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Joint inversion of seismic and electric data applied to 2D media

Flora Garofalo', Guillaume Sauvin?, Laura Valentina Socco', and Isabelle Lecomte®

ABSTRACT

Methods based on the seismic P-wave, seismic surface
wave, and apparent resistivity are commonly used in the solu-
tion of several near-surface problems. However, the solu-
tion nonuniqueness and the intrinsic limitations of these
methods can cause inconsistency in the final results.
Dispersion curves of surface waves, P-wave traveltimes,
and apparent-resistivity data were jointly inverted to obtain
internally consistent and more reliable final model of
P- and S-wave velocities and resistivity. A collection of
1D layered models was obtained by a deterministic joint-
inversion algorithm based on the laterally constrained
inversion scheme. The three data sets were jointly inverted
imposing the same structure and Poisson’s ratio was intro-
duced as a physical link between P- and S-wave velocities
to better constrain the inversion. No physical link was im-
posed between the resistivity and the seismic velocities. The
inversion algorithm was tested on synthetic data and then ap-
plied to a field case, where benchmark borehole data were
available. The synthetic and field examples provided results
in agreement with the true model and the existing geologic
information, respectively.

INTRODUCTION

In near-surface geophysics, electric and seismic methods are widely
used in various applications. They are based on different physical phe-
nomena, and hence they investigate different properties of the subsur-
face. Among the seismic techniques, surface-wave analysis (SWA) is
commonly used to estimate the S-wave velocity, whereas body-wave
tomography (BWT) is applied to retrieve the P-wave velocity
distribution. These results are useful for various engineering and envi-

ronmental applications, e.g., for seismic hazards, geotechnical char-
acterization, and hydrogeophysical characterization. Electric
methods, such as continuous vertical electric sounding (CVES) or
electrical resistivity tomography (ERT), are used to map the electric
resistivity. They have several near-surface applications such as detec-
tion of groundwater resources; monitoring of polluted sites; landfill
mapping; or the location of cavities, faults, and permafrost.

Seismic and electric methods are based on the solution of inverse
problems, which are affected by solution nonuniqueness, ill posed-
ness, and/or lack of resolution. The final model is then subject to
interpretation ambiguities.

In SWA, the inversion problem is ill posed, strongly nonlinear,
mixed-determined, and it is affected by solution nonuniqueness
(Luke et al., 2003). Different strategies have been proposed to mit-
igate these problems; some authors (Press, 1968; Beaty et al., 2002;
Feng et al., 2005; Dal Moro et al., 2007) propose to use stochastic
approaches to optimally sample the model-parameter space, whereas
others (Lai, 1998; Xia et al., 1999; Socco et al., 2009) suggest the use
of constraints and a priori information to improve the solution reli-
ability of deterministic methods.

BWT is solved as an inverse problem in which a 2D P-wave ve-
locity mesh-grid model is inferred from P-wave traveltimes. To do
so, different strategies have been devised, e.g., deterministic algo-
rithms, including singular value decomposition (Meyer, 2000) and
the simultaneous iterative technique (Lo and Inderwiesen, 1994),
or probabilistic ones, such as genetic algorithms (Michalewicz,
2000). The main limitation of these methods arises when a sub-
surface layer cannot be detected, i.e., the “hidden-layer” problem.
This is mostly due to a strong velocity contrast, a layer too thin to
be detected, a velocity inversion, or inadequate receiver spacing
(Soske, 1959).

The CVES method derives a resistivity model from the inversion
of the apparent resistivity, and it can be affected by interpretation
ambiguities, such as equivalence and/or suppression problems. The
first occurs when different vertical resistivity profiles lead to the
same value of apparent resistivity, and hence no differences are de-
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tected in the experimental data. The latter happens when an inter-
mediate layer is characterized by a resistivity value contrasting with
the adjacent ones, within an increasing or decreasing resistivity pro-
file with depth, and the experimental data may not be sensitive to
that layer.

To mitigate issues encountered for each inverse problem, joint in-
version of different kinds of data can be applied. The sensitivity to
model parameters of each method can be exploited and hence in
many cases joint inversion allows the inherent limitations of each
technique to be reduced. One of the first examples of the joint-
inversion algorithm is proposed by Vozoff and Jupp (1975) for mag-
netotelluric and resistivity data. Following this publication, several
authors propose similar algorithms combining different data sets
and imposing the same geometry to the model (e.g., Linde et al.,
2006; Hu et al., 2009; Jegen et al., 2009; Doetsch et al., 2010; Moor-
kamp et al., 2011) or using some petrophysical relationships among
the model parameters (e.g., Gao et al., 2010, 2011; Dell’ Aversana
et al., 2011). Some authors such as Hering et al. (1995) and Misiek
et al. (1997) combine surface-wave dispersion and apparent-resistiv-
ity data, whereas others (Gallardo and Meju, 2003, 2004;
de Nardis et al., 2005) focus on the joint inversion of apparent-
resistivity and P-wave refraction data. Previous studies (Comina et al.,
2002; Piatti et al., 2013) show that joint inversion also performs better
than individual inversion in those cases, in which one of the geo-
physical parameters presents variations that the other parameters
do not. In particular, Comina et al. (2002) propose a 1D
joint inversion of surface-wave and apparent-resistivity data and test
it on a synthetic model in which the resistivity does not vary, while
the S-wave velocity does vary. Piatti et al. (2013) propose a 1D joint
inversion between surface-wave data and P-wave traveltimes and suc-
cessfully apply it to a field case in which the P-wave velocity almost
does not vary while the S-wave velocity presents a very sharp
variation. They also show that low S- and P-velocity layers em-
bedded within stiffer layers that cannot be retrieved by individual
inversions can be resolved by applying joint inversion (see the sup-
plementary material for a further example; it can be accessed at
s1.pdf).

Here, we present an algorithm for the joint inversion of dispersion
curves of the surface wave, P-wave refraction traveltimes, and appar-
ent-resistivity data using a structural approach and physical links.
These three methods are already used in a joint structural inversion
by Kis et al. (1995), who propose a least-squares joint-inversion al-
gorithm for geoelectric, seismic surface-wave, and P-wave refraction
data. The algorithm proposed here differs from Kis et al. (1995) with
the additional use of the Poisson’s ratio as a physical link between the
P- and S-wave velocities and with the spatial regularization intro-
duced among 1D seismic and resistivity models. The use of Poisson’s
ratio as physical constraint between seismic velocities allows deriva-
tion of an internally consistent velocity model, as shown by Dal Moro
(2008), Piatti et al. (2013), and Boiero and Socco (2014). The pro-
posed algorithm is based on the one defined for 2D layered models
by Boiero and Socco (2014), but, in addition to surface-wave dis-
persion and P-wave refraction data, we extend the method to include
apparent-resistivity data.

After the description of the algorithm, we show the benefit of the
joint inversion with respect to the individual ones on a synthetic case
study. We use on purpose a very simple model, in which all the param-
eters vary at the interfaces. After the test on the synthetic model, we
present the application of the algorithm on a real case study.

METHOD

The subsurface is investigated along a line using SWA, BWT, and
CVES, and the associated experimental data are surface-wave dis-
persion curves, P-wave traveltimes, and apparent-resistivity curves,
respectively. These data are inverted all together using a least-
squares inversion algorithm, and the final model is solved not only
by imposing the same structure but also by applying a physical link
among the model parameters. The algorithm presented here is based
on the one proposed by Boiero and Socco (2014), and it is supple-
mented with resistivity. Hence, we use the same notation and we
only describe in detail the implementation of the resistivity in the
algorithm proposed by Boiero and Socco (2014). We refer the
reader to that publication for further details on the method.

Data and model parameterization

Surface-wave dispersion curves de (x, f) (phase velocity as a
function of frequency f) are locally extracted in the x positions by
applying a moving spatial window along the seismic line (Socco et al.,
2009), and they are obtained as energy maxima in the frequency-
wavenumber domain. For every window position, several shots are
processed allowing the experimental uncertainties on phase velocity
€,bs.dc (X, f) to be estimated.

P-wave first-break traveltimes fb(x, sp) are a function of x and
the source position s p, and they are picked on the seismogram at each
receiver along the line. Experimental uncertainties €,ps o (¥, €s) can
be estimated as a fixed value related to the time-sampling interval or
as a standard deviation if the picking procedure is repeated sev-
eral times.

The apparent-resistivity curves ar(x, es) are estimated at positions
x as a function of the electrode spacing es, and €y r (¥, €5) is the
vector of the associated uncertainties. Apparent-resistivity values are
extracted from the apparent-resistivity pseudosection within a bin,
usually two times the electrode spacing, centered on the locations
where dispersion curves are available.

Once all the data are collected, they are gathered in the experi-
mental data vector d,p as follows:

dgps = [de(x. f); fb(x.sp); ar(x.es)]. )
and the associated covariance matrix Cg,s is defined as
Cobs = Cov[eobs.dc (X,f); €obs.fb (xv sp); eobs,ar(xv es)]' (2)

Such a matrix is diagonal because the experimental uncertainties are
supposed to be uncorrelated.

The model parameterization is based on a pseudo-2D model: the
model vector m is a collection of K 1D-layered models, located at
the positions x. Each 1D kth model my is made up by n, layers over
a half-space, and each ith layer is defined in terms of thickness /; (ex-
cept for the half-space), density (p;), S-wave velocity (Vg ;), P-wave
velocity (Vp;), and resistivity (Rho;). Because the involved methods
have very low sensitivity to the density (Xia et al., 1999), the values of
this parameter are assumed a priori. Hence, the vector of unknown
model parameters at the kth position is given by

mk:[hl <y Vs Vsuirr Ve o Vgt Rhoy - Rh0n1+1]T-
3


http://library.seg.org/doi/suppl/10.1190/geo2014-0313.1/suppl_file/s1.pdf
http://library.seg.org/doi/suppl/10.1190/geo2014-0313.1/suppl_file/s1.pdf

Downloaded 11/22/15 to 2.233.17.6. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

Seismic and electric data joint inversion EN95

Thus, the model vector m is given by

m=[m; ...; mgl )

Because we solve the inverse problem with a local-search algo-
rithm, an accurate choice of the initial model is needed to avoid
falling into a local minimum. Moreover, we use a layered model and
the number of layers must be carefully chosen to account for each
model-parameter variability. In fact, there could be variations for
one parameter (i.e., resistivity) that do not correspond to variation
for the others (i.e., seismic velocities), and vice-versa. The number
of layers must therefore be selected to allow for the required vari-
ability but also to avoid overparameterization that would lead to
poor sensitivity. The initial model can be defined on the basis of
a priori information or deduced from the data. In absence of a priori
information, the initial model of Vg and Vp can be defined as sug-
gested by Piatti et al. (2013), who propose a 1D joint inversion of
surface-wave dispersion and P-wave traveltime data. Similarly to
Piatti et al. (2013), we first define a Vp model, using the intercept-
time method on one representative hodochrone along the line. The
corresponding Vg model is then built by assuming the Poisson’s
ratio values expected for the considered materials. The Rho model
is defined as the apparent resistivity at the pseudodepths corre-
sponding to the interfaces of the Vp model. Therefore, the number
of layers is defined on the basis of P-wave information, but this
value is usually increased to cope with possible variations of other
parameters that are not detected on the Vp profile. Typically, it
will be necessary to increase the number of layers when a water
table is expected within the reached investigation depth because
Vp will tend to exhibit poor variability in the saturated material,
whereas Vg will better depict the variability of the solid matrix
properties.

The algorithm

The least-squares joint-inversion algorithm is based on structural
coupling, where the layer boundaries are solved minimizing the
misfit between the theoretical and all the experimental data, and
a physical link pr(m) among the model parameters is introduced.
As proposed by Boiero and Socco (2014), the seismic velocities Vg
and Vp are linked to each other by imposing constraints on the Pois-
son’s ratio values. This constraint represents a priori information
that can be included in the joint-inversion process. Other a priori
information can be introduced in the form of regularization. In par-
ticular, because we deal with a collection of spatially distributed 1D
models, a spatial regularization is applied. The adopted scheme is
the one proposed by Auken and Christiansen (2004) for the inver-
sion of resistivity data, and then applied by Socco et al. (2009) to
surface-wave dispersion data, and used by Boiero and Socco (2014)
for surface-wave and P-wave refraction data. The spatial regulari-
zation constrains the variation of each model parameter between
neighboring models. In addition, the model parameters can also
be constrained to their value in the initial model. The availability
of a priori information can significantly improve the inversion re-
sults, but it can also bias the results, and hence, its effects must be
weighted according to the information reliability (uncertainty).

The final model m is solved through the minimization of the fol-
lowing misfit function Q, as proposed by Boiero and Socco (2014):

0 = [(dgps — fw(m))" G5 (dgps — fw(m))]

+ [(mprior - m)TC_l (mprior - m)}

prior
+ [(-Rm)"Cx! (~Rm)]
+ [(pr — pr(m))"C;' (pr — pr(m))], 5)

where my,po, is the initial model, and Cpyor is its covariance matrix.
The spatial regularization consists of the matrix R, as explained in
Auken and Christiansen (2004), where the strength of the link is
expressed by the covariance matrix Cg. The physical link implies
the minimization of Poisson’s ratio of the model pr(m) with respect
to an expected value pr, and the weight of this information is ex-
pressed by the covariance matrix C,.

The addition of the apparent-resistivity data affects not only the
d,ps and the m vectors, but also the forward response fw(m) that
accounts for the contributions of the three methods:

fwswa (m)
fw(m) = | fwgwr(m) |, (6)

Sfweves(m)

where fwswa(m), fwgwr(m), fweygs(m), are the forward re-
sponses used for SWA, BWT, and CVES, respectively. The formu-
lation for fwgwa(m) is based on the Haskell-Thomson model
(Thomson, 1950; Haskell, 1953), and the Cole-Cole model (Cole
and Cole, 1941) is adopted for fwcygs(m). The fwgwa (m) and
Sweygs(m) are based on 1D formulations and are computed for
each 1D model. Conversely, fwgwr(m) is computed according to
the 2D formulation proposed by Podvin and Lecomte (1991), in
which the 2D mesh-grid model is obtained from linear interpolation
of the 1D models.

Equation 5 is minimized using a quasi-Newton damped least-
squares algorithm (Tarantola, 1987; Aster et al., 2005). At each iter-
ation n, the problem defined in equation 5 is linearized around
model m,, and the misfit is minimized following the local decrease
of the misfit function itself. Hence, at the nth iteration, the model
m, is updated in m,; as follows:

m, ; =m,
[GTC,LG; + PTC;rliorP +RICRR + GLClG,, + A1)
+ G} Cgl}s (dobs - fW(mn)) + PT C;rlior (mprior - mn) s

+RTC! (-Rm,) + G}, Cp} (pr — pr(m))
)

where 1 is a damping factor that is updated at each iteration; it sta-
bilizes the solution and ensures convergence as proposed by Leven-
berg (1944) and Marquardt (1963).

The iterative process stops when one of the following criteria is
matched: (1) a defined number of iterations is reached (in our case
60) or (2) the value of misfit Q related to the update model m,,
reduces less than 1% with respect to the value at the previous iter-
ation n.

Matrix P represents the partial derivatives of my,,, With respect
to the unknowns. The matrix Gp, contains the partial derivatives of
the physical link with respect to the unknowns. The matrix Gy is the
Jacobian, representing the sensitivity matrix of the data, and it is
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Figure 1. (a) Synthetic model made up of three layers. The proper-
ties of each layer are reported in Table 1. (b) Surface-wave dispersion
curves in which the gray scale corresponds to the positions along the
line. (c) P-wave traveltimes. (d) Apparent-resistivity curves extracted
at the same positions of the surface-wave dispersion curves. The gray
scale corresponds to the positions along the line.

built up with the sensitivity relevant to each type of data Gjgwa.,
Gjawr, and Gy cvs:

GJ,SWA
GJ = GJ,BWT . ®)
GJ,CVEs

Because we deal with different kinds of model parameters,
Boiero and Socco (2014) suggest a normalization strategy based on
Hering et al. (1995), which consists in the normalization of m and
all the quantities related to it with respect to m,, (for details, see
Boiero and Socco, 2014).

SYNTHETIC DATA

In this section, we show the application of the joint inversion algo-
rithm to synthetic data, which is aimed at showing the improvement of
the joint inversion with respect to the individual inversions. The syn-
thetic model was kept very simple, and the model parameterization for
inversion was the same as the true model. This example may not seem
challenging, but we will show that, even in these favorable conditions,
individual inversions may fail in estimating the model parameter val-
ues, which are instead retrieved by joint inversion. Moreover, two ad-
ditional synthetic examples are provided in the supplementary
material, which can be accessed online at s1.pdf.

Synthetic model and data

We define a 2D model characterized by two layers over a half-
space (Figure la) with a laterally varying geometry so that the
thickness, which represents the coupling element among different
models, is smoothly horizontally varying. The physical parameters
are constant within each layer (Table 1), with the seismic velocities
Vs and Vp increasing with depth, and the resistivity Rho is lower in
the intermediate layer than in the others.

The seismic data set was obtained by a finite-element simulation
performed with COMSOL Multiphysics® software. The source was
a Ricker wavelet, and the shot and receiver spacing were equal to 20
and 1 m, respectively, along a 100-m line. We extracted the surface-
wave dispersion curves applying a 30-m spatial moving window,
where neighboring windows have 66% overlap. The eight resulting
dispersion curves are shown in Figure 1b, whereas the manually
picked P-wave traveltimes are reported in Figure 1c. The seismic
data were affected by numerical noise (see Figure 1b and lc).

Table 1. Properties of the synthetic model: Thickness /4, density p, Poisson’s ratio v, S-wave velocity Vg, P-wave velocity Vp, and

resistivity Rho. The true and initial models are provided.

Layer h (m) p (kg/m?) V) Vs (m/s) Vp (m/s) Rho (Qm)
True model 1 3-8 1800 0.288 150 275 1500
2 6-9.5 1850 0.408 275 700 500
Half-space — 1900 0.367 550 1200 3000
Initial model 1 6.5 1800 0.33 100 200 1500
2 4.5 1850 0.33 375 750 800
Half-space — 1900 0.33 500 1000 1500
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The apparent resistivity was estimated using RES2DMOD soft-
ware (Loke, 2002). To get enough penetration depth and resolution,
we defined an array of 200 electrodes with 1-m spacing centered on
our model and we simulated a dipole-dipole configuration. A 2.5%
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Figure 2. An example of the comparison among the data and the
forward responses of the final models obtained through different in-
versions: individual, structural, and physical. (a) The dispersion curve
at x = 15 m, (b) apparent-resistivity curve at position x = 15 m,
(c) P-wave traveltimes for the shot at x = 0 m, and (d) comparison
of misfit value Q (normalized for the number of data points) at each
iteration. This is evaluated for the different inversions.

noise was added to the data, and the apparent-resistivity curves were
extracted at the same positions as for the dispersion curves. The
apparent-resistivity curves are shown in Figure 1d. We associated
an uncertainty equal to 5% to all the data.

Initial model and inversion results

The initial model was laterally homogeneous to verify if the later-
ally varying geometry can be well reconstructed. First, we estimated a
1D Vp model through the intercept-time method applied on P-wave
traveltimes shot at x = 100 m. We derived S-wave velocity Vg from
Vp, after assuming a Poisson’s ratio of 0.33. We estimated resistivity
Rho from the apparent-resistivity data at the pseudodepths corre-
sponding to the interfaces estimated from the intercept-time method.
The retrieved 1D model (Table 1) was used as the initial model for the
inversion without introducing lateral variations along the line.

a) X (m)

]
o
S-wave velocity (m/s)

n
S
S

~

8§ 88§88
P-wave velocity (m/s)

0.4

0.3

Poisson's ratio (-)

0.2

Figure 3. Results of the physical joint inversion for the synthetic
model: (a) S-wave velocity model, (b) P-wave velocity model, (c) re-
sistivity model, and (d) Poisson’s ratio model. The black continuous
lines are the interfaces of the true model.
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As far as the a priori information setting is concerned, the mypor
was equal to the initial model, whereas the expected values pr of the
Poisson’s ratio were equal to 0.33 for all the layers. The constraints
of the whole a priori information were set very weak to focus the
solution on the contribution of the experimental data only. There-
fore, the diagonal elements of the covariance matrices Cg, Cpyriors
and C, in equation 5, were set equal to 10° as suggested by Boiero
and Socco (2010) to have almost no influence of these pieces of a
priori information on the final model.

Several inversions were performed with the same initial model and
constraints on the a priori information: (1) “individual” inversion, where
each data set was inverted separately, (2) “structural” inversion, where
all the data were jointly inverted using only the layer thickness as cou-
pling factor, and (3) “physical” inversion, where the physical link be-
tween Vp and Vg was applied in addition to the structural inversion.

The final models from different inversions provided very good
fitting with the data (Figure 2a—2c). Figure 2d shows how the misfit
0, normalized for the number of data points, varies at each iteration
for all the inversions performed. The physical joint inversion
stopped before the individual inversions (7 iterations against 10
of the individual BWT), and it has a lower misfit Q than the struc-
tural joint inversion.

Here, we only present the final pseudo-2D model obtained through
the physical joint inversion (Figure 3), in which the interface depths
match quite well with the true ones. Although the expected value of
the Poisson’s ratio pr was set equal to 0.33 for all layers, the distri-
bution of this parameter (Figure 3d) was well retrieved.

We show in Figure 4 the error between the true model and the
final ones obtained through the different kind of inversions for the
1D model at 55 m. The trends are similar for all the other 1D mod-
els. In the individual inversions, some model parameters were better
resolved whereas others, such as the layer thicknesses, were less-
well resolved. The joint inversions slightly increased the error of
such well-estimated parameters as Vp and Vg in the second layer,
from 4.5% to 8% and from 2% to 4.5%, respectively, but they sig-
nificantly reduced all the other errors. As far as the layer thickness is
concerned, SWA provided a good estimation with an error lower than
5%, whereas for BWT and CVES, the error was greater than 10%
reaching almost 30%. The structural inversion improved the estima-
tion of the thicknesses, reducing the error to less than 5%, and this
error was further reduced when the physical link was applied. In ad-

model 55 m

—o-h-1
30 *h-2
—~ - Vg-1
< Vg-2
Vs -hs
= Vp -1
= Vp -2
Vp -hs
—Rho-1
—<Rho-2
Rho-hs

0
SWA BWT CVES  Struct Phys
Inversions

Figure 4. Synthetic model: Errors between the final model from the
different inversions and the true one calculated at position 55 m. The
error is computed for each model parameter: thickness /, S-wave ve-
locity Vg, P-wave velocity Vp, and resistivity Rho for layers 1, 2, and
the half-space (1, 2, and hs, respectively, in the legend). The different
inversions are as follows: only SWA, only BWT, only CVES, all the
data together (Struct), and with the addition of the physical link (Phys).

dition, all of the other model parameter errors decreased below 10%
with the joint inversions, except for the resistivity of the half-space.

FIELD EXAMPLE
Site description and experimental data

The field data were acquired in a landslide-prone area close to the
city of Hvittingfoss, located 80 km southwest of Oslo, Norway (Fig-
ure 5). This site was investigated using geophysical methods as part
of a stability assessment project aimed at detecting the highly sensitive
clay responsible for instability. The geologic model consists of a thin

a)

7y
25 m Waterfall A
N
[] Thick marine deposit )
@
185m [] Fluvial deposit = atingsgss
b) 70
E
N 60

0 25 50 75 100 125 150 175 200
x (m)

Figure 5. The Hyvittingfoss field case: (a) Quaternary map with 5-m

contour line topography superimposed; the black line locates the

profile in which the white stars indicate the 1D model positions

and the circle indicates the position of the CPTU well. (b) Detailed

shot (stars), geophone (reversed triangles), and electrode (vertical
dashes) locations and elevations along the profile are displayed.

Table 2. Hvittingfoss field case. Acquisition parameters of the
experimental data.

Methods Parameters

ERT Acquisition system Terrameter LS
Array type Dipole-dipole
Electrode spacing 2 m
Profile length 185 m

BWT Acquisition system Geode seismograph
Source Sledgehammer 5 kg
Recording length 2s
Sampling 0.25 ms
Receiver spacing 4 m
Source spacing 4 m
Profile length 185 m
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Figure 6. The Hvittingfoss field case: (a) Example of the P-wave shot
gather at 117 m. For the sake of display, a 250-ms automatic gain con-
trol is applied. The first-arrival traveltime picks are also shown (gray
dashes). (b) Normalized f-k spectrum, for a window centered at 53 m,
in which the black asterisks represent the picked dispersion curve.
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Figure 7. The Hyvittingfoss field case: (a) Surface-wave dispersion
curves; the grayscale corresponds to the location along the line.
(b) P-wave traveltimes (dots); the grayscale corresponds to the shot
locations (triangle) along the line.

fluviodeltaic layer, mainly composed of sand and gravel, overlaying a
thick marine-clay deposit. Previous results from geotechnical investi-
gations and geophysical data analyses (Sauvin et al., 2013) were used
as a benchmark for our joint inversion result. In particular, S-wave seis-
mic reflection sections provided stratigraphy for the marine deposit.
The V¢ field was evaluated during the velocity analysis performed for
S-wave seismic reflection processing and was compared with the
joint inversion result. Other comparisons were performed with BWT
and ERT that provided smooth Vp and Rho models. Geotechnical
soundings, as well as resistivity- and seismic-cone penetration tests
(R-CPTU and S-CPTU, respectively) were also available. Several
ground-penetrating-radar (GPR) profiles were performed in the area.

Seismic and electric data were available along a 185-m profile,
and the acquisition parameters are summarized in Table 2. The pick-
ing of P-wave traveltimes was performed manually on raw data be-
cause the presence of noise did not allow for automatic picking. We
show an example of a P-wave seismic shot gather with the picked
traveltimes in Figure 6a and an example of the normalized f-k spec-
trum with the picked dispersion curve in Figure 6b. Figure 7a
presents the P-wave traveltime data for the whole data set. We ex-
tracted 15 surface-wave dispersion curves (Figure 7b) along the line
using different spatial windows varying between 12 and 20 chan-
nels with an overlap of approximately 70%. The retrieved frequency
band ranges from 8 to 40 Hz with the wavelength varying from
approximately 40 to 3 m. For the resistivity, we use a dipole-dipole
configuration with a classical ERT acquisition. From these data, 15
CVES apparent-resistivity curves were extracted at the same posi-
tions at which the dispersion curves were estimated. Figure 8 shows
the pseudosection and the positions at which the apparent-resistivity
curves were extracted.

As far as the data quality is concerned, no data were discarded
from the apparent-resistivity data set and data uncertainties were
directly derived from the variance of each measurement provided
by the measurement equipment and have an average of 16.2%.
Regarding seismic data, the 22% of the traces were not picked
due to the poor signal-to-noise ratio and a 5% uncertainty was as-
signed to the P-wave traveltime values and to the surface-wave
dispersion curves.
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Figure 8. The Hyvittingfoss field case: Logarithm of apparent resis-
tivity as a function of the pseudodepth. The triangles correspond to
the positions at which the 1D apparent-resistivity curves (circles)
were extracted.
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Model parameterization and inversion results

The initial model was defined on the basis of general knowledge
about the geology of the site. In particular, we assigned a layer to the
thin sand unit on the top and three layers (two layers plus the half-
space) to the underlying clay unit (the model parameters are given in
Table 3). The initial model did not present lateral variations, and the
values of the model parameters were defined on the basis of pre-
liminary analyses of data (Figures 7 and 8). We set weak spatial
regularization by setting the diagonal elements of matrix Cy (equa-
tion 5) equal to 10* as suggested by Boiero and Socco (2010). No
constraints with respect to the initial model, including Poisson’s
ratio values, were set.

The physical joint inversion converged rapidly (within 13 itera-
tions; see Figure 9a) with a good fitting between the experimental
data and forward response. A representative example of fitting is
reported in Figure 9b-9d for the surface-wave dispersion curve,
P-wave traveltimes, and apparent-resistivity curve, respectively. For
almost the whole data set, the misfit is below the experimental un-
certainty. We present the physical joint inversion result in Figure 10
superimposed to Vp, Vs, and Rho models derived from previous
P-wave refraction tomography, S-wave reflection seismic velocity
analysis, and ERT, respectively. The results of the R-CPTU and
S-CPTU are also reported over the Rho and Vg models, respec-
tively. We also present the comparison between the Poisson’s ratio
resulting from the physical joint inversion with the one computed
from the Vp and Vg estimated in the previous studies.

We compared the final model of the joint inversion with the pre-
vious results at the locations, where the 1D models were estimated.
In the sand deposit, the differences between the model parameter
values obtained by joint inversion and previous results range from
6.7% to 12.3% for Vg, 8.4% to 22.1% for Vp, and 18.7% to 21.9%
for Rho. In the clay deposit, the differences vary from 7.4% to
11.9% for Vg, 10.5% to 19.3% for Vp, and 9.8% to 23.1% for Rho.

The smooth lateral variation is well recovered despite the adopted
1D forward model for surface waves and resistivity in the joint in-
version. The layered model assisted the interpretation, and thick-
nesses derived from joint inversion better correlated with the
geotechnical data and S-wave seismic reflection section. Moreover,
the thickness of the shallow sand layer that overlies the clay deposit
retrieved by the GPR profiles is in very good agreement with the
joint inversion result. Because none of GPR profiles is coincident
with our profile, we compared the depth of the sand/clay boundary,
interpolated from the GPR profiles (the white line in Figure 10b) at
our location with the one derived from joint inversion. The average
depth difference is 0.65 m.

Table 3. Hvittingfoss field case: initial model adopted for the
physical joint inversion.

Layer  / (m) p (kg/m®) v (5) Vs (m/s) Vp (m/s) Rho (Q@m)

1 2 1800  0.33 100 200 2000
2 3 1800 0.37 150 300 250
3 5 1800 048 175 800 100
Half-space — 1800 049 200 1500 80

Poisson’s ratio values derived from joint inversion and previous
results (Figure 10d) were in good agreement in the clay layer (the
average difference between the two models is equal to 6.2%), but
they presented some differences in the dry sand where a maximum
difference equal to 31.4% is reached. One would expect a rather low
value in this layer (0.25-0.4), and adding some constraints on this
parameters should be considered.
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Figure 9. The Hvittingfoss field case: (a) Misfit Q normalized for
number of data points at each iteration of the physical joint inversion;
examples of misfit between experimental data and forward response
of the final model of physical joint inversion are given, for the
(b) dispersion curve located at 85 m, (c) P-wave traveltimes of the
shot at 10 m, and (d) apparent-resistivity curve located at 85 m.
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Figure 11. The Hvittingfoss field case: Local comparison at the
well location among the joint inversion, borehole, and previous
individual results: (a) Resistivity and (b) S-wave velocity.

Figure 11 presents a local comparison between joint inversion,
previous individual inversions, and CPTU results at the well loca-
tion. The joint inversion results fit better the CPTU values than the
ones from previous individual inversions. In particular, the resistiv-
ity profile extracted from the previous ERT presents an artifact be-
tween 2- and 12-m depth with an error greater than 100% with
respect to R-CPTU, whereas the joint inversion profiles better esti-
mated the resistivity of the conductive clay layer (Figure 11a). Also,
for the S-wave velocity (Figure 11b), the joint inversion provided a
better agreement with borehole data.

It is worth mentioning that the investigation depth reached by
the joint inversion is lower than the previous studies. This is due
to the limitation in the retrieved surface-wave wavelength.

DISCUSSION

We developed the joint inversion approach by adding resistivity
data to the algorithm proposed by Boiero and Socco (2014) for seis-
mic surface and P-waves. The same structure was imposed to all the
different geophysical parameters, and Poisson’s ratio was used as
physical link between Vg and Vp. We applied the proposed inver-
sion scheme to a simple synthetic model and compared the results of
the joint and individual inversions performed with the same algo-
rithm, the same initial model, and the same constraints on the a pri-
ori information. Only the physical joint inversion was applied to a
field data set for which previous results from individual 2D smooth
inversions were available.

The aim of the analysis of the synthetic data was not to assess the
performance of the proposed inversion in complex and realistic
parameter distributions but to evaluate the improvement of the joint
inversions with respect to the individual inversions. For this reason,
we produced a very simple layered model with a gently laterally
varying structure. Moreover, the parameterization adopted for the

initial model had the same number of layers as the true one. In spite
of this, the individual inversions failed in the estimation of some
model parameters, which were much better retrieved with the joint
inversion approach. The introduction of Poisson’s ratio as a physi-
cal link between Vg and Vp, although the constrain on this param-
eter was very weak, further improved the final result (Figure 4). We
observed an almost equally good misfit between the synthetic data
and the forward response of the final models of the different inver-
sions (i.e., individual, structural, and physical) (Figure 2). This
showed that individual inversions could easily fall into a local mini-
mum, whereas the joint inversion approach mitigated the solution
nonuniqueness. The layer thickness represented the coupling factor,
and a better definition of thicknesses led to an improvement of all
the other geophysical parameters (Figure 4). The analysis of the
trend of the misfit with iterations (Figure 2d) showed that, with
the implemented exit strategy, joint inversion required fewer itera-
tions than individual inversions and provided a lower misfit. Hence,
the joint inversion did not imply an increase of computational cost
with respect to the individual inversions.

The aim of the field data analysis was to check the performance
of the proposed method in a realistic and more complex situation.
Moreover, we wanted to compare the performance of our locally 1D
layered model assumption with a classical smooth 2D tomographic
approach in the case of a laterally varying site.

It is important to remark that the results from previous studies
were obtained with significantly different approaches (for details,
see Sauvin et al., 2013) from our joint inversion. Previously, P-wave
tomography was performed using ReflexW, a commercial code based
on finite-difference approximation of the eikonal equation (Sandme-
ier, 2010); the S-wave model is obtained by computing the interval
velocity from the result of the velocity analysis of a high-resolution
SH seismic reflection survey; ERT is obtained by Res2DInv, a com-
mercial code based on finite-element 2D forward modeling (Loke,
2010). In our research, we analyzed the same seismic data set for
P-wave tomography and the same apparent resistivity data set used
for ERT as Sauvin et al. (2013). Our comparison between the pre-
vious results and the joint inversion result critically analyzed the per-
formance of the proposed method with respect to well-established
approaches routinely used in practice.

Comparison of our result with previous results showed that the
lateral variability can be well retrieved despite the assumed param-
eterization and forward response. The inversion scheme adopted
was based on a set of 1D models linked to each other by spatial
regularization and hence required the same number of layers for
all of the 1D models along the line, without differentiating the pa-
rameterization and reference investigation depth in the central por-
tion of the line with respect to the models located at the edges.
However, for BWT and ERT, the investigation depth is higher in the
central part, whereas for SWA, if the wavelength range is constant
along the line, the sensitivity to the deeper layer parameters is con-
stant along the line. In the joint inversion, a compromise between
these different investigation depths had to be reached. Hence, the
depth extent of the model was lower than the maximum investiga-
tion in the central portion, and it was higher at the edges for BWT
and CVES. Hence, the Vp and Rho of the deeper layers at the edges
had very low sensitivity to the data and the values obtained were
driven by the regularization and by information coming from SWA.

The survey was performed to reconstruct the geometry and physi-
cal properties of the quick clay formation, and so, the main tasks of
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the investigation were the identification of the strong resistivity con-
trast between the dry and high-resistivity sand that overlies the con-
ductive clay layer and the identification of different mechanical
properties within the clay layer itself. Comparison between the
borehole and ERT results (Figure 11a) highlighted that the presence
of the high-resistivity layer on the top of the model produced an
artifact in the result of the ERT. Several parameterizations and
regularizations were attempted for ERT, leading to similar results
(Sauvin et al., 2013). A very low resistivity thin layer was placed
underneath the sand, followed by an overestimation of the resistiv-
ity in the clay down to approximately a 12-m depth. This artifact
was not present in the joint inversion result that was in better agree-
ment with R-CPTU.

Despite that the resistivity estimated with joint inversion was
almost constant within the clay unit, the seismic velocities evidence
two subunits with different velocities for the P- and S-waves, whereas
Poisson’s ratio remains constant. This result was in agreement with
previous P-wave refraction tomography (Figure 10c) and is possibly
related to different consolidations of the clay deposit.

The final model is solved by imposing a constraint on Poisson’s
ratio that affects the final S- and P-wave velocity values. If this con-
straint is kept very weak and does not bias the final results but only
imposes a physically acceptable value, then the estimation of Pois-
son’s ratio from the final model of the joint inversion is a further
product of the inversion, although this parameter is not an unknown
of the problem.

Besides the advantages of the joint inversion approach, the field
study has confirmed the possibility of using SWA to obtain the S-
wave velocity model from the data set that was acquired for P-wave
tomography.

Here, we applied a physical link only between the seismic veloc-
ities. However, a foreseeable development is the introduction of a
petrophysical relationship between seismic velocities and resistivity
as shown for the 1D case by Garofalo et al. (2013). This study deals
with a physical link between seismic and electric model parameters
in a saturated sand layer, and hence that approach is not applicable
to this case study.

CONCLUSIONS

We have shown that the joint inversion of surface-wave dispersion
curves, P-wave traveltimes, and apparent resistivity provides better
results than individual inversions, reducing the nonuniqueness of
the solution that leads to interpretation ambiguities. The geometry
of the models was well solved, thanks to the contribution of the three
different kinds of data, and this also led to an improvement of the
estimation of the other geophysical parameters with a reduced num-
ber of iterations. The introduction of a physical link through a con-
straint on Poisson’s ratio further improved the results. As a future
development, a 2D forward model computation for resistivity should
also be considered.
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