

Glazing 

NPV 

EWOther 

5 3.09 8.59 4.64 31.88 15.83 

15 2.98 8.59 4.64 34.54 15.27 

25 2.87 8.59 4.64 37.20 14.70 

35 2.76 8.59 4.64 39.85 14.14 

45 2.65 8.59 4.64 42.51 13.57 

55 2.54 8.59 4.64 45.17 13.01 

To conclude, the results showed that 55% of w-t-w ratio at the northern façade was 

able to balance heating and cooling loads, artificial lighting and daylighting potential 

together with the ownership cost for FCU, wall insulation, non-insulation wall 

materials and glazing cost itself. Therefore, the optimization methodology was 

successful at recommending a cost-effective w-t-w ratio solution for the Istanbul case 

study within the given boundaries. 

Window-to-wall ratio of eastern façade (WTW E) 

The application of the proposed optimization methodology to Istanbul case study 

recommended 35 % of window-to-wall ratio for the east-facing facade as the optimal 

solution, in combination with the rest of the design recommendations. The results of 

the parametric investigation in Table 5.97 demonstrated that increasing w-t-w 

reduced the total global cost until 35% but then the cost started increasing. Moreover, 

no penalty values occurred within the tested w-t-w ratio range. The GC breakdown 

showed that larger windows decreased only e NPV energy costs where NPV costs for 

water, material and equipment increased.  

Table 5.97 : Parametric analysis of eastern facade window-to-wall ratio based on 

total Global Cost breakdown (TL/m2) for Istanbul. 

WTW 

E 

PEN 

All 

Total  

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

5 0 1086.62 817.68 83.56 68.00 117.37 

15 0 1081.76 810.28 83.72 69.98 117.76 

25 0 1079.62 805.54 83.96 71.97 118.16 

35 0 1079.55 803.17 84.28 73.95 118.16 

45 0 1081.15 801.71 84.56 75.93 118.95 

55 0 1082.18 800.43 84.89 77.91 118.95 
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When we further investigated the cost breakdown for the NPV energy category given 

in Table 5.98, it was seen that increasing w-t-w ratio in the eastern orientation 

increased slightly the natural gas cost for boiler as a result of the enlarged heat loss 

due to larger windows and less heat gain from artificial lighting with dimming 

control. 

On the other hand, larger east facing windows increased electricity cost for chiller, 

cooling tower, HVAC fans, and circulation pumps due to higher heat gains and 

resulting cooling load in the summer period. The cost for water heating and plugged-

in equipment remained unchanged since they were kept fixed in the analysis. 

Furthermore, increasing w-t-w ratio decreased a great deal electricity cost for 

artificial lighting due to the enhanced daylighting potential of the building when 

combined with the dimming control. 

Table 5.98 : Parametric analysis of eastern facade window-to-wall ratio based on 

NPV energy cost breakdown (TL/m2) for Istanbul. 

WTWE 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV  

Elc. 

CTower 

NPV  

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

DWH 

NPV 

Elc. 

Lights 

NPV  

Elc. 

Equipment 

5 119.09 66.07 3.525 84.48 34.71 29.30 192.71 287.80 

15 119.14 66.53 3.548 84.50 34.75 29.30 184.71 287.80 

25 119.15 67.28 3.583 84.54 34.85 29.30 179.04 287.80 

35 119.17 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

45 119.26 69.26 3.672 84.64 35.16 29.30 172.63 287.80 

55 119.33 70.20 3.714 84.70 35.28 29.30 170.10 287.80 

Table 5.99 summarizes the NPV cost breakdown for water. The water costs due to 

cooling tower use increased slightly as the w-t-w ratio increased, which is in line 

with the increase in cooling load and consequent chiller operation.  

Table 5.99 : Parametric analysis of eastern facade window-to-wall ratio based on 

NPV water cost breakdown (TL/m2) for Istanbul. 

WTW_E 
NPV  

CTower  

NPV  

Hot water  

5 34.005 49.558 

15 34.166 49.558 

25 34.398 49.558 

35 34.723 49.558 

45 35.004 49.558 

55 35.335 49.558 
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However, hot water cost remained unchanged since associated water use was kept 

fixed in the analysis. 

Table 5.100 shows that only the NPV ownership cost of FCUs increased with the 

variation in w-t-w ratio, in parallel with the increase in thermal loads and the 

resulting requirement for more FCUs. The number of required FCUs was 45 at 5% 

w-t-w where it became 49 at 55%. However, the rest of the systems were kept fixed 

during the analysis so there were no cost variations. The capacity of the 

recommended central plant equipment stayed within allowed ranges in the 

parametric analysis as no penalty occurred.  

Table 5.100 : Parametric analysis of eastern facade window-to-wall ratio based on 

NPV equipment cost breakdown (TL/m2) for Istanbul. 

WTW_E 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV  

FCU 

NPV  

WH 

NPV  

LC 

5 4.41 32.71 6.66 17.76 2.47 53.37 

15 4.41 32.71 6.66 18.15 2.47 53.37 

25 4.41 32.71 6.66 18.54 2.47 53.37 

35 4.41 32.71 6.66 18.54 2.47 53.37 

45 4.41 32.71 6.66 19.33 2.47 53.37 

55 4.41 32.71 6.66 19.33 2.47 53.37 

The increase in NPV material cost is due to the changes in wall area and glazed area 

as given in Table 5.101. When w-t-w ratio increased, the area of wall component that 

holding the glazing decreased, therefore the cost for wall insulation and the rest of 

the non-insulation wall materials decreased accordingly. Moreover, the ownership 

cost of glazing material increased with the w-t-w ratio as it was expected. 

The roof insulation and roof coating has no interaction with the w-t-w ratio therefore 

the associated cost values remained unchanged. 

Table 5.101 : Parametric analysis of eastern facade window-to-wall ratio based on 

NPV material cost breakdown (TL/m2) for Istanbul. 

WTW_E 
NPV  

EW Insul. 

NPV  

Roof Insul. 

NPV  

Roof layer 

NPV  

Glazing 

NPV 

EWOther 

5 2.87 8.59 4.64 37.20 14.70 

15 2.76 8.59 4.64 39.85 14.14 

25 2.65 8.59 4.64 42.51 13.57 

35 2.54 8.59 4.64 45.17 13.01 

45 2.43 8.59 4.64 47.83 12.44 

55 2.32 8.59 4.64 50.48 11.87 
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To conclude, the results showed that 35% of w-t-w ratio at the eastern façade was 

able to balance heating and cooling loads, artificial lighting and daylighting potential 

together with the ownership cost for FCU, wall insulation, non-insulation wall 

materials and glazing cost itself. Therefore, the optimization methodology was 

successful at recommending a cost-effective w-t-w ratio solution for the Istanbul case 

study within the given boundaries. 

Boiler type (BLtype) 

The application of the proposed optimization methodology to Istanbul case study 

recommended Boiler 43 from the equipment database as the optimal choice in 

combination with rest of the design recommendations. The parametric analysis 

carried out with a sample of low efficiency (BL 15-17) and high efficiency (BL 42-

44) boiler equipment from the database. The results of the parametric investigation in 

Table 5.102 demonstrate that the switching from low efficiency equipment to high 

efficiency equipment decreased total global costs. In addition, BL15 and BL42 were 

penalized because their heating capacities were not able to satisfy resulting heating 

loads. 

The GC breakdown explains that improvement on the boiler thermal efficiency let to 

a considerable reduction in NPV energy category while causing a little rise on the 

NPV equipment costs depending on the capacity of the tested equipment. However, 

NPV for water and material remained unchanged, as they were not influenced with 

the boiler replacement.  

Table 5.102 : Parametric analysis of boiler type based on total Global 

Cost breakdown (TL/m2) for Istanbul. 

BLtyp 
PEN 

All 

Total  

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

15 365.90 1090.39 816.56 84.28 73.95 115.61 

16 0 1092.03 818.03 84.28 73.95 115.77 

17 0 1093.59 819.41 84.28 73.95 115.95 

42 147.10 1078.15 802.05 84.28 73.95 117.86 

43 0 1079.55 803.17 84.28 73.95 118.16 

44 0 1081.42 804.44 84.28 73.95 118.75 

According to the Table 5.103 improving boiler efficiency only improved boiler NPV 

energy cost as expected. Moreover, the increase in equipment capacity also increased 

the natural gas boiler costs. The rest of the energy categories assumed to be remained 

same as minor changes occurred in electricity cost for fans and circulation pumps. 
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Table 5.103 : Parametric analysis of boiler type based on NPV energy cost 

breakdown (TL/m2) for Istanbul. 

BLtyp 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV  

Elc. 

CTower 

NPV  

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

DWH 

NPV 

Elc. 

Lights 

NPV  

Elc. 

Equipment 

15 132.56 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

16 134.03 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

17 135.42 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

42 118.06 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

43 119.17 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

44 120.45 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

Table 5.104 summarizes the NPV cost breakdown for water. Both the water costs 

due to cooling tower use and hot water cost remained unchanged since associated 

water use did not interact with the boiler replacement. 

Table 5.104 : Parametric analysis of boiler type based on NPV water cost 

breakdown (TL/m2) for Istanbul. 

BLtyp 
NPV 

CTower 

NPV 

Hot water 

15 34.722 49.558 

16 34.722 49.558 

17 34.722 49.558 

42 34.722 49.558 

43 34.722 49.558 

44 34.722 49.558 

As demonstrated in Table 5.105, the only change in NPV equipment cost occurred in 

boiler category as expected.  

Table 5.105 : Parametric analysis of boiler type based on NPV equipment cost 

breakdown (TL/m2) for Istanbul. 

BLtyp 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

15 1.86 32.71 6.66 18.54 2.47 53.37 

16 2.02 32.71 6.66 18.54 2.47 53.37 

17 2.20 32.71 6.66 18.54 2.47 53.37 

42 4.11 32.71 6.66 18.54 2.47 53.37 

43 4.41 32.71 6.66 18.54 2.47 53.37 

44 5.00 32.71 6.66 18.54 2.47 53.37 

The efficiency and capacity changes increased the NPV ownership equipment costs. 

The more efficient equipment cost almost double of the low efficiency group. BL15 

and BL42 were not able to satisfy heating loads as penalties occurred. Even BL17 
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and BL44 remained in the allowed equipment capacity range; they were not 

preferred since there was smaller size equipment that can still meet the load. 

As given in Table 5.106, there were no cost changes in the NPV material category 

since there were no interactions between building material and boiler replacement in 

the parametric analysis. 

Table 5.106 : Parametric analysis boiler type based on NPV material cost 

breakdown (TL/m2) for Istanbul. 

BLtyp 
NPV  

EW Insul. 

NPV  

Roof Insul. 

NPV  

Roof layer 

NPV  

Glazing 

NPV 

EWOther 

15 2.54 8.59 4.64 45.17 13.01 

16 2.54 8.59 4.64 45.17 13.01 

17 2.54 8.59 4.64 45.17 13.01 

42 2.54 8.59 4.64 45.17 13.01 

43 2.54 8.59 4.64 45.17 13.01 

44 2.54 8.59 4.64 45.17 13.01 

To conclude, the results showed that BL43 showed an improved energy performance 

while being capable of meeting building heating loads for an affordable equipment 

price in Istanbul case study. Therefore, the proposed optimization methodology 

successfully recommended a cost-effective boiler solution within the given 

boundaries. 

Chiller type (CLtype)  

The application of the proposed optimization methodology to Istanbul case study 

recommended Chiller 32 from the equipment database as the optimal choice when 

combined with rest of the design recommendations. The parametric analysis carried 

out with a sample of moderate efficiency (CL 9-11) and high efficiency (CL 31-33) 

chiller equipment. The results of the parametric investigation in Table 5.107 

demonstrate that the switching from moderate efficiency equipment to high 

efficiency equipment decreased total global costs. However, only CL11, CL32 and 

CL33 were able to comply with constraints and not penalized. 

The GC breakdown explains that improvement on the chiller efficiency let to a 

considerable reduction in NPV energy category while causing a little rise on NPV 

equipment costs depending on the capacity of the tested equipment. However, NPV 

cost for water and material were not influenced with the chiller replacement.  
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Table 5.107 : Parametric analysis of chiller type based on total Global 

Cost breakdown (TL/m2) for Istanbul. 

CLtyp 
PEN 

All 

Total  

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

9 3311.18 1101.85 832.17 85.00 73.95 110.73 

10 0.29 1104.55 831.93 85.73 73.95 112.94 

11 0 1109.08 833.56 86.51 73.95 115.06 

31 814.70 1078.78 804.15 83.81 73.95 116.87 

32 0 1079.55 803.17 84.28 73.95 118.16 

33 0 1083.05 803.46 85.02 73.95 120.62 

According to the Table 5.108 improving chiller efficiency improved chiller NPV 

energy cost together with cooling tower electricity costs as expected.  

Moreover, the chiller electricity cost increased in parallel with the increase in the 

equipment capacity. In addition, minor changes occurred in electricity cost for fans 

and circulation pumps. The rest of the energy cost categories remained uninfluenced, 

as they did not interact with the chiller. 

Table 5.108 : Parametric analysis of chiller type based on NPV energy cost 

breakdown (TL/m2) for Istanbul. 

CLtyp 
NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV  

Elc. 

CTower 

NPV  

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

DWH 

NPV 

Elc. 

Lights 

NPV  

Elc. 

Equipmen

t 

9 119.17 98.723 3.812 84.591 33.302 29.30 175.47 287.80 

10 119.17 96.314 3.812 84.586 35.477 29.30 175.47 287.80 

11 119.17 95.863 3.808 84.586 37.563 29.30 175.47 287.80 

31 119.17 70.453 3.637 84.586 33.729 29.30 175.47 287.80 

32 119.17 68.232 3.626 84.586 34.984 29.30 175.47 287.80 

33 119.17 66.433 3.608 84.586 37.089 29.30 175.47 287.80 

Table 5.109 summarizes the NPV cost breakdown for water.  

Table 5.109 : Parametric analysis of chiller type based on NPV water cost 

breakdown (TL/m2) for Istanbul. 

CLtyp 
NPV 

CTower 

NPV 

Hot water 

9 35.439 49.558 

10 36.169 49.558 

11 36.953 49.558 

31 34.255 49.558 

32 34.723 49.558 

33 35.466 49.558 
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Water costs due to cooling tower use was slightly improved with higher efficiency 

chiller equipment depending on equipment capacity where and hot water cost 

remained same. 

As demonstrated in Table 5.110, the only major change in equipment cost occurred 

in chiller category as expected. The efficiency and capacity improvements increased 

equipment costs.  CL9, CL10 and CL32 were not able to satisfy cooling loads as 

penalties occurred. However, even CL11 and CL33 remained in the allowed 

equipment capacity range; they were not preferred since there was smaller size 

equipment that can still meet the resulting cooling load. 

Table 5.110 : Parametric analysis of chiller type based on NPV equipment cost 

breakdown (TL/m2) for Istanbul. 

CLtyp 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

9 4.41 25.74 6.20 18.54 2.47 53.37 

10 4.41 27.41 6.75 18.54 2.47 53.37 

11 4.41 29.00 7.27 18.54 2.47 53.37 

31 4.41 31.74 6.35 18.54 2.47 53.37 

32 4.41 32.71 6.66 18.54 2.47 53.37 

33 4.41 34.63 7.20 18.54 2.47 53.37 

As shown in Table 5.111, there were no cost changes in the NPV material category 

since there were no interactions between building material and chiller equipment in 

the parametric analysis. 

Table 5.111 : Parametric analysis chiller type based on NPV material cost 

breakdown (TL/m2) for Istanbul. 

CLtyp 
NPV  

EW Insul. 

NPV  

Roof Insul. 

NPV  

Roof layer 

NPV  

Glazing 

NPV 

EWOther 

9 2.54 8.59 4.64 45.17 13.01 

10 2.54 8.59 4.64 45.17 13.01 

11 2.54 8.59 4.64 45.17 13.01 

31 2.54 8.59 4.64 45.17 13.01 

32 2.54 8.59 4.64 45.17 13.01 

33 2.54 8.59 4.64 45.17 13.01 

To conclude, the results showed that CL32 showed an improved energy performance 

while being capable of meeting building cooling loads for an affordable equipment 

price in Istanbul case study. Therefore, the proposed optimization methodology 

successfully recommended a cost-effective chiller solution within the given 

boundaries. 
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Lighting control (LC)  

The application of the proposed optimization methodology to Istanbul case study 

recommended dimming control of artificial lights ( option 1) according to indoor 

daylighting levels as the optimal choice over manual lighting control (option 0), 

when combined with rest of the design recommendations. The results of the 

parametric investigation in Table 5.112 demonstrate that dimming control of lights 

resulted in a major GC reduction. Moreover, the cost breakdown explains that 

dimming control reduces not only NPV energy costs but also NPV water cost as 

well. NPV for material were not influenced however, NPV for equipment was 

increased. 

In addition, the case with manual light control was penalized because the 

recommended chiller could not satisfy resulting cooling load in this combination. 

Table 5.112 : Parametric analysis of lighting control strategies based on total Global 

Cost breakdown (TL/m2) for Istanbul. 

LC 
PEN 

All 

Total  

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

0 1643.44 1212.28 946.22 88.67 73.95 103.44 

1 0 1079.55 803.17 84.28 73.95 118.16 

According to the Table 5.113, dimming control of lights over daylighting increased 

boiler natural gas cost to some extent due to the reduction in heat gain from lighting 

system. However, it decreased electricity cost for chiller, cooling tower, fans, and 

pumps a great deal in addition to the decrease in lighting electricity cost. The rest of 

the energy cost categories remained uninfluenced, as they did not interact with the 

lighting system.  

Table 5.113 : Parametric analysis of lighting control strategies based on NPV energy 

cost breakdown (TL/m2) for Istanbul. 

LC 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

0 116.33 81.66 4.127 85.22 38.13 29.30 303.65 287.80 

1 119.17 68.23 3.626 84.59 34.98 29.30 175.47 287.80 

Table 5.114 summarizes the NPV cost breakdown for water. Water costs due to 

cooling tower use were significantly improved with dimming control where hot 

water cost remained same. 
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Table 5.114 : Parametric analysis of lighting control strategies based on NPV water 

cost breakdown (TL/m2) for Istanbul. 

LC NPV CTower  NPV Hot water  

0 39.112 49.558 

1 34.723 49.558 

As demonstrated in Table 5.115, the major change in NPV equipment ownership cost 

occurred in lighting control category as installing dimming control costs more than 

manual control system.  In addition, the cost for FCUs decreased with dimming 

control due to the decrease in heat gain from lighting system, the decrease in 

resulting cooling load and the required number of FCUs from 52 to 47. 

Table 5.115 : Parametric analysis of lighting control strategies based on NPV 

equipment cost breakdown (TL/m2) for Istanbul. 

LC 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV  

FCU 

NPV  

WH 

NPV  

LC 

0 4.41 32.71 6.66 20.52 2.47 36.68 

1 4.41 32.71 6.66 18.54 2.47 53.37 

As shown in Table 5.116, there were no cost changes in the NPV material category 

since there were no interactions between building material and the lighting system. 

Table 5.116 : Parametric analysis of lighting control strategies based on NPV 

material cost breakdown  (TL/m2) for Istanbul. 

LC 
NPV EW 

Insul. 

NPV Roof 

Insul. 

NPV Roof 

layer 

NPV  

Glazing 

NPV 

EWOther 

0 2.54 8.59 4.64 45.17 13.01 

1 2.54 8.59 4.64 45.17 13.01 

To conclude, the results showed that dimming control of artificial lights according to 

daylighting levels decreased the electricity cost for lighting together with electricity 

cost for cooling system for an affordable price. The slight increase in NPV energy 

cost for heating was compensated with other benefits. Therefore, the proposed 

optimization methodology successfully recommended a cost-effective lighting 

control solution within the given boundaries. 
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5.3.6.2 Validation of Ankara case study 

External wall insulation thickness (iEW) 

The application of the proposed optimization methodology to Ankara case study 

recommended 0.05m of insulation for the external walls as the optimal choice, in 

combination with the rest of the design recommendations.  

The results of the parametric investigation in Table 5.117 demonstrate that the 

introduction of external wall insulation had a trend for reducing the total global cost 

only until 0.05m, but then the cost started increasing continuously. Moreover, the GC 

breakdown explains that increase in external wall insulation decreased NPV in 

energy cost category only. However, NPV cost for water and material conversely 

increased. The NPV cost for equipment did not vary within the tested range of 

insulation variable.  

In addition, the penalties occurred at 0.035m and 0.04m insulation thicknesses are 

due to under capacity boiler equipment. 

Table 5.117 : Parametric analysis of external wall insulation thickness based on total 

global cost breakdown (TL/m2) for Ankara. 

iEW 
PEN 

All 

Total  

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

0.035 13.06 1097.84 831.83 74.88 77.28 113.84 

0.040 2.00 1097.71 831.42 74.90 77.54 113.84 

0.045 0 1097.89 831.26 74.98 77.79 113.84 

0.050 0 1097.87 831.00 74.98 78.05 113.84 

0.055 0 1097.96 830.76 75.04 78.31 113.84 

0.060 0 1098.12 830.64 75.07 78.57 113.84 

0.065 0 1098.17 830.43 75.07 78.82 113.84 

According to the Table 5.118 below, the increase in external wall insulation levels 

decreased boiler natural gas cost because of the reduction in associated energy 

consumption and heating loads.  

On the other hand, it also slightly increased chiller and cooling tower electricity costs 

and the related energy use. There were also minor changes in fan and pump energy 

costs due to the changes in building heating and cooling needs. The rest of the energy 

categories remained same. 
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Table 5.118 : Parametric analysis of external wall insulation thickness based on 

NPV energy cost breakdown (TL/m2) for Ankara. 

iEW 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV  

Elc. 

CTower 

NPV  

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV  

Elc. 

Equipment 

0.035 181.96 36.80 1.206 84.697 30.13 34.78 174.46 287.80 

0.040 181.29 36.95 1.207 84.697 30.25 34.78 174.46 287.80 

0.045 180.89 37.08 1.209 84.699 30.35 34.78 174.46 287.80 

0.050 180.41 37.19 1.210 84.698 30.45 34.78 174.46 287.80 

0.055 180.00 37.29 1.211 84.698 30.53 34.78 174.46 287.80 

0.060 179.72 37.38 1.212 84.699 30.59 34.78 174.46 287.80 

0.065 179.36 37.46 1.213 84.700 30.65 34.78 174.46 287.80 

Table 5.119 summarizes the NPV breakdown for water cost. The water costs due to 

cooling tower use slightly increased as the insulation thickness increased.  

Table 5.119 : Parametric analysis of external wall insulation thickness based on 

NPV water cost breakdown (TL/m2) for Ankara. 

iEW 
NPV  

CTower  

NPV 

 Hot water  

0.035 25.321 49.558 

0.040 25.346 49.558 

0.045 25.427 49.558 

0.050 25.426 49.558 

0.055 25.484 49.558 

0.060 25.514 49.558 

0.065 25.516 49.558 

Table 5.120 below shows that the variation in external wall insulation levels did not 

cause any cost changes at NPV equipment category within the tested insulation 

range.   

Table 5.120 : Parametric analysis of external wall insulation thickness based on 

NPV equipment cost breakdown (TL/m2) for Ankara. 

iEW 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV  

FCU 

NPV  

WH 

NPV  

LC 

0.035 5.30 29.64 5.71 17.36 2.47 53.37 

0.040 5.30 29.64 5.71 17.36 2.47 53.37 

0.045 5.30 29.64 5.71 17.36 2.47 53.37 

0.050 5.30 29.64 5.71 17.36 2.47 53.37 

0.055 5.30 29.64 5.71 17.36 2.47 53.37 

0.060 5.30 29.64 5.71 17.36 2.47 53.37 

0.065 5.30 29.64 5.71 17.36 2.47 53.37 
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The ownership cost of boiler, chiller, cooling tower, water heating and lighting 

control were kept fixed in the parametric analysis however, FCUs were allowed to 

adjust to the building heating and cooling load needs. Results indicate that load 

changes did not require any FCU update. 

As shown in Table 5.121, the increase in NPV material cost is due to the increase in 

external wall insulation levels. Since the rest of the variables were kept fixed in the 

parametric analysis, the associated cost values remained unchanged. 

Table 5.121 : Parametric analysis of external wall insulation thickness based on 

NPV material cost breakdown (TL/m2) for Ankara. 

iEW 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

0.035 3.17 13.39 4.64 42.51 13.57 

0.040 3.42 13.39 4.64 42.51 13.57 

0.045 3.68 13.39 4.64 42.51 13.57 

0.050 3.94 13.39 4.64 42.51 13.57 

0.055 4.19 13.39 4.64 42.51 13.57 

0.060 4.45 13.39 4.64 42.51 13.57 

0.065 4.71 13.39 4.64 42.51 13.57 

To conclude, the results showed that 0.05 m of external wall insulation was able to 

balance heating and cooling loads, associated NPV energy costs together with the 

water cost due to cooling purposes.  Therefore, the proposed optimization 

methodology was successful at recommending a cost-effective external wall 

insulation solution within the given boundaries for the Ankara case study. 

Roof insulation thickness (iR)  

The application of the proposed optimization methodology to Ankara case study 

recommended 0.085m of insulation for the roof element as the optimal choice, when 

combined with rest of the design recommendations. The results of the parametric 

investigation given in Table 5.122 demonstrate that the introduction of roof 

insulation reduced the total global cost only until 0.085m but then the cost started 

increasing. The GC breakdown explains that increase in roof insulation levels 

decreased NPV in energy category only however NPV for water, material and 

equipment increased inversely within the tested insulation range. 

In addition, penalties occurred until 0.85 m of insulation due to the under capacity 

boiler equipment. Without enough insulation, the boiler used in the analysis was not 
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able to satisfy building heating load. Therefore, less insulation required a higher 

capacity boiler, which was not preferred in the optimization. 

Table 5.122 : Parametric analysis of roof insulation thickness based on total Global 

Cost breakdown (TL/m2) for Ankara. 

iR 
PEN 

All 

Total  

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

0.065 63.09 1098.28 834.24 74.54 75.65 113.84 

0.070 26.28 1097.99 833.20 74.70 76.25 113.84 

0.075 6.14 1097.90 832.43 74.78 76.85 113.84 

0.080 0.01 1097.92 831.69 74.93 77.45 113.84 

0.085 0 1097.87 831.00 74.98 78.05 113.84 

0.090 0 1098.06 830.46 75.10 78.65 113.84 

0.095 0 1098.26 830.00 75.16 79.25 113.84 

According to the Table 5.123, the increase in roof insulation decreased the boiler 

natural gas cost because of the reduction in associated heating load and energy 

consumption.  

On the other hand, insulation also slightly increased chiller and cooling tower 

electricity costs and related energy use due to the increase in cooling loads in 

summer period. There was also a minor increase in fan and pump electricity costs 

due to the changes in building heating and cooling needs. The rest of the energy 

categories remained same, as they do not interact with the insulation. 

Table 5.123 : Parametric analysis of roof insulation thickness based on NPV energy 

cost breakdown (TL/m2) for Ankara. 

iR 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

0.065 184.94 36.15 1.177 84.69 30.23 34.78 174.46 287.80 

0.070 183.52 36.47 1.188 84.69 30.29 34.78 174.46 287.80 

0.075 182.43 36.72 1.195 84.69 30.35 34.78 174.46 287.80 

0.080 181.40 36.96 1.203 84.70 30.40 34.78 174.46 287.80 

0.085 180.41 37.19 1.210 84.70 30.45 34.78 174.46 287.80 

0.090 179.61 37.40 1.216 84.70 30.50 34.78 174.46 287.80 

0.095 178.88 37.61 1.222 84.70 30.55 34.78 174.46 287.80 

Table 5.124 summarizes the NPV breakdown for water cost. The water costs due to 

cooling tower use slightly increased with the increase in insulation level and 

resulting cooling needs. However, hot water cost remains unchanged since associated 

water use is kept fixed in the calculation. 
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Table 5.124 : Parametric analysis of roof insulation thickness based on NPV water 

cost breakdown (TL/m2) for Ankara. 

iR 
NPV 

CTower  

NPV  

Hot water  

0.065 24.986 49.558 

0.070 25.137 49.558 

0.075 25.218 49.558 

0.080 25.376 49.558 

0.085 25.426 49.558 

0.090 25.539 49.558 

0.095 25.601 49.558 

Table 5.125 shows that the variation in roof insulation levels did not cause any cost 

changes at NPV equipment ownership category within the tested insulation range.  

Cost of boiler, chiller, cooling tower, water heating and lighting control were kept 

fixed in the parametric analysis however, FCUs were allowed to adjust to the 

building heating and cooling load needs. Results indicate that load changes did not 

require any FCU update. 

Table 5.125 : Parametric analysis of roof insulation thickness based on NPV 

equipment cost breakdown (TL/m2) for Ankara. 

iR 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV  

FCU 

NPV  

WH 

NPV  

LC 

0.065 5.30 29.64 5.71 17.36 2.47 53.37 

0.070 5.30 29.64 5.71 17.36 2.47 53.37 

0.075 5.30 29.64 5.71 17.36 2.47 53.37 

0.080 5.30 29.64 5.71 17.36 2.47 53.37 

0.085 5.30 29.64 5.71 17.36 2.47 53.37 

0.090 5.30 29.64 5.71 17.36 2.47 53.37 

0.095 5.30 29.64 5.71 17.36 2.47 53.37 

As shown in Table 5.126, the increase in NPV material cost is due to the increase in 

roof insulation levels.  

Table 5.126 : Parametric analysis roof insulation thickness based on NPV material 

cost breakdown (TL/m2) for Ankara. 

iR 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

0.065 3.94 10.99 4.64 42.51 13.57 

0.070 3.94 11.59 4.64 42.51 13.57 

0.075 3.94 12.19 4.64 42.51 13.57 

0.080 3.94 12.79 4.64 42.51 13.57 

0.085 3.94 13.39 4.64 42.51 13.57 

0.090 3.94 13.99 4.64 42.51 13.57 

0.095 3.94 14.59 4.64 42.51 13.57 
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Since the rest of the variables were kept fixed in the parametric analysis, the 

associated cost values remained unchanged. 

To conclude, the results showed that 0.085 m of roof insulation was able to balance 

heating and cooling loads, associated energy costs together with the water cost due to 

cooling purposes.  Therefore, the proposed optimization methodology was successful 

at recommending a cost-effective roof insulation solution within the given 

boundaries for the Ankara case study. 

Roof type (RT)  

The application of the proposed optimization methodology to Ankara case study 

recommended the cool roof coating (RT2) over conventional gravel layer (RT1) as 

the optimal choice in combination with the rest of the design recommendations.  

The results of the parametric investigation given in Table 5.127 demonstrate that 

switching from conventional gravel roof to cool roof coating decreased total global 

cost. In addition, a penalty also occurred with RT1 because the recommended chiller 

used in the analysis was not able to meet the building cooling loads. 

The GC breakdown table also explains that application of cool roof coating 

decreased NPV in energy, water and equipment categories however, NPV for 

material increased.  

Table 5.127 : Parametric analysis of roof type based on total Global Cost breakdown 

(TL/m2) for Ankara. 

RT 
PEN 

All 

Total  

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

1 14.32 1101.74 834.18 77.55 74.98 115.03 

2 0 1097.87 831.00 74.98 78.05 113.84 

According to the Table 5.128, the cool roof coating increased the boiler natural gas 

cost because of the increase in associated heating load and energy consumption.  

Table 5.128 : Parametric analysis of roof type based on NPV energy cost breakdown 

(TL/m2) for Ankara. 

RT 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

1 175.74 43.21 1.442 85.03 31.72 34.78 174.46 287.80 

2 180.41 37.19 1.210 84.70 30.45 34.78 174.46 287.80 
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On the other hand, it also significantly decreased the chiller and cooling tower 

electricity costs and related energy use together with electricity cost for fans and 

pumps. The electricity cost due to artificial lighting and plugged-in equipment 

remained same in both cases since they were kept fixed in the analysis. 

Table 5.129 summarizes the NPV cost breakdown for water. The water costs due to 

cooling tower use decreased with cool roof coating in line with the decrease in chiller 

operation. However, hot water cost remains unchanged since associated water use 

was kept fixed in the calculation. 

Table 5.129 : Parametric analysis of roof type based on NPV water cost breakdown 

(TL/m2) for Ankara. 

RT 
NPV 

CTower 

NPV 

Hot water 

1 27.996 49.558 

2 25.426 49.558 

Table 5.130 shows that the decrease in NPV equipment ownership cost is due to the 

decrease in fan coil equipment cost as the required number of FCU is reduced from 

47 to 44 due to the reduction in cooling loads. Cost of boiler, chiller, cooling tower, 

water heating and lighting control remained same, as they were kept fixed in the 

parametric analysis.  

Table 5.130 : Parametric analysis of roof type based on NPV equipment cost 

breakdown (TL/m2) for Ankara. 

RT 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

1 5.30 29.64 5.71 18.54 2.47 53.37 

2 5.30 29.64 5.71 17.36 2.47 53.37 

As shown in Table 5.131, the increase in NPV material cost is due to the switch from 

the gravel roof to cool roof coating only. Since the rest of the variables were kept 

fixed in the parametric analysis, the associated cost values remained unchanged. 

Table 5.131 : Parametric analysis of roof type based on NPV material cost 

breakdown (TL/m2) for Ankara. 

RT 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

1 3.94 13.39 1.57 42.51 13.57 

2 3.94 13.39 4.64 42.51 13.57 
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To conclude, the results showed that cool roof coating (RT2) was able to balance 

heating and cooling related costs together with water and equipment costs for a 

reasonable price. Therefore, it was successfully recommended by the proposed 

optimization methodology as the cost-effective solution for the Ankara case study 

within the given boundaries. 

Glazing Type (GT) 

The application of the proposed optimization methodology recommended GT13 out 

of 27 glazing alternatives as the optimal glazing choice for Ankara case study, in 

combination with the rest of the design recommendations. Table 5.132 summarizes 

the total global cost breakdown. GT13 has the lowest total GC value. Moreover, it 

also shows the best performance in energy category after GT23 and GT18.  

Table 5.132 : Parametric analysis of glazing type based on total Global 

Cost breakdown (TL/m2) for Ankara. 

GT 
PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

1 2188.29 1113.03 841.38 77.55 77.49 116.61 

2 390.54 1115.78 850.60 73.12 78.22 113.84 

3 390.54 1162.45 895.06 72.69 81.65 113.05 

4 390.54 1187.57 921.41 72.74 79.97 113.45 

5 2039.98 1113.25 841.09 77.72 77.83 116.61 

6 328.20 1116.17 850.33 73.15 78.84 113.84 

7 328.20 1162.50 894.73 72.73 81.98 113.05 

8 328.20 1187.66 921.08 72.83 80.30 113.45 

9 1949.95 1113.65 841.06 77.82 78.17 116.61 

10 270.34 1116.22 850.00 73.21 79.18 113.84 

11 270.34 1162.60 894.40 72.82 82.33 113.05 

12 270.34 1187.68 920.73 72.87 80.64 113.45 

13 0 1097.87 831.00 74.98 78.05 113.84 

14 0 1102.38 836.86 73.46 78.61 113.45 

15 0 1110.76 844.99 73.08 79.63 113.05 

16 0 1140.68 872.74 72.67 82.21 113.05 

17 0 1184.44 917.19 73.23 80.98 113.05 

18 0 1098.27 830.65 75.38 78.39 113.84 

19 0 1100.35 834.34 73.61 78.96 113.45 

20 0 1111.61 845.10 73.49 79.97 113.05 

21 0 1144.65 875.54 73.51 82.55 113.05 

22 0 1185.98 918.07 73.54 81.32 113.05 

23 0 1098.70 830.46 75.67 78.73 113.84 

24 0 1100.45 833.86 73.85 79.29 113.45 

25 0 1111.61 844.51 73.75 80.30 113.05 

26 0 1144.68 875.05 73.68 82.89 113.05 

27 0 1186.08 917.56 73.81 81.65 113.05 
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In addition to the cost performance, the results also show that the windows between 

GT1 –GT12 were penalized. When we further investigated the penalty conditions, it 

was found out that all the penalized glazing units have high U-values varying 

between 2.9 and 2.6 W/m2K and the penalties occurred due to under boiler capacity 

where optimized boiler used in the analysis was not enough to meet the occurring 

building heating load. Moreover, GT1, GT5 and GT18 that have a SHGC of 0.75 

were also penalized second time because the capacity of the optimized chiller used in 

the analysis was not enough to meet the occurring building cooling load. 

GT13, GT18, GT19, GT23 and GT24 were selected for detailed inspection and 

comparisons.  

According to the Table 5.133, GT13 demonstrated a moderate performance in terms 

of boiler natural gas cost, which is in correlation with energy consumption. GT18, 

GT23 and GT24 cost less since they have a lower U value than GT13.  

In terms of chiller electricity cost, the performance of GT13 comes after GT19 and 

GT24 where they had lower SHGC values. Moreover, GT19 and GT24 also cost less 

for electricity due to cooling tower, fans and pumps. 

Only GT 24 costs less both for heating and cooling purposes than GT13 however, it 

had a much higher electricity cost for lighting due to its lower Tvis value. 

Table 5.133 : Parametric analysis of glazing type based on NPV energy cost 

breakdown (TL/m2) for Ankara. 

GT 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

13 180.41 37.19 1.210 84.70 30.45 34.78 174.46 287.80 

18 178.50 38.14 1.231 84.73 31.01 34.78 174.46 287.80 

19 180.66 33.99 1.074 84.50 29.24 34.78 182.29 287.80 

23 177.15 38.87 1.247 84.75 31.40 34.78 174.46 287.80 

24 179.10 34.62 1.088 84.52 29.67 34.78 182.29 287.80 

Table 5.134 summarizes the NPV breakdown for water cost. The building with GT13 

showed a moderate performance in cooling tower water cost category. GT19 and 

GT24 had the least cost requirement among all. The hot water cost remains 

unchanged with all windows since associated water use is kept fixed in the 

calculation. 
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Table 5.134 : Parametric analysis of glazing type based on NPV water cost 

breakdown (TL/m2) for Ankara. 

GT 
NPV 

CTower 

NPV 

Hot water 

13 25.426 49.558 

18 25.821 49.558 

19 24.050 49.558 

23 26.113 49.558 

24 24.293 49.558 

Table 5.135 shows that the only equipment ownership cost variation occurred in 

FCU category since the rest of the equipment was kept fixed in the parametric 

analysis. When we further investigated the details, the number of required fan coils 

units were obtained as 44 for GT13, GT18 and GT23 and as 43 for GT19 and GT24. 

Table 5.135 : Parametric analysis of glazing type based on NPV equipment cost 

breakdown (TL/m2) for Ankara. 

GT 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

13 5.30 29.64 5.71 17.36 2.47 53.37 

18 5.30 29.64 5.71 17.36 2.47 53.37 

19 5.30 29.64 5.71 16.97 2.47 53.37 

23 5.30 29.64 5.71 17.36 2.47 53.37 

24 5.30 29.64 5.71 16.97 2.47 53.37 

The increase in NPV material cost category is due to the variation in glazing type 

variable as Table 5.136 suggests. Since the rest of the variables were kept fixed in the 

parametric analysis, the associated cost values remained unchanged. The ownership 

cost of GT13 is the lowest among the selected windows. 

Table 5.136 : Parametric analysis of glazing type based on NPV material cost 

breakdown (TL/m2) for Ankara. 

GT 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

13 3.94 13.39 4.64 42.51 13.57 

18 3.94 13.39 4.64 42.85 13.57 

19 3.94 13.39 4.64 43.42 13.57 

23 3.94 13.39 4.64 43.19 13.57 

24 3.94 13.39 4.64 43.75 13.57 

To conclude, the results showed that GT13 was able to balance building heating and 

cooling loads, lighting energy needs, associated energy costs and HVAC water costs 

for a reasonable glazing price. Therefore, the optimization methodology was 
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successful at recommending a cost-effective glazing solution for the Ankara case 

study within the given boundaries. 

Window-to-wall ratio of southern façade (WTW S) 

The application of the proposed optimization methodology to Ankara case study 

recommended 45 % of window-to-wall ratio for the south facing facade as the 

optimal solution, when combined with rest of the design recommendations. The 

results of the parametric investigation in Table 5.137 demonstrated that increasing w-

t-w reduced the total global cost until 45% but then the cost started increasing. 

Moreover, a penalty occurred at 55% because the cooling capacity of the 

recommended chiller became insufficient with the introduction of 55 % w-t-w ratio. 

The GC breakdown shows that larger windows decreased only NPV energy costs 

where NPV costs for water, material and equipment increased.  

Table 5.137 : Parametric analysis of southern façade window-to-wall ratio based on 

total Global Cost breakdown (TL/m2) for Ankara. 

WTW 

S 

PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

5 0 1116.74 858.78 74.17 70.34 113.45 

15 0 1108.00 847.63 74.25 72.27 113.84 

25 0 1101.89 839.45 74.40 74.20 113.84 

35 0 1098.76 834.19 74.60 76.12 113.84 

45 0 1097.87 831.00 74.98 78.05 113.84 

55 16.17 1099.44 829.04 75.39 79.98 115.03 

When we further investigated the cost breakdown for the NPV energy category given 

in Table 5.138, it was seen that increasing w-t-w ratio in the southern orientation 

decreased natural gas cost for boiler since larger windows provided more heat gain in 

the southern orientation and reduced heating loads in winter period.  

Table 5.138 : Parametric analysis of southern façade window-to-wall ratio based on 

NPV energy cost breakdown (TL/m2) for Ankara. 

WTWS 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipmen

t 

5 181.09 35.24 1.135 84.58 29.31 34.78 204.85 287.80 

15 181.03 35.45 1.145 84.60 29.39 34.78 193.45 287.80 

25 180.92 35.83 1.160 84.62 29.64 34.78 184.71 287.80 

35 180.69 36.42 1.182 84.66 29.98 34.78 178.69 287.80 

45 180.41 37.19 1.210 84.70 30.45 34.78 174.46 287.80 

55 180.16 38.07 1.241 84.75 30.88 34.78 171.34 287.80 
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Similarly, increasing w-t-w ratio also decreased significantly electricity cost for 

artificial lighting due to the enhanced daylighting potential of the building when 

combined with the dimming control.  

On the other hand, larger south facing windows increased electricity cost for chiller, 

cooling tower, HVAC fans, and circulation pumps due to the higher heat gains and 

resulting cooling load in the summer period. The cost for water heating and plugged-

in equipment remained unchanged since they were kept fixed in the analysis. 

Table 5.139 summarizes the NPV cost breakdown for water. The water costs due to 

cooling tower use increased as w-t-w ratio increased, which is in line with the 

increase in cooling load and consequent chiller operation. However, hot water cost 

remained unchanged since associated water use was kept fixed in the analysis. 

Table 5.139 : Parametric analysis of southern façade window-to-wall ratio based on 

NPV water cost breakdown (TL/m2) for Ankara. 

WTW_S 
NPV 

CTower 

NPV 

Hot water 

5 24.609 49.558 

15 24.696 49.558 

25 24.837 49.558 

35 25.043 49.558 

45 25.426 49.558 

55 25.834 49.558 

Table 5.140 below shows that only the NPV ownership cost of FCUs increased with 

the variation in w-t-w ratio, which is in parallel with the increase in cooling load and 

the requirement for more FCUs.  

Table 5.140 : Parametric analysis of southern façade window-to-wall ratio based on 

NPV equipment cost breakdown (TL/m2) for Ankara. 

WTW_S 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

5 5.30 29.64 5.71 16.97 2.47 53.37 

15 5.30 29.64 5.71 17.36 2.47 53.37 

25 5.30 29.64 5.71 17.36 2.47 53.37 

35 5.30 29.64 5.71 17.36 2.47 53.37 

45 5.30 29.64 5.71 17.36 2.47 53.37 

55 5.30 29.64 5.71 18.54 2.47 53.37 
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The number of the required FCUs was 43 at 5% w-t-w and 44 at 15 to 45 % and it 

became 47 at 55%. However, the rest of the equipment cost categories remained 

unchanged, as they were kept fixed in the parametric analysis.  

The increase in NPV material cost is due to the changes in wall area and glazed area 

as given in Table 5.141. When w-t-w ratio increased, the area of wall component that 

holding the glazing decreased, therefore the cost for wall insulation and the rest of 

the non-insulation wall materials decreased accordingly. Conversely, the cost of 

glazing material increased with the w-t-w ratio, as it was expected. 

The roof insulation and roof coating has no interaction with the w-t-w ratio therefore 

the associated cost values remained unchanged. 

Table 5.141 : Parametric analysis of  southern façade window-to-wall ratio based on 

NPV material cost breakdown (TL/m2) for Ankara. 

WTW_S 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

5 4.59 13.39 4.64 31.88 15.83 

15 4.43 13.39 4.64 34.54 15.27 

25 4.27 13.39 4.64 37.20 14.70 

35 4.10 13.39 4.64 39.85 14.14 

45 3.94 13.39 4.64 42.51 13.57 

55 3.77 13.39 4.64 45.17 13.01 

To conclude, the results showed that 45% of w-t-w ratio at the southern façade was 

able to balance heating and cooling loads, artificial lighting and daylighting potential 

together with the ownership cost for FCU, wall insulation, non-insulation wall 

materials and glazing cost itself. Therefore, the optimization methodology was 

successful at recommending a cost-effective w-t-w ratio solution for the Ankara case 

study within the given boundaries. 

Window-to-wall ratio of western façade (WTW W) 

The application of the proposed optimization methodology to Ankara case study 

recommended 45 % of window-to-wall ratio for the west-facing facade as the 

optimal solution, in combination with the rest of the design recommendations. The 

results of the parametric investigation in Table 5.142 demonstrated that increasing w-

t-w reduced the total global cost until 45% but then the cost started increasing. The 

GC breakdown explains that larger windows decreased only NPV energy costs where 

NPV costs for water, material and equipment increased.  
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In addition, a penalty values occurred with the introduction of 55% of w-t-w ratio 

because the cooling capacity of the recommended chiller started to became 

insufficient to meet the resulting cooling load. 

Table 5.142 : Parametric analysis of western facade window-to-wall ratio based on 

total Global Cost breakdown (TL/m2) for Ankara. 

WTW 

W 

PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

5 0 1112.68 855.12 74.17 70.34 113.05 

15 0 1104.81 845.27 74.22 72.27 113.05 

25 0 1100.26 838.21 74.41 74.20 113.45 

35 0 1098.51 833.87 74.67 76.12 113.84 

45 0 1097.87 831.00 74.98 78.05 113.84 

55 25.33 1099.12 829.19 75.32 79.98 114.63 

When we further investigated the cost breakdown for the NPV energy category given 

in Table 5.143, it was seen that increasing w-t-w ratio in the western orientation 

slightly increased natural gas cost for boiler as a result of increased heat gain due to 

larger windows combined with the less heat gain from artificial lighting with 

dimming control. 

On the other hand, larger west facing windows increased electricity cost for chiller, 

cooling tower, HVAC fans, and circulation pumps due to higher heat gains and 

resulting cooling load in the summer period. The cost for water heating and plugged-

in equipment remained unchanged since they were kept fixed in the analysis. 

Similarly, increasing w-t-w ratio also decreased electricity cost for artificial lighting 

due to the enhanced daylighting potential of the building when combined with the 

dimming control. 

Table 5.143 : Parametric analysis of western facade window-to-wall ratio based on 

NPV energy cost breakdown (TL/m2) for Ankara. 

WTW

W 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

5 179.49 35.12 1.108 84.56 29.95 34.78 202.32 287.80 

15 179.62 35.32 1.119 84.58 29.93 34.78 192.12 287.80 

25 179.86 35.75 1.142 84.60 30.04 34.78 184.24 287.80 

35 180.23 36.41 1.174 84.64 30.22 34.78 178.61 287.80 

45 180.41 37.19 1.210 84.70 30.45 34.78 174.46 287.80 

55 180.62 38.05 1.247 84.77 30.64 34.78 171.28 287.80 
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Table 5.144 summarizes the NPV cost breakdown water. The water costs due to 

cooling tower use increased as w-t-w ratio increased, which is in line with the 

increase in cooling load and consequent chiller operation. However, hot water cost 

remained unchanged since associated water use was kept fixed in the analysis. 

Table 5.144 : Parametric analysis of western facade window-to-wall ratio based on 

NPV water cost breakdown (TL/m2) for Ankara. 

WTW_W 
NPV 

CTower 

NPV 

Hot water 

5 24.608 49.558 

15 24.660 49.558 

25 24.849 49.558 

35 25.113 49.558 

45 25.426 49.558 

55 25.767 49.558 

Table 5.145 below shows that only the NPV ownership cost of FCUs increased with 

the variation in w-t-w ratio, in parallel with the increase in cooling load and the 

requirement for more FCUs. The number of required FCUs was 42 at 5% and 15 

%w-t-w ratio, where it became 43 at 25%, 44 at 35% and 45%, and finally 46 at 

55%. However, the rest of the systems were kept fixed during the analysis so there 

were no cost variations.  

Table 5.145 : Parametric analysis of western facade window-to-wall ratio based on 

NPV equipment cost breakdown (TL/m2) for Ankara. 

WTW_

W 

NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

5 5.30 29.64 5.71 16.57 2.47 53.37 

15 5.30 29.64 5.71 16.57 2.47 53.37 

25 5.30 29.64 5.71 16.97 2.47 53.37 

35 5.30 29.64 5.71 17.36 2.47 53.37 

45 5.30 29.64 5.71 17.36 2.47 53.37 

55 5.30 29.64 5.71 18.15 2.47 53.37 

The increase in NPV material cost is due to the changes in wall area and glazed area 

as given in Table 5.146. When w-t-w ratio increased, the area of wall component that 

holding the glazing decreased accordingly, therefore the ownership cost for wall 

insulation and the rest of the non-insulation wall materials decreased. Moreover, the 

ownership cost of glazing material increased with the w-t-w ratio as it was expected. 

The roof insulation and roof coating has no interaction with the w-t-w ratio therefore 

the associated cost values remained unchanged. 
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Table 5.146 : Parametric analysis of western facade window-to-wall ratio based on 

NPV material cost breakdown (TL/m2) for Ankara. 

WTW_W 
NPV EW 

Insul. 

NPV Roof 

Insul. 

NPV Roof 

layer 

NPV 

Glazing 

NPV 

EWOther 

5 4.59 13.39 4.64 31.88 15.83 

15 4.43 13.39 4.64 34.54 15.27 

25 4.27 13.39 4.64 37.20 14.70 

35 4.10 13.39 4.64 39.85 14.14 

45 3.94 13.39 4.64 42.51 13.57 

55 3.77 13.39 4.64 45.17 13.01 

To conclude, the results showed that 45% of w-t-w ratio at the western façade was 

able to balance heating and cooling loads, artificial lighting and daylighting potential 

together with the ownership cost for FCU, wall insulation, non-insulation wall 

materials and glazing cost itself. Therefore, the optimization methodology was 

successful at recommending a cost-effective w-t-w ratio solution for the Ankara case 

study within the given boundaries. 

Window-to-wall ratio of northern façade (WTW N) 

The application of the proposed optimization methodology to Ankara case study 

recommended 45 % of window-to-wall ratio for the north-facing facade as the 

optimal solution, in combination with the rest of the design recommendations. The 

results of the parametric investigation in Table 5.147 demonstrated that increasing w-

t-w ratio reduced the total global cost until 55% and no penalties occurred. The GC 

breakdown explains that larger windows decreased only NPV energy costs where 

NPV costs for water, and material increased. The NPV equipment ownership cost 

however remained same. 

Table 5.147 : Parametric analysis of northern facade window-to-wall ratio based on 

total Global Cost breakdown (TL/m2) for Ankara. 

WTW 

N 

PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

5 0 1103.18 844.22 74.77 70.34 113.84 

15 0 1101.33 840.38 74.83 72.27 113.84 

25 0 1099.73 836.85 74.83 74.20 113.84 

35 0 1098.52 833.64 74.91 76.12 113.84 

45 0 1097.87 831.00 74.98 78.05 113.84 

55 0 1097.90 828.98 75.10 79.98 113.84 

When we further investigated the cost breakdown for the NPV energy category given 

in Table 5.148, it was seen that increasing w-t-w ratio in the northern orientation 
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increased natural gas cost for boiler to some extent because of thermal heat losses 

due to larger windows combined with the less heat gain from artificial lighting with 

dimming control. However, since the glazing had an improved U-value, having large 

windows could be tolerated. 

Moreover, larger north facing windows also increased electricity cost slightly for 

chiller, cooling tower, HVAC fans, and circulation pumps. The cost for water heating 

and plugged-in equipment remained unchanged since they were kept fixed in the 

analysis. 

However, increasing w-t-w ratio decreased electricity cost for artificial lighting a 

great deal due to the enhanced daylighting potential of the building when combined 

with the dimming control. 

Table 5.148 : Parametric analysis of northern facade window-to-wall ratio based on 

NPV energy cost breakdown (TL/m2) for Ankara. 

WTW

N 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

5 179.10 36.76 1.180 84.66 30.34 34.78 189.60 287.80 

15 179.34 36.82 1.185 84.67 30.35 34.78 185.44 287.80 

25 179.69 36.92 1.194 84.67 30.40 34.78 181.40 287.80 

35 180.07 37.03 1.201 84.68 30.42 34.78 177.66 287.80 

45 180.41 37.19 1.210 84.70 30.45 34.78 174.46 287.80 

55 180.80 37.38 1.221 84.72 30.48 34.78 171.80 287.80 

Table 5.149 summarizes the NPV cost breakdown for water. The water costs due to 

cooling tower use increased very slightly as w-t-w ratio increased, which is in line 

with the increase in chiller electricity costs. However, hot water cost remained 

unchanged since associated water use was kept fixed in the analysis. 

Table 5.149 : Parametric analysis of northern facade window-to-wall ratio based on 

NPV water cost breakdown (TL/m2) for Ankara. 

WTW_N 
NPV 

CTower 

NPV 

Hot water 

5 25.217 49.558 

15 25.275 49.558 

25 25.276 49.558 

35 25.354 49.558 

45 25.426 49.558 

55 25.542 49.558 
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Table 5.150 below shows that no changes were observed in the NPV equipment cost 

category. The changes in the building thermal loads were minor therefore there was 

no need to update the number of FCUs. Moreover, since the rest of the systems were 

kept fixed during the analysis, there were no cost variations as well.  

Table 5.150 : Parametric analysis of northern facade window-to-wall ratio based on 

NPV equipment cost breakdown (TL/m2) for Ankara. 

WTW_N 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

5 5.30 29.64 5.71 17.36 2.47 53.37 

15 5.30 29.64 5.71 17.36 2.47 53.37 

25 5.30 29.64 5.71 17.36 2.47 53.37 

35 5.30 29.64 5.71 17.36 2.47 53.37 

45 5.30 29.64 5.71 17.36 2.47 53.37 

55 5.30 29.64 5.71 17.36 2.47 53.37 

The increase in NPV material cost is due to the changes in wall area and glazed area 

as given in Table 5.151. When w-t-w ratio increased, the area of wall component that 

holding the glazing decreased, therefore the cost for wall insulation and the rest of 

the non-insulation wall materials decreased accordingly. Moreover, the ownership 

cost of glazing material increased with the w-t-w ratio as it was expected. 

The roof insulation and roof coating has no interaction with the w-t-w ratio therefore 

the associated cost values remained unchanged. 

Table 5.151 : Parametric analysis of northern facade window-to-wall ratio based on 

NPV material cost breakdown (TL/m2) for Ankara. 

WTW_N 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

5 4.59 13.39 4.64 31.88 15.83 

15 4.43 13.39 4.64 34.54 15.27 

25 4.27 13.39 4.64 37.20 14.70 

35 4.10 13.39 4.64 39.85 14.14 

45 3.94 13.39 4.64 42.51 13.57 

55 3.77 13.39 4.64 45.17 13.01 

To conclude, the results showed that 45% of w-t-w ratio at the northern façade was 

able to balance heating and cooling loads, artificial lighting and daylighting potential 

together with the ownership cost for wall insulation, non-insulation wall materials 

and glazing cost itself. Therefore, the optimization methodology was successful at 

recommending a cost-effective w-t-w ratio solution for the Ankara case study within 

the given boundaries. 
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Window-to-wall ratio of eastern façade (WTW E) 

The application of the proposed optimization methodology to Ankara case study 

recommended 25 % of window-to-wall ratio for the east-facing facade as the optimal 

solution, in combination with the rest of the design recommendations. The results of 

the parametric investigation in Table 5.152 demonstrated that increasing w-t-w 

reduced the total global cost only until 25% but then the cost started increasing. The 

GC breakdown showed that larger windows decreased only NPV energy costs where 

NPV costs for water, material and equipment increased.  

In addition, penalty values occurred starting with the 35 % of w-t-w ratio. A further 

investigation revealed that penalty values were due to under-capacity chiller 

equipment. Moreover, 45% and 55% of w-t-w ratios were extra penalized because 

they were also not able to satisfy heating loads when combined with the selected 

boiler. 

Table 5.152 : Parametric analysis of eastern facade window-to-wall ratio based on 

total Global Cost breakdown (TL/m2) for Ankara. 

WTW 

E 

PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

5 0 1105.67 843.21 74.42 74.20 113.84 

15 0 1100.23 835.59 74.67 76.12 113.84 

25 0 1097.87 831.00 74.98 78.05 113.84 

35 6.83 1099.08 829.02 75.45 79.98 114.63 

45 8.22 1100.25 827.85 75.86 81.91 114.63 

55 47.50 1102.63 827.07 76.30 83.83 115.42 

When we analysed the NPV cost breakdown for the energy category given in Table 

5.153, it was seen that increasing w-t-w ratio in the eastern orientation increased 

slightly the natural gas cost for boiler as a result of the enlarged heat loss due to 

larger windows and less heat gain from artificial lighting with dimming control. 

On the other hand, larger east facing windows also slightly increased electricity cost 

for chiller, cooling tower, HVAC fans, and circulation pumps due to higher heat 

gains and resulting cooling load in the summer period. The cost for water heating and 

plugged-in equipment remained unchanged since they were kept fixed in the 

analysis. 
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Increasing w-t-w ratio had the most influence on artificial lighting costs since the 

larger windows enhanced daylighting potential of the building when combined with 

the dimming control. 

Table 5.153 : Parametric analysis of eastern facade window-to-wall ratio based on 

NPV energy cost breakdown (TL/m2) for Ankara. 

WTWE 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

5 179.86 35.98 1.152 84.62 30.18 34.78 188.84 287.80 

15 180.16 36.44 1.174 84.66 30.25 34.78 180.32 287.80 

25 180.41 37.19 1.210 84.70 30.45 34.78 174.46 287.80 

35 180.66 38.13 1.252 84.76 30.66 34.78 170.98 287.80 

45 180.82 39.12 1.295 84.83 30.88 34.78 168.32 287.80 

55 181.02 40.12 1.338 84.91 31.11 34.78 166.00 287.80 

Table 5.154 summarizes the NPV cost breakdown for water. The water costs due to 

cooling tower use increased slightly as the w-t-w ratio increased, which is in line 

with the increase in cooling load and consequent chiller operation. However, hot 

water cost remained unchanged since associated water use was kept fixed in the 

analysis. 

Table 5.154 : Parametric analysis of eastern facade window-to-wall ratio based on 

NPV water cost breakdown (TL/m2) for Ankara. 

WTW_E 
NPV 

CTower 

NPV 

Hot water 

5 24.861 49.558 

15 25.112 49.558 

25 25.426 49.558 

35 25.891 49.558 

45 26.305 49.558 

55 26.743 49.558 

Table 5.155 below shows that only the NPV ownership cost of FCUs increased with 

the variation in w-t-w ratio, in parallel with the increase in thermal loads and the 

resulting requirement for more FCUs. The number of required FCUs was 44 at 5% to 

25% of w-t-w where it became 46 at 35% to 45%, and 48 at 55% w-t-W ratio. 

However, the rest of the systems were kept fixed during the analysis so there were no 

cost variations. The capacity of the recommended central plant equipment stayed 

within allowed ranges in the parametric analysis as no penalty occurred.  



271 

Table 5.155 : Parametric analysis of eastern facade window-to-wall ratio based on 

NPV equipment cost breakdown (TL/m2) for Ankara. 

WTW_E 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

5 5.30 29.64 5.71 17.36 2.47 53.37 

15 5.30 29.64 5.71 17.36 2.47 53.37 

25 5.30 29.64 5.71 17.36 2.47 53.37 

35 5.30 29.64 5.71 18.15 2.47 53.37 

45 5.30 29.64 5.71 18.15 2.47 53.37 

55 5.30 29.64 5.71 18.94 2.47 53.37 

The increase in NPV material cost is due to the changes in wall area and glazed area 

as given in Table 5.156. When w-t-w ratio increased, the area of wall component that 

holding the glazing decreased, therefore the cost for wall insulation and the rest of 

the non-insulation wall materials decreased accordingly. Moreover, the ownership 

cost of glazing material increased with the w-t-w ratio as it was expected. 

The roof insulation and roof coating has no interaction with the w-t-w ratio therefore 

the associated cost values remained unchanged. 

Table 5.156 : Parametric analysis of eastern facade window-to-wall ratio based on 

NPV material cost breakdown (TL/m2) for Ankara. 

WTW_E 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

5 4.27 13.39 4.64 37.20 14.70 

15 4.10 13.39 4.64 39.85 14.14 

25 3.94 13.39 4.64 42.51 13.57 

35 3.77 13.39 4.64 45.17 13.01 

45 3.61 13.39 4.64 47.83 12.44 

55 3.44 13.39 4.64 50.48 11.87 

To conclude, the results showed that 25% of w-t-w ratio at the eastern façade was 

able to balance heating and cooling loads, artificial lighting and daylighting potential 

together with the ownership cost for FCU, wall insulation, non-insulation wall 

materials and glazing cost itself. Therefore, the optimization methodology was 

successful at recommending a cost-effective w-t-w ratio solution for the Ankara case 

study within the given boundaries. 

Boiler type (BLtype)  

The application of the proposed optimization methodology to Ankara case study 

recommended Boiler 45 from the equipment database as the optimal choice in 

combination with rest of the design recommendations. The parametric analysis 
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carried out with a sample of low-efficiency (BL 17-19) and high-efficiency (BL 44-

46) boiler equipment from the database. The results of the parametric investigation in 

Table 5.157 demonstrate that the switching from low efficiency equipment to high 

efficiency equipment decreased noticeably total global costs. 

In addition, BL17, BL18 and BL44 were penalized because their heating capacities 

were not able to satisfy resulting heating load of the recommended design 

combination. 

The GC breakdown explains that improvement on the boiler thermal efficiency let to 

a considerable reduction in NPV energy category while causing a little rise on the 

equipment costs. However, NPV for water and material remained unchanged, as they 

were not influenced with the boiler replacement. The amount of the cost reduction 

depends on the thermal capacity of the tested equipment. 

Table 5.157 : Parametric analysis of boiler type based on total Global 

Cost breakdown (TL/m2) for Ankara. 

BLtyp 
PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

17 2395.11 1115.83 852.06 74.98 78.05 110.75 

18 8.64 1117.41 853.47 74.97 78.05 110.92 

19 0 1119.16 855.04 74.98 78.05 111.09 

44 1843.83 1096.37 829.80 74.97 78.05 113.55 

45 0 1097.87 831.00 74.98 78.05 113.84 

46 0 1099.33 831.99 75.00 78.05 114.28 

According to the Table 5.158 improving boiler efficiency only improved boiler NPV 

energy cost as expected. Moreover, the increase in equipment capacity also increased 

the natural gas boiler costs. The rest of the energy categories assumed to be remained 

same as minor changes occurred in electricity cost for fans and circulation pumps. 

Table 5.158 : Parametric analysis of boiler type based on NPV energy cost 

breakdown (TL/m2) for Ankara. 

BLtyp 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

17 201.47 37.192 1.210 84.698 30.451 34.78 174.46 287.80 

18 202.89 37.192 1.210 84.697 30.451 34.78 174.46 287.80 

19 204.45 37.192 1.210 84.697 30.451 34.78 174.46 287.80 

44 179.21 37.192 1.210 84.700 30.451 34.78 174.46 287.80 

45 180.41 37.192 1.210 84.698 30.451 34.78 174.46 287.80 

46 181.41 37.192 1.210 84.697 30.451 34.78 174.46 287.80 
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Table 5.159 summarizes the NPV cost breakdown for water. Both the water costs 

due to cooling tower use and hot water cost remained unchanged since associated 

water use didn’t interact with the boiler replacement. 

Table 5.159 : Parametric analysis of boiler type based on NPV water cost 

breakdown (TL/m2) for Ankara. 

BLtyp 
NPV 

CTower 

NPV 

Hot water 

17 25.422 49.558 

18 25.422 49.558 

19 25.422 49.558 

44 25.422 49.558 

45 25.422 49.558 

46 25.422 49.558 

As demonstrated in Table 5.160, the only change in NPV equipment cost occurred in 

boiler category as expected. The efficiency and capacity changes increase equipment 

costs. The more efficient equipment cost almost double of the low efficiency group. 

BL17, BL18 and BL44 were not able to satisfy heating loads as penalties occurred. 

Even BL19 and BL46 remained in the allowed equipment capacity range; they were 

not preferred since there was smaller size equipment that can still meet the load. 

Table 5.160 : Parametric analysis of boiler type based on NPV equipment cost 

breakdown (TL/m2) for Ankara. 

BLtyp 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

17 2.20 29.64 5.71 17.36 2.47 53.37 

18 2.37 29.64 5.71 17.36 2.47 53.37 

19 2.54 29.64 5.71 17.36 2.47 53.37 

44 5.00 29.64 5.71 17.36 2.47 53.37 

45 5.30 29.64 5.71 17.36 2.47 53.37 

46 5.73 29.64 5.71 17.36 2.47 53.37 

As shown in Table 5.161, there were no NPV cost changes in the material category 

since there were no interactions between building material and boiler replacement in 

the parametric analysis. 
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Table 5.161 : Parametric analysis boiler type based on NPV material cost 

breakdown (TL/m2) for Ankara. 

BLtyp 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

17 3.94 13.39 4.64 42.51 13.57 

18 3.94 13.39 4.64 42.51 13.57 

19 3.94 13.39 4.64 42.51 13.57 

44 3.94 13.39 4.64 42.51 13.57 

45 3.94 13.39 4.64 42.51 13.57 

46 3.94 13.39 4.64 42.51 13.57 

To conclude, the results showed that BL45 showed an improved energy performance 

while being capable of meeting building heating loads for an affordable equipment 

ownership price in Ankara case study. Therefore, the proposed optimization 

methodology successfully recommended a cost-effective boiler solution within the 

given boundaries. 

Chiller type (CLtype)  

The application of the proposed optimization methodology to Ankara case study 

recommended Chiller 30 from the equipment database as the optimal choice in 

combination with rest of the design recommendations. The parametric analysis 

carried out with a sample of moderate efficiency (CL 7-9) and high efficiency (CL 

29-31) chiller equipment. The results of the parametric investigation in Table 5.162 

demonstrate that the switching from moderate efficiency equipment to high 

efficiency equipment decreased total global costs. However, only CL8, CL9, CL30 

and CL31 were able to comply with constraints and not penalized. CL7 and CL29 

were penalized because they were not able to satisfy cooling load of the 

recommended design combination. 

Table 5.162 : Parametric analysis of chiller type based on total Global 

Cost breakdown (TL/m2) for Ankara. 

CLtyp 
PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

7 1091.75 1110.53 848.77 75.47 78.05 108.24 

8 0 1115.83 851.99 76.38 78.05 109.42 

9 0 1119.46 853.80 77.16 78.05 110.44 

29 1372.09 1098.41 833.41 74.38 78.05 112.56 

30 0 1097.87 831.00 74.98 78.05 113.84 

31 0 1104.65 833.80 76.22 78.05 116.58 
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The GC breakdown explains that improvement on the chiller efficiency let to a 

considerable reduction in NPV energy category while causing a little rise on NPV 

equipment costs depending on the capacity of the tested equipment. However, NPV 

for water and material cost were not influenced with the chiller replacement.  

According to the Table 5.163 improving chiller efficiency improved chiller NPV 

energy cost together with cooling tower electricity costs as expected. Moreover, the 

chiller electricity cost increased in parallel with the increase in the equipment 

capacity. In addition, minor changes occurred in electricity cost for fans and 

circulation pumps. The rest of the energy cost categories remained uninfluenced, as 

they did not interact with the chiller. 

Table 5.163 : Parametric analysis of chiller type based on NPV energy cost 

breakdown (TL/m2) for Ankara. 

CLtyp 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

7 180.41 55.579 1.344 84.698 29.709 34.78 174.46 287.80 

8 180.41 57.383 1.309 84.698 31.153 34.78 174.46 287.80 

9 180.41 57.947 1.267 84.698 32.447 34.78 174.46 287.80 

29 180.41 40.950 1.256 84.698 29.062 34.78 174.46 287.80 

30 180.41 37.192 1.210 84.698 30.451 34.78 174.46 287.80 

31 180.41 37.693 1.132 84.698 32.836 34.78 174.46 287.80 

Table 5.164 summarizes the NPV cost breakdown for water. Water costs due to 

cooling tower use was slightly improved with higher efficiency chiller equipment 

depending on equipment capacity where and hot water cost remained same. 

Table 5.164 : Parametric analysis of chiller type based on NPV water cost 

breakdown (TL/m2) for Ankara. 

CLtyp 
NPV 

CTower 

NPV 

Hot water 

7 25.907 49.558 

8 26.819 49.558 

9 27.604 49.558 

29 24.823 49.558 

30 25.426 49.558 

31 26.658 49.558 

As demonstrated in Table 5.165, the only major change in NPV equipment 

ownership cost occurred in chiller category as expected. The efficiency and capacity 

improvements increased equipment costs.  CL7 and CL29 were not able to satisfy 
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cooling load as penalties occurred. However, even CL8 and CL9 remained in the 

allowed equipment capacity range; they were not preferred because of their lower 

efficiency values that led to serious energy costs. Similarly, even CL31 remained in 

the allowed equipment capacity range; it was not preferred since there was smaller 

size equipment that can still meet the resulting cooling load for an improved 

efficiency. 

Table 5.165 : Parametric analysis of chiller type based on NPV equipment cost 

breakdown (TL/m2) for Ankara. 

CLtyp 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

7 5.30 24.26 5.48 17.36 2.47 53.37 

8 5.30 25.06 5.86 17.36 2.47 53.37 

9 5.30 25.74 6.20 17.36 2.47 53.37 

29 5.30 28.72 5.34 17.36 2.47 53.37 

30 5.30 29.64 5.71 17.36 2.47 53.37 

31 5.30 31.74 6.35 17.36 2.47 53.37 

As shown in Table 5.166, there were no cost changes in the NPV material category 

since there were no interactions between building material and chiller equipment in 

the parametric analysis. 

Table 5.166 : Parametric analysis chiller type based on NPV material cost 

breakdown  (TL/m2) for Ankara case. 

CLtyp 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

7 3.94 13.39 4.64 42.51 13.57 

8 3.94 13.39 4.64 42.51 13.57 

9 3.94 13.39 4.64 42.51 13.57 

29 3.94 13.39 4.64 42.51 13.57 

30 3.94 13.39 4.64 42.51 13.57 

31 3.94 13.39 4.64 42.51 13.57 

To conclude, the results showed that CL30 showed an improved energy performance 

while being capable of meeting building cooling loads for an affordable equipment 

price in Ankara case study. Therefore, the proposed optimization methodology 

successfully recommended a cost-effective chiller solution within the given 

boundaries. 

Lighting control (LC) 

The application of the proposed optimization methodology to Ankara case study 

recommended dimming control of artificial lights ( option 1) according to indoor 
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daylighting levels as the optimal choice over manual lighting control (option 0), in 

combination with rest of the design recommendations.  

The results of the parametric investigation in Table 5.167 demonstrate that dimming 

control of lights resulted in a major GC reduction. Moreover, the cost breakdown 

explains that dimming control reduces not only NPV energy costs but also NPV 

water cost as well. NPV for material ownership were not influenced however, NPV 

for equipment ownership was increased. 

In addition, the case with manual light control was penalized because the 

recommended chiller could not satisfy resulting cooling load in this combination. 

Table 5.167 : Parametric analysis of lighting control strategies based on total Global 

Cost breakdown (TL/m2) for Ankara. 

LC 
PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

0 1635.09 1229.44 971.52 79.56 78.05 100.31 

1 0 1097.87 831.00 74.98 78.05 113.84 

According to the Table 5.168, dimming control of lights over daylighting increased 

boiler natural gas cost in part due to the reduction in heat gain from lighting system. 

However, it decreased electricity cost for chiller, cooling tower, fans, and pumps a 

great deal in addition to the major decrease in lighting electricity cost.  

The rest of the energy cost categories remained uninfluenced, as they did not interact 

with the lighting system.  

Table 5.168 : Parametric analysis of lighting control strategies based on NPV energy 

cost breakdown (TL/m2) for Ankara. 

LC 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

0 176.18 48.35 1.595 85.37 33.80 34.78 303.65 287.80 

1 180.41 37.19 1.210 84.70 30.45 34.78 174.46 287.80 

Table 5.169 summarizes the NPV cost breakdown for water. Water costs due to 

cooling tower use were moderately improved with dimming control where hot water 

cost remained same. 
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Table 5.169 : Parametric analysis of lighting control strategies based on NPV water 

cost breakdown (TL/m2) for Ankara. 

LC 
NPV 

CTower 

NPV 

Hot water 

0 29.998 49.558 

1 25.426 49.558 

As demonstrated in Table 5.170, the major change in NPV equipment ownership cost 

occurred in lighting control category as installing dimming control costs more than 

manual control system.  

In addition, the ownership cost for FCUs decreased with dimming control due to the 

decrease in heat gain from lighting system and the decrease in cooling load and 

required number of FCUs from 52 to 44.  

Table 5.170 : Parametric analysis of lighting control strategies based on NPV 

equipment cost breakdown (TL/m2) for Ankara. 

LC 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

0 5.30 29.64 5.71 20.52 2.47 36.68 

1 5.30 29.64 5.71 17.36 2.47 53.37 

As shown in Table 5.171, there were no cost changes in the NPV material ownership 

category since there were no interactions between building material and the lighting 

system. 

Table 5.171 : Parametric analysis of lighting control strategies based on NPV 

material cost breakdown (TL/m2) for Ankara. 

LC 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

0 3.94 13.39 4.64 42.51 13.57 

1 3.94 13.39 4.64 42.51 13.57 

To conclude, the results showed that dimming control of artificial lights according to 

daylighting levels decreased the electricity cost for lighting together with electricity 

cost for cooling system for an affordable price. The slight increase in NPV energy 

cost for heating was compensated with other benefits. Therefore, the proposed 

optimization methodology was successful at recommending a cost-effective lighting 

control solution within the given boundaries. 
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5.3.6.3 Validation of Antalya case study 

External wall insulation thickness (iEW) 

The application of the proposed optimization methodology to Antalya case study 

recommended 0.02m of insulation for the external walls as the optimal choice, in 

combination with the rest of the design recommendations.  

The results of the parametric investigation in Table 5.172 demonstrate that the 

introduction of external wall insulation had a trend for reducing the total global cost 

only until 0.02m, but then the cost started increasing. Moreover, the GC breakdown 

explains that increase in external wall insulation decreased NPV in energy category 

also only until 0.02m. Similarly, NPV water costs also decreased until introduction 

of 0.015m insulation. However, NPV for material continuously increased as the 

insulation thickness increased. The NPV for equipment cost did not vary within the 

tested range of insulation variable.  

In addition, the minor penalties occurred at 0.005m and 0.01m insulation thicknesses 

and they were due to under capacity chiller equipment. 

Table 5.172 : Parametric analysis of external wall insulation thickness based on total 

global cost breakdown (TL/m2) for Antalya. 

iEW 
PEN 

All 

Total  

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

0.005 15.44 1054.86 756.36 106.94 72.12 119.44 

0.010 0.28 1054.61 755.88 106.92 72.37 119.44 

0.015 0 1054.47 755.53 106.89 72.62 119.44 

0.020 0 1054.44 755.22 106.93 72.86 119.44 

0.025 0 1054.71 755.23 106.94 73.11 119.44 

0.030 0 1054.66 754.94 106.93 73.35 119.44 

0.035 0 1054.89 754.92 106.94 73.60 119.44 

According to the Table 5.173, the increase in external wall insulation levels 

decreased boiler natural gas cost because of the reduction in associated energy 

consumption and heating loads. On the other hand, it also slightly decreased chiller 

electricity costs until 0.02m then it had a reverse influence where the cost started to 

increase. There were also minor changes in fan and pump energy costs due to the 

changes in building heating and cooling needs. The rest of the energy categories 

remained same as they were kept fixed in the analysis. 
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Table 5.173 : Parametric analysis of external wall insulation thickness based on 

NPV energy cost breakdown (TL/m2) for Antalya. 

iEW 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV  

Elc. 

CTower 

NPV  

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV  

Elc. 

Equipment 

0.005 47.11 103.65 5.740 85.32 37.39 24.27 165.08 287.80 

0.010 46.46 103.55 5.733 85.31 37.69 24.27 165.08 287.80 

0.015 45.97 103.50 5.729 85.29 37.89 24.27 165.08 287.80 

0.020 45.54 103.49 5.726 85.29 38.03 24.27 165.08 287.80 

0.025 45.46 103.49 5.725 85.28 38.13 24.27 165.08 287.80 

0.030 45.09 103.50 5.724 85.28 38.20 24.27 165.08 287.80 

0.035 44.99 103.50 5.722 85.28 38.28 24.27 165.08 287.80 

Table 5.174 summarizes the NPV water cost breakdown. The water costs due to 

cooling tower use slightly varied depending on the variation on cooling load and 

associated chiller operation as the insulation thickness increased. However, hot water 

cost remained unchanged since associated water use is kept fixed in the calculation. 

Table 5.174 : Parametric analysis of external wall insulation thickness based on 

NPV water cost breakdown (TL/m2) for Antalya. 

iEW 
NPV  

CTower  

NPV  

Hot water  

0.005 57.380 49.558 

0.010 57.363 49.558 

0.015 57.336 49.558 

0.020 57.368 49.558 

0.025 57.379 49.558 

0.030 57.368 49.558 

0.035 57.381 49.558 

Table 5.175 shows that the variation in external wall insulation levels did not cause 

any cost changes at NPV equipment category within the tested insulation range.   

Table 5.175 : Parametric analysis of external wall insulation thickness based on 

NPV equipment cost breakdown (TL/m2) for Antalya. 

iEW 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV  

FCU 

NPV  

WH 

NPV  

LC 

0.005 4.106 32.705 6.664 20.123 2.466 53.371 

0.010 4.106 32.705 6.664 20.123 2.466 53.371 

0.015 4.106 32.705 6.664 20.123 2.466 53.371 

0.020 4.106 32.705 6.664 20.123 2.466 53.371 

0.025 4.106 32.705 6.664 20.123 2.466 53.371 

0.030 4.106 32.705 6.664 20.123 2.466 53.371 

0.035 4.106 32.705 6.664 20.123 2.466 53.371 
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Ownership cost of boiler, chiller, cooling tower, water heating and lighting control 

were kept fixed in the parametric analysis however, FCUs were allowed to adjust to 

the building heating and cooling load needs. Results indicate that load changes did 

not require any FCU update within the tested range. 

Table 5.176 shows that the increase in NPV material cost is due to the increase in 

external wall insulation levels. Since the rest of the variables were kept fixed in the 

parametric analysis, the associated cost values remained unchanged. 

Table 5.176 : Parametric analysis of external wall insulation thickness based on 

NPV material cost breakdown (TL/m2) for Antalya. 

iEW 
NPV  

EW Insul. 

NPV  

Roof Insul. 

NPV  

Roof layer 

NPV  

Glazing 

NPV 

EWOther 

0.005 1.56 6.79 4.64 46.13 13.01 

0.010 1.80 6.79 4.64 46.13 13.01 

0.015 2.05 6.79 4.64 46.13 13.01 

0.020 2.29 6.79 4.64 46.13 13.01 

0.025 2.54 6.79 4.64 46.13 13.01 

0.030 2.79 6.79 4.64 46.13 13.01 

0.035 3.03 6.79 4.64 46.13 13.01 

To conclude, the results showed that 0.02 m of external wall insulation was able to 

balance heating and cooling loads, associated NPV energy costs together with the 

NPV water cost due to cooling purposes.  Therefore, the proposed optimization 

methodology was successful at recommending a cost-effective external wall 

insulation solution within the given boundaries for the Antalya case study. 

Roof insulation thickness (iR) 

The application of the proposed optimization methodology to Antalya case study 

recommended 0.03m of insulation for the roof element as the optimal choice, when 

combined with rest of the design recommendations. The results of the parametric 

investigation given in Table 5.177 demonstrate that the introduction of roof 

insulation reduced the total global cost only until 0.03m but then the cost started 

increasing. The GC breakdown explains that increase in roof insulation levels 

decreased NPV in energy category only however NPV for water and material 

increased inversely within the tested insulation range. The NPV cost for equipment 

however, did not change. 

In addition, no penalties occurred within the tested variable range. 
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Table 5.177 : Parametric analysis of roof insulation thickness based on total Global 

Cost breakdown (TL/m2) for Antalya. 

iR 
PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

0.015 0 1057.01 760.16 106.35 71.06 119.44 

0.020 0 1055.38 757.69 106.59 71.66 119.44 

0.025 0 1054.65 756.15 106.80 72.26 119.44 

0.030 0 1054.44 755.22 106.93 72.86 119.44 

0.035 0 1054.70 754.77 107.04 73.46 119.44 

0.040 0 1055.27 754.58 107.19 74.06 119.44 

0.045 0 1055.94 754.53 107.31 74.66 119.44 

According to the Table 5.178, the increase in roof insulation decreased the boiler 

natural gas cost because of the reduction in associated heating load and energy 

consumption.  

On the other hand, insulation also slightly increased chiller and cooling tower 

electricity costs and related energy use due to the increase in cooling loads in 

summer period. There was also a minor increase in fan and pump electricity costs 

due to the changes in building heating and cooling needs. The rest of the energy 

categories remained same, as they do not interact with the insulation. 

Table 5.178 : Parametric analysis of roof insulation thickness based on NPV energy 

cost breakdown (TL/m2) for Antalya. 

iR 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

0.015 52.12 101.70 5.648 85.30 38.25 24.27 165.08 287.80 

0.020 49.05 102.39 5.679 85.29 38.13 24.27 165.08 287.80 

0.025 46.97 102.98 5.704 85.29 38.07 24.27 165.08 287.80 

0.030 45.54 103.49 5.726 85.29 38.03 24.27 165.08 287.80 

0.035 44.60 103.95 5.746 85.29 38.04 24.27 165.08 287.80 

0.040 43.95 104.37 5.763 85.30 38.05 24.27 165.08 287.80 

0.045 43.49 104.74 5.778 85.31 38.07 24.27 165.08 287.80 

Table 5.179 summarizes the NPV cost breakdown for water. The water costs due to 

cooling tower use slightly increased with the increase in insulation level and 

resulting cooling needs. However, hot water cost remained unchanged since 

associated water use is kept fixed in the calculation. 
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Table 5.179 :  Parametric analysis of roof insulation thickness based on NPV water 

cost breakdown (TL/m2) for Antalya. 

iR 
NPV 

CTower 

NPV 

Hot water 

0.015 56.792 49.558 

0.020 57.033 49.558 

0.025 57.240 49.558 

0.030 57.368 49.558 

0.035 57.478 49.558 

0.040 57.637 49.558 

0.045 57.748 49.558 

Table 5.180 below shows that the variation in roof insulation levels did not cause any 

cost changes at NPV equipment category within the tested range. The ownership cost 

of boiler, chiller, cooling tower, water heating and lighting control were kept fixed in 

the parametric analysis however, FCUs were allowed to adjust to the building 

heating and cooling load needs where load changes did not require any FCU update. 

Table 5.180 : Parametric analysis of roof insulation thickness based on NPV 

equipment cost breakdown (TL/m2) for Antalya. 

iR 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

0.015 4.106 32.705 6.664 20.123 2.466 53.371 

0.020 4.106 32.705 6.664 20.123 2.466 53.371 

0.025 4.106 32.705 6.664 20.123 2.466 53.371 

0.030 4.106 32.705 6.664 20.123 2.466 53.371 

0.035 4.106 32.705 6.664 20.123 2.466 53.371 

0.040 4.106 32.705 6.664 20.123 2.466 53.371 

0.045 4.106 32.705 6.664 20.123 2.466 53.371 

As shown in Table 5.181, the increase in NPV material cost is due to the increase in 

roof insulation levels.  

Table 5.181 : Parametric analysis roof insulation thickness based on NPV material 

cost breakdown (TL/m2) for Antalya. 

iR 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

0.015 2.29 4.99 4.64 46.13 13.01 

0.020 2.29 5.59 4.64 46.13 13.01 

0.025 2.29 6.19 4.64 46.13 13.01 

0.030 2.29 6.79 4.64 46.13 13.01 

0.035 2.29 7.39 4.64 46.13 13.01 

0.040 2.29 7.99 4.64 46.13 13.01 

0.045 2.29 8.59 4.64 46.13 13.01 
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Since the rest of the variables were kept fixed in the parametric analysis, the 

associated cost values remained unchanged. 

To conclude, the results showed that 0.03 m of roof insulation was able to balance 

heating and cooling loads, associated energy costs together with the water cost due to 

cooling purposes.  Therefore, the proposed optimization methodology was successful 

at recommending a cost-effective roof insulation solution within the given 

boundaries for the Antalya case study. 

Roof type (RT) 

The application of the proposed optimization methodology to Antalya case study 

recommended the cool roof coating (RT2) over conventional gravel layer (RT1) as 

the optimal choice, in combination with the rest of the design recommendations.  

The results of the parametric investigation given in Table 5.182 demonstrate that 

switching from conventional gravel roof to cool roof coating decreased total global 

cost. In addition, a strong penalty also occurred with RT1 because the recommended 

chiller used in the analysis was not able to meet the resulting building cooling load in 

this design combination. The GC breakdown table also explains that application of 

cool roof coating decreased NPV in energy, water and equipment categories 

however, NPV for material increased.  

Table 5.182 : Parametric analysis of roof type based on total Global Cost breakdown 

(TL/m2) for Antalya. 

RT 
PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

1 717.76 1079.54 775.58 113.15 69.79 121.01 

2 0 1054.44 755.22 106.93 72.86 119.44 

According to the Table 5.183, the cool roof coating increased the boiler natural gas 

cost because of the increase in associated heating load and energy consumption.  

Table 5.183 : Parametric analysis of roof type based on NPV energy cost breakdown 

(TL/m2) for Antalya. 

RT 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

1 42.34 123.31 6.527 86.43 39.84 24.27 165.08 287.80 

2 45.54 103.49 5.726 85.29 38.03 24.27 165.08 287.80 
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On the other hand, it also significantly decreased the chiller and cooling tower 

electricity costs and related energy use together with electricity cost for fans and 

pumps. The electricity cost due to artificial lighting and plugged-in equipment 

remained same in both cases since they were kept fixed in the analysis. 

Table 5.184 summarizes the NPV cost breakdown for water. The water costs due to 

cooling tower use decreased with cool roof coating in line with the decrease in chiller 

operation. However, hot water cost remained unchanged since associated water use 

was kept fixed in the calculation. 

Table 5.184 : Parametric analysis of roof type based on NPV water cost breakdown 

(TL/m2) for Antalya. 

RT 
NPV 

CTower 

NPV 

Hot water 

1 63.595 49.558 

2 57.368 49.558 

Table 5.185 below shows that the decrease in NPV equipment cost is due to the 

decrease in fan coil ownership cost as the required number of FCU is reduced from 

55 to 51 due to the reduction in cooling loads. Ownership cost of boiler, chiller, 

cooling tower, water heating and lighting control remained same.  

Table 5.185 : Parametric analysis of roof type based on NPV equipment cost 

breakdown (TL/m2) for Antalya. 

RT 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

1 4.11 32.71 6.66 21.70 2.47 53.37 

2 4.11 32.71 6.66 20.12 2.47 53.37 

The increase in NPV material cost is due to the switch from the gravel roof to cool 

roof coating only where ownership of cool roof later is almost four times higher than 

gravel roof. Since the rest of the variables were kept fixed in the parametric analysis, 

the associated cost values remained unchanged as given in Table 5.186. 

Table 5.186 : Parametric analysis of roof type based on NPV material cost 

breakdown (TL/m2) for Antalya. 

RT 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

1 2.29 6.79 1.57 46.13 13.01 

2 2.29 6.79 4.64 46.13 13.01 
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To conclude, the results showed that cool roof coating (RT2) was able to balance 

heating and cooling related costs together with water and equipment costs for a 

reasonable price. Therefore, it was successfully recommended by the proposed 

optimization methodology as the cost-effective solution for the Antalya case study 

within the given boundaries. 

Glazing Type (GT) 

The application of the proposed optimization methodology recommended GT19 out 

of 27 glazing alternatives as the optimal glazing choice for Antalya case study, in 

combination with the rest of the design recommendations. Table 5.187 summarizes 

the total global cost breakdown. GT19 has the lowest total GC value. Moreover, it 

also shows the best performance in NPV energy cost category as well.  

Table 5.187 : Parametric analysis of glazing type based on total Global 

Cost breakdown (TL/m2) for Antalya. 

GT 
PEN 

All 
Total GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

1 2799.02 1080.34 773.12 113.72 71.30 122.20 

2 67.52 1066.72 767.52 107.29 72.08 119.83 

3 1.10 1114.34 812.79 106.38 75.73 119.44 

4 23.28 1144.30 844.51 106.42 73.93 119.44 

5 2699.70 1080.83 773.45 113.91 71.67 121.80 

6 63.21 1066.87 767.38 107.32 72.74 119.44 

7 0.69 1114.55 812.66 106.38 76.08 119.44 

8 20.99 1144.60 844.47 106.41 74.29 119.44 

9 2665.84 1081.27 773.51 113.94 72.02 121.80 

10 59.03 1067.28 767.40 107.36 73.09 119.44 

11 0.37 1114.94 812.64 106.42 76.44 119.44 

12 18.81 1144.94 844.41 106.44 74.65 119.44 

13 171.88 1057.99 757.07 109.19 71.90 119.83 

14 1.34 1056.09 757.21 106.95 72.50 119.44 

15 0.00 1062.10 762.76 106.32 73.58 119.44 

16 0.00 1090.43 789.10 105.57 76.32 119.44 

17 0.00 1143.12 842.65 106.02 75.01 119.44 

18 150.01 1058.99 757.45 109.44 72.26 119.83 

19 0.00 1054.44 755.22 106.93 72.86 119.44 

20 0.00 1063.79 763.82 106.60 73.93 119.44 

21 0.00 1096.40 794.00 106.29 76.68 119.44 

22 0.00 1145.64 844.55 106.28 75.37 119.44 

23 136.06 1059.72 757.71 109.56 72.62 119.83 

24 0.00 1055.00 755.36 106.99 73.22 119.44 

25 0.00 1064.28 763.88 106.68 74.29 119.44 

26 0.00 1097.04 794.14 106.42 77.04 119.44 

27 0.00 1146.08 844.59 106.33 75.73 119.44 
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In addition to the cost performance, the results also show that the windows between 

GT1 –GT14, GT18 and GT23 were penalized due to under capacity chiller 

equipment where recommended chiller failed to meet resulting cooling load. 

When we further investigated the penalty conditions, it was found out that windows 

with highest U-value and highest SHGC value were penalized the most where SGGC 

played a dominant part in determination of the penalty value.  

GT15, GT19, GT20, GT24 and GT25 were selected for detailed inspection and 

comparisons.  

According to the Table 5.188, GT19 demonstrated a moderate performance in terms 

of boiler natural gas cost, which is in correlation with energy consumption. GT24 

and GT25 lead to less natural gas boiler cost since they have a lower U-value than 

GT13.  

In terms of chiller electricity cost, the performance of GT13 comes after GT15, 

GT20 and GT25 where they had lower SHGC values.  

Only GT 25 costs less both for heating and cooling purposes than GT13 however, it 

had a much higher electricity cost for lighting due to its lower Tvis value. GT19 

performs well in term of lighting electricity cost. 

Table 5.188 : Parametric analysis of glazing type based on NPV energy cost 

breakdown (TL/m2) for Antalya. 

GT 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

15 46.35 101.62 5.654 85.20 37.45 24.27 174.42 287.80 

19 45.54 103.49 5.726 85.29 38.03 24.27 165.08 287.80 

20 45.74 102.37 5.682 85.23 37.80 24.27 174.94 287.80 

24 45.16 103.80 5.737 85.30 38.21 24.27 165.08 287.80 

25 45.31 102.65 5.691 85.24 37.99 24.27 174.94 287.80 

Table 5.189 summarizes the NPV cost breakdown for water.  

The building with GT13 showed a moderate performance in cooling tower water cost 

category. GT15 had the least cost requirement among all. The hot water cost 

remained unchanged with all windows since associated water use is kept fixed in the 

calculation. 
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Table 5.189 : Parametric analysis of glazing type based on NPV water cost 

breakdown (TL/m2) for Antalya. 

GT 
NPV 

CTower 

NPV 

Hot water 

15 56.760 49.558 

19 57.368 49.558 

20 57.038 49.558 

24 57.435 49.558 

25 57.117 49.558 

Table 5.190 shows that NPV ownership cost for equipment did not vary in any 

category. Only FCUs were allowed to vary to match changing building thermal loads 

however, no load changes led to FCU update within the tested range.  The rest of the 

equipment was kept fixed in the parametric analysis. 

Table 5.190 : Parametric analysis of glazing type based on NPV equipment cost 

breakdown (TL/m2) for Antalya. 

GT 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

15 4.11 32.71 6.66 20.12 2.47 53.37 

19 4.11 32.71 6.66 20.12 2.47 53.37 

20 4.11 32.71 6.66 20.12 2.47 53.37 

24 4.11 32.71 6.66 20.12 2.47 53.37 

25 4.11 32.71 6.66 20.12 2.47 53.37 

The increase in NPV material ownership cost category is due to the variation in 

glazing type variable as Table 5.191 suggests. Since the rest of the variables were 

kept fixed in the parametric analysis, the associated cost values remained unchanged. 

The ownership cost of GT13 is the lowest among the selected windows. 

Table 5.191 : Parametric analysis of glazing type based on NPV material cost 

breakdown (TL/m2) for Antalya. 

GT 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

15 2.29 6.79 4.64 46.85 13.01 

19 2.29 6.79 4.64 46.13 13.01 

20 2.29 6.79 4.64 47.20 13.01 

24 2.29 6.79 4.64 46.48 13.01 

25 2.29 6.79 4.64 47.56 13.01 

To conclude, the results showed that GT13 was able to balance building heating and 

cooling loads, lighting energy needs, associated energy costs and HVAC water costs 

for a reasonable glazing price. Therefore, the optimization methodology was 
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successful at recommending a cost-effective glazing solution for the Antalya case 

study within the given boundaries. 

Window-to-wall ratio of southern façade (WTW S) 

The application of the proposed optimization methodology to Antalya case study 

recommended 45 % of window-to-wall ratio for the south facing facade as the 

optimal solution, when combined with rest of the design recommendations. The 

results of the parametric investigation in Table 5.192 demonstrated that increasing w-

t-w reduced the total global cost until 45% but then the cost started increasing. 

Moreover, a penalty occurred at 55% because the cooling capacity of the 

recommended chiller became insufficient with the introduction of 55 % w-t-w ratio. 

The GC breakdown shows that larger windows decreased only NPV energy costs 

where NPV costs for water and material increased. NPV cost for equipment did not 

change. 

Table 5.192 : Parametric analysis of southern façade window-to-wall ratio based on 

total Global Cost breakdown (TL/m2) for Antalya. 

WTW 

S 

PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

5 0 1072.12 781.83 106.19 64.67 119.44 

15 0 1063.50 771.12 106.23 66.72 119.44 

25 0 1057.53 762.91 106.42 68.76 119.44 

35 0 1054.97 758.08 106.64 70.81 119.44 

45 0 1054.44 755.22 106.93 72.86 119.44 

55 1.10 1055.53 753.92 107.26 74.91 119.44 

When we further investigated the NPV cost breakdown for the energy category given 

in Table 5.193, it was seen that increasing w-t-w ratio in the southern orientation 

slightly decreased natural gas cost for boiler since larger windows provided more 

heat gain in the southern orientation and reduced heating loads in winter period. 

However since the heating load was not dominant, its overall influence was minor. 

Similarly, increasing w-t-w ratio also decreased significantly electricity cost for 

artificial lighting due to the enhanced daylighting potential of the building when 

combined with the dimming control. On the other hand, larger south facing windows 

increased electricity cost for chiller, cooling tower, HVAC fans, and circulation 

pumps due to the higher heat gains and resulting cooling load in the summer period. 

The cost for water heating and plugged-in equipment remained unchanged since they 

were kept fixed in the analysis. 
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Table 5.193 : Parametric analysis of southern façade window-to-wall ratio based on 

NPV energy cost breakdown (TL/m2) for Antalya. 

WTWS 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

5 46.47 101.39 5.645 85.19 36.86 24.27 194.20 287.80 

15 46.47 101.63 5.655 85.20 37.01 24.27 183.09 287.80 

25 46.12 102.03 5.670 85.22 37.26 24.27 174.55 287.80 

35 45.87 102.66 5.695 85.25 37.66 24.27 168.88 287.80 

45 45.54 103.49 5.726 85.29 38.03 24.27 165.08 287.80 

55 45.34 104.57 5.768 85.33 38.48 24.27 162.36 287.80 

Table 5.194 summarizes the NPV cost breakdown for water. The water costs due to 

cooling tower use increased as w-t-w ratio increased, which is in line with the 

increase in cooling load and consequent chiller operation. However, hot water cost 

remained unchanged since associated water use was kept fixed in the analysis. 

Table 5.194 : Parametric analysis of southern façade window-to-wall ratio based on 

NPV water cost breakdown (TL/m2) for Antalya. 

WTW_S 
NPV 

CTower 

NPV 

Hot water 

5 56.632 49.558 

15 56.673 49.558 

25 56.860 49.558 

35 57.083 49.558 

45 57.368 49.558 

55 57.704 49.558 

Table 5.195 below shows that there were no changes in the NPV equipment 

ownership cost categories.  The number of required FCUs was allowed to match the 

building loads however; the load changes did not require any FCU update. The rest 

of the equipment cost categories remained unchanged as well as they were kept fixed 

in the parametric analysis.  

Table 5.195 : Parametric analysis of southern façade window-to-wall ratio based on 

NPV equipment cost breakdown (TL/m2) for Antalya. 

WTW_S 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

5 4.11 32.71 6.66 20.12 2.47 53.37 

15 4.11 32.71 6.66 20.12 2.47 53.37 

25 4.11 32.71 6.66 20.12 2.47 53.37 

35 4.11 32.71 6.66 20.12 2.47 53.37 

45 4.11 32.71 6.66 20.12 2.47 53.37 

55 4.11 32.71 6.66 20.12 2.47 53.37 
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The increase in NPV material ownership cost is due to the changes in wall area and 

glazed area as given in Table 5.196. When w-t-w ratio increased, the area of wall 

component that holding the glazing decreased, therefore the cost for wall insulation 

and the rest of the non-insulation wall materials decreased accordingly. Conversely, 

the cost of glazing material increased with the w-t-w ratio, as it was expected.  

The roof insulation and roof coating has no interaction with the w-t-w ratio therefore 

the associated cost values remained unchanged. 

Table 5.196 : Parametric analysis of  southern façade window-to-wall ratio based on 

NPV material cost breakdown (TL/m2) for Antalya. 

WTW_S 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

5 2.69 6.79 4.64 35.28 15.27 

15 2.59 6.79 4.64 37.99 14.70 

25 2.49 6.79 4.64 40.70 14.14 

35 2.39 6.79 4.64 43.42 13.57 

45 2.29 6.79 4.64 46.13 13.01 

55 2.19 6.79 4.64 48.84 12.44 

To conclude, the results showed that 45% of w-t-w ratio at the southern façade was 

able to balance heating and cooling loads, artificial lighting and daylighting potential 

together with the ownership cost for wall insulation, non-insulation wall materials 

and glazing cost itself. Therefore, the optimization methodology was successful at 

recommending a cost-effective w-t-w ratio solution for the Antalya case study within 

the given boundaries. 

Window-to-wall ratio of western façade (WTW W) 

The application of the proposed optimization methodology to Antalya case study 

recommended 45 % of window-to-wall ratio for the west-facing facade as the 

optimal solution, in combination with the rest of the design recommendations. The 

results of the parametric investigation in Table 5.197 demonstrated that increasing w-

t-w reduced the total global cost until 45% but then the cost started increasing. The 

GC breakdown explains that larger windows decreased only NPV energy costs where 

NPV costs for water, material and equipment increased.  

In addition, a penalty values occurred with the introduction of 55% of w-t-w ratio 

because the cooling capacity of the recommended chiller started to became 

insufficient to meet the resulting cooling load. 
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Table 5.197 : Parametric analysis of western facade window-to-wall ratio based on 

total Global Cost breakdown (TL/m2) for Antalya. 

WTW 

W 

PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

5 0 1071.20 781.25 105.84 64.67 119.44 

15 0 1062.89 770.75 105.99 66.72 119.44 

25 0 1057.07 762.67 106.20 68.76 119.44 

35 0 1054.64 757.85 106.54 70.81 119.44 

45 0 1054.44 755.22 106.93 72.86 119.44 

55 18.80 1055.91 754.19 107.38 74.91 119.44 

When we further investigated the cost breakdown for the energy category given in 

Table 5.198, it was seen that increasing w-t-w ratio in the western orientation slightly 

increased than decreased natural gas cost for boiler as a result of increased heat gain 

due to larger windows combined with the less heat gain from artificial lighting with 

dimming control.  

On the other hand, larger west facing windows increased electricity cost for chiller, 

cooling tower, HVAC fans, and circulation pumps due to higher heat gains and 

resulting cooling load in the summer period.  

Furthermore, increasing w-t-w ratio also significantly decreased electricity cost for 

artificial lighting due to the enhanced daylighting potential of the building when 

combined with the dimming control.  

The energy cost for water heating and plugged-in equipment remained unchanged 

since they were kept fixed in the analysis. 

Table 5.198 : Parametric analysis of western facade window-to-wall ratio based on 

NPV energy cost breakdown (TL/m2) for Antalya. 

WTW

W 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

5 45.74 99.97 5.583 85.11 37.62 24.27 195.16 287.80 

15 45.79 100.43 5.601 85.13 37.67 24.27 184.05 287.80 

25 45.76 101.15 5.631 85.17 37.76 24.27 175.13 287.80 

35 45.73 102.21 5.674 85.22 37.89 24.27 169.05 287.80 

45 45.54 103.49 5.726 85.29 38.03 24.27 165.08 287.80 

55 45.49 105.01 5.789 85.35 38.27 24.27 162.20 287.80 

Table 5.199 summarizes the NPV cost breakdown for water. The water costs due to 

cooling tower use increased as w-t-w ratio increased, which is in line with the 
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increase in cooling load and consequent chiller operation. However, hot water cost 

remained unchanged since associated water use was kept fixed in the analysis. 

Table 5.199 : Parametric analysis of western facade window-to-wall ratio based on 

NPV water cost breakdown (TL/m2) for Antalya. 

WTW_W 
NPV 

CTower 

NPV 

Hot water 

5 56.284 49.558 

15 56.431 49.558 

25 56.639 49.558 

35 56.985 49.558 

45 57.368 49.558 

55 57.823 49.558 

The number of required FCUs was allowed to match the building loads however; the 

load changes did not require any FCU update as shown in Table 5.200.  The rest of 

the systems were kept fixed during the analysis therefore, there were no cost 

variations in equipment ownership cost category.  

Table 5.200 : Parametric analysis of western facade window-to-wall ratio based on 

NPV equipment cost breakdown (TL/m2) for Antalya. 

WTW_

W 

NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

5 4.11 32.71 6.66 20.12 2.47 53.37 

15 4.11 32.71 6.66 20.12 2.47 53.37 

25 4.11 32.71 6.66 20.12 2.47 53.37 

35 4.11 32.71 6.66 20.12 2.47 53.37 

45 4.11 32.71 6.66 20.12 2.47 53.37 

55 4.11 32.71 6.66 20.12 2.47 53.37 

The increase in NPV material cost is due to the changes in wall area and glazed area 

as given in Table 5.201.  

Table 5.201 : Parametric analysis of western facade window-to-wall ratio based on 

NPV material cost breakdown (TL/m2) for Antalya. 

WTW_W 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

5 2.69 6.79 4.64 35.28 15.27 

15 2.59 6.79 4.64 37.99 14.70 

25 2.49 6.79 4.64 40.70 14.14 

35 2.39 6.79 4.64 43.42 13.57 

45 2.29 6.79 4.64 46.13 13.01 

55 2.19 6.79 4.64 48.84 12.44 
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When w-t-w ratio increased, the area of wall component that holding the glazing 

decreased accordingly, therefore the cost for wall insulation and the rest of the non-

insulation wall materials decreased. Moreover, the cost of glazing material increased 

with the w-t-w ratio as it was expected. 

The roof insulation and roof coating has no interaction with the w-t-w ratio therefore 

the associated cost values remained unchanged. 

To conclude, the results showed that 45% of w-t-w ratio at the western façade was 

able to balance heating and cooling loads, artificial lighting and daylighting potential 

together with ownership cost for wall insulation, non-insulation wall materials and 

glazing itself. Therefore, the optimization methodology was successful at 

recommending a cost-effective w-t-w ratio solution for the Antalya case study within 

the given boundaries. 

Window-to-wall ratio of northern façade (WTW N) 

The application of the proposed optimization methodology to Antalya case study 

recommended 45 % of window-to-wall ratio for the north-facing facade as the 

optimal solution, in combination with the rest of the design recommendations. The 

results of the parametric investigation in Table 5.202 demonstrated that increasing w-

t-w ratio reduced the total global cost until 55% and no penalties occurred. The GC 

breakdown explains that larger windows decreased only NPV energy costs where 

NPV costs for water, and material increased. The NPV equipment cost however 

remained same. 

Table 5.202 : Parametric analysis of northern facade window-to-wall ratio based on 

total Global Cost breakdown (TL/m2) for Antalya. 

WTW 

N 

PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

5 0 1057.56 766.76 106.69 64.67 119.44 

15 0 1056.39 763.50 106.74 66.72 119.44 

25 0 1055.29 760.31 106.78 68.76 119.44 

35 0 1054.54 757.42 106.87 70.81 119.44 

45 0 1054.44 755.22 106.93 72.86 119.44 

55 0 1054.91 753.54 107.03 74.91 119.44 

When we further investigated the cost breakdown for the energy category given in 

Table 5.203, it was seen that increasing w-t-w ratio in the northern orientation 

slightly increased and decreased natural gas cost for boiler depending on the balance 
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between the thermal heat losses due to larger windows combined with the less heat 

gain from artificial lighting with dimming control. However, since the glazing had an 

improved U-value, having large windows could be tolerated. 

Moreover, larger north facing windows also increased electricity cost slightly for 

chiller, cooling tower, HVAC fans, and circulation pumps. The cost for water heating 

and plugged-in equipment remained unchanged since they were kept fixed in the 

analysis. 

However, increasing w-t-w ratio decreased electricity cost for artificial lighting a 

great deal due to the enhanced daylighting potential of the building when combined 

with the dimming control. 

Table 5.203 : Parametric analysis of northern facade window-to-wall ratio based on 

NPV energy cost breakdown (TL/m2) for Antalya. 

WTW

N 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

5 45.60 102.61 5.691 85.24 37.95 24.27 177.60 287.80 

15 45.65 102.77 5.697 85.25 37.96 24.27 174.11 287.80 

25 45.60 102.96 5.705 85.26 37.98 24.27 170.74 287.80 

35 45.51 103.18 5.714 85.27 38.00 24.27 167.67 287.80 

45 45.54 103.49 5.726 85.29 38.03 24.27 165.08 287.80 

55 45.64 103.79 5.739 85.30 38.05 24.27 162.95 287.80 

Table 5.204 summarizes the NPV cost breakdown for water. The water costs due to 

cooling tower use increased very slightly as w-t-w ratio increased, which is in line 

with the small increase in chiller electricity costs. However, hot water cost remained 

unchanged since associated water use was kept fixed in the analysis. 

Table 5.204 : Parametric analysis of northern facade window-to-wall ratio based on 

NPV water cost breakdown (TL/m2) for Antalya. 

WTW_N 
NPV 

CTower 

NPV 

Hot water 

5 57.131 49.558 

15 57.178 49.558 

25 57.218 49.558 

35 57.309 49.558 

45 57.368 49.558 

55 57.473 49.558 

Table 5.205 shows that no changes were observed in the NPV equipment ownership 

cost category. The changes in the building thermal loads were minor therefore there 
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was no need to update the number of FCUs. Moreover, since the rest of the systems 

were kept fixed during the analysis, there were no cost variations as well.  

Table 5.205 : Parametric analysis of northern facade window-to-wall ratio based on 

NPV equipment cost breakdown (TL/m2) for Antalya. 

WTW_N 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

5 4.11 32.71 6.66 20.12 2.47 53.37 

15 4.11 32.71 6.66 20.12 2.47 53.37 

25 4.11 32.71 6.66 20.12 2.47 53.37 

35 4.11 32.71 6.66 20.12 2.47 53.37 

45 4.11 32.71 6.66 20.12 2.47 53.37 

55 4.11 32.71 6.66 20.12 2.47 53.37 

The increase in NPV material cost is only due to the changes in wall area and glazed 

area as given in Table 5.206. When w-t-w ratio increased, the area of wall 

component that holding the glazing decreased, therefore the cost for wall insulation 

and the rest of the non-insulation wall materials decreased accordingly. Moreover, 

the cost of glazing material increased with the w-t-w ratio as it was expected. 

The roof insulation and roof coating has no interaction with the w-t-w ratio therefore 

the associated cost values remained unchanged. 

Table 5.206 : Parametric analysis of northern facade window-to-wall ratio based on 

NPV material cost breakdown (TL/m2) for Antalya. 

WTW_N 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

5 2.69 6.79 4.64 35.28 15.27 

15 2.59 6.79 4.64 37.99 14.70 

25 2.49 6.79 4.64 40.70 14.14 

35 2.39 6.79 4.64 43.42 13.57 

45 2.29 6.79 4.64 46.13 13.01 

55 2.19 6.79 4.64 48.84 12.44 

To conclude, the results showed that 45% of w-t-w ratio at the northern façade was 

able to balance heating and cooling loads, artificial lighting and daylighting potential 

together with the ownership costs for wall insulation, non-insulation wall materials 

and glazing cost itself. Therefore, the optimization methodology was successful at 

recommending a cost-effective w-t-w ratio solution for the Antalya case study within 

the given boundaries. 
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Window-to-wall ratio of eastern façade (WTW E) 

The application of the proposed optimization methodology to Antalya case study 

recommended 35 % of window-to-wall ratio for the east-facing facade as the optimal 

solution, in combination with the rest of the design recommendations.  

The results of the parametric investigation in Table 5.207 demonstrated that 

increasing w-t-w reduced the total global cost only until 35% but then the cost started 

increasing. The GC breakdown showed that larger windows decreased only NPV 

energy costs where NPV costs for water and material increased. NPV equipment 

ownership cost however remained same. 

In addition, a very small penalty value occurred with the introduction of 55 % w-t-w 

ratio. A further investigation revealed that penalty value was due to under-capacity 

chiller equipment where selected chiller started to became insufficient to meet 

cooling needs.  

Table 5.207 : Parametric analysis of eastern facade window-to-wall ratio based on 

total Global Cost breakdown (TL/m2) for Antalya. 

WTW 

E 

PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

5 0 1065.01 772.78 106.07 66.72 119.44 

15 0 1058.33 763.86 106.27 68.76 119.44 

25 0 1054.66 757.88 106.54 70.81 119.44 

35 0 1054.44 755.22 106.93 72.86 119.44 

45 0 1055.83 754.17 107.31 74.91 119.44 

55 0.06 1057.60 753.46 107.74 76.96 119.44 

When we analysed the cost breakdown for the NPV energy category given in Table 

5.208, it was seen that increasing w-t-w ratio in the eastern orientation decreased 

slightly the natural gas cost for boiler due to the combined impact of heat gain due to 

larger windows in winter and less heat gain from artificial lighting with dimming 

control. 

On the other hand, larger east facing windows also slightly increased electricity cost 

for chiller, cooling tower, HVAC fans, and circulation pumps due to higher heat 

gains and resulting cooling load in the summer period. The cost for water heating and 

plugged-in equipment remained unchanged since they were kept fixed in the 

analysis. 
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Increasing w-t-w ratio had the most influence on artificial lighting costs since the 

larger windows enhanced daylighting potential of the building when combined with 

the dimming control. 

Table 5.208 : Parametric analysis of eastern facade window-to-wall ratio based on 

NPV energy cost breakdown (TL/m2) for Antalya. 

WTWE 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

5 45.88 100.72 5.610 85.15 37.71 24.27 185.65 287.80 

15 45.81 101.30 5.635 85.17 37.74 24.27 176.13 287.80 

25 45.73 102.23 5.674 85.22 37.86 24.27 169.10 287.80 

35 45.54 103.49 5.726 85.29 38.03 24.27 165.08 287.80 

45 45.55 104.87 5.783 85.37 38.22 24.27 162.31 287.80 

55 45.41 106.31 5.842 85.45 38.40 24.27 159.99 287.80 

Table 5.209 summarizes the NPV cost breakdown for water.  

Table 5.209 : Parametric analysis of eastern facade window-to-wall ratio based on 

NPV water cost breakdown (TL/m2) for Antalya. 

WTW_E 
NPV 

CTower 

NPV 

Hot water 

5 56.515 49.558 

15 56.712 49.558 

25 56.978 49.558 

35 57.368 49.558 

45 57.756 49.558 

55 58.186 49.558 

The water costs due to cooling tower use increased slightly as the w-t-w ratio 

increased, which is in line with the increase in cooling load and consequent chiller 

operation. However, hot water cost remained unchanged since associated water use 

was kept fixed in the analysis. 

Table 5.210 shows that no changes were observed in the NPV equipment cost 

category. The changes in the building thermal loads were minor therefore there was 

no need to update the number of FCUs. Moreover, since the rest of the systems were 

kept fixed during the analysis, there were no cost variations as well.  
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Table 5.210 : Parametric analysis of eastern facade window-to-wall ratio based on 

NPV equipment cost breakdown (TL/m2) for Antalya. 

WTW_E 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

5 4.11 32.71 6.66 20.12 2.47 53.37 

15 4.11 32.71 6.66 20.12 2.47 53.37 

25 4.11 32.71 6.66 20.12 2.47 53.37 

35 4.11 32.71 6.66 20.12 2.47 53.37 

45 4.11 32.71 6.66 20.12 2.47 53.37 

55 4.11 32.71 6.66 20.12 2.47 53.37 

The increase in NPV material cost is due to the changes in wall area and glazed area 

as given in Table 5.211. When w-t-w ratio increased, the area of wall component that 

holding the glazing decreased, therefore the ownership cost for wall insulation and 

the rest of the non-insulation wall materials decreased accordingly. Moreover, the 

ownership cost of glazing material increased with the w-t-w ratio as it was expected. 

The roof insulation and roof coating has no interaction with the w-t-w ratio therefore 

the associated cost values remained unchanged. 

Table 5.211 : Parametric analysis of eastern facade window-to-wall ratio based on 

NPV material cost breakdown (TL/m2) for Antalya. 

WTW_E 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

5 2.59 6.79 4.64 37.99 14.70 

15 2.49 6.79 4.64 40.70 14.14 

25 2.39 6.79 4.64 43.42 13.57 

35 2.29 6.79 4.64 46.13 13.01 

45 2.19 6.79 4.64 48.84 12.44 

55 2.09 6.79 4.64 51.56 11.87 

To conclude, the results showed that 35% of w-t-w ratio at the eastern façade was 

able to balance heating and cooling loads, artificial lighting and daylighting potential 

together with the ownership cost for FCUs, wall insulation, non-insulation wall 

materials and glazing cost itself. Therefore, the optimization methodology was 

successful at recommending a cost-effective w-t-w ratio solution for the Antalya case 

study within the given boundaries. 

Boiler type (BLtype) 

The application of the proposed optimization methodology to Antalya case study 

recommended Boiler 42 from the equipment database as the optimal choice in 

combination with the rest of the design recommendations. The parametric analysis 
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carried out with a sample of low-efficiency (BL 14-16) and high-efficiency (BL 41-

43) boiler equipment from the database. The results of the parametric investigation in 

Table 5.212 demonstrate that the switching from low efficiency equipment to high 

efficiency equipment decreased total global costs noticeably. 

In addition, BL14, and BL41 were penalized because their heating capacities were 

not able to satisfy resulting heating load of the recommended design combination. 

The GC breakdown explains that improvement on the boiler thermal efficiency let to 

a significant reduction in NPV energy category while causing a little rise on the NPV 

equipment costs. However, NPV cost for water and material remained unchanged, as 

they were not influenced with the boiler replacement. The amount of the cost 

reduction depends on the thermal capacity of the tested equipment. 

Table 5.212 : Parametric analysis of boiler type based on total Global 

Cost breakdown (TL/m2) for Antalya. 

BLtyp 
PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

14 128.79 1057.50 760.68 106.90 72.86 117.06 

15 0 1058.09 761.14 106.90 72.86 117.19 

16 0 1058.81 761.69 106.90 72.86 117.35 

41 267.28 1053.38 754.75 106.90 72.86 118.84 

42 0 1054.44 755.22 106.90 72.86 119.44 

43 0 1055.25 755.71 106.90 72.86 119.74 

According to the Table 5.213 improving boiler efficiency only improved boiler NPV 

energy cost as expected. Moreover, the resulting boiler energy cost also depends also 

capacity of the tested boiler equipment. The rest of the energy cost categories 

remained same. 

Table 5.213 : Parametric analysis of boiler type based on NPV energy cost 

breakdown (TL/m2) for Antalya. 

BLtyp 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

14 51.00 103.49 5.73 85.29 38.03 24.27 165.08 287.80 

15 51.46 103.49 5.73 85.29 38.03 24.27 165.08 287.80 

16 52.02 103.49 5.73 85.29 38.03 24.27 165.08 287.80 

41 45.07 103.49 5.73 85.29 38.03 24.27 165.08 287.80 

42 45.54 103.49 5.73 85.29 38.03 24.27 165.08 287.80 

43 46.04 103.49 5.73 85.29 38.03 24.27 165.08 287.80 
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Table 5.214 summarizes the NPV cost breakdown for water. Both the water costs 

due to cooling tower use and hot water use remained unchanged since associated 

water use did not interact with the boiler replacement. 

Table 5.214 : Parametric analysis of boiler type based on NPV water cost 

breakdown (TL/m2) for Antalya. 

BLtyp 
NPV 

CTower 

NPV 

Hot water 

14 57.341 49.558 

15 57.341 49.558 

16 57.341 49.558 

41 57.341 49.558 

42 57.341 49.558 

43 57.341 49.558 

As demonstrated in Table 5.215, the only change in NPV equipment cost occurred in 

boiler category as expected. The efficiency and capacity improvement increased the 

equipment costs. The more efficient equipment cost almost double of the low 

efficiency group. BL14 and BL41 were not able to satisfy heating loads as penalties 

occurred. Even BL15, BL16, and BL43 remained in the allowed equipment capacity 

range; they were not preferred since there was smaller size high-efficient equipment 

that can still meet the load. 

Table 5.215 : Parametric analysis of boiler type based on NPV equipment cost 

breakdown (TL/m2) for Antalya. 

BLtyp 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

14 1.73 32.71 6.66 20.12 2.47 53.37 

15 1.86 32.71 6.66 20.12 2.47 53.37 

16 2.02 32.71 6.66 20.12 2.47 53.37 

41 3.51 32.71 6.66 20.12 2.47 53.37 

42 4.11 32.71 6.66 20.12 2.47 53.37 

43 4.41 32.71 6.66 20.12 2.47 53.37 

As shown in Table 5.216, there were no cost changes in the NPV material category 

since there were no interactions between building material and boiler replacement in 

the parametric analysis. 
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Table 5.216 : Parametric analysis boiler type based on NPV material cost 

breakdown (TL/m2) for Antalya. 

BLtyp 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

14 2.29 6.79 4.64 46.13 13.01 

15 2.29 6.79 4.64 46.13 13.01 

16 2.29 6.79 4.64 46.13 13.01 

41 2.29 6.79 4.64 46.13 13.01 

42 2.29 6.79 4.64 46.13 13.01 

43 2.29 6.79 4.64 46.13 13.01 

To conclude, the results showed that BL45 showed an improved energy performance 

while being capable of meeting building heating loads for an affordable equipment 

price in Antalya case study. Therefore, the proposed optimization methodology 

successfully recommended a cost-effective boiler solution within the given 

boundaries. 

Chiller type (CLtype) 

The application of the proposed optimization methodology to Antalya case study 

recommended Chiller 32 from the equipment database as the optimal choice in 

combination with the rest of the design recommendations. The parametric analysis 

carried out with a sample of moderate efficiency (CL 9-11) and high efficiency (CL 

31-33) chiller equipment. The results of the parametric investigation in Table 5.217 

demonstrate that the switching from moderate efficiency equipment to high 

efficiency equipment decreased total global costs.  

The GC breakdown explains that improvement on the chiller efficiency let to a 

considerable reduction in NPV energy category while causing a little rise on NPV 

equipment costs depending on the capacity of the tested equipment. However, NPV 

cost for water and material were not influenced with the chiller replacement.  

Table 5.217 : Parametric analysis of chiller type based on total Global 

Cost breakdown (TL/m2) for Antalya. 

CLtyp 
PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

9 3590.35 1085.24 793.20 107.16 72.86 112.01 

10 8.52 1089.83 793.64 109.12 72.86 114.22 

11 0 1094.87 794.85 110.82 72.86 116.34 

31 956.02 1053.56 756.62 105.93 72.86 118.15 

32 0 1054.44 755.22 106.93 72.86 119.44 

33 0 1058.00 754.68 108.56 72.86 121.90 
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In addition, only CL11, CL32 and CL33 were able to comply with the constraints 

and not penalized. However, CL9, CL10 and CL31 were penalized because they 

were not able to satisfy cooling load of the tested design combination. 

According to the Table 5.218 improving chiller efficiency improved chiller NPV 

energy cost together with cooling tower electricity costs as expected. Moreover, the 

chiller electricity cost increased in parallel with the increase in the equipment 

capacity. In addition, minor changes occurred in electricity cost for fans and 

circulation pumps. The rest of the energy cost categories remained uninfluenced, as 

they did not interact with the chiller  

Table 5.218 : Parametric analysis of chiller type based on NPV energy cost 

breakdown (TL/m2) for Antalya. 

CLtyp 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

9 45.54 143.030 5.879 85.417 36.189 24.27 165.08 287.80 

10 45.54 141.087 5.980 85.302 38.580 24.27 165.08 287.80 

11 45.54 139.946 6.045 85.272 40.902 24.27 165.08 287.80 

31 45.54 106.277 5.688 85.332 36.635 24.27 165.08 287.80 

32 45.54 103.488 5.726 85.288 38.031 24.27 165.08 287.80 

33 45.54 100.583 5.775 85.267 40.372 24.27 165.08 287.80 

Table 5.219 summarizes the NPV cost breakdown for water. Water cost due to 

cooling tower use was slightly improved by switching to a higher efficiency chiller 

depending on equipment capacity. However, hot water cost remained same as it was 

kept fixed in the analysis. 

Table 5.219 : Parametric analysis of chiller type based on NPV water cost 

breakdown (TL/m2) for Antalya case 

CLtyp 
NPV 

CTower 

NPV 

Hot water 

9 57.604 49.558 

10 59.557 49.558 

11 61.265 49.558 

31 56.372 49.558 

32 57.368 49.558 

33 59.002 49.558 

As demonstrated in Table 5.220, the only major change in NPV equipment cost 

occurred in chiller category as expected. The efficiency and capacity improvements 

increased equipment ownership cost accordingly.   
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Table 5.220 : Parametric analysis of chiller type based on NPV equipment cost 

breakdown (TL/m2) for Antalya. 

CLtyp 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

9 4.11 25.74 6.20 20.12 2.47 53.37 

10 4.11 27.41 6.75 20.12 2.47 53.37 

11 4.11 29.00 7.27 20.12 2.47 53.37 

31 4.11 31.74 6.35 20.12 2.47 53.37 

32 4.11 32.71 6.66 20.12 2.47 53.37 

33 4.11 34.63 7.20 20.12 2.47 53.37 

As shown in Table 5.221, there were no cost changes in the material category since 

there were no interactions between building material and chiller equipment in the 

parametric analysis. 

Table 5.221 : Parametric analysis chiller type based on NPV material cost 

breakdown (TL/m2) for Antalya. 

CLtyp 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

9 2.29 6.79 4.64 46.13 13.01 

10 2.29 6.79 4.64 46.13 13.01 

11 2.29 6.79 4.64 46.13 13.01 

31 2.29 6.79 4.64 46.13 13.01 

32 2.29 6.79 4.64 46.13 13.01 

33 2.29 6.79 4.64 46.13 13.01 

To conclude, the results showed that CL32 showed an improved energy performance 

while being capable of meeting building cooling loads for an affordable equipment 

price in Antalya case study. Therefore, the proposed optimization methodology 

recommended successfully a cost-effective chiller solution within the given 

boundaries. 

Lighting control (LC) 

The application of the proposed optimization methodology to Antalya case study 

recommended dimming control of artificial lights ( option 1) according to indoor 

daylighting levels as the optimal choice over manual lighting control (option 0), 

when combined with rest of the design recommendations. The results of the 

parametric investigation in Table 5.222 demonstrate that dimming control of lights 

resulted in a major GC reduction. Moreover, the cost breakdown explains that 

dimming control reduces not only NPV energy costs but also water cost as well. 

NPV for material were not influenced however, NPV for equipment was increased. 
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In addition, the case with manual light control was strongly penalized because the 

chiller equipment could not satisfy resulting cooling load in this combination. 

Table 5.222 : Parametric analysis of lighting control strategies based on total Global 

Cost breakdown (TL/m2) for Antalya. 

LC 
PEN 

All 

Total 

GC 

NPV 

Energy 

NPV 

Water 

NPV 

Material 

NPV 

Equipment 

0 1136.52 1198.19 910.11 111.68 72.86 103.53 

1 0 1054.44 755.22 106.93 72.86 119.44 

According to the Table 5.223, dimming control of lights over daylighting increased 

boiler natural gas cost in part due to the reduction in heat gain from lighting system. 

However, it decreased electricity cost for chiller, cooling tower, fans, and pumps a 

great deal in addition to the major decrease in lighting electricity cost. The rest of the 

energy cost categories remained uninfluenced, as they did not interact with the 

lighting system.  

Table 5.223 : Parametric analysis of lighting control strategies based on NPV energy 

cost breakdown (TL/m2) for Antalya. 

LC 

NPV 

N.G. 

Boiler 

NPV 

Elc. 

Chiller 

NPV 

Elc. 

CTower 

NPV 

Elc. 

HVACFan 

NPV 

Elc. 

Pump 

NPV 

N.G 

WH 

NPV 

Elc. 

Lights 

NPV 

Elc. 

Equipment 

0 43.71 117.94 6.279 86.06 40.40 24.27 303.65 287.80 

1 45.54 103.49 5.726 85.29 38.03 24.27 165.08 287.80 

Table 5.224 summarizes the NPV cost breakdown for water. Water costs due to 

cooling tower use were moderately improved with dimming control where hot water 

cost remained same as it was kept fixed in the analysis. 

Table 5.224 : Parametric analysis of lighting control strategies based on NPV water 

cost breakdown (TL/m2) for Antalya. 

LC 
NPV 

CTower 

NPV 

Hot water 

0 62.120 49.558 

1 57.368 49.558 

As demonstrated in Table 5.225, the major change in equipment cost occurred in 

lighting control system category as installing dimming control costs more than 

manual control system.  In addition, the ownership cost for FCUs decreased with 

dimming control due to the decrease in heat gain from lighting system and the 

decrease in cooling load and required number of FCUs from 53 to 51.  
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Table 5.225 : Parametric analysis of lighting control strategies based on NPV 

equipment cost breakdown (TL/m2) for Antalya. 

LC 
NPV 

Boiler 

NPV 

Chiller 

NPV 

CTower 

NPV 

FCU 

NPV 

WH 

NPV 

LC 

0 4.11 32.71 6.66 20.91 2.47 36.68 

1 4.11 32.71 6.66 20.12 2.47 53.37 

As shown in Table 5.226, there were no cost changes in the NPV material category 

since there were no interactions between building material and the lighting system. 

Table 5.226 : Parametric analysis of lighting control strategies based on NPV 

material cost breakdown (TL/m2) for Antalya. 

LC 
NPV 

EW Insul. 

NPV 

Roof Insul. 

NPV 

Roof layer 

NPV 

Glazing 

NPV 

EWOther 

0 2.29 6.79 4.64 46.13 13.01 

1 2.29 6.79 4.64 46.13 13.01 

To conclude, the results showed that dimming control of artificial lights according to 

daylighting levels decreased the electricity cost for lighting together with electricity 

cost for cooling system for an affordable price. The slight increase in energy cost for 

heating was compensated with other benefits. Therefore, the proposed optimization 

methodology was successful at recommending a cost-effective lighting control 

solution within the given boundaries. 

5.4  Summary 

In this chapter, the feasibility of applying the proposed simulation-based 

optimization methodology to high-performance building design process was 

demonstrated by three case studies located in Istanbul, Ankara and Antalya. The 

selected cities represent different climatic regions in Turkey including mild-humid, 

mild-dry and hot-humid conditions. 

At first, a hypothetical generic office building was developed according to common 

construction practices in Turkey, where energy efficiency was not at the heart of the 

design priorities. Secondly, candidate design variables were selected and their value 

ranges were established. A parametric analysis was carried out then among candidate 

variables to find out the sensitivity index of each parameter. Based on the results, the 

parameters that are found to be insensitive within the scope of the problem were 

eliminated. 
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The solution-space of the case studies covered a wide range of discrete design 

variables including wall and roof insulation thickness, roof coating type, glazing 

type, window-to-wall ratio of each façade, chiller and boiler equipment size and type 

(considering full load and part load performances), number and type of photovoltaic 

module for PV system integration and number and type of solar collector module for 

solar water heating system integration. 

In order to create a real-world application case, technical and cost information 

regarding the actual building materials and system equipment was collected from the 

Turkish construction market and a comprehensive product database was prepared. 

The database included data about thermal and optical properties of envelope 

materials, capacity, full load and part load efficiency of building system equipment 

and, product life, cost data of the each product including capital cost, installation 

fees, maintenance costs and scrap values. Collecting cost data was found to be 

problematic as no national level baseline cost levels are established and costs are 

highly volatile. 

Lastly, the optimization calculations were carried out, results are analysed and 

discussed. Each optimization run took about 20 hours on a moderate capacity 

computer with 16 GB RAM and 3.4 GHz processor. 

The results showed that proposed methodology succeeded in recommending climate-

appropriate and feasible new design options that are cost-efficient and energy-

efficient within building service life while improving occupant’s comfort and 

building CO2 emission performance.  

The validation of the methodology was assessed through a parametric analysis where 

optimized case is taken as initial scenario. The results showed that no further 

improvements are available for the considered case studies and the design options 

recommended by the proposed methodology were found as the optimum values 

within the scope of each case study. Therefore, for the case study applications of the 

current study it was accepted that the optimization method is capable of reliably 

identifying the optimum combination of design options. 

To conclude, the work presented in this chapter showed that the proposed 

methodology could be successfully applied to building design problem for cost-

effective energy-efficient building design solutions. 
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6.  CONCLUSION AND FUTURE WORK 

Buildings are one of the major energy consuming sectors in the world where they 

account for one-third of all final energy use and half of global electricity 

consumption. They are also an important source of carbon dioxide emissions because 

of their high energy consumption intensities. Therefore achieving energy efficiency 

in building sector plays a key role in reaching global energy and environmental 

targets as explained in IPCC publications (IPCC, 2007a; IPCC, 2007b). 

Unlocking the energy efficiency potential in the building sector is becoming a 

priority for many countries. The European Commission states in the Energy 

Efficiency Plan that the greatest energy saving potential lies in buildings (EC, 2011) 

and therefore the European Directive on Energy Performance of Buildings requires 

all new buildings to be nearly zero-energy buildings by the end of 2020, and all new 

buildings occupied and owned by public authorities are nearly zero-energy buildings 

by 31 December 2018. 

Fortunately, the professionals in the sector are beginning to realize that 

conventionally designed, constructed and operated buildings where design decisions 

are made by different team members independent of each other are not sufficient to 

address building energy efficiency targets set by authorities and the consequent 

global environmental challenges. Therefore, new design concepts and technologies 

are being emerged today and high energy performance buildings that can exceed 

current requirements of basic building standards are evolving from theory to reality.  

Advances in building science and technology have introduced many approaches and 

options that can help improving building performance; however, designing for 

energy efficiency is still not straightforward. There are many expectations from 

buildings, for example to use as minimum energy and resources possible, to improve 

the health, comfort and productivity of their occupants and to limit the harmful 

environmental effects during building lifespan. Moreover, buildings are also 

expected to offer all these competing merits at reasonable costs. For instance, the 

recast version of the European Directive on Energy Performance of Buildings 
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underlines the necessities of a future building activity aimed at the most proper level 

of energy efficiency with a view to achieving cost-optimal levels (EPBD, 2010). 

Many building design goals are in conflict and require a trade-off, and when 

combined with numerous design alternatives it could be rather difficult to select what 

design strategies to adopt and which technologies to implement through the 

application of simple design approaches.  

Whole Building Design concept, which refers to a design and construction technique 

that incorporates an integrated design approach and an integrated team process, is 

introduced in the last decade to support creation of high energy performance 

buildings (WBDG, 2014). Whole Building Design views the building as a system, 

rather than a collection of components and it requires a multi-disciplinary strategy 

that effectively integrates all aspects of site development, building design, 

construction, and operations and maintenance. 

In order to apply effectively Whole Building Design concept in real-life building 

projects, quantitative methods that can provide insight information about the building 

performance is strongly required. The interactions between building and building 

systems need be analysed and performance indicators for design options are required 

to be calculated and compared before decision-making. 

Building performance simulation is now a widely accepted technique that is capable 

of predicting building performance through numerical representation of a building 

and system model, prior to construction. BPS allows designer studying the influence 

of every design decision on the building energy response therefore it helps capturing 

an instance but it does not give an answer to what is the best solution for a particle 

design problem under given boundaries. Designer is required to set up several 

simulation studies, change the values of design variables manually and test 

performances of all the design combinations based on a trial-and-error approach. 

This labour-intensive and human-driven approach can lead to improved results but in 

many cases, it is extremely unlikely to achieve the best solution, especially for the 

cases with complex buildings. Therefore, there is a strong need to automate the 

search procedure. 
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Simulation-based building performance optimization has been introduced as a 

promising solution to deal with the difficulties of applying simulation based 

techniques into building design challenges. Coupling simulation tools with 

optimization engines allow computing the optimal values of several design 

alternatives automatically therefore it has a significant potential in informing 

building experts during decision-making. 

There is a significant contribution to building design optimization in the literature 

therefore firstly a thorough discussion of achievements was given in the scope of this 

study. 

The literature review showed that there is certain amount of work has been done on a 

variety of building design issues. Some of the research efforts mainly focused on 

developing efficient search techniques and algorithms suitable for the building 

design optimization problem, while majority of the studies concentrated on problem 

formulation.  

Most of the problem formulation approaches focused mainly on optimal design of 

building architectural design characteristics (construction/envelope parameters). 

Moreover, HVAC system design and efficient operation of individual devices 

through optimization has been investigated, too. There are also some studies 

proposed to address renewable system and component design with application of 

optimization. However, holistic approaches that aim to combine building 

architectural features, HVAC system features and renewable generation features 

simultaneously while taking into account various dimensions of building 

performance were in limited number.  

Therefore the aim of the this thesis has been to investigate a holistic simulation-based 

optimization methodology that can quantitatively assess combinations of actual 

technology choices from building architectural design, HVAC systems and 

renewable energy generation systems simultaneously for cost-effective energy 

efficiency together with building environmental performance and the occupants 

thermal comfort.  

The main aim of the proposed optimization scheme was to computationally design 

buildings that can achieve energy efficiency for the lowest possible global costs 

while limiting building related CO2 emission without sacrificing user thermal 
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comfort during building operation for real-world design challenges. Moreover, water 

consumption as a result of building HVAC system use was also addressed.  

The developed optimization framework consisted of three main modules: the 

optimizer, the simulator, and a user-created energy efficiency measures database. 

The responsibility of the optimizer is to control the entire process by implementing 

the optimization algorithm, to trigger simulation for performance calculation, to 

assign new values to variables, to calculate objective function, to impose constraints, 

and to check stopping criteria. The optimizer module is based on GenOpt 

optimization environment. However, a sub-module was added to optimization 

scheme to enable GenOpt to communicate with the user-created database module. 

Therefore, every time the value of a variable is updated, the technical and financial 

information of a matching product or system equipment is read from the database 

and written into simulation model and fed to the objective formula. 

The simulator evaluates energy-related performance metrics and functional 

constraints through dynamic simulation techniques provided by EnergyPlus.  

The database defines and organizes design variables and stores user-collected cost 

related, technical and non-technical data about the building energy efficiency 

measures to be tested during the optimization.  

An updated version of Particle Swarm Optimization with constriction coefficient is 

used as the optimization algorithm. 

In the problem formulation, the building performance is taken integrally as one-

problem and the interactions between building structure, lighting system, pre-

designed HVAC systems, sanitary water heating system and building-integrated 

renewable energy systems are captured simultaneously. The full coupling of thermal 

load, secondary system, plant and energy sources where there is a feedback from the 

supply-side to the demand-side provided a better understanding of how a building 

responds to the changing indoor and outdoor environmental factors therefore was 

able to capture the dynamic changes when a proposed HVAC system equipment is 

capable or not capable of meeting thermal loads.  

The optimization process was motivated by the aim to improve performance of a 

base case design scenario created by the user. The optimizer module initiated 

creating alternative design scenarios by combining the variable options according to 
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optimization search principles. At each optimization iteration, a design day 

calculation for summer and winter periods was run to predict the building heating 

and cooling loads. Once the load was established, the optimization algorithm sought 

to determine the most suitable boiler and chiller equipment among a user-created 

equipment library while preventing capacity mismatch through penalty approach. 

Equipment selection focused on both the equipment capacity to be able to meet the 

estimated maximum peak load and on-reference/off-reference equipment behaviour 

to provide the best dynamic performance throughout the year. In addition, dependent 

equipment such as cooling tower, room terminal units are also sized and selected 

with an aim to complement the HVAC design suitably. Moreover, when integrated 

with the rest of the building system, right-size of renewable systems together with 

ideal equipment components were also searched through optimization. The 

procedure was iterated until a predefined stopping criterion is satisfied. 

The objective function of the study was formulated as a single objective function, 

which is capable of including multi-dimension design aims. The primary objective 

was taken as minimization of building global costs due to changes in design variables 

therefore it included minimization of costs occur due to operational energy and water 

consumption together with ownership costs of building materials and building 

systems. Moreover, a set of penalty functions including equipment capacity, user 

comfort, CO2 emissions and renewable payback period were added to the main 

objective function in the form of constraints to restrict the solution region to user-set 

design target. Consequently, multi-objective design aims were translated into a 

single-objective where the penalty functions acted as secondary objectives.  

After an exhaustive description of the method, the performance of the proposed 

optimization methodology was evaluated through a case study implementation where 

different design scenarios were created, optimized and analysed. A hypothetical base 

case office building was defined. Three cities located in Turkey namely Istanbul, 

Ankara and Antalya were selected as building locations. Therefore, the performance 

of the methodology in different climatic conditions was investigated. An equipment 

database consists of actual building materials and system equipment commonly used 

in Turkish construction sector was prepared. In addition, technical and financial data 

necessary for objective function calculation were collected from the market. 
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The results of the case studies showed that application of the proposed methodology 

achieved giving climate-appropriate design recommendations, which resulted in 

major cost reductions and energy savings. Moreover new design alternatives also 

showed significantly better environmental performances as the CO2 rates sharply 

decreased. Similarly, occupant thermal comfort was improved with the new design 

suggestions. 

In Istanbul case study, if all design suggestions given by the proposed optimization 

methodology including PV and SWH system configurations was adopted, the 

building overall energy consumption from non-renewables would decrease by 44%, 

annual CO2 emission rate would decrease by 49 % and the building global costs can 

be would decrease by 21.7 %.  

Similarly, in Ankara case study, if all design suggestions given by the proposed 

optimization method was adopted, the building overall energy consumption from 

non-renewables would decrease by 47.3%, annual CO2 emission rate would decrease 

by 50.4 % and the building global costs would decrease by 23.3 % while improving 

the overall building comfort. 

If all design suggestions given by the proposed optimization method are adopted, the 

building overall energy consumption from non-renewables can be decreased by 

57.5%, annual CO2 emission rate can be decreased by 60.3 % and the building 

global costs can be decreased by 30.4 % while improving the overall building 

comfort. 

Finally, in Antalya case study, if all design suggestions given by the proposed 

optimization method was adopted, the building overall energy consumption from 

non-renewables could decrease by 57.5%, annual CO2 emission rate could decrease 

by 60.3 % and the building global costs could decrease by 30.4 % while improving 

the overall building comfort. 

The results of the case study were also validated through a set of parametric 

experiments. The outputs of the tests showed that optimization achieved obtaining 

reasonable optimum results within a good accuracy. 

One of the most important contributing factors of this thesis is introducing an 

integrative method where building architectural elements, HVAC system equipment 
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and renewable systems are simultaneously investigated and optimized while 

interactions between building and systems are being dynamically captured. 

Moreover, this research is distinctive from previous studies because it makes 

possible investigating actual market products as energy efficiency design options 

through its database application and a sub-program that connect optimization engine 

with the data library. Therefore, application of the methodology can provide support 

on real-world building design projects and can prevent a mismatch between the 

optimization recommendations and the available market solutions. However, great 

care has to be taken to collect accurate and consistent technical and cost data of the 

energy efficiency measures. 

Furthermore, another contributing merit of this research is that it achieves 

formulating competing building design aims in a single objective function, which can 

still capture multi-dimensions of building design challenge. Global costs are 

minimized while energy savings are achieved, CO2-equivelient emission is reduced, 

right-sized equipment are selected, thermal comfort is provided to users and target 

payback periods of investments are assured. 

In addition to capability to address several objectives, a large number of design 

variables could also be evaluated through the efficient structure of the framework 

due to database application. 

This research also suggests a time-saving search method due to its PSO algorithm 

settings. A huge solution space with more than 3.19E11 design possibilities are 

explored efficiently by only an average of 5000 evaluations. 

However, even though this research showed promise to design buildings as a cost-

effective and energy-efficient engineered system, it can still be improved in different 

ways:  

The adopted Particle Swarm Optimization Algorithm seems to be efficient for such 

optimization aims however, other evolutionary algorithms such as Genetic Algorithm 

and Hybrid Particle Swarm Algorithm can be included as an alternative to the 

optimization framework and the efficiencies of different algorithms can be 

compared. 
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The performance of single objective formulation of design aims can be expressed as 

multi-objective formulation and the optimization performances can be eventually 

analysed and compared. 

The current method has the capability of optimizing components of only one type of 

HVAC system in one optimization run. Therefore, it would be interesting as a future 

work to expand the capacity to assess and compare different HVAC systems 

together. 

Although the current methodology is able address a large number of common design 

variables and tested for many from different categories still new variables for 

instance building form, shading design, site design could be integrated into the 

optimization structure for a more realistic building architectural design investigation.  

Optimization objective expresses building environmental performance based on 

building annual CO2 emission rate, however, the impact of other greenhouse gases 

could be added to the objective formula for more detailed analysis. 

Current methodology considers energy efficiency and energy performance only 

during building operational phase, therefore embodied energy is not considered. In 

the future, a cradle-to-cradle life cycle assessment approach could be adopted for a 

better representative of actual design considerations and to contribute more to the 

sustainability. 

To conclude, the proposed methodology links building energy performance 

requirements to financial and environmental targets and it provides a promising 

structure for addressing real life building design challenges through fast and efficient 

optimization techniques.  
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APPENDIX A: Weather Data 

 

Figure A.1 : Monthly maximum outdoor air temperatures. 

 

Figure A.2 : Monthly minimum outdoor air temperatures. 

 

Figure A.3 : Monthly direct solar radiation. 

0

5

10

15

20

25

30

35

40

45

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecO
u

td
o

o
r 

d
ry

-b
u

lb
 t

em
p

er
a

tu
re

 

(o
C

) 

Months of the year 
Istanbul Ankara Antalya

-25

-20

-15

-10

-5

0

5

10

15

20

25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

O
u

td
o

o
r 

d
ry

-b
u

lb
 t

em
p

er
a

tu
re

 

(o
C

) 

Months of the year 

Istanbul Ankara Antalya

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecD
ir

e
ct

 a
v

er
a

g
e 

so
la

r 
ra

d
ia

ti
o

n
 

(W
h

/m
²)

 

Month 

Istanbul Ankara Antalya



342 

 

 

  

Table A.1 : Winter design day for Istanbul, Ankara and Antalya. 

Name Antalya Ankara Antalya 

Month 2 1 1 

Day of Month 21 21 21 

Maximum Dry-Bulb Temperature -2.6 -15.7 1.4 

Daily Dry-Bulb Temperature 

Range 
0 0 0 

Humidity Condition Type Wetbulb Wetbulb Wetbulb 

Wetbulb or DewPoint at 

Maximum Dry-Bulb 
-2.6 -15.7 1.4 

Barometric Pressure 100881 90432 100642 

Wind Speed 6.2 0.5 4.5 

Wind Direction 0 100 330 

Solar Model Indicator 
ASHRAE 

ClearSky 

ASHRAE 

ClearSky 

ASHRAE 

ClearSky 

Table A.2 : Summer design day for Istanbul, Ankara and Antalya. 

Name Antalya Ankara Antalya 

Month 8 8 7 

Day of Month 21 21 21 

Maximum Dry-Bulb Temperature 31.1 33 38 

Daily Dry-Bulb Temperature Range 7.7 15.4 10.9 

Humidity Condition Type Wetbulb Wetbulb Wetbulb 

Wetbulb or DewPoint at Maximum Dry-Bulb 21.4 17.6 21.9 

Barometric Pressure 100881 90432 100642 

Wind Speed 5.8 4 4.2 

Wind Direction 30 230 0 

Solar Model Indicator 
ASHRAE

Tau 

ASHRAE

Tau 

ASHRAE

Tau 

ASHRAE Clear Sky Optical Depth for Beam 

Irradiance (taub) 0.47 0.52 0.504 

ASHRAE Clear Sky Optical Depth for Diffuse 

Irradiance (taud) 1.973 1.726 1.87 
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APPENDIX B: Schedules 

 

 Occupancy fraction schedule. Figure B.1:

 

 

 

 Lighting fraction schedule. Figure B.2:
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 Plugged-in equipment fraction schedule. Figure B.3:

 

 

 

 Cooling setpoint schedule. Figure B.4:
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 Heating setpoint schedule. Figure B.5:

 

 

 

 Hot water use fraction schedule. Figure B.6:
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APPENDIX C: Chiller and boiler database 

 Table C.1: Boiler equipment database – low-efficiency equipment. 

Group A: Low-efficiency Boilers 

Boiler  

ID 

Capacity 

(kW) 

Nominal 

Thermal efficiency 

Price 

(TL) 
Efficiency curve 

1 55 0.84 2,453 BLE_1 

2 76 0.84 2,942 BLE_2 

3 93 0.84 3,339 BLE_3 

4 111 0.84 3,736 BLE_4 

5 128 0.84 4,135 BLE_5 

6 145 0.84 4,531 BLE_6 

7 163 0.84 4,637 BLE_7 

8 195 0.84 5,114 BLE_8 

9 227 0.84 5,710 BLE_9 

10 259 0.84 6,281 BLE_10 

11 291 0.84 6,869 BLE_11 

12 323 0.84 7,448 BLE_12 

13 355 0.84 8,029 BLE_13 

14 405 0.84 9,297 BLE_14 

15 448 0.84 10,113 BLE_15 

16 506 0.84 11,053 BLE_16 

17 564 0.84 12,146 BLE_17 

18 610 0.84 13,240 BLE_18 

19 663 0.84 14,332 BLE_19 

20 715 0.84 15,511 BLE_20 

21 773 0.84 16,553 BLE_21 

22 831 0.84 17,647 BLE_22 

23 878 0.84 18,689 BLE_23 

24 930 0.84 19,782 BLE_24 

25 1025 0.84 21,420 BLE_25 

26 1115 0.84 23,180 BLE_26 

27 1210 0.84 25,037 BLE_27 
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 Table C.2: Boiler equipment database - high-efficiency equipment. 

Group B: High-efficiency Boilers 

Boiler  

ID 

Capacity 

(kW) 

Nominal 

Thermal efficiency 

Price 

(TL) 
Efficiency curve 

28 58 0.95 6,948 BLE_28 

29 70 0.95 7,884 BLE_29 

30 85 0.95 9,268 BLE_30 

31 105 0.95 11,345 BLE_31 

32 125 0.95 12,140 BLE_32 

33 140 0.95 12,864 BLE_33 

34 170 0.95 13,801 BLE_34 

35 200 0.95 14,656 BLE_35 

36 230 0.95 16,270 BLE_36 

37 260 0.95 16,870 BLE_37 

38 295 0.95 18,130 BLE_38 

39 330 0.95 19,180 BLE_39 

40 350 0.95 19,677 BLE_40 

41 400 0.95 24,833 BLE_41 

42 455 0.95 29,623 BLE_42 

43 510 0.95 31,795 BLE_43 

44 570 0.95 36,476 BLE_44 

45 615 0.95 38,689 BLE_45 

46 660 0.95 42,108 BLE_46 

47 740 0.95 43,465 BLE_47 

48 785 0.95 46,298 BLE_48 

49 820 0.95 46,518 BLE_49 

50 880 0.95 49,949 BLE_50 

51 920 0.95 51,200 BLE_51 

52 1020 0.95 56,112 BLE_52 

53 1110 0.95 58,012 BLE_53 

54 1200 0.95 58,147 BLE_54 



348 

 Table C.3: Boiler thermal efficiency curves - low-efficiency equipment. 

Group A – low efficiency boilers 

curve = C1 + C2*x + C3*x**2 + C4*y + C5*y**2 + C6*x*y + C7*x**3 + C8*y**3 + 

C9*x**2*y + C10*x*y**2 

Name BLE_1 – BLE_27 

Coefficient1 Constant 1.111720116 

Coefficient2 x 0.078614078 

Coefficient3 x**2 -0.400425756 

Coefficient4 y 0 

Coefficient5 y**2 -0.000156783 

Coefficient6 x*y 0.009384599 

Coefficient7 x**3 0.234257955 

Coefficient8 y**3 1.33E-06 

Coefficient9 x**2*y -0.004446701 

Coefficient10 x*y**2 -1.22E-05 

Minimum Value of x 0.1 

Maximum Value of x 1 

Minimum Value of y 20 

Maximum Value of y 80 
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 Table C.4: Boiler thermal efficiency curves – high-efficiency equipment. 

Group B – high efficiency boilers 

curve = C1 + C2*x + C3*x**2 + C4*y + C5*y**2 + C6*x*y 

Name BLE_28 – BLE_54 

Coefficient1 Constant 1.124970374 

Coefficient2 x 0.014963852 

Coefficient3 x**2 -0.02599835 

Coefficient4 y 0 

Coefficient5 y**2 -1.40E-06 

Coefficient6 x*y -0.00153624 

Minimum Value of x 0.1 

Maximum Value of x 1 

Minimum Value of y 30 

Maximum Value of y 85 



350 

 Table C.5: Chiller equipment database – moderate-efficiency equipment. 

Group A: Moderate-efficiency Chillers 

Chiller  

ID 

Capacity 

(kW) 
EER 

Price 

(TL) 

Efficiency curves 

CAPFT EIRFT EIRFPLR 

1 287 5.04 123,229 CAP_1 EIR_1 EPLR_1 

2 312 4.8 124,326 CAP_2 EIR_2 EPLR_2 

3 349 4.85 125,308 CAP_3 EIR_3 EPLR_3 

4 375 4.57 126,977 CAP_4 EIR_4 EPLR_4 

5 413 4.86 131,398 CAP_5 EIR_5 EPLR_5 

6 450 4.69 136,273 CAP_6 EIR_6 EPLR_6 

7 470 4.7 138,713 CAP_7 EIR_7 EPLR_7 

8 510 4.72 142,623 CAP_8 EIR_8 EPLR_8 

9 542 4.55 146,078 CAP_9 EIR_9 EPLR_9 

10 599 4.68 155,377 CAP_10 EIR_10 EPLR_10 

11 652 4.72 164,306 CAP_11 EIR_11 EPLR_11 

12 701 4.74 174,659 CAP_12 EIR_12 EPLR_12 

13 760 4.72 188,210 CAP_13 EIR_13 EPLR_13 

14 814 4.73 200,847 CAP_14 EIR_14 EPLR_14 

15 899 4.45 219,606 CAP_15 EIR_15 EPLR_15 

16 986 4.76 238,666 CAP_16 EIR_16 EPLR_16 

17 1109 4.76 259,971 CAP_17 EIR_17 EPLR_17 

18 1207 4.55 276,983 CAP_18 EIR_18 EPLR_18 

19 1302 4.65 292,566 CAP_19 EIR_19 EPLR_19 

20 1420 4.7 323,780 CAP_20 EIR_20 EPLR_20 

21 1630 4.76 355,795 CAP_21 EIR_21 EPLR_21 

22 1750 4.73 380,899 CAP_22 EIR_22 EPLR_22 
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 Table C.6: Chiller equipment database – high-efficiency equipment. 

Group B: High-efficiency Chillers 

Chiller  

ID 

Capacity 

(kW) 
EER 

Price 

(TL) 

Efficiency curves 

CAPFT EIRFT EIRFPLR 

23 270 5.64 151,420 CAP_23 EIR_23 EPLR_23 

24 304 5.61 152,767 CAP_24 EIR_24 EPLR_24 

25 355 5.53 153,975 CAP_25 EIR_25 EPLR_25 

26 380 5.6 156,026 CAP_26 EIR_26 EPLR_26 

27 420 5.63 161,458 CAP_27 EIR_27 EPLR_27 

28 452 5.5 167,448 CAP_28 EIR_28 EPLR_28 

29 466 5.65 170,446 CAP_29 EIR_29 EPLR_29 

30 505 5.63 175,251 CAP_30 EIR_30 EPLR_30 

31 571 5.54 187,228 CAP_31 EIR_31 EPLR_31 

32 605 5.65 192,610 CAP_32 EIR_32 EPLR_32 

33 660 5.7 203,827 CAP_33 EIR_33 EPLR_33 

34 732 5.75 219,487 CAP_34 EIR_34 EPLR_34 

35 780 5.53 233,732 CAP_35 EIR_35 EPLR_35 

36 815 5.6 250,445 CAP_36 EIR_36 EPLR_36 

37 853 5.56 263,747 CAP_37 EIR_37 EPLR_37 

38 1035 5.68 311,982 CAP_38 EIR_38 EPLR_38 

39 1150 5.71 341,345 CAP_39 EIR_39 EPLR_39 

40 1230 5.7 363,633 CAP_40 EIR_40 EPLR_40 

41 1317 5.73 390,737 CAP_41 EIR_41 EPLR_41 

42 1442 5.5 417,272 CAP_42 EIR_42 EPLR_42 

43 1614 5.81 459,320 CAP_43 EIR_43 EPLR_43 

44 1742 5.72 496,423 CAP_44 EIR_44 EPLR_44 

  



352 

 Table C.7: Chiller capacity as a function of temperature curve coefficients - 

moderate-efficiency equipment. 

Group A: Moderate-efficiency Chillers  

curve = C1 + C2*x + C3*x**2 + C4*y + C5*y**2 + C6*x*y 

Name 

Coef. 1 

Constant 

Coef. 2 

x 

Coef.3 

x**2 

Coef.4 

y 

Coef.5 

y**2 

Coef. 6 

x*y 

Min 

x 

Max 

x 

Min 

y 

Max 

y 

CAP_1 9.62E-01 4.01E-02 8.71E-05 -4.60E-03 -6.97E-05 -2.26E-04 5 12 25 40 

CAP_2 9.67E-01 4.15E-02 -4.01E-05 -5.35E-03 -5.61E-05 -2.11E-04 5 12 25 40 

CAP_3 9.54E-01 4.17E-02 -3.58E-05 -4.70E-03 -6.45E-05 -2.16E-04 5 12 25 40 

CAP_4 9.42E-01 4.40E-02 -4.81E-18 -4.54E-03 -5.33E-05 -3.13E-04 5 12 25 40 

CAP_5 9.40E-01 4.16E-02 -1.85E-18 -4.34E-03 -6.05E-05 -2.25E-04 5 12 25 40 

CAP_6 9.53E-01 4.03E-02 3.33E-18 -4.79E-03 -5.56E-05 -1.93E-04 5 12 25 40 

CAP_7 9.53E-01 4.03E-02 3.33E-18 -4.79E-03 -5.56E-05 -1.93E-04 5 12 25 40 

CAP_8 9.53E-01 4.09E-02 -2.45E-05 -5.02E-03 -5.39E-05 -1.86E-04 5 12 25 40 

CAP_9 9.48E-01 4.18E-02 -2.31E-05 -4.96E-03 -5.07E-05 -2.11E-04 5 12 25 40 

CAP_10 9.42E-01 4.24E-02 -2.09E-05 -4.76E-03 -5.43E-05 -2.20E-04 5 12 25 40 

CAP_11 8.65E-01 3.55E-02 0.00E+00 -8.60E-04 -6.13E-05 -1.59E-04 5 12 25 40 

CAP_12 9.47E-01 4.25E-02 -3.57E-05 -5.03E-03 -4.99E-05 -2.24E-04 5 12 25 40 

CAP_13 9.47E-01 4.25E-02 -3.57E-05 -5.03E-03 -4.99E-05 -2.24E-04 5 12 25 40 

CAP_14 9.54E-01 4.22E-02 -1.11E-18 -5.30E-03 -4.91E-05 -2.20E-04 5 12 25 40 

CAP_15 9.39E-01 4.30E-02 -1.39E-05 -4.54E-03 -5.84E-05 -2.44E-04 5 12 25 40 

CAP_16 8.83E-01 3.52E-02 -1.27E-05 -1.71E-03 -5.32E-05 -1.40E-04 5 12 25 40 

CAP_17 9.39E-01 4.25E-02 -1.13E-05 -4.57E-03 -5.64E-05 -2.30E-04 5 12 25 40 

CAP_18 9.47E-01 4.26E-02 -2.07E-05 -4.95E-03 -5.39E-05 -2.23E-04 5 12 25 40 

CAP_19 8.77E-01 3.58E-02 -9.60E-06 -1.60E-03 -5.18E-05 -1.55E-04 5 12 25 40 

CAP_20 9.47E-01 4.26E-02 -2.07E-05 -4.95E-03 -5.39E-05 -2.23E-04 5 12 25 40 

CAP_21 8.77E-01 3.58E-02 -9.60E-06 -1.60E-03 -5.18E-05 -1.55E-04 5 12 25 40 

CAP_22 8.77E-01 3.58E-02 -9.60E-06 -1.60E-03 -5.18E-05 -1.55E-04 5 12 25 40 

CAP_23 7.68E-01 1.48E-02 -1.61E-04 1.05E-02 -3.03E-04 4.68E-04 5 18 25 45 
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 Table C.8: Chiller capacity as a function of temperature curve coefficients - high-

efficiency equipment. 

Group B: High-efficiency Chillers 

curve = C1 + C2*x + C3*x**2 + C4*y + C5*y**2 + C6*x*y 

Name 

Coef. 1 

Constant 

Coef. 2 

x 

Coef.3 

x**2 

Coef.4 

y 

Coef.5 

y**2 

Coef. 6 

x*y 

Min 

x 

Max 

x 

Min 

y 

Max 

y 

CAP_24 7.32E-01 4.65E-04 -3.66E-04 1.56E-02 -4.17E-04 9.15E-04 5 18 25 45 

CAP_25 7.80E-01 1.81E-02 -2.69E-04 8.87E-03 -2.82E-04 4.87E-04 5 18 25 45 

CAP_26 7.80E-01 1.81E-02 -2.69E-04 8.87E-03 -2.82E-04 4.87E-04 5 18 25 45 

CAP_27 9.27E-01 1.78E-02 -4.45E-04 2.64E-03 -2.68E-04 6.75E-04 5 18 25 45 

CAP_28 9.27E-01 1.78E-02 -4.45E-04 2.64E-03 -2.68E-04 6.75E-04 5 18 25 45 

CAP_29 7.29E-01 -2.06E-02 -1.99E-04 2.22E-02 -6.01E-04 1.43E-03 5 18 25 45 

CAP_30 8.59E-01 3.32E-03 -3.47E-04 6.93E-03 -2.82E-04 8.55E-04 5 18 25 45 

CAP_31 8.21E-01 5.95E-03 -3.92E-04 9.08E-03 -3.18E-04 8.34E-04 5 18 25 45 

CAP_32 8.21E-01 5.95E-03 -3.92E-04 9.08E-03 -3.18E-04 8.34E-04 5 18 25 45 

CAP_33 7.57E-01 1.33E-02 -2.76E-04 1.13E-02 -3.29E-04 6.02E-04 5 18 25 45 

CAP_34 7.57E-01 1.33E-02 -2.76E-04 1.13E-02 -3.29E-04 6.02E-04 5 18 25 45 

CAP_35 7.41E-01 1.58E-02 -1.71E-04 1.21E-02 -3.33E-04 4.81E-04 5 18 25 45 

CAP_36 7.67E-01 1.39E-02 -2.23E-04 1.11E-02 -3.29E-04 5.50E-04 5 18 25 45 

CAP_37 7.67E-01 1.39E-02 -2.23E-04 1.11E-02 -3.29E-04 5.50E-04 5 18 25 45 

CAP_38 8.66E-01 3.43E-03 -3.50E-04 6.23E-03 -2.68E-04 8.48E-04 5 18 25 45 

CAP_39 8.60E-01 1.60E-03 -2.79E-04 7.08E-03 -2.81E-04 8.44E-04 5 18 25 45 

CAP_40 8.02E-01 1.38E-02 -2.12E-04 8.49E-03 -2.82E-04 5.45E-04 5 18 25 45 

CAP_41 8.02E-01 1.38E-02 -2.12E-04 8.49E-03 -2.82E-04 5.45E-04 5 18 25 45 

CAP_42 7.82E-01 2.37E-02 -9.99E-05 8.20E-03 -2.63E-04 2.68E-04 5 18 25 45 

CAP_43 7.48E-01 1.34E-02 -2.19E-04 1.20E-02 -3.35E-04 5.49E-04 5 18 25 45 

CAP_44 7.77E-01 1.37E-02 -2.43E-04 1.05E-02 -3.17E-04 5.53E-04 5 18 25 45 
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 Table C.9: Chiller Energy Input Ratio as a Function of Temperature curve 

coefficients- moderate-efficiency equipment. 

Group A: Moderate-efficiency Chillers 

curve = C1 + C2*x + C3*x**2 + C4*y + C5*y**2 + C6*x*y 

Name 

Coef. 1 

Constant 

Coef. 2 

x 

Coef.3 

x**2 

Coef.4 

y 

Coef.5 

y**2 

Coef. 6 

x*y 

Min 

x 

Max 

x 

Min 

y 

Max 

y 

EIR_1 7.96E-01 -1.25E-03 7.38E-04 -9.84E-03 8.11E-04 -1.23E-03 5 12 25 40 

EIR_2 8.89E-01 -1.21E-02 1.40E-03 -1.29E-02 8.54E-04 -1.21E-03 5 12 25 40 

EIR_3 8.68E-01 -1.27E-02 1.28E-03 -1.17E-02 8.32E-04 -1.12E-03 5 12 25 40 

EIR_4 8.26E-01 -1.01E-02 1.10E-03 -1.04E-02 8.02E-04 -1.07E-03 5 12 25 40 

EIR_5 8.49E-01 -7.00E-03 9.31E-04 -1.24E-02 8.41E-04 -1.10E-03 5 12 25 40 

EIR_6 7.80E-01 -3.93E-03 8.92E-04 -9.62E-03 8.25E-04 -1.21E-03 5 12 25 40 

EIR_7 7.80E-01 -3.93E-03 8.92E-04 -9.62E-03 8.25E-04 -1.21E-03 5 12 25 40 

EIR_8 8.47E-01 -1.21E-02 1.24E-03 -9.95E-03 7.91E-04 -1.14E-03 5 12 25 40 

EIR_9 8.66E-01 -1.14E-02 1.11E-03 -1.18E-02 8.37E-04 -1.15E-03 5 12 25 40 

EIR_10 8.85E-01 -1.54E-02 1.34E-03 -1.09E-02 8.06E-04 -1.14E-03 5 12 25 40 

EIR_11 8.73E-01 -1.04E-02 8.14E-04 -9.13E-03 6.81E-04 -8.60E-04 5 12 25 40 

EIR_12 8.09E-01 -8.75E-03 1.11E-03 -1.01E-02 8.45E-04 -1.23E-03 5 12 25 40 

EIR_13 8.09E-01 -8.75E-03 1.11E-03 -1.01E-02 8.45E-04 -1.23E-03 5 12 25 40 

EIR_14 8.70E-01 -1.14E-02 1.16E-03 -1.17E-02 8.31E-04 -1.17E-03 5 12 25 40 

EIR_15 8.61E-01 -8.16E-03 1.03E-03 -1.15E-02 8.27E-04 -1.21E-03 5 12 25 40 

EIR_16 7.94E-01 -8.42E-03 7.42E-04 -5.39E-03 6.32E-04 -8.54E-04 5 12 25 40 

EIR_17 8.45E-01 -9.51E-03 1.19E-03 -1.12E-02 8.51E-04 -1.27E-03 5 12 25 40 

EIR_18 8.86E-01 -1.00E-02 1.08E-03 -1.25E-02 8.33E-04 -1.16E-03 5 12 25 40 

EIR_19 8.53E-01 -1.10E-02 7.97E-04 -8.06E-03 6.65E-04 -8.17E-04 5 12 25 40 

EIR_20 8.86E-01 -1.00E-02 1.08E-03 -1.25E-02 8.33E-04 -1.16E-03 5 12 25 40 

EIR_21 8.53E-01 -1.10E-02 7.97E-04 -8.06E-03 6.65E-04 -8.17E-04 5 12 25 40 

EIR_22 8.53E-01 -1.10E-02 7.97E-04 -8.06E-03 6.65E-04 -8.17E-04 5 12 25 40 
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 Table C.10: Chiller Energy Input Ratio as a Function of Temperature curve 

coefficients - high-efficiency equipment. 

Group B: High-efficiency Chillers 

curve = C1 + C2*x + C3*x**2 + C4*y + C5*y**2 + C6*x*y 

Name 

Coef. 1 

Constant 

Coef. 2 

x 

Coef.3 

x**2 

Coef.4 

y 

Coef.5 

y**2 

Coef. 6 

x*y 

Min 

x 

Max 

x 

Min 

y 

Max 

y 

EIR_23 6.14E-01 -2.31E-03 9.07E-04 -2.22E-03 7.81E-04 -1.33E-03 5 18 25 45 

EIR_24 6.44E-01 1.18E-02 8.84E-04 -7.76E-03 9.02E-04 -1.65E-03 5 18 25 45 

EIR_25 6.11E-01 -4.29E-03 1.01E-03 -2.84E-04 7.26E-04 -1.33E-03 5 18 25 45 

EIR_26 6.11E-01 -4.29E-03 1.01E-03 -2.84E-04 7.26E-04 -1.33E-03 5 18 25 45 

EIR_27 6.41E-01 4.59E-03 1.25E-03 -4.43E-03 8.62E-04 -1.82E-03 5 18 25 45 

EIR_28 6.41E-01 4.59E-03 1.25E-03 -4.43E-03 8.62E-04 -1.82E-03 5 18 25 45 

EIR_29 6.10E-01 1.53E-02 1.34E-03 -5.69E-03 9.31E-04 -2.13E-03 5 18 25 45 

EIR_30 6.01E-01 1.02E-02 9.99E-04 -2.65E-03 8.02E-04 -1.72E-03 5 18 25 45 

EIR_31 6.20E-01 8.10E-03 1.05E-03 -3.85E-03 8.27E-04 -1.70E-03 5 18 25 45 

EIR_32 6.20E-01 8.10E-03 1.05E-03 -3.85E-03 8.27E-04 -1.70E-03 5 18 25 45 

EIR_33 6.85E-01 2.17E-03 1.02E-03 -7.25E-03 8.72E-04 -1.53E-03 5 18 25 45 

EIR_34 6.85E-01 2.17E-03 1.02E-03 -7.25E-03 8.72E-04 -1.53E-03 5 18 25 45 

EIR_35 6.97E-01 2.73E-03 8.78E-04 -8.86E-03 8.97E-04 -1.45E-03 5 18 25 45 

EIR_36 6.58E-01 4.03E-03 8.05E-04 -5.74E-03 8.17E-04 -1.39E-03 5 18 25 45 

EIR_37 6.58E-01 4.03E-03 8.05E-04 -5.74E-03 8.17E-04 -1.39E-03 5 18 25 45 

EIR_38 5.96E-01 9.43E-03 1.04E-03 -1.94E-03 7.92E-04 -1.73E-03 5 18 25 45 

EIR_39 6.08E-01 1.09E-02 9.65E-04 -3.17E-03 8.06E-04 -1.68E-03 5 18 25 45 

EIR_40 6.08E-01 1.09E-02 9.65E-04 -3.17E-03 8.06E-04 -1.68E-03 5 18 25 45 

EIR_41 6.58E-01 2.87E-03 9.69E-04 -5.00E-03 8.19E-04 -1.49E-03 5 18 25 45 

EIR_42 6.95E-01 -3.28E-04 8.63E-04 -7.43E-03 8.55E-04 -1.36E-03 5 18 25 45 

EIR_43 6.95E-01 3.24E-03 9.45E-04 -8.57E-03 8.93E-04 -1.48E-03 5 18 25 45 

EIR_44 6.70E-01 1.77E-03 9.42E-04 -5.79E-03 8.19E-04 -1.40E-03 5 18 25 45 
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 Table C.11: Energy Input Ratio as a Function of Part-load Ratio curve- moderate-

efficiency equipment. 

Group A: Moderate-efficiency Chillers 

curve = C1 + C2*x + C3*x**2 

Name 
Coeff.1 

Constant 

Coeff.2 

x 

Coeff.3 

x**2 

Min 

x 

Max 

x 

EPLR_1 4.15E-02 6.54E-01 3.04E-01 0.25 1.01 

EPLR_2 3.30E-02 9.11E-01 5.57E-02 0.25 1.01 

EPLR_3 3.30E-02 9.11E-01 5.57E-02 0.25 1.01 

EPLR_4 3.30E-02 9.11E-01 5.57E-02 0.25 1.01 

EPLR_5 3.30E-02 9.11E-01 5.57E-02 0.25 1.01 

EPLR_6 1.98E-01 2.73E-01 5.28E-01 0.3 1.01 

EPLR_7 1.98E-01 2.73E-01 5.28E-01 0.3 1.01 

EPLR_8 1.82E-01 3.73E-01 4.45E-01 0.3 1.01 

EPLR_9 3.06E-01 -1.55E-01 8.48E-01 0.3 1.01 

EPLR_10 3.06E-01 -1.55E-01 8.48E-01 0.3 1.01 

EPLR_11 3.06E-01 -1.55E-01 8.48E-01 0.3 1.01 

EPLR_12 2.00E-01 6.75E-01 1.24E-01 0.28 1.01 

EPLR_13 2.00E-01 6.75E-01 1.24E-01 0.28 1.01 

EPLR_14 2.00E-01 6.75E-01 1.24E-01 0.28 1.01 

EPLR_15 1.32E-01 1.01E+00 -1.41E-01 0.3 1.01 

EPLR_16 1.01E-01 1.12E+00 -2.17E-01 0.3 1.01 

EPLR_17 1.63E-01 7.90E-01 4.77E-02 0.25 1.01 

EPLR_18 1.63E-01 7.90E-01 4.77E-02 0.25 1.01 

EPLR_19 1.63E-01 7.90E-01 4.77E-02 0.25 1.01 

EPLR_20 1.63E-01 7.90E-01 4.77E-02 0.25 1.01 

EPLR_21 1.63E-01 7.90E-01 4.77E-02 0.25 1.01 

EPLR_22 1.63E-01 7.90E-01 4.77E-02 0.25 1.01 
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 Table C.12: Energy Input Ratio as a Function of Part-load Ratio curve - high-

efficiency equipment. 

Group B: High-efficiency Chillers 

curve = C1 + C2*x + C3*x**2 

Name 
Coeff.1 

Constant 

Coeff.2 

x 

Coeff.3 

x**2 

Min 

x 

Max 

x 

EPLR_23 1.20E-01 1.40E-01 7.39E-01 0.19 1.02 

EPLR_24 1.20E-01 1.40E-01 7.39E-01 0.19 1.02 

EPLR_25 1.20E-01 1.40E-01 7.39E-01 0.19 1.02 

EPLR_26 1.20E-01 1.40E-01 7.39E-01 0.19 1.02 

EPLR_27 1.20E-01 1.40E-01 7.39E-01 0.19 1.02 

EPLR_28 1.20E-01 1.40E-01 7.39E-01 0.19 1.02 

EPLR_29 1.20E-01 1.40E-01 7.39E-01 0.19 1.02 

EPLR_30 1.20E-01 1.40E-01 7.39E-01 0.19 1.02 

EPLR_31 1.20E-01 1.40E-01 7.39E-01 0.19 1.02 

EPLR_32 1.20E-01 1.40E-01 7.39E-01 0.19 1.02 

EPLR_33 1.20E-01 1.40E-01 7.39E-01 0.19 1.02 

EPLR_34 1.20E-01 1.40E-01 7.39E-01 0.19 1.02 

EPLR_35 1.20E-01 1.40E-01 7.39E-01 0.19 1.02 

EPLR_36 1.50E-01 -6.80E-02 9.17E-01 0.18 1.03 

EPLR_37 1.50E-01 -6.80E-02 9.17E-01 0.18 1.03 

EPLR_38 1.41E-01 -1.58E-01 1.01E+00 0.2 1.03 

EPLR_39 1.61E-01 -2.06E-01 1.04E+00 0.19 1.01 

EPLR_40 3.34E-01 -4.10E-01 1.08E+00 0.19 1.02 

EPLR_41 3.34E-01 -4.10E-01 1.08E+00 0.19 1.02 

EPLR_42 9.66E-02 7.48E-01 1.57E-01 0.18 1.03 

EPLR_43 9.66E-02 7.48E-01 1.57E-01 0.18 1.03 

EPLR_44 9.66E-02 7.48E-01 1.57E-01 0.18 1.03 
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APPENDIX D: Penalty Parameters 

 

 

 The difference between the CO2 emission rate of any design option and Figure D.1:

the target rate for Istanbul case (∆CO2). 

 

 

 

 The squared value of the ∆CO2 for Istanbul case. Figure D.2:
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 The difference between the PPD index of any design option and the Figure D.3:

target index for Istanbul case (∆PPD). 

 

 

 

 The squared value of the ∆PPD for Istanbul case. Figure D.4:

 

 

 

 

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

P
en

a
lt

y
 

Iteration 

Istanbul ∆PPD 

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160

P
en

a
lt

y
 

Iteration 

(Istanbul ∆PPD)^2 



360 

 

 The difference between the minimum allowed chiller capacity and the Figure D.5:

recommended chiller equipment capacity for Istanbul case (∆CLmin). 

 

 

 

 The squared value of the ∆CLmin for Istanbul case. Figure D.6:
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 The difference between the recommended chiller equipment capacity Figure D.7:

and the maximum allowed chiller capacity for Istanbul case (∆CLmax). 

 

 

 

 The squared value of the ∆CLmax for Istanbul case. Figure D.8:
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 The difference between the minimum allowed boiler capacity and the Figure D.9:

recommended boiler equipment capacity for Istanbul case (∆BLmin). 

 

 

 

 The squared value of the ∆BLmin for Istanbul case. Figure D.10:
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 The difference between the recommended boiler equipment capacity Figure D.11:

and the maximum allowed boiler capacity for Istanbul case (∆BLmax). 

 

 

 

 The squared value of the ∆BLmax for Istanbul case. Figure D.12:
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 The difference between the baypack period of any design option with Figure D.13:

PV and the target payback period for Istanbul case (∆BLmax). 

 

 

 

 The squared value of the ∆PB for Istanbul case. Figure D.14:
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 Penalty function values of the CO2 emission for Istanbul case. Figure D.15:

 

 

 

 Penalty function values of the PPD index for Istanbul case. Figure D.16:
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 Penalty function values of the chiller minimum capacity for Istanbul Figure D.17:

case. 

 

 

 

 Penalty function values of the chiller maximum capacity for Istanbul Figure D.18:

case. 
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 Penalty function values of the boiler minimum capacity for Istanbul Figure D.19:

case. 

 

 

 

 Penalty function values of the boiler maximum capacity for Istanbul Figure D.20:

case. 
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 Penalty function values of the payback period for Istanbul case. Figure D.21:
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 The difference between the CO2 emission rate of any design option Figure D.22:

and the target rate for Ankara case (∆CO2). 

 

 

 

 The squared value of the ∆CO2 for Ankara case. Figure D.23:
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 The difference between the PPD index of any design option and the Figure D.24:

target index for Ankara case (∆PPD). 

 

 

 

 The squared value of the ∆PPD for Ankara case. Figure D.25:
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 The difference between the minimum allowed chiller capacity and the Figure D.26:

recommended chiller equipment capacity for Ankara case (∆CLmin). 

 

 

 

 The squared value of the ∆CLmin for Ankara case. Figure D.27:
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 The difference between the recommended chiller equipment capacity Figure D.28:

and the maximum allowed chiller capacity for Ankara case (∆CLmax). 

 

 

 

 The squared value of the ∆CLmax for Ankara case. Figure D.29:
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 The difference between the minimum allowed boiler capacity and the Figure D.30:

recommended boiler equipment capacity for Ankara case (∆BLmin). 

 

 

 

 

 

 The squared value of the ∆BLmin for Ankara case. Figure D.31:
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 The difference between the recommended boiler equipment capacity Figure D.32:

and the maximum allowed boiler capacity for Ankara case (∆BLmax). 

 

 

 

 

 The squared value of the ∆BLmax for Ankara case. Figure D.33:
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 Penalty function values of the CO2 emission for Ankara case. Figure D.34:

 

 

 

 Penalty function values of the PPD index for Ankara case. Figure D.35:
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 Penalty function values of the chiller minimum capacity for Ankara Figure D.36:

case. 

 

 

 

 Penalty function values of the chiller maximum capacity for Ankara Figure D.37:

case. 
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 Penalty function values of the boiler minimum capacity for Ankara Figure D.38:

case. 

 

 

 

 Penalty function values of the boiler maximum capacity for Ankara Figure D.39:

case. 
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 The difference between the CO2 emission rate of any design option Figure D.40:

and the target rate for Antalya case (∆CO2). 

 

 

 

 The squared value of the ∆CO2 for Antalya case. Figure D.41:
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 The difference between the PPD index of any design option and the Figure D.42:

target index for Antalya case (∆PPD). 

 

 

 

 

 The squared value of the ∆PPD for Antalya case. Figure D.43:
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 The difference between the minimum allowed chiller capacity and the Figure D.44:

recommended chiller equipment capacity for Antalya case (∆CLmin). 

 

 

 

 The squared value of the ∆CLmin for Antalya case. Figure D.45:
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 The difference between the recommended chiller equipment capacity Figure D.46:

and the maximum allowed chiller capacity for Antalya case (∆CLmax). 

 

 

 The squared value of the ∆CLmax for Antalya case. Figure D.47:
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 The difference between the minimum allowed boiler capacity and the Figure D.48:

recommended boiler equipment capacity (∆BLmin) for Antalya case. 

 

 

 

 The squared value of the ∆BLmin for Antalya case. Figure D.49:
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 The difference between the recommended boiler equipment capacity Figure D.50:

and the maximum allowed boiler capacity (∆BLmax) for Antalya case. 

 

 

 

 The squared value of the ∆BLmax for Antalya case. Figure D.51:
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 Penalty function values of the CO2 emission for Antalya case. Figure D.52:

 

 

 

 Penalty function values of the PPD index for Antalya case. Figure D.53:
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 Penalty function values of the chiller minimum capacity for Figure D.54:

Antalya case. 

 

 

 

 Penalty function values of the chiller maximum capacity for Figure D.55:

Antalya case. 
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 Penalty function values of the boiler minimum capacity for Figure D.56:

Antalya case. 

 

 

 

 Penalty function values of the boiler maximum capacity for Figure D.57:

Antalya case. 
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