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Abstract

This paper proposes variable kinematic, mixed theories for laminated plates built via the asymp-

totic/axiomatic method (AAM). This method has been recently developed and successfully applied

to develop refined theories for multilayered plates and shells. The AAM evaluates the accuracy of

each unknown variables of a structural model. The present paper extends the AAM to mixed the-

ories based on the Reissner Mixed Variational Theorem (RMVT). The displacement transverse

stress fields are modeled by means of the Carrera Unified Formulation (CUF), and expansions

up to the fourth-order are employed. Equivalent Single Layer (ESL) and Layer Wise (LW)

schemes are adopted, and closed-form Navier-type solutions are considered.

The AAM is exploited to determine the set of active terms of a refined plate model. The inac-

tive terms are then discarded. The effectiveness of each variable is evaluated with respect to an

LW, fourth-order mixed model. Reduced models are built for different thickness ratios, stacking

sequences and displacement/stress variables.

The results suggest that reduced models with significantly less unknown variables than full models

can be built with no accuracies penalties. Such models are problem dependent, and full models

should be preferred in the case of thick, asymmetric plates.

Keywords: A. Laminates, Plates, C. Laminate mechanics C. Analytical modelling C. Com-

putational modelling

2



1 Introduction

Laminated composite and metallic plates are commonly adopted in many engineering applica-

tions, and a number of structural models have been developed over the last decades for their

analysis. The solution of the 3D elasticity equations can be very expensive from a computa-

tionally standpoint, and, moreover, such solutions are usually valid only for a few geometries,

material characteristics, and boundary conditions. 2D structural models are employed to ana-

lyze plates. The oldest plate model is due to Kirchhoff [1]. According to this model, transverse

shear, and normal strains are assumed to be negligible with respect to the other stress and

strain components. An extension of this model to multilayered structures is referred to as the

Classical Lamination Theory (CLT). Further details on shell theories can be found in [2].

Refined plate models have been developed to improve the Kirchhoff model. A brief overview

of some of the main techniques to develop advanced plate models for the static analysis of

composite plates is presented hereinafter. In particular, the following macro categories are

addressed:

• Models that account for transverse and normal shear effects.

• Layer-Wise And Zig-Zag models.

• Asymptotic approaches and the proper generalized decomposition.

• Reissner Mixed Variational Theorem (RMVT) based models.

Particular attention is paid to the latter; the main aim of this paper deals, in fact, with refined

plate models based on the RMVT.

Shear effects in laminated plates can be very significant; the shear deformability in this type

of plates is higher than in isotropic plates. Reissner and Mindlin [3, 4] included the shear ef-

fect, and their model is known as the First Order Shear Deformation Theory (FSDT). Further

3



refinements of the FSDT can be achieved through the Vlasov [5] and the Reddy-Vlasov model

[6], These models account for the homogeneous conditions for the transverse shear stresses at

the top and bottom plate surfaces.

Hildebrand, Reissner, and Thomas [7] developed a refined model that accounts for both the

transverse shear and normal stress effects, i.e. that fulfills Koiter’s recommendation [8]. Other

significant contributions on laminated plate models can be found in [9, 10, 11, 12].

Multilayered structures are transversely anisotropic, and their mechanical properties are dis-

continuous along the thickness. These features are responsible for transverse displacements

whose slopes can rapidly change at the layer interfaces and transversely discontinuous in-plane

stresses. Due to equilibrium conditions, transverse stresses must be continuous at the interfaces.

The Layer-Wise (LW) approach [13, 14, 15], Zig-zag models [16, 17] and mixed variational tools

[18, 19, 20] have been proposed to deal with these mechanical behaviors. In the LW, each layer is

seen as an independent plate and compatibility of displacement components are imposed at the

interfaces. Compatibility and equilibrium conditions are then used at the interfaces to reduce

the number of the unknown variables.

The plate theories mentioned above are axiomatic; the unknown variable fields are, in fact, as-

sumed a priori, and such assumptions are based on the scientist’s intuition and experience. An

alternative approach is the asymptotic method in which asymptotic expansions of the unknown

variables are introduced along the plate thickness. The asymptotic method provides approx-

imate theories with known accuracy with respect to the 3D exact solution [21, 22, 23, 24].

The influence of the expansion terms is evaluated with respect to a geometrical perturbation

parameter (e.g. the thickness-to-length ratio). The asymptotic approach furnishes consistent

approximations; that is, all the retained terms are those which influences the solution with the

same order of magnitude as the vanishing perturbation parameter.

The Proper Generalized Decomposition (PGD) decomposes a 3D problem as the summation of
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a number of 1D and 2D functions [25]. PGD can be considered as a powerful tool to reduce the

numerical complexity of 3D problem.

The RMVT is a mixed variational approach in which displacements and transverse stresses

are the unknown variables of the structural problem. Furthermore, in an RMVT model the

interlaminar continuity of transverse stresses is imposed a priori [26, 27, 28, 29]. Murakami and

Toledano applied the RMVT to the analysis of multilayered plates via first and higher-order

theories and layer-wise schemes [19, 30, 31].

This paper proposes refined plate models by means of the Carrera Unified Formulation (CUF)[32,

33]. According to the CUF, the displacement and stress fields of plates can be defined as ar-

bitrary expansions of the thickness coordinate. The expansion order is a free parameter of the

analysis, and it can be chosen via a convergence analysis. The governing equations are obtained

through a set of fundamental nuclei whose form does not depend on either the expansion order

nor the base functions. CUF models based on the RMVT have been developed over the last

years [20, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

The axiomatic/asymptotic method (AAM) has been recently developed for beams [44, 45] and

plates [46, 47] in the CUF framework. The AAM investigates the effectiveness of each general-

ized displacement variable of a refined theory against the variation of various parameters; such as

the thickness, the orthotropic ratio and the stacking sequence. The AAM leads to the definition

of reduced models that have the same accuracy of the full model but that have fewer unknown

variables. The best theory diagram (BTD) is an important outcome that stemmed from the use

of the AAM [48]. The BTD is a diagram in which, for a given problem, the computationally

cheapest structural model for a given accuracy can be read. The BTD is problem-dependent,

and it can be obtained by exploiting genetic algorithms [49, 50]. The most recent developments

have dealt with the definition of more accurate techniques to evaluate the accuracy of the model

[51, 52], layer-wise plate [53] and shell [54] models.
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In this work, the AAM is applied to RMVT models for the first time. Navier-like closed-form so-

lutions are employed, and both ESL and LW models are considered. This paper is organized as

follows: the geometrical relations for plates and the constitutive equations for laminated struc-

tures are presented in Section 2; the CUF is presented in Section 3; the governing equations

are introduced in Section 4; the axiomatic/asymptotic technique and the BTD are introduced

in Section 5; the results are given in Section 6; the conclusions are drawn in Section 7.

2 Geometrical and constitutive relations for plates

The plate geometry is shown in Fig. 1; the reference surface is Ω and its boundary is Γ. The

reference system axes which lie on the reference surface Ω are denoted as x, y; z is the reference

axis normal to the reference surface. The length side dimensions of the plate are indicated as a

and b, and the thickness of the plate is h.

The strain components for a generic k layer are evaluated according to the linear strain-

displacement relation, that is

εk = Duk (1)

where D is a differential operator whose components are

D =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y



(2)
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Strain components are grouped into in-plane (p) and out-of-plane (n) components, that is

εkp =
[
εkxx ε

k
yy ε

k
xy

]T
εkn =

[
εkxz ε

k
yz ε

k
zz

]T
(3)

The superscript T denotes the transpose operation. On the basis of this grouping, it is possible

to write

εkp = Dpu
k εkn = Dnu

k (4)

where

Dp =


∂
∂x 0 0

0 ∂
∂y 0

∂
∂y

∂
∂x 0

 (5)

Dn =


∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y

0 0 ∂
∂z

 =

DnΩ︷ ︸︸ ︷
0 0 ∂

∂x

0 0 ∂
∂y

0 0 0

+

Dnz︷ ︸︸ ︷
∂
∂z 0 0

0 ∂
∂z 0

0 0 ∂
∂z

 (6)

The stress components for a generic k layer can be obtained via the constitutive equations,

σk = Ckεk (7)

The matrix of the material elastic coefficients (C ) is given in the problem reference system

(x, y, z). The dependence of the elastic coefficients Cij on Young’s modulus, Poisson’s ratio, the

shear modulus, and the fiber angle is not reported here. It can be found in the book by Reddy

[6]. The stress components can be grouped into in-plane (p) and out-of-plane components, i.e.

σkp =
[
σkxx σ

k
yy σ

k
xy

]T
σkn =

[
σkxz σ

k
yz σ

k
zz

]T
(8)
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The constitutive can be written as

σkp =Cppε
k
p + Cpnε

k
n

σkn =Cnpε
k
p + Cnnε

k
n (9)

In the case of orthotropic materials, the following relations hold

Ck
pp =


Ck11 Ck12 Ck16

Ck12 Ck22 Ck26

Ck16 Ck26 Ck66

 Ck
nn =


Ck55 Ck45 0

Ck45 Ck44 0

0 0 Ck33

 Ck
pn = CkT

np =


0 0 Ck13

0 0 Ck23

0 0 Ck36


(10)

According to the RMVT, the out-of-plane stresses (σxz, σyz, and σzz) are assumed as indepen-

dent, and a particular mixed form of the Hooke law is required,

σpH =C̃k
ppε

k
pG + C̃k

pnσ
k
nM

εnH =C̃k
npε

k
pG + C̃k

nnσ
k
nM (11)

where H indicates those stress and strain components that were obtained by means of the

Hooke law. G indicates those strain components that were obtained by means of the geometrical

differential operators in Eqs. 5 and 6. M indicates the transverse stress components modeled

by means of the CUF.

The elastic coefficient matrices are the following:

C̃k
pp = Ck

pp −Ck
pnC

k−1

nn Ck
np C̃k

pn = Ck
pnC

k−1

nn C̃k
np = −Ck−1

nn Ck
np C̃k

nn = Ck−1

nn (12)
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3 Carrera Unified Formulation for plates

In the CUF framework, the displacement field of a plate can be described as

u(x, y, z) = Fτ (z) · uτ (x, y) τ = 1, 2, . . . , N + 1 (13)

where u is the displacement vector (ux uy uz) whose components are the displacements along

the x, y, and z. Fτ are the expansion functions and uτ = (uxτ , uyτ , uzτ ) are the displacement

variables of a point PΩ which lies on the reference surface Ω; N is the expansion order. For the

sake of clarity, Eq. 13 is also given as follows:

ux = F1 ux1 + F2 ux2 + ...+ FN uxN + FN+1 uxN+1

uy = F1 uy1 + F2 uy2 + ...+ FN uyN + FN+1 uyN+1

uz = F1 uz1 + F2 uz2 + ...+ FN uzN + FN+1 uzN+1

(14)

A number of explicit displacement fields will be given for specific expansion orders in the fol-

lowing sections of this paper. According to the RMVT, the transverse stress components (σxz,

σyz and σzz) are modeled as

σnM (z, y, z) =


σxzM (x, y, z)

σyzM (x, y, z)

σzzM (x, y, z)

 = Fτ (z)


σxzMτ (x, y)

σyzMτ (x, y)

σzzMτ (x, y)

 τ = 1, 2, . . . , N + 1 (15)

That is,

σxzM = F1 σxzM1 + F2 σxzM2 + ...+ FN σxzMN
+ FN+1 σxzMN+1

σyzM = F1 σyzM1 + F2 σyzM2 + ...+ FN σyzMN
+ FN+1 σyzMN+1

σzzM = F1 σzzM1 + F2 σzzM2 + ...+ FN σzzMN
+ FN+1 σzzMN+1

(16)
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The expansion functions Fτ can be defined along the entire thickness of the plate or each layer.

In the former case, the Equivalent Single Layer (ESL) approach is followed and in the latter

case the Layer Wise (LW) method is used. Examples of ESL and LW schemes are shown in

Fig.s 2(a) and 2(b), respectively; a transverse section of a multilayered plate is shown, and the

number of layers is equal to NL. A generic displacement component distribution is presented

according to linear and higher-order expansions.

3.1 Equivalent Single Layer models

According to the ESL, the behavior of a multilayered plate is analyzed considering it as a single

equivalent lamina. Fτ can be Mac-Laurin expansions of z, and they are defined as Fτ = zτ−1.

CUF ESL models based on the Principle of Virtual Displacements (PVD) are referred to as

EDN , where N is the expansion order. CUF RMVT ESL models are referred to as EMN . In

the latter case, the transversal stresses are always modeled by means of the LW scheme with

an expansion order equal to N . An example of a fourth-order (ED4) displacement field is the

following:

ux = ux1 + z ux2 + z2 ux3 + z3 ux4 + z4 ux5

uy = uy1 + z uy2 + z2 uy3 + z3 uy4 + z4 uy5

uz = uz1 + z uz2 + z2 uz3 + z3 uz4 + z4 uz5

(17)

3.2 Layer Wise models

In an LW model, the displacement field is C0 continuous through the laminate thickness. LW

models can be conveniently built by using the Legendre polynomial expansion along each layer.

The displacement field is described as

uk = Ft · ukt + Fb · ukb + Fr · ukr = Fτu
k
τ τ = t, b, r r = 2, 3, . . . , N k = 1, 2, . . . , Nl (18)
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Subscripts t, and b indicate the top and the bottom of the layer. An example of LD4 displace-

ment field is the following:

ukx = Ft u
k
xt + F2 u

k
x2 + F3 u

k
x3 + F4 u

k
x4 + Fb u

k
xb

uky = Ft u
k
yt + F2 u

k
y2 + F3 u

k
y3 + F4 u

k
y4 + Fb u

k
yb

ukz = Ft u
k
zt + F2 u

k
z2 + F3 u

k
z3 + F4 u

k
z4 + Fb u

k
zb

(19)

The LW can be employed to define the transverse stress components,

σkn = Ftσ
k
nt + Frσ

k
nr + Fbσ

k
nb τ = t, b, r r = 2, 3, . . . , N k = 1, 2, . . . , Nl (20)

Fτ are defined via an non-dimensional coordinate (ζk, its range is −1 ≤ ζk ≤ 1). The extremal

values −1 and 1 denote the bottom and the top of the layer, respectively. Fτ are given by the

Legendre polynomials,

Ft =
P0 + P1

2
Fb =

P0 − P1

2
Fr = Pr − Pr−2 r = 2, 3, . . . , N (21)

The fourth-order Legendre polynomials are

P0 = 1 P1 = ζk P2 =
3ζ2
k − 1

2
P3 =

5ζ3
k − 3ζk

2
P4 =

35ζ4
k

8
−

15ζ2
k

4
+

3

8
(22)

CUF LW PVD models are referred to as LDN , where N is the expansion order. In the RMVT

case, models are referred to as LMN .
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4 Governing equations

The PVD stats that
NL∑
k=1

δ Lkint =

NL∑
k=1

δ Lkext (23)

Where δLkint is the virtual variation of the strain energy given by the stress and strain distri-

butions in a generic layer k. δLext is the virtual variation of the work made by the external

loadings. The PVD can be expressed as

NL∑
k=1

∫
Ωk

∫
Ak

(
δεTp σp + δεTnσn

)
dAkdΩk =

NL∑
k=1

∫
Ωk

∫
Ak

δuT p dAk dΩk (24)

where Ωk stands for the reference surface of the layer, and
∫
Ak

dAk denotes the integration

along the thickness direction.

In the RMVT case, the compatibility of the transverse strains is enforced in addition to the

equilibrium,

NL∑
k=1

∫
Ωk

∫
Ak

[
δεTpGσpH + δεTnGσnM + δσTnM (εnG − εnH)

]
dAkdΩk =

NL∑
k=1

∫
Ωk

∫
Ak

δuT p dAk dΩk

(25)

The mixed term δσTnM (εnG − εnH) enforces the compatibility of the transverse strain com-

ponents εn. In the following, the subscript G indicates the strains obtained by means of the

differential operators defined in Eq.s 5 and 6, and the subscript H indicates the stresses obtained

by means of the Hooke law.
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4.1 PVD case

According to the CUF displacement field, the geometrical and constitutive equations, the PVD

can be written as

∫
Ωk

δuks

{
(−Dp)

T
[
Ck
ppEsτ Dp + Ck

pnEsτDnΩ + Ck
pnEsτ,z

]
+ (−DnΩ)T

[
CkT

pnEsτDp + Ck
nnEsτDnΩ + Ck

nnEsτ,z

]
+
[
CkT

pnEs,zτDp + Ck
nnEs,zτDnΩ + Ck

nnEs,zτ,z

]}
ukτ dΩk+∫

Γk

δuks

{
(Ip)

T
[
Ck
ppEsτ Dp + Ck

pnEsτDnΩ + Ck
pnEsτ,z

]
+ (InΩ)T

[
CkT

pnEsτDp + Ck
nnEsτDnΩ + Ck

nnEsτ,z

]}
ukτ dΓk = δLke (26)

Where Ip and Inp are

Ip =


1 0 0

0 1 0

1 1 0

 Inp =


0 0 1

0 0 1

0 0 0

 (27)

(
Eτs, Eτ,zs, Eτs,z , Eτ,zs,z

)
are defined as

(
Eτs, Eτ,zs, Eτs,z , Eτ,zs,z

)
=

∫ hk
2

−hk
2

(
FτFs, Fτ,zFs, FτFs,z , Fτ,zFs,z ,

)
dzk (28)

Where hk is thickness of the generic k layer. The governing equations can be written as

δuk
T

s : Kτs
d · ukτ = Pτ

uτ (29)

and the boundary conditions are

Πkτs
d ukτ = Πkτs

d ukτ (30)
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Where Pτ
dτ is the external load. The fundamental nucleus Kτs

d is assembled through the indexes

τ and s. The fundamental nucleus is

Kτ s
d =

{
(−Dp)

T
[
Ck
ppEsτ Dp + Ck

pnEsτDnΩ + Ck
pnEsτ,z

]
+

(−DnΩ)T
[
CkT

pnEsτDp + Ck
nnEsτDnΩ + Ck

nnEsτ,z

]
+

+
[
CkT

pnEs,zτDp + Ck
nnEs,zτDnΩ + Ck

nnEs,zτ,z

]}
(31)

And for boundary conditions,

Πk τ s
d =

{
(Ip)

T
[
Ck
ppEsτ Dp + Ck

pnEsτDnΩ + Ck
pnEsτ,z

]
+

+ (InΩ)T
[
CkT

pnEsτDp + Ck
nnEsτDnΩ + Ck

nnEsτ,z

]}
(32)

4.2 RMVT case

According to the RMVT,

NL∑
k=1

∫
Γk

δuk
T

s

{
ITp C̃k

ppEτ sDpu
k
τ + ITp C̃k

pnEτ sσ
k
nτ + ITnΩEτ sσnτ

}
dΓk−

NL∑
k=1

∫
Ωk

{
δuk

T

s

[
DT
p C̃k

ppEτ s

(
Dpu

k
τ

)
+ DT

p C̃k
pnEτ sσ

k
nτ + DT

nΩEτ sσnτ + Eτ s,zσnτ

]
+

+δσTns

[
DnΩEτ su

k
τ + Eτ,z su

k
τ − C̃k

npEτ s

(
Dpu

k
τ

)k
− C̃k

nnEτ sσ
k
nτ

]}
dΩk =

NL∑
k=1

∫
Ωk

∫
Ak

δ (Fsus)
T p dAk dΩk (33)

The equilibrium equations can be written as

Kkτs
uu ukτ + Kkτs

uσ σkτ = pk

Kkτs
σu ukτ + Kkτs

σσ σkτ = 0 (34)
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Whereas the boundary conditions are

Πkτs
u ukτ + Πkτs

σ σknτ = Πkτs
u ukτ + Πkτs

σ σknτ (35)

The introduced differential arrays are given by the following relations:

Kkτs
uu =−DT

p C̃k
ppDpEτs

Kkτs
uσ =−DT

p C̃k
pnEτs + IEτs,z −DT

nΩEτs

Kkτs
σu =DnΩEτs + IEτ,zs − C̃k

npDpEτs

Kkτs
σσ =− C̃k

nnEτs

Πkτs
u =ITp C̃k

ppDpEτs

Πkτs
σ =ITp C̃k

pnEτs + ITnΩEτs (36)

I is

I =


1 0 0

0 1 0

0 0 1

 (37)

4.3 Navier-type closed-form solution

This paper exploited closed-form solutions for simply-supported, cross-ply, rectangular plates

under a transverse distribution of harmonic loadings. The following properties hold

C̃pp16 = C̃pp26 = C̃pn36 = C̃nn45 = 0 (38)
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Stresses and displacements are expressed according to the following harmonic form:

(
ukxτ σ

k
xzτ

)
=
(
Ûkxτ σ̂

k
xzτ

)
cos
(
mπk
ak

)
sin
(
nπyk
bk

)
k = 1, Nl(

ukyτ σ
k
yzτ

)
=
(
Ûkyτ σ̂

k
yzτ

)
sin
(
mπxk
ak

)
cos
(
nπyk
bk

)
τ = 1, N(

ukzτ σ
k
zzτ

)
=
(
Ûkzτ σ̂

k
zzτ

)
sin
(
mπxk
ak

)
sin
(
nπyk
bk

) (39)

where Ûkxτ , Ûkyτ , Ûkzτ , σ̂τxzτ , σ̂τyzτ and σ̂τzzτ are the amplitudes, m and n are the number of waves

(they range from 0 to ∞) and ak and bk are the dimensions of the plate.

5 The axiomatic/asymptotic method

The AAM is a technique that allows us to determine the influence of each unknown variable

on the solution. Axiomatically built models are used as starting theories, and their variables

are investigated. As in an asymptotic analysis, the influence of each variable can be easily

investigated against various parameters, e.g. thickness, orthotropic ratio, and stacking sequence.

One of the main capabilities of the AAM is the definition of reduced models in which all the

ineffective terms are discarded. AAM examples can be found in [46] for plates, in [44] for beams,

or in [51] for shells.

The AAM consists of the following steps:

1. Parameters such as the geometry, BCs, materials and layer layouts are fixed.

2. A set of output parameters is chosen, such as displacement or stress components.

3. A starting theory is fixed (axiomatic part); that is, the displacement variables to be ana-

lyzed are defined; usually, a theory which provides 3D-like solutions is chosen; a reference

solution is defined (in the present work the LM4 was adopted, since this fourth-order

model offers an excellent agreement with the three-dimensional solutions as highlighted

in [29]).
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4. The CUF is used to generate the governing equations for the theories considered.

5. The effectiveness of each term of the adopted expansion is evaluated by evaluating the

error due to its deactivation; a term is considered as non-effective if the error is negligible;

the deactivation of a term is obtained by means of a penalty technique.

6. The most suitable structural model for a given structural problem is then obtained by

discarding all the non-effective variables.

The penalty technique requires the use of a penalty value on the main diagonal term of the

stiffness matrix related to the degrees of freedom to be deactivated. More details about the

penalty technique can be found in [55], and a detailed description on the application of the

penalty technique in CUF models can be found in [56].

A graphical notation was introduced to show the results. In the case of mixed formulations,

a table with six lines is used, and a number of columns equal to the number of the unknown

variables employed in the expansion. Table 1 shows LM4 and EM4 models for a two-layer plate.

Each unknown variable can be deactivated as shown in Table 2. The symbol � is used to denote

the terms that cannot be deactivated in the LW since this would introduce an extra constraint.

Table 3 shows a reduced LM4 model in which the top-layer ux3, uz4, and the bottom-layer σyz2

and σzz4 were deactivated.

The error due to the deactivation of a displacement or stress variable is computed as

err =

∥∥∥∥1− Q

Qref

∥∥∥∥× 100 (40)

where Q is the displacement/stress value obtained by means of the reduced model and Qref is

the reference value.
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6 Results

The results of the AAM analyzes are reported hereafter; the aim is to evaluate reduced models

that are based on mixed and displacement formulations. In all cases, the acting load is a

transverse pressure applied to the top surface of the plate,

pz = p0
z sin

(mπ

a
x
)

sin
(nπ
b
y
)

(41)

where m = n = 1. The reference system layout is depicted in Fig. 1. In all the following

analyzes, displacement and stress component values are presented in a non-dimensional form,

uz =
100uz ET h

3

p0 a4
σxx =

σxx
p0 (a/h)2

σxz{yz} =
σxz{yz}

p0 a/h
(42)

6.1 Laminated plates

A reference solution must be available to carry out an AAM analysis. If exact 3D elasticity

solutions are not available, the CUF higher-order models are used as reference solutions. These

models, in fact, were proven to be as accurate as exact 3D solutions [29]. In particular, LM4

models are extremely accurate in the laminated plate analysis.

A preliminary assessment was carried out to highlight LM4 enhanced capabilities against exact

3D elasticity solutions [57]. The material properties are EL/ET = 25, ν = 0.25, GLT /ET =

GTT /ET = 0.5, GLz/ET = 0.2, 0◦/90◦/0◦. Table 4 shows stress and displacement values for a

thin and a thick plate; the LM4 results are in excellent agreement with the exact solution. On

the basis of this outcome, the AAM reference solution is the LM4 for all this paper assessments.

Reduced ED4 and EM4 models are shown in Table 5 for σxx. Thin and thick plates were

considered. Me/M indicates the ratio between the number of effective terms and the number

of variables of the full model. In the case of thin plates, the reduced ED4 model that is able to
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provide the same accuracy as an LM4 model in the computation of σxx is the following:

ux = z ux2 + z3 ux4

uy = z uy2

uz = uz1 + z2 uz3

(43)

Figure 3 shows the stress distribution given by the reduced models. A perfect match with the

reference LM4 model was found. In the case of thick plates, all the variables are needed and the

error is not negligible. In other words, ESL models are not able to provide the same accuracy

of an LM4 model for the computation of σxx in thick plates.

Reduced LD4 and LM4 models are reported in Tables 6 and 7, respectively. Various displace-

ment and stress components were considered for thin and thick plates. The last row refers

to those reduced models that are needed to detect all the considered displacement and stress

components. Figure 4 shows the shear stress distribution along the thickness of the plate; the

reduced models were compared with the full LM4 model.

An asymmetric stacking sequence was then considered (0◦/90◦). The LM4 reference values for

the AAM are reported in Table 8 together with the results from LD4, ED4, and EM4.

Table 9 shows reduced EM4 and ED4 models for uz. In the case of thin plates, the reduced

ED4 model that is able to provide the same accuracy as an LM4 model in the computation of

uz is the following:

ux = ux1 + z ux2

uy = uy1 + z uy2

uz = uz1 + z2 uz3

(44)

All the variables are needed in the thick plate case and the error is not negligible.

Reduced LD4 and LM4 models are reported in Tables 10 and 11, respectively. The axial (σxx)

and shear (σyz) stress distributions along the thickness are shown in Fig.s 5 and 6; the reduced
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LD4 and LM4 models were considered together with the full LM4 model.

On the basis of these results, it can be stated that

• As expected, thin plates require less unknown variables to obtain the same accuracy of the

full model. The AAM can lead to reduced models that require about half of the unknown

variables of the full model.

• ESL reduced models with significantly fewer variables that full models can be found in

the thin plate case. On the other hand, Full ESL models are needed for the thick case.

• The adoption of mixed models makes the set of active displacement variables changes

with respect to the displacement model case. In other words, the introduction of stress

variables makes some displacement variables ineffective and others effective.

• The LM4 reduced models are more cumbersome than the LD4 reduced models. LM4

models are however more effective in detecting the stress distributions along the thickness

than LD4 reduced models. The latter sometimes are not very accurate at the top and

bottom regions and do not guarantee the transverse stress interlaminar continuity. It must

be underlined that LD4 reduced models that can fulfill the top and bottom BCs can be

obtained by means of other AAM strategies as shown in [53].

• The asymmetry of the lamination and the increase of the thickness make the number of

active terms increase. In fact, as soon as multiple displacements and stress components

are needed, full models are generally preferable in the thick plate case. Reduced models

with considerable fewer degrees of freedom are available for the thin plate case, or for

thick plates with symmetric lamination.
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6.2 Bimetallic plate

A bimetallic square plate was considered as second study case. The top layer of the plate

is made of titanium (E = 114 GPa, ν = 0.3) and the bottom layer is aluminum (E = 70.3

GPa, ν = 0.33). The reference LM4 results employed in the axiomatic/asymptotic analysis are

reported in Table 12 together with the results from LD4, ED4, and EM4.

Table 13 shows the ED4 and EM4 models for uz. Similarly to the composite laminated plate

case, thin plates can be analysed by means of reduced models. Thick plates, instead, require

full models and their accuracy is poorer than LM4. In the case of thin plates, the reduced ED4

model that is able to provide the same accuracy as an LM4 model in the computation of uz is

the following:

ux = ux1 + z ux2

uy = uy1 + z uy2

uz = uz1 + z uy2 + z2 uz3

(45)

Tables 14 and 15 present the reduced LD4 and LM4 models, respectively. Figure 7 shows the

shear stress distribution by means of the reduced models.

The results suggest the following:

• As for the laminated case, the increase of the thickness makes the number of active terms

increase.

• A significant computational cost reduction can be obtained by means of ESL model for

the thin plate case. As for the laminated case, full ESL models should be used for thick

plates.

• It is hard to predict the reduced LM4 model on the basis of the LD4 one. In fact, as it he

previous case, mixed reduced models may not share all the displacement variables with

the LD4 model.
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• It is confirmed that the LM4 reduced models are generally more cumbersome than the

LD4 reduced models. The LM4 models are effective in detecting the stress distributions

along the thickness. The LD4 reduced models may not fulfill the top/bottom boundary

conditions as well as the interlaminar continuity of the shear stress.

• As a general guideline, as soon as multiple displacement and stress components are needed,

full models should be generally preferred in the thick plate case.

7 Conclusion

The axiomatic/asymptotic method AAM has been applied for the first time to refined plate

models based on the Carrera Unified Formulation (CUF) and the Reissner Mixed Variational

Theorem (RMVT). The CUF leads to the generation of any order structural model with no

need for formal changes in the governing equations. Such equations have been formulated via

the RMVT to deal with plate models in which the displacement components and the transverse

stress components are the primary variables. The AAM is a technique that can be exploited to

evaluate the influence of each displacement/stress variable in a structural theory. In particular,

the AAM allows us to discard all those variables that are not effective. The AAM leads to the

definition of reduced structural models that are as accurate the full models, but computationally

less cumbersome.

Navier closed-form solutions have been adopted in this paper. Laminated composite and

bimetallic plates have been considered. The influence of different parameters, namely the thick-

ness and the stacking sequence, has been investigated.

The following main conclusions and guidelines can be drawn:

1. The AAM can build reduced models that have considerably less unknown variables than

the full models. In many cases, less than half of the original variables are required.
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2. As expected, an asymmetric lamination or a thick plate, require more cumbersome models.

3. ESL reduced models can be built for thin plates, and a significant computational cost

reduction can be pursued. Full ESL models should be used in the thick plate case.

4. Mixed reduced models (LM4) are more cumbersome than the models based on the displace-

ment formulation (LD4) . However, the LM4 fulfill the top/bottom boundary conditions

and the interlaminar continuity, whereas, in some cases, the LD4 do not.

5. Different output variables can require different reduced models.

6. In general, it is not possible to predict the effectiveness of the reduced LM4 on the basis of

the reduced LD4; LM4 may not share all the displacement variables with the LD4 model.

7. If thick asymmetric plates have to be dealt with, and various output variable are of

interest, full models have to be used.

As seen in previous works, the AAM results are problem dependent. Depending on the problem

characteristics, AAM can lead to significant reductions of the number of variables, or can just

recommend the use of full models. In LW models, in particular, the reduction of variables is

always significant. It is also confirmed that the ease of implementation of AAM in the CUF

framework allows us to:

1. Outline guidelines and recommendations for the choice of the most appropriate set of

variables for any combinations of structural configurations.

2. Evaluate the accuracy of any given structural theory for different structural configurations

against exact or quasi-exact solutions.

Future works will deal with the construction of best theory diagrams (BTDs) for RMVT models

via genetic algorithms. As shown in [49, 50, 54], the combined use of AAM, CUF and genetic
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algorithms lead to the definition of a BTD in which, for a given accuracy, the least cumbersome

structural model can be read. The use of the genetic algorithm reduces considerably the number

of reduced models to be considered to build the BTD.
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Tables

LM4 EM4

ux
uy
uz

σxz
σyz
σzz

� N N N � N N N �
� N N N � N N N �
� N N N � N N N �

� N N N � N N N �
� N N N � N N N �
� N N N � N N N �

N N N N N
N N N N N
N N N N N

� N N N � N N N �
� N N N � N N N �
� N N N � N N N �

Table 1: Full model representation of a two-layer model in the case of an LM4 description of displacements
and transverse stresses, and in the case of an ED4 description of displacements and LD4 for transverse
stresses (EM4).

Active term Inactive term Non-deactivable term

N M �

Table 2: Symbols to indicate the status of a displacement variable.

� N M N � N N N �
� N N N � N N N �
� N N M � N N N �

� N N N � N N N �
� N N N � M N N �
� N N N � N N M �

Table 3: Representation of the reduced model.

σxx(z = ±h/2) σxz(z = 0) σyz(z = 0) u(z =, h/2)
a/h = 100

Pagano [57] ±0.539 0.395 0.0828 N/A
LM4 ±0.539 0.395 0.0828 0.4347
LD4 ±0.539 0.395 0.0828 0.4347
EM4 ±0.539 0.301 0.0706 0.4343
ED4 ±0.539 0.281 0.0734 0.4342

a/h = 4
Pagano [57] 0.801 −0.755 0.256 0.2172 N/A

LM4 0.801 −0.755 0.256 0.2172 2.1216
LD4 0.801 −0.755 0.256 0.2180 2.1216
EM4 0.791 −0.745 0.219 0.1767 2.0271
ED4 0.786 −0.740 0.205 0.1830 2.0083

Table 4: Stress and displacement values for a 0◦/90◦/0◦ simply-supported laminated plate.
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EM4 ED4
a/h = 100

Me/M 17/54 5/15

M N M N M
M N M M M
N M N M M

� M M M � M M M � M M M �
� M M M � M M M � M M M �
� M M M � M M M � M M M �

M N M N M
M N M M M
N M N M M

Error 0.0148% 0.0148%
a/h = 4

Me/M 54/54 15/15

N N N N N
N N N N N
N N N N N

� N N N � N N N � N N N �
� N N N � N N N � N N N �
� N N N � N N N � N N N �

N N N N N
N N N N N
N N N N N

Error 1.1941% 1.7951%

Table 5: Reduced EM4 and ED4 models for the symmetric laminated plate, σxx

a/h = 100 a/h = 4
Me/M = 12/39 Me/M = 20/39

uz
� M M M � M M M � M M M �
� M M M � M M M � M M M �
� M M M � M M M � M M M �

� N N M � M M M � N N M �
� N M M � M N M � N M M �
� M M M � N M M � M M M �

Me/M = 13/39 Me/M = 21/39

σxx
� M M M � M M M � M M M �
� M M M � M M M � M M M �
� N M M � M M M � M M M �

� N N M � M M M � N N M �
� N M M � M N M � N M M �
� N N M � M M M � M M M �

Me/M = 13/39 Me/M = 39/39

σxz
� M M M � M N M � M M M �
� M M M � M M M � M M M �
� M M M � M M M � M M M �

� N N N � N N N � N N N �
� N N N � N N N � N N N �
� N N N � N N N � N N N �

Me/M = 14/39 Me/M = 38/39

σyz
� M M M � M M M � M M M �
� M M M � M N M � M M M �
� M M M � N M M � M M M �

� N N N � N N N � N N N �
� N N N � N N N � N N N �
� N N N � M N N � N N N �

Me/M = 16/39 Me/M = 39/39

COMBINED
� M M M � M N M � M M M �
� M M M � M N M � M M M �
� N M M � N M M � M M M �

� N N N � N N N � N N N �
� N N N � N N N � N N N �
� N N N � N N N � N N N �

Table 6: Reduced LD4 models for the symmetric laminated plate.
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a/h = 100 a/h = 4
Me/M = 24/78 Me/M = 37/78

uz

� M M M � M M M � M M M �
� M M M � M M M � M M M �
� M M M � M M M � M M M �

� M M M � M M M � M M M �
� M M M � M M M � M M M �
� M M M � M M M � M M M �

� N N M � M M M � N N M �
� N M M � M N M � N M M �
� M M M � M M M � M M M �

� N M M � M M M � N M M �
� M M M � N M M � M M M �
� M N M � M N M � M N M �

Me/M = 26/78 Me/M = 42/78

σxx

� M M M � M M M � M M M �
� M M M � M M M � M M M �
� N M M � N M M � M M M �

� M M M � M M M � M M M �
� M M M � M M M � M M M �
� M M M � M M M � M M M �

� N N M � M M M � N N M �
� N M M � M N M � N M M �
� N M M � N M M � M M M �

� N N M � M M M � N M M �
� M M M � N M M � M M M �
� N N M � M N M � N N M �

Me/M = 35/78 Me/M = 46/78

σxz

� N N M � M N M � N N M �
� M M M � M M M � M M M �
� M M M � M M M � M M M �

� N M M � N M M � N M M �
� M M M � M M M � M M M �
� M N M � M N M � M N M �

� N N N � M N M � N N N �
� N M M � M N M � N M M �
� M M M � N M M � M M M �

� N N N � M M N � N N N �
� M M M � N M M � M M M �
� M N M � M N M � M N M �

Me/M = 36/78 Me/M = 45/78

σyz

� M M M � M M M � M M M �
� N N M � M N M � N N M �
� M M M � N M M � M M M �

� M M M � M M M � M M M �
� N M M � N M M � N M M �
� M N M � M N M � M N M �

� N N M � M M M � N N M �
� N N M � M N M � N N M �
� M M M � N M M � M M M �

� N M M � M M M � N M M �
� N M N � N M N � N M N �
� M N M � M N M � M N M �

Me/M = 45/78 Me/M = 56/78

COMBINED

� N N M � M N M � N N M �
� N N M � M N M � N N M �
� N M M � N M M � M M M �

� N M M � N M M � N M M �
� N M M � N M M � N M M �
� M N M � M N M � M N M �

� N N N � M N M � N N N �
� N N M � M N M � N N M �
� N M M � N M M � M M M �

� N N N � M M N � N N N �
� N M N � N M N � N M N �
� N N M � M N M � N N M �

Table 7: Reduced LM4 models for the symmetric laminated plate.

σxx(z = ±h/2) σxz(z = 0) σyz(z = 0) uz(z = h/2)
a/h = 100

LM4 0.0844 −0.7159 0.1221 0.1221 1.0652
LD4 0.0844 −0.7159 0.1221 0.1221 1.0652
EM4 0.0843 −0.7158 0.1631 0.1631 1.0651
ED4 0.0842 −0.7157 0.2800 0.1120 1.0651

a/h = 4
LM4 0.1098 −0.7897 0.1379 0.1230 2.1700
LD4 0.1098 −0.7896 0.1439 0.1205 2.1700
EM4 0.1094 −0.7748 0.1672 0.1585 2.1385
ED4 0.1093 −0.7708 0.2878 0.1091 2.1282

Table 8: Stress and displacement values for a 0◦/90◦ simply-supported laminated plate.
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EM4 ED4
a/h = 100

Me/M 16/42 7/15
N N M M M
N N M M M
N M N M M

� M M M � M M M �
� M M M � M M M �
� M M M � M M M �

N N M M M
N N M M M
N M N M M

Error 0.0141% 0.0265%
a/h = 4

Me/M 42/42 15/15
N N N N N
N N N N N
N N N N N

� N N N � N N N �
� N N N � N N N �
� N N N � N N N �

N N N N N
N N N N N
N N N N N

Error 1.4533% 1.9272%

Table 9: Reduced EM4 and ED4 models for asymmetric laminated plate, uz

a/h = 100 a/h = 4
Me/M = 11/27 Me/M = 16/27

uz
� M M M � M M M �
� M M M � M M M �
� N M M � N M M �

� N N M � N N M �
� N N M � N M M �
� M M M � M M M �

Me/M = 11/27 Me/M = 19/27

σxx
� M M M � M M M �
� M M M � M M M �
� N M M � N M M �

� N N M � N N M �
� N N M � N M M �
� N N N � M M M �

Me/M = 13/27 Me/M = 27/27

σxz
� M M M � N N M �
� M M M � M M M �
� N M M � N M M �

� N N N � N N N �
� N N N � N N N �
� N N N � N N N �

Me/M = 13/27 Me/M = 27/27

σyz
� M M M � M M M �
� M M M � N N M �
� N M M � N M M �

� N N N � N N N �
� N N N � N N N �
� N N N � N N N �

Me/M = 15/27 Me/M = 27/27

COMBINED
� M M M � N N M �
� M M M � N N M �
� N M M � N M M �

� N N N � N N N �
� N N N � N N N �
� N N N � N N N �

Table 10: Reduced LD4 models for the asymmetric laminated plate.
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a/h = 100 a/h = 4
Me/M = 20/54 Me/M = 28/54

uz

� M M M � M M M �
� M M M � M M M �
� N M M � N M M �

� M M M � M M M �
� M M M � M M M �
� M M M � M M M �

� N M M � N N M �
� N N M � N M M �
� M M M � M M M �

� M M M � N M M �
� N M M � M M M �
� M N M � M N M �

Me/M = 20/54 Me/M = 43/54

σxx

� M M M � M M M �
� M M M � M M M �
� N M M � N M M �

� M M M � M M M �
� M M M � M M M �
� M M M � M M M �

� N N M � N N M �
� N N M � N N M �
� N N N � N N N �

� N N M � N N M �
� N N M � M N M �
� N N M � N N M �

Me/M = 28/54 Me/M = 38/54

σxz

� N N M � N N M �
� M M M � M M M �
� N M M � N M M �

� N M M � N M M �
� M M M � M M M �
� M N M � M N M �

� N N N � N N N �
� N N M � N N M �
� M M N � M M M �

� N N N � N N N �
� N M M � M M M �
� M N M � M N M �

Me/M = 28/54 Me/M = 40/54

σyz

� M M M � M M M �
� N N M � N N M �
� N M M � N M M �

� M M M � M M M �
� N M M � N M M �
� M N M � M N M �

� N N M � N N M �
� N N N � N N N �
� M M M � M M N �

� M N M � N M M �
� N N N � N N N �
� M N M � N N M �

Me/M = 34/54 Me/M = 52/54

COMBINED

� N N M � N N M �
� N N M � N N M �
� N M M � N M M �

� N M M � N M M �
� N M M � N M M �
� M N M � M N M �

� N N N � N N N �
� N N N � N N N �
� N N N � N N N �

� N N N � N N N �
� N N N � N N N �
� N N M � N N M �

Table 11: Reduced LM4 models for the asymmetric laminated plate.

σxx(z = ±h/2) σxz(z = 0) σyz(z = 0) uz(z = h/2)
a/h = 100

LM4 0.2236 −0.1810 0.2355 0.2355 2.2073
LD4 0.2236 −0.1810 0.2355 0.2355 2.2073
EM4 0.2244 −0.1803 0.2316 0.2316 2.2072
ED4 0.2246 −0.1804 0.1846 0.1845 2.2072

a/h = 4
LM4 0.2520 −0.1830 0.2306 0.2307 2.9079
LD4 0.2520 −0.1830 0.2306 0.2306 2.9079
EM4 0.2514 −0.1840 0.2287 0.2286 2.8982
ED4 0.2521 −0.1845 0.1823 0.1822 2.8945

Table 12: Stress and displacement values for a bimetallic simply-supported laminated plate.
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EM4 ED4
a/h = 100

Me/M 16/42 7/15
N N M M M
N N M M M
N N N M M

� M M M � M M M �
� M M M � M M M �
� M M M � M M M �

N N M M M
N N M M M
N N N M M

Error 0.0406% 0.0458%
a/h = 4

Me/M 42/42 15/15
N N N N N
N N N N N
N N N N N

� N N N � N N N �
� N N N � N N N �
� N N N � N N N �

N N N N N
N N N N N
N N N N N

Error 0.3305% 0.4596%

Table 13: Reduced EM4 and ED4 models for the bimetallic plate, uz

a/h = 100 a/h = 4
Me/M = 11/27 Me/M = 17/27

uz
� M M M � M M M �
� M M M � M M M �
� N M M � N M M �

� N N M � N M M �
� N N M � N M M �
� N M M � N M M �

Me/M = 11/27 Me/M = 19/27

σxx
� M M M � M M M �
� M M M � M M M �
� N M M � N M M �

� N N M � N M M �
� N N M � N M M �
� N N N � N M M �

Me/M = 13/27 Me/M = 20/27

σxz
� M M M � N N M �
� M M M � M M M �
� N M M � N M M �

� N N M � N N N �
� N N M � N M M �
� N M M � N M N �

Me/M = 13/27 Me/M = 20/27

σyz
� M M M � M M M �
� M M M � N N M �
� N M M � N M M �

� N N M � N M M �
� N N M � N N N �
� N M M � N M N �

Me/M = 15/27 Me/M = 24/27

COMBINED
� M M M � N N M �
� M M M � N N M �
� N M M � N M M �

� N N M � N N N �
� N N M � N N N �
� N N N � N M N �

Table 14: Reduced LD4 models for the bimetallic plate.
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a/h = 100 a/h = 4
Me/M = 20/54 Me/M = 30/54

uz

� M M M � M M M �
� M M M � M M M �
� N M M � N M M �

� M M M � M M M �
� M M M � M M M �
� M M M � M M M �

� N N M � N M M �
� N N M � N M M �
� N M M � N M M �

� N M M � M M M �
� N M M � M M M �
� M N M � M N M �

Me/M = 20/54 Me/M = 40/54

σxx

� M M M � M M M �
� M M M � M M M �
� N M M � N M M �

� M M M � M M M �
� M M M � M M M �
� M M M � M M M �

� N M M � N N M �
� N M M � N N M �
� N N N � N N N �

� N N M � M N M �
� N N M � M N M �
� N N M � N N M �

Me/M = 28/54 Me/M = 40/54

σxz

� N N M � N N M �
� M M M � M M M �
� N M M � N M M �

� N M M � N M M �
� M M M � M M M �
� M N M � M N M �

� N N N � N N N �
� N N M � N M M �
� N M M � N M M �

� N N N � N N M �
� N M M � N N M �
� M N M � N N M �

Me/M = 28/54 Me/M = 41/54

σyz

� M M M � M M M �
� N N M � N N M �
� N M M � N M M �

� M M M � M M M �
� N M M � N M M �
� M N M � M N M �

� N N M � N N M �
� N N N � N N N �
� N M M � N M M �

� N M M � N N M �
� N N N � N N M �
� M N M � N N M �

Me/M = 34/54 Me/M = 50/54

COMBINED

� N N M � N N M �
� N N M � N N M �
� N M M � N M M �

� N M M � N M M �
� N M M � N M M �
� M N M � M N M �

� N N N � N N N �
� N N N � N N N �
� N N N � N N N �

� N N N � N N M �
� N N N � N N M �
� N N M � N N M �

Table 15: Reduced LM4 models for the bimetallic plate.
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Figures

Figure 1: Plate geometry and reference frame.
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Figure 2: Equivalent Single Layer (ESL) scheme and Layer Wise (LW) scheme.

-0.4

-0.2

 0

 0.2

 0.4

-0.4000 -0.2000 0.0000 0.2000 0.4000

z

σ- xx

Ref. Sol.

EM4

ED4

Figure 3: σxx distribution along the thickness via an EM4 model, symmetric laminated plate, a/h = 100.
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Figure 4: σxz distribution along the thickness via LD4 and LM4 reduced models, symmetric laminated
plate.
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Figure 5: σxx distribution along the thickness via LD4 and LM4 reduced models, asymmetric laminated
plate.
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Figure 6: σyz distribution along the thickness via LD4 and LM4 reduced models, asymmetric laminated
plate..
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Figure 7: σxz distribution along the thickness via LD4 and LM4 reduced models, bimetallic plate.
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