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Abstract

This paper proposes variable kinematic, mixed theories for laminated plates built via the asymp-
totic/axiomatic method (AAM). This method has been recently developed and successfully applied
to develop refined theories for multilayered plates and shells. The AAM evaluates the accuracy of
each unknown variables of a structural model. The present paper extends the AAM to mized the-
ories based on the Reissner Mized Variational Theorem (RMVT). The displacement transverse
stress fields are modeled by means of the Carrera Unified Formulation (CUF), and expansions
up to the fourth-order are employed. Equivalent Single Layer (ESL) and Layer Wise (LW)
schemes are adopted, and closed-form Navier-type solutions are considered.

The AAM is exploited to determine the set of active terms of a refined plate model. The inac-
tive terms are then discarded. The effectiveness of each variable is evaluated with respect to an
LW, fourth-order mized model. Reduced models are built for different thickness ratios, stacking
sequences and displacement/stress variables.

The results suggest that reduced models with significantly less unknown variables than full models
can be built with no accuracies penalties. Such models are problem dependent, and full models

should be preferred in the case of thick, asymmetric plates.

Keywords: A. Laminates, Plates, C. Laminate mechanics C. Analytical modelling C. Com-

putational modelling



1 Introduction

Laminated composite and metallic plates are commonly adopted in many engineering applica-
tions, and a number of structural models have been developed over the last decades for their
analysis. The solution of the 3D elasticity equations can be very expensive from a computa-
tionally standpoint, and, moreover, such solutions are usually valid only for a few geometries,
material characteristics, and boundary conditions. 2D structural models are employed to ana-
lyze plates. The oldest plate model is due to Kirchhoff [1]. According to this model, transverse
shear, and normal strains are assumed to be negligible with respect to the other stress and
strain components. An extension of this model to multilayered structures is referred to as the
Classical Lamination Theory (CLT). Further details on shell theories can be found in [2].

Refined plate models have been developed to improve the Kirchhoff model. A brief overview
of some of the main techniques to develop advanced plate models for the static analysis of
composite plates is presented hereinafter. In particular, the following macro categories are

addressed:

Models that account for transverse and normal shear effects.

Layer-Wise And Zig-Zag models.

Asymptotic approaches and the proper generalized decomposition.

Reissner Mixed Variational Theorem (RMVT) based models.

Particular attention is paid to the latter; the main aim of this paper deals, in fact, with refined
plate models based on the RMVT.

Shear effects in laminated plates can be very significant; the shear deformability in this type
of plates is higher than in isotropic plates. Reissner and Mindlin [3, 4] included the shear ef-

fect, and their model is known as the First Order Shear Deformation Theory (FSDT). Further



refinements of the FSDT can be achieved through the Vlasov [5] and the Reddy-Vlasov model
[6], These models account for the homogeneous conditions for the transverse shear stresses at
the top and bottom plate surfaces.

Hildebrand, Reissner, and Thomas [7] developed a refined model that accounts for both the
transverse shear and normal stress effects, i.e. that fulfills Koiter’s recommendation [8]. Other
significant contributions on laminated plate models can be found in [9, 10, 11, 12].
Multilayered structures are transversely anisotropic, and their mechanical properties are dis-
continuous along the thickness. These features are responsible for transverse displacements
whose slopes can rapidly change at the layer interfaces and transversely discontinuous in-plane
stresses. Due to equilibrium conditions, transverse stresses must be continuous at the interfaces.
The Layer-Wise (LW) approach [13, 14, 15], Zig-zag models [16, 17] and mixed variational tools
[18, 19, 20] have been proposed to deal with these mechanical behaviors. In the LW, each layer is
seen as an independent plate and compatibility of displacement components are imposed at the
interfaces. Compatibility and equilibrium conditions are then used at the interfaces to reduce
the number of the unknown variables.

The plate theories mentioned above are axiomatic; the unknown variable fields are, in fact, as-
sumed a priori, and such assumptions are based on the scientist’s intuition and experience. An
alternative approach is the asymptotic method in which asymptotic expansions of the unknown
variables are introduced along the plate thickness. The asymptotic method provides approx-
imate theories with known accuracy with respect to the 3D exact solution [21, 22, 23, 24].
The influence of the expansion terms is evaluated with respect to a geometrical perturbation
parameter (e.g. the thickness-to-length ratio). The asymptotic approach furnishes consistent
approximations; that is, all the retained terms are those which influences the solution with the
same order of magnitude as the vanishing perturbation parameter.

The Proper Generalized Decomposition (PGD) decomposes a 3D problem as the summation of



a number of 1D and 2D functions [25]. PGD can be considered as a powerful tool to reduce the
numerical complexity of 3D problem.

The RMVT is a mixed variational approach in which displacements and transverse stresses
are the unknown variables of the structural problem. Furthermore, in an RMVT model the
interlaminar continuity of transverse stresses is imposed a priori [26, 27, 28, 29]. Murakami and
Toledano applied the RMVT to the analysis of multilayered plates via first and higher-order
theories and layer-wise schemes [19, 30, 31].

This paper proposes refined plate models by means of the Carrera Unified Formulation (CUF)[32,
33]. According to the CUF, the displacement and stress fields of plates can be defined as ar-
bitrary expansions of the thickness coordinate. The expansion order is a free parameter of the
analysis, and it can be chosen via a convergence analysis. The governing equations are obtained
through a set of fundamental nuclei whose form does not depend on either the expansion order
nor the base functions. CUF models based on the RMVT have been developed over the last
years [20, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

The axiomatic/asymptotic method (AAM) has been recently developed for beams [44, 45] and
plates [46, 47] in the CUF framework. The AAM investigates the effectiveness of each general-
ized displacement variable of a refined theory against the variation of various parameters; such as
the thickness, the orthotropic ratio and the stacking sequence. The AAM leads to the definition
of reduced models that have the same accuracy of the full model but that have fewer unknown
variables. The best theory diagram (BTD) is an important outcome that stemmed from the use
of the AAM [48]. The BTD is a diagram in which, for a given problem, the computationally
cheapest structural model for a given accuracy can be read. The BTD is problem-dependent,
and it can be obtained by exploiting genetic algorithms [49, 50]. The most recent developments
have dealt with the definition of more accurate techniques to evaluate the accuracy of the model

[51, 52], layer-wise plate [53] and shell [54] models.



In this work, the AAM is applied to RMVT models for the first time. Navier-like closed-form so-
lutions are employed, and both ESL and LW models are considered. This paper is organized as
follows: the geometrical relations for plates and the constitutive equations for laminated struc-
tures are presented in Section 2; the CUF is presented in Section 3; the governing equations
are introduced in Section 4; the axiomatic/asymptotic technique and the BTD are introduced

in Section 5; the results are given in Section 6; the conclusions are drawn in Section 7.

2 Geometrical and constitutive relations for plates

The plate geometry is shown in Fig. 1; the reference surface is €2 and its boundary is I". The
reference system axes which lie on the reference surface ) are denoted as x, y; z is the reference
axis normal to the reference surface. The length side dimensions of the plate are indicated as a
and b, and the thickness of the plate is h.

The strain components for a generic k layer are evaluated according to the linear strain-

displacement relation, that is

e’ = Du” (1)

where D is a differential operator whose components are

20 0
0 & 0
o)
Dzooa )
o o5 O
= 0 &



Strain components are grouped into in-plane (p) and out-of-plane (n) components, that is
T T
ek = {ek ek ek ] ek = {ek e ekz] (3)

The superscript 1" denotes the transpose operation. On the basis of this grouping, it is possible

to write
er =Dpu* € =D,u* (4)
where ) )
20 0
Dy=1 0 2 0 (5)
D,o DA"Z
_%oa%_ _008%_ _%00_
Dn=1o0o & Z|=]l0o0 & |+ 0 £ 0 (6)
00 g ] 00 0| [0 0 Z|

The stress components for a generic k layer can be obtained via the constitutive equations,
ok = ke (7)

The matrix of the material elastic coefficients (C ) is given in the problem reference system
(2,9, 2z). The dependence of the elastic coefficients C;j; on Young’s modulus, Poisson’s ratio, the
shear modulus, and the fiber angle is not reported here. It can be found in the book by Reddy

[6]. The stress components can be grouped into in-plane (p) and out-of-plane components, i.e.

T T
Up = [Jxﬂc Uyy Uzy] on = |:0-;rz Uyz Jzz:| (8)



The constitutive can be written as

kE _ k k
o, —Cppep + Cpre,

a’n“ :Cnpe]; + Cmeﬁ 9)

In the case of orthotropic materials, the following relations hold

Ch Clh Cig Ch Cis 0 0 0 Cf
k k k KT
Cls Cl Cfs 0 0 Ch 0 0 Ci
(10)

According to the RMVT, the out-of-plane stresses (0., 0y., and o,.) are assumed as indepen-

dent, and a particular mixed form of the Hooke law is required,

_k _k ~k _k
OpH _CppepG + CannM

unt =Gyl + €ty (1)

where H indicates those stress and strain components that were obtained by means of the
Hooke law. G indicates those strain components that were obtained by means of the geometrical
differential operators in Eqs. 5 and 6. M indicates the transverse stress components modeled
by means of the CUF.

The elastic coefficient matrices are the following;:

¢, =c,-cchc,  C,=cpcl ¢, =-Cc, C,=0C (12

pn~'nn



3 Carrera Unified Formulation for plates

In the CUF framework, the displacement field of a plate can be described as

u(z,y,z2) = Fr(z) - ur(z,y) T=12,...,N+1 (13)

where u is the displacement vector (u, u, u,) whose components are the displacements along
the z, y, and z. F; are the expansion functions and u; = (uzr, Uyr, u.r) are the displacement
variables of a point P which lies on the reference surface 2; N is the expansion order. For the

sake of clarity, Eq. 13 is also given as follows:

Uy = Frug, + Foug, + ...+ Fnugy + Fnyr Ugn i
Uy = Fruy, + Fouy, + .o+ FNuyy + FNpr vy, (14)

Uy = Fruy + Fotgy + oo+ FNuzy + FNy1 Uzy

A number of explicit displacement fields will be given for specific expansion orders in the fol-
lowing sections of this paper. According to the RMVT, the transverse stress components (o,

oy, and 0;) are modeled as

OxzM (‘Ta Y, Z) OxzMT ($7 y)
onm(2,y,2) = oot (4,9, 2) = F;(2) o yonir (2, Y) r=12...,N+1 (15)
UZZM(xayaz) UzzMT(m7y)

That is,

OpoM = F1 OgxzM; + Fy OgzMy T -- + Fy OxzMy T FN+1 OzzMp 41
OyzM = Fy OyzM; + F OyzMs +..+Fn OyzMp + FN+1 OyzMp41 (16)

0..m = I OzzM; + Fy OzzMy + oo+ Fn OzzMy + Fyni Oz22MN 41



The expansion functions F’- can be defined along the entire thickness of the plate or each layer.
In the former case, the Equivalent Single Layer (ESL) approach is followed and in the latter
case the Layer Wise (LW) method is used. Examples of ESL and LW schemes are shown in
Fig.s 2(a) and 2(b), respectively; a transverse section of a multilayered plate is shown, and the
number of layers is equal to Ny. A generic displacement component distribution is presented

according to linear and higher-order expansions.

3.1 Equivalent Single Layer models

According to the ESL, the behavior of a multilayered plate is analyzed considering it as a single
equivalent lamina. F, can be Mac-Laurin expansions of z, and they are defined as F, = 27!,
CUF ESL models based on the Principle of Virtual Displacements (PVD) are referred to as
EDN, where N is the expansion order. CUF RMVT ESL models are referred to as EMN. In
the latter case, the transversal stresses are always modeled by means of the LW scheme with

an expansion order equal to N. An example of a fourth-order (ED4) displacement field is the

following:

ux:uxl—f—zum+z2ux3—|—23ux4+z4ux5
_ 2 3 4 17
Uy = Uy, + 2 Uy, + 27 Uys + 27 Uy, + 27 Uy, (17)

Uy = Uy + 2 Uy + 22 Uzs + 23 Uy, + 24 Uy
3.2 Layer Wise models

In an LW model, the displacement field is Cy continuous through the laminate thickness. LW
models can be conveniently built by using the Legendre polynomial expansion along each layer.

The displacement field is described as

uk:Ft-uf—l—Fb-ulg—i—Fr-uf:FTuﬁ T=tbrr=23...,N k=1,2,...,N; (18)
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Subscripts ¢, and b indicate the top and the bottom of the layer. An example of LD4 displace-

ment field is the following;:

u’; = F; U]:Zt + Fy u’;2 + F3 u§3 + Fy u§4 + Iy uféb
ulg = F; ugt + Fy ul;2 + I3 u’;?) + Fy uZ4 + “’;b (19)

ub = Fyub, + Byl + Byl + Fyuby + Fyub,

The LW can be employed to define the transverse stress components,

ot = Fiok, + F.of + Foh, T=tbrr=23,...,N k=1,2,...,N, (20)

F; are defined via an non-dimensional coordinate ((, its range is —1 < (x < 1). The extremal
values —1 and 1 denote the bottom and the top of the layer, respectively. F;, are given by the

Legendre polynomials,

F

:P0+P1 Fb:Po—Pl

. . F,=P,—P_y r=23,..N (21)

The fourth-order Legendre polynomials are

Bl p _BG3G 3G 15G 3

Py=1 Pi=C Py=
0 1=C P 5 5 A 3 1 3

(22)

CUF LW PVD models are referred to as LDN, where N is the expansion order. In the RMVT

case, models are referred to as LMV,

11



4 Governing equations

The PVD stats that

N Np,
Z 0 Lfnt = Z 0 L’;zt (23)
k=1 k=1

Where LY , is the virtual variation of the strain energy given by the stress and strain distri-
butions in a generic layer k. L., is the virtual variation of the work made by the external

loadings. The PVD can be expressed as

NL NL
> / / (0€) oy + bt o) dARAQ = / su” p dAy dQy, (24)
k=1 " J Ax =1 % J Ay

where Qj, stands for the reference surface of the layer, and [ A, dAj, denotes the integration
along the thickness direction.
In the RMVT case, the compatibility of the transverse strains is enforced in addition to the

equilibrium,

Ny, N
Z/ / [(5€Z;GO'pH +0€ conn + 6aly (€ — enpr)| dARdQY, = Z/ oul pdAy;, dQy,
k=17 Ak k=17 Ak
(25)
The mixed term (50'77:M (enc — €nmr) enforces the compatibility of the transverse strain com-
ponents €,. In the following, the subscript G indicates the strains obtained by means of the
differential operators defined in Eq.s 5 and 6, and the subscript H indicates the stresses obtained

by means of the Hooke law.

12



4.1 PVD case

According to the CUF displacement field, the geometrical and constitutive equations, the PVD

can be written as

/Q su” {(—Dp)T [c’;pEST D, + C},Ey; Dy + C’;,LEST,Z}
"
+ (=Dpa)" [C’;: EyD,+ Ck By Dyq + C,’inEST,Z}
+ |Gl Es Dy + Ch, By Do + Ch, By | | uk atyt
/F sl {(1,)7 [Ch, By D, + Ch, oy Dy + Ch, B |
"

+ (L) " [Chy Bor Dy + Chy By D + Chy | uldly = 6L

Where I, and L, are

1 0 0 00 1
L=10 10 Lpy=10 0 1
110 00 0

(E757ET,ZS,ETS,Z,ET,ZS,Z) are defined as

hy
2

(E’TS:ET)zsaETS’ZJET’zSVZ) :/h (FTF&FT,ZF&FTFs,vaT,ZFs,zp) dzk

_ K
2

Where hy, is thickness of the generic k layer. The governing equations can be written as

T, TS k _ pT
ou; : Kj°-ul =P,

and the boundary conditions are

kts. .k __ yrkTs=k
Hd T Hd ur

13

(27)

(28)

(29)



Where P7,_ is the external load. The fundamental nucleus K7® is assembled through the indexes

7 and s. The fundamental nucleus is

K3° = {(_Dp)T [C];pEST D, + Cl;nESTD”Q + C];”EST’Z} +
(~Dag)” |Chy BrDy + Chy B Doy + Chy By | +

T
+ |Cho By sDy + Ch, By Do + Ch, By .| | (31)
And for boundary conditions,

ks = {(Ip)T [Cl;pEST D, + ClzanSTDnQ + CI;HEST’Z} +

T
+ (L) " [Chy Bor Dy + Chy Eor Dag + Ch By |} (32)

4.2 RMVT case

According to the RMVT,

Ny,
T ~ -
Z 5ul§ {IgCILZPET SDPU‘]; + IgC’;nET so'ffm- + IEQET SO'm—} dl'y.—
k=1"Tk

N
T ~ ~
3 / {5u’; [DZC'SPETS (D,,u’j) +DICE B, ok + DIGE, s + Efsyzcrm] n
k=1
~ k -
ool [DnQETSu’j B, = B, (Dyut) - C,’anTscrﬁT} } i, =

Np
> / § (Fou,)” pdAg dQy, (33)
k=17 7 Ak

The equilibrium equations can be written as

kts, .k ks _k k
Kuu ur + Kua or=DP

Kioul + Ko =0 (34)

14



Whereas the boundary conditions are

kts .k ks _k __ kTs—=k kts—=k
Hu uT+]‘_‘[O' UnT_Hu uT+HO' Onr (35)

The introduced differential arrays are given by the following relations:

K/® =—-D]C}D,E.,

Kis=-DICh B, +1E,, —DloE,,
K! =DyuoErs +1E, ,— Ck D,E,,
KZ;ZS = - C]rcmETs

s =1/'CF D, E,,

P T pp
I =17 Ck B, + 100 By (36)
Iis _ -
100
I=]101 0 (37)
(00 1|

4.3 Navier-type closed-form solution

This paper exploited closed-form solutions for simply-supported, cross-ply, rectangular plates

under a transverse distribution of harmonic loadings. The following properties hold

CprplG = C~1pp26 = C~1pn36 = Cnn45 =0 (38)

15



Stresses and displacements are expressed according to the following harmonic form:

(uk ok, )= <Uk ok ) cos (m”’“>sin (mgg’“> k=1,N,

(uk ok ) = (Uk 6k ) sin <mm’“ cos (my’“> T=1,N (39)

LR N AT AT :
where Uy , U, , U; , 6,,, 6,,, and 6, are the amplitudes, m and n are the number of waves

(they range from 0 to co) and ay and by are the dimensions of the plate.

5 The axiomatic/asymptotic method

The AAM is a technique that allows us to determine the influence of each unknown variable
on the solution. Axiomatically built models are used as starting theories, and their variables
are investigated. As in an asymptotic analysis, the influence of each variable can be easily
investigated against various parameters, e.g. thickness, orthotropic ratio, and stacking sequence.
One of the main capabilities of the AAM is the definition of reduced models in which all the
ineffective terms are discarded. AAM examples can be found in [46] for plates, in [44] for beams,
or in [51] for shells.

The AAM consists of the following steps:

1. Parameters such as the geometry, BCs, materials and layer layouts are fixed.
2. A set of output parameters is chosen, such as displacement or stress components.

3. A starting theory is fixed (axiomatic part); that is, the displacement variables to be ana-
lyzed are defined; usually, a theory which provides 3D-like solutions is chosen; a reference
solution is defined (in the present work the LM4 was adopted, since this fourth-order
model offers an excellent agreement with the three-dimensional solutions as highlighted
in [29]).

16



4. The CUF is used to generate the governing equations for the theories considered.

5. The effectiveness of each term of the adopted expansion is evaluated by evaluating the
error due to its deactivation; a term is considered as non-effective if the error is negligible;

the deactivation of a term is obtained by means of a penalty technique.

6. The most suitable structural model for a given structural problem is then obtained by

discarding all the non-effective variables.

The penalty technique requires the use of a penalty value on the main diagonal term of the
stiffness matrix related to the degrees of freedom to be deactivated. More details about the
penalty technique can be found in [55], and a detailed description on the application of the
penalty technique in CUF models can be found in [56].

A graphical notation was introduced to show the results. In the case of mixed formulations,
a table with six lines is used, and a number of columns equal to the number of the unknown
variables employed in the expansion. Table 1 shows LM4 and EM4 models for a two-layer plate.
Each unknown variable can be deactivated as shown in Table 2. The symbol B is used to denote
the terms that cannot be deactivated in the LW since this would introduce an extra constraint.
Table 3 shows a reduced LM4 model in which the top-layer u;3, u.4, and the bottom-layer o2
and o,,4 were deactivated.

The error due to the deactivation of a displacement or stress variable is computed as

Q
ref

err = Hl - x 100 (40)

where @ is the displacement /stress value obtained by means of the reduced model and Q.y is

the reference value.

17



6 Results

The results of the AAM analyzes are reported hereafter; the aim is to evaluate reduced models
that are based on mixed and displacement formulations. In all cases, the acting load is a

transverse pressure applied to the top surface of the plate,
mT nm
p. = p? sin (— :z) sin (T y) (41)
a

where m = n = 1. The reference system layout is depicted in Fig. 1. In all the following

analyzes, displacement and stress component values are presented in a non-dimensional form,

g, = W0us Brh® 0w = Joelvz)
poa 7 po(a/h)? 0 poa/h

(42)

6.1 Laminated plates

A reference solution must be available to carry out an AAM analysis. If exact 3D elasticity
solutions are not available, the CUF higher-order models are used as reference solutions. These
models, in fact, were proven to be as accurate as exact 3D solutions [29]. In particular, LM4
models are extremely accurate in the laminated plate analysis.

A preliminary assessment was carried out to highlight LM4 enhanced capabilities against exact
3D elasticity solutions [57]. The material properties are Er/Ep = 25, v = 0.25, Grr/Er =
Grr/Er = 0.5, G./Er = 0.2, 0°/90°/0°. Table 4 shows stress and displacement values for a
thin and a thick plate; the LM4 results are in excellent agreement with the exact solution. On
the basis of this outcome, the AAM reference solution is the LM4 for all this paper assessments.
Reduced ED4 and EM4 models are shown in Table 5 for o.,. Thin and thick plates were
considered. M. /M indicates the ratio between the number of effective terms and the number

of variables of the full model. In the case of thin plates, the reduced ED4 model that is able to

18



provide the same accuracy as an LM4 model in the computation of o, is the following:

Uy = 2 Uz, + 23 Ugy
_ 43
Uy = Z Uy, ( )

2
Uy = Uy + 27 Uyy

Figure 3 shows the stress distribution given by the reduced models. A perfect match with the
reference LM4 model was found. In the case of thick plates, all the variables are needed and the
error is not negligible. In other words, ESL models are not able to provide the same accuracy
of an LM4 model for the computation of o, in thick plates.

Reduced LD4 and LM4 models are reported in Tables 6 and 7, respectively. Various displace-
ment and stress components were considered for thin and thick plates. The last row refers
to those reduced models that are needed to detect all the considered displacement and stress
components. Figure 4 shows the shear stress distribution along the thickness of the plate; the
reduced models were compared with the full LM4 model.

An asymmetric stacking sequence was then considered (0°/90°). The LM4 reference values for
the AAM are reported in Table 8 together with the results from LD4, ED4, and EM4.

Table 9 shows reduced EM4 and ED4 models for u,. In the case of thin plates, the reduced
ED4 model that is able to provide the same accuracy as an LM4 model in the computation of

u, is the following;:

Up = Uy, T 2 Ugy
Uy = Uy, + 2 Uy, (44)
Uy = Uy + 22 Uy,

All the variables are needed in the thick plate case and the error is not negligible.

Reduced LD4 and LM4 models are reported in Tables 10 and 11, respectively. The axial (o)

and shear (o,.) stress distributions along the thickness are shown in Fig.s 5 and 6; the reduced

19



LD4 and LM4 models were considered together with the full LM4 model.

On the basis of these results, it can be stated that

As expected, thin plates require less unknown variables to obtain the same accuracy of the
full model. The AAM can lead to reduced models that require about half of the unknown

variables of the full model.

ESL reduced models with significantly fewer variables that full models can be found in

the thin plate case. On the other hand, Full ESL models are needed for the thick case.

The adoption of mixed models makes the set of active displacement variables changes
with respect to the displacement model case. In other words, the introduction of stress

variables makes some displacement variables ineffective and others effective.

The LM4 reduced models are more cumbersome than the LD4 reduced models. LM4

models are however more effective in detecting the stress distributions along the thickness
than LD4 reduced models. The latter sometimes are not very accurate at the top and
bottom regions and do not guarantee the transverse stress interlaminar continuity. It must
be underlined that L.D4 reduced models that can fulfill the top and bottom BCs can be

obtained by means of other AAM strategies as shown in [53].

e The asymmetry of the lamination and the increase of the thickness make the number of
active terms increase. In fact, as soon as multiple displacements and stress components
are needed, full models are generally preferable in the thick plate case. Reduced models
with considerable fewer degrees of freedom are available for the thin plate case, or for

thick plates with symmetric lamination.
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6.2 Bimetallic plate

A bimetallic square plate was considered as second study case. The top layer of the plate
is made of titanium (F = 114 GPa, v = 0.3) and the bottom layer is aluminum (F = 70.3
GPa, v = 0.33). The reference LM4 results employed in the axiomatic/asymptotic analysis are
reported in Table 12 together with the results from LD4, ED4, and EM4.

Table 13 shows the ED4 and EM4 models for u,. Similarly to the composite laminated plate
case, thin plates can be analysed by means of reduced models. Thick plates, instead, require
full models and their accuracy is poorer than LM4. In the case of thin plates, the reduced ED4
model that is able to provide the same accuracy as an LM4 model in the computation of u, is

the following:

Ug = Ugy + 2 Ugy
Uy = Uy, + 2 Uy, (45)
Uy = Uz + 2 Uy, + 22 Uy
Tables 14 and 15 present the reduced LD4 and LM4 models, respectively. Figure 7 shows the
shear stress distribution by means of the reduced models.

The results suggest the following:

e As for the laminated case, the increase of the thickness makes the number of active terms

increase.

e A significant computational cost reduction can be obtained by means of ESL model for
the thin plate case. As for the laminated case, full ESL models should be used for thick

plates.

e [t is hard to predict the reduced LM4 model on the basis of the LD4 one. In fact, as it he
previous case, mixed reduced models may not share all the displacement variables with

the LD4 model.
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e It is confirmed that the LM4 reduced models are generally more cumbersome than the
LD4 reduced models. The LM4 models are effective in detecting the stress distributions
along the thickness. The LD4 reduced models may not fulfill the top/bottom boundary

conditions as well as the interlaminar continuity of the shear stress.

e As a general guideline, as soon as multiple displacement and stress components are needed,

full models should be generally preferred in the thick plate case.

7 Conclusion

The axiomatic/asymptotic method AAM has been applied for the first time to refined plate
models based on the Carrera Unified Formulation (CUF) and the Reissner Mixed Variational
Theorem (RMVT). The CUF leads to the generation of any order structural model with no
need for formal changes in the governing equations. Such equations have been formulated via
the RMVT to deal with plate models in which the displacement components and the transverse
stress components are the primary variables. The AAM is a technique that can be exploited to
evaluate the influence of each displacement /stress variable in a structural theory. In particular,
the AAM allows us to discard all those variables that are not effective. The AAM leads to the
definition of reduced structural models that are as accurate the full models, but computationally
less cumbersome.

Navier closed-form solutions have been adopted in this paper. Laminated composite and
bimetallic plates have been considered. The influence of different parameters, namely the thick-
ness and the stacking sequence, has been investigated.

The following main conclusions and guidelines can be drawn:

1. The AAM can build reduced models that have considerably less unknown variables than

the full models. In many cases, less than half of the original variables are required.
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2. As expected, an asymmetric lamination or a thick plate, require more cumbersome models.

3. ESL reduced models can be built for thin plates, and a significant computational cost

reduction can be pursued. Full ESL models should be used in the thick plate case.

4. Mixed reduced models (LM4) are more cumbersome than the models based on the displace-
ment formulation (LD4) . However, the LM4 fulfill the top/bottom boundary conditions

and the interlaminar continuity, whereas, in some cases, the LD4 do not.

5. Different output variables can require different reduced models.

6. In general, it is not possible to predict the effectiveness of the reduced LM4 on the basis of

the reduced LD4; LM4 may not share all the displacement variables with the LD4 model.

7. If thick asymmetric plates have to be dealt with, and various output variable are of

interest, full models have to be used.

As seen in previous works, the AAM results are problem dependent. Depending on the problem
characteristics, AAM can lead to significant reductions of the number of variables, or can just
recommend the use of full models. In LW models, in particular, the reduction of variables is
always significant. It is also confirmed that the ease of implementation of AAM in the CUF

framework allows us to:

1. Outline guidelines and recommendations for the choice of the most appropriate set of

variables for any combinations of structural configurations.

2. Evaluate the accuracy of any given structural theory for different structural configurations

against exact or quasi-exact solutions.

Future works will deal with the construction of best theory diagrams (BTDs) for RMVT models

via genetic algorithms. As shown in [49, 50, 54], the combined use of AAM, CUF and genetic
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algorithms lead to the definition of a BTD in which, for a given accuracy, the least cumbersome

structural model can be read. The use of the genetic algorithm reduces considerably the number

of reduced models to be considered to build the BTD.
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Tables

LM4 EM4
Uy B | A | A | A N A A AN A | A| A A |A
Uy M| A A |A| N A | A AN A | A | A|A|A
Uy M| A A |A| N A A AN A | A|A|A|A
o B | A | A | AN A A AR B | A | A | AN A A|A N
Oyz M| A A |A| N A A AN M| A A |A| N A A AN
Oz B | A A | AN A A AR H | A | A | AN A A|A R

Table 1: Full model representation of a two-layer model in the case of an LM4 description of displacements
and transverse stresses, and in the case of an ED4 description of displacements and LD4 for transverse
stresses (EM4).

Active term  Inactive term Non-deactivable term
A A [ |

Table 2: Symbols to indicate the status of a displacement variable.

L JLd LdlLdlg
L AL LdlLdl>
L AL Il 2
LA LAl dlg
AL LdlLdlg
L AL LAl dlg

A | A | A A A A

Table 3: Representation of the reduced model.

Tax(z2="Eh/2) Tup(z2=0) Ty:(2=0) u(z=,h/2)

a/h = 100
Pagano [57] +£0.539 0.395 0.0828 N/A
LM4 +0.539 0.395 0.0828 0.4347
LD4 +0.539 0.395 0.0828 0.4347
EM4 +0.539 0.301 0.0706 0.4343
ED4 +0.539 0.281 0.0734 0.4342
a/h =4
Pagano [57] 0.801 —0.755 0.256 0.2172 N/A
LM4 0.801 —0.755 0.256 0.2172 2.1216
LD4 0.801 —0.755 0.256 0.2180 2.1216
EM4 0.791 —0.745 0.219 0.1767 2.0271
ED4 0.786 —0.740 0.205 0.1830 2.0083

Table 4: Stress and displacement values for a 0°/90°/0° simply-supported laminated plate.
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EM4

a/h = 100
M,/M 17/54
A A|A|A|A
Al A|A|A|A
A | AN A|A|A
B|Ajaja|BRjaja|a|BR|A|A|A R
BA|aja|BR|A|A|A|R|A|A[A R
B Ajaja|BRjA|A|A|BR|A|A|A R
Error 0.0148%
a/h =4
M./M 54/54
A | A | A A A
A | A | A A A
A | A | A A A
M| A | A | AN |A | A|A N A |AADN
B | A | A | AN | A A A N|A|A|ADE
WM | A | A | AN | A A A N|A|A|ADNE
Error 1.1941%

>
>
>
>
>

0.0148%

15/15

1.7951%

Table 5: Reduced EM4 and ED4 models for the symmetric laminated plate, o,

a/h =100 a/h =4

M./M =12/39 M./M = 20/39
Biaja|la/B|A[A|A/BR|A|A|A N B A|a| AR A A|A|R|A AR
Uy LIS YL A N AN L A S B A|A|A|BR|A|A|A|H|A AR
BaAja|Aa|BR|A|[A|A|BR|A|A|A R B A|la|a B A|A|A|R|A AR

M./M =13/39 M./M = 21/39
Baja|Aa|BR|A|[A|A|BR|A|A|A R B A A |A|BR|A|A|A|R|A AR
Oza B2 Ao |(W|[a|a|s|[W[ala[a|m WA 0|0 W |[a|a|s WA NI
B[4 |A|o|[W|[a|a|a|[W[a]a]|a|m WA Ao W |[a|a]n WA NI

M./M = 13/39 M./M = 39/39
B[Ao Ao [W[a]a]a[W][a]a]a]m W [A|A|a [N |[A[a]a|[N]a NI
Oxz WA |A|o|W|a|a|a|[W|[a|a]|a|m WA A|a N | A a|a|N|a NI
B2 |A|o|W|a|a|as|W|[a|a]|a|m WA A|A N | A a|a|N|a NI

M./M = 14/39 M./M = 38/39
WA [A[o[M[a][A]a[M][a]a]a]m WA A|a [N |A|A[A[N]aA NI
Oyz BiAjaja B | Aja|r|B|A|A|A|R B | A|A | AN | A | A|A B A AR
Blaja|a|B|Aa|[A|a/B|A|A|A N B A A A |HR A |A A R|A A R

M./M = 16/39 M./M = 39/39
BaA|jA|A|BR|A|[A[A|BR|A|A|A R B A A | A N | A |A|A B A A N
COMBINED [®[a[a|[a|[m|a|ala|®W|[a|a|a|m B4 |A|A|N|a|a|a|N]|a NI
B[4 0| |[W|[a|[a|s|[W[a|a]|a|m B[4 A4 W | A a|a|m]a NI

Table 6: Reduced LD4 models for the symmetric laminated plate.
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a/h=4
M,/M = 37)78

a/h =100
M, /M = 24/78
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Table 7: Reduced LM4 models for the symmetric laminated plate.

u,(z = h/2)

Tyz(2 =0)

O'zz(z = 0) g

(z = £h/2)

0'(1}17

a/h = 100
0.1221
0.1221
0.1631
0.2800

1.0652
1.0652
1.0651
1.0651

0.1221
0.1221
0.1631
0.1120

—0.7159
—0.7159
—0.7158
—0.7157

LM4 0.0844
LD4 0.0844
EM4 0.0843
ED4 0.0842

a/h =4
0.1379
0.1439
0.1672
0.2878

2.1700
2.1700
2.1385
2.1282

0.1230
0.1205
0.1585
0.1091

—0.7897
—0.7896
—0.7748
—0.7708

LM4 0.1098
LD4 0.1098
EM4 0.1094
ED4 0.1093

Table 8: Stress and displacement values for a 0°/90° simply-supported laminated plate.
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EM4 ED4

a/h = 100
M./ M 16/42 7/15
A A | A|A|A
A A | A|A|A
A|A|A|A|A A|A|A|AA
NN LIS Alalojala
NN IS Ajojalajea
| BIVNR VNIV VNS VNSV |
Error 0.0141% 0.0265%
a/h =4
M./ M 42/42 15/15
A | A | A|A|A
A| A | A|A|A
A | A | A A A A| A | A|A A
NN AlAlAlAla
WA A A W |a|aa|m Ajajajaja
H | A A | AN A |A|lA N
Error 1.4533% 1.9272%

Table 9: Reduced EM4 and ED4 models for asymmetric laminated plate, u,

a/h =100 a/h =4
M,/M = 11/27 M,/M = 16/27
A A A | A

I LIRS NI | a OIS
Uy NN WA |A|A|W|[a|0|a|W
WA |L|A|W[a]ba]|a|m ONRNRNLIIRNNNL

M./M = 11/27 M. /M = 19/27
NN WA A|L[W[a]a]a]m
Oz ONPRNNLINNNL WA |A|L|W|[a|0]|a|m
W[4 |o|o|W[alo|a|m WA A|a|W|[2]0|a|m

M./M = 13/27 M. /M = 27/27
ORI B a|A|A|N|[a]a]a|m
Oz NN WA |A|A|N|a|a|a|m
W[4 |o|o|W[a]o]|a|m WA |A|A|W|a|a|a|m

M /M = 13/27 M./M = 27/27
NN WA A|A[N|[a]a]a]m
Oyz W2 0|6 |M[ala|a|m W4 |A|A|N|a|a|a|m
B A A A B |AjA AN B | A | A AN | A A AR

M./M = 15/27 M./M = 27/27
NN WA |A|A|N[a]a]a]m
COMBINED [®[a|2|a|m|a|a|a|m B A A|A|N|a|a|a|m
W[4 |o|L|W|[a|o]|a|m W4 |A|A|W|a|a|a|m

Table 10: Reduced LD4 models for the asymmetric laminated plate.
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a/h =4
M,/M = 28/54

a/h =100
M./M = 20/54

| | LA LA A
ESERSIRSE RSERSARS) ESERSIE B RSERSARS) L ERSERSE B RESARS) ESEE BE B RSEE RES) IR IR B B R RRS)
2 2 3 2
L BRSARSE RSERSAR | /AAAAAA /AAA_AA_A /AAA_A_AA /AAAAAA
™ ) =) ™~
S EE JRSH B RRESARS) = d|<4 ||« |« [h=BE IR BESH B RESHERS) < (4|4 |d|«|q|« NeRR IR IR B R IR BR |
spnjnmn I pee(apn (| e e e || |
< < ~ <
ESERSARSE RSERSARS) = (94«9 |<9|<Q = [€4d|«]«g|q = || «|Q|<|«e|< AAAAAAA_
SIRIEI EIEIE ISR IR IR] RIR IR IR IR RS EIEIR IR IR I RIR IR IINGA R IR IR RIR IR
= = = =
SRR JESH RSEE RES) 44 q]|4qq|« AR BESE B BE RES) 4|« |d]<|«|<d RIR AR R IR IR |
| | L AL L AL LA AL
| | A AL L ]
ESEESARSE Bl ERi] Q9|4 < ESEESE RSN Eh ESRRS] EAESE RSN RSB ESRRS] SUARSAESE BRI RS
z z z z

X
<lalalala|a] Lajala]<|ala| Lj«a|a]a|a|«| L |a|«|a]a|a|e| L |«j«ja]a|a|«
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ESERSIE B RSERSARS) [aNERSERSIE B RSERSARS) [aNEE ERSEE B B RESARS) [aNEESEE BE B RSEE JES) 2BR IR IR B IR I
M ORI I e ETm T MmN nN e
ESERSIRSE RSERSARS) = |Q|<|<g ] Qg AA_A_A_A_A_A_ = |29 <9< = Q<9 <9<
SISIEE BISIEIRGSEIEIEE EIEIEIRGAE IEIEE EIEIE IR IR IEE EIEIE IINGJR IR IEN EIEIR
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SRR B RSERSARS) SSERSIE B RSERSARS) EERSAE B B BESARS) AR IR B RSEE RES) IR IR N B R RRS)
EEm | aEm e EEm | EEm | L A
2
g g B g =
s S S S =
S
O

Table 11: Reduced LM4 models for the asymmetric laminated plate.

u,(z = h/2)

Tyz(2 =0)

(z==%h/2) Tz:(2=0)

O.(IJI

a/h = 100
0.2355
0.2355
0.2316
0.1846

2.2073
2.2073
2.2072
2.2072

0.2355
0.2355
0.2316
0.1845

—0.1810
—0.1810
—0.1803
—0.1804

LM4 0.2236
LD4 0.2236
EM4 0.2244
ED4 0.2246

a/h =4
0.2306
0.2306
0.2287
0.1823

2.9079
2.9079
2.8982
2.8945

0.2307
0.2306
0.2286
0.1822

—0.1830
—0.1830
—0.1840
—0.1845

LM4 0.2520
LD4 0.2520
EM4 0.2514
ED4 0.2521

Table 12: Stress and displacement values for a bimetallic simply-supported laminated plate.
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EM4 ED4

a/h = 100
M, /M 16/42 7/15
[alalalala]
A A | A|A|A
A A | A A|A A|A|A|A]A
NN LIS LN LS N N
NSNS Ajajalajea
| BV VNIV VNS VNN |
Error 0.0406% 0.0458%
a/h =4
M,/M 42/42 15/15
A| A | A|A|A
A | A | A A A
A | A | A A A A | A | A | A|A
W a|A|A|N|A|ala]m AlAlAjAlA
W a|A|a|W|alaa|m Ajajajaja
B | A A | AN A |A|lA N
Error 0.3305% 0.4596%

Table 13: Reduced EM4 and ED4 models for the bimetallic plate, u,

a/h =100 a/h =4

M./M =11/27 M./M = 17/27
B A(a|ja| B |A|A AR B A|A|A|B|AA|arN
Uy B|a|a[a|m]a]a]a]|nm BA|a|[a|W|[a[r]a]|m
Bja|s[a|m][a]a]n]m Ba[a[a|m][a[a]a]m

M. /M =11/27 M./M =19/27
B[a[a[a]m][a]a]a]m Bja[a[na[W][a[a]a]m
Oxz B|a|a|a|m]afa]a]m Bjaja|[na|m[afa]a]m
Ba|a[a(m[aa]a]m BA|a|[a|m[a[a][a]m

M,/M = 13/27 M,/M = 20/27
B[a[a[a[M[a[a]a]m BA[a[r[W][a[a][a]m
Oz B|a|a[a(m]a]a]a]m BA|a[a|W[a][a]a]m
Ba|a[a|m[aa]a]m BA|[a|[a|W[a[a]a]|m

M,/M = 13/27 M, /M = 20/27
B A|(a|jar | B |A|A|aR B A|A|A|B|AjA|arN
Oyz B|a|a[a|W|aja|a]|m B|A|A|[a|W|[a[a]a]|m
Bja|na[a|m][a]a]a]m BA[a[a|W][a[a]a]|m

M./M = 15/27 M./M = 24/27
B[a[a[a][M[afa]a]m BAa[a[r[W][a[a]a]m
COMBINED [W[a|a|2 W |a|a|z|m W[4 AL W |A|a|a|m
Bja|a|[a|m[afa]a]m BA[aja|/m[a[a][a]|m

Table 14: Reduced LD4 models for the bimetallic plate.
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a/h =4
M, /M = 30/54

a/h = 100
M,/M = 20/54

Al E|EE N EEE|EE N EEE|EEN Al E|EE N EEE|EE N
SIESIRSH SRS SIEIE N ESIRSIES <« <|<al<|<«l< SIRIRSE BSARSIRS <« <|<|<|<l<a
3 3 S e
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] ] — (e}
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snmjemn| (apwijape| |(see|jeee] | seejeee| || ooje|ene
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<l alq|a|l = |Q|Q|a)a|a|a| = [Q|<|a])<l<<] = |[<l<|<)Q|q|q| = |Q|q|a])a|a|<a
~ < N N
SARE ESAESIESI NG RIS RS ESIESIESIISCAE SESIE BRI | LVAAA_AAA LVAAA_AAA
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Table 15: Reduced LM4 models for the bimetallic plate.
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Figures

Figure 1: Plate geometry and reference frame.
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Figure 2: Equivalent Single Layer (ESL) scheme and Layer Wise (LW) scheme.
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Figure 3: o, distribution along the thickness via an EM4 model, symmetric laminated plate, a/h = 100.
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Figure 4: o, distribution along the thickness via LD4 and LM4 reduced models, symmetric laminated

plate.
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Figure 5: 0, distribution along the thickness via LD4 and LM4 reduced models, asymmetric laminated

plate.
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Figure 6: o, distribution along the thickness via LD4 and LM4 reduced models, asymmetric laminated

plate..
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Figure 7: o, distribution along the thickness via LD4 and LM4 reduced models, bimetallic plate.
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