
08 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

The Cost of the "S" in HTTPS / David, Naylor; Finamore, Alessandro; Ilias, Leontiadis; Yan, Grunenberger; Mellia,
Marco; Munafo', MAURIZIO MATTEO; Konstantina, Papagiannaki; Peter, Steenkiste. - STAMPA. - (2014), pp. 133-140.
((Intervento presentato al convegno Proceedings of the 10th ACM International on Conference on emerging Networking
Experiments and Technologies - CoNEXT '14 tenutosi a Sidney, Australia nel December 2014
[10.1145/2674005.2674991].

Original

The Cost of the "S" in HTTPS

Publisher:

Published
DOI:10.1145/2674005.2674991

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2602580 since:

ACM

The Cost of the “S” in HTTPS

David Naylor?, Alessandro Finamore†, Ilias Leontiadis‡, Yan Grunenberger‡,
Marco Mellia†, Maurizio Munafò†, Konstantina Papagiannaki‡, and Peter Steenkiste?

?Carnegie Mellon University †Politecnico di Torino ‡Telefónica Research

{dnaylor, prs}@cs.cmu.edu {finamore, mellia, munafo}@tlc.polito.it
{ilias, yan, dina}@tid.es

ABSTRACT
Increased user concern over security and privacy on the In-
ternet has led to widespread adoption of HTTPS, the secure
version of HTTP. HTTPS authenticates the communicating
end points and provides confidentiality for the ensuing com-
munication. However, as with any security solution, it does
not come for free. HTTPS may introduce overhead in terms
of infrastructure costs, communication latency, data usage,
and energy consumption. Moreover, given the opaqueness of
the encrypted communication, any in-network value added
services requiring visibility into application layer content,
such as caches and virus scanners, become ineffective.

This paper attempts to shed some light on these costs.
First, taking advantage of datasets collected from large ISPs,
we examine the accelerating adoption of HTTPS over the
last three years. Second, we quantify the direct and indi-
rect costs of this evolution. Our results show that, indeed,
security does not come for free. This work thus aims to
stimulate discussion on technologies that can mitigate the
costs of HTTPS while still protecting the user’s privacy.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

Keywords
HTTP 2.0; HTTPS; TLS; privacy; security; Web proxies

1. INTRODUCTION
The HyperText Transfer Protocol (HTTP) was first in-

troduced in the early ’90s. Since then, the Internet has
changed significantly, becoming a vital infrastructure for
communication, commerce, education, and information ac-
cess. HTTPS, the secure version of HTTP, runs HTTP on
top of SSL/TLS[1]. While originally geared toward services
that require data confidentiality or authentication between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CoNEXT ’14, December 02–05, 2014, Sydney, Australia.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Handshake

Certificate
Validation

Cryptography

?

Confidentiality
Authenticity

End-to-End

No Caching
No Compression
No Content Opt.
No Filtering

TLS Effects Costs

In-Network
Page Load Time

Data Usage

Battery Life

Loss of value
added services

Infrastructure
maintenance

Figure 1: The HTTPS adoption impact chain.

client and server, like online banking or e-commerce, the in-
creasing personalization of the web has led to a number of
other services adopting HTTPS, such as GMail, Facebook,
and even YouTube. Furthermore, HTTP is on the verge
of a new milestone: the standardization of HTTP 2.0 [10]
is slated for the end of 2014. Some discussions assume TLS
will be used for all connections, mirroring a fundamental de-
sign decision of SPDY [14], which was used as the starting
point for HTTP 2.0.

Given users’ growing concerns about security and privacy
on the Internet, adopting encryption by default in all HTTP
communication sounds like a good idea. However, security
always comes at a cost, and HTTPS is no different (graphi-
cally depicted in Fig. 1). In this paper, we aim to categorize
and quantify the cost of the “S” in HTTPS.

First, we look at the way HTTPS adoption has evolved
over the past three years. Such an analysis is important be-
cause, besides quantifying trends, it sheds light on the cost
of deploying HTTPS for web services, a cost that seems
to be diminishing: 50% of web traffic flows today are se-
cure, including, for the first time, large content (e.g., 50% of
YouTube streaming flows are over HTTPS).

Second, we study how TLS impacts latency, data con-
sumption, and battery life for clients. HTTPS requires an
additional handshake between the client and the server in
addition to the added computational cost of cryptographic
operations. We study how significant these costs are for
fiber, Wi-Fi, and 3G connections.

Lastly, while encryption provides a clear value to the end
user in terms of confidentiality and authentication, it could
have implications that are harder to assess. Over the past 15
years, an increasing number of network functionalities have
been performed by transparent and explicit middleboxes,
aiming to reduce the amount of backbone traffic, compress
content before transmission on expensive wireless links, fil-

Client Hello
random num,

ciphers & compress methods

App DATA

SYN+ACK
SYN

ACK

Server Hello
sessionID, random num, certificate

ciphers & compress methods

premaster secret

Client Key Exchange

Finished

Client Hello
sessionID, random num,

ciphers & compress methods

App DATA

SYN+ACK
SYN

ACK

Server Hello + Finished
sessionID, random num, certificate

ciphers & compress methods

Finished

Full (2 RTT)
Fast (1 RTT)

RSA ops

Figure 2: SSL/TLS negotiation.

ter inappropriate/undesired content, and protect users and
organizations from security threats. These boxes suddenly
become blind in the presence of encryption. We show that
there are clear cases where losing such functionality may
not only harm network efficiency, but also increase latency
by more than 50% and consume up to 30% more energy for
3G mobile devices.

Using three different datasets, captured in residential and
cellular networks, as well as controlled experiments, our
work shows that: (i) HTTPS usage is increasing despite
potential deployment costs, (ii) HTTPS has a perceptible
impact on clients in terms of latency, (iii) its data overhead
seems to be limited, (iv) it could lead to significantly in-
creased battery consumption for large objects.

This creates a complex tradeoff that depends on many
factors, including context and personal preference. While
specific workloads will always be served through HTTPS
(e.g., financial transactions), there are a number of applica-
tions where encryption could be optional or the service could
be assisted by trusted proxies, which bring back the bene-
fits of value-added services, as described in a recent IETF
proposal [9]. How to best manage this tradeoff is an open
question that challenges the research community. We hope
this paper stimulates discussion in that direction.

2. HTTPS OVERVIEW
SSL/TLS is the standard protocol for providing authen-

ticity and confidentiality on top of TCP connections. Today,
it is used to provide a secure version of traditional protocols
(e.g., IMAP, SMTP, XMPP, etc.); in particular, the usage
of HTTP over TLS is commonly known as HTTPS.

Each TLS connection begins with a handshake between
the server and the client. In this handshake, the Public Key
Infrastructure (PKI) suite is used to authenticate the server
(and sometimes the client) and to generate cryptographic
keys to create a secure channel for data transmission.

Fig. 2 (left) sketches the steps in a full TLS negotiation.
In this scenario, the client and the server incur different
costs. On the server side, the primary cost is computing the
session key. This involves complex public key cryptography
operations (typically RSA), limiting the number of connec-
tions per second the server can support [2, 3, 4]. For clients,
the major cost is latency. This depends on (i) server per-
formance, (ii) the distance between client and server since a
full negotiation requires 2 RTTs (3 including the TCP hand-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Apr
2012

Jul
2012

Oct
2012

Jan
2013

Apr
2013

Jul
2013

Oct
2013

Jan
2014

Apr
2014

Jul
2014

F
ra

ct
.

o
f

H
T

T
P

S

Volume
Flows

Facebook

YouTube

Figure 3: Evolution of HTTPS volume and flow shares over
2.5 years. Results from Res-ISP dataset. Vertical lines show
the transition to HTTPS for Facebook and YouTube.

shake), and (iii) the latency to verify the server’s certificate
with the PKI (e.g., an OSCP/CRL check).

Unsurprisingly, a few optimizations have been proposed to
reduce handshake costs. Hardware accelerators, GPU archi-
tectures [12], or “rebalancing” the RSA computations [3] can
easily boost server performance by a factor of 10. Also, the
TLS standard provides a fast negotiation mechanism, shown
in Fig. 2 (right). In this case a SessionID is used to retrieve
a previously negotiated session key, (i) avoiding the cost of
creating a new session key and (ii) reducing the handshake
to 1 RTT (2 including the TCP handshake). Note that the
adoption of fast negotiation is controlled by the server; as
we see in Sec. 4, only some services deploy it.

3. HTTPS USAGE TRENDS
A common belief is that deploying HTTPS increases in-

frastructure costs (to accommodate the resulting computa-
tional, memory, and network overhead) in addition to the
cost of certificates (up to $1,999/year each1). Thus, one
would expect services to carefully deploy HTTPS only when
needed. To test this, we examine recent HTTPS usage
trends. We collected per-flow logs from a vantage point
monitoring the traffic of about 25,000 residential ADSL cus-
tomers of a major European residential ISP (“Res-ISP”). The
vantage point runs Tstat [7], which implements a classifier
supporting both HTTP and TLS identification. For TLS
traffic, Tstat parses the ClientHello and ServerHello TLS
handshake messages to extract (i) Server Name Indication
(SNI), i.e., the hostname to which the client is attempting to
connect, and (ii) Subject Common Name (SCN) carried in
the server certificate, i.e., the name the server itself presents.
Tstat is also able to identify the presence of SPDY in the
TLS connections. In the following, we use this rich ISP
dataset to characterize the evolution of HTTPS usage. At
the time of writing, HTTPS and HTTP combined represent
75% of all TCP traffic (by volume) in Res-ISP.

Fig. 3 reports the evolution of the HTTPS traffic share
from April 2012 to September 2014. Both volume and flow
shares are shown. The growth of HTTPS adoption is strik-
ing, with the HTTPS flow share more than doubling in two
years. In September 2014, 44.3% of web connections already
use HTTPS.2 The sharp bump in April 2013 is due to Face-
book enabling HTTPS by default for all users [13].

1https://www.symantec.com/page.jsp?id=compare-ssl-
certificates
2Curiously, only 5.5% of flows successfully negotiated SPDY,
despite 55% of clients offering the option. This highlights

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

2
0
1

2

2
0
1

3

2
0
1

4

2
0
1

2

2
0
1

3

2
0
1

4

2
0
1

2

2
0
1

3

2
0
1

4

2
0
1

2

2
0
1

3

2
0
1

4

F
ra

ct
.
o

f
 H

T
T

P
S +23%

+10.4%

+4.2%

+13.8%

+4.8%
+5.6%

+1.6%
+6.8%

Server IPsHostnamesDown Vol.Up Vol.

Figure 4: Comparing HTTPS shares over three one-week
periods in the Res-ISP dataset. Percentages highlight year-
to-year growth.

Looking at volume, we see a much slower growth. In-
tuitively, one would expect that most HTTPS flows carry
small, privacy-sensitive objects. We see this until January
2014 when YouTube began delivering video content over
HTTPS, clearly increasing the HTTPS volume share. As
of September 2014, as much as 50% of YouTube’s aggregate
traffic volume is carried over HTTPS.

Fig. 4 further details HTTPS trends with respect to up-
load volume, download volume, number of hostnames, and
number of server IP addresses. We compare the first week of
April in 2012, 2013 and 2014 (results are consistent for other
weeks). Percentages show the year-to-year increase. The
growth of HTTPS is again evident. For instance, HTTPS
accounts for 80% of the upload volume in 2014; it was only
45.7% in 2012. This reflects the fact privacy-sensitive infor-
mation tends to be uploaded using HTTPS more and more.
Interestingly, the fraction of data downloaded using HTTPS
is smaller than the fraction uploaded. However, YouTube’s
shift to HTTPS in 2014 dramatically changed the landscape:
HTTPS download volume more than doubled compared to
2013. Fig. 4 also highlights a constant year-by-year increase
for both the fraction of hostnames and server IP addresses
accessed using TLS. Interestingly, 72% of the TLS host-
names are accessed exclusively over TLS in 2014.

These results clearly show that, despite the perceived costs,
services are rapidly deploying HTTPS. This shift is undoubt-
edly related to the recent attention toward guaranteeing
end-users privacy. However, this may also be an indica-
tion of increasingly manageable infrastructural costs. This
is consistent with the report from the GMail team after their
switch to HTTPS: “On our production frontend machines,
SSL/TLS accounts for less than 1% of the CPU load, less
than 10KB of memory per connection and less than 2% of
network overhead.”3 Reports from Facebook are similar.4

Takeaway: HTTPS accounts for 50% of all HTTP connec-
tions and is no longer used solely for small objects, suggest-
ing that the cost of deployment is justifiable and manageable
for many services.

that SPDY is only supported by a handful of (popular) ser-
vices, namely Google and Facebook.
3https://www.imperialviolet.org/2010/06/25/overclocking-
ssl.html
4http://lists.w3.org/Archives/Public/ietf-http-
wg/2012JulSep/0251.html

1.0 1.5 2.0 2.5 3.0
Load Time Ratio
(HTTPS/HTTP)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Load Time Difference

(HTTPS-HTTP) [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Mean (Fiber)
Median (Fiber)
Mean (3G)
Median (3G)

Alexa Top 500 Sites

Figure 5: Webpage load time inflation for the Alexa top 500.

0 10 20 30 40 50
Number of TCP Connections

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

HTTPS
HTTP

0 1 2 3 4 5
Total Handshake Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

HTTPS
HTTP

Figure 6: Number of TCP handshakes (left) and total hand-
shake time (right) for the Alexa top 500 (fiber).

4. WEBPAGE LOAD TIME
We now investigate how much HTTPS affects load time,

an important quality-of-experience metric for web browsing.

Overall Page Load Time: First we quantify the HTTPS
page load time overhead through active experiments. We
load each of the top 500 Alexa sites 20 times, first using
HTTP and then using HTTPS. For the download, we use
PhantomJS5, a fully-fledged headless browser running on
a Linux PC. From each run, we extract the average and
median load times. The test PC is connected first using a
3G USB modem and then via fiber, two typical real-world
environments. The local cache is cleared between page loads.

Results are reported in Fig. 5. Plots show the Cumula-
tive Distribution Function (CDF) of the ratio of HTTPS
to HTTP page load time (left) and the absolute difference
(right). The benchmark shows that using HTTPS signif-
icantly increases load time. This is especially evident on
3G, where the extra latency is larger than 500 ms for about
90% of websites, and 25% of the pages suffer an increase of
at least 1.2 s (i.e., an inflation factor larger than 1.5x). On
fiber, the extra latency is smaller; still, for 40% of the pages,
HTTPS adds more than 500 ms (1.3x).

We also captured an HTTP Archive (HAR) for each page,
which contains statistics about the individual connections
used to load the page. Fig. 6 (left) shows 40% of the sites
open fewer TCP connections when loaded over HTTPS com-
pared to HTTP. Even so, Fig. 6 (right) shows nearly half
of the sites spend more time establishing those connections;
the increased time per handshake is caused primarily by TLS
negotiation overhead (see below). By examining the HARs,
we see that many of the sites using fewer connections serve
fewer objects (1–3 fewer on average, but in some cases up-
wards of 100 fewer) and do so from fewer hosts (typically
1–2 fewer, but in some cases up to 40 fewer). We suspect
these are intentional changes to the HTTPS version of the
site designed to avoid costly TLS handshakes.

5http://phantomjs.org/

 1

 10

 100

 1000

 1 10 100

T
L

S
 h

an
d

sh
ak

e
d

u
ra

ti
o

n
 [

m
s]

External RTT [ms]

*.google.com
*.apple.com

*.hotmail.com
*.twitter.com

*.s3.amazon.com
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

C
D

F

TLS handshake duration [ms]

All
*.google.com

*.apple.com
*.hotmail.com
*.twitter.com

*.s3.amazon.com
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

C
C

D
F

TLS handshake volume [%]

All
*.google.com

*.apple.com
*.hotmail.com
*.twitter.com

*.s3.amazon.com

Figure 7: Quantifying TLS handshake costs. Scatter plot of the TLS handshake duration with respect to server distance
(left). TLS handshake duration CDF (center). Ratio of TLS handshake bytes with respect to total TCP connection bytes
CCDF (right).

TLS Handshake delay cost: Webpage load time has been
an active area of research [8, 5, 6, 15, 11]; understanding the
exact cause(s) of the inflation noted above is quite complex
and out of scope for this work. However, it is still interesting
to understand whether the overall page latency is primarily
affected by network latency or by protocol overhead. To
better understand this, we modified Tstat to extract the
(i) duration and (ii) number of bytes of each TLS handshake
from a one-hour pcap trace collected on April 3rd 2014 from
Res-ISP. About 1 million TLS flows are present.

Fig. 7 (left) shows a scatter plot of the TLS handshake du-
ration with respect to the minimum external RTT (i.e., the
RTT between the vantage point and the remote server6).
The external RTT is reasonably representative of the dis-
tance to the remote server. For this analysis we selected
popular services as representative cases (we classify based
on the Server Name Indication in the ClientHello).

First, all services exhibit vertical clusters of points, which
likely reflect the different data centers offering that service.
For instance, when the external RTT is larger than 100 ms,
the server is outside Europe. More interestingly, no matter
how close the servers are, all clusters contain samples with
very high TLS handshake duration, i.e., up to several sec-
onds. To better capture this effect, Fig. 7 (center) reports
the CDF of the TLS handshake duration for individual ser-
vices and for the traffic aggregate (black dotted line). Google
services (which are also the closest) exhibit the smallest TLS
negotiation delay, though 10% of measurements are more
than 300 ms. Since a full TLS handshake requires at least 2
RTT (1 RTT in case of SessionID reuse), services handled
by U.S. servers (e.g., Hotmail, Twitter, Amazon S3) experi-
ence huge extra costs. For instance, for Twitter, negotiation
takes over 300 ms for more than 50% of the HTTPS con-
nections. In general, 5% of requests experience a handshake
at least 10 times longer than the RTT. This might be due
to client or server overhead, network congestion, or a slow
OCSP check.

Looking closer, we find that 4% of clients experience at
least one connection with a TLS handshake duration higher
than 300 ms. For such connections, 50% (75%) have an in-

6Tstat extracts RTT per-flow statistics monitoring the time
elapsed between TCP data segments and the corresponding
TCP ACK.

ternal RTT (i.e., the RTT between the vantage point and
the end-user device) of 51 ms (97 ms). The same holds
true with less conservative thresholds (e.g., 1 second). This
demonstrates that even clients with good network connec-
tivity can still significantly suffer from TLS handshake over-
head. TLS fast negotiation can help to reduce the handshake
latency, but we find this being used in only 30% of the con-
nections. We speculate this represents a lower bound, but,
unfortunately, based on available data, we cannot assess the
achievable upper bound obtained from a wider adoption of
TLS fast negotiation.

Takeaway: The extra latency introduced by HTTPS is not
negligible, especially in a world where one second could cost
1.6 billion in sales.7

5. DATA USAGE
HTTPS also impacts the volume of data consumed due to

(i) the size TLS handshake and (ii) the inability to utilize
in-network caches and compression proxies.

TLS Handshake Data Cost: The impact of the TLS
handshake overhead depends on how much use the connec-
tion sees; the more data transferred, the lower the relative
cost of the negotiation packets. Fig. 7 (right) reports the
Complementary Cumulative Distribution Function (CCDF)
of the ratio between TLS handshake size and total bytes car-
ried in the TCP connection. Results refer to a peak hour in
April 2014 for the Res-ISP dataset and are consistent with
other time periods. We see that many TLS connections
are not heavily used. In fact, for 50% of them, the hand-
shake represents more than 42% of the total data exchanged.
However, some services, like those running on Amazon S3,
do actually use connections efficiently, reducing the impact
of the negotiation cost. Some services also try to mask ne-
gotiation latency by “pre-opening” connections before they
actually need to send data. In this case, the negotiation
overhead is 100% if the connection is never used. This is
captured in the rightmost part of Fig. 7 (right), which also
highlights how this optimization is heavily used by Google,
Amazon S3, and Twitter, but is not by Hotmail and Apple

7http://www.fastcompany.com/1825005/how-one-second-
could-cost-amazon-16-billion-sales

100 101 102 103 104

File Size [kB]

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

En
er

gy
 p

er
 O

bj
ec

t [
m

A
h] 3G

HTTPS Energy
HTTPS Time
HTTP Energy
HTTP Time

100 101 102 103 104

File Size [kB]

Wi-Fi
HTTPS Energy
HTTPS Time
HTTP Energy
HTTP Time

0
5
10
15
20
25
30
35

Ti
m

e
pe

r O
bj

ec
t [

s]

Figure 8: Energy consumption on 3G (left) & Wi-Fi (right).

services. Despite all this variability, the average TLS nego-
tiation overhead amounts to 5% of the total volume in this
dataset.

In-Network Proxies: HTTPS prevents in-network con-
tent optimizations, like proxies that perform compression
and caching. To evaluate the impact of this loss, we ana-
lyze logs from two production HTTP proxies for mobile net-
works: Transp-Proxy and OptIn-Proxy. Transp-Proxy refers
to a transparent proxy in a major European mobile carrier
serving more than 20 million subscribers. OptIn-Proxy, on
the other hand, is an explicit proxy serving 2000 mobile
subscribers daily in a major European country. For Transp-
Proxy, we analyze the past two years of traffic and for OptIn-
Proxy we consider a week-long trace from May 2014.

Caching (ISP Savings): An ISP can save upstream band-
width by serving static content from its own transparent
cache. In the Transp-Proxy dataset, the average cache hit
ratio over the past two years was 14.9% (15.6% of the to-
tal data volume), amounting to savings of 2 TB per day for
a single proxy instance serving 3 million subscribers. For
OptIn-Proxy, we see daily savings of 1.3 GB, which, if scaled
up to the Transp-Proxy population, matches the observed
Transp-Proxy savings.

We also witnessed a decrease in cache efficiency: the cache
hit ratio of Transp-Proxy dropped from 16.8% two years ago
to 13.2% in June 2014. Based on our analysis, it is not
easy to conclude how much of the decreasing effectiveness of
caching is related to the adoption of HTTPS and how much
is caused by the increased personalization of web traffic. Ei-
ther way, savings of this size can be still be significant to
network operators; such savings will be totally eliminated if
content delivery moves entirely to HTTPS.

Compression (Users Savings): Before returning content to
users, web proxies typically apply lossless (e.g., gzip) com-
pression to objects and, in more aggressive settings, even
scale or re-encode images. This functionality is particularly
helpful in cellular networks where the capacity is limited
and where users often have restrictive data allowances. The
Transp-Proxy trace shows a compression ratio of 28.5% (i.e.,
the last-mile of the network and the users save one-third
of the original data size). In terms of average volume, this
amounts to only 2.1 MB per user per day (on average a mo-
bile user downloads less than 10 MB per day). For heavy
users, though, this may translate to significant savings (e.g.,
more than 300 MB per month).

Takeaway: Most users are unlikely to notice significant
jumps in data usage due to loss of compression, but ISPs
stand to see a large increase in upstream traffic due to loss
of caching.

Total Energy (mAh) Avg. Current (mA)
3G Wi-Fi 3G Wi-Fi

HTTP 210.8 175.7 633 520
HTTPS 217.7 178.0 653 531

Table 1: Energy consumed loading CNN homepage.

You
Tub

e 1

You
Tub

e 2

You
Tub

e 3

You
Tub

e 4
−30
−20
−10

0
10
20
30

Pr
ox

y
En

er
gy

 In
cr

ea
se

 [%
]

0 100 200 300 400 500
Time [s]

0
50

100
150
200
250
300
350
400
450

kB
 p

er
 se

co
nd

HTTPS (No Proxy)
HTTP (Proxy)

Figure 9: Comparing YouTube video playback over HTTP
(with proxy) and HTTPS (without proxy): energy consump-
tion increase when using HTTP+proxy (left) and download
rate over time for one video (right). Results for 3G.

6. BATTERY LIFE
HTTPS has the potential to negatively impact battery life

(particularly on mobile devices) due to (i) the extra CPU
time required for the cryptographic operations and (ii) in-
creased radio uptime due to longer downloads.

Synthetic Content: To measure the raw energy overhead
of HTTPS, we instrumented a Galaxy S II with a power
meter that samples the current drawn by the phone every
200 µs. We used the test phone to download synthetic ob-
jects over 3G and Wi-Fi (i.e., an access point connected to a
fiber link). Objects range in size from 1 kB to 1 MB and are
hosted on a web server under our control. Objects are down-
loaded 100 times each over HTTP and HTTPS using curl

(compiled for Android). We configured the server to deliver
traffic avoiding any proxy cache along the path.8 During
our tests, the screen was on at its minimum brightness.

Fig. 8 shows both average time (right y-axis) and en-
ergy (left y-axis) to complete each download. It is imme-
diately clear that energy consumption is strongly correlated
to download time; this is not surprising, as leaving the radio
powered up is costly. (We also see a slight overhead for large
objects over HTTPS on Wi-Fi but not on 3G, but we were
unable to precisely determine the cause. The difference is
less than one standard deviation.) The key takeaway here
is, download time aside, we do not see a noticeable overhead
due to cryptographic operations.

Real Content: We complement the previous analysis by
loading real content. We mirror the CNN homepage on our
controlled webserver and download it 50 times using Chrome
for Android over HTTP and HTTPS (enforcing 20 seconds of
wait between consecutive downloads). Results are listed in
Table 1 (numbers presented are cumulative for all 50 loads).
As in the previous benchmark, HTTPS tests do not show
an appreciable increase in energy costs.

In a second experiment, we play four 5- to 12-minute
YouTube videos. Since the YouTube app does not deliver

8The 3G carrier used in the experiment runs transparent
proxies acting on traffic to port 80. By configuring the web-
server to listen on a different port, we bypass the cache.

video content over HTTPS for mobile devices (nor does the
YouTube mobile site), we first force the phone to load the
desktop version of the YouTube portal. Over Wi-Fi, there
was no difference; on 3G, on the other hand, our network’s
Web proxy significantly impacted the HTTP results. For
two videos, playback over HTTP (with proxy) consumes
nearly 25% less energy than over HTTPS (without proxy);
for the other two, 10%–20% more (Fig. 9 left).

The differences are caused by two distinct proxy behav-
iors. First, the proxy throttles the download rate (Fig. 9
right) to reduce congestion and avoid wasting bandwidth if
the user abandons the video. Without the proxy (HTTPS),
the whole video loads immediately and the radio sleeps while
it plays. With the proxy (HTTP), the download is slow
and steady, lasting the duration of the video. Without the
opportunity to sleep, playback over HTTP consumes more
energy. Second, the proxy injects javascript into the pages
it returns, which, among other things, rewrites the URLs
sent to YouTube to request encodings and qualities more ap-
propriate for mobile devices. For YouTube 2 and YouTube
4, the player requests the content in the webm format, for
which our phone does not have hardware decoding support;
the proxy changes webm to mp4, which our phone can decode
in hardware. The benefit of hardware decoding outweighed
the cost of radio uptime.

Of course, these numbers should be taken with a grain
of salt, since using the desktop version of YouTube on a
phone is unrealistic (but they are still relevant to PC users
connecting via USB modem or tethering). We played the
same four videos with YouTube’s mobile portal in addition
to two new videos from Vimeo’s mobile site and verified that
the mobile players request mp4 from the start, so the proxy
does not help decrease decoding costs. The mobile video
was still throttled.

Stepping back, we see these results as concrete examples of
a proxy helping and a proxy hurting end users, suggesting
that (1) operators should think carefully about how they
configure middleboxes and (2) the community should think
carefully about shutting them out by switching to HTTPS
by default.

Takeaway: HTTPS’ cryptographic operations have almost
no impact on energy costs, but the loss of proxies can signif-
icantly impact battery life (positively and negatively).

7. LOSS OF VALUE-ADDED SERVICES
From the previous experiments it becomes evident that

the most significant HTTPS overheads on client performance
are increased latency and the inability to utilize“useful”mid-
dleboxes that may bring content closer to the client or re-
duce its size through network-aware compression. There are
a number of other in-network services that would also be
affected by ubiquitous adoption of HTTPS, but the effects
of these losses are more difficult to quantify.

For example, ubiquitous encryption will render all deep
packet inspection (DPI) boxes ineffective. The advantage
that in-network DPIs have is the ability to observe the traf-
fic of multiple clients at the same time to draw inferences,
while access to application layer content allows them to
block threats by searching for pre-defined signatures (e.g.,
a known malware binary). Unsophisticated DDoS attacks
may still be detectable through statistical analysis of the

HTTPS traffic, but application layer fingerprinting will have
to be pushed to the client.

Simpler URL filtering will also become ineffective. For
instance, a number of telecommunications providers today
provide parental filtering through the use of explicit black-
lists, such as the Internet Watch Foundation9 list. Through
direct communication with IWF, we found out that only 5%
of their current blacklist is pure domains or sub-domains
that could still be blocked in the presence of HTTPS. To
maintain full functionality, the IWF list would have to again
be moved to the client, where one can still observe the com-
plete URL being accessed.

Other opt-in services offered by some providers are simi-
larly affected, like content prioritization (e.g., postponing ad
delivery) or blocking tracking cookies. (Interestingly, losing
the ability to block tracking cookies hurts privacy, which is
one of the goals of using TLS to begin with.)

Takeaway: Though difficult to quantify, the loss of in-network
services is potentially substantial; some of that functionality
could be equally well performed on the client, while some may
require a total rethink, like DPI-based Intrusion Prevention
Systems (IPSes).

8. CONCLUSION
Motivated by increased awareness of online privacy, the

use of HTTPS has increased in recent years. Our mea-
surements reveal a striking ongoing technology shift, indi-
rectly suggesting that the infrastructural cost of HTTPS is
decreasing. However, HTTPS can add direct and notice-
able protocol-related performance costs, e.g., significantly
increasing latency, critical in mobile networks.

More interesting, though more difficult to fully under-
stand, are the indirect consequences of the HTTPS: most
in-network services simply cannot function on encrypted
data. For example, we see that the loss of caching could
cost providers an extra 2 TB of upstream data per day and
could mean increases in energy consumption upwards of 30%
for end users in certain cases. Moreover, many other value-
added services, like parental controls or virus scanning, are
similarly affected, though the extent of the impact of these
“lost opportunities” is not clear.

What is clear is this: the “S” is here to stay, and the
network community needs to work to mitigate the negative
repercussions of ubiquitous encryption. To this end, we see
two parallel avenues of future work: first, low-level protocol
enhancements to shrink the performance gap, like Google’s
ongoing efforts to achieve“0-RTT”handshakes.10 Second, to
restore in-network middlebox functionality to HTTPS ses-
sions, we expect to see trusted proxies [9] become an impor-
tant part of the Internet ecosystem.

Acknowledgements
The research leading to these results has received funding
from the European Union under the FP7 Grant Agreement
n. 318627 (Integrated Project “mPlane”), from NSF un-
der award number CNS-1040801, and from DoD, Air Force
Office of Scientific Research, National Defense Science and
Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.

9https://www.iwf.org.uk
10http://blog.chromium.org/2013/06/experimenting-with-
quic.html

9. REFERENCES
[1] The Transport Layer Security (TLS) Protocol — RFC

5246.

[2] G. Apostolopoulos, V. Peris, and D. Saha. Transport
layer security: How Much Does It Really Cost? In
INFOCOM 1999.

[3] C. Castelluccia. Improving Secure Server Performance
by Rebalancing SSL/TLS Handshakes. In USENIX
Security Symposium, 2005.

[4] C. Coarfa, P. Druschel, and D. S. Wallach.
Performance Analysis of TLS Web Servers. ACM
Trans. Comput. Syst., 24(1):39–69, Feb. 2006.

[5] Y. El-khatib, G. Tyson, and M. Welzl. Can SPDY
Really Make the Web Faster? In IFIP Networking
2014.

[6] J. Erman, V. Gopalakrishnan, R. Jana, and K. K.
Ramakrishnan. Towards a SPDY’Ier Mobile Web? In
CoNEXT ’13.

[7] A. Finamore, M. Mellia, M. Meo, M. M. Munafò, and
D. Rossi. Experiences of Internet Traffic Monitoring
with Tstat. IEEE Network, 25(3), 2011.

[8] P. Guy. Not as SPDY as You Thought.
http://goo.gl/RQkTwx, June 2012.

[9] HTTPBis Working Group. Explicit Trusted Proxy in
HTTP/2.0. http://goo.gl/BUxQ22, February 2014.

[10] IETF HTTPbis Working Group. Http/2.
http://http2.github.io/.

[11] S. Ihm and V. S. Pai. Towards Understanding Modern
Web Traffic. In IMC 2011.

[12] K. Jang, S. Han, S. Han, S. Moon, and K. Park.
SSLShader: Cheap SSL Acceleration with Commodity
Processors. In NSDI 2011.

[13] S. Renfro. Secure browsing by default.
http://goo.gl/B7U3jv, July 2013.

[14] The Chromium Projects. Spdy.
http://www.chromium.org/spdy.

[15] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. Demystifying Page Load
Performance with WProf. In NSDI 2013.

