
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A paired-comparison approach for fusing preference orderings from rank-ordered agents / Fiorenzo Franceschini;
Domenico Maisano; Luca Mastrogiacomo. - In: INFORMATION FUSION. - ISSN 1566-2535. - STAMPA. - 26(2015), pp.
84-95.

Original

A paired-comparison approach for fusing preference orderings from rank-ordered agents

Publisher:

Published
DOI:10.1016/j.inffus.2015.01.004

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2606155 since:

Elsevier

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234905665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1

A paired-comparison approach for fusing preference orderings from 
rank-ordered agents 

Fiorenzo Franceschini1, Domenico Maisano2 and Luca Mastrogiacomo3 

1 fiorenzo.franceschini@polito.it      2 domenico.maisano@polito.it      3 luca.mastrogiacomo@polito.it 
Politecnico di Torino, DIGEP (Department of Management and Production Engineering), 

Corso Duca degli Abruzzi 24, 10129, Torino (Italy) 

Abstract 

The problem of aggregating multi-agent preference orderings has received considerable attention in 

many fields of research, such as multi-criteria decision aiding and social choice theory; 

nevertheless, the case in which the agents’ importance is expressed in the form of a rank-ordering, 

instead of a set of weights, has not been much debated. The aim of this article is to present a novel 

algorithm – denominated as “Ordered Paired-Comparisons Algorithm” (OPCA), which addresses 

this decision-making problem in a relatively simple and practical way. The OPCA is organized into 

three main phases: (i) turning multi-agent preference orderings into sets of paired comparisons, (ii) 

synthesizing the paired-comparison sets, and (iii) constructing a fused (or consensus) ordering. 

Particularly interesting is phase two, which introduces a new aggregation process based on a 

priority sequence, obtained from the agents’ importance rank-ordering. A detailed description of 

the new algorithm is supported by practical examples. 

Keywords: Decision making, Multiple rank-ordered agents, Preference ordering, Fusion, Ordinal semi-

democratic, Paired comparison, OPCA. 

1. Introduction 

A general decision-making problem is that of aggregating multi-agent preference orderings of 

different alternatives into a single fused ordering. Assume that M decision-making agents1 (D1 to 

DM) formulate preference orderings among n alternatives of interest (a, b, c, d, etc.). The objective 

is to aggregate the M agents’ orderings into a single fused ordering, which should reflect them as 

much as possible; for this reason, the fused ordering can also be defined as consensus or 

compromise ordering [1, 2]. This aggregation should also take into account the agents’ importance, 

which is not necessarily equal for all of them. 

This decision-making problem is very diffused in a variety of real-life contexts, ranging from multi-

criteria decision aiding [3] to social choice theory [4, 5]. Some of the reasons for this diffusion are 

that: (i) preference orderings are probably the most intuitive and effective way to represent 

preference judgments of alternatives [6], and (ii) they do not require a common scale – neither 

                                                 
1 By a decision-making agent we will consider any of a wide variety of different types of entities. Examples could be 
human beings, individual criteria in a multi-criteria decision process, software based intelligent agents on the Internet, 
etc.. 
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numeric, linguistic or ordinal – to be shared by the interacting agents [7]. 

The literature includes a variety of algorithms or aggregation techniques, which can be generally 

divided in two categories [8]: (i) methods in which all agents have the same importance [9, 10, 11], 

and (ii) methods in which agents have recognised attributes and/or privileged positions of power, 

represented by weights [3, 12, 13, 14]. 

Regarding the second category of methods, in some practical contexts weights are not available 

and/or their definition can be arbitrary and controversial. For example, weights are often imposed 

according to political strategies; e.g., the scientific committee of a competitive examination for 

promotion of faculty members may (arbitrarily) decide that scientific publications will account for 

40% of the total performance, research projects for 20%, teaching activity for 30%, etc.. Although 

the literature provides several techniques for guiding weight quantification – for example, the AHP 

procedure [15, 16], the method proposed in [17], or that in [18] – they are often neglected in 

practice, probably because of their complexity.  

For these contexts, the problem of weight assignment is partially overcome by expressing the 

agents’ importance in the form of a rank-ordering – such as D1 > (D2 ~ D3) > … > DM  – instead of 

a set of weights defined on a cardinal scale. In fact, the formulation of such a rank-ordering is 

certainly simpler and more intuitive than that of a set of weights, especially when the agent 

importance prioritization is uncertain [6]. 

This paper will focus on this specific problem, which can be denominated as ordinal semi-

democratic; the adjective semi-democratic indicates that agents do not necessarily have the same 

importance, while ordinal indicates that their rank is defined by a crude ordering. This makes the 

set of the possible solutions relatively wide, since they may range between the two extreme 

situations of dictatorship – in which the resulting fused ordering basically reflects the preference 

ordering by the most important agent (dictator) – and democracy – where the agents’ preference 

orderings are considered as equi-important. 

The ordinal semi-democratic decision-making problem is intriguing for two features: (i) the way the 

preference orderings are compared, and (ii) the way they are synthesized into a fused ordering, 

which should also reflect the agents’ importance rank-ordering. Despite the adaptability to a large 

number of practical contexts, this specific problem has received little attention in the literature. 

Yager [7] proposed an algorithm, hereafter abbreviated as YA (which stands for Yager’s 

Algorithm), which addresses the problem in a relatively simple, fast and automatable way. 

Unfortunately, this algorithm has some limitations: (i) it is applicable to linear preference orderings 

only, with neither incomparabilities nor omissions of the alternatives [19], (ii) the resulting fused 

ordering may sometimes not reflect the preference ordering for the majority of agents [20], and (iii) 

the fused ordering is determined neglecting an important part of the information available [21]. 

These limitations will be clarified in the next sections.  
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The objective of this paper is to introduce a new algorithm, denominated as “Ordered Paired-

Comparisons Algorithm” (hereafter abbreviated as OPCA), able to overcome the YA’s limitations. 

The main features of this algorithm are that (i) agents’ preference orderings are decomposed into  

sets of paired comparisons of the alternatives, and (ii) the different importance of agents determines 

a different priority sequence when comparing and synthesizing these sets into a fused ordering. 

The remainder of the paper is organized into three sections. Sect. 2 recalls the YA in detail. Sect. 3 

illustrates the OPCA. The description of both algorithms is supported by practical examples. Sect. 4 

presents a structured comparison of the two algorithms, aimed at highlighting the advantages of the 

OPCA with respect to the YA. The concluding section summarizes the original contributions of this 

paper and its practical implications, limitations and suggestions for future research.  

2. Basics of the Yager’s Algorithm (YA) 

In this section we recall the YA. For a more rigorous description, we refer the reader to the original 

contribution by Yager [7]. 

The algorithm can be schematized in the following three basic phases, which are described 

individually in Sects. 2.1 to 2.3: 

 construction and reorganization of preference vectors; 

 definition of the reading sequence; 

 construction of the fused ordering. 

2.1 Construction and reorganization of preference vectors 

The YA is applicable to (non-strict2) linear orderings only. The goal of this phase is building 

preference vectors based on the preference orderings by the agents. For each agent’s vector, we 

place the alternatives as they appear in the ordering, with the most preferred one(s) in the top 

positions. If at any point p > 1 alternatives are tied (i.e., indifferent), we place them in the same 

element and then place the null set (“Null”) in the next p – 1 lower positions. For example, when 

considering three alternatives (a, b and c) with the ordering (a ~ b) > c, the resulting vector will 

conventionally be [{a ~ b}, Null, {c}]T. By adopting this convention, the number (n) of elements of 

a vector will coincide with the number of alternatives of interest. 

Considering four fictitious agents (D1 to D4), with four relevant orderings of six alternatives (a, b, c, 

d, e and f), and assuming a certain (linear) rank-ordering between agents (i.e., D4 > (D2 ~ D3) > D1), 

the resulting preference vectors can be constructed as shown in Tab. 1. For simplicity, vectors will 

be denominated as the relevant agents (i.e., Di). Each vector element can be associated with an 

indicator (j) depicting the position/level of the element, in the preference vector. 

                                                 
2 The adjective “non-strict” means that these orderings allow the relationship of indifference (“~”) between alternatives. 
For simplicity, the adjective will be omitted hereafter. 



 4

Tab. 1. Construction of preference vectors related to the orderings by four fictitious agents (D1 to D4). 

Agents D1 D2 D3 D4 
Preference orderings b > a > (d ~ e) > f > c c > b > (a ~ d ~ e) > f b > (a ~ c) > f > (d ~ e) a > c > b > d > e > f 

Preference vectors 

j 
6 
5 
4 
3 
2 
1 

Elements 
{b} 
{a} 

{d, e} 
Null 
{f} 
{c} 

Elements 
{c} 
{b} 

{a, d, e} 
Null 
Null 
{f} 

Elements 
{b} 

{a, c} 
Null  
{f} 

{d, e} 
Null 

Elements 
{a} 
{c} 
{b} 
{d} 
{e} 
{f} 

n = 6 total alternatives are considered: a, b, c, d, e and f. 
The agents’ importance ordering is D4 > (D2 ~ D3) > D1. 

 

Next, preference vectors are transformed into “reorganized” vectors, conventionally denominated as 

*
iD . This transformation consists in (i) sorting the Di vectors decreasingly with respect to the 

agents’ importance and (ii) aggregating those with indifferent importance (e.g., D2 and D3 in the 

example) into a single vector. This aggregation is performed through a level-by-level union of the 

vector elements, where alternatives in elements with the same (j-th) position are considered as 

indifferent. The resulting *
iD  vectors will therefore have a strictly decreasing importance ordering. 

Going back to the example in Tab. 1, the four vectors (D1 and D4) are turned into three reorganised 

vectors ( *D1  to *D3 , see Tab. 2). It can be noted that *D2  –  given by the aggregation of two vectors 

with equal importance (i.e., D2 and D3)  – contains two occurrences for each alternative. Of course, 

the total number of “reorganized” vectors will be smaller than or equal to the number (M) of initial 

preference orderings (3 against 4 in the example presented). 

2.2 Definition of the reading sequence 

This phase defines a sequence for reading the elements of the *
iD  vectors, according to the 

following pseudo-code: 

1. Initialise the sequence number to S = 0. 

2. Consider the elements with lowest position, by setting j = 1. 

3. Consider the most important *
iD  vector, by setting i = 1. 

4. Set S = S + 1. 

5. Associate the element of interest with the sequence number S. 

6. If i is lower than the total number of *
iD  vectors, then: 

7. Set i = i + 1. 

8. Consider the element with position j, related to the i-th *
iD  vector. 

9. Go To Step 4. 

10. End If. 

11. If j < n (i.e., total number of alternatives), then: 

12. Set j = j + 1. 

13. Go To Step 3. 
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14. End If. 

15. End. 

The sequence defines a bottom-up level-by-level reading of vector elements. The first elements read 

are those with lowest position (j = 1). When considering elements with the same (j-th) position, 

priority is given to the vectors from agents of greater importance. After having read all the elements 

with (j-th) position, we move up to the (j+1)-th position, repeating the reading sequence. Tab. 2 

reports the sequence numbers (S) associated with each element of the reorganized vectors in the 

example presented. 

Tab. 2. Reorganized vectors ( *
iD ) related to the four preference vectors in Tab. 1  and relevant sequence 

numbers (S).  
 

 

2.3 Construction of the fused ordering 

This third phase is aimed at determining a fused ordering through a gradual selection of the 

alternatives. The following pseudo-code illustrates the algorithm for constructing the fused 

ordering: 

1. Initialise the gradual ordering to “Null”. 

2. Initialise S = 1. 

3. Consider the element with sequence number S. 

4. If the element is not “Null”, then: 

5. Identify the alternative(s) in the element of interest. 

6. If all these alternatives are not yet present in the gradual ordering, then: 

7.  Include the alternative(s) not yet present at the top of the gradual ordering. Tied 

alternatives should be considered as indifferent (~). 

8. If the gradual ordering includes all the (n) alternatives, then: 

9. Go to Step 15. 

10. End If. 

11.  End If. 

12. End If. 

13. Increment S = S + 1. 

14. Go to Step 3. 

15. The final fused ordering is given by the gradual ordering. 

16. End. 

Agents  *D1  (D4) *D2  (D2 ~ D3) *D3  (D1) 

Reorganized 
vectors 

j 
6 
5 
4 
3 
2 
1 

S 
16
13
10
7 
4 
1 

Elements
{a} 
{c} 
{b} 
{d} 
{e} 
{f} 

S 
17 
14 
11 
8 
5 
2 

Elements 
{b, c} 

{a, b, c} 
{a, d, e} 

{f} 
{d, e} 

{f} 

S
18
15
12
9 
6 
3

Elements 
{b} 
{a} 

{d, e} 
Null 
{f} 
{c} 
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The YA can be classified as an AND-ing type as for an alternative to be in a higher positions of the 

fused ordering, it should be in a higher position for any of the individual orderings (i.e., AND 

relationship). Reversing the perspective, a generic alternative is excluded from the higher positions 

of the fused ordering when it is in a lower position in (at least) one of the individual preference 

orderings. 

Applying the algorithm to the vectors in Tab. 2, the resulting fused ordering is a > b > d > e > c > f. 

Tab. 3 shows the gradual construction of the fused ordering; the first two columns report the S value 

of the element of interest and the alternative(s) that it contains, while the last two report the 

alternatives not yet included in the gradual ordering and the gradual ordering itself.  

Tab. 3. Step-by-step construction of the fused ordering when applying the YA to the example in Tab. 1. 

Step (S) Element Residual alternatives Gradual ordering 
0 - {a, b, c, d, e, f} Null 
1 {f} {a, b, c, d, e} f 
2 {f} {a, b, c, d, e} f 
3 {c} {a, b, d, e} c > f 
4 {e} {a, b, d} e > c > f 
5 {d, e} {a, b} d > e > c > f 
6 {f} {a, b} d > e > c > f 
4 {d} {a, b} d > e > c > f 
8 {f} {a, b} d > e > c > f 
9 Null {a, b} d > e > c > f 
10 {b} {a} b > d > e > c > f 
11 {a, d, e} Null a > b > d > e > c > f 

End - - - 

3. Ordered Paired-Comparisons Algorithm (OPCA)   

This section introduces the OPCA, supporting the description with a practical example. Sect. 3.1 

focuses on the input data admitted by this algorithm, while the remaining three subsections (i.e., 

Sects. 3.2 to 3.4) illustrate the three basic phases of this algorithm (see the scheme in Fig. 1): 

Fused ordering 

b > a > c > … 

Sets of paired comparisons 

D1: (b > a), (a ~ c), (b > c), … 

D2: (b > a), (c > a), (c > b), … 

Fused paired comparisons 

D3: (b > a), (a > c), (b > c), … 

D4: (a > b), (a > c), (b || c), … 

… 

 

 (b > a), (a > c), (b > c), … 

Agents Pref. orderings Agents’ rank-ordering 

D1 b > (a ~ c) > …

D2 c > b > a ~ … 

D3 b > a > c > … 

D4 a > (b || c) > …

… … 

  D4 > (D2 ~ D3) > D1 > … 

I N P U T    D A T A O U T P U T    D A T AI N T E R M E D I A T E    D A T A 

Construction of the sets 
of paired comparisons 

Synthesis of the sets of 
paired comparisons 

Construction of 
the fused ordering 

P H A S E S: 
 

Fig. 1. Characteristic phases of the OPCA. 

 Construction of the sets of paired comparisons; 

 Synthesis of the sets of paired comparisons; 

 Construction of the fused ordering. 

The second phase is the core of the algorithm and relies on an original aggregation process, in 

which the agents’ importance determines a priority sequence for synthesizing the sets of paired 

comparisons. 
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3.1 OPCA input data 

As explained in Sect. 2.1, the YA is applicable to linear orderings only, where no alternatives are 

omitted and any two alternatives are comparable. The authors believe that – to fit a relatively large 

amount of practical contexts – the general ordinal semi-democratic decision-making problem 

should admit orderings in which some alternatives are omitted and/or incomparable with each other. 

According to the Mathematics’ Order theory, such orderings are classified as partial [19] and can 

be diagrammed as graphs with branches, which determine different possible paths from the 

element(s) at the top to that one(s) at the bottom. If two alternatives are not comparable, there exists 

no direct path from the first to the second one (or viceversa). 

By admitting partial preference orderings, agents would not be forced to include dubious 

alternatives in their preference orderings or to make dubious comparisons. For the purpose of 

example, let us consider the preference orderings illustrated in Fig. 2; the alternatives in this 

fictitious decision-making problem are a, b, c, d, e and f, and the agents’ importance ordering is 

assumed to be D4 > (D2 ~ D3) > D1. It can be noticed that the partial ordering by agent D1 includes 

two possible paths (A and B); the alternatives positioned along path A (i.e., a, d, and e) are not 

comparable with that one positioned along path B (i.e., f). Also, orderings do not necessarily include 

all the alternatives; e.g., alternatives a and e are omitted by D2, while f is omitted by D4. 

Omitted alternatives 

Incomparable alternatives 

None 

(a, d and e) with f

(graphic form) 

Alternatives of interest {a, b, c, d, e, f}

path A 

path B 

Key: 

c 

b 

a 

d, e f 

d 

f 

c 

b 

None

{a, e}

{b, c, d, f}

Agent D1 D2 

partial Type of preference ordering 

D3 

b 

c, d, e 

a, f 

None 

None 

{a, b, c, d, e, f} 

linear linear 

a 

b 

c 

d 

e 

D4 

None

{f} 

{a, b, c, d, e}

linear 

c > b > {[a > (d ~ e)] || f} Ordering (analytic form) b > d > f > c (a ~f) > b > (c ~ d ~ e) a > b > c > d > e

 
Fig. 2. Graphical representation of the preference orderings by four fictitious agents (D1 to D4). The alternatives 
in the decision-making problem are a, b, c, d, e and f. The agents’ rank-ordering is assumed to be 
D4 > (D2 ~ D3) > D1. Symbols “>”, “~” and “||” respectively depict the strict preference, indifference and 
incomparability relationship. 
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3.2 Construction of the sets of paired comparisons 

At this stage, agents’ preference orderings are turned into corresponding sets of paired comparison 

relationships. Since the decision-making problem in Fig. 2 includes n = 6 alternatives, there will be 

156
2 C  total paired comparisons (see the first column in Tab. 4). For each paired comparison there 

are three possible relationships: “strict preference” (“>”), “indifference” (“~”) and “incomparability 

(“||”). 

The decision of using paired-comparison relationships is motivated by several reasons: 

1. They allow to express the preference between two alternatives in a natural and intuitive way; 

2. They represent a practical expedient for splitting the agents’ preference orderings into 

elementary elements (i.e., the paired-comparison relationships) and facilitating the comparison of 

the orderings. 

3. They can be derived from both linear or partial preference orderings. 

4. They could also be derived from agents’ judgements expressed in other forms (e.g., 

measurements/evaluations on ordinal/interval/ratio scales), as long as they admit relationships of 

ordering among the alternatives. 

Chen et al. [22] have recently suggested an algorithm that, similarly to the OPCA, uses paired 

comparisons for synthesising the preference orderings. This technique is not directly comparable to 

the OPCA as it requires the agents’ importance hierarchy to be defined by a set of weights and not 

by a (linear) rank-ordering. 

Tab. 4. Decomposition of the preference orderings from Fig. 2 into sets of paired-comparison relationships. 

Agent D1 D2 D3 D4 

Preference orderings c > b > {[a > (d ~ e)] || f} b > d > f > c (a ~f) > b > (c ~ d ~ e) a > b > c > d > e 
Alternatives of interest {a, b, c, d, e, f} {b, c, d, f} {a, b, c, d, e, f} {a, b, c, d, e} 

Omitted alternatives None {a, e} None {f} 

Incomparable alternatives (a, d and e) with f None None None 
     

P
ai

re
d-

co
m

pa
ri

so
n 

re
la

ti
on

sh
ip

s 

(a, b) b > a a || b a > b a > b
(a, c) c > a a || c a > c a > c
(a, d) a > d a || d a > d a > d
(a, e) a > e a || e a > e a > e
(a, f) a || f a || f a ~ f a || f
(b, c) c > b b > c b > c b > c
(b, d) b > d b > d b > d b > d
(b, e) b > e b || e b > e b > e
(b, f) b > f b > f f > b b || f
(c, d) c > d d > c c ~ d c > d
(c, e) c > e c || e c ~ e c > e
(c, f) c > f f > c f > c c || f
(d, e) d ~ e d || e d ~ e d > e
(d, f) d || f d > f f > d d || f
(e, f) e || f e || f f > e e || f

The symbols “>”, “~”, and “||” respectively stand for “strictly preferred to”, “indifferent to” and “incomparable to”. 

The agents’ importance ordering is D4 > (D2 ~ D3) > D1. 
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3.2 Synthesis of the sets of paired comparisons 

The goal of this phase is to synthesize the agents’ sets of paired comparisons into a single set of 

fused3 paired comparisons. The synthesis process is based on several steps. First, for a generic 

paired comparison, each agent assigns a vote to the alternatives, according to the scoring system in 

Tab. 5. The vote is assigned to the preferred alternative or, in the case alternatives are tied, it is split 

equally between them (i.e., 0.5 and 0.5). If two alternatives are incomparable for one agent, that 

agent will be excluded from voting. Among the possible scoring systems, the proposed one seems 

relatively natural and intuitive. 

Tab. 5. Possible paired-comparison relationships between two generic alternatives (a and b) and corresponding 
scores. 

Relationship Score assigned to the alternatives 
a b 

a > b a preferred to b 1 0
b > a b preferred to a 0 1
a ~ b a indifferent to b 0.5 0.5
a || b a incomparable to b N/A N/A

 

Next, for a generic paired comparison, the following parameters are determined:  

m  i.e., the number of voting agents, excluding those for which the two alternatives of interest are 

incomparable. Obviously, m will coincide with the total score given by the voting agents and it 

will be smaller than or equal to M. 

q  i.e., a quorum threshold. If m  q, the synthesis process is performed as explained later in this 

section; if m < q, the synthesis process is aborted, determining a fused paired-comparison 

relationship of incomparability (“||”). 

t  i.e., a preference threshold used in the synthesis process; later in this section we will explain 

how to determine suitable values of t. 

The use of q is for preventing dubious fused paired-comparison relationships, in situations where 

agents find it difficult to compare the two alternatives of interest. For example, regarding the paired 

comparison (a, f) or (e, f), one agent only (out of four) is able to compare these pairs of alternatives. 

In these situations, it seems reasonable that the synthesis results in an incomparability relationship, 

when m does not reach the threshold q. 

We conventionally set: 

q = M / 2, (1) 

although we are aware that this threshold may be varied depending on the required “degree of 

prudence”. 

Tab. 6(a) contains the vote assignment related to the paired comparisons in Tab. 4. 

                                                 
3 The adjective “fused” indicates that each paired-comparison relationship represents the fusion between the 
homologous paired-comparison relationships, obtained from the preference orderings. 
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Tab. 6. (a) Assignment of the scores to the paired-comparison relationships. (b) Process for synthesising the 
individual sets of paired comparisons into a single one. For each paired comparison, we report the turn-by-turn 
score and the corresponding cumulative score (labelled as “CUM”). 

Sets of paired-comparison relationships    

 D1 D2 D3 D4    

Turn 1 
(D4) 

Turn 2  
(D2 ~ D3) 

Turn 3  
(D1) 

m q t 
Fused paired 
comparisons

(a, b) b > a a || b a > b a > b  (a, b) a > b CUM a || b a > b CUM b > a CUM     
a 0 N/A 1 1  a 1 1 N/A 1 2 0 2 3 2 1.25 a > b
b 1 N/A 0 0  b 0 0 N/A 0 0 1 1    

(a, c) c > a a || c a > c a > c  (a, c) a > c CUM a || c a > c CUM c > a CUM    
a 0 N/A 1 1  a 1 1 N/A 1 2 0 2 3 2 1.25 a > c
c 1 N/A 0 0  c 0 0 N/A 0 0 1 1    

(a, d) a > d a || d a > d a > d  (a, d) a > d CUM a || d a > d CUM a > d CUM    
a 1 N/A 1 1  a 1 1 N/A 1 2 1 3 3 2 1.25 a > d
c 0 N/A 0 0  d 0 0 N/A 0 0 0 0    

(a, e) a > e a || e a > e a > e  (a, e) a > e CUM a || e a > e CUM a > e CUM    
a 1 N/A 1 1  a 1 1 N/A 1 2 1 3 3 2 1.25 a > e
e 0 N/A 0 0  e 0 0 N/A 0 0 0 0    

(a, f) a || f a || f a ~ f a || f  (a, f) a || f CUM a || f a ~ f CUM a || f CUM    
a N/A N/A 0.5 N/A  a N/A 0 N/A 0.5 0.5 N/A 0.5 1 2 0.75(*) a || f
f N/A N/A 0.5 N/A  f N/A 0 N/A 0.5 0.5 N/A 0.5    

(b, c) c > b b > c b > c b > c  (b, c) b > c CUM b > c b > c CUM c > b CUM    
b 0 1 1 1  b 1 1 1 1 3 0 3 4 2 1.5 b > c
c 1 0 0 0  c 0 0 0 0 0 1 1    

(b, d) b > d b > d b > d b > d  (b, d) b > d CUM b > d b > d CUM b > d CUM    
b 1 1 1 1  b 1 1 1 1 3 1 4 4 2 1.5 b > d
d 0 0 0 0  d 0 0 0 0 0 0 0    

(b, e) b > e b || e b > e b > e  (b, e) b > e CUM b || e b > e CUM b > e CUM    
b 1 N/A 1 1  b 1 1 N/A 1 2 1 3 3 2 1.25 b > e
e 0 N/A 0 0  e 0 0 N/A 0 0 0 0    

(b, f) b > f b > f f > b b || f  (b, f) b || f CUM b > f f > b CUM b > f CUM    
b 1 1 0 N/A  b N/A 0 1 0 1 1 2 3 2 1.25 b > f
f 0 0 1 N/A  f N/A 0 0 1 0 0 0    

(c, d) c > d d > c c ~ d c > d  (c, d) c > d CUM d > c c ~ d CUM c > d CUM    
c 1 0 0.5 1  c 1 1 0 0.5 1.5 1 2.5 4 2 1.5 c ~ d
d 0 1 0.5 0  d 0 0 1 0.5 1.5 0 1.5    

(c, e) c > e c || e c ~ e c > e  (c, e) c > e CUM c || e c ~ e CUM c > e CUM    
c 1 N/A 0.5 1  c 1 1 N/A 0.5 1.5 1 2.5 3 2 1.25 c > e
e 0 N/A 0.5 0  e 0 0 N/A 0.5 0.5 0 0.5    

(c, f) c > f f > c f > c c || f  (c, f) c || f CUM f > c f > c CUM c > f CUM    
c 1 0 0 N/A  c N/A 0 0 0 0 1 1 3 2 1.25 f > c
f 0 1 1 N/A  f N/A 0 1 1 2 0 2    

(d, e) d ~ e d || e d ~ e d > e  (d, e) d > e CUM d || e d ~ e CUM d ~ e CUM    
d 0.5 N/A 0.5 1  d 1 1 N/A 0.5 1.5 0.5 2 3 2 1.25 d > e
e 0.5 N/A 0.5 0  e 0 0 N/A 0.5 0.5 0.5 1    

(d, f) d || f d > f f > d d || f  (d, f) d || f CUM d > f f > d CUM d || f CUM    
d N/A 1 0 N/A  d N/A 0 1 0 1 N/A 1 2 2 1 d ~ f
f N/A 0 1 N/A  f N/A 0 0 1 1 N/A 1    

(e, f) e || f e || f f > e e || f  (e, f) e || f CUM e || f f > e CUM e || f CUM    
e N/A N/A 0 N/A  e N/A 0 N/A 0 0 N/A 0 1 2 0.75(*) e || f
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f N/A N/A 1 N/A  
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f N/A 0 N/A 1 1 N/A 1    
The agents’ importance ordering is D4 > (D2 ~ D3) > D1.   
The parameter m represents the number of agents formulating a paired-comparison relationships different from “||”; q is the quorum threshold, which is
determined by using Eq. 1; t is the preference threshold, which is conventionally set to the t* value, determined according to Eq. 2 (shown later in this section).
(*)  for the paired comparisons (a, f) and (e, f), the condition m  q is not satisfied, therefore the result of the synthesis process is an incomparability relationship 

(“||”). 

(a)  (b)

 

 

Agents’ votes are reorganized according to two criteria: (i) agents are sorted decreasingly with 

respect to their importance rank-ordering, and (ii) for equi-important agents (such as D2 e D3, in the 

example in Fig. 2), the corresponding scores are aggregated. Tab. 6(b) contains the reorganized 

votes related to the paired comparisons in Tab. 4. 

In the case m  q, i.e., when the quorum threshold is reached, the synthesis process is performed as 

follows. For each paired comparison (a, b), the agents’ votes are examined gradually, proceeding in 

descending order with respect to their relative importance. If two (or more) agents have indifferent 

importance, their votes are examined in the same turn (e.g., the votes by D2 and D3 are both 

examined in Turn 2, see Tab. 6(b)). Of course, the total number of turns will be smaller than or 
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equal to the number (M) of agents (3 against 4 in the example presented). Simplifying, the synthesis 

process establishes that the first alternative whose cumulative score (“CUM”) reaches a preference 

threshold t (that we will focus on later) is the preferred one. The following pseudo-code illustrates 

the synthesis of the agents’ paired comparisons into a fused one: 

1. Initialise the cumulative scores of a and b (CUM(a) and CUM(b) respectively) to 0. 

2. If m < q (quorum is not reached), then: 

3. The resulting fused paired comparison is a || b 

4. Else If m  q (quorum is reached), then: 

5. Set the value of the preference threshold t. 

6. For each (i-th) turn: 

7.  CUM(a) = CUM(a) + the score of a in that turn. 

8.  CUM(b) = CUM(b) + the score of b in that turn. 

9.  If CUM(a) ≥ t OR CUM(b) ≥ t, then: 

10. Exit For. 

11. End If. 

12. End For. 

13. If CUM(a) ≥ t AND CUM(b) < t, then: 

14. The resulting fused paired comparison is a > b. 

15. Else If CUM(a) < t AND CUM(b) ≥ t, then: 

16. The resulting fused paired comparison is b > a. 

17. Else If CUM(a) ≥ t AND CUM(b) ≥ t, then: 

18. If CUM(a) = CUM(b), then: 

19. The resulting fused paired comparison is a ~ b. 

20.  Else If CUM(a) > CUM(b), then: 

21. The resulting fused paired comparison is a > b. 

22. Else If CUM(a) < CUM(b), then: 

23. The resulting fused paired comparison is b > a. 

24. End If. 

25. Else If CUM(a) < t AND CUM(b) < t, then: 

26. The resulting fused paired comparison is a || b. 

27. End If. 

28. End If. 

29. End. 

More precisely, the fused paired comparison may consists of three possible relationships: 

1. Indifference. It occurs when both the alternatives reach t at the same turn and, until that turn, 

they have had the same score. For example, considering the paired comparison (c, d) in the 

example in Tab. 6, the resulting relationship is c ~ d, since the two alternatives both reach 

t (i.e., 1.5) in turn 2 and have the same cumulative score at that moment.  
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2. Strict preference of one alternative with respect to the other one (i.e., a > b or b > a). It occurs 

when (i) one alternative reaches t in a certain turn while the other one not, or (ii) both the 

alternatives reach t in a certain turn (and possibly exceed it), but the cumulative score (“CUM”) 

until that turn is higher for one alternative (i.e., the preferred one) with respect to the other one. 

For example, considering the paired comparison (a, b) in the example in Tab. 6, the resulting 

relationship is a > b, since the alternative a reaches t in turn 2, whilst b not. 

3. Incomparability (a || b). It can occur in two different cases: (i) when m < q (i.e., when the 

quorum threshold is not reached by the number of agents involved in the synthesis process, i.e., 

those formulating paired-comparison relationships different from “||”) and (ii) when m  q but 

none of the two alternatives reaches t, even though all agents have assigned their vote. The latter 

situation can occur when using relatively high values of t. 

In the proposed synthesis approach, the different “voting power” of agents determines a different 

priority order when expressing their (unitary) vote. This is the most important difference with 

respect to other approaches in which the agent vote is weighted and there is no priority order when 

voting [3, 12, 13, 14]. 

Let us now focus the attention on the rationale for choosing a suitable t value. As a first 

consideration, when m/2 < t ≤ m, the result of the synthesis is not affected by the agents’ voting 

order. In other words, when  m,mt 2 , the criterion for selecting one alternative over another – 

in a generic paired comparison (a, b) – degenerates into that of the majority, regardless of the 

agents’ voting order. For instance, if a has a total score larger than or equal to t, the synthesis will 

certainly result in a > b, since there will be no voting sequence for which b can reach t before a. Let 

us consider the example in Tab. 7, in which the votes by four agents should be synthesized into a 

fused paired comparison (a, b). Three of all the possible agents’ rank-orderings are considered. 

When  422  m,mt , the result of the synthesis does not depend on the voting sequence (it is 

always a || b in this case). For this reason,  m,m 2  can be classified as range of no-voting-order-

effect (see Fig. 3).  

Tab. 7. Example of synthesis of paired-comparison judgements by four agents. The synthesis result is calculated 
by varying the agents’ rank-ordering and the t value.  

 Paired-comparison relationships  Fused paired comparison 
 D1 D2 D3 D4  

Agents’ rank 
orderings t = 1 1 < t ≤ m/2 m/2 < t ≤ m 

(a, b) a > b b > a b > a a > b  1:  D1 > D2 > D3 > D4 a > b b > a a || b 
a 1 0 0 1  2:  D3 > D2 > D1 > D4 b > a b > a a || b 
b 0 1 1 0  3: (D1 ~ D3) > D4 > D2 a ~ b a > b a || b 

 4:  D1 ~ D2 ~ D3 ~ D4 a ~ b a ~ b a || b
      N:  … ? ? a || b 

     In this case, M = 4.    

We remark that, as t increases within this range, the required level of agreement between agents 

increases. The extreme case is t = m, corresponding to a unanimity situation where the fused paired 
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comparison will always result into an incomparability relationship, except when all the m agents 

involved share the same preference or indifference relationship. 

On the other hand, in the case 1 ≤ t ≤ m/2, the voting order of agents may affect the result of the 

synthesis process. For the purpose of example, Tab. 7 shows that, when t = 1 or 1 < t ≤ m/2, results 

may change depending on the voting order. Since the agents’ voting order may affect the result of 

the synthesis,  21 m,  may be denominated as range of voting-order-effect. There are two extreme 

cases: (i) t = 1, which denotes the dictatorship situation, in which the fused paired comparison 

coincides with that of the most important agent, and (ii) t = m/2, which denotes the borderline 

situation with respect to the no-voting-order-effect range. 

1 m/2 m 0 … 2 

Voting-order-effect  
(1 < t ≤ m/2) 

No-voting-order-effect 
 (m/2 < t ≤ m) 

borderline 
situation 

dictatorship unanimity t* 

 m,t 1

 
Fig. 3. Schematic subdivision of the range of variability of the t threshold. The parameter m depicts the number 
of agents involved in the synthesis process. 

Based on the previous considerations, a reasonable value of t can be that in the middle of the voting-

order-effect range (see the representation in Fig. 3, where it is denoted by a star), i.e.: 

2

21 m
tt * 
 . (2) 

The t* value is purely conventional and a different value – as long as included in the voting-order-

effect range – could lead to slightly different synthesis results. The t values reported in the semi-last 

column of Tab. 6(b) are obtained applying Eq. 2; the last column contains the resulting fused 

paired-comparison relationships.  

3.3 Construction of the fused ordering 

This stage aims at summarizing the set of fused paired-comparison relationships into a fused 

ordering. This problem is not new in the scientific literature and a variety of techniques have been 

proposed over the years. The oldest technique is probably that by Condorcet [9, 11, 23], while in 

recent decades several approaches based on the concept of “graph kernel” (borrowed from graph 

theory) have gained a certain popularity [3, 24]. 

Without going into the pros and cons of the different techniques, we suggest to use the so-called 

“Paired Comparison Chart” (PCC) by Dym et al. [25]. Despite some limitations, this technique is 

relatively simple and effective.  

Let us briefly illustrate it, considering the set of fused paired comparisons resulting from Tab. 6(b). 

Comparisons are reported in a matrix, as illustrated in Tab. 8. For a generic paired comparison, we 
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assign a score to the alternatives according to the same scoring system in Tab. 5: in the case of strict 

preference, the preferred alternative earns one point; in the case of indifference, the point is divided 

equally between the two alternatives (i.e., 0.5 and 0.5), while in the case of incomparability, it is not 

assigned to any alternative (and the field is conventionally filled with “N/A”). 

Next, the sum of the scores of each alternative is determined (“” in Tab. 8). In the classical PCC 

procedure – which does not admit incomparability relationships between alternatives – the most 

preferred alternatives are those with higher  values. However, the use of values would penalize 

alternatives that cannot be compared to some others. For example, the alternatives a and b in Tab. 8 

have the same value; however, while a is preferred to the totality of the alternatives (except f, due 

to the incomparability relationship a || f), b loses the comparison with a. 

This distortion can be avoided by  normalizing the values, dividing them by the relevant Cvalues, 

i.e., the numbers of “usable” paired comparisons for which the alternatives of interest do not result 

in any incomparability relationship. For example, in Tab. 8 the alternative f has C = 3, since it is 

only comparable to b, c and d. By changing the perspective, the C value represents the maximum 

score achievable by a certain alternative, considering the usable paired comparisons. 

Having said that, the most preferred alternatives are those with a higher “/C” score (see the 

column labelled with “/C” in Tab. 8). In the case exemplified in Tab. 8, the fused ordering is 

a > b > f > d > c > e. 

Tab. 8. Example of Paired Comparison Chart related to the fused paired comparisons in the last column of Tab. 
6(b). The fused ordering is constructed according to the normalized score (in the column labelled with “/C”). 

 a b c d e f   C /C 
a - 1 1 1 1 N/A  4 4 1  
b 0 - 1 1 1 1  4 5 0.8 Resulting fused ordering: 
c 0 0 - 0.5 1 0  1.5 5 0.3 a(1) > b(0.8) > f(0.5) > d(0.4) > c(0.3) > e(0) 
d 0 0 0.5 - 1 0.5  2 5 0.4  
e 0 0 0 0 - N/A  0 4 0  
f N/A 0 1 0.5 N/A -  1.5 3 0.5  

 is the total score of each alternative; C is the number of paired comparisons usable for determining the total score of each alternative. 

 

A “prudence threshold” (Q) can be introduced to prevent the alternatives which are difficult to 

compare with other ones from being dubiously included in the fused ordering: when the C value of 

one alternative does not reach Q, the alternative is excluded from the fused ordering. The threshold 

Q can be conventionally set to Q = n/2, n being the total number of alternatives of the decision-

making problem. According to this convention, alternatives that are not comparable with (at least) 

the majority of the remaining ones (i.e., alternatives for which C < Q) are preventively excluded 

from the fused ordering. In the example in Tab. 8, all the alternatives meet the minimum 

requirement C  Q = 3 (since n = 6), therefore it is not necessary to exclude any alternative. 

A particular feature of the PCC technique is that it always returns a fused ordering, also when the 

fused paired comparisons do not satisfy the property of transitivity [9]. On the other hand, it can be 
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demonstrated that this technique may violate the Arrow’s axiom of independence of irrelevant 

alternatives [8]; however, Dym et al. [25] showed that the negative consequences of this feature are 

not crucial. For specific situations, other more sophisticated techniques can be used to obtain a 

fused ordering [3]. 

4. Structured comparison between YA and OPCA 

This section presents a structured comparison of the YA and the OPCA, from two perspectives: that 

of the three ad hoc4 criteria of consistency, efficiency and versatility, and that of some popular 

axioms borrowed from social choice theory [8]; a short description is presented in Tab. 9. 

Tab. 9. Ad hoc criteria and social choice theory axioms for comparing the YA and the OPCA. 

Perspective Description 

(a
) 
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Consistency The fused ordering should reflect the preference orderings for the majority of agents, especially the 
most important ones. A practical way to check this is to observe the “compatibility”, at the level of 
individual paired comparisons, between the fused ordering and the agents’ preference orderings. We 
say that a relationship in the fused ordering is consistent if it holds in the majority of the agents’ 
preference orderings. 

Efficiency Algorithm’s ability to use the information contained in the individual preference orderings. For 
instance, an algorithm that focuses on the lower part of the preference orderings only, or one that 
ignores the preference orderings of certain agents, cannot be considered as very efficient. 

Versatility The versatility criterion can be related to two different aspects: (i) the algorithm’s ability to adapt to a 
variety of input data and (ii) the ability to adapt to a democratic case, i.e., when all agents are equi-
important. Both these peculiarities make one algorithm potentially applicable to a great amount of 
practical contexts. 
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 Idempotency If all of the preference vectors are the same, the resulting fused ordering is this one. 
Monotonicity If any agent modifies his or her preference ordering by promoting a certain alternative, then the fused 

ordering should respond only by promoting that same alternative or not changing, never by placing it 
lower than before. 

Non-dictatorship The algorithm should account for the wishes of multiple agents. It cannot simply mimic the 
preference ordering of a single agent (dictator). 

Unrestricted domain or 
universality 

For any set of individual agent preference orderings, the algorithm should yield a unique and 
complete ranking of the alternatives. 

Independence of 
irrelevant alternatives 

The preference between x and y should depend only on the individual preferences between x and y. In 
other words, if one alternative is removed, then the algorithm should still create the same ordering of 
the remaining alternatives.  

Non-imposition or 
citizen sovereignty 

Every ranking of the alternatives should be possible as outcome. 

Pareto-efficiency If every voter prefers a certain alternative over another, then the fused ordering must prefer this 
alternative over the other too. 

 

Considering the consistency criterion, the YA is somehow weak, as noted by Wang [20] and 

Franceschini et al. [21]. This aspect is evident when analysing the YA’s results to the decision-

making problem in Tab. 1: the paired-comparison relationships from the fused ordering and those 

from the individual preference orderings have several inconsistencies; e.g., for agents D2, D3 and D4 

(which represents the majority and, by the way, are all more important than D1), c > d and c > e, 

while these relationships are reversed in the fused ordering. Among the fifteen overall paired 

comparisons, four – i.e., more than 25%! – look inconsistent or dubious (see Tab. 10). These 

                                                 
4 The adjective “ad hoc” indicates that these criteria were specifically defined for (i) facilitating the comparison 
between the YA and the OPCA, and (ii) highlighting the advantages of the latter algorithm  with respect to the former 
one. 
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inconsistencies are due to the YA’s logic of selection of the alternatives, which is rather drastic as 

the occurrence of one alternative in a low position – even for a single preference ordering – can 

determine a very low position in the fused ordering. E.g., in the example in Tab. 1, c is in the 

penultimate position of the fused ordering as it was relegated by D1 at the bottom of the preference 

ordering. 

Applying the OPCA to the same decision-making problem in Tab. 1, we obtain a fused ordering 

(i.e., c > b > a > d > e > f), which is significantly better than that one produced by the YA, since all 

the paired comparisons – except one – seem consistent (see Tab. 10). This is not an isolated 

coincidence, but depends on the fact that the phase two of the OPCA tends to maximize the 

consistency between the fused ordering and the preference orderings. Also, the OPCA’s fused 

ordering seems more reasonable than the YA’s, since c makes up four positions, consistently with 

its relatively high rank position in the majority of the agents’ preference orderings. Tab. A.1 and 

Tab A.1 (in appendix) respectively illustrate the construction of the fused paired comparisons and 

the corresponding PCC. 

Tab. 10. Comparison between the YA and the OPCA in terms of consistency between the agents’ preference 
orderings and the fused ordering, at the level of paired comparisons. This comparison is based on the YA’s and 
OPCA’s results to the decision-making problem in Tab. 1. 

Paired 
comparison 

Relationship in the preference orderings Relationship in the fused 
ordering 

D4 D2 D3 D1 YA OPCA 
(a, b) a > b b > a b > a b > a a > b b > a 
(a, c) a > c c > a a ~ c a > c a > c c > a 
(a, d) a > d a ~ d a > d a > d a > d a > d 
(a, e) a > e a ~ e a > e a > e a > e a > e 
(a, f) a > f a > f a > f a > f a > f a > f 
(b, c) c > b c > b b > c b > c b > c c > b 
(b, d) b > d b > d b > d b > d b > d b > d 
(b, e) b > e b > e b > e b > e b > e b > e 
(b, f) b > f b > f b > f b > f b > f b > f 
(c, d) c > d c > d c > d d > c d > c c > d 
(c, e) c > e c > e c > e e > c e > c c > e 
(c, f) c > f c > f c > f f > c c > f c > f 
(d, e) d > e d ~ e d ~ e d ~ e d > e d > e 
(d, f) d > f d > f f > d d > f d > f d > f 
(e, f) e > f e > f f > e e > f e > f e > f 

The fused orderings obtained by the YA and OPCA are respectively a>b>d>e>c>f and c>b>a>d>e>f. 
The cells highlighted in grey depict  the inconsistent or dubious results. 

 

For the purpose of further example, let us analyse the consistency of the OPCA’s solution to the 

decision-making problem exemplified in Fig. 2. The fused ordering seems to reflect the agents’ 

(partial and linear) preference orderings quite well, since almost the totality of the paired-

comparison relationships are consistent (see Tab. A.3, in appendix). 

Considering the efficiency criterion, the YA does not performs very well since it tends to overlook 

the upper positions of the preference orderings; e.g., in the example proposed in Tab. 1 the fused 

ordering is determined after having read just eleven out of eighteen total elements; in particular, the 

two top levels of the preference vectors have been totally ignored (see Tab. 3). 
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The OPCA is significantly more efficient in this sense, since the fused ordering is determined 

considering the totality of the elements in the preference orderings, not only those in the lower 

positions. 

The versatility criterion can be analyzed from the following two angles: (i) the ability to adapt to a 

variety of input data and (ii) the ability to adapt to a democratic case. Regarding the first aspect, the 

YA is applicable to linear preference orderings only, while the OPCA is significantly more 

versatile, since it admits partial preference orderings, with omitted and/or incomparable 

alternatives. Regarding the second aspect, it can be shown that the YA may lose its effectiveness in 

the case of democracy. For example, let us assume that all the four preference orderings in Tab. 1 
are equi-important. The individual orderings would be merged into a single reorganized vector (in 

Tab. A.4(a), in appendix) and the reading sequence of the vector elements would be trivial: i.e., 

from the bottom to the top. The resulting fused ordering would be (a ~ b) > (d ~ e) > (c ~ f), which 

lacks in discrimination power, since it contains nothing less than three relationships of indifference 

(for six total alternatives); see the step-by-step construction in Tab. A.4(b) (in appendix). 

As regards the OPCA, in the case of democracy the equi-important agents would express their vote 

in a single turn. Tab. A.5 (in appendix) reports the synthesis process and the resulting fused paired 

comparisons when using t = t* = 1.5 (since m =  4 for each paired comparison). Next, the set of 

fused paired comparisons is turned into a fused ordering, through the PCC method (see the matrix 

in Tab. A.5(b), in appendix). The resulting fused ordering would be b > a > c > d > e > f, which 

seems to have an acceptable discrimination power (i.e., it contains no indifference relationships). 

Tab. 11 presents a concise comparison between the YA and the OPCA, from the point of view of 

the three ad hoc criteria examined so far and some popular axioms from the social choice theory, 

showing whether they are met (or not) by the YA and the OPCA. The mathematical proof is left to 

the reader. Despite their substantial differences, the two algorithms meet the same axioms. 

5. Conclusions 

This paper presented the OPCA, a new algorithm for aggregating preference orderings into a fused 

one. Similarly to the YA, the OPCA can be applied to specific problems in which the agents’ 

importance is expressed in the form of a rank-ordering. The OPCA has three main advantages with 

respect to the YA: (i) it is more consistent, since the fused ordering better reflects the multi-agent 

preference orderings, (ii) it is more efficient in using the information available, and (iii) it is more 

versatile, since it admits partial preference orderings (with omitted and/or incomparable 

alternatives) and can be applied effectively even when agents are equi-important. Also, it is intuitive 

and easily automatable. 

Tab. 11. Concise comparison between the YA and the OPCA, on the basis of (a) the ad hoc criteria and (b) the 
axioms from social choice theory, illustrated in Tab. 9. The symbols “” and “”respectively indicate the axioms 
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satisfied or not by the two algorithms. 

Criterion YA OPCA 
(a
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Consistency Limited, due to the (rather drastic) mechanism for 
selecting the alternatives in the fused ordering. 

Good, thanks to the new logic, which is based on 
paired-comparison data derived from the 
preference orderings. 

Efficiency Limited, as the fused ordering is determined after 
having read a relatively small portion of the 
vector elements, overlooking the upper positions. 

Good, since the OPCA better uses the information 
contained in the preference orderings. 

Versatility Limited, as (i) it admits linear preference 
orderings only and (ii) it does not perform well in 
the case of equi-important agents. 

Good, as (i) it admits partial preference orderings, 
with omitted and/or incomparable alternatives, 
and (ii) it performs quite well even in the case of 
equi-importance agents. 
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Idempotency  (*) 
Monotonicity   
Non-dictatorship   

Unrestricted domain 
or universality   

Independence of 
irrelevant alternatives   

Non-imposition or 
citizen sovereignty   

Pareto-efficiency   
(*) Since the fused ordering is linear, the idempotency axiom is satisfied in the case agents’ preference orderings are linear. 

 
 

The most original part of the OPCA is the aggregation of the agents’ sets of paired comparisons into 

a single one. Contrary to other approaches, in this stage, the different “voting power” of agents 

determines a different voting priority, and not a different weight of the vote. 

The choice of the t value makes it possible to switch with a continuity from the situation of 

dictatorship (when t = 1) to that of democracy (when t > m/2). For synthesising the set of fused 

paired comparisons into a fused ordering, we suggested to use the PCC method because of its 

simplicity and effectiveness [25]. The fact remains that it can be replaced by more sophisticated 

approaches from the existing literature. 

Future research go in two directions: (i) sensitivity analysis of the robustness of the OPCA with 

respect to small variations in the preference orderings and/or in the t, q and Q thresholds, (ii) 

application of the algorithm to various decision-making frameworks. 
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Appendix  

See the following tables. 

Tab. A.1. Application of the OPCA to the decision-making problem in Tab. 1: (a) decomposition of the 
preference orderings in Tab. 1 into sets of paired-comparison relationships and assignment of the scores to the 
alternatives; (b) process for synthesising the individual sets of paired comparisons into a single one. For each 
paired comparison, we report the turn-by-turn score and the corresponding cumulative score (labelled as 
“CUM”); in this example, the threshold t was conventionally set to t = t* = 1.5, since m = 4 for each paired 
comparison. 

Sets of paired-comparison 
relationships 

   

 D1 D2 D3 D4   

Turn 1 
 

(D4) 

Turn 2  
 

(D2 ~ D3) 

Turn 3  
 

(D1) 

Fused paired 
comparisons  

(t* = 1.5) 
(a, b) b > a b > a b > a a > b  (a, b) a > b CUM b > a b > a CUM b > a CUM  

a 0 0 0 1  a 1 1 0 0 1 0 1 b > a
b 1 1 1 0  b 0 0 1 1 2 1 3 

(a, c) a > c c > a a ~ c a > c  (a, c) a > c CUM c > a a ~ c CUM a > c CUM 
a 1 0 0.5 1  a 1 1 0 0.5 1.5 1 2.5 a ~ c
c 0 1 0.5 0  c 0 0 1 0.5 1.5 0 1.5 

(a, d) a > d a ~ d a > d a > d  (a, d) a > d CUM a ~ d a > d CUM a > d CUM 
a 1 0.5 1 1  a 1 1 0.5 1 2.5 1 3.5 a > d
d 0 0.5 0 0  d 0 0 0.5 0 0.5 0 0.5 

(a, e) a > e a ~ e a > e a > e  (a, e) a > e CUM a ~ e a > e CUM a > e CUM 
a 1 0.5 1 1  a 1 1 0.5 1 2.5 1 3.5 a > e
e 0 0.5 0 0  e 0 0 0.5 0 0.5 0 0.5 

(a, f) a > f a > f a > f a > f  (a, f) a > f CUM a > f a > f CUM a > f CUM 
a 1 1 1 1  a 1 1 1 1 3 1 4 a > f
f 0 0 0 0  f 0 0 0 0 0 0 0 

(b, c) b > c c > b b > c c > b  (b, c) c > b CUM c > b b > c CUM b > c CUM 
b 1 0 1 0  b 0 0 0 1 1 1 2 c > b
c 0 1 0 1  c 1 1 1 0 2 0 2 

(b, d) b > d b > d b > d b > d  (b, d) b > d CUM b > d b > d CUM b > d CUM 
b 1 1 1 1  b 1 1 1 1 3 1 4 b > d
d 0 0 0 0  d 0 0 0 0 0 0 0 

(b, e) b > e b > e b > e b > e  (b, e) b > e CUM b > e b > e CUM b > e CUM 
b 1 1 1 1  b 1 1 1 1 3 1 4 b > e
e 0 0 0 0  e 0 0 0 0 0 0 0 

(b, f) b > f b > f b > f b > f  (b, f) b > f CUM b > f b > f CUM b > f CUM 
b 1 1 1 1  b 1 1 1 1 3 1 4 b > f
f 0 0 0 0  f 0 0 0 0 0 0 0 

(c, d) d > c c > d c > d c > d  (c, d) c > d CUM c > d c > d CUM d > c CUM 
c 0 1 1 1  c 1 1 1 1 3 0 3 c > d
d 1 0 0 0  d 0 0 0 0 0 1 1 

(c, e) e > c c > e c > e c > e  (c, e) c > e CUM c > e c > e CUM e > c CUM 
c 0 1 1 1  c 1 1 1 1 3 0 3 c > e
e 1 0 0 0  e 0 0 0 0 0 1 1 

(c, f) f > c c > f c > f c > f  (c, f) c > f CUM c > f c > f CUM f > c CUM 
c 0 1 1 1  c 1 1 1 1 3 0 3 c > f
f 1 0 0 0  f 0 0 0 0 0 1 1 

(d, e) d ~ e d ~ e d ~ e d > e  (d, e) d > e CUM d ~ e d ~ e CUM d ~ e CUM 
d 0.5 0.5 0.5 1  d 1 1 0.5 0.5 2 0.5 2.5 d > e
e 0.5 0.5 0.5 0  e 0 0 0.5 0.5 1 0.5 1.5 

(d, f) d > f d > f f > d d > f  (d, f) d > f CUM d > f f > d CUM d > f CUM 
d 1 1 0 1  d 1 1 1 0 2 1 3 d > f
f 0 0 1 0  f 0 0 0 1 1 0 1 

(e, f) e > f e > f f > e e > f  (e, f) e > f CUM e > f f > e CUM e > f CUM 
e 1 1 0 1  e 1 1 1 0 2 1 3 e > f
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f 0 0 1 0  
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f 0 0 0 1 1 0 1 
The agents’ importance ordering is D4 > (D2 ~ D3) > D1. 

(a) (b)
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Tab. A.2. Paired Comparison Chart related to the set of fused paired comparisons resulting from Tab. A.1(b). A 
fused ordering is constructed based on the total score earned by alternatives (in the column labelled with “”). 
The values do not need to be normalized, because of the lack of relationships of incomparability between the 
alternatives. 

 a b c d e f  
a - 0 0.5 1 1 1 3.5  
b 1 - 0 1 1 1 4 Resulting fused ordering: 
c 0.5 1 - 1 1 1 4.5 c(4.5) > b(4) > a(3.5) > d(2) > e(1) > f(0.5) 
d 0 0 0 - 1 1 2  
e 0 0 0 0 - 1 1  
f 0.5 0 0 0 0 - 0.5  

 

 

Tab. A.3. Consistency analysis of the OPCA’s solution to the decision-making problem in Fig. 2.  The 
compatibility of the fused ordering with the agents’ preference orderings is evaluated at the level of 
paired-comparison relationships. 

Paired 
comparison 

Relationship in the preference orderings Relationship in 
the fused ordering D4 D2 D3 D1

a, b a > b a || b a > b b > a a > b 
a, c a > c a || c a > c c > a a > c 
a, d a > d a || d a > d a > d a > d 
a, e a > e a || e a > e a > e a > e 
a, f a || f a || f a ~ f a || f a || f 
b, c b > c b > c b > c c > b b > c 
b, d b > d b > d b > d b > d b > d 
b, e b > e b || e b > e b > e b > e 
b, f b || f b > f f > b b > f b > f 
c, d c > d d > c c ~ d c > d c ~ d 
c, e c > e c || e c ~ e c > e c > e 
c, f c || f f > c f > c c > f f > c 
d, e d > e d || e d ~ e d ~ e d > e 
d, f d || f d > f f > d d || f d ~ f 
e, f e || f e || f f > e e || f e || f 

The fused orderings obtained by the OPCA is a>b>f>d>c>e.  
The cells highlighted in grey depict dubious paired-comparison relationships from the fused 
ordering. 

 

 
 
Tab. A.4. Application of the YA to the four preference orderings in Tab. 1, assuming that agents are equi-
important (i.e., D1 ~ D2 ~ D3 ~ D4): (a) single reorganized vector; (b) step-by-step construction of the fused 
ordering. 

*D1  (D1 ~D2~D3~D4) 
j S Elements 
6 6 {a, (2)b, c, f} 
5 5 {(2)a, b, (2)c} 
4 4 {a, b, (2)d, (2)e} 
3 3 {d, f} 
2 2 {d, (2)e, f} 
1 1 {c, (2)f} 

Step (S) Element Residual alternatives Gradual ordering
0 - {a, b, c, d, e, f} Null 

1 {c, (2)f} {a, b, d, e} c ~ f 
2 {d, (2)e, f} {a, b} (d ~ e) > (c ~ f) 
3 {d, f} {a, b} (d ~ e) > (c ~ f) 
4 {a, b, (2)d, (2)e} Null (a ~ b) > (d ~ e) > (c ~ f) 

End - - - 

(a) (b)
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Tab. A.5. Application of the OPCA to the four preference orderings in Tab. 1, assuming that agents are equi-
important (i.e., D1 ~ D2 ~ D3 ~ D4): (a) process for synthesising the sets of paired comparisons into a set of fused 
paired comparisons (t was conventionally set to t* = 1.5, since m = 4 for each paired comparison); (b) Paired 
Comparison Chart related to the set of fused paired comparisons. 

 

 

Turn 1  
 

(D1 ~D2~D3~D4) 

Fused paired 
comparisons 

(t* = 1.5) 
(a, b) a > b b > a b > a b > a  

a 1 0 0 0 b > a
b 0 1 1 1 

(a, c) a > c c > a a ~ c a > c 
a 1 0 0.5 1 a > c
c 0 1 0.5 0 

(a, d) a > d a ~ d a > d a > d 
a 1 0.5 1 1 a > d
c 0 0.5 0 0 

(a, e) a > e a ~ e a > e a > e 
a 1 0.5 1 1 a > e
e 0 0.5 0 0 

(a, f) a > f a > f a > f a > f 
a 1 1 1 1 a > f
f 0 0 0 0 

(b, c) c > b c > b b > c b > c 
b 0 0 1 1 b ~ c
c 1 1 0 0 

(b, d) b > d b > d b > d b > d 
b 1 1 1 1 b > d
d 0 0 0 0 

(b, e) b > e b > e b > e b > e 
b 1 1 1 1 b > e
e 0 0 0 0 

(b, f) b > f b > f b > f b > f 
b 1 1 1 1 b > f
f 0 0 0 0 

(c, d) c > d c > d c > d d > c 
c 1 1 1 0 c > d
d 0 0 0 1 

(c, e) c > e c > e c > e e > c 
c 1 1 1 0 c > e
e 0 0 0 1 

(c, f) c > f c > f c > f f > c 
c 1 1 1 0 c > f
f 0 0 0 1 

(d, e) d > e d ~ e d ~ e d ~ e 
d 1 0.5 0.5 0.5 d > e
e 0 0.5 0.5 0.5 

(d, f d > f d > f f > d d > f 
d 1 1 0 1 d > f
f 0 0 1 0 

(e, f) e > f e > f f > e e > f 
e 1 1 0 1 e > f
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f 0 0 1 0 

 a b c d e f 
a - 0 1 1 1 1 4 
b 1 - 0.5 1 1 1 4.5 
c 0 0.5 - 1 1 1 3.5 
d 0 0 0 - 1 1 2 
e 0 0 0 0 - 1 1 
f 0 0 0 0 0 - 0 

Fused ordering: 
b(4.5)>a(4)>c(3.5)>d(2)>e(1)>f(0) 

 

(a) 

(b) 

 

 


