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Abstract 

In this paper, we present the process and the results of the thermal analysis applied to a nanosatellite 

developed at Politecnico di Torino. First, main mission parameters and the spacecraft design are 

presented, in order to fix the boundary conditions and the thermal environment used for the analysis. 

Then, the thermal model built to solve the thermal balance problem is described into details, and the 

numerical simulation code is presented. Finally, results are given and discussed in depth. The tool 

developed provides excellent modelling capabilities and temperature distributions have been validated 

through commercial software. 

The analysis has been used to refine the spacecraft configuration and to set the requirements applicable 

to the thermal control system of the satellite. The results showed that a basically passive control is 

sufficient to maintain most spacecraft’s components within their temperature range when appropriate 

thermal coatings and/or tapes are provided. However, heaters to warm up batteries are recommended 

to survive coldest conditions. 

 

 

Keywords 

nanosatellite, design methods, spacecraft thermal control system, thermal analysis, numerical 

simulation, thermal models 

 

1. Introduction 

In the last few years, small satellites have changed the landscape of space missions. The small satellites 

category includes space platforms that weigh less than 1000 kg, and within this category further 

subdivisions do exist, as reported in [1]. In the present paper we refer specifically to nanosatellites, i.e. 

satellites whose mass does not exceed ten kg. These space platforms have two main inherent 

advantages: 1) the cost, which is low if compared to that of traditional satellites; 2) the time for 

development, which is generally one order of magnitude lower than that of bigger systems and more 

complex missions. However, these space platforms do also have criticalities mainly related to their 

performance and reliability [2]. To accomplish ambitious mission goals, a set of technological challenges 

need to be addressed. Design processes, and verification and operation activities will also require 

specific advancement.      

In the framework of small satellites, nanosatellites developed in universities for educational, scientific 

and technological purposes are worth mentioning [3]. Main aims of these initiatives are: 



� to engage students in a challenging team work, which is aimed at the design, development and manufacturing 

of a complex product, thus training the students’ capability of solving real problems 

� to test in orbit components and materials designed for terrestrial use, in order to pursue cost reduction of future 

space missions 
� to demonstrate the feasibility of innovative missions and systems concepts 

The process of development of University satellites follows that of traditional space products but it 

applies alternative methods and resources, in order to keep costs and development times down and to 

make the process suitable to personnel with developing skills, i.e. students. To this purpose, the CubeSat 

standard was created in 1999 at California Polytechnic State University and Stanford University [4]. The 

basic CubeSat unit (1U) is a 10cm-side cube-shaped platform whose mass is less than 1.33 kg, complying 

with the CubeSat Design Specification [5]. One of the most crucial issues for nanosatellite missions is the 

effect of the thermal environment on the satellite. University satellites, because of their own nature 

(costs, size, developers), have generally a full (or almost full) passive Thermal Control System (TCS). 

Moreover, taking into account the limited budget, simple technical solutions and Commercial-Off-The-

Shelf (COTS) components, i.e. components available on the market, are usually adopted in design and 

manufacturing. Without vehicles dedicated to launching CubeSats as primary payloads, launch 

opportunities only exist in the form of secondary payload missions. This implies that the orbit is not 

chosen by the CubeSat developer and that the mission’s starting date is not known well in advance. 

Eventually, as far as thermal issues are concerned, there is always the need to optimize the costly test 

campaign, in order to reduce its impact on the development time and costs of the satellite. The 

capability of performing effective and reliable thermal analyses represents therefore a fundamental role 

in the design of the TCS and of the whole satellite.  

The paper describes the results of a theoretical and numerical study, aimed at assessing the thermal 

conditions and the range of operative temperatures encountered by a nanosatellite in orbit. 

Thermal analyses are usually conducted by means of commercial energy-balance software, e.g. multi-

physics tools that couple computational fluid dynamics (CFD) and finite elements method (FEM) 

analyses. Even though  a powerful set of referenced tools available on the market provide detailed 

results and a variety of post-processing options, the creation and implementation of in-house software 

has the advantage to give the analyst the ability to tailor and optimise the model to the actual case 

study. CFD models are limited for space application since the atmosphere is rarefied and the heat 

transfer phenomena are regulated mainly by thermal conduction and radiation. Furthermore, the 

available FEM tools usually are not easily adaptable to the nanosatellite scale, and the license fee of 

commercial software is generally expensive. For these reasons, the development of an in-house 

numerical code has been preferred for the purpose of this study. 

The simulation code has been developed in MATLAB
®
 environment, and it solves the thermal energy 

balance of a nanosatellite in LEO through the finite difference numerical approach. The model is three-

dimensional and time dependent. Both external radiation, i.e. direct solar radiation, albedo, Earth Infra-

Red (IR) radiation, and internal heat generation, due to the on-board electronics, are modelled. 

The goal of the implemented numerical model is to calculate the temperature profile of the satellite 

under dynamic conditions and especially to evaluate the compliance with the operative limits of the 



most critical electronic equipment in the design orbits, i.e. the reference warm and cold orbits. The 

same reference scenarios were analysed for comparison of results obtained via thermal software 

ESATAN-TMS
®
. 

The analysis has been applied to the PiCPoT project [6] described into some detail in Section 2. The 

statement of the thermal problem is given in Section 3, where requirements and constraints, the 

environment and the boundary conditions are given. The methodology and the implemented algorithms 

are tailored on a mesh specific to the nanosatellite, as described in Section 4. The model is versatile and 

many parameters and input data can be varied from the user interface. The results are displayed in 

graphical form and collected in output files that can be imported in spread-sheet software for further 

analysis. Moreover a video is created in .avi format to show the time evolution of the temperature 

profile of the nanosatellite. The video automatically updates during the numerical simulation and can be 

read by any media player. The results are shown and discussed in Section 5, where the validation of the 

code through a commercial software is also summarised. Eventually, some conclusions and suggestions 

for future works are drawn in Section 6.  

 

2. The reference mission and satellite 

PiCPoT nanosatellite has been developed in the framework of a university program and pursues mainly 

educational but also scientific and technological purposes, in line with this kind of initiatives. In the 

following paragraphs main mission features and satellite configuration are described into some detail to 

better understand the assumptions taken in the thermal analysis. 

 

2.1. Mission objectives 

Primary objective of the PiCPoT mission is to educate undergraduate and graduate students on space 

missions design and development. The goal is pursued by setting up a permanent hands-on education 

program based on satellites projects and laboratory activities. 

The main technical objective of the PiCPoT mission is taking pictures of the Earth  and transmitting them 

to ground . Additional goals are in-orbit demonstration of materials and COTS equipment (e.g. cameras), 

originally developed for terrestrial use, and in-orbit verification of the operation of a brushless DC 

motor, used as reaction wheel. 

 

2.2. Orbit 

The initial values of orbital parameters, necessary to predict PiCPoT orbit, are affected by a certain 

degree of uncertainty. However it is known that PiCPoT will travel along a circular sun-synchronous orbit 

with an altitude of 600 km and an inclination equal to 98 deg (± 0.04 deg) [7]. In case the RAAN and the 

date of release in orbit are unknown, the β angle (i.e. the angle between the orbital plane and the Sun-

Earth line) shall be assumed to be variable in the range 0÷90 deg.  



 

2.3. Attitude 

Taking into account the mission objectives and the related requirements, the orbit imposed by the 

launch vehicle and the constraints due to the development of a low cost satellite, permanent magnets 

and hysteresis devices have been selected as passive attitude control means.. The choice was also driven 

by the geometry of the satellite, the limitations in mass and volume and considering the favourable 

orientation of the Earth magnetic field in the geographical area of interest . In particular, permanent 

magnets are useful to generate control torques to orient the body axis of the satellite along which 

permanent magnets are located along the Earth magnetic field lines. Hysteresis bars are useful to damp 

oscillations that the satellite experiences immediately after being released from the launcher, all over 

the orbit and particularly twice per orbit when it flies over the Earth poles. In order to take pictures of 

the Earth northern hemisphere and to meet the pointing requirement, PiCPoT cameras have therefore 

to be aligned along the same body axis of the permanent magnets. Thus, the surface of the cube where 

the cameras’ lenses are located, faces the Earth when the satellite flies over the Earth’s northern 

hemisphere. The passive magnetic attitude control system guarantees only two-axis stabilization of the 

satellite, which can rotate freely around the -x body axis. The two-axis control allows matching the 

objective of the PiCPoT mission. However, one reaction wheel is placed along the x-body axis to control 

the third degree of freedom.  

 

2.4. Satellite’s configuration 

PiCPoT nanosatellite is characterised by a simple mechanical architecture. It is a cube with a side of 130 

mm and a mass of 2.5 kg and consists of rods and panels, which are screwed together to form the 

external structure of the satellite, as shown in Figure 1 and Figure 2. The faces of the satellite are named 

upon their orientation with respect to the body reference frame (Figure 2), as summed up in Table 1. 

 

Perpendicular axis and 

direction 
Name 

+x F0 

-x F5 

+y F1 

-y F3 

+z F2 

-z F4 

Table 1: faces nomenclature 

 

All structural elements are manufactured in Aluminium alloy with an alodine surface treatment. 

Five out of six external faces of PiCPoT are covered with Gallium Arsenide Triple Junction solar cells. The 

bottom panel and the launcher interface plate are screwed together. Two antennas, both for uplink and 

downlink communications, are attached to the latter plate: one low frequency double helical antenna 

(435 MHz) and one s-band patch antenna (2.4 GHz). There are also three camera lenses and two 



deployment switches (Figure 2) to guarantee the satellite is switched off during launch and ascent to 

orbit. The launcher interface plate has a square shape with two machined tips, which are used to fix the 

satellite to the launcher adapter. PiCPoT internal support structure is constituted by four C-section 

plates. The top, the bottom and the four C-sections panels are all screwed together. The internal 

structure is the framework for battery packages and electronic boards, as shown in Figure 3. PiCPoT has 

two different types of batteries, Nickel-Cadmium (NiCd) and Lithium-Polymer (LiPo), for a total of six 

battery packages. The well known NiCd demonstrated to operate properly in space, and are sufficient to 

supply the on-board systems in the nominal operative mode. The LiPo packs are part of the 

technological experiment, as they have not yet been thoroughly tested on a large scale in orbit.  

 

Figure 1: main structure 

 

 

Figure 2: interface plate with antennas, cameras' lenses 

and kill switches. Body reference frame is shown 

 

 

 

Figure 3: internal structure, batteries, and harness 

 

 

Figure 4: internal structure and avionics layout 

 

As far as on-board systems are concerned, they encompasses six interconnected electronic boards that 

perform the following functions: 

� electrical power management (Power Supply and Power Switch) 

� command and data handling (Processor A and Processor B) 



� communications (RxTx) 

� payload management (Payload) 

The brushless DC motor (Figure 4), working as reaction wheel, is located on the bottom panel of the 

satellite. Four permanent magnets are placed on the C-section panels near the NiCd batteries (Figure 3), 

whereas two hysteresis plates are glued on the two opposite panels, which enclose the LiPo batteries. 

The three cameras are screwed to the bottom panel in correspondence to the holes depicted in Figure 

4. 

 

3. Thermal analysis: objectives and problem definition 

The thermal analysis identifies the external and internal heat sources of the satellite and predicts the 

temperature ranges of structures, solar panels, electronic boards and equipment, in order to evaluate 

whether or not they remain within the operational and survival limits throughout the mission in all 

operative modes. In case the temperature requirements are not met, different equipment and 

components may be selected or design changes may be considered to guarantee the correct operation 

of the satellite. Guidelines and methods for satellites’ thermal analysis and TCS design are extensively 

discussed in [8] and [9].   

 

3.1. Thermal management solutions 

The main function of thermal control is to maintain satellite equipment within the required temperature 

limits, through the identification of appropriate thermal control techniques and hardware, according to 

the complexity and the category of the satellite. Thermal control techniques may be either passive or 

active but the former is the most widespread option for small university satellites. References [10]-[16] 

show interesting examples of thermal control systems adopted on-board small platforms.  

Passive thermal control relies mainly on the definition of the architecture and layout of the satellite, and 

makes use of materials, coatings or surface finishes, thermal insulation and heat sinks with adequate 

thermo-optical properties. Surface finishes may be used both on the interior and on the external 

surfaces of the nanosatellite, for the purpose of enhancing thermal radiative exchange. In particular 

external surfaces shall be able to achieve the energy balance at the desired temperatures between 

spacecraft internal dissipation, external heat sources, and re-radiation to space. The external radiative 

exchange depends on. solar absorptivity and infrared emissivity of the surfaces. Two or more coatings 

may be combined to obtain the desired values of absorptivity and emissivity, taking into account the 

compatibility between coating and substrate, their resistance to contamination and in-space 

degradation (for a detailed discussion on thermal control coatings, reference to [17] [18]). 

Thermal insulation aims at reducing thermal exchange between two adjacent surfaces at different 

temperatures. Thermal insulation can be achieved either with homogeneous materials (for instance 

foam with low thermal conductivity) or with multilayer insulation systems (layered blanket), constituted 

by multiple layers of low-emittance films, metallized on both surfaces with aluminium or gold [19]. 

Multilayer insulation are widely used for satellite’s thermal control with the following purposes: 



� to prevent excessive thermal flux from/to components 

� to reduce temperatures variation due to environmental radiative fluxes that vary considerably with time 

� to minimize temperature gradients 

Heat sinks are high thermal capacitance materials that minimize temperature gradients of adjacent 

components, and are widely used for electronic devices with cycling operation. 

As far as the active thermal control is concerned, one of the main techniques used on board 

nanosatellites consists in the use of heaters. Heaters are basically resistors that protect components 

from cold-case conditions, for instance keeping batteries temperature over the minimum operating 

limit. Heaters are usually part of a closed-loop system that includes sensors and controller, and they 

operate according to the desired logic.  

Simplicity and flexibility are the key drivers for the choice of the most appropriate thermal control 

techniques. In the present case, we first assumed a purely passive thermal control system. Objectives of 

the thermal analysis, presented in Section 5, are the definition and the verification of the designed 

thermal control system to ensure that the thermal requirements of all components are met. In case 

thermal requirements are not fully met and problems arise at system level, the following actions may be 

implemented: 

� variation of satellite’s internal layout. This solution depends however on the phase of the satellite’s life-cycle 

and on the constraints imposed by satellite’s geometry and masses distribution 

� variation of surface finishes. This solution depends on the thermo-optic properties of materials available on the 

market 

� change of materials. This solution depends on the phase of the satellite’s life-cycle. Moreover, it is also limited 

by the availability of materials that may be either already in house or anyway easily accessible on the market 

In case problems arise at subsystem or component level, the following actions may be implemented: 

� installation of heaters on components that need to be warmed up 

� installation of heat sinks for components that need to be cooled down 

� selection of components with the appropriate temperature range.  

 

3.2. Thermal environment definition 

The external boundary conditions are mainly characterised by the orbital parameters, by the position of 

the Earth on the ecliptic (epoch) and by the external radiation sources, i.e. the direct solar radiation, the 

albedo and the Earth Infra Red (IR) radiation. 

The direct solar radiation depends on the solar constant S0 = 1367 W/m
2
, defined as the intensity of 

sunlight radiation perpendicular to a surface at the Earth's mean distance from the Sun (1 AU). However, 

because of the Earth orbit eccentricity (e), the solar radiation is inversely proportional to the Earth's 

distance from the Sun and, specifically, it ranges from a minimum value of S0/(1+e)
2
 = 1322 W/m

2
 at 

aphelion to a maximum value of S0/(1-e)
2
 = 1414 W/m

2
 at perihelion, with a percentage variation of 

±3.4% [20].  Guidelines for the selection of parameters useful to schematically represent external heat 

sources are provided in [21] [22]. 

Nanosatellite’s internal heat sources are represented by the on board electronics: electronic boards, 

batteries, cameras and the reaction wheel (i.e. the brushless DC motor). Depending on the operative 

modes, the internal heat dissipation varies according to the duty cycle of the electronics. Values of 



power dissipation have been estimated for the electronic boards, and their duty cycle along the orbit 

has been considered. 

The six battery packages are never operating simultaneously, but are sequenced such that in turn one is 

charging, two are discharging and the remaining three battery packages are switched off. Battery 

packages are divided into two groups; in particular the two battery packages that are discharging belong 

to two different chains, in order to guarantee functional redundancy. As far as the temperature 

operational limits are concerned, batteries are the most critical components, as reported in Table 2. 

 

  



Name Function Component Power [W] Operating time/orbit 

Temperature [°C] 

min max 

S0 EPS Power Supply 

30% solar 

panels 

power 

full time -20 +85 

S1 RxTx 

Amplifier 1 4.00 10 minutes -30 +100 

Amplifier 2 1.35 10 minutes -30 +100 

S2 EPS Power Switch 2.40 10 minutes -20 +85 

S3 OBC  Proc. A 0.03 full time -40 +85 

S4 Payload 

Board 1.00 10 seconds -40 +85 

Camera 0.50 5 seconds -20 +80 

S5 OBC Proc. B 0.03 full time -40 +125 

M Payload Motor  3.00 10 minutes   

B1/B3 EPS Battery (NiCd) 

1.00 Charge (Ref. Fig. 5b) 0 +70 

0.50 Discharge (Ref. Fig. 5b) -20 +70 

0.00 Storage -30 +70 

B2/B4 EPS Battery (LiPo) 

1.50 Charge (Ref. Fig. 5b) 0 +45 

1.10 Discharge (Ref. Fig. 5b) -20 +60 

0.00 Storage -20 +60 

Table 2: on-board electronic equipment dissipation and temperature range 

 

The brushless DC motor dissipates heat only when it is switched on a few times during the mission, as it 

is a secondary payload activated upon command from ground. Taking into account the low power 

dissipation of cameras and of their duty cycle, they have been neglected as internal heat sources. 

Table 2 shows the temperature ranges of the on-board electronic equipment and gives an indication of 

the maximum heat dissipation for each component. Figure 5 illustrates the variation of internal power 

dissipation along two orbits. In particular, it represents the power dissipated by the electronic boards 

and the motor (left-hand chart) and the batteries (right-hand chart), as a function of time in the worst 

cold case. The most important contributions in terms of heat generated are caused by S0, S1 and S2.  



 

  
Figure 5: heat loss from the electronics and the brushless motor (left) and batteries (right). (2 orbits, height 600 km, i 

= 98 deg, β = 0 deg, Earth @aphelion) 

 

4. Thermal analysis: methodology 

In this section the numerical code developed to carry out the thermal analysis is described into detail, 

after presenting and discussing the assumptions, and introducing the numerical methods. Symbols used 

in the following paragraphs are listed in Appendix A at the end of paper. 

 

4.1. Models of orbit and heat loads 

Albedo and Earth IR radiation vary with position in space and time and depend on radiation wavelength 

and other uncertain factors (e.g. weather conditions) [23]. The following simplifying hypotheses have 

been assumed in the present thermal analysis. In particular Earth’s reflectivity and emissivity have been 

considered: 

� isotropic and diffuse (Lambertian reflector and emitter) 

� independent of wavelength 

� constant throughout the mission 

Suitable average design values of albedo and Earth IR radiation are obtained from the 1
st

 Law of 

Thermodynamics applied to the Earth throughout one year: 

� α = 0.29 

� IR = 239 W/m
2
 

The heat flux on the satellite’s external surfaces depends on geometrical factors and on the orientation 

of the satellite relative to the heat sources (Earth and Sun). 

The albedo heat flux is given by the following formulas: 

 

,

lim

( , ) cos
2

j j
q S fα

π
θ ι γ

γ

 
= ⋅ ⋅  

 
�             if  |γ j| < γ lim (1) 

 

,
0

j
qα =�         if  | γ j| ≥ γ lim or θ > π/2 

(2) 

 



where the intensity of albedo S·f (θ, ι ) is a function f of the orbital angles θ and ι and: 

� γj is the angle between the Earth-satellite vector and the perpendicular to the j-th external face of the satellite 

� γlim is the angle between the Earth-satellite vector and the direction beyond which the satellite’s faces are not 

anymore in view of the Earth 

� θ is the solar zenith angle, which is the angle between the Earth-satellite and the Earth-Sun directions and can 

vary between 0 deg and 180 deg 

� ι is the angle between the Earth-satellite vector and the tangent to the Earth viewed from the satellite; it is a 

constant value for circular orbits, once the orbit’s altitude has been fixed 

Similarly the IR heat flux can be calculated with the following formulas: 

 

( ), cos
2 / 2

IR j j
q IR

π
γ

π ι

 
= ⋅   + 

�             if  |γ j| < (π/2 + ι) (3) 

 

,
0

IR j
q =�         if  | γ j| ≥ (π/2 + ι) 

(4) 

 
The solar flux incident on the j-th face is zero if the face is opposite to the Sun or if it is eclipsed by the 

Earth. For a satellite on a circular orbit the latter case occurs when two conditions apply simultaneously: 

θ > 90 deg and R sin(θ) < RE (R is the distance between the satellite and the Earth’s centre, whose radius 

is RE). In all other cases the solar flux incident on the j-th face is given by: 

 

,
cos

sun j j
q S ς= ⋅� , with cosςj > 0 (5) 

  

,
0

sun j
q =� , with cosςj ≤ 0 (6) 

 

where ςj is the angle between the perpendicular to the j-th face and the vector opposite to Sun rays. 
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Figure 6: incident external radiation on F2 and F4: solar radiation, albedo and Earth IR radiation (2 orbits, height 

600 km, i = 98 deg, worst cold orbit) 
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Figure 7: incident external radiation on F1 and F3: solar radiation, albedo and Earth infrared radiation (2 orbits, 

height 600 km, i = 98 deg, worst hot orbit) 

 

Once the orbital elements are established and heat fluxes are estimated, a set of orbits can be 

considered for the analysis. The approach requires to consider first the condition of maximum and 

minimum external heat fluxes for the design orbits (worst hot and cold orbit), then the internal heat rate 

is accounted to determine the ultimate design cases: worst hot case and worst cold case. The cold orbit 

occurs when the satellite is for the longest time shadowed by the Earth (eclipses), hence is cooled down 

most (orbit type Noon-Midnight), while the hot orbit occurs when the duration of the eclipse is minimal 

(orbit type Dawn-to-Dusk). 

One of the characteristic parameters of the design orbits is the β-angle, which is the angle between the 

orbit plane and the Sun-Earth vector direction. A Noon-Midnight orbit type is featured by β = 0 deg, 

while β = 90 deg denotes a Dawn-to-Dusk orbit type. The second parameter affecting the design orbits is 

the position of the Earth on the ecliptic, defining the distance of the Earth from the Sun. 

Eventually, taking into account also the internal heat generation, we may say that the worst cold and 

hot design cases are: 

a. Worst cold case: β = 0 deg, Earth located at aphelion, on-board electronics turned off 

b. Worst hot case: β = 90 deg, Earth located at perihelion, on-board electronics turned on 

Figure 6 and Figure 7 derive from running the numerical simulation code and illustrate the time 

evolution of the heat flux impinging the external faces of the nanosatellite along two orbits, for the two 

cases cited above. The behaviour of the heat fluxes on the satellite is strongly influenced by the attitude 

dynamics along the orbit. Regarding the direct solar radiation, if a face points towards the Sun, the 

opposite face is “in eclipse”. For the albedo and the IR the behaviour is less intuitive. For example, with 

reference to Figure 6, when F4 is facing the Sun (solar flux is maximum), F2 is pointing the nadir (albedo 

and IR fluxes reach the maximum on F2 while they tend to zero for F4). The plots in Figure 7 are quite 

different from those depicted in Figure 6 due to the different orbit assumed for the worst hot case. It 

can be noticed that the IR contribution is almost constant along the orbit due the specific geometry of a 

dawn to dusk orbit.  

The heat rate absorbed by the solar cells is represented in Figure 8 as a function of time for the design 

orbits, considering all three types of radiation and only the solar contribution (direct and albedo). It can 

also be noticed from these graphs that the eclipse duration decreases as the β angle increases. 



The MATLAB® functions created are flexible and allow to modify many parameters for each electronic 

component, e.g. the heat dissipated, and the duty cycle. The details are described in Section 4.3. 

 

Figure 8: incident radiation on solar cells for the worst cold orbit (on the left) and worst hot orbit (on the right): 

incident radiation from all sources (upper graphs) and from Sun (direct+albedo) (lower graphs) (2 orbits, height 600 

km, i = 98 deg) 

 

4.2. The heat transfer model 

Heat transfer in the satellite is basically the result of conjugate thermal conduction and radiation. 

Temperatures vary along the three dimensions and are time-dependent. 

Thermal conduction is evaluated with the assumptions that materials are homogenous with constant 

thermal conductivity, with the only exception of the Kapton
®
 multilayer insulation. These assumptions 

are acceptable due to the temperature range experienced by the satellite in orbit. Heat conduction is 

modelled by the Fourier’s equation: 
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Thermal radiation among the cavities into which the internal volume of the satellite is divided, is 

modelled with the Absorption Factors Method, which can be easily implemented in a numerical code 

[24] [25] [26]. The absorption factor Bi,j represents the fraction of energy emitted by surface i that is 

absorbed by surface j. Surfaces are assumed opaque and grey. In a cavity delimited by n grey, opaque 

and diffuse surfaces filled with non-participating media, the algebraic equations that link Bi,j and Qi are: 
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Subscript p varies from 1 to n for a given j, and then j varies from 1 to n, giving rise to n
2
 equations. The 

reflectivity is the complement to 1 of the emissivity, ρ = 1 – ε. Equation (8) is written for each p-th 

surface, and letting j take on all values from 1 to n, a set of linear equations in the unknown quantity Bij 

is obtained and solved simultaneously. 

Once absorption factors are known, equation (9) allows to calculate temperatures of the surfaces, as 

explained in Section 4.3. 
i

Q�  is the net radiative heat rate of i-th surface Ai, while .iqε
� is the heat flux 

emitted by the same surface. 

 

4.3. The numerical algorithm 

The thermal analysis of the nanosatellite is accomplished through a numerical code that has been 

implemented in MATLAB® environment. Analytical equations are discretised by the finite difference 

approach and a fully implicit iterative scheme (Laasonen method). A detailed description of the 

numerical models can be found in [27] [28]. 

The fully implicit scheme is not affected by instability issues related to limitations of the time step. 

Therefore, the time step of 10 s has been selected in order to guarantee adequate results with limited 

computation time and hardware requirements.  

The external surfaces of the satellite are modelled with an uniform hexa grid, while each component of 

the electronic equipment is modelled as a lumped node, and the mounting bars are modelled as 1D 

elements. 

The initial temperature is set to 273.15 K for all nodes. This assumption influences mainly the first orbit, 

while it has a negligible influence on the next orbits. 

The temperature of node (i, j, k ) placed on the external structure of the satellite evaluated at future 

time l+1 is: 
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(10) 

 
The equation is slightly different for nodes placed on the border and vertex of the structure, in order to 

account for the interaction of the neighbouring faces. 

In equation (10) Tint is the temperature of the corresponding internal node, 
s

q�  is the external heat flux 

absorbed by the node, and hg is the thermal conductance of Kapton
®
 multilayer insulation placed 

between the external and internal structure. The following coefficients highlight specific contributions to 

the energy balance: 
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Solar cells have negligible thickness and their thermal resistance is neglected, therefore only their 

optical properties are modelled. The on-board printed circuit boards and the batteries are modelled as 

lumped nodes. This approach has simplified the calculation of the view factors to a great extent but, on 

the other side, the temperatures calculated so far represent average values and cannot account for local 

hot spots. 

The most critical components are the batteries, because they can work only in a small temperature 

range (see Table 2). The lumped approach can be accepted for batteries, as heat generation is spread on 

their volume. The batteries are packed between two thin (0.5 mm) aluminium plates, which are not 

modelled with regard to thermal conduction because their contribution is negligible, while their optical 

properties are considered in the radiative model. Thermal radiation inside the satellite is modelled with 

the Absorption Factor Method. The internal volume of the satellite is subdivided into four cavities; for 

every cavity a matrix is calculated, which combines the geometrical (i.e. areas) and optical (i.e. 

absorption factors, emissivity) properties of the enclosure. 

For instance, the temperature of the board S1 at time l + 1 is obtained with the following heat balance 

equation: 
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where [eABS1] is a matrix wherein elements represent the energy absorbed by S1 in every cavity 

delimited by S1, and [Tcav] is a matrix wherein rows are the temperatures of the surfaces of the cavities 

delimited by S1. Every internal node has its own [Tcav] matrix. 

The coefficient 2 in the first term of Eq. (14) indicates that both sides of S1 are involved in the radiative 

heat transfer. The Kronecker δ vectors specify that S1 corresponds to the second surface in the first 

cavity (C2, δ1), hence the notation eABS1(2,1), while it corresponds to the first surface in the second 

cavity (C3, δ2), hence the notation eABS1(1,2). hS1 is the thermal conductance between S1 and the 



mounting bar, 
( 1)

sup

l
T

+
 is the temperature of the corresponding node of the mounting bar, while 

int
Q� is the 

internal heat rate in S1. 

The flow chart of the numerical code is shown in Figure 9. The code is composed by nineteen MATLAB® 

functions and by a C++ script that calculates the quantities related to the terrestrial magnetic field, 

which are imported in the main MATLAB® script. 

The numerical procedure can be basically summarised as follows: for every time step the program 

determines the position of the satellite on orbit and the orientation of its faces with respect to the Earth 

and the Sun, which is preliminary to the calculation of the external radiation (IR terrestrial radiation, 

solar radiation and albedo). These quantities, together with the on-board energy sources and the 

temperatures at time l, are used to calculate the temperatures at time l+1 in an iterative loop until 

convergence. 

 

5. Thermal analysis: results and discussion 

Temperature profiles can be calculated and displayed for each node making use of the simulation code. 

The following graphs refer to a circular orbit, with an inclination equal to 98 deg and an altitude of 600 

km, which has been analysed for  the worst cold and the worst hot cases. The results refer to the 

satellite configuration with a full passive thermal control system, realised with multilayer Kapton
®
 

insulation, selective coatings and heat sinks. Thermo-physical and optical properties of materials are 

discussed in detail in Section 5.3. The assumed time step is equal to Δτ = 10 s. Each external surface of 

the satellite is discretized with a uniform hexa grid divided into 64 nodes. The mounting bars of the 

electronic stack are modelled as 13 nodes, and the connection rods of S0 are modelled as 3 nodes. The 

electronic boards and battery packages are modelled with a lumped node approach. 
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Figure 9: flow chart of the simulation code  

 

5.1. Results 

The following graphs show the temperature profiles during four orbits: the first two orbits are 

influenced by the initial conditions, while the remaining orbits are stabilised. 

Figure 10 illustrates the temperature profiles of the central node of each external face of the 

nanosatellite. The central node has been selected as the most representative of the average condition of 

the whole surface. The video, generated by the numerical simulation code, is useful to observe the 

variation of temperature of all external nodes. The graphs show that the temperature range for each 

revolution is about 50 °C. Figure 11 illustrates two intermediate cases, a hot orbit with electronics 

switched off (right-hand graph), and a cold orbit with electronics on (left-hand graph). By comparison of 



Figure 10 and Figure 11 it can be noticed that in the cold case switching electronics on leads to an 

increase of the average temperature of about 5 °C. In a similar way, temperature decreases by 5 °C in 

the hot case with electronics switched off, however this condition represents an off-nominal operative 

mode of the satellite. 

 

 

Figure 10: temperature profiles of the central node of each external face for worst cases along four orbits. On the 

left: worst cold case; on the right: worst hot case. 

 

Figure 11: temperature profiles of the central node of each external face for two intermediate conditions along four 

orbits. On the left: orbits with β = 0 deg and Earth @aphelion, electronics ON (practical cold case); on the right: 

orbits with β = 90 deg and Earth @perihelion, electronics OFF (off-nominal hot case). 

 

Figure 12 shows the temperature profiles of the batteries for the worst hot and cold cases. The 

temperature range is greater for the orbit with β = 0 deg (∆T~ 30 °C) compared to β = 90 deg (∆T~ 20 

°C); for the hot case, the temperature range limits for the batteries are satisfied (cf. Table 2), albeit with 

a small margin for LiPo batteries, under any operating conditions (charge, discharge, stand-by). In the 

cold case instead, the temperature limits are not met in the recharge phase. The minimum temperature 

of the worst cold case is achieved when the satellite is in eclipse, and the battery is not charging. 

However, at the end of the eclipse the battery may start charging outside its operating temperature 

range, and this could lead to damage it. A simulation of the cold case with electronics active was 

performed, and the results show that the batteries are within the range of temperatures at any 

operating condition. This intermediate case is more realistic with respect to the worst cold case. In fact 

in the latter case electronics is considered as completely switched off (no thermal loads), even though 

this is not a nominal mode of operation and it may occur only in case of a serious failure, which would 

anyway compromise the mission, notwithstanding thermal issues. Figure 13 shows the temperature 



profiles of the electronic boards and the brushless DC motor, which result within the required 

temperature limits with an adequate margin. The RxTx and the Power Switch electronic boards 

experience the highest temperature peaks. Heat sinks are therefore suggested for both these boards. 

The low temperatures that are reached in the worst cold case are not critical. 

  
Figure 12: temperature profile of batteries. On the left: worst hot case; on the right: worst cold case 

 

  
Figure 13: temperature profile of electronic boards and brushless motor along four orbits. On the left: worst hot case; 

on the right: worst cold case 

 

Figure 14 illustrates the temperatures of the nodes of the bars that support the electronic stacks. In the 

graph relative to the hot case (left) the peaks related to the operation of RxTx and Power Switch are 

clear. 

 

  
Figure 14: temperature profile of boards mounting bars. On the left: worst hot case; on the right: worst cold case (4 

orbits, height 600 km, i = 98 deg) 

 

5.2. Validation of the code 



The results of the thermal analysis were compared to ESATAN-TMS
®
 analyses to investigate the 

correlation between the two models. The comparison between ESATAN-TMS
®
 and MATLAB

®
 results was 

based on a circular orbit with 98 deg inclination, 600 km altitude. 

In ESATAN-TMS
®
 the approach for computing the external radiative exchange factors is numerical and 

based on Monte-Carlo ray-tracing, with a default configuration of 10,000 rays firing from each surface. 

The MATLAB
®
 routine calculates internal exchange factors after the definition of thermo-physical, optical 

and geometrical properties of the components, while external fluxes are calculated in the “for” loop, as 

discussed in Section 4.1 and shown in the flow chart in Figure 10. ESATAN-TMS
®
 radiative module 

ensures a moderate computation time in the range of 180s for one orbit when considering a model with 

a good level of detail (approximately 150 nodes). However no significant changes in external fluxes have 

been recorded among the different nodes of the same surface in the case of the nanosatellite geometry 

scale. For instance, the average incident solar fluxes calculated with ESATAN-TMS
®
 for 25 nodes on the 

external faces F1 and F3 differ from the value calculated with the MATLAB
®
 routine for one single 

lumped parameter node by a maximum error of 2%. A higher error has been recorded for the incident 

albedo and Earth IR radiation, for which ESATAN-TMS
®
 results deviate from MATLAB

®
 ones by a 

maximum of 9%. This error can be traced back to the view factors calculation and would require further 

investigation; nevertheless this is considered a second order effect with respect to the values of solar 

direct fluxes impinging the surface.  

The temperatures of the satellite obtained with the developed code were compared to an ESATAN-TMS
®
 

analysis, using a less detailed but yet comparable geometrical model shown in Figure 15.  The 

temperature distribution of a battery in the worst cold case is reported in Figure 16 as an example.  The 

temperatures show the same trend, with a ±3 °C maximum error. The results differ by a negligible shift 

in the eclipse start time, due to a different orbit modelling and transient computation between the two 

tools. ESATAN-TMS
®
 model requires the setup of a transient solution with a time-step of 0.01 s to 

converge. The time-step is limited by the minimum value of the ratio of nodal capacitance to sum of 

conductance (CSGMIN parameter), which draws to a high computational cost, with the advantage of a 

better spatial resolution in the calculus.  This resolution however results to be unnecessary for the 

geometrical scale under examination, and does not lead to significantly different results compared to 

the more agile MATLAB
®
 analysis. The total running time for six orbits is of the order of 3000 s and 700 s 

for ESATAN-TMS
®
 and MATLAB

®
 respectively 

 



 
 

Figure 15: satellite ESATAN-TMS
®
 geometrical model 

 

 
Figure 16: comparison of battery temperature profile with MATLAB

®
 and ESATAN-TMS

®
 

 

5.3. Discussion on thermal control strategy 

The process of thermal analysis has provided the design of the nanosatellite with useful indications. 

Given the nanosatellite configuration and the components characteristics, the hot case represents the 

most critical condition. In particular, the batteries exceed their upper temperature limit if not 

adequately protected. Hereafter the strategies adopted in order to meet the thermal requirements are 

described and discussed. 

The analysis moved from an initial satellite configuration with a passive thermal control system, given a 

fixed satellite architecture and an invariable internal components’ layout. Conductive and radiative 

properties of materials have been adjusted and traded-off over several simulation runs, by means of an 

optimization process aimed at meeting a design point, to which the results presented in Section 5.1 

pertain. 

As far as the external structure is concerned, being the aluminium an excellent conductor, it contributes 

to level out the temperature of the panels. However, heat transfer is limited by the optical properties 

(solar absorptivity α = 0.1 and infrared emissivity ε = 0.06). To improve the external heat transfer, we 

modified the optical properties of the external surfaces not occupied by solar cells, antennas and 

cameras’ lenses, increasing infrared emissivity while keeping the solar absorptivity relatively low. As a 

result of the thermal analysis, the desired optical properties vary in the range of α = 0.2÷0.3 and ε = 



0.8÷0.9.To meet this design point, the feasible solutions identified are surface treatments (e.g. 

oxidation), surface coatings (e.g. paints) or surface overlay by means of specific tapes. Surface 

treatments are usually complex and expensive, oxidation is not electrically conductive, and it could lead 

to a major design limitation if not specifically required. Coatings, usually black or white, can be either 

electrically conductive or not. For our purpose, white coatings (α = 0.2÷0.5, ε = 0.8) are preferable to the 

black ones (α = 0.9, ε = 0.88). Similar performances can be achieved with the use of specific tapes with a 

Teflon
®
 substrate covered by a deposit of aluminium (α = 0.3, ε = 0.8). Since paints are more critical in 

terms of outgassing, the use of a specific tape overlay is recommended. 

As far as the internal configuration is concerned, insulation can be properly achieved by reducing 

thermal conductivity and IR emissivity at the interfaces. Different Multi-Layer Insulation (MLI) materials 

have been traded along the thermal analysis (k = 0.02÷0.1 W/mK, ε = 0.01÷0.03). Ten layers-MLI 

blankets are recommended between external and internal aluminium panels. The internal support 

structure is made of aluminium and it reflects great part of the heat dissipated by the electronics, which 

therefore tend to warm up. In order to avoid excessive temperatures, two main actions can be 

undertaken: to increase the IR emissivity of the aluminium panels that face the interior of the satellite, 

and to increase the thermal conductivity of the electronic boards. 

As resulted from the simulation process, a value of emissivity equal to ε = 0.8 has been selected for the 

panels of the internal structure. The feasible solutions may include a chromic/sulphuric anodizing 

surface treatment or, alternatively, the use of special black paints, i.e.: 

� Aeroglaze Z306, which has negligible electrical conductivity and appropriate outgassing level 

� Aeroglaze Z307, which has not negligible electrical conductivity and little higher outgassing level, if compared 

to the previous 

In order to improve heat dissipation of the electronic boards, a heat sink may be applied (in particular 

on the RxTx and the Power Switch boards), to increase the thermal conductivity of FR-4 (k = 0.25 W/mK) 

to a value in the range 1.0÷4.0 W/mK. Taking into account the small size of the boards and the type of 

connections between their components, traditional metallic heat sinks (1-mm thick aluminium or copper 

sheets) cannot be used. A good alternative is represented by printed heat sinks, whose characteristics 

are described in detail in [29]. They consist of a paste based on a special polymeric matrix filled with 

finely scattered particles which guarantee the required heat-conductive properties. Furthermore, the 

process of application is less complex and can be more easily automated, if compared to traditional 

metallic heat sinks. 

The results showed that a basically passive control is sufficient to maintain most spacecraft’s 

components within their temperature range with appropriate insulation, thermal coatings or tapes 

overlay solutions. Batteries still remain critical also in the coldest conditions. However, it is worth 

reminding that the worst cold case is not a nominal mode of operation because electronics is considered 

completely switched off, which means a serious failure of the mission. A major problem may rather arise 

in case of a sudden transition from eclipse to sunlight, and therefore from the discharge phase to the 

charge phase, which requires a minimum operative temperature of 0 °C. For these reasons, the use of 

heaters to warm up batteries is recommended. Heaters operating according to an on/off switch cycle 

are sufficient in order to meet the requirements while keeping the TCS as simple as possible.  



 

6. Conclusions 

The results of the thermal analysis have turned out to be extremely useful in the framework of the 

PiCPoT project. Taking into account the obtained results, the satellite has been partially modified, in 

order to meet all temperature requirements. The satellite has then been successfully tested in a thermo-

vacuum chamber. 

The numerical simulation code has been designed and implemented specifically for the project but, 

thanks to its flexibility, it is well suited for other similar projects. The code allows to customise input 

parameters such as: 

� physical, thermal and optical properties of materials 

� geometry of the satellite 

� external heat sources (solar radiation, albedo and Earth IR radiation) 

� internal heat loads (power dissipated and duty cycles) 

� orbit parameters (altitude and inclination) 

� lighting conditions (Earth’s position along the ecliptic and β angle) 

� number of orbits 

� number of nodes for the external surfaces 

� time step 

The comparison with professional thermal analysis software (ESATAN-TMS
®
) verified the goodness of the 

approach implemented and validated the tool for future applications. The code does not aim at 

competing with commercial solutions, rather it is intended to complement the existing offer with an 

efficient nanosatellite-scale tool for thermal analysis.  

The numerical simulation code is integrated into a wide mission simulation program, which 

encompasses the simulation of the mission and the system from different points of view. In particular 

some modules that are strictly related to the presented thermal analysis are worth mentioning: the 

simulation of the orbit and the satellite’s attitude, the parametric modelling of the geometry of the 

satellite, and the functional simulation of the operative modes. The integration of the different 

simulation modules is one of the research activities that are currently in progress, in order to optimize 

procedures and build up a flexible, multi-purpose and global mission analysis tool. 

 



A. Symbols 

Latin letters 

a thermal diffusivity, m
2
/s 

A area, m
2
  

B radiative absorption factor 

c heat capacity at constant pressure, J/kgK 

d distance between two nodes of the grid, m 

e orbit eccentricity 

F view factor 

Fo Fourier number 

h thermal conductance, W/m
2
K 

IR infrared Earth radiation (239 W/m
2
) 

i orbital inclination angle 

k thermal conductivity, W/mK 

m mass, kg 

v
q�  volumetric heat flux, W/m

3
 

s
q�  heat flux, W/m

2
 

Q�  heat rate, W 

r radiative reflectivity 

R distance between the satellite and the Earth’s centre 

RE Earth radius 

s material thickness, m 

S Solar radiation, W/m
2
 

T temperature, K 

x, y, z spatial coordinates 

 

Greek letters  



α albedo (0.29) 

β orbital angle between the orbit and the Sun-Earth vector 

γ angle between the Earth-satellite vector and the perpendicular to the satellite external face 

δ Kronecker delta 

Δτ time step, s 

ε emissivity  

θ solar zenith angle, the angle between the Earth-satellite and the Earth-Sun directions 

ι angle between the Earth-satellite vector and the tangent to the Earth viewed from the satellite 

ρ density, kg/m
3
 

σ Stefan-Boltzmann constant (5.67x10
−8

 W m
−2

 K
−4

) 

ζ angle between a surface and the vector opposite to solar radiation 

τ time, s 

 

Subscripts 

α albedo 

cav cavity 

i, j i-th, j-th element 

int inside the satellite 

IR Infrared Earth radiation 

g gap between two nodes 

sun solar 

S1 electronic board nr.1 
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