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Abstract: Free vibration analysis is an important aspect of aeronautical engineering. The 

availability of enhanced models for accurate modal analysis is therefore of primary interest. 

This work deals with advanced 1D formulations able to foresee higher-order phenomena, such 

as elastic bending/shear coupling, restrained torsional warping and 3D strain effects. The 

proposed beam models are developed in the framework of the Carrera Unified Formulation 

(CUF), whose hierarchical capability allows the analyst to automatically implement refined 

models with arbitrarily rich kinematics. The capabilities of the resulting 1D theories are 

assessed by both weak- and strong-form solutions and the results from free vibration analyses 

of wing-like composite structures are compared to those from the literature, experiments and 

commercial FEM software. 

1 INTRODUCTION 

The use of composite materials in various weight sensitive structures (e.g. high-speed aircraft, 

rocket, launchers, etc.) is quite popular due to their well-known attractive properties. The wide 

use of laminated composite materials has aroused considerable interest in the related theoretical 

models and numerical simulation methods, including one-dimensional (1D) structural theories. 

A considerable number of theories have been devised in order to overcome the limitations of 

the first beam models introduced by Euler and Bernoulli [1] (hereinafter referred to as EBBM, 

i.e. Euler–Bernoulli beam model) and by Timoshenko [2] (hereinafter referred to as TBM,  i.e. 

Timoshenko beam model) (see Kapania and Raciti [3,4]). Some recent noteworthy 

contributions about refined composite beam analysis are mentioned in the following. The 

attention is focused on free vibration analysis, which is the main topic of the present work. 

A family of sinus models was presented by Vidal and Polit [5] for the vibration analysis of 

laminated beams. In [6], a trigonometric shear deformation theory was developed and the closed 

form solution was provided. Subramanian [7] presented two different one-dimensional (1D) 

Finite Elements (FEs) for laminated beams, in which a 5th order expansion was used to expand 

the axial displacement and a 4th order power series was used for the transverse displacement. 

In the work by Marur and Kant [8], Taylor’s series expansions were used for axial displacement 

in order to describe the warping of cross-sections of sandwich and composite beams. Interesting 

mixed formulations were presented in [9], where through-the-thickness continuity of transverse 
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stress and displacement fields was enforced. The beam model presented by Heyliger and Reddy 

[10] accounted for the stress-free conditions on the upper and lower surfaces of the beam while 

retaining a parabolic shear strain distribution. Other noteworthy contributions are those by Chen 

et al. [11], Hodges et al. [12], Stemple and Lee [13], Mitra et al. [14], Chandrashekhara et al. 

[15] and Chandrashekhara and Bangera [16]. 

The present paper deals with 1D higher-order theories able to accurately capture the mechanical 

behavior of laminated orthotropic and anisotropic structures. Refined beam models are 

developed within the framework of Carrera Unified Formulation (CUF) [17]. Two classes of 

CUF 1D models were formulated in recent works: the Taylor-expansion class, hereafter referred 

to as TE, and the Lagrange-expansion class, hereafter referred to as LE. TE models exploit N-

order Taylor-like polynomials to define the displacement field above the cross-section with N 

as a free parameter of the formulation. The strength of CUF TE beam models in dealing with 

arbitrary geometries, thin-walled structures, and local effects were evident in static [18] and 

free vibration analysis [19]. Recently, CUF TE theories were applied with reference to Dynamic 

Stiffness Method (DSM) to investigate the free vibration characteristics of thin-walled 

structures [20]. On the other hand, the LE class is based on Lagrange-like polynomials to 

discretize the cross-section displacement field and they have only pure displacement variables. 

Recently, static analyses (see for example [21]) have revealed the strength of LE models in 

dealing with open cross-sections, arbitrary boundary conditions, and obtaining layer-wise 

descriptions of the 1D model. Moreover, LE models have been successfully used for the 

component-wise analyses of aeronautical metallic structures [22]. 

In this work, 1D refined CUF models of composite wing-like structures are implemented. 

Various laminations are considered and complex geometries are assessed, including wing 

structures with sweep angle and anisotropic laminated box structures. The paper is organized 

as follows: (i) first, the unified formulation of structures is briefly introduced; (ii) then, both 

weak- and strong-form governing equations are obtained in terms of fundamental nuclei; next, 

numerical results are presented and discussed; finally, the main conclusions are outlined. 

2 CARRERA UNIFIED FORMULATION 

The adopted rectangular Cartesian coordinate system is shown in Fig. 1. The cross-section of 

the beam lies on the xz-plane and it is denoted by Ω, whereas the boundaries over y are 0≤y≤L. 

Let us introduce the transposed displacement vector,   

 𝑢(𝑥, 𝑦, 𝑧; 𝑡) = {𝑢𝑥  𝑢𝑦  𝑢𝑧 }
𝑇
 (1) 

Within the framework of CUF, the 3D displacement field of Eq. (1) is expressed as 

 𝑢(𝑥, 𝑦, 𝑧; 𝑡) = 𝐹𝜏 (𝑥, 𝑧)𝑢𝜏 (𝑦; 𝑡), 𝜏 = 1,2, … , 𝑀 (2) 

where 𝐹𝜏 are the functions of the coordinates 𝑥 and 𝑧 on the cross-section; 𝑢𝜏 is the vector of 

the generalized displacements; 𝑀 stands for the number of the terms used in the expansion; and 

the repeated subscript, 𝜏, indicates summation. TE (Taylor Expansion) 1D CUF models consist 

of McLaurin series that uses the 2D polynomials 𝑥𝑖  𝑧𝑗 as 𝐹𝜏 functions, where 𝑖 and 𝑗 are positive 

integers. For instance, the displacement field of the second-order (𝑁 = 2) TE model can be 

expressed as 
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 𝑢𝑥 = 𝑢𝑥1
+ 𝑥 𝑢𝑥2

+ 𝑧 𝑢𝑥3
+ 𝑥2 𝑢𝑥4

+ 𝑥𝑧 𝑢𝑥5
+ 𝑧2 𝑢𝑥6

 

𝑢𝑦 = 𝑢𝑦1
+ 𝑥 𝑢𝑦2

+ 𝑧 𝑢𝑦3
+ 𝑥2 𝑢𝑦4

+ 𝑥𝑧 𝑢𝑦5
+ 𝑧2 𝑢𝑦6

 

𝑢𝑧 = 𝑢𝑧1
+ 𝑥 𝑢𝑧2

+ 𝑧 𝑢𝑧3
+ 𝑥2 𝑢𝑧4

+ 𝑥𝑧 𝑢_(𝑧_5 ) + 𝑧2 𝑢𝑧6
 

(3) 

The order N of the expansion is set as an input of the analysis; the integer N is arbitrary and it 

defines the order of the beam theory. EBBM and TBM can be realized as degenerated cases of 

the linear (𝑁 = 1) TE model. For further information about TE models see [17]. 

 

Figure 1: Coordinate frame of the beam model 

The LE class exploits Lagrange-like polynomials on the cross-section to build 1D higher order 

models. The isoparametric formulation is exploited to deal with arbitrary shape geometries. In 

this paper, the nine-point (L9) cross-sectional cubic polynomial set was adopted. For the L9 

element (Figure 2) and other orders, the interpolation functions can be found in [23]. However, 

the displacement field of an L9 beam is given in the following for illustrative purpose: 

 𝑢𝑥 = 𝐹1𝑢𝑥1 + 𝐹2𝑢𝑥2 + ⋯ + 𝐹9𝑢𝑥9 
𝑢𝑦 = 𝐹1𝑢𝑦1 + 𝐹2𝑢𝑦2 + ⋯ + 𝐹9𝑢𝑦9 

𝑢𝑧 = 𝐹1𝑢𝑧1 + 𝐹2𝑢𝑧2 + ⋯ + 𝐹9𝑢𝑧9 

(4) 

Where 𝑢𝑥1(𝑦; 𝑡), … , 𝑢𝑧9(𝑦; 𝑡) are the displacement variables of the problem and they represent 

the translational displacement components of each of the nine points of the L9 element; 

𝐹1(𝑥, 𝑧), … , 𝐹9(𝑥, 𝑧) are the Lagrange polynomials. According to Carrera and Petrolo [23], the 

beam cross-section can be discretized by using several L-elements for further refinements. 

 

 

 

 
Figure 2: L9 element in the natural coordinate system  

3 WEAK AND STRONG FORM GOVERNING EQUATIONS 

In this work, the governing equations of the refined beam in free vibration are formulated by 

using the principle of virtual displacements 
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𝛿𝐿𝑖𝑛𝑡 = ∫ 𝛿𝝐 𝝈 𝑑𝑉 = −𝛿𝐿𝑖𝑛𝑒

𝑉

 (5) 

Where 𝐿𝑖𝑛𝑡 is the work of internal strains; 𝐿𝑖𝑛𝑒 is the work of inertial loadings; 𝝐 and 𝝈 are the 

vectors of strain and stress components, respectively; and 𝛿 is the virtual variation. 

If finite elements are used along the beam axis, the generalized displacements can be 

approximated through generic 1D shape functions 

 𝑢𝜏 (𝑦; 𝑡) = 𝑁𝑖 (𝑦)𝑞𝜏(𝑡), 𝑖 = 1, … , 𝑝 + 1 (6) 

In this work, classical cubic (𝑝 = 3) shape-functions are used. By substituting FEM 

approximation (6), CUF (2), constitutive and linear strain-displacement relations, the virtual 

variation of the internal work can be expressed as 

 𝛿𝐿𝑖𝑛𝑡 = 𝛿𝒒𝜏𝑖
𝑇  𝑲𝑖𝑗𝜏𝑠 𝒒𝑠𝑗  (7) 

Where 𝑲𝑖𝑗𝜏𝑠 is the 3x3 fundamental nucleus of the algebraic stiffness FE matrix. The 

components of this matrix and those of the mass matrix coming from 𝛿𝐿𝑖𝑛𝑒 are not given here 

for the sake of brevity, but they can be found in [17]. The most important characteristic of CUF, 

however, is that the elemental stiffness matrix of the generic beam element can be found by 

automatically expanding 𝑲𝑖𝑗𝜏𝑠 versus the four indices. In fact, the formal expression of the 

coefficients of the fundamental nucleus does not depend on the order and class (𝐹𝜏) adopted. 

If finite elements are not employed, by only using CUF and elastica fundamental equations, the 

expression of the internal work reads as follows: 

 𝛿𝐿𝑖𝑛𝑡 = ∫ 𝛿𝒖𝜏
𝑇 𝑲𝜏𝑠 𝒖𝑠

𝐿

𝑑𝑦 + [𝛿𝒖𝜏
𝑇 𝚷𝜏𝑠 𝒖𝑠]𝑦=0

𝑦=𝐿
 (8) 

Where 𝑲𝜏𝑠 is the differential linear stiffness matrix and 𝜫𝜏𝑠 is the matrix of the natural 

boundary conditions in the form of 3x3 fundamental nuclei. As in FEM formulation, the 

expansion of these fundamental kernels allow one to automatically find the governing equations 

of arbitrary order 1D theories. The components of the differential nuclei are not given in the 

present work. They can be found in [20], where also a detailed DSM procedure is devised for 

the exact solution of the system of differential equations described by Eq. (5). 

 

Model 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 

N = 2 7.4 46.1* 59.1 129.5* 182.7 

N = 3 7.2 45.1* 59.1 126.5* 182.4 

N = 4 7.2 45.0* 59.1 126.4* 182.3 

CLT [24] 7.3 45.4* 59.1 127.7* 182.3 

*Torsional mode 
 

  

Table 1:  Natural frequencies (Hz) of the eight-layer straight wing 

4 NUMERICAL RESULTS 

In this section, the proposed beam theories are evaluated for the free vibration analysis of wing 

structures. First, plate-like composite wings are considered, and the effect of sweep angle is 

evaluated. Then, complex composite box structure are addressed. The analyses are carried out 
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by both TE and component-wise LE models, whereas DSM and classical FEM procedure are 

indistinctly employed for the solution of the free vibration problem. The results are compared 

with those from the literature and commercial software. 

Model 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 

N = 2 5.6 34.7 76.5* 97.5 193.3* 

N = 3 5.6 34.4 60.1* 95.9 187.0* 

N = 4 5.6 34.2 59.2* 95.3 180.1* 

CLT [24] 5.6 34.4 60.0* 95.4 182.0* 

*Torsional mode   

Table 2: Natural frequencies (Hz) of the eight-layer back-swept (Λ = 30°) wing 

4.1 Plate-like composite wing 

In the first analysis case, composite wing structures were considered. Composite plate wing 

models were retrieved from [24] and [25]. A graphite/epoxy composite material with the 

following characteristics was used: 𝐸𝐿 = 98.0 GPa, 𝐸𝑇 = 7.90 GPa, 𝐺𝐿𝑇 = 5.60 GPa, Poisson 

ratio 𝜈 = 0.28 and 𝜌 = 1520 Kg/m3, where L denotes the fibres direction and T a direction 

perpendicular to the fibres. The length of the wing (𝐿) is equal to 305 mm and the chord (𝑐) is 

equal to 76.2 mm. The total thickness of the laminate is 0.804 mm.  

An eight-layer symmetric stacking sequence was considered. The stacking sequence was equal 

to [-22.5/67.5/22.5/-67.5]s, whereas the thickness sequence was [0.09/0.12/0.16/0.63]s, where 

   

(a) Mode 1, f = 5.6 Hz (b) Mode 2, f = 34.2 Hz (c) Mode 3, f = 59.2 Hz 

   

(d) Mode 4, 95.3 Hz (e) Mode 5, f = 180.1 Hz (f) Mode 6, 185.7 Hz 

Figure 3:  Modal shapes of the 8-layer swept plate wing, N = 4 DSM model 
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each term indicates the thickness ratio of each ply with respect to the half of the thickness of 

the laminate. For instance, the thickness of the first layer is the 9% of the half thickness of the 

laminate. Two sweep angles were considered, Λ = 0° and Λ = 30°. The natural frequencies are 

given in Tables 1 and 2, in which the results from the present TE variable order 1D DSM models 

are compared with those from a 2D solution. Finally, the nodal lines of the first sixth mode 

shapes of the swept wing (Λ = 30°) via the N = 4 DSM beam model are shown in Fig. 3. More 

results about metallic and composite plate-like wings from the present TE DSM approach can 

be found in [26], where flutter stability analyses were also addressed. 

4.2 Composite box structure 

A hollow rectangular cross-section laminated box beam was subsequently considered for 

verification. Clamped-free boundary conditions were addressed. The same structure was used 

for experimental [27] and analytical [28] investigations in previous works. The dimensions of 

the beam are as follows: length 𝐿 = 844.55 mm, height ℎ = 13.6 mm, width 𝑏 = 24.2 mm, 

and thickness 𝑡 = 0.762 mm. The box beam was made of six layers with the following 

orthotropic material properties: 𝐸1 = 141.96 GPa, 𝐸2 = 𝐸3 = 9.79 GPa, 𝜈12 = 𝜈13 =  0.42, 

𝜈23 =  0.5, 𝐺12 = 𝐺13 =  6.0 GPa, 𝐺23 = 4.83 GPa, and 𝜌 = 1445.0 kg/m3. The six layers had 

the same thickness. Different lamination schemes are considered for the box beam under 

consideration. Both circumferentially asymmetric stiffness (CAS) and circumferentially 

uniform stiffness (CUS) stacking sequences are addressed and they are detailed in Table 3. 

 Flanges Webs 

Lay-up Top Bottom Left Right 

CAS2 [30]6 [30]6 [30/−30]3 [30/−30]3 

CAS3 [45]6 [45]6 [45/−45]3 [45/−45]3 

CUS1 [15]6 −[15]6 [15]6 −[15]6 

CUS2 [0/30]3 [0/−30]3 [0/30]3 [0/−30]3 

CUS3 [0/45]3 [0/−45]3 [0/45]3 [0/−45]3 

Table 3: Various stacking sequences of the box beam 

The values of the natural frequencies obtained from these box beam configurations are listed in 

Table 4, where the results from the present LE and TE FEM models are compared to those from 

the literature. In particular, TBM, the seventh-order TE models as well as a LE model made 

with 24 L9 elements are compared to experimental data [27] analytical solutions [28] and a 2D 

FE model by ANSYS [29]. Further results of composite box structures by the present beam 

model and related FEM formulations can be found in [30]. 

5 CONCLUSIONS 

Advanced beam models have been used in this work for the free vibration analysis of composite 

wing structures. Refined 1D theories have been implemented by using CUF, whose hierarchical 

characteristics allow us to formulate weak and strong form governing equations in terms of 

fundamental nuclei, which are invariant with respect to the beam model. First, plate-like 

composite wings have been addressed and the effect of sweep angle has been evaluated. In the 

second analysis, a complex composite box structure has been considered and the natural 
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frequencies have been evaluated for various stacking sequences. The results highlight the 

accuracy of the present beam models, which are able to foresee complex structural behavior 

(twisting, warping and shear/bending couplings) and provide solutions that are very close to 

those from the literature.  

  CUF LE CUF TE    

Lay-up Mode 24 L9 TBM 𝑁 = 7 Exp. [26] 
Anlt. 

[27] 

2D FEM 

[28] 

CAS2 1 20.06 20.96 20.60 20.96 19.92 19.73 

 2 38.21 41.76 39.42 38.06 - 37.53 

CAS3 1 14.75 15.00 14.69 16.67 14.69 14.58 

 2 25.41 26.38 25.44 29.48 - 25.01 

CUS1 1 29.51 32.36 29.19 28.66 28.67 28.37 

CUS2 1 34.69 35.09 34.61 30.66 34.23 34.29 

CUS3 1 33.03 33.11 33.01 30.00 32.75 32.35 

Table 6. Natural frequencies (Hz) for different stacking sequences of the laminated box beam. 
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