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Memoryless Multiple Access Channel with Asymmetric Noisy
State Information at the Encoders

Nevroz Şen, Student Member, IEEE, Fady Alajaji, Senior Member, IEEE, Serdar Yüksel, Member, IEEE and
Giacomo Como, Member, IEEE

Abstract—The problem of reliable communication over the
memoryless state-dependent multiple-access channel (MAC) is
considered where the encoders and the decoder are provided with
various degrees of asymmetric noisy channel state information
(CSI). For the case where the encoders observe causal, asymmet-
ric noisy CSI and the decoder observes complete CSI, inner and
outer bounds to the capacity region, which are tight for the sum-
rate capacity, are provided. Next, single-letter characterizations
for the channel capacity regions under each of the following
system settings are established: (a) the CSI at the encoders are
asymmetric deterministic functions of the CSI at the decoder and
the encoders have non-causal noisy CSI; (b) the encoders observe
asymmetric noisy CSI with asymmetric delays and the decoder
observes complete CSI; (c) a degraded message set scenario with
asymmetric noisy CSI at the encoders and complete and/or noisy
CSI at the decoder. The main component in these results is a
generalization of a recently introduced converse coding approach
for the MAC with asymmetric quantized CSI at the encoders
and herein considerably extended and adapted for the noisy CSI
setup.
Index Terms—Asymmetric channel state information, capacity

region, converse coding theorem, Shannon strategies, State-
dependent multiple-access channel

I. INTRODUCTION
A. Literature Review
Modeling communication channels with a state process,

which governs the channel behavior, fits well for many physi-
cal scenarios. For single-user channels, the characterization of
the capacity with various degrees of channel state information
at the transmitter (CSIT) and at the receiver (CSIR) is well
understood. Among them, Shannon [1] provides the capac-
ity formula for a discrete memoryless channel with causal
noiseless CSIT, where the state process is independent and
identically distributed (i.i.d.), in terms of Shannon strategies
(random functions from the state space to the channel input
space). In [2] Gel’fand and Pinsker consider the same problem
with non-causal side information and establish a single-letter
capacity formula. In [3], noisy state observation available at
both the transmitter and the receiver is considered and the
capacity under such a setting is derived. Later, in [4] this
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result is shown to be a special case of Shannon’s model
and the authors also prove that when CSIT is a deterministic
function of CSIR, optimal codes can be constructed directly
on the input alphabet. In [5], the authors examine the dis-
crete modulo-additive noise channel with causal CSIT which
governs the noise distribution, and they determine the optimal
strategies that achieve channel capacity. In [6], fading channels
with perfect channel state information at the transmitter is
considered and it is shown that with instantaneous and perfect
CSI, the transmitter can adjust the data rates for each channel
state to maximize the average transmission rate. In [7], a
single letter characterization of the capacity region for single-
user finite-state Markovian channels with quantized state in-
formation available at the transmitter and full state information
at the decoder is provided. In a closely related direction,
finite-state channels (with memory) with output feedback is
investigated in [8]. In particular, [8] shows that it is possible to
formulate the computation of feedback capacity as a stochastic
control problem. In [9], finite-state channels with feedback,
where feedback is a time-invariant deterministic function of
the output samples, is considered.
The literature on state dependent multiple access channels

with different assumptions of CSIR and CSIT (such as causal
vs non-causal, perfect vs imperfect) is extensive and the main
contributions of the current paper have several interactions
with the available results in the literature, which we present
in Subsection I-B. Hence, we believe that in order to suitably
highlight the contributions of this paper, it is worth to discuss
the relevant literature for the multi-user setting in more detail.
To start, [10] provides a multi-letter characterization of the
capacity region of time-varying MACs with general channel
statistics (with/without memory) under a general state process
(not necessarily stationary or ergodic) and with various degrees
of CSIT and CSIR. In [10], it is also shown that when the
channel is memoryless, if the encoders use only the past k
asymmetric partial (but not noisy) CSI and the decoder has
complete CSI, then it is possible to simplify the multi-letter
characterization to a single letter one [10, Theorem 4]. In
[11], a general framework for the capacity region of MACs
with causal and non-causal CSI is presented. In particular, an
achievable rate region is presented for the memoryless state-
dependent MAC with correlated CSI and the sum-rate capacity
is established under the condition that the state information
available to each encoder are independent. In [12], MACs
with complete CSIR and noncausal, partial, rate limited CSITs
are considered. In particular, for the degraded case, i.e., the
case where the CSI available at one of the encoders is a
subset of the CSI available at the other encoder, a single
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letter formula for the capacity region is provided and when
the CSITs are not degraded, inner and outer bounds are
derived, see [12, Theorems 1, 2]. In [13] state-dependent MAC
in which transmitters observe asymmetric partial quantized
CSI causally, and the receiver has full CSI is considered
and a single letter characterization of the capacity region is
obtained. In [14], memoryless state-dependent MACs with
two independent states (see also [15] for the common state),
each known causally and strictly causally to one encoder, is
considered and an achievable rate region, which is shown to
contain an achievable region where each user applies Shannon
strategies, is proposed. In [16], another achievable rate region
for the same problem is proposed and in [17] it is shown
that this region can be strictly larger than the one proposed
in [14]. In [14], it is also shown that strictly causal CSI
does not increase the sum-rate capacity. In [18], the finite-
state Markovian MAC with asymmetric delayed CSITs is
studied and its capacity region is determined. In [19], the
capacity region of some multiple-user channels with causal
CSI is established and inner and outer capacity bounds are
provided for the MAC. Another active research direction on
the state-dependent MAC regards the so-called cooperative
state-dependent MAC where there exists a degraded condition
on the message sets. In particular, [20] and [21] character-
ize the capacity region of the cooperative state-dependent
MAC with states non-causally and causally available at the
transmitters. For more recent results on the cooperative state-
dependent MAC problem see references [22], [23], [24] and
[25]. Finally, for a comprehensive survey on channel coding
with side information see [26] and for other recent results on
the multi-user channels with side information see [27], [28],
[29], [30] and [31].

B. Main Contributions and Connections with the Literature
We consider several scenarios where the encoders and the

decoder observe various degrees of noisy CSI. The essential
requirement we impose is that the noisy CSI available to the
decision makers is realized via the corruption of CSI by differ-
ent noise processes, which give a realistic physical structure of
the communication setup. We herein note that the asymmetric
noisy CSI assumption is acceptable as typically the feedback
links are imperfect and sufficiently far from each other so that
the information carried through them is corrupted by different
(independent) noise processes. It should also be noted that
asymmetric side information has many applications in different
multi-user models. Finally, what makes (asymmetric) noisy
setups particularly interesting are the facts that
(i) No transmitter CSI contains the CSI available to the other

one;
(ii) CSI available to the decoder does not contain any of the

CSI available to the two encoders.
When existing results, which provide a single letter capacity
formulation, are examined, it can be observed that most of
them do not satisfy (i) or (ii) or both (e.g., [13], [10],
[11], [12], [18]). Nonetheless, among these, [10] discusses the
situation with noisy CSI and makes the observation that the
situation where the CSITs and CSIR are noisy versions of the

state St can be accommodated by their models. However, they
also note that if the noises corrupting transmitters and receiver
CSI are different, then the encoder CSI will, in general, not
be contained in the decoder CSI. Hence, motivated by similar
observations in the literature (e.g., [11]), we partially treat the
scenarios below and provide inner and outer bounds, which
are tight for the sum-rate capacity, for scenario (1) below and
provide a single-letter characterization for the capacity region
of the latter scenarios:
(1) The state-dependent MAC in which each of the transmit-

ters has an asymmetric causal noisy CSI and the receiver
has complete CSI (Theorems 2.1, 2.2 and Corollary 2.1).

(2) The state-dependent MAC in which each of the trans-
mitters has an asymmetric non-causal noisy CSIT which
is a deterministic function of the CSIR at the receiver
(Theorem 2.3).

(3) The state-dependent MAC in which each of the transmit-
ters has an asymmetrically delayed and asymmetric noisy
CSI and the receiver has complete CSI (Theorem 2.4).

(4) The state-dependent MAC with degraded message set
where both transmitters transmit a common message and
one transmitter (informed transmitter) transmits a private
message. The informed transmitter has causal noisy CSI,
the other encoder has a delayed noisy CSI and the
receiver has various degrees of CSI (Theorems 2.5 and
2.6).

Let us now briefly position these contributions with respect
to the available results in the literature. The sum-rate capacity
determined in (1) can be thought as an extension of [11,
Theorem 4] to the case where the encoders have correlated
CSI. The causal setup of (2) is solved in [13]. The solution
that we provide to the non-causal case partially solves [12] and
extends [11, Theorem 5] to the case where the encoders have
correlated CSI. Furthermore, since the causal and non-causal
capacities are identical for scenario (2), the causal solution can
be considered as an extension of [4, Proposition 1] to a noisy
multi-user case. Finally, (4) is an extension of [20, Theorem
4] to a noisy setup.

C. The Converse Coding Approach
The most relevant paper to this work is [13] which provides

a converse coding approach for the state-dependent MAC
where asymmetric partial state information available at the
encoders. In this work, we adopt and expand on the converse
technique of this paper and use it in a noisy setup. The
converse coding approach of [13] is based on team decision
theoretic methods [32] (see also [33], [34] and [35] for recent
team decision and control theoretic approaches) where the
authors use memoryless stationary team policies which play
a key role in showing that the past information is irrelevant.
As the authors mention in [13, Remark 2], for the validity
of their arguments, it would suffice that the state information
available at the decoder contains the one available at the two
transmitters. In this way, the decoder does not need to estimate
the coding policies used in decentralized time-sharing.
For the noisy setup, we need to modify this approach to

account for the fact that the decoder does not have access
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to the state information at the encoders, and that the past
state information does not lead to a tractable recursion. This
difficulty is overcome by showing that a product form on the
team policies exists in the noisy setup as well.
The rest of the paper is organized as follows. In Section II,

we formally state scenarios (1)-(4), and present the main
results and several observations. In Section III, we provide
two examples in one of which we apply the result of [5] and
get the full capacity region by only considering the tightness
of the sum-rate capacity. Finally, in Section IV, we present
concluding remarks.
Throughout the paper, we will use the following notations.

A random variable will be denoted by an upper case letter
X and its particular realization by a lower case letter x. For
a vector v, and a positive integer i, vi will denote the i-th
entry of v, while v[i] = (v1, · · · , vi) will denote the vector
of the first i entries and v[i,j] = (vi, · · · , vj), i ≤ j will
denote the vector of entries between i, j of v. For a finite set
A, P(A) will denote the simplex of probability distributions
over A. Probability distributions are denoted by P (·) and
subscripted by the name of the random variables and condi-
tioning, e.g., PU,T |V,S(u, t|v, s) is the conditional probability
of (U = u, T = t) given (V = v, S = s). Finally, for a
positive integer n, we shall denote by A(n) :=

⋃

0<s<n A
s

the set of A-strings of length smaller than n. We denote the
indicator function of an event E by 1{E}. All sets considered
hereafter are finite.

II. MAIN RESULTS
Consider a two-user memoryless state-dependent MAC,

with two encoders, a, b, and two independent message sources
Wa and Wb which are uniformly distributed in the finite
sets Wa and Wb, respectively. The channel inputs from the
encoders are Xa ∈ Xa and Xb ∈ Xb, respectively, and
the channel output is Y ∈ Y . The channel state process is
modeled as a sequence {St}∞t=1 of i.i.d. random variables
in some finite space S. Let (Sa

t , S
b
t ) denote a pair of ran-

dom variables available at two encoders, a, b, respectively, at
time t. Throughout the paper, by symmetric side information
we will refer to the case where Sa

t = Sb
t , ∀t and by

asymmetric side information to when this does not occur.
Furthermore, by noisy side information will refer to the case
where (Sa

t , S
b
t , St) are correlated according to a given joint

distribution PSa,Sb,S(s
a, sb, s).

A. Asymmetric Causal Noisy CSIT
Let the two encoders have access to a causal noisy version

of the state information St at each time t ≥ 1, modeled by
Sa
t ∈ Sa, Sb

t ∈ Sb, respectively, where the joint distribution
of (St, Sa

t , S
b
t ) factorizes as

PSa
t ,S

b
t ,St

(sat , s
b
t , st) = PSa

t |St
(sat |st)PSb

t |St
(sbt |st)PSt(st). (1)

The system is depicted in Fig. 1. Let St be available at
the receiver and let {(St, Sa

t , S
b
t )}

∞
t=1 be a sequence of i.i.d.

triples, independent from (Wa,Wb). Hence, for any n ≥ 1,

PS[n],S
a
[n],S

b
[n],Wa,Wb

(s[n], s
a
[n], s

b
[n], wa, wb)

Encoder
φ
(a)
t

(Wa, Sa

[t])

Channel
P (Yt|Xa

t ,X
b
t , St)

Encoder
φ
(b)
t

(Wb, S
b

[t])

Decoder
ψ(Y[n], S[n])

Sa
t

Sb
t

Wa

Wb

Yt

St

Ŵa

Ŵb

Xa
t

Xb
t

Fig. 1. The multiple-access channel with asymmetric causal noisy CSI.

=
n
∏

t=1

1

|Wa|

1

|Wb|
PSa

t |St
(sat |st)PSb

t |St
(sbt |st)PSt(st). (2)

The channel inputs at time t, i.e., Xa
t and Xb

t , are functions
of the locally available information (Wa, Sa

[t]) and (Wb, Sb
[t]),

respectively. Let W := (Wa,Wb) and Xt := (Xa
t , X

b
t ),

respectively. Then, the laws governing n-sequences of state,
input and output letters are given by

PY[n]|W,X[n],S[n],S
a
[n],S

b
[n]
(y[n]|w,x[n], s[n], s

a
[n], s

b
[n])

=
n
∏

t=1

PYt|Xa
t ,X

b
t ,St

(yt|x
a
t , x

b
t , st), (3)

where PYt|Xa
t ,X

b
t ,St

(yt|xa
t , x

b
t , st), the channel’s transition

probability distribution, is given a priori.
Definition 2.1: An (n, 2nRa , 2nRb) code with block length

n and rate pair (Ra, Rb) for a state-dependent MAC with
causal noisy state information consists of
(1) A sequence of mappings for each encoder

φ(a)t : St
a ×Wa → Xa, t = 1, 2, ...n;

φ(b)t : St
b ×Wb → Xb, t = 1, 2, ...n.

2) An associated decoding function
ψ : Sn × Yn → Wa ×Wb.

Let Pe,f := P
(

ψ(Y[n], S[n]) ̸= (wa, wb)|W = w
)

.The sys-
tem’s probability of error, P (n)

e , is given by

P (n)
e =

1

2n(Ra+Rb)

2nRa
∑

wa=1

2nRb
∑

wb=1

Pe,f .

A rate pair (Ra, Rb) is achievable if for any ϵ > 0, there exists,
for all n sufficiently large an (n, 2nRa , 2nRb) code such that
1
n
log |Wa| ≥ Ra > 0, 1

n
log |Wb| ≥ Rb > 0 and P (n)

e ≤ ϵ.
The capacity region of the state-dependent MAC, CFS , is the
closure of the set of all achievable rate pairs (Ra, Rb) and the
sum-rate capacity is defined as C

∑

FS := max(Ra,Rb)∈CFS
(Ra+

Rb).
Before proceeding with the main result, we introduce mem-

oryless stationary team policies [13] and their associated rate
regions. Let the set of all possible functions from Sa to Xa

and Sb to Xb be denoted by Ta := Xa
|Sa| and Tb := Xb

|Sb|,
respectively. We shall refer to Ta-valued and Tb-valued random
vectors as Shannon strategies.
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Definition 2.2: [13] A memoryless stationary (in time) team
policy is a family

Π = {π = (πTa(·),πT b (·)) ∈ P(Ta)× P(Tb)} (4)

of probability distribution pairs on (Ta, Tb).
For every memoryless stationary team policy π, let RFS(π)

denote the region of all rate pairs R = (Ra, Rb) satisfying

Ra < I(T a;Y |T b, S) (5)
Rb < I(T b;Y |T a, S) (6)

Ra +Rb < I(T a, T b;Y |S) (7)

where S, T a, T b and Y are random variables taking values
in S, Ta, Tb and Y , respectively, and whose joint probability
distribution factorizes as

PS,Ta,T b,Y (s, t
a, tb, y)

= PS(s)PY |Ta,T b,S(y|t
a, tb, s)πTa(ta)πT b(tb). (8)

Let CIN := co

(

⋃

π RFS(π)

)

denote the closure of the

convex hull of the rate regions RFS(π) given by (5)-(7)
associated to all possible memoryless stationary team polices
as defined in (4).
Theorem 2.1 (Inner Bound to CFS): CIN ⊆ CFS .

The achievability proof (which we omit) is based on a random
code construction with Shannon strategies and follows the
standard arguments involving joint ϵ-typical sequences (e.g.,
cf. [36, Section 15.2]). Let

COUT :=

{

(Ra, Rb) ∈ R
+ ×R

+ :

Ra +Rb ≤ sup
πTa (ta)π

Tb(tb)
I(T a, T b;Y |S)

}

,

where R+ is the set of positive reals.
Theorem 2.2 (Outer Bound to CFS): CFS ⊆ COUT .
Proof of Theorem 2.2: We need to show that all achiev-

able rates satisfy

Ra +Rb ≤ sup
πTa (ta)π

Tb(tb)
I(T a, T b;Y |S),

i.e., a converse for the sum-rate capacity. Following [13], for
1 ≤ t ≤ n, let

αµ :=
1

n
PS[t−1]

(µ) and η(ϵ) := ϵ

1− ϵ
log |Y|+

H(ϵ)

1− ϵ
. (9)

Observe that limϵ→0 η(ϵ) = 0 and
∑

µ∈S(n)

αµ =
1

n

∑

1≤t≤n

∑

µ∈St−1

PS[t−1]
(µ) = 1,

where S(n) is the set of all S-strings of length less than n.
Recall that Xa

t = φ(a)t

(

Wa, Sa
[t]

)

= φ(a)t

(

Wa, Sa
[t−1], S

a
t

)

and Xb
t = φ(b)t

(

Wb, Sb
[t]

)

= φ(b)t

(

Wb, Sb
[t−1], S

b
t

)

, for all
t ≥ 1. Then, we can define the Shannon strategies T a

t ∈ Ta
and T b

t ∈ Tb by putting, for every sa ∈ Sa and sb ∈ Sb,

T a
t (sa) := φ(a)t

(

Wa, S
a
[t−1], sa

)

T b
t (sb) := φ(b)t

(

Wb, S
b
[t−1], sb

)

. (10)

We now show that the sum of any achievable rate pair can
be written as the convex combinations of mutual information
terms which are indexed by the realization of past complete
CSI.
Lemma 2.1: Let T a

t ∈ Ta and T b
t ∈ Tb be the Shannon

strategies induced by φ(a)t and φ(b)t , respectively, as shown in
(10). Assume that a rate pair R = (Ra, Rb), with block length
n ≥ 1 and a constant ϵ ∈ (0, 1/2), is achievable. Then,

Ra +Rb ≤
∑

µ∈S(n)

αµI(T
a
t , T

b
t ;Yt|St, S[t−1] = µ) + η(ϵ). (11)

Proof: Let Tt := (T a
t , T

b
t ). By Fano’s inequality, we get

H(W|Y[n], S[n]) ≤ H(ϵ) + ϵ log(|Wa||Wb|). (12)

Observing that

I(W;Y[n], S[n]) = H(W)−H(W|Y[n], S[n])

= log(|Wa||Wb|)−H(W|Y[n], S[n]). (13)

Combining (12) and (13) gives

(1 − ϵ) log(|Wa||Wb|) ≤ I(W;Y[n], S[n]) +H(ϵ)

and

Ra +Rb ≤
1

n
log(|Wa||Wb|)

≤
1

1− ϵ

1

n

(

I(W;Y[n], S[n]) +H(ϵ)
)

. (14)

Furthermore,

I(W;Y[n], S[n])

=
n
∑

t=1

[

H(Yt, St|S[t−1], Y[t−1])

−H(Yt, St|W, S[t−1], Y[t−1])
]

(i)
=

n
∑

t=1

[

H(Yt|S[t], Y[t−1])−H(Yt|W, S[t], Y[t−1])
]

(ii)
≤

n
∑

t=1

[

H(Yt|S[t])−H(Yt|W, S[t], Y[t−1],Tt)
]

(iii)
=

n
∑

t=1

[

H(Yt|S[t])−H(Yt|S[t],Tt)
]

=
n
∑

t=1

I(Tt;Yt|S[t]) (15)

where (i) is implied by (2), in (ii) Tt := (T a
t , T

b
t ) are Shan-

non strategies whose realizations are mappings tit : Si
t → X i

t

for i = {a, b} and thus (ii) holds since conditioning does not
increase entropy. Finally, (iii) follows since

PYt|W,St,S[t−1],Y[t−1],T
a
t ,T b

t
(yt|w, st, s[t−1], y[t−1], t

a
t , t

b
t)

=
∑

sat ,s
b
t

PYt|St,Sa
t ,S

b
t ,T

a
t ,T b

t
(yt|st, s

a
t , s

b
t , t

a
t , t

b
t)

×PSa
t ,S

b
t |St

(sat , s
b
t |st)

= PYt|St,Ta
t ,T b

t
(yt|st, t

a
t , t

b
t) (16)
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where the first equality is verified by (3) and (2), where xi
t =

tit(s
i
t) for i = {a, b}. At this point, it is worth to note that

by (16), one can remove S[t−1] from (15) in the conditioning.
However, we will soon observe why it is crucial to keep it
when we prove the product form. Now, let χ(ϵ) := H(ϵ)

n(1−ϵ)
and combining (14)-(15) gives

Ra +Rb

≤
1

n
log(|Wa||Wb|)

≤

(

1

1− ϵ

1

n

n
∑

t=1

I(T a
t , T

b
t ;Yt|S[t])

)

+ χ(ϵ) + (n− 1)χ(ϵ)

(a)
≤

1

1− ϵ

1

n

n
∑

t=1

I(T a
t , T

b
t ;Yt|S[t]) + η(ϵ)

−
ϵ

1− ϵ

1

n

n
∑

t=1

I(T a
t , T

b
t ;Yt|S[t])

=
1

n

n
∑

t=1

I(T a
t , T

b
t ;Yt|S[t]) + η(ϵ) (17)

where (a) is valid since I(T a
t , T

b
t ;Yt|S[t]) ≤ log |Y|. Further-

more,

I(T a
t , T

b
t ;Yt|S[t])

= n
∑

µ∈St−1

αµI(T
a
t , T

b
t ;Yt|St, S[t−1] = µ), (18)

and substituting the above into (17) yields (11).
Note that, for any t ≥ 1, I(T a

t , T
b
t ;Yt|St, S[t−1] = µ) is a

function of the joint conditional distribution of channel state
St, inputs T a

t , T b
t and output Yt given the past realization

(S[t−1] = µ). Hence, to complete the proof of the outer
bound, we need to show that PTa

t ,T b
t ,Yt,St|S[t−1]

(ta, tb, y, s|µ)
factorizes as in (8). This is done in the lemma below. In
particular, it is crucial to observe that the knowledge of the
past state at the decoder, S[t−1], is enough to provide a product
form on T a and T b. Let

Υa
µa
(ta) := {wa : φ(a)t (wa, s

a
[t−1] = µa) = ta},

Υb
µb
(tb) := {wb : φ

(b)
t (wb, s

b
[t−1] = µb) = tb} (19)

and

πµa

Ta(ta) :=
∑

wa∈Υa
µa

(ta)

1

|Wa|
,

πµb

T b (t
b) :=

∑

wb∈Υb
µb

(tb)

1

|Wb|
,

πµ
Ta(ta) :=

∑

µa

πµa

Ta(ta)PSa
[t−1]

|S[t−1]
(µa|µ),

πµ
T b(t

b) :=
∑

µb

πµb

T b (t
b)PSb

[t−1]|S[t−1]
(µb|µ), (20)

where µa and µb denote particular realizations of Sa
[t−1] and

Sb
[t−1], respectively.
Lemma 2.2: For every 1 ≤ t ≤ n and µ ∈ St−1, the

following holds

PTa
t ,T b

t ,Yt,St|S[t−1]
(ta, tb, y, s|µ)

= PS(s)PY |S,Ta,T b(y|s, ta, tb)πµ
Ta(ta)π

µ
T b(t

b). (21)

Proof: Let S := (St, Sa
t , S

b
t ) and s := (s, sat , s

b
t). Observe

that

PTa
t ,T b

t ,Yt,St|S[t−1]
(ta, tb, y, s|µ)

:=
∑

sat ,s
b
t

PS,Ta
t ,T b

t ,Yt|S[t−1]
(s, ta, tb, y|µ)

:=
∑

sat ,s
b
t

PY |S,Ta
t ,T b

t
(y|s, ta, tb)PS,Ta

t ,T b
t |S[t−1]

(s, ta, tb|µ) (22)

where the second equality is shown in (16). Let us now
consider the term PS,Ta

t ,T b
t |S[t−1]

(s, ta, tb|µ) above. We have
the following

PS,Ta
t ,T b

t |S[t−1]
(s, ta, tb|µ)

=
∑

wa∈Wa

∑

wb∈Wb

∑

µa

∑

µb

PW,Sa
[t−1],S

b
[t−1],S,T

a
t ,T b

t |S[t−1]
(w, µa, µb, s, ta, tb|µ)

(i)
= PS(s)

∑

wa∈Wa

∑

wb∈Wb

∑

µa

∑

µb

PW,Sa
[t−1],S

b
[t−1],T

a
t ,T b

t |S[t−1]
(w, µa, µb, t

a, tb|µ)

(ii)
= PS(s)

∑

wa∈Wa

∑

wb∈Wb

∑

µa

∑

µb

1
{tl=φ

(l)
t (wl,µl), l=a,b}

PW,Sa
[t−1]

,Sb
[t−1]

|S[t−1]
(w, µa, µb|µ)

(iii)
= PS(s)

∑

wa∈Wa

∑

wb∈Wb

∑

µa

∑

µb

1
{tl=φ

(l)
t (wl,µl), l=a,b}

1

|Wa|

1

|Wb|
PSa

[t−1]
,Sb

[t−1]
|S[t−1]

(µa, µb|µ)

(iv)
= PS(s)

∑

µa

PSa
[t−1]|S[t−1]

(µa|µ)
∑

µb

PSb
[t−1]|S[t−1]

(µb|µ)

∑

wa∈Wa

1

|Wa|
1
{ta=φ

(a)
t (wa,µa)}

∑

wb∈Wb

1

|Wb|
1
{tb=φ

(b)
t (wb,µb)}

(v)
= PS(s)

∑

µa

PSa
[t−1]|S[t−1]

(µa|µ)
∑

wa∈Υa
µa

(ta)

1

|Wa|

∑

µb

PSb
[t−1]|S[t−1]

(µb|µ)
∑

wb∈Υb
µb

(tb)

1

|Wb|

(vi)
= PS(s)

∑

µa

PSa
[t−1]|S[t−1]

(µa|µ)π
µa

Ta (ta)

∑

µb

PSb
[t−1]

|S[t−1]
(µb|µ)π

µb

T b (t
b)

(vii)
= PS(s)πµ

Ta(ta)π
µ
T b(t

b) (23)

where (i) is due to (2) and (10), (ii) is valid by (10), (iii)
is due to (2), (iv) is valid by (1) and (10), (v) is valid due
to (19) and (vi)− (vii) is valid due to (20). Substituting (23)
into (22) proves the lemma.
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We can now complete the proof of Theorem 2.2. We have

Ra +Rb

≤
∑

µ∈S(n)

αµI(T
a
t , T

b
t ;Yt|St, S[t−1] = µ) + η(ϵ)

=
∑

µ∈S(n)

αµI(T
a
t , T

b
t ;Yt|St)πµ

Ta (ta)π
µ

Tb (t
b) + η(ϵ)

≤ sup
(πTa (ta)π

Tb(tb)∈Π)
I(T a

t , T
b
t ;Yt|St) + η(ϵ),

where I(T a
t , T

b
t ;Yt|St)πµ

Ta (ta)π
µ

Tb
(tb) denotes the mutual in-

formation induced by the product distribution πµ
Ta(ta)π

µ
T b(tb)

and the second step is valid since I(T a
t , T

b
t ;Yt|St, S[t−1] = µ)

is a function of the joint conditional distribution of channel
state St, inputs T a

t , T
b
t and output Yt given the past realization

(S[t−1] = µ). Hence, since limϵ→0 η(ϵ) = 0, any achievable
pair satisfies Ra +Rb ≤ supπTa (ta)π

Tb(tb) I(T
a, T b;Y |S).

As a consequence of Theorems 2.1 and 2.2, we have the
following corollary which can be thought of as an extension of
[11, Theorem 4] to the case where the encoders have correlated
CSI.
Corollary 2.1:

CFS∑ = sup
πTa (ta)π

Tb (tb)
I(T a, T b;Y |S). (24)

Proof of Corollary 2.1: We need to show that
∃ (Ra, Rb) ∈ CIN achieving (24). We follows steps akin to
[36, p.535] where discrete memoryless MACs are considered.
Let us fix πTa(ta)πT b(tb) and consider the rate constraints
given in CIN

I(T a;Y |T b, S) = H(T a|T b, S)−H(T a|T b, Y, S)

= H(T a)−H(T a|T b, Y, S) (25)
I(T b;Y |T a, S) = H(T b|T a, S)−H(T b|T a, Y, S)

= H(T b)−H(T b|T a, Y, S) (26)

and

I(T a, T b;Y |S)

= H(T a, T b)−H(T a, T b|Y, S)

= H(T a) +H(T b)−H(T a|T b, Y, S)−H(T b|Y, S), (27)

where (25), (26) and (27) are valid since T a and T b are inde-
pendent of each other and independent of S. Observe now that
for any πTa(ta)πT b (tb), I(T a;Y |T b, S) + I(T b;Y |T a, S) ≥
I(T a, T b;Y |S) since H(T b|Y, S) ≥ H(T b|T a, Y, S). There-
fore, the sum-rate constraint in CIN is always active and hence,
there exists (Ra, Rb) ∈ CIN achieving (24).
We conclude this section with a number of remarks.
Remark 2.1: One essential step in the proof of Theorem

2.2 is that, once we have the complete CSI, conditioning
on which allows a product form on T a and T b, there is
no loss of optimality (for the sum-rate capacity) in using
associated memoryless team policies instead of using all the
past information at the receiver.
Remark 2.2: For the validity of Corollary 2.1, it is cru-

cial to have the product form on the pair (T a, T b). If
this is not the case, we would get that I(T a;Y |T b, S) +

I(T b;Y |T a, S) = H(T a|T b)+H(T b|T a)−H(T a|T b, Y, S)−
H(T b|T a, Y, S) and I(T a, T b;Y |S) = H(T a|T b)+H(T b)−
H(T a|T b, Y, S)−H(T b|Y, S). Therefore, it is possible to get
an obsolete sum-rate constraint in CIN and hence, achievability
of C

∑

FS is not guaranteed. Note that the channel inputs are not
independent since Xa = T a(Sa) and Xb = T b(Sb).
Remark 2.3 (Cases of partial and no CSIR): In the situa-

tion where the receiver has partial information about the state
at time t in the sense that it is provided with process {(Vt)}∞t=1,
Vt ∈ V , which is independent of (Wa,Wb) and satisfies the
following

PS[t],S
a
[t],S

b
[t],V[t]

(s[t], s
a
[t], s

b
[t], v[t])

= P (sa[t]|v[t])P (sb[t]|v[t])P (s[t], v[t]), 1 ≤ t ≤ n, (28)

it can be shown that the sum-rate capacity admits a similar
expression as in (24) with S replaced by V , see [37, Theorem
5.2.3]. Furthermore, inspired by the coding schemes of the
lossless CEO problem [38] as well as of a recently proposed
achievable region [14], an inner bound, which demonstrates
the rate required to transmit the above partial information
about the state in the case where the receiver has no CSI,
is shown in [37, Theorem 5.3.2].

B. CSITs as Deterministic Functions of CSIR: Non-Causal
Case
In this section we consider the situation where the trans-

mitters have access to partial state information available at the
decoder. In particular, let Si

t = f i(Sr
t ), where f i : Sr → Si,

i = {a, b} and Sr ∈ Sr such that

PS[n],S
a
[n],S

b
[n],S

r
[n],Wa,Wb

(s[n], s
a
[n], s

b
[n], s

r
[n], wa, wb)

=
n
∏

t=1

1

|Wa|

1

|Wb|
PSt,Sa

t ,S
b
t ,S

r
t
(st, s

a
t , s

b
t , s

r
t ). (29)

The channel is driven by the state process {St}∞t=1 and hence,

PY[n]|W,X[n],S[n],S
a
[n]

,Sb
[n]

,Sr
[n]
(y[n]|w,x[n], s[n], s

a
[n], s

b
[n], s

r
[n])

=
n
∏

t=1

PYt|Xa
t ,X

b
t ,St

(yt|x
a
t , x

b
t , st). (30)

Note that one can define an equivalent channel with condi-
tional output probability

P eq
Y |Xa,Xb,Sr(y|x

a, xb, sr)

=
∑

s∈S

PY |Xa,Xb,S(y|x
a, xb, s)PS|Sr(s|sr). (31)

Hence, the causal setup of this problem is no more general
than the setup in [13] and the main result of this subsection
is to show that the result of [13] also holds for non-causal
coding.
We keep the channel codes definition identical for the causal

and non-causal cases, except for the non-causal case we have;
φ(i)t : Sn

i × Wi → Xn
i , i = {a, b}, t = 1, · · · , n. Let CQ

NS

denote the capacity region. We need to modify Definition 2.2
in order to take the current CSI into account.
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Definition 2.3: A memoryless stationary (in time) team
policy is a family

Π̄ =
{

π̄ =
(

πXa|Sa(·|fa(sr)),πXb|Sb(·|f b(sr))
)

∈ P(Xa)× P(Xb)
}

(32)

For every π̄ defined in (32), RQ
NS(π̄) denotes the region of

all rate pairs R = (Ra, Rb) satisfying

Ra < I(Xa;Y |Xb, Sr) (33)
Rb < I(Xb;Y |Xa, Sr) (34)

Ra +Rb < I(Xa, Xb;Y |Sr) (35)

where Sr, Xa, Xb and Y are random variables taking values
in Sr, Xa, Xb and Y , respectively, and whose joint probability
distribution factorizes as

PSr ,Xa,Xb,Y (s
r, xa, xb, y)

= PSr(sr)PY |Xa,Xb,Sr (y|xa, xb, sr)

×πXa|Sa(xa|fa(sr))πXb|Sb(xb|f b(sr)). (36)

Let co
(

⋃

π̄ R
Q
NS(π̄)

)

denote the closure of the convex hull

of the rate regions RQ
NS(π̄) given by (33)-(35) associated to

all possible memoryless stationary team polices as defined in
(32).
Theorem 2.3: CQ

NS = co

(

⋃

π̄ R
Q
NS(π̄)

)

.
For the achievability proof, see [13, Section III] and observe
that any rate which is achievable with causal CSI is also
achievable with non-causal CSI. For the converse proof of the
non-causal case see Appendix A. The proof for the non-causal
case is realized by observing that there is no loss of optimality
if not only the past, as shown in [13], but also the future CSI
is ignored given that the receiver is provided with complete
CSI. A similar observation for independent CSIT is also made
see [11, Theorem 5].
Consider now the setup in Section II in order to observe that

for the non-causal case the optimality of Shannon strategies is
not guaranteed. Recall that, we have

I(W;Y[n], S[n])≤
n
∑

t=1

[

H(Yt|S[n], Y[t−1])−

H(Yt|W, S[n], Y[t−1],Tt)
]

(37)

where Tt := (T a
t , T

b
t ). Consider now the right hand side of

(37) and observe that

PYt|W,S[n],Y[t−1],T
a
t ,T b

t
(yt|w, s[n], y[t−1], t

a
t , t

b
t)

=
∑

sat ,s
b
t

PYt|St,Sa
t ,S

b
t ,T

a
t ,T b

t
(yt|st, s

a
t , s

b
t , t

a
t , t

b
t)

×PSa
t ,S

b
t |Y[t−1],St

(sat , s
b
t |y[t−1], st),

and therefore, the past channel outputs cannot be eliminated.

C. Asymmetric Noisy CSIT with Delays
Consider the problem defined in Section II-A where the

two encoders have accesses to asymmetrically delayed, where
delays are da ≥ 1 and db ≥ 1, respectively, and noisy versions

of the state information St at each time t ≥ 1, modeled
by Sa

t−da
∈ Sa, Sb

t−db
∈ Sb, respectively. The rest of the

channel model is identical and hence, (1), (2) and (3) are
valid throughout this section. We also assume that St is fully
available at the receiver. A code can be defined as in Definition
2.1, except now

φ(a)t : St−da
a ×Wa → Xa, t = 1, 2, ...n;

φ(b)t : St−db

b ×Wb → Xb, t = 1, 2, ...n.1

Let CDN denotes the capacity region of the delayed setup.
In the main result of this section the team policies are

composed of probability distributions on the channel inputs
rather than Shannon strategies.
Definition 2.4: A memoryless stationary (in time) team

policy is a family

Π̃ =
{

π̃ = (πXa(·),πXb (·)) ∈ P(X a)× P(X b)
}

. (38)

For every memoryless stationary team policy π̃, RDN (π̃)
denotes the region of all rate pairs R = (Ra, Rb) satisfying

Ra < I(Xa;Y |Xb, S) (39)
Rb < I(Xb;Y |Xa, S) (40)

Ra +Rb < I(Xa, Xb;Y |S) (41)

where S, Xa, Xb and Y are random variables taking values
in S, X a, X b and Y , respectively and whose joint probability
distribution factorizes as

PS,Xa,Xb,Y (s, x
a, xb, y)

= PS(s)PY |Xa,Xb,S(y|x
a, xb, s)πXa(xa)πXb(xb).(42)

Let co
(

⋃

π̃ RDN (π̃)

)

denotes the closure of the convex hull

of the rate regions RDN (π̃) given by (39)-(41) associated to
all possible memoryless stationary team polices as defined in
(38).
Theorem 2.4: CDN = co

(

⋃

π̃ RDN (π̃)

)

.
Achievability can be shown via random coding arguments. For
the converse, see Appendix B.
Remark 2.4 (Strictly Causal CSIT): When da = db = 1,

Theorem 2.4 is the capacity region of the setup with strictly
causal CSITs. This case was considered in the literature,
e.g., see [14], [16], [15] and [22], where it is shown that
strictly causal side information is helpful. Theorem 2.4 verifies
that since the full CSI is available at the receiver and since
the decoder does not need to access the current CSI at
the encoders, there exists no loss of optimality if the past
information at the encoders are ignored.

D. Degraded Message Set with Noisy CSIT
Assume a common message is provided to both encoders

and one of the encoders has its own private message. As-
sume further that the encoder with the private message has
causal noisy CSI, whereas the encoder with the common

1Obviously, when dl ≥ t, l = a, b then Xa
t = φ

(a)
t (Wa) and Xb

t =

φ
(b)
t

(Wb).
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Encoder
φ
(a)
t

(Wa, Sa

[t−da]
)

Channel
P (Yt|Xa

t ,X
b
t , St)

Encoder
φ
(b)
t

(Wb,Wa, Sb

[t])

Decoder
ψ(Y[n], S[n])

Sa
t−da

Sb
t

Wa

Wb

Yt

St

Ŵa

Ŵb

Xa
t

Xb
t

Fig. 2. MAC with degraded message set and with noisy CSI.

message only observes noisy state information with delay
da ≥ 1. Let the common and the private messages be Wa

and Wb, respectively, and Sa
[t−da]

, da ≥ 1, and Sb
[t] denote

the CSI at encoder a, b, respectively, where (St, Sa
t , S

b
t )

satisfies (1) and (2). Hence, Xa
t = φ(a)t (Wa, Sa

[t−da]
) and

Xb
t = φ(b)t (Wa,Wb, Sb

[t]); see Fig. 2. Let CC denote the
capacity region for this channel. Recall that Tb = X |Sb|

b .
Definition 2.5: A memoryless stationary (in time) team

policy is a family

Π̂ =
{

π̂ =
(

πXa,T b(·, ·)
)

∈ P(X a × T b)
}

(43)

of probability distributions on (Xa, Tb).
Let for every π̂, RC(π̂) denote the region of all rate pairs

R = (Ra, Rb) satisfying

Rb < I(T b;Y |Xa, S) (44)
Ra +Rb < I(Xa, T b;Y |S) (45)

where S, Xa, T b and Y are random variables taking values
in S, Xa, Tb and Y , respectively and whose joint probability
distribution factorizes as

PS,Xa,T b,Y (s, x
a, tb, y)

= PS(s)PY |Xa,T b,S(y|x
a, tb, s)πXa,T b(xa, tb). (46)

Let co
(

⋃

π̂ RC(π̂)

)

denotes the closure of the convex hull

of the rate regions RC(π̂) given by (44) and (45) associated
to all possible memoryless stationary team polices as defined
in (43).
Theorem 2.5: CC = co

(

⋃

π̂ RC(π̂)

)

.
See Appendix C for the proof.
Remark 2.5: Theorem 2.5 shows that when the common

message encoder does not have access to the current noisy
CSI (since the delay da ≥ 1), by enlarging the optimization
space of the other encoder, via Shannon strategies, the past
CSI can be ignored without loss of optimality if the decoder
is provided with complete CSI.
One important observation to be made in the degraded message
set scenario is that we do not require a product form on the
pair (Xa, T b) (see (46)). In connection with this observation,
let us consider the following noisy CSIR setup.
Let the encoder with the private message causally observe

the noisy state information, whereas let the encoder with the

Encoder
φ
(a)
t (Wa)

Channel
P (Yt|Xa

t ,X
b
t , St)

Encoder
φ
(b)
t

(Wb,Wa, Sb

[t])

Decoder
ψ(Y[n], S

r

[n])

Sb
t

Wa

Wb

Yt

Sr
t

Ŵa

Ŵb

Xa
t

Xb
t

Fig. 3. MAC with degraded message set and with noisy CSIT and CSIR.

common message have no CSI, i.e., Xa
t = φ(a)t (Wa) and

Xb
t = φ(b)t (Wa,Wb, Sb

[t]), and let the decoder also have access
to noisy CSI at time t, Sr

t ∈ Sr; see Fig. 3, where,

PS[n],S
r
[n],S

b
[n],Wa,Wb

(s[n], s
r
[n], s

b
[n], wa, wb)

=
n
∏

t=1

1

|Wa|

1

|Wb|
PSt,Sr

t ,S
b
t
(st, s

r
t , s

b
t) (47)

and let CG
C denote the capacity region for this setup.

Let for every memoryless stationary team policy π̂ defined
in (43), RG

C(π̂) denote the region of all rate pairs R =
(Ra, Rb) satisfying,

Rb < I(T b;Y |Xa, Sr) (48)
Ra +Rb < I(Xa, T b;Y |Sr) (49)

where Sr, Xa, T b and Y are random variables taking values
in Sr, Xa, Tb and Y , respectively and whose joint probability
distribution factorizes as

PSr,Xa,T b,Y (s
r, xa, tb, y)

= PSr (sr)PY |Xa,T b,Sr (y|xa, tb, sr)πXa,T b(xa, tb).(50)

Let co
(

⋃

π̂ R
G
C(π̂)

)

denote the closure of the convex hull of

the rate regions RG
C(π̂) given by (48) and (49) associated to

all possible π̂ as defined in (43).
Theorem 2.6: CG

C = co

(

⋃

π̂ R
G
C(π̂)

)

.
Proof: The achievability proof is identical to that of

Theorem 2.5. The converse proof is also similar and therefore,
we only provide a sketch. In particular, observe the following
lines of equations for the converse proof of the condition on
Rb:

I(Wb;Y[n], S
r
[n])

≤ I(Wb;Y[n], S
r
[n]|Wa)

=
n
∑

t=1

[

H(Yt, S
r
t |S

r
[t−1], Y[t−1],Wa)

−H(Yt, S
r
t |S

r
[t−1], Y[t−1],Wa,Wb)

]

(i)
=

n
∑

t=1

[

H(Yt|S
r
[t], Y[t−1],Wa)

−H(Yt|S
r
[t], Y[t−1],Wa,Wb)

]

=
n
∑

t=1

[

H(Yt|S
r
[t], Y[t−1],Wa, X

a
t )
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−H(Yt|S
r
[t], Y[t−1],Wa,Wb, X

a
t )
]

(ii)
≤

n
∑

t=1

[

H(Yt|S
r
[t], X

a
t )

−H(Yt|S
r
[t], Y[t−1],Wa,Wb, X

a
t , T

b
t )
]

(iii)
=

n
∑

t=1

[

H(Yt|S
r
[t], X

a
t )−H(Yt|S

r
[t], X

a
t , T

b
t )
]

=
n
∑

t=1

I(T b
t ;Yt|X

a
t , S

r
[t]) (51)

where (i) follows since state is i.i.d., where T b
t is the Shannon

strategy induced by encoder b at time t as shown in (105), and
(ii) is valid since conditioning does not increase entropy, and
(iii) is valid since

PYt|Sr
[t]

,Y[t−1],W,Xa
t ,T

b
t
(yt|s

r
[t], y[t−1],w, xa

t , t
b
t)

=
∑

st∈S,sbt∈Sb

PYt|St,Sb
t ,X

a
t ,T

b
t
(yt|st, s

b
t , x

a
t , t

b
t)

×PSb
t ,St|Sr

[t]
,Y[t−1],W,Xa

t ,T
b
t
(sbt , st|s

r
[t], y[t−1],w, xa

t , t
b
t)

=
∑

st∈S,sbt∈Sb

PYt|St,Sb
t ,X

a
t ,T

b
t
(yt|st, s

b
t , x

a
t , t

b
t)

×PSb
t ,St

(sbt , st|s
r
t )

= PYt|Sr
t ,X

a
t ,T

b
t
(yt|s

r
t , x

a
t , t

b
t) (52)

where the first equality is valid due to (3) and the second
equality holds due to (47). Hence, one can directly obtain that

Rb ≤
∑

µr∈S
(n)
r

αµr
I(T b

t ;Yt|X
a
t , S

r
t , S

r
[t−1] = µr) + η(ϵ) (53)

Ra +Rb

≤
∑

µr∈S(n)
r

αµr
I(Xa

t , T
b
t ;Yt|S

r
t , S

r
[t−1] = µr) + η(ϵ) (54)

where αµr
:= 1

nPSr
[t−1]

(µr). We now need to show that the
joint distribution PXa

t ,T
b
t ,Yt,Sr

t |S
r
[t−1]

(xa, tb, y, sr|µr) satisfies
(50). Let πµr

Xa,T b(xa, tb) := PXa
t ,T b

t |S
r
[t−1]

(xa, tb|µr) and ob-
serve that

PXa
t ,T b

t ,Yt,Sr
t |S

r
[t−1]

(xa, tb, y, sr|µr)

=
∑

sbt∈Sb

∑

st∈S

PYt|Xa
t ,X

b
t ,St

(y|xa, tb(sbt), s)

×PSb
t ,St,Sr

(sbt , st, s
r)PXa

t ,T b
t |S

r
[t−1]

(xa, tb|µr)

= πµ
Xa,T b(x

a, tb)PSr
t
(sr)PYt|Xa

t ,T
b
t ,S

r
t
(y|xa, tb, sr) (55)

where the first equality is verified by (3) and by the fact that
(Xa

t , T
b
t ) is independent of (St, Sb

t , S
r
t ).

Remark 2.6: It should be observed that unlike Theorem
2.5 and results in the previous sections, for the validity of
Theorem 2.6, it is not required to have a Markov condition on
PSt,Sb

t ,S
r
t
(st, sbt , s

r
t ). Furthermore, the result also holds with

no CSIR, i.e., Sr = ∅ is allowed, and in this case Theorem
2.6 is as an extension of [20, Theorem 4] to a noisy setup.
Note that for the setup given in [20, Theorem 4], Theorem

2.6 provides an equivalent characterization. Recall that in

[20, Theorem 4] the informed encoder has full CSI, i.e.,
Xb

t = φ(b)t (Wa,Wb, S[t]), both the uniformed encoder and the
decoder have no CSI and the capacity region, CAS , is given
as the closure of all rate pairs (Ra, Rb) satisfying

Rb < I(U ;Y |Xa) (56)
Rb +Ra < I(U,Xa;Y ) (57)

for some joint measure on S × Xa × Xb × Y × U having the
form

PY |Xa,Xb,S(y|x
a, xb, s)PXb|U,Xa,S(x

b|u, xa, s)

×PS(s)PXa,U (x
a, u), (58)

where |U| ≤ |S||Xa||Xb| + 1. On the other hand, for
this setup, Theorem 2.6 gives the capacity region, CG

FS , as

co

(

⋃

π̂ R
′

C(π̂)

)

where R′

C(π̂) denotes the region of all rate

pairs R = (Ra, Rb) satisfying

Rb < I(T ;Y |Xa) (59)
Ra +Rb < I(T,Xa;Y ) (60)

where PY,T,Xa,Xb,S(y, t, x
a, xb, s) factorizes as

PY |Xa,Xb,S(y|x
a, xb, s)PXb|S,T (x

b|s, t)PS(s)π̂Xa,T (x
a, t),

(61)

and T : S → Xb.
Although the relation between an auxiliary variable and

Shannon strategies is well understood for the single-user
case (e.g., see [26, Section 3.2]), we believe that it requires
more attention in the multi user case; in particular, note the
difference between |U| and |T |. Hence, we provide a proof
for CG

FS = CAS , see Appendix D.
We conclude this section with the following remark.
Remark 2.7: For the validity of converse proof of Theorem

2.6 it is crucial that Xa
t only depends on Wa. To be more

explicit, let us assume Sr = ∅ and consider the following
steps of the converse

I(Wb;Y[n])

≤
n
∑

t=1

H(Yt|Y[t−1], X
a
[n])−H(Yt|Y[t−1],W, Xa

[n], T
b
t )

=
n
∑

t=1

H(Yt|Y[t−1], X
a
[n])−H(Yt|Y[t−1], X

a
t , T

b
t ). (62)

Since St is not available to the decoder, the above equality
is valid if Xa

[n] does not provide any information about St.
Hence, in other words, whether CSITs are noisy or not, if
there is no CSI or noisy CSI at the decoder, the arguments
above would fail if the uninformed encoder observes some
degree of CSI, i.e., da < ∞ so that Xa

[n] carries information
about (St, Sb

t , S
r
t ).

III. EXAMPLES
We present two examples. In the first example we discuss

the state dependent modulo-additive MAC with noisy CSIT
and complete CSIR (as in Section II-A) and show that the
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proposed inner and outer bounds are tight and yield the ca-
pacity region. In the second example we consider the problem
defined in Section II-B where the channel is a binary multiplier
MAC whose state is an interference sequence.

A. Modulo-additive State-dependent MAC with Noisy CSIT
Recall that the results of Section II-A are given in terms

of Shannon-strategies. Hence, their computation requires an
optimization over an extended space of the input alphabet
to a space of strategies and is often hard; in fact, very few
explicit solutions exist even in the single-user case. In [5]
modulo-additive single-user channel with complete CSIT is
considered and a closed-form solution for the capacity is
derived. Based on this result, we now consider the modulo-
additive state-dependent MAC with asymmetric noisy CSIT
and show that for the sum-rate capacity, the optimal set
of strategies has uniform distribution. This enables us to
determine the entire capacity region by observing that under
the uniform distribution both inner and outer bounds are tight.
To be more explicit, we consider a two-user state-dependent

MAC in which the channel noise, defined by a process
{Zt}∞t=1, is correlated with the state process. The channel
is given by Y = Xa ⊕ Xb ⊕ Z where Xa = Xb = Y =
Z = {0, · · · , q − 1} and Z , is conditionally independent of
(Xa, Xb) given the state S and in the sequel addition (and
subtraction) is understood to be performed mod-q. Assume
further that we have the setup of Section II-A. The following
theorem is the main result of this example and can be though
as an extension of [5, Theorem 1] to a noisy multi-user setting.
Theorem 3.1: The capacity region of the modulo-additive

state-dependent MAC defined above is given by the closure
of the rate pairs (Ra, Rb) satisfying

Ra < log q −Hmin

Rb < log q −Hmin

Ra +Rb < log q −Hmin (63)

where Hmin := minta,tb H(Z + ta(Sa) + tb(Sb)|S).
Proof: First, recall the rate condition given in Theorem

2.2;

Ra +Rb ≤ H(Y |S)−H(Y |T a, T b, S). (64)

The proof composed of two steps; we first determine the
optimal distributions of ta, tb, the distributions achieving the
sum-rate capacity, and then we show these distributions yield
the same inner bound. Let us first consider H(Y |T a, T b, S).
Clearly, PY |Xa,Xb,S(y|x

a, xb, s) = PZ|S(y − xa − xb|s) and
H(Y |T a, T b, S) ≥ minta,tb H(Y |T a = ta, T b = tb, S).
Observe that

PY |Ta,T b,S(y|t
a, tb, s)

=
∑

sa,sb

PY |Ta,T b,Sa,Sb,S(y|t
a, tb, sa, sb, s)PSa,Sb|S(s

a, sb|s)

=
∑

sa,sb

PZ|S(Z = y − ta(sa)− tb(sb)|s)PSa,Sb|S(s
a, sb|s)

= PZ+ta(Sa)+tb(Sb)|S(y|s). (65)

where the second step is valid since Z is conditionally inde-
pendent of (Sa, Sb) given S. Therefore, H(Y |T a = ta, T b =
tb, S) = H(Z + ta(Sa) + tb(Sb)|S). Let (ta∗, tb∗) be two
mappings from Sa to Xa and Sb to Xb, respectively, for which
H(Y |T a = ta∗, T b = tb∗, S) = Hmin. Now recall that, by
Corollary 2.1, we have

CFS∑ = sup
πTa (ta)π

Tb(tb)

[

H(Y |S)−H(Y |T a, T b, S)
]

≤ sup
πTa (ta)π

Tb(tb)
H(Y |S)−Hmin, (66)

and we now determine the policies {πTa(ta), ta ∈ Ta} and
{πT b(tb), tb ∈ Tb} achieving the supremum above. Let us
first define the following class of strategies

T ∗
a := {taτ}; taτ (s

a) = ta∗(sa) + τ, τ = 1, · · · , q (67)
T ∗
b := {tbτ}; tbτ (s

b) = tb∗(sb)− τ, τ = 1, · · · , q. (68)

Note that H(Y |T a = ta∗, T b = tb∗, S) = H(Y |T a =
taτ , T

b = tbτ , S) since H(Y |T a = ta, T b = tb, S) = H(Z +
ta(Sa) + tb(Sb)|S). Note that H(Y |S) ≤ log |Y| = log q, but
if we choose T a and T b uniformly distributed within T ∗

a and
T ∗
b , respectively (with zero mass on strategies not in T ∗

a and
T ∗
b ), we would get

PY |S(y|s)
(i)
=
∑

sa,sb

∑

ta∈T ∗
a

∑

tb∈T ∗
b

PY |T b,T b,Sa,Sb,S(y|t
a, tb, sa, sb, s)

1

q2
PSa,Sb|S(s

a, sb|s)

=
∑

sa,sb

PSa,Sb|S(s
a, sb|s)

1

q2

∑

ta∈T ∗
a

∑

tb∈T ∗
b

PZ|S(y − ta(sa)− tb(sb)|s)

(ii)
=
∑

sa,sb

PSa,Sb|S(s
a, sb|s)

1

q2

∑

ta∈T ∗
a

1

(iii)
=

1

q
(69)

where (i) valid since T a and T b are uniformly distributed,
(ii) is due to (68) (i.e., follows from the fact that tb ∈ T ∗

b

traces all possible values of Z) and finally, (iii) is valid since
|T ∗

a | = q. Therefore, we get that C
∑

FS = log q −Hmin which
is achieved by

πTa(ta) =
1

q
, ∀ta ∈ T ∗

a , πT b(tb) =
1

q
, ∀tb ∈ T ∗

b . (70)

Let us now consider the inner bound. In particular, we need
to show that the sets of policies in (70) give H(Y |T a, S) =
H(Y |T b, S) = log q. Consider H(Y |T a, S) and observe that

PY |Ta,S(y|t
a, s)

(iv)
=
∑

sa,sb

∑

tb∈T ∗
b

PY |T b,T b,Sa,Sb,S(y|t
a, tb, sa, sb, s)

1

q
PSa,Sb|S(s

a, sb|s)
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=
∑

sa,sb

PSa,Sb|S(s
a, sb|s)

1

q
∑

tb∈T ∗
b

PZ|S(y − ta(sa)− tb(sb)|s)

(v)
=
∑

sa,sb

PSa,Sb|S(s
a, sb|s)

1

q

=
1

q
(71)

where (iv) is valid since T b is uniformly distributed and (v)
is due to (68) (i.e., follows from the fact that tb ∈ T ∗

b traces
all possible values of Z). Thus, H(Y |T a, S) = log q. It can
be shown similarly that under (70) H(Y |T b, S) = log q.
Finally, it is easy to see that when there is no side informa-

tion at the encoders and at the decoder the capacity region of
modulo-additive state-dependent MAC is given by the closure
of rate pairs (Ra, Rb) where

Ra ≤ log q −H(Z)

Rb ≤ log q −H(Z)

Ra +Rb ≤ log q −H(Z). (72)

Observe that we have

H(Z + ta(Sa) + tb(Sb)|S)

≤ H(Z|S) +H(ta(Sa) + tb(Sb)|S)

and

Hmin = min
ta,tb

H(Z + ta(Sa) + tb(Sb)|S)

≤ min
ta,tb

[

H(Z|S) +H(ta(Sa) + tb(Sb)|S)
]

(vi)
= H(Z|S)
(vii)
< H(Z)

where (vi) can be achieved with any deterministic mapping
and (vii) is valid since Z and S (and hence S) are correlated.
Therefore, availability of state information strictly increases,
by an amount of at least I(S;Z), the capacity region of the
modulo-additive state-dependent MAC.

B. Binary Multiplier State-dependent MAC with Interference
Consider the binary multiplier MAC with state process inter-

fering the output, namely Y = XaXb ⊕ S where Xa = Xb =
Y = S = {0, 1}. Assume further that the communication
setup is given as in Section II-B with Sr = S ⊕ Zr where
Zr ∼ Ber(pr) is Bernoulli with P (Zr = 1) = pr. Clearly, in
this setup we have

PSa
t ,S

b
t ,S

r
t ,St

(sat , s
b
t , s

r
t , st)

= PSa
t |S

r
t
(sat |s

r
t )PSb

t |S
r
t
(sbt |s

r
t )PSt,Sr

t
(st, s

r
t ). (73)

We now show that the capacity region, with both causal and
non-causal coding, of this channel is given by the closure of
(Ra, Rb) where Ra < 1−H(S|Sr), Rb < 1−H(S|Sr) and
Ra +Rb < 1−H(S|Sr).
First recall the capacity region given in Theorem 2.3 and ob-

serve that H(Y |Sr, Xa, Xb) = H(XaXb⊕S|Sr, Xa, Xb) =

H(S|Sr, Xa, Xb) = H(S|Sr), where the last equality fol-
lows from (73). Hence, input distributions do not effect
H(Y |Sr, Xa, Xb). Clearly, H(Y |Sr) ≤ 1, H(Y |Sr, Xa) ≤ 1
andH(Y |Sr, Xb) ≤ 1 and we now show that equalities can be
achieved. More explicitly, we have the following optimizing
distributions which can be obtained using basic inequalities

argmax
πXa|Sa (xa|fa(sr)),π

Xb|Sb(xb|fb(sr))
H(Y |Sr)

=
{

πXa|Sa(0|fa(0)) = πXa|Sa(0|fa(1)) = 0.5,

πXb|Sb(0|f b(0)) = πXb|Sb(0|f b(1)) = 0.5
}

,(74)
argmax

πXa|Sa (xa|fa(sr)),π
Xb|Sb(xb|fb(sr))

H(Y |Sr, Xa)

=
{

πXa|Sa(0|fa(0)) = πXa|Sa(0|fa(1)) = 0,

πXb|Sb(0|f b(0)) = πXb|Sb(0|f b(1)) = 0.5
}

,(75)
argmax

πXa|Sa (xa|fa(sr)),π
Xb|Sb(xb|fb(sr))

H(Y |Sr, Xb)

=
{

πXb|Sb(0|f b(0)) = πXb|Sb(0|f b(1)) = 0,

πXa|Sa(0|f b(0)) = πXb|Sb(0|f b(1)) = 0.5
}

(76)

and in the rest, let us show that these yield the equalities in the
conditional entropies. Let us start with Ra, i.e., H(Y |Sr, Xb).
Note that

H(Y |Sr, Xb) =
∑

sr∈{0,1}

∑

xb∈{0,1}

PSr (sr)πXb|Sb(xb|f b(sr))

×H(Y |Sr = sr, Xb = xb). (77)

Substituting (76) in (77) gives

H(Y |Sr, Xb) = PSr (0)H(Xa ⊕ S|Xb = 1, Sr = 0)

+PSr (1)H(Xa ⊕ S|Xb = 1, Sr = 1). (78)

We next show that under (76) H(Xa⊕S|Xb = 1, Sr = 0) =
1, for which it is enough to show that PXa⊕S|Xb,Sr(0|1, 0) =
0.5. We have

PXa⊕S|Xb,Sr(0|1, 0)

=
∑

s∈{0,1}

∑

xa∈{0,1}

PXa⊕S|S,Xa,Xb,Sr(0|s, xa, 1, 0)

PS|Sr (s|0)πXa|Sa(xa|fa(0)) (79)
= PS|Sr(0|1)

[

0.5PXa⊕S|S,Xa,Xb,Sr(0|0, 0, 1, 0)+

0.5PXa⊕S|S,Xa,Xb,Sr(0|0, 1, 1, 0)
]

+PS|Sr(1|1)
[

0.5PXa⊕S|S,Xa,Xb,Sr(0|1, 0, 1, 0)

+0.5PXa⊕S|S,Xa,Xb,Sr (0|1, 1, 1, 0)
]

= 0.5,

where (79) is due to (73) and (32). We can similarly show
that PXa⊕S|Xb,Sr (0|1, 1) = 0.5 and hence, H(Xa ⊕ S|Xb =
1, Sr = 1) = 1. Therefore, H(Y |Sr, Xb) = 1. Since the
above derivation is symmetric, under (75) H(Y |Xa, Sr) = 1.
It now remains to show that with (74), H(Y |Sr) is equal

to one. It should be observed that

PXaXb⊕S|Sr(·|sr)
(i)
=

∑

xa,xb,s∈{0,1}

PXaXb⊕S|Xa,Xb,S(·|x
a, xb, s)
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πXa|Sa(xa|fa(sr))πXb|Sb(xb|f b(sr))PS|Sr (s|sr)
(ii)
= 0.25

∑

xa,xb{0,1}

PXaXb⊕S|Xa,Xb,S(·|x
a, xb, s)

∑

s∈{0,1}

PS|Sr (s|sr)

= 0.5

where (i) is due to (73) and (32), (ii) is due to (74) and the
last step is valid since for given s, there are only two pairs
of (xa, xb) for which PXaXb⊕S|Xa,Xb,S(·|x

a, xb, s) = 1 (and
zero for the other twos). Hence, H(Y |Sr) = 1.
Finally, it can be easily shown that the capacity region of

Y = XaXb ⊕ S without CSIT and CSIR is given by the
closure of (Ra, Rb) where Ra < 1 −H(S), Rb < 1−H(S)
and Ra+Rb < 1−H(S). Therefore, availability of noisy CSI
at the encoders (both causal and non-causal) and at the decoder
increases the capacity region by an amount of I(S;Sr).

IV. CONCLUSION AND REMARKS
We have considered several scenarios for the memoryless

state-dependent MAC with an i.i.d. state process, asymmetric
noisy CSI at the encoders and complete and noisy CSI at the
receiver. When the encoders have access to causal noisy CSI,
single-letter inner and outer bounds, which are tight for the
sum-rate capacity, are obtained. In order to reduce the space
of optimization, from Shannon strategies to channel inputs, we
consider the case where CSITs are asymmetric deterministic
functions of noisy CSIR. The causal setup of this problem
is considered in [13] and a single-letter characterization for
capacity region is provided. Hence, we also considered the
non-causal setup and showed that the causal and non-causal
capacity regions are identical.
When the decoder does not have access to access the current

CSI at the encoder, which matches with the delayed scenario,
we observe that a single-letter characterization of the capacity
region can be obtained. We further discuss a degraded message
set scenario and show that when the common message encoder
does not have access to the current noisy CSI, due to delay, it
is possible to obtain a single-letter expression for the capacity
region. Since a product form is not required in this case, we
observed that as long as the common message encoder does
not have access to CSI, then in any noisy setup (the cases of
no CSIR or noisy CSIR) it is possible to obtain the capacity
region.
Finally, the following problems are worth exploring in the

future: the complete characterization of the capacity region
for the problem defined in Section II-A and its non-causal
extension, the state-dependent MAC with degraded message
set where either both encoders observe causal noisy CSI or
the informed encoder observes noisy CSI non-causally while
the other encoder observes noisy CSI with delay.

APPENDIX A
CONVERSE PROOF OF THEOREM 2.3: NON-CAUSAL CASE
Let

αµp,f
:=

1

n
PSr

[1,t−1]
,Sr

[t+1,n]
(µp, µf ). (80)

Observe that (µp : µf ) ∈ Sn−1
r , where (v : w) denotes the

concatenation of two vectors v and w, and
∑

(µp:µf )

αµp,f
:=

1

n

∑

1≤t≤n

∑

µp,µf

PSr
[1,t−1]

,Sr
[t+1,n]

(µp, µf )= 1.

Lemma A.1: Assume that a rate pair R = (Ra, Rb), with
block length n ≥ 1 and a constant ϵ ∈ (0, 1/2), is achievable.
Let Θa

t (µp, µf ) = I(Xa
t ;Yt|Xb

t , S
r
t , S

r
[t−1] = µp, Sr

[t+1,n] =

µf ), Θb
t(µp, µf ) = I(Xb

t ;Yt|Xa
t , S

r
t , S

r
[t−1] = µp, Sr

[t+1,n] =

µf ) and Θa,b
t (µp, µf ) = I(Xa

t , X
b
t ;Yt|Sr

t , S
r
[t−1] =

µp, Sr
[t+1,n] = µf ). Then,

Ra ≤
∑

(µp:µf )

αµp,f
Θa

t (µp, µf ) + η(ϵ) (81)

Rb ≤
∑

(µp:µf )

αµp,f
Θb

t(µp, µf ) + η(ϵ) (82)

Ra +Rb ≤
∑

(µp:µf )

αµp,f
Θa,b

t (µp, µf ) + η(ϵ) (83)

Proof: Let us first consider the sum-rate. With standard
steps, we get

Ra +Rb ≤
1

1− ϵ

1

n

(

I(W;Y[n], S
r
[n]) +H(ϵ)

)

. (84)

Note that since Sr
[n] is independent of W; I(W;Y[n], S

r
[n]) =

I(W;Y[n]|S
r
[n]) and

I(W;Y[n]|S
r
[n])

=
n
∑

t=1

[

H(Yt|S
r
[n], Y[t−1])−H(Yt|W, Sr

[n], Y[t−1])
]

(i)
≤

n
∑

t=1

[

H(Yt|S
r
[n])−H(Yt|W, Sr

[n], Y[t−1])
]

(ii)
=

n
∑

t=1

[

H(Yt|S
r
[n])−H(Yt|W, Sr

[n], Y[t−1],X[n])
]

(iii)
=

n
∑

t=1

[

H(Yt|S
r
[n])−H(Yt|S

r
[n],Xt)

]

=
n
∑

t=1

I(Xt;Yt|S
r
[n]) (85)

where (i) holds conditioning does not increase entropy, (ii)
holds since X i

t = φ(i)t (Wi, f i(Sr
[n])), i = {a, b}, and (iii) is

due to (3). Combining (84) and (85) similar to (17), gives

Ra +Rb ≤
1

n

n
∑

t=1

I(Xa
t , X

b
t ;Yt|S

r
[n]) + η(ϵ) (86)

Furthermore,

I(Xa
t , X

b
t ;Yt|S

r
[n]) = n×

∑

µp,µf

αµp,f
I(Xa

t , X
b
t ;Yt|S

r
t , S

r
[t−1] = µp, S

r
[t+1,n] = µf )(87)

and substituting the above into (86) yields (83).
Let us now consider encoder a. Using Fano’s inequality and

standard steps we first get,

Ra ≤
1

1− ϵ

1

n

(

I(Wa;Y[n], S
r
[n]) +H(ϵ)

)

. (88)
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Furthermore,

I(Wa;Y[n], S
r
[n])

(i)
≤ I(Wa;Y[n]|S

r
[n],Wb)

=
n
∑

t=1

[

H(Yt|S
r
[n], Y[t−1],Wb)−H(Yt|S

r
[n], Y[t−1],W)

]

(ii)
≤

n
∑

t=1

[

H(Yt|S
r
[n],Wb)−H(Yt|S

r
[n], Y[t−1],W)

]

(iii)
=

n
∑

t=1

[

H(Yt|S
r
[n],Wb, X

b
[n])

−H(Yt|S
r
[n], Y[t−1],W,X[n])

]

(iv)
≤

n
∑

t=1

[

H(Yt|S
r
[n], X

b
t )−H(Yt|S

r
[n], Y[t−1],W,X[n])

]

(v)
=

n
∑

t=1

[

H(Yt|S
r
[n], X

b
t )−H(Yt|S

r
[n], X

b
t , X

a
t )
]

=
n
∑

t=1

I(Xa
t ;Yt|X

b
t , S

r
[n]) (89)

where (i) is due to (2) and conditioning does not increase en-
tropy, (ii) holds since conditioning does not increase entropy,
(iii) holds since X i

t = φ(i)(Wi, f i(Sr
[n])), i = {a, b}, (iv) is

valid since conditioning does not increase entropy and finally,
(v) is valid due to (3) and Si

t , i = {a, b}, being a function of
Sr
t .
Now combining (88)-(89) and following steps akin to (86)

and (87), we can verify (81). To verify (82) for encoder b it
is enough to switch the roles of encoder a and (b).
Note that for any for any t ≥ 1, I(Xa

t ;Yt|Xb
t , S

r
t , S

r
[t−1] =

µp, Sr
[t+1,n] = µf ), I(Xb

t ;Yt|Xa
t , S

r
t , S

r
[t−1] = µp, Sr

[t+1,n] =

µf ) and I(Xa
t , X

b
t ;Yt|Sr

t , S
r
[t−1] = µp, Sr

[t+1,n] = µf ) are
functions of PXa

t ,X
b
t ,Yt,Sr

t |S
r
[t−1]

,Sr
[t+1,n]

(xa
t , x

b
t , yt, s

r
t |µp, µf )

Hence, we need to show that this distribution factorizes as
in (36). Let

Υa
µp,µf

(xa, fa(sr)) :=

{wa : φ(a)t (wa, f
a(µp, µf ), f

a(sr)) = xa},

Υb
µp,µf

(xb, f b(sr)) :=

{wb : φ
(b)
t

(

wb, f
b(µp, µf ), f

b(sr)
)

= xb} (90)

and

π
µp,µf

Xa|Sa (x
a|fa(sr)) :=

∑

wa∈Υa
µp,µf

(xa,fa(sr))

1

|Wa|
,

π
µp,µf

Xb|Sb

(

xb|f b(sr)
)

:=
∑

wb∈Υb
µp,µf

(xb,fb(sr))

1

|Wb|
. (91)

Lemma A.2: For every 1 ≤ t ≤ n and (µp : µf ) ∈ Sn−1
r ,

the following holds

PXa
t ,Xb

t ,Yt,Sr
t |S

r
[t−1]

,Sr
[t+1,n]

(xa, xb, y, sr|µp, µf )

= PSr (sr)PY |Sr,Xa,Xb(y|sr, xa, xb)

π
µp,µf

Xa|Sa(x
a|fa(sr))π

µp,µf

Xb|Sb(x
b|f b(sr)). (92)

Proof: First observe that due to (3) we have

PXa
t ,Xb

t ,Yt,Sr
t |S

r
[t−1]

,Sr
[t+1,n]

(xa, xb, y, sr|µp, µf )

= PYt|Sr
t ,X

a
t ,X

b
t
(y|sr, xa, xb)

PXa
t ,Xb

t ,S
r
t |S

r
[t−1]

,Sr
[t+1,n]

(xa, xb, sr|µp, µf ). (93)

Let us now consider the second term in (93). We have

PXa
t ,Xb

t ,S
r
t |S

r
[t−1]

,Sr
[t+1,n]

(xa, xb, sr|µp, µf )

=
∑

wa,wb

PW,Xa
t ,X

b
t ,S

r
t |S

r
[t−1]

,Sr
[t+1,n]

(w, xa, xb, sr|µp, µf )

(i)
=

∑

wa∈Wa

∑

wb∈Wb

1{xl=φ(l)(wl,f l(sr ,µp,µf )), l=a,b}

PWa,Wb,S
r
t |S

r
[t−1],S

r
[t+1,n]

(wa, wb, s
r|µp, µf )

(ii)
=

∑

wa∈Wa

∑

wb∈Wb

1{xl=φ(l)(wl,f l(sr ,µp,µf )), l=a,b}

1

|Wa|

1

|Wb|
PSr

t
(sr)

= PSr
t
(sr)

∑

wa∈Wa

1

|Wa|
1{xa=φ(a)(wa,fa(sr,µp,µf ))}

∑

wb∈Wb

1

|Wb|
1{xb=φ(b)(wb,fb(sr ,µp,µf ))}

(iii)
=

1

|Wa|

∑

wa∈Υa
µp,µf

(xa,fa(sr))

1

|Wb|

∑

wb∈Υb
µp,µf

(xb,fb(sr))

(iv)
= PSr

t
(sr)π

µp,µf

Xa|Sa(x
a|fa(sr))π

µp,µf

Xb|Sb(x
b|f b(sr)) (94)

where (i) follows since X i
t = φ(i)(Wi, f i(Sr

[n])), i = {a, b},
(ii) is valid since Wa and Wb are independent of Sr

[n] and
state process being i.i.d. and (iii) follows due to (90) and
(iv) follows due to (91). Substituting (94) in (93) completes
the proof.
We can now complete the proof of Theorem 2.3. With
Lemma A.1, it is shown that any achievable rate pair can
be approximated by the convex combinations of rate condi-
tions given in (33)-(35) which are indexed by (µp, µf ) and
satisfy (36) for joint state-input-output distributions. Hence,
since limϵ→0 η(ϵ) = 0, any achievable rate pair belongs to

co

(

⋃

π̄ R
Q
NS(π̄)

)

.

APPENDIX B
CONVERSE PROOF OF THEOREM 2.4

Recall that αµ is defined in (80).
Lemma B.1: Assume that a rate pair R = (Ra, Rb), with

block length n ≥ 1 and a constant ϵ ∈ (0, 1/2), is achievable.
Then,

Ra ≤
∑

µ∈S(n)

αµI(X
a
t ;Yt|X

b
t , St, S[t−1] = µ) + η(ϵ) (95)

Rb ≤
∑

µ∈S(n)

αµI(X
b
t ;Yt|X

a
t , St, S[t−1] = µ) + η(ϵ) (96)

Ra +Rb ≤
∑

µ∈S(n)

αµI(X
a
t , X

b
t ;Yt|St, S[t−1] = µ) + η(ϵ).
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(97)

Proof:
Let us now consider encoder a. We have

Ra ≤
1

n
log(|Wa|)

≤
1

1− ϵ

1

n

(

I(Wa;Y[n], S[n]) +H(ϵ)
)

. (98)

Furthermore,

I(Wa;Y[n], S[n])
(i)
≤ I(Wa;Y[n], S[n]|Wb, S

b
[n])

=
n
∑

t=1

[

H(Yt, St|S[t−1], Y[t−1],Wb, S
b
[n])

−H(Yt, St|S[t−1], Y[t−1],W, Sb
[n])
]

(ii)
=

n
∑

t=1

[

H(Yt, St|S[t−1], Y[t−1],Wb, S
b
[n], X

b
[n])

−H(Yt, St|S[t−1], Y[t−1],W, Sb
[n], X

b
[n])
]

(iii)
≤

n
∑

t=1

[

H(Yt, St|S[t−1], X
b
t )

−H(Yt, St|S[t−1], Y[t−1],W, Sb
[n], X

b
[n], X

a
[n])
]

(iv)
=

n
∑

t=1

[

H(Yt, St|S[t−1], X
b
t )

−H(Yt, St|S[t−1], X
b
t , X

a
t )
]

=
n
∑

t=1

I(Xa
t ;Yt|X

b
t , S[t]) (99)

where (i) is due to (2) and conditioning does not increase
entropy, (ii) is valid since Xb

t = φ(b)t

(

Wb, Sb
[t−db]

)

, (iii) is
valid since conditioning does not increase entropy and finally,
(iv) is valid by (3). Following similar steps such as (17)
and (18) verifies (95). Finally, (96) and (97) can be verified
similarly.
Lemma B.2: For every 1 ≤ t ≤ n and µ ∈ St−1, the

following holds

PXa
t ,Xb

t ,Yt,St|S[t−1]
(xa, xb, y, s|µ)

= PS(s)PY |S,Xa,Xb(y|s, xa, xb)πµ
Xa(xa)πµ

Xb(x
b).(100)

Let

Υi
µi
(xi) := {wi : φ

(i)
t (wi, s

i
[t−di]

= µi) = xi}, i = a, b (101)

and

πµi

Xi(x
i) :=

∑

wi∈Υi
µi

(xi)

1

|Wi|
,

πµ
Xi(x

i) :=
∑

µi

πµi

Xi(x
i)PSi

[t−di]
|S[t−1]

(µi|µ), i = a, b.

We can now verify (100) by following the same steps in
Lemma 2.2.
Lemmas B.1 and B.2 complete the proof of converse.

APPENDIX C
ACHIEVABILITY AND CONVERSE PROOFS OF THEOREM 2.5

Achievability Proof: Fix (Ra, Rb) ∈ RC(π̂).
Codebook Generation Fix πXa(xa) and πT b|Xa(tb|xa).

For each wa ∈ {1, · · · , 2nRa}, randomly generate xa
[n],wa

,
each according to

∏n
i=1 πXa

i
(xa

i,wa
). Reveal this codebook

to encoder b and, for each wa ∈ {1, · · · , 2nRa} and wb ∈
{1, · · · , 2nRb}, encoder b randomly generates tb[n],wb,wa

, each
according to

∏n
i=1 πT b

i |X
a
i
(tbi,wb

|xa
i,wa

). These codeword pairs
form the codebook, which is revealed to the decoder.
Encoding The encoding functions are defined as follows:

xa
i (wa) = φai (wa, sa[i−da]

) and xb
i (wb) = φbi (wb, wa, sb[i]) =

tbi,wb,wa
(sbi) where xa

i,wa
and tbi,wb,wa

denote the ith compo-
nent of xa

[n],wa
and tb[n],wb,wa

, respectively. Therefore, to send
the messages wa and wb, transmit the corresponding xa

[n],wa

and tb[n],wb,wa
, respectively.

Decoding After receiving (y[n], s[n]), the decoder looks for
the only (wa, wb) pair such that (xa

[n],wa
, tb[n],wb

, y[n], s[n])
are jointly ϵ−typical and declares this pair as its estimate
(ŵa, ŵb).
Error Analysis Let Eα,β

△
=
{

(Xa
[n],α, T

b
[n],β,α, Y[n], S[n]) ∈

An
ϵ

}

, α ∈ {1, · · · , 2nRa} and β ∈ {1, · · · , 2nRb} and assume
that (wa, wb) = (1, 1) was sent. Then

Pn
e = P

(

Ec
1,1

⋃

(α,β) ̸=(1,1)

Eα,β

)

≤ P (Ec
1,1) +

∑

α=1,β ̸=1

P (Eα,β) +
∑

α̸=1,β=1

P (Eα,β)

+
∑

α̸=1,β ̸=1

P (Eα,β). (102)

Since {Yi, Si, Xa
i , T

b
i }

∞
i=1 is i.i.d., P (Ec

1,1) → 0 for n → ∞.
Next, let us consider the second term

∑

α=1,β ̸=1

P (Eα=1,β ̸=1)

=
∑

α=1,β ̸=1

P ((Xa
[n],1, T

b
[n],β, Y[n], S[n]) ∈ An

ϵ )

(i)
=

∑

α=1,β ̸=1

∑

(xa
[n]

,tb
[n]

,y[n],s[n])∈An
ϵ

PT b
[n]

|Xa
[n]
(tb[n]|x

a
[n])

PXa
[n]

,Y[n],S[n]
(xa

[n], y[n], s[n])

≤
∑

α=1,β ̸=1

|An
ϵ |2

−n[H(T b|Xa)−ϵ]2−n[H(Xa,Y,S)−ϵ]

≤ 2nRb2−n[H(T b|Xa)+H(Xa,Y,S)−H(Xa,T b,Y,S)−3ϵ]

(ii)
= 2n[Rb−I(T b;Y |S,Xa)−3ϵ] (103)

where (i) holds since T b
[n],β is independent of (Y[n], S[n]) given

Xa
[n],1 and (ii) follows since

H(T b|Xa) +H(Xa, Y, S)−H(Xa, T b, Y, S)

= H(T b|Xa) +H(Xa, Y, S)

−H(Y |Xa, T b, S)−H(Xa, T b, S)

= H(Xa, Y, S)−H(Y |Xa, T b, S)−H(Xa, S)

= I(T b;Y |S,Xa)
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where the second equality follows since T b and S are inde-
pendent given Xa. Next,

∑

α̸=1,β ̸=1

P (Eα̸=1,β ̸=1)

=
∑

α̸=1,β ̸=1

P ((Xa
[n],α, T

b
[n],β, Y[n], S[n]) ∈ An

ϵ )

(iii)
=

∑

α̸=1,β ̸=1

∑

(xa
[n],t

b
[n],y[n],s[n])∈An

ϵ

PT b
[n],X

a
[n]
(tb[n], x

a
[n])

PY[n],S[n]
(y[n], s[n])

≤
∑

α̸=1,β ̸=1

|An
ϵ |2

−n[H(T b,Xa)−ϵ]2−n[H(Y,S)−ϵ]

≤ 2n(Ra+Rb)2−n[H(T b,Xa)+H(Y,S)−H(Xa,T b,Y,S)−3ϵ]

(iv)
= 2n[Ra+Rb−I(Xa,T b;Y |S)−3ϵ] (104)

where (iii) holds since for α,β ̸= 1, (T b
[n],β, X

a
[n],α) is

independent of (Y[n], S[n]) and (iv) follows since

H(T b, Xa) +H(Y, S)−H(Xa, T b, Y, S)

= H(T b, Xa) +H(Y, S)

−H(Y |Xa, S, T b)−H(Xa, S, T b)

= H(T b, Xa) +H(Y, S)−H(Y |Xa, S, T b)

−H(Xa, T b)−H(S)

= I(Xa, T b;Y |S),

and the rate conditions of the RC(π̂) imply that each term
tends in (102) tends to zero as n → ∞. Finally, observe that
the analysis for the error event

∑

α̸=1,β=1 P (Eα,β) is identical
to the case of

∑

α̸=1,β ̸=1 P (Eα,β) which induces the same
sum-rate constraint.
Note that the main motivation in indexing mutual informa-

tion terms by the past CSI, is to get a product form on the team
policies. In the degraded message set setup, we do not require a
product form and therefore, the convex combination argument
is not essential. However, we herein keep this indexing (see
(46)) to avoid the use of a time sharing auxiliary random
variable.

Converse Proof: Since Xb
t = φ(b)t

(

Wa,Wb, Sb
[t−1], S

b
t

)

,
we have

T b
t = φ(b)t

(

Wa,Wb, S
b
[t−1]

)

∈ Xb
|Sb|. (105)

Lemma C.1: Let T b
t ∈ Tb be the Shannon strategy induced

by φ(b)t as shown in (105). Assume that a rate pair R =
(Ra, Rb), with block length n ≥ 1 and a constant ϵ ∈ (0, 1/2),
is achievable. Then,

Rb ≤
∑

µ∈S(n)

αµI(T
b
t ;Yt|X

a
t , St, S[t−1] = µ) + η(ϵ)

(106)
Ra +Rb ≤

∑

µ∈S(n)

αµI(X
a
t , T

b
t ;Yt|St, S[t−1] = µ) + η(ϵ)

(107)

where αµ and η(ϵ) are defined in (9).
Proof: Let us first consider the sum-rate condition. Since,

I(W;Y[n], S[n])

≤
n
∑

t=1

[

H(Yt|S[t])−H(Yt|W, S[t], Y[t−1], X
a
t , T

b
t )
]

(i)
=

n
∑

t=1

[

H(Yt|S[t])−H(Yt|S[t], X
a
t , T

b
t )
]

=
n
∑

t=1

I(Xa
t , T

b
t ;Yt|S[t]), (108)

where (i) can be shown in a similar way as (16), we have,

Ra +Rb ≤
1

n

n
∑

t=1

I(Xa
t , T

b
t ;Yt|S[t]) + η(ϵ) (109)

and

I(Xa
t , T

b
t ;Yt|S[t]) =

n
∑

µ∈St−1

αµI(X
a
t , T

b
t ;Yt|St, S[t−1] = µ). (110)

Substituting the above into (109) yields (107).
Let us now consider encoder b. With Fano’s inequality and

standard steps, we get

Rb ≤
1

1− ϵ

1

n

(

I(Wb;Y[n], S[n]) +H(ϵ)
)

. (111)

Following similar reasonings as in (99) we get,

I(Wb;Y[n], S[n])

≤ I(Wb;Y[n], S[n]|Wa, S
a
[n])

=
n
∑

t=1

[

H(Yt|S[t], Y[t−1],Wa, S
a
[n])

−H(Yt|S[t], Y[t−1],Wa,Wb, S
a
[n])
]

=
n
∑

t=1

[

H(Yt|S[t], Y[t−1],Wa, S
a
[n], X

a
[n])

−H(Yt|S[t], Y[t−1],Wa,Wb, S
a
[n], X

a
[n])
]

≤
n
∑

t=1

[

H(Yt|S[t], X
a
t )

−H(Yt|S[t], Y[t−1],Wa,Wb, S
a
[n], X

a
[n], T

b
t )
]

(i)
=

n
∑

t=1

[

H(Yt|S[t], X
a
t )−H(Yt|S[t], X

a
t , T

b
t )
]

=
n
∑

t=1

I(T b
t ;Yt|X

a
t , S[t]) (112)

where (i) is valid since

PYt|S[t],Y[t−1],W,Sa
[n]

,Xa
[n]

,T b
t
(yt|s[t], y[t−1],w, sa[n], x

a
[n], t

b
t)

=
∑

sbt∈Sb

PYt|St,Sb
t ,X

a
t ,T

b
t
(yt|st, s

b
t , x

a
t , t

b
t)

PSb
t |S[t],Y[t−1],W,Sa

[n]
,Xa

[n]
,T b

t
(sbt |s[t], y[t−1],w, sa[n], x

a
[n], t

b
t)

=
∑

sbt∈Sb

PYt|St,Sb
t ,X

a
t ,T

b
t
(yt|st, s

b
t , x

a
t , t

b
t)PSb

t |St
(sbt |st)

= PYt|St,Xa
t ,T

b
t
(yt|st, x

a
t , t

b
t). (113)
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where the first equality is due to (3) and the second equality
is due to (1) and (2). Following (16), we can directly verify
(106).
We now need to show that the joint conditional distribution
PXa

t ,T b
t ,Yt,St|S[t−1]

(xa, tb, y, s|µ) factorizes as in (46). Let first
πµ
Xa,T b(xa, tb) := PXa

t ,T b
t |S[t−1]

(xa, tb|µ) and observe that

PXa
t ,T b

t ,Yt,St|S[t−1]
(xa, tb, y, s|µ)

=
∑

sbt∈Sb

PYt|Xa
t ,X

b
t ,St

(y|xa, tb(sbt), s)

PSb
t |St

(sbt |st)PSt(s)PXa
t ,T b

t |S[t−1]
(xa, tb|µ)

= πµ
Xa,T b(x

a, tb)PSt(s)PYt|Xa
t ,T

b
t ,St

(y|xa, tb, s) (114)

where the equalities are verified by (3), by (1) and by the fact
that (Xa

t , T
b
t ) is independent of St.

We can now complete the converse proof of Theorem 2.5.
With Lemma C.1 it is shown that any achievable rate pair
can be approximated by the convex combinations of rate
conditions which are indexed by µ ∈ S(n) and satisfy (46)
for joint state-input-output distributions. Hence, any achievable
pair (Ra, Rb) ∈ co

(
⋃

π̂ RC(π̂)
)

.

APPENDIX D
PROOF OF CG

FS = CAS

Let us first show that CG
FS ⊆ CAS . Recall that T ∈ |T | =

|Xb||S| and |U| ≤ |Xa||Xb||S|+1. Hence, we have either |U| >
|T | or else. In the case where |U| < |T |, we note that |U| is
limited to a finite set without loss of generality. Hence, we can
always take |U| at least |T | such that it satisfies (56), (57) and
(58). Then we can directly conclude that CG

FS ⊆ CAS since
PXb|S,T (x

b|s, t) = PXb|S,T (x
b|s, t, xa) = 1{xb=t(s)} and this

is a special case of PXb|U,Xa,S(x
b|u, xa, s).

In order to prove the other direction, i.e., CAS ⊆ CG
FS , let

CE
AS be the closure of all rate pairs (Ra, Rb) satisfying

Rb < I(U ;Y |Xa) (115)
Rb +Ra < I(U,Xa;Y ) (116)

for some joint measure on S × Xa × Xb × Y × U having the
form

PY |Xa,Xb,S(y|x
a, xb, s)1{xb=m(s,xa,u)}PS(s)PXa,U (x

a, u),

(117)

for somem : U×Xa×S → Xb, where |U| ≤ |S||Xa||Xb|+1,
and we first show that CAS = CE

AS , and following this, we
show that CE

AS ⊆ CG
FS .

Lemma D.1: CAS = CE
AS .

Proof: It is obvious that CE
AS ⊆ CAS and hence, we need

to show that CAS ⊆ CE
AS . Let P̄Xb,Xa,U,S(x

b, xa, u, s) be a
joint distribution in the form of (58), i.e.,

P̄Xb,Xa,U,S(x
b, xa, u, s) = P̄Xb|Xa,U,S(x

b|xa, u, s)

×PS(s)P̄Xa,U (x
a, u). (118)

Let Λ̄ denote a |Xa||U||S|-by-|Xb| matrix where Λ̄i,jkl =
P̄Xb|Xa,U,S(i|j, k, l), 1 ≤ i ≤ |Xb|, 1 ≤ j ≤ |Xa|,
1 ≤ k ≤ |U| and 1 ≤ l ≤ |S|. Hence, Λ̄ is a |Xa||U||S|-
by-|Xb| row stochastic matrix, i.e., Λ̄i,jkl ≥ 0, ∀i, j, k, l

and
∑|Xb|

i=1 Λ̄i,jkl = 1, ∀j, k, l. Let Λ denote a |Xa||U||S|-
by-|Xb| binary stochastic matrix, that is a matrix with each
row has exactly one non-zero element, which is 1. Observe
now that any row stochastic matrix can be written as a
convex combination of binary stochastic matrices (e.g., see
[39, Lemma 5] and [40, Proposition IV.1]). Therefore, we have

Λ̄ =
k
∑

i=1

λiΛ
(i),

k
∑

i=1

λi = 1, (119)

where Λ(i) is a binary stochastic matrix and by [39, Lemma
5], k ≤ (|Xa||U||S|)2.
Let, for the joint distribution P̄Xb,Xa,U,S(x

b, xa, u, s),

R̄b < I(U ;Y |Xa)Λ̄, (120)
R̄a + R̄b < I(U,Xa;Y )Λ̄. (121)

Hence, (R̄a, R̄b) ∈ CAS . Now, observe that for a fixed
distribution PXa,U (xa, u), both I(U,Xa;Y ) and I(U ;Y |Xa)
are convex in PY |Xa,U (y|x

a, u) and hence, convex in
PXb|Xa,U,S(·|x

a, u, s). This and (119) imply that

I(U ;Y |Xa)Λ̄ ≤
k
∑

i=1

λiI(U ;Y |Xa)Λ(i) , (122)

I(U,Xa;Y )Λ̄ ≤
k
∑

i=1

λiI(U,X
a;Y )Λ(i) , (123)

where I(U ;Y |Xa)Λ(i) and I(U,Xa;Y )Λ(i) denote the mutual
information terms induced by Λ(i).
Now, let (Ri

a, R
i
b), 1 ≤ i ≤ k, be such that

Ri
b ≤ I(U ;Y |Xa)Λ(i) ,

Ri
b + Ri

a ≤ I(U,Xa;Y )Λ(i) ,

and hence, (Ri
a, R

i
b) ∈ CE

AS , 1 ≤ i ≤ k. Let (Rf
a , R

f
b ) =

∑k
i=1 λi(R

i
a, R

i
b). Since a convex combination of achievable

rates is also achievable, so (Rf
a , R

f
b ) ∈ CE

AS . This obser-
vation and inequalities (120)-(123) complete the claim that
(R̄a, R̄b) ∈ CE

AS .
Up to now, we have shown that CG

FS ⊆ CAS and CE
AS = CAS .

In order to prove that CG
FS = CAS , it remains to show that

CE
AS ⊆ CG

FS . Note that CE
AS still depends on PXa,U (xa, u) in

which |U| can be larger than |T |. Hence, in the next lemma
we basically show that for every PXa,U (xa, u), there exists
a π̂Ta,U (ta, u) which induces the same rate constraints as
induced by PXa,U (xa, u).
Lemma D.2: CE

AS ⊆ CG
FS .

Proof: Fix a distribution P ∗
Y,Xa,Xb,U,S(y, x

a, xb, u, s) sat-
isfying (117), i.e.,

P ∗
Y,Xa,Xb,U,S(y, x

a, xb, u, s) = P ∗
Y |Xa,Xb,S(y|x

a, xb, s)

1{xb=m(s,xa,u)}PS(s)P
∗
Xa,U (x

a, u). (124)

Observe that for every m satisfying xb = m(u, xa, s), one
can define

xb = m(u, xa, s) = m̄(xa, u)(s), m̄(xa, u) ∈ T , (125)

where T is the set of all mappings from S to Xb. Now, let
(

I(U ;Y |Xa)P∗
Y,Xa,U

(y,xa,u), I(U,X
a;Y )P∗

Y,Xa,U
(y,xa,u)

)
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be the mutual information pair induced by P ∗
Y,Xa,U (y, x

a, u).
We have

I(U,Xa;Y )P∗
Y,Xa,U

(y,xa,u)

=
∑

u∈U

∑

y∈Y

∑

xa∈Xa

P ∗
Y,Xa,U (y, x

a, u)

log
P ∗
Y,U,Xa(y, u, xa)

P ∗
Y (y)P

∗
U,Xa(u, xa)

=
∑

t∈T

∑

u∈U

∑

y∈Y

∑

xa∈Xa

P ∗
Y,Xa,U,T (y, x

a, u, t)

log
P ∗
Y,U,Xa(y, u, xa)

P ∗
Y (y)P

∗
U,Xa(u, xa)

(i)
=

∑

t∈T

∑

u∈U

∑

y∈Y

∑

xa∈Xa

P ∗
Y,Xa,U,T (y, x

a, u, t)

log
P ∗
Y,U,Xa,T (y, u, x

a, t)

P ∗
Y (y)P

∗
U,Xa,T (u, x

a, t)

(ii)
=

∑

t∈T

∑

u∈U

∑

y∈Y

∑

xa∈Xa

P ∗
Y,Xa,U,T (y, x

a, u, t)

log
P ∗
Y |Xa,T (y|x

a, t)P ∗
U,T,Xa (u, t, xa)

P ∗
Y (y)P

∗
U,T,Xa(u, t, xa)

=
∑

t∈T

∑

u∈U

∑

y∈Y

∑

xa∈Xa

P ∗
Y,Xa,U,T (y, x

a, u, t)

log
P ∗
Y,Xa,T (y, x

a, t)

P ∗
Y (y)P

∗
Xa,T (x

a, t)

=
∑

t∈T

∑

y∈Y

∑

xa∈Xa

P ∗
Y,Xa,T (y, x

a, t)

log
P ∗
Y,Xa,T (y, x

a, t)

P ∗
Y (y)P

∗
Xa,t(x

a, t)

= I(T,Xa;Y )P∗
Y,Xa,T

(y,xa,t), (126)

where (i) is valid since m̄(xa, u) ∈ T , i.e., for each (xa, u)
there exists only one t ∈ T such that PT |Xa,U (t|x

a, u) = 1,
(ii) is valid since

P ∗
Y |Xa,T,U (y|x

a, t, u)

(iii)
=

∑

s∈S

P ∗
Y |Xa,T,U,S(y|x

a, t, u, s)PS(s)

(iv)
=

∑

s∈S

PY |Xa,T,S(y|x
a, t, s)PS(s)

=
∑

s∈S

P ∗
Y,S|Xa,T (y, s|x

a, t) = P ∗
Y |Xa,T (y|x

a, t),(127)

where (iii) is valid since S and (Xa, T, U) are independent
and (iv) is valid due to (3). Similarly, we have

I(U ;Y |Xa)P∗
Y,Xa,U

(y,xa,u)

=
∑

u∈U

∑

y∈Y

∑

xa∈Xa

P ∗
Y,Xa,U (y, x

a, u)

log
P ∗
Y,U|Xa(y, u|xa)

P ∗
Y |Xa(y|xa)P ∗

U|Xa(u|xa)

=
∑

u∈U

∑

y∈Y

∑

xa∈Xa

P ∗
Y,Xa,U (y, x

a, u)

log
P ∗
Y,U,Xa(y, u, xa)

P ∗
Y |Xa(y|xa)P ∗

U,Xa(u, xa)

(v)
=

∑

t∈T

∑

u∈U

∑

y∈Y

∑

xa∈Xa

P ∗
Y,Xa,U,T (y, x

a, u, t)

log
P ∗
Y,U,Xa,T (y, u, x

a, t)

P ∗
Y |Xa(y|xa)P ∗

U,Xa,T (u, x
a, t)

(vi)
=

∑

t∈T

∑

u∈U

∑

y∈Y

∑

xa∈Xa

P ∗
Y,Xa,U,T (y, x

a, u, t)

log
P ∗
Y |T,Xa(y|t, xa)P ∗

U,T,Xa(u, t, xa)

P ∗
Y |Xa(y|xa)P ∗

U,T,Xa(u, t, xa)

=
∑

t∈T

∑

u∈U

∑

y∈Y

∑

xa∈Xa

P ∗
Y,Xa,U,T (y, x

a, u, t)

log
P ∗
Y,T |Xa(y, t|xa)

P ∗
Y |Xa(y|xa)P ∗

T |Xa(t|xa)

=
∑

t∈T

∑

y∈Y

∑

xa∈Xa

P ∗
Y,Xa,T (y, x

a, t)

log
P ∗
Y,T |Xa(y, t|xa)

P ∗
Y |Xa(y|xa)P ∗

T |Xa(t|xa)

= I(T ;Y |Xa)P∗
Y,Xa,T

(y,xa,t), (128)

where (v) and (vi) follow from the same reasonings of (i)
and (ii), respectively. Let R′

b < I(U ;Y |Xa)P∗
Y,Xa,U

(y,xa,u)

and R
′

b + R
′

a < I(U,Xa;Y )P∗
Y,Xa,U

(y,xa,u) which imply
(R

′

a, R
′

b) ∈ CE
AS . Observe now that for a distribution in the

form of P ∗
Y,Xa,T (y, x

a, t), one can define π̂Xa,T (xa, t) =

P ∗
Xa,T (x

a, t). Therefore, since CG
FS = co

(

⋃

π̂ R
′

C(π̂)

)

, and

due to (126) and (128), (R′

a, R
′

b) ∈ CG
FS , which completes the

claim.
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Nortel NETAŞ, Turkey, where he worked as a software design engineer. His
research interests include information theory and stochastic control.

PLACE
PHOTO
HERE

Fady Alajaji (S’90–M’94–SM’00) received the B.E.
degree with distinction from the American Univer-
sity of Beirut, Lebanon, and the M.Sc. and Ph.D.
degrees from the University of Maryland, College
Park, all in electrical engineering, in 1988, 1990 and
1994, respectively. He held a postdoctoral appoint-
ment in 1994 at the Institute for Systems Research,
University of Maryland.
In 1995, he joined the Department of Mathemat-

ics and Statistics at Queen’s University, Kingston,
Ontario, where he is currently a Professor of Math-

ematics and Engineering. Since 1997, he has also been cross-appointed in the
Department of Electrical and Computer Engineering at the same university.
From 2003 to 2008, he served as chair of the Queen’s Mathematics and
Engineering program. His research interests include information theory, digital
communications, error control coding, joint source-channel coding and data
compression.
Dr. Alajaji currently serves as Area Editor and Editor for Source and

Source-Channel Coding for the IEEE TRANSACTIONS ON COMMUNICA-
TIONS. He served as organizer and Technical Program Committee member
of several international conferences and workshops. He received the Premier’s
Research Excellence Award from the Province of Ontario.

Serdar Yüksel received his BSc degree in Electrical and Electronics Engineer-
ing from Bilkent University in 2001; MS and PhD degrees in Electrical and
Computer Engineering from the University of Illinois at Urbana-Champaign
in 2003 and 2006, respectively. He was a post-doctoral researcher at Yale
University for a year before joining Queen’s University as an Assistant
Professor of Mathematics and Engineering in the Department of Mathematics
and Statistics, where he is now an Associate Professor. He has been awarded
the 2013 CAIMS/PIMS Early Career Award in Applied Mathematics. His
research interests are on stochastic and decentralized control, information
theory and applied probability.


