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Optimal Dynamic Asset Allocation with Lower

Partial Moments Criteria and Affine Policies∗

Giuseppe Carlo Calafiore†

Abstract

This paper discusses an optimization-based approach for solving multi-
period dynamic asset allocation problems using empirical asymmetric
measures of risk. Three features distinguish the proposed approach from
the mainstream ones. First, our approach is non parametric, in the sense
that it does not require explicit estimation of the parameters of a statis-
tical model for the returns distribution: the approach relies directly on
data (the scenarios) generated by an oracle which may include expert
knowledge along with a standard stochastic return model. Second, it em-
ploys affine decision policies, which make the multi-period formulation of
the problem amenable to an efficient convex optimization format. Third,
it uses asymmetric, unilateral measures of risk which, unlike standard
symmetric measures such as variance, capture the fact that investors are
usually not averse to return deviations from the expected target, if these
deviations actually exceed the target.

1 Introduction

The dynamic asset allocation methodology discussed in this paper belongs to
the class of data-driven techniques, which use return data directly in order
to numerically compute the optimal investment decisions. Mainstream model-
based approaches, derived from the classical Markowitz setup (see, e.g., [22]),
focus on parameters of the return distribution (such as expected returns and
covariance) that need to be estimated, and then derive the optimal investment
decisions on the basis of these parameters. It is for instance well known (see, e.g.,
[3], [14]) that the allocation resulting from “classical” approaches is sensitive to
the estimated model parameters (e.g., expected returns and covariances, or other
parameters of the elicited return distribution). As a consequence, due to model
estimation errors, a portfolio designed to have certain desired characteristics
may well fail to provide the expected performance “out of sample,” that is on
new, future scenarios that have not been accounted for at the model estimation
stage.

∗This work has been funded in part by Fondaco SGR S.p.A.
†Full professor at Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy.

E-mail: giuseppe.calafiore@polito.it
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Data-driven approaches (see, e.g., [10, 18, 20, 21], for applications in single-
period financial problems), in contrast, do not necessarily or explicitly require
the intermediate step of estimating a statistical model of the returns: they focus
instead on data, and aim at determining the optimal allocations using the data
directly, as illustrated schematically in Figure 1. We observe that while it is true
that the data (scenarios) can (and typically are) generated by a simple para-
metric statistical model of the returns, this is not necessary: scenarios can be
generated by a mixture of parametric statistical models and expert knowledge,
and may thus represent situations that are possibly more rich and realistic than
those captured by, say, a parametric model based on the first two moments of
the returns distribution.

Figure 1: Model based approach (top) vs. data-driven approach (bottom).

Typical multi-period decision problems are initially cast as model-based op-
timization problems, but are later transformed into data-driven ones, at the
stage when numerical solution is required. Indeed, the usual computational ap-
proach to solve recursive decision problems in presence of uncertainty is given
by multi-stage stochastic programming, see, e.g., [7, 8, 19, 24] and the many
references therein. However, while stochastic programming provides a concep-
tually sound framework for posing multi-stage decision problems, it is hard to
solve numerically (see, e.g., [25]); the key difficulty stemming from the fact
that exponentially growing “scenario trees” need to be introduced in order to
model approximately the conditional nature of the decision problem. This limits
in practice the applicability of stochastic programming techniques to financial
decision problems with few decision stages.

In this paper, we follow an alternative approximation approach, based on
restricting the reaction policies to have a prescribed structure (in particular, an
affine structure). This idea emerged in the context of robust optimization (see,
e.g., [5, 15]), and has been successfully applied in the context of multi-stage
financial decision problems in, e.g., [9] and [12, 13]. In these latter references,
the author uses a model-based approach, and decision criteria based on sym-
metric measures of risk (variance). The contribution of the present work is to
extend such a model to a data-driven framework, with possibly asymmetric risk
measures. The decision model we explore is based on the use of first and second
order empirical lower partial moments (LPM), which capture the risk averse-
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ness of the investor only for negative deviations of the returns from the target
return. More precisely, we consider a decision problem over T periods, where
at each period we have the opportunity of rebalancing our portfolio allocation,
with the objective of obtaining a minimum level of a suitable cost function at
the final stage, while guaranteeing satisfaction of portfolio constraints at each
stage. The cost function we consider is of the form

LPMν
.
=

1

N

N∑
i=1

(
max(0, γ − %(i))

)ν
, (1)

where ν is either 1 (first-order LPM model) or 2 (second-order LPM model), γ
is a given desired gain level for our investment strategy at the final period T ,
and %(i) is the final gain under the i-th scenario; see Section 3.2 for a precise
definition of all terms. The gains %(i) depend on our stage decisions, and the
objective is to devise such decisions so to make the cost LPMν minimal. For
ν = 1, the cost LPM1 penalizes strategies resulting in gains that, on average, fall
short of the target gain γ. Contrary to standard, symmetric measures of risk,
LPM1 does not penalize gains above the target, and this should model the fact
that such excess gains are indeed usually welcome by investors. Cost LPM2 acts
in a similar way, but now the negative deviations from the target are squared:
this makes the cost more sensitive to large deviations and thus tends to provide
more “cautious” strategies. Full justification for the use of such asymmetric
measures is given, e.g., in [2, 17, 23]; see also [4].

Whether an LPM1 or an LPM2 criterion should be employed is a matter
related to the risk averseness of the decision maker. In this paper, we propose
efficient numerical solution models for both criteria. In particular, we shall
develop such decision models under two frameworks that we name open loop
and closed loop. These two approaches are described in detail in Section 3.2
and in Section 4, respectively. In the open-loop approach all stage decisions are
virtually taken at the initial time, while in the closed-loop approach the stage
decision may change according to an affine policy, thus adapting to market
fluctuations as time moves towards the final stage. The use of affine policies for
multi-stage financial allocation problems in conjunction with asymmetric risk
measures is a novelty in the literature. Our terminology, referring to “open-loop”
and “closed-loop” approaches, is perhaps nonstandard in the financial literature:
it is borrowed from control systems engineering, where the closed-loop approach
is related to feedback (see, e.g., [1]), which is a mechanism whereby system’s
outputs are measured and used to devise suitable inputs for the system itself. In
the present context, closed-loop indeed refers, by analogy, to an approach where
“measurements” of the returns that become available during the optimization
horizon are dynamically used in order to compute control actions (i.e., portfolio
adjustments), while open-loop refers to the approach where such information is
neglected.

We remark that we do not consider transaction costs in this work. A simple
scheme of proportional transaction costs, however, can be easily introduced
in our model, while more elaborate cost structures are likely to destroy the
convexity of the model.
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2 Definitions and preliminaries

2.1 Return and gain vectors

We denote with a1, . . . , an, a collection of n assets, and with pi(k) the market
price of ai at time k∆, where k is an integer, and ∆ is a fixed period of time.
The simple return of an investment in asset i over the k-th period, from (k−1)∆
to k∆, is

ri(k)
.
=
pi(k)− pi(k − 1)

pi(k − 1)
, i = 1, . . . , n; k = 1, 2, . . . ,

and the corresponding gross return, or gain, is defined as

gi(k)
.
= 1 + ri(k), i = 1, . . . , n; k = 1, 2, . . .

We denote with r(k)
.
= [r1(k) · · · rn(k)]

>
the vector of assets’ returns over the

k-th period, and with g(k) the corresponding vector of gains. The notation
G(k) = diag(g(k)) indicates a diagonal matrix having the elements of g(k) in
the diagonal.

The return and gain vectors are assumed to be random quantities, and we
denote with P1,2,... the probability distribution of {r(1), r(2), . . .}, given the
past {. . . , r(−1), r(0)}, where k = 0 denotes the current time, at which the
portfolio allocation decision is to be taken. We let T ≥ 1 denote the number
of forward periods over which the allocation decisions need to be taken, and we
let P denote the marginal joint probability distribution of {r(1), . . . r(T )} given
the past. We further set, for compactness of notation, T .

= {0, . . . , T − 1}, and
N .

= {1, . . . , N}, where N is the number of scenarios.

2.2 Scenario-generating oracle

We do not assume that P is known. We only assume that there is available
a scenario-generating oracle (SGO), which is capable of generating indepen-
dent and identically distributed (iid) samples of the forward return streams
{r(1), . . . r(T )}, according to P. It is important to observe that the mechanism
inside the SGO may include both a classical, statistically estimated model of
the returns, as well as any type of “expert knowledge,” which substantiates in
the inclusion, with a given probability, of certain specific return paths in the
SGO.

2.3 Portfolio vector and constraints

A portfolio of assets a1, . . . , an is defined by a vector x(k) ∈ Rn whose entry
xi(k), i = 1, . . . , n, describes the (signed) amount of an investor’s wealth in-
vested in asset ai at time k ∈ K, where xi(k) ≥ 0 denotes a “long” position, and
xi(k) < 0 denotes a “short” position. In portfolio design, the portfolio vector
x(k) is typically subject to various constraints, reflecting the investor’s a-priori
policies and bindings. For example, short-selling might be forbidden, in which
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case the components of x(k) must be nonnegative (which we write as x(k) ≥ 0,
with element-wise inequality), or the portfolio should be self-financing (the sum
of portfolio entries must be equal to a constant), or yet constraints may include
minimum and maximum exposure in an individual asset, or limits in the ex-
posure over classes of assets, etc. In this paper, we shall treat the problem in
reasonable generality by assuming that the portfolio vector is constrained in a
polytope (a bounded polyhedron) X (k).

3 Open-loop portfolio dynamics

We consider a decision problem over T periods (or stages), where at each period
we have the opportunity of rebalancing our portfolio allocation, with the objec-
tive of obtaining a minimum level of a suitable cost function (to be discussed
later) at the final stage, while guaranteeing satisfaction of portfolio constraints
at each stage.

Consider a decision horizon of T periods, where the k-th period starts at
time k − 1 and ends at time k, see Figure 2.

Figure 2: Investment periods.

We denote with xi(k) the Euro value of the portion of the investor’s total wealth
invested in security ai at time k. The portfolio at time k is the vector

x(k)
.
=
[
x1(k) · · · xn(k)

]>
.

The investor’s total wealth at time k is

w(k)
.
=

n∑
i=1

x(k) = 1>x(k),

where 1 denotes a vector of ones. Let x(0) be the given initial portfolio compo-
sition at time k = 0 (for example, one may assume that x(0) is all zeros, except
for one entry representing the initial available amount of cash). At k = 0, we
have the opportunity of conducting transactions on the market and therefore
adjusting the portfolio by increasing or decreasing the amount invested in each
asset. Just after transactions, the adjusted portfolio is x+(0) = x(0) + u(0),
where ui(0) > 0 if we increase the position on the i-th asset, ui(0) < 0 if we
decrease it, and ui(0) = 0 if we leave it unchanged. Suppose now that the port-
folio is held fixed for the first period of time ∆. At the end of this first period,
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the portfolio composition is

x(1) = G(1)x+(0) = G(1)x(0) +G(1)u(0),

where G(1) = diag(g1(1), . . . , gn(1)) is a diagonal matrix of the asset gains over
the period from time 0 to time 1. At time k = 1, we perform again an adjustment
u(1) of the portfolio: x+(1) = x(1) + u(1), and then hold the updated portfolio
for another period of duration ∆. At time k = 2 the portfolio composition is
hence

x(2) = G(2)x+(1) = G(2)x(1) +G(2)u(1).

Proceeding in this way for k = 0, 1, 2, . . ., we determine the iterative dynamic
equations of the portfolio composition at the end of period (k + 1), for k ∈ K

x(k + 1) = G(k + 1)x(k) +G(k + 1)u(k), (2)

as well as the equations for portfolio composition just after the (k+ 1)-th trans-
action (see Figure 2)

x+(k) = x(k) + u(k). (3)

From (2) it results that the (random) portfolio composition at time k = 1, . . . , T ,
is

x(k) = Φ(1, k)x(0) +

[
Φ(1, k) · · · Φ(k − 1, k) Φ(k, k)

]


u(0)
...

u(k − 2)
u(k − 1)


= Φ(1, k)x(0) + Ωku, (4)

where we defined Φ(η, k), η ≤ k, as the compounded gain matrix from the
beginning of period η to the end of period k:

Φ(η, k)
.
= G(k)G(k − 1) · · ·G(η), Φ(k, k)

.
= G(k),

and

u
.
=

[
u(0)> · · · u(T − 2)> u(T − 1)>

]>
,

Ωk
.
=

[
Φ(1, k) · · · Φ(k − 1, k) Φ(k, k) 0 · · · 0

]
.

We thus have for the total wealth

w(k) = 1>x(k) = φ(1, k)>x(0) + ω>k u,

where φ(η, k)>
.
= 1>Φ(η, k), and

ω>k
.
= 1>Ωk = [φ(1, k)> · · · φ(k − 1, k)> φ(k, k)> | 0 · · · 0].
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We consider the portfolio to be self-financing, that is

n∑
i=1

ui(k) = 0, k ∈ K,

and we include generic linear constraints in the model by imposing that the
updated portfolios x+(k) lie within a given polytope X (k). The cumulative
gross return of the investment over the whole horizon is

%(u)
.
=
w(T )

w(0)
=

1>x(T )

1>x(0)
=
φ(1, T )>x(0)

1>x(0)
+

1

1>x(0)
ω>T u. (5)

We see that %(u) is an affine function of the decision variables u, with a random
vector ωT of coefficients that depends on the random gains over the T periods.

3.1 Scenarios and cost criteria

Suppose that N iid samples (scenarios) {G(i)(k), k = 1, . . . , T}, i ∈ N , of the
period gains are available from a scenario generating oracle. These samples
produce in turn N scenarios for each of the Ωk matrices, k = 1, . . . , T , and

hence of the ωk and φ(1, k) vectors. We denote such scenarios with Ω
(i)
k , ω

(i)
k ,

φ(i)(1, k), i ∈ N , and with x(i)(k), w(i)(k), %(i) = %(i)(u), respectively, the
portfolio composition at time k, the total wealth at time k, and the cumulative
final gain, under the i-th scenario. Let further γ denote a given desired level of
gain at the final stage: we define the following two empirical partial moments
(LPM) for the gross return distribution at the final stage:

LPM1
.
=

1

N

N∑
i=1

max(0, γ − %(i)) (6)

LPM2
.
=

1

N

N∑
i=1

(
max(0, γ − %(i))

)2

. (7)

Clearly, LPM1 is a cost function measuring the empirical average of the return
values %(i) falling below level γ, while the LPM2 cost measures the average of
the squares of the same deviations. The choice of the first or second order LPM
cost depends on the level of risk aversion of the investor, the higher degree
in the LPM reflecting higher levels of risk aversion, due to the fact that large
residuals are squared, and hence weight more on the cost, in LPM2.

3.2 Optimal open-loop allocation

Our open-loop multi-stage allocation strategy is determined by finding the
adjustments u = (u(0), . . . , u(T − 1)) that minimize either LPM1 or LPM2,
subject to given portfolio composition constraints at each period of the in-
vestment horizon. This strategy is denoted as “open loop” since all decisions
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u = (u(0), . . . , u(T−1)) are computed at “time 0” and, in principle, they should
next be executed without observing the market behavior during the {0, T − 1}
horizon. Notice that this will hardly happen in practice, since these decisions
are typically re-computed at the beginning of each period and executed in a
receding-horizon fashion (see Section 4.3); however, we name this strategy “open
loop” in order to distinguish it from the “closed-loop” strategy discussed in Sec-
tion 4, where we optimize over a class of policies rather than on direct actions.
In the open-loop approach we thus need to solve a problem of the form

LPMν
ol(γ) = min

u

1
N

∑N
i=1

(
max(0, γ − %(i)(u))

)ν
(8)

s.t.: x(i)+(k) ∈ X (k), k ∈ T , i ∈ N
1>u(k) = 0, k ∈ T ,

where either ν = 1 (for the LPM1 cost) or ν = 2 (for the LPM2 cost), %(i)(u)
is given by (5) under the i-th scenario, and where x(i)+(k) is given by (3), (4),
under the i-th scenario. These optimal allocations may be determined in a nu-
merically efficient way by solving, respectively, a linear programming or a convex
quadratic programming problem, as detailed in the following propositions.

Proposition 1 For ν = 1 (LPM1 cost), problem (8) is equivalent to the fol-
lowing linear programming problem in the variables u ∈ RTn and z ∈ RN

LPM1
ol(γ) = min

u,z

1

N

N∑
i=1

zi (9)

s.t.: Φ(i)(1, k)x(0) + Ω
(i)
k u + u(k) ∈ X (k), k ∈ T , i ∈ N

1>u(k) = 0, k ∈ T ,
zi ≥ 0, i ∈ N ,

zi ≥ γ − %(i)(u), i ∈ N ,

where %(i)(u) = φ(i)(1,T )>x(0)
1>x(0)

+ 1
1>x(0)

ω
(i)>
T u.

Proposition 2 For ν = 2 (LPM2 cost), problem (8) is equivalent to the fol-
lowing convex quadratic programming problem in the variables u ∈ RTn and
z ∈ RN

LPM2
ol(γ) = min

u,z

1

N

N∑
i=1

z2
i (10)

s.t.: Φ(i)(1, k)x(0) + Ω
(i)
k u + u(k) ∈ X (k), k ∈ T ; i ∈ N

1>u(k) = 0, k ∈ T ,
zi ≥ 0, i ∈ N ,

zi ≥ γ − %(i)(u), i ∈ N .

The statements of the previous two propositions follow easily by adding slack
variables and applying an epigraphic transformation to the objective in (8), see,
e.g., Section 8.3.4.4 in [11].
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4 Closed-loop portfolio dynamics

The open-loop strategy discussed in the previous section is suboptimal, since all
adjustment decisions u(0), . . . , u(T − 1) are computed at time k = 0 and then
executed forward without feedback from the actual market behavior. While the
first decision u(0) must be immediately implemented (here-and-now variable),
the future decisions may well wait-and-see the actual outcomes of the returns
in the forward periods, and hence benefit from the uncertainty reduction that
comes from these observations, see, e.g., [26]. For example, at time k ≥ 1, when
we need to implement u(k), we have observed a realization of the asset returns
over the periods from 1 to k. Hence, we would like to exploit this information, by
considering conditional allocation decisions u(k), that may react to the returns
observed over the previous periods. This means that, instead of focusing on fixed
decisions u(k), we wish to determine suitable policies that prescribe what the
actual decision should be, in dependence of the observed returns from 1 up to k.
In determining the structure of the decision policy one should evaluate a tradeoff
between generality and numerical viability of the ensuing optimization problems.
In some recent papers, see, e.g., [6, 15, 12, 13] it has been observed that linear
or affine policies do provide an interesting tradeoff by allowing reactive policies
to be efficiently computed via convex optimization techniques. In this paper,
we follow this route, and consider decisions prescribed by affine policies of the
following form

u(k) = ū(k) + Θ(k) (g(k)− ḡ(k)) , k = 1, . . . , T − 1 (11)

and u(0) = ū(0), where ū(k) ∈ Rn, k ∈ K are “nominal” allocation decision
variables, g(k) is the vector of gains over the k-th period, ḡ(k) is a given estimate
of the expected value of g(k), and Θ(k) ∈ Rn,n, k = 1, . . . , T − 1, are the policy
“reaction matrices.” Notice that the nominal decisions ū(k) are the decisions
that would be executed if the realized gains g(k) coincide with their expectations
ḡ(k); the role of the reaction matrices Θ(k) is to adjust the nominal allocation
with a term proportional to the deviation of the gain g(k) from its expected
value (we fix henceforth Θ(0)

.
= 0). Since the budget conservation constraint

1>u(k) = 0 must hold for any realization of the gains, we shall impose the
restrictions

1>ū(k) = 0, 1>Θ(k) = 0, k ∈ K.

4.1 Portfolio dynamics under affine policies

Applying the adjustment policy (11) to the portfolio dynamics equations (2),
(3), we have

x+(k) = x(k) + ū(k) + Θ(k) (g(k)− ḡ(k)) (12)

x(k + 1) = G(k + 1)x+(k), k ∈ K, (13)
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with Θ(0)
.
= 0. From repeated application of (12), (13) we obtain the expression

for the portfolio composition at a generic instant k = 1, . . . , T :

x(k) = Φ(1, k)x(0) + Ωkū +

k∑
t=1

Φ(t, k)Θ(t− 1)g̃(t− 1), (14)

where ū>
.
=
[
ū(0)> · · · ū(T − 2)> ū(T − 1)>

]
, and g̃(k)

.
= g(k) − ḡ(k),

for k = 1, . . . , T . A key observation is that x(k) is an affine function of the
decision variables ū(k) and Θ(k), k ∈ K. The cumulative gross return of the
investment over the whole horizon is then

%(ū,Θ) =
w(T )

w(0)
=

1>x(T )

1>x(0)
(15)

=
φ(1, T )>x(0) + ω>T ū +

∑T
t=1 Φ(t, T )Θ(t− 1)g̃(t− 1)

1>x(0)
,

which is again affine in the variables ū and Θ
.
= [Θ(1) · · · Θ(T − 1)].

4.2 Optimal closed-loop allocation with affine policies

Given N iid samples (scenarios) of the period gains {G(k), k = 1, . . . , T}, gen-
erated by a scenario generating oracle, we can determine optimal policies that
minimize the empirical LPM1 or LPM2 cost by solving a problem similar to (8):

LPMν
cl(γ) = min

ū,Θ

1
N

∑N
i=1

(
max(0, γ − %(i)(ū,Θ))

)ν
(16)

s.t.: x(i)+(k) ∈ X (k), k ∈ K; i ∈ N
1>ū(k) = 0, 1>Θ(k) = 0, k ∈ K.

where either ν = 1 (for the LPM1 cost) or ν = 2 (for the LPM2 cost), and where
x(i)+(k) is given by (12), with x(k) as in (14), under the i-th sampled scenario.
These optimal allocations may be determined in a numerically efficient way by
solving, respectively, a linear programming or a convex quadratic programming
problem, as detailed in the following propositions.

Proposition 3 For ν = 1 (LPM1 cost), problem (16) is equivalent to the fol-
lowing linear programming problem in the variables ū ∈ RTn, Θ ∈ Rn,(T−1)n,
and z ∈ RN

LPM1
cl(γ) = min

ū,Θ,z

1

N

N∑
i=1

zi (17)

s.t.: x(i)(k) + ū(k) + Θ(k)g̃(i)(k) ∈ X (k), k ∈ K; i ∈ N
1>ū(k) = 0, 1>Θ(k) = 0, k ∈ K,

zi ≥ 0, i ∈ N ,
zi ≥ γ − %(i)(ū,Θ), i ∈ N ,
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where x(i)(k) is given by (14) on the i-th scenario, and %(i)(ū,Θ) is given by
(15).

Proposition 4 For ν = 2 (LPM2 cost), problem (16) is equivalent to the
following convex quadratic programming problem in the variables ū ∈ RTn,
Θ ∈ Rn,(T−1)n, and z ∈ RN

LPM2
cl(γ) = min

ū,Θ,z

1

N

N∑
i=1

z2
i (18)

s.t.: x(i)(k) + ū(k) + Θ(k)g̃(i)(k) ∈ X (k), k ∈ K; i ∈ N
1>ū(k) = 0, 1>Θ(k) = 0, k ∈ K,

zi ≥ 0, i ∈ N ,
zi ≥ γ − %(i)(ū,Θ), i ∈ N ,

The statements of the previous two propositions follow easily by adding slack
variables and applying an epigraphic transformation to the objective in (16), see,
e.g., Section 8.3.4.4 in [11].

Remark 1 (γ-LPMν tradeoff curve) Problem (8) (resp. (16)) may be solved
repeatedly for increasing values of γ, in order to trace a tradeoff frontier of the
optimal cost value LPMν

ol(γ) (resp. LPMν
cl(γ)) as a function of γ. Values of

γ can be chosen in an interval [γmin, γmax], where γmin = mini∈N minj=1,...,n

φ
(i)
j (1, T ), and γmax = maxi∈N maxj=1,...,n φ

(i)
j (1, T ).

4.3 Receding/shrinking horizon implementation

In practical application of the method, either (8) or (16) are solved at time k = 0
mainly to obtain a good here-and-now decision u(0). The future decisions or
policies are rarely implemented in practice. Rather, at time k = 1 the decision
maker collects the information coming from the realization of G(1), which can be
used to update the model used in the scenario generation oracle (and possibly
the target return and constraints), and solves the whole problem again over
a forward-shifted interval, to obtain u(1). The same process is iterated for all
subsequent periods. At each decision time k, the optimization interval can either
be held fixed (receding horizon), if the investment is to be iterated indefinitely
in time, or shrunk in duration by one period (shrinking horizon), if the final
investment time T is fixed.

5 Numerical experiments

We next present a numerical test based on real financial data. We considered
an allocation problem involving n = 10 asset types over T = 12 periods, each
period having the duration of one month. Monthly historical return data have
been kindly provided to us by Fondaco SGR, covering the period from 12/2002
to 12/2012, for the following ten assets (all data are converted to Euro currency):
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1. MSDEWIN - MSCI Daily Equity Total Return (TR) World Index

2. NDUEEGF - MSCI Daily Equity Total Return Emerging Markets Index

3. SBEGEU - Citigroup EMU Europe Government Bond Index

4. SBWGEU - Citigroup WGBI World Government Bond Index

5. BCIW1E - Barclays World Inflation Linked Bonds TR Hedged

6. JGENVUUG - JPMorgan GBI-EM Emerging Government Bond Index

7. LGDRTRUH - Barclays Global Aggregate Credit Index

8. LG30TRUH - Barclays Global High Yield Total Return Index

9. DJUBSTR - Dow Jones UBS Commodity Index

10. SBWMEU3L - Citigroup 3 Month EUR Deposit Index.

Table 1 reports the historical monthly mean return and standard deviation for
the considered assets.

asset n. 1 2 3 4 5 6 7 8 9 10
% ret. 0.096 0.242 0.089 0.069 0.108 0.176 0.058 0.160 0.023 0.042
% st. dev. 2.426 3.077 0.581 0.975 0.729 1.234 1.453 1.543 2.380 0.027

Table 1: Mean return and standard deviation of the considered assets, in the
period from 12/2002 to 12/2012 (monthly data).

5.1 In-sample results

In this first test, we fixed the date of Jan. 2011 as the initial time of our invest-
ment horizon. The scenario generating oracle was in these experiments simply
set up as a bootstrap resampler from the historical data preceding the selected
initial date (sampling with replacement from the historical returns, see, e.g.,
[16]), and we used N = 100 scenarios per period (each period, of duration one
month, is represented via N = 100 scenarios, for a total of NT = 1200 scenarios
per simulation). The constraints were set to X (k) = {x : x ≥ 0}, for all k, and
the target return was set to γ = 1.08 (i.e., a target 8% final return at the end
of a 12 month investment period).

5.1.1 LPM1 criterion

Figure 3 and Figure 4 show the result of open-loop and closed-loop (with affine
policies) simulations, for the LPM1 criterion.

As expected, while average results from open-loop and closed-loop approaches
are similar (right panel in Figure 4), the closed-loop approach manages to bet-
ter reduce the down-sided deviation from the target gain, as shown in the his-
togram in Figure 3; this effect is also visible in the left panel of Figure 4,
in which open-loop wealth trajectories show larger dispersion with respect to
closed-loop ones. Indeed, in this simulation we obtained LPM1

ol(γ) = 0.0656,
and LPM1

cl(γ) = 0.0431, that is a 34% reduction on the objective criterion.
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Figure 3: Histogram of final gains on scenarios (LPM1 criterion). Light (green)
bars show open-loop results, darker (blue) bars show closed-loop results.
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Figure 4: Left: wealth profiles on the random scenarios (LPM1 criterion). Right:
average wealth profile over the scenarios. Light (green) lines show open-loop
results, darker (blue) lines show closed-loop results.

Figure 5 shows the evolution of the optimal portfolio composition over time,
for the open-loop approach.

Figure 6 shows the evolution of the nominal portfolio composition over time,
for the closed-loop approach. The actual composition in the closed-loop ap-
proach depends on the realization of the returns during the execution period;
the figure shows only the nominal composition, that is the composition ob-
tained applying only the adjustments ū(k) in eq. (12), neglecting the reactive
term Θ(k)(g(k)− ḡ(k)).
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Figure 5: Composition of the optimal portfolios over time (LPM1 criterion with
open-loop approach). The bottom area of the figure represents the share of the
first asset (MSDEWIN) in the portfolio, the top area represents the share of the
tenth asset (SBWMEU3L), the other components are represented by the areas
in between the bottom and top areas.
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Figure 6: Composition of the nominal portfolios over time (LPM1 criterion with
closed-loop approach); shares are ordered as in Figure 5.
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For illustration purposes, we also report below the first optimal reaction
matrix Θ(1):

Θ(1) =



−0.0757 −0.0941 0.0122 0.1020 0.2689 0.0402 −0.0837 −0.0846 −0.1269 0.0417
−0.0941 0.1875 −0.0885 −0.0075 −0.1139 0.0367 0.1153 0.0352 −0.1391 0.0685
0.0122 −0.0885 0.5357 −0.0175 −0.0023 −0.0924 −0.1132 −0.2133 −0.0917 0.0710
0.1020 −0.0075 −0.0175 −0.0979 0.0403 −0.0136 −0.0166 0.0239 0.0396 −0.0528
0.2689 −0.1139 −0.0023 0.0403 −0.0993 0.0839 0.0233 0.1158 −0.3423 0.0257
0.0402 0.0367 −0.0924 −0.0136 0.0839 −0.0018 0.0748 −0.1694 0.1197 −0.0780
−0.0837 0.1153 −0.1132 −0.0166 0.0233 0.0748 −0.3259 −0.0217 0.2851 0.0627
−0.0846 0.0352 −0.2133 0.0239 0.1158 −0.1694 −0.0217 0.4050 0.0561 −0.1469
−0.1269 −0.1391 −0.0917 0.0396 −0.3423 0.1197 0.2851 0.0561 0.1911 0.0083
0.0417 0.0685 0.0710 −0.0528 0.0257 −0.0780 0.0627 −0.1469 0.0083 −0.0002


.

5.1.2 LPM2 criterion

Similar results follow by using the LPM2 objective, as shown in Figure 7 and
Figure 8. Comments similar to the ones exposed for the LPM1 case apply. In
this case, we obtained LPM2

ol(γ) = 0.0070, and LPM2
cl(γ) = 0.0034, that is a

52% reduction on the objective criterion.
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Figure 7: Histogram of final gains on scenarios (LPM2 criterion). Light (green)
bars show open-loop results, darker (blue) bars show closed-loop results.
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Figure 8: Left: wealth profiles on the random scenarios (LPM2 criterion). Right:
average wealth profile over the scenarios. Light (green) lines show open-loop
results, darker (blue) lines show closed-loop results.

5.2 Multi-period efficient frontier

The numerical efficiency of the proposed method also permits to easily obtain
discretized plots of the multi-period efficient frontier, representing the optimal
tradeoff curve of the minimal LPM risk level obtainable for a given value of γ,
as discussed in Remark 1. For example, discretizing 11 values of γ in the range
[1, 1.2], we obtained the plot shown in Figure 9, for the LPM1 objective under
the closed-loop policy. The whole frontier was computed in about 3.75 minutes
under Matlab on a standard Xeon workstation. Similarly, Figure 10 shows the
result for the LPM2 criterion.
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Figure 9: LPM1 12-period risk/return frontier.
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Figure 10: LPM2 12-period risk/return frontier.

5.3 Out-of-sample shrinking-horizon results

In this section, we test the proposed methodology in a more realistic simulation
setting. We consider a horizon of T = 12 periods (one month each); starting
at time k = 0 (i.e., the beginning of the first period), we solve the optimization
problem over the 12 periods ahead, we determine the first optimal portfolio al-
location u(0), and we implement it. Then, we observe the actual (real) market
outcome over the first period, and we mark our performance against this out-
come, as well as against a number Nout of test outcomes randomly generated
by the SGO. Then, at k = 1, we solve the optimization again over a reduced
horizon of 11 periods, obtaining and implementing the here-and now decision
u(1), and marking our performance against both the real and the simulated
outcomes of the market over the second period. At k = 2 we repeat the same
process, over a forward optimization horizon of 10 periods, and so on, until at
k = 11 we solve a problem over a single period for determining the last portfolio
allocation u(11). Therefore, in this simulation, at each k = 0, 1, . . . , 11, we solve
an optimization problem Pk having a horizon of T − k periods.

In the described setup, we set the target end-of-horizon gain to γ0 = 1.1 (i.e.,
a 10% yearly return), for the first optimization problem P0 over the 12 periods
horizon. Then, for the subsequent problems with progressively shrinking hori-

zon, we set the target end-of-horizon gain to γk = γ
(T−k)/T
0 , k = 1, . . . , T − 1.

When solving problem Pk, we use historical returns on a look-back period of
250 weeks preceding time k in the SGO. Thus, at each k, the SGO produces
N in scenarios of the forward (monthly) gains, by bootstrapping the weekly re-
turns in the look-back window, and composing them monthly (one month is
set equal to four weeks). These scenarios are used in the optimization, and the
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ensuing allocation decision u(k) is then evaluated on Nout new out-of-samples
scenarios representing possible gains in the subsequent period (the decision is
also evaluated on the actual market outcome in the subsequent period). In the
simulations, we set N in = 300, Nout = 200.

We performed the described experiment on three simulation periods, each
starting at the beginning of January, for the years 2009, 2010, 2011. At all peri-
ods, we impose the constraints x(k) ≥ 0 on the portfolios. For all experiments,
we used the LPM1 cost criterion. For each simulation period, we compared
the out-of-sample performance of (a) the optimal open-loop strategy, (b) the
optimal closed-loop strategy with affine policies, and (c) the naive 1/n fixed
portfolio strategy (i.e., one in which an equally weighted portfolio is held fixed
through the investment horizon).

The results for year 2009 are reported in Figure 11. Each panel in this figure
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Figure 11: Year 2009 simulation: histograms of out-of-samples final gains for
the open-loop (top), the closed-loop (middle), and the 1/n strategy (bottom).
Red vertical line: desired target gain; green vertical line: achieved gain.

shows the out-of-sample histogram of the final gain achieved by each strategy:
the red vertical line shows the given target gain γ0 = 1.1, the green vertical line
shows what the actual gain would have been on the actual realization of the
market, the other blue bars show the distribution of the gain for Nout = 200
out-of-sample simulated possible behaviors of the market. The same type of
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data is displayed in Figure 12 for the year 2010, and in Figure 13 for the year
2011. A summary of some resulting numerical indicators is reported in Table 2.

Year LPM1 OL LPM1 CL LPM1 1/n avg. OL avg. CL avg. 1/n
2009 0.4166 0.4162 0.8248 1.1074 1.1065 1.0928
2010 0.2324 0.2316 0.4536 1.1496 1.1489 1.1608
2011 0.2575 0.2718 0.4883 1.1552 1.1456 1.1576

Table 2: Out-of-sample results for shrinking-horizon simulations with LMP1

cost, γ = 1.1 target gain, and T = 12 periods.

The results show that, consistently over the simulation years, both the open-
loop (OL) and closed-loop (CL) strategies provide average gains that are similar
to those obtained via the 1/n strategy. However, the downside LPM1 risk
with respect to the target gain γ = 1.1 is about one half of that provided by
the equally-weighted strategy. This indeed suggests that both the OL and CL
strategies are superior to the 1/n strategy in controlling the downside deviation
from the target. The OL and CL strategies yielded similar performances on
these simulations: in the considered setting there appears to be little advantage
to be gained by considering affine reactive policies instead of static OL policies.
This fact, however, may be due to the nature of the SGO implemented in this
example. Indeed, the focus of this work is on the optimization method, and
not on the design of the SGO; therefore, we implemented a simple SGO based
on bootstrap resample in the look-back period. This approach neglects possible
inter-temporal correlations in the returns, and may thus make the advantage
of a reactive policy less evident in the results. The development of a more
sophisticated SGO for multi-period allocation problems (e.g., based on copula
estimators and resampling) deserves a study on its own right, and should be the
subject of future investigation.
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Figure 12: Year 2010 simulation: histograms of out-of-samples final gains for
the open-loop (top), the closed-loop (middle), and the 1/n strategy (bottom).
Red vertical line: desired target gain; green vertical line: achieved gain.
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Figure 13: Year 2011 simulation: histograms of out-of-samples final gains for
the open-loop (top), the closed-loop (middle), and the 1/n strategy (bottom).
Red vertical line: desired target gain; green vertical line: achieved gain.
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6 Conclusions

In this paper we proposed a computationally efficient suboptimal approach
for solving multi-period asset allocation problems under first and second-order
lower-partial moment criteria. The key ingredients of the method are: (i) a
scenario generating oracle (SGO), providing N scenarios, where each scenario is
a path {r(1), . . . , r(T )} representing a realization of the random return process
over the whole planning horizon of T periods; (ii) an affine recourse policy of
the form (11) for the forward decisions; and (iii) an ensuing formulation of the
decision problem in the form of an efficiently solvable linear program (in the
case of the LPM1 objective), or convex quadratic problem (in the case of the
LPM2 objective). We observe that the design of the SGO is to be tailored to
the needs of the decision maker, and it allows for inclusion of any type of inter-
temporal stochastic dependence on the returns, as well as of expert knowledge
in the form of specific paths of scenarios. This methodology has the potential of
enabling solution of multi-period decision problems with inter-temporal return
correlation and realistically-sized number of periods, where alternative stochas-
tic programming approaches tend to be either too coarse, or prohibitively heavy
from a computational point of view.
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