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Compressed Fingerprint Matching and Camera
Identification via Random Projections

Diego Valsesia, Student Member, IEEE, Giulio Coluccia, Member, IEEE, Tiziano Bianchi, Member, IEEE,
and Enrico Magli, Senior Member, IEEE

Abstract— Sensor imperfections in the form of photoresponse
nonuniformity (PRNU) patterns are a well-established finger-
printing technique to link pictures to the camera sensors that
acquired them. The noise-like characteristics of the PRNU
pattern make it a difficult object to compress, thus hindering
many interesting applications that would require storage of a
large number of fingerprints or transmission over a bandlimited
channel for real-time camera matching. In this paper, we propose
to use real-valued or binary random projections to effectively
compress the fingerprints at a small cost in terms of matching
accuracy. The performance of randomly projected fingerprints
is analyzed from a theoretical standpoint and experimentally
verified on databases of real photographs. Practical issues
concerning the complexity of implementing random projections
are also addressed using circulant matrices.

Index Terms— Random projections, PRNU, image forensics.

I. INTRODUCTION

MAGING sensor imperfections can be considered as a

unique fingerprint identifying a specific acquisition device,
enabling various important forensic tasks, such as device
identification, device linking, recovery of processing history,
detection of digital forgeries [1]. The most common camera
fingerprint is the photo-response nonuniformity (PRNU) of
the digital imaging sensor [2]. The PRNU is due to slight
variations in the properties of individual pixels, which produce
a noise-like, yet deterministic pattern affecting every image
taken by a sensor. Several works demonstrate that the PRNU
is a robust fingerprint, usually surviving processing like lossy
compression and image resizing [3], [4].

In the case of PRNU, the camera fingerprint is essentially
a pattern with the same size as the imaging sensor. Due to
the wide availability of sensors counting tens of millions of
pixels, a realistic database of a few thousand sensors will
require to store more than 10'0 individual pixel values in
uncompressed format. In addition, the complexity of looking
for a particular fingerprint in a large database is also very high,
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typically requiring the computation of a correlation with each
fingerprint in the database. The issue of compression of
PRNU patterns does not arise when the results of device
identification have to be used as evidence in the court of
law, because that case typically involves small databases and
requires the highest accuracy. Instead, large scale problems,
such as image classification, clustering or image retrieval
problems based on camera identities, involve a huge number of
PRNU patterns. Hence, these problems call for techniques to
efficiently store and query such databases. Another problem
with PRNU fingerprints is that the test image should be
geometrically aligned with the fingerprint in the database.
A possible solution is to provide several versions of the same
fingerprint with different scale and/or cropping factors [5],
however at the cost of managing an even larger database.

Recently, several authors [6] started to address the problems
related with the management of a large database of camera
fingerprints. In [7] and [8], the authors propose a so-called
fingerprint digest, which works by keeping only a fixed
number of the largest fingerprint values and their positions,
so that the resulting database is independent of the sensor
resolution. An improved search strategy based on fingerprint
digest is proposed in [9] and [10]. Fingerprint digests can also
be used to ease fingerprint registration in case of geometrically
distorted images, as shown in [11]. An alternative solution is
to represent sensor fingerprints in binary-quantized form [12]:
even though the size of binary fingerprints scales with
sensor resolution, binarization can considerably speed-up the
fingerprint matching process.

In this paper, we propose a novel technique to reduce
the size of camera fingerprints based on random projections.
Our idea is motivated by the Johnson-Lindenstrauss (JL)
lemma [13], stating that a small set of points in a high dimen-
sional space can be embedded into a lower dimensional space
approximately preserving the distances between the points, and
by recent results showing that random linear projections can
provide such embeddings with high probability [14]. In the
case of PRNU fingerprints, it is easy to show that preserving
the distance between two fingerprints is equivalent to preserv-
ing the angle between them. Since PRNU fingerprints of dif-
ferent sensors are known to be highly uncorrelated, and thus to
form wide angles, we can expect that also the angles between
compressed fingerprints obtained by random projections will
be wide. As a consequence, in this paper we adapt the standard
correlation detector [1] to solve fingerprint matching and
camera identification problems in the compressed domain.
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As to practical issues, the complexity of randomly
projecting a large fingerprint is greatly reduced by employing
partial circulant matrices [15], which are known to be almost
as good as fully random matrices. Moreover, inspired both by
the work of [12] and by recent results in compressed sensing
literature [16], we propose a binary version of the compressed
fingerprint that further reduces storage and computational
requirements.

The paper is organized as follows. In Section II, we provide
notations and definitions and we briefly review forensic tasks
based on PRNU and random projections. The proposed com-
pressive PRNU forensic systems are described in Section III,
while theoretical performance is analyzed in Section IV.
Extensive numerical results on different datasets are presented
and discussed in Section V. Finally, in Section VI we draw
some conclusions.

II. BACKGROUND
A. Notation and Definitions

We denote (column-) vectors and matrices by lowercase and
uppercase boldface characters, respectively. The ¢{-th element
of column vector v is vy. The i-th column of the matrix A
is a;.

The notation A -B denotes the elementwise product between
matrices A and B, while A/B denotes elementwise division.

The notation (a,b) denotes the scalar product between
vectors a and b, and ||a||; = /(a, a).

The notation dgy(a,b) denotes the Hamming distance
between a,b € {0, 1}, where dy(a,b) = L > a; & b;
and @ denotes the XOR operator.

The notation a ~ A (u, ¥) means that the random vector
a is Gaussian distributed, its mean is g, and its covariance
matrix is X.

B. PRNU Forensics

PRNU [1], [2] of imaging sensors is a property unique
to each sensor array due to the different ability of each
individual optical sensor to convert photons to electrons. This
difference is mainly caused by impurities in silicon wafers
and its effect is a noise pattern affecting every image taken
by that specific sensor. Hence, the PRNU can be thought
of as a spread—spectrum fingerprint of the sensor used to
take a specific picture or a set of pictures. The PRNU is
multiplicative, i.e., if an imaging sensor is illuminated ideally
with a uniform intensity i,! neglecting other sources of noise,
the output of the sensor will be 0 = i 4+ i -k, where k
represents the matrix characterizing the PRNU values.

k exhibits the following properties. It has the same pixel size
as the sensor, and carries enough information to make it unique
to each sensor. It is universal in the sense that every optical
sensor exhibits PRNU. It is present in each picture taken by a
sensor except from completely dark ones (due to its multiplica-
tive nature). It is stable under different environmental condi-
tions and is robust to several signal processing operations.

Un this section, all vector quantities are vectorized versions of images.
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The PRNU characterizing one sensor can be extracted from
a set of images (tipically, 20 to 50 smooth images are enough).
The procedure to extract the fingerprint k of a sensor from a
set of pictures depends on the model used to characterize the
optical sensor. Denoting with i the incident light intensity, the
sensor output 0 can be modelled as

o=¢g” - [1+Kk)-i+e]’ +q, ey

where g7 is the gamma correction (g is different for each
color channel and y is usually close to 0.45), e accounts
for other noise sources internal to the sensor while q models
external noise (e.g. quantization). The goal is to extract k, so,
after keeping the first order term in the Taylor expansion of
[(1 +K)-i+e]”, the output image can be factorized as

0=09+09 Kk +é, )

where 09 = (gi)” is the ideal sensor output, 0'd . k is the
PRNU term and & = y 09 - e/i + q collects other sources of
noise. Assuming to be able to obtain through proper filtering a
denoised version of o, referred to as od”, then this can be used
as an approximation of the ideal sensor output and subtracted
from each side of (2) to obtain the so-called noise residual,
which can be modeled as:

dn

w=0—0"=o0-k+q, 3)

where q accounts for € and for the non-idealities of the
model [1]. Suppose now that a certain number C > 1 of
images is available. Considering the pixels of the noise term q
as zero—mean Gaussian noise with variance ¢ and indepen-
dent from the signal o - k, for each image ¢, { =1,...,C,
it can be written

w9 /00 =k + q/0©, where w©) = 0 — oI (1)

Under the above assumptions, the log—likelihood of w®) /o)
given k satisfies

C
Lk) = —% > log (2mz/(o(">)2) (5)
(=1

¢ 2
@) 160 _ 2 /¢a(0)N2
+[§:l (w /o k) / (2(; /(o )) (6)

from which the maximum likelihood estimate k can be
obtained as
C

k=> (Ww) . 0(6))

C

D (09 @
(=1 (=1
From the Cramer—Rao bound, the variance of the estimator
can be estimated as

C
og =0/ 2 (02, ®)
t=1

from which we can notice that good photos for fingerprint
evaluation are photos with high luminance (but not saturated)
and smooth content (which lowers ¢2). To improve further the
quality of the estimation, artifacts shared among cameras of the
same brand or model can be removed by subtracting row and
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column averages. In the case of color images, the estimation
must be performed separately on each color channel, i.e., we
must obtain Kg, kg and kg. After that, a “global” grayscale
PRNU fingerprint will be obtained applying the usual
RGB-to—gray conversion

k = 0.3kg + 0.6kg + 0.1Kkg. 9)

Several forensic tasks can be performed using the

aforementioned model for camera sensors.

o The device identification problem [3] (also known in the
biometrics field as verification) tests whether a given
picture was taken by a specific device. An estimate of
the fingerprint of the device has been extracted in advance
from a set of training pictures and stored in a database.
The noise residual or a single-image fingerprint estimate
is extracted from the query image and correlated with
the fingerprint in the database. The original detector
presented in [4] correlates the noise residual of the query
image with the database fingerprint modulated by the
query image intensity, denoted as corr(w, o - l:i).

o The device linking problem [17] is presented with two
images and must determine whether they have been
acquired by the same device. The noise residuals of the
two photos are correlated, namely corr(wy, wp). We will
not discuss this usage case in the remainder of the paper.

o The fingerprint matching problem (also known in the
biometrics field as identification) is presented with a
database of fingerprint estimates and a set of pictures
acquired by the same camera, which can be used to
extract a fingerprint estimate. The goal is determine
which device in the database (if present) has acquired
the given pictures. Essentially, corr(f(, lE,-) is calculated
for all fingerprints, and if one fingerpring yields a corre-
lation that is large enough, it is declared to be correct.

C. Random Projections

As will be explained in detail in Section III, PRNU
databases can rapidly grow in size. For this reason, a method
to “compress” them is required, with slight or ideally
no information loss. One possible option is represented by
Random Projections (RP), a low—complexity and yet powerful
method for dimensionality reduction. The idea of RP is to
project the original n—dimensional data to an m—dimensional
subspace, with m < n, using a random matrix ® € R™*",
Hence, a collection of N n—dimensional data D € R™*V is
reduced to an m—dimensional subspace A € R™*V by

A = ®D. (10)

The key property behind RP is the Johnson-Lindenstrauss
lemma [13], concerning low—distortion embeddings of points
from high—dimensional into low-dimensional FEuclidean
space. The lemma states that a small set of points in a
high-dimensional space can be embedded into a space of
much lower dimension in such a way that distances between
the points are nearly preserved.

Lemma 1 (Johnson—Lindenstrauss): Let ¢ € (0,1). For
every set Q of |Q| points in R", if m is a positive integer such
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that m = O (ln(IQI/ez)), there exists a Lipschitz mapping
[ R" > R™ such that

(1—&)u—v3 < If@— fMI3 <1 +e)lu—vl3

for allu, v e Q.

It has been shown that f can be taken as a linear mapping
represented by a random matrix ® € R”*”, whose entries are
randomly drawn from certain probability distributions [14],
like the Gaussian or Rademacher distributions.

The properties of RP are strictly related to the field
of Compressed Sensing [18], [19], and in particular to
the Restricted Isometry Property (RIP) of the sensing
matrices [20]. In particular, in [20] it is shown that sensing
matrices ® whose elements follow the aforementioned
distributions respect the RIP as well as the JL lemma. One
can think of the RIP as a JL lemma specific for sparse
vectors. In fact, a matrix ® € R™*" is said to satisfy the RIP
with constant J, if there exists a constant J, such that

(1= o) ul3 < |®cul3 < (1 +60)ul3, (11)

where ®, is every possible m x x submatrix obtained by
keeping x columns of ® and x < n.

The techniques presented in this paper bear some
similarity with techniques used in Locality Sensitive
Hashing (LSH) [21], [22]. Unlike standard hashing techniques,
where the aim of the hashing function is to avoid collisions
of hashes of different objects, LSH is a hashing technique
for large databases using hashing functions whose aim is
to maximize the probability of collision for objects close to
each other rather than far apart. Then, the gap between the
probability of collision of the hashes of similar objects and
the probability of collision of the hashes of different objects is
further amplified by concatenating several hashing functions.
This allows one to perform, for example, a nearest—neighbour
research in a large database using the hash of the query point
retrieving elements stored in buckets containing that point.
Several LSH families have been discovered in literature,
each of them allowing a random choice of hashing functions.
Among them, one, dubbed arccos, bears some similarity
with 1-bit Compressed Sensing [16] and with the techniques
explained in this paper. In words, the hashing function consists
in the sign of the random projections, obtained with a sensing
matrix with independent and identically distributed entries.

However, LSH is concerned with creating an efficient data
structure to solve the approximate nearest-neighbor problem,
so that one does not have to perform exhaustive search over
the whole database. On the contrary, this paper addresses
dimensionality reduction to create a compact representation
for storage and computational complexity reduction of the
matching operations, without the concern of the creation of
a data structure to avoid exhaustive search. Indeed, since
matching fingerprints typically do not show large correlation
values, current results on LSH [23] demonstrate that it is
hard to substantially improve over exhaustive search. Hence,
while in this case random projections are not very effective
at creating efficient data structures to avoid exhaustive search,
nevertheless this paper shows that they are effective at reducing
the dimensionality of the fingerprints. This allows to obtain
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significant savings in storage space, and to speed up matching
complexity, albeit requiring exhaustive search over the entire
database, thanks to the smaller dimensionality and/or fast
comparison between binary vectors, when only the sign of
the RPs is kept.

III. COMPRESSIVE PRNU FORENSICS

This section describes how to apply compression techniques
based on random projections to the forensic tasks presented
in Sec. II-B.

A. Fingerprint Matching

Camera fingerprints obtained as PRNU patterns can be
approximated as white Gaussian noise, a typical assumption
considered in the literature to study the performance of
matching systems. This has some important consequences:
first, PRNU patterns cannot be compressed by standard
methods (e.g., JPEG compression) because they lack the
redundancy that could be exploited to perform compression.
Furthermore, fingerprints are very incoherent with each other.
By incoherence, we mean that two fingerprints have very low
correlation, or in other words, representing them as points in an
n-dimensional space, the angle between any pair of
fingerprints is wide and close to orthogonality. In the
fingerprint matching problem, we construct a dictionary of
fingerprints of N known cameras, which can be represented
as a matrix D € R"V, The goal of the classic fingerprint
matching problem is finding the column that is most similar
to a test fingerprint k € R” that is presented to the system.
To this purpose, one of the most used similarity criteria is the
correlation coefficient. We will consider the sample reflective
correlation, defined as follows:

p(k,d;) = M i=1,...
Ikll2lId;[l2

We propose to compress the database and test fingerprint
representing them through a small number of random
projections. This operation can be seen as the product times
an m x n sensing matrix ®:

N (12)

A = ®D
y=d>ﬁ

13)
(14)

Random projections can effectively reduce the dimension
of the space the fingerprints live in thanks to the fact
that they approximately preserve the geometry of the point
cloud composed of the fingerprints. Since random projections
approximately preserve the angle between any two finger-
prints and since this angle is wide thanks to their incoherent
nature, we can expect a compressive system to exhibit robust
performance, while dramatically reducing the problem size.
The system has to store the compressed dictionary A and a
way to generate the compressed fingerprint whenever a test
pattern is presented, using the same @ (typically the seed of
a pseudorandom number generator is stored).

The first system design challenge is the choice of the
sensing matrix: the most studied sensing matrices are made of
realizations of independent and identically distributed (i.i.d.)
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Algorithm 1 Dictionary Creation
Require: D, ¢
Ensure: A
fori=1,...,N do
a; < IFFT [FFT[d;] - FFT[¢]]
a; < first m entries of a;
end for

Algorithm 2 Matching
Require: A, l:i, 1)
y < IFFT [FFT[IE] -FFT[qS]]
y < first m entries of y
fori=1,...,N do
if p (y,a;) > 7 then
Declare a match
end if
end for

Gaussian random variables. Although they can provide the
best performance in terms of geometry preservation, Gaussian
matrices present some drawbacks which make their use in
large scale problems fairly complex. First, one needs to
generate nm random numbers, which can take a significant
amount of time when »n is in the order of several millions.
In practice one cannot typically store the whole matrix as
this would require too much memory, so only the seed of
a pseudorandom number generator is stored and every time
the matrix is generated on-the-fly. Second, the full matrix
by vector multiplication must be carried out for each of the
columns of the dictionary. In order to avoid such problems
we propose to use partial circulant matrices. Such matrices
generate the first row ¢ at random (e.g., with i.i.d. Gaussian
variables), and all the other rows are just circularly shifted
versions of the first row. It has been observed that circulant
matrices perform almost as well as fully random Gaussian
matrices, and proofs of the JL lemma [24] and of the RIP [25]
are available for such matrices. Circulant matrices provide
great advantages because only the first row must be generated
at random, and because fast multiplication is available through
the FFT. Thanks to the use of the FFT, the product ®D
can be implemented with O(Nnlogn) operations instead of
O(Nmn). The results presented in the following sections hold
for circulant matrices with randomized column signs, since
the proofs in [24] hold for this kind of matrices. In practice,
randomizing the column signs of the sensing operator amounts
to randomizing the signs of the signal and using the original
operator. However, since our signals of interest are noise-like
sequences, the randomization of the signs has no effect and
it is possible to omit it. An example of a compressive system
employing circulant sensing matrix is shown in Algs. 1 and 2.

Further compression can be achieved by quantizing the
measurements, instead of keeping the floating point values.
Jacques et al. [16] have shown in the field of 1-bit compressed
sensing that random measurements with binary quantization
implement an embedding that approximately preserves the
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angle between signals. Since the preservation of the angles
is the main interest for the matching problem, we will also
consider the case of binary random measurements obtained as:

A = sign(®D) (15)

In the case of binary measurements the correlation coefficient
is replaced by the Hamming distance as test metric.

du(y,a;)), i=1,....,N (16)
In Sec. IV we discuss how the Hamming distance tends
to be concentrated around dgs(k,d;) = ! arccos(k, d;),

being arccos(ﬁ,di> the angle between two uncompressed
fingerprints. The higher the correlation between fingerprints,
the narrower the angle between them. Hence, the angle
between two matching fingerprints is typically narrower
than the angle between non-matching fingerprints. This
is reflected on the binary random projections, where the
Hamming distance between matching fingerprints is typically
smaller than that between non-matching fingerprints. Binary
random projections allow to compress significantly, while
the performance degradation is limited. As we will show in
Sec. V, the degradation due to binarization is small but it
allows to obtain a significant gain in terms of space. Moreover,
computing the Hamming distance is a very fast and efficient
operation. Binarization of the fingerprints was considered
by Bayram et al. [12] as an effective method to reduce
storage requirements. We go one step further by showing that
binarization of random projections is effective as well, while
further reducing the storage and computational requirements
and providing additional flexibility by modulating the number
of random measurements. Binarization of the fingerprints
themselves can be seen as a special case of the presented
framework, in which the sensing matrix is the identity.

B. Camera Identification

The camera identification problem is conceptually very sim-
ilar to the fingerprint matching scenario. The main difference
is that a single test image is available instead of a set of
them. Chen et al. [4] showed that the optimal detector for
this problem correlates the noise residual of the image with
a modulated version of the fingerprint stored in the database,
where the modulating term is the test image. Extending this
detector to the compressed domain is not possible because of
the elementwise product between test image and the fingerprint
in the database. Instead, we investigate the performance of
two simplified detectors that can be readily mapped to the
compressed domain. The first simplified detector correlates
the noise residual w of the test image with the fingerprint
stored in the database. Essentially this system eliminates the
modulating effect of the test image, thus it will be sub-optimal
unless the test image is a constant pattern. It is sufficient to
apply the sensing matrix to both noise residual and fingerprint

to translate this detector to the compressed domain.
p(W,d;) —> p(Pw, @d;) (17)

The second simplified detector considers the use of a finger-
print estimate k extracted from the single test image instead
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of the noise residual. This is accomplished by means of the
same procedure described in Sec.II-B, albeit with C = 1.
The detector then correlates this test fingerprint estimate with
the fingerprint stored in the dictionary.

p(k,d;) — p(®k, ®d;) (18)

C. Handling Sensors With Different Resolutions

When dealing with multiple camera sensors, it is commonly
observed that they exhibit many different sizes, hence this
variety of resolutions must be handled. In practice, one can
resort to several solutions such as cropping a standard portion
of fixed sized of every image or zero-padding the extracted
fingerprints or noise residuals to a standard dimension.
Zero-padding is typically the implied method when similarity
is computed finding the maximum of the cross-correlation
function (or the maximum peak-to-correlation energy [1]).
The proposed compressive method projects elements of any
dimension to the same m-dimensional space and then all
computations are performed in this space. When two vectors
u € R" and v € R"™, with np > n; are measured as
y = ®Wu and z = ®®)v, the largest sensing matrix contains
the smallest as a submatrix, namely ®®) = [<I>(”) ']

D. Detection Metrics

The matching problem is concerned with finding the column
of the dictionary that best matches a test compressed pattern.
The test compressed fingerprint undergoes a binary hypothesis
test for each column of the compressed dictionary. The
two hypotheses are defined as:

Hj: the compressed test fingerprint and the reference are not
from the same camera

Hj: the compressed test fingerprint and the reference are from
the same camera

We reject the null hypothesis whenever the correlation
coefficient (or Hamming distance in the binary case) is above
(respectively, below) a predefined threshold 7.

First, we define the following events, referring to a
single instance of the hypothesis testing problem, i.e.,
a single column of the dictionary. These are standard
definitions, used for example in [7].

« False Alarm: the null hypothesis was incorrectly rejected.

« Detection: the null hypothesis was correctly rejected.
False alarm corresponds to the case in which the current
column of the dictionary is the compressed fingerprint of a
different camera with respect to the compressed fingerprint
under test, but a match is incorrectly declared. On the other
hand, detection occurs when the current column of the
dictionary is the compressed fingerprint of the same camera
as the compressed fingerprint under test, and a match is
correctly declared.

Since previously-defined events are restricted to a single
column of the dictionary, we also introduce global events
considering the dictionary as a whole. These events are also
defined in [12] and [26].

« False Acceptance: the null hypothesis was rejected for

at least one wrong camera.
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o True Detection: the null hypothesis was rejected only for
the correct camera.

False acceptance corresponds to the case in which all the
columns of the dictionary are tested, and at least one column
containing the compressed fingerprint of a different cam-
era with respect to the compressed fingerprint under test is
declared as a match. On the other hand, true detection occurs
when all the columns of the dictionary are tested, and a match
is declared only for the column corresponding to the same
camera of the compressed fingerprint under test.

IV. SYSTEM PERFORMANCE

In this section we provide some theoretical results
concerning the performance of the proposed compressive
system. In particular, we focus on the fingerprint matching
problem. We provide a general framework to characterize
the performance with arbitrary sensing matrices and with
1-bit quantization. In order to evaluate the performance, we
consider the following model for the fingerprints. The system
is presented a corrupted version of a fingerprint, namely

lA(Zd,'—i-Z,

where z is additive white Gaussian noise, i.e.,
z~ N (0, 521,). Then, the compressive matching system with
real- valued measurements applies (14) to compute the random
projections y = @k of the test fingerprint and compares them
with each column of the compressed dictionary A, namely
a; = ®d;. On the other hand, in case of binary measurements
the system applies (15) to compute the binary random projec-
tions y = sign(@ﬁ) of the test fingerprint and compares them
with each column of the binarized compressed dictionary A,
namely a; = sign(®d;). We now formally define the
probabilities of the events introduced in the previous section.
In case of real-valued random projections, the probability of
detection is

Ppiy =P(p(y,ai) > 1),
and the probability of false alarm is
with i # j.

Prai,j) =P (p(y.a;) > 1),

In case of binary measurements,
respectively,

the probabilities are,

Ppiy = P(du(y,a;) < 1)
PraG,j) = P(d[-[(y, a;) < T), with i #£ j.

Moreover, the probabilities of true detection and
false acceptance are related to the probability of detection
and false alarm by

Priy = Pp H
J#

L=TT 0 = Prag.p)-

J#

PFA(l j)

Prg) =
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A. e-Stable Correlation Embeddings

In order to characterize any compression matrix we
propose to introduce a property, dubbed &-stable correlation
embedding, that, if satisfied, allows to write bounds for the
probability of false alarm and the probability of detection.

Definition 2: An e-stable correlation embedding (¢-SCE) of
a set P of N points of R" is a map ¢ : R" — R"™ such that:

(w,v) —& < (p(u), p(v)) < (u,v) +¢
for allu,v € P.

Essentially, we are requiring an approximate preservation of
inner products when the compression matrix is applied to the
fingerprints. Note that when the fingerprints are normalized
to have unit norm (||d;||» = 1), the correlation coefficient
corresponds to the inner product. If the sensing matrix is an
e-stable correlation embedding then it is easy to derive bounds
on the false alarm and detection probabilities, in terms of the
respective probabilites in the uncompressed case, as explained
in the following.

Theorem 3: Let ® € R™*" be an ¢-SCE for a set of N cam-
era fingerprints P = {d; e R" : |d;].=1,i =1,..., N},
with ¢ € [0,1), and z ~ N(O,O‘Z In). Then, the following
bounds on the detection and false alarm probabilities hold:

T
PD(’) 1—¢

t—¢(l—(di, d;))
< PFA(! ) ( l+e s

v

Pp(i)

PraG, j)

where

PR (@) =P((di +z,d;) > 1) =P ((z.d;) > T — 1)

and

P;-J“{\l(i,j)(‘[) =P((d; +2zd;) > 1)
=P ((z,dj) > 7 — (d;,d}))

are the probabilites of detection and false alarm, respectively,
in the uncompressed domain.
Proof:

Ppiy = P((®(d; +2), ®d;) > 1)
— P((®d;, ®d;) + (®z, ®d;) > 7)
— P((®z, ®d;) > 7 — (®d;, d;))
> P((®z, ®d;) > 7 + ¢ — 1)

_p (®z, &d;) - T+e—1
|eroa],  |eTea]
2 2
We know that ﬁ has the same distribution as (z, d;)
and that ?
(-2 =< |0Ted| =0+e)
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since, as a consequence of Def. 2, the minimum and maximum
eigenvalues of ®"darel—cand 1 +¢, respectively. Hence,

T+e—1
Ppiy = Pl (z,d;) > v
o700
2
T4+e—1 UN T
> P((Z,di> > ﬁ) = Pp(; (1 —e)'
Correspondingly,
PraG.j) = P ((@(d; +2), ®d;) > 7)
=P ((®d;, ®d;) + (®z, ®d;) > 7)
=P ((®z, @d;) > © — (®d;, ®d;))
<P((®z,®d;) > 1 — ¢ — (d;,d;))
_p|(®22d) t-:—(di.d)
oTea)],  [oTeal,
PN d',d'
—p|@a,s 4
[27ea ],
—e—(d:.d;
1+¢
_ pu T —e(l—{(d;,d;))
- FA(lj) 1+e¢ ’

|

We can notice that the performance of the compressed
system can be linked to the performance of the uncom-
pressed system with a modified threshold. The detection and
false alarm probabilities have a threshold that is respectively
increased or decreased by a function of ¢. For a better subspace
embedding, ¢ tends to zero and the corresponding threshold
approaches 7, thus the performance approaches the one of
the uncompressed system. Closed form expressions for the
probabilities in the uncompressed case are available in the
literature [1].

We now prove the &-SCE for some important sensing
matrices. It can be remarked that a matrix satisfying the
JL lemma, also represents an &-SCE, since the preservation
of inner products comes as a corollary to the preservation
of the Euclidean norm. Thanks to the vast literature on
JL embeddings, the results for many matrices of interest are
readily available. We now adapt a few of them to the ¢-SCE
formulation. In particular, we consider the Gaussian case again
because it is a classic result and the circulant case because of
its practical use.

Theorem 4 (Gaussian Matrices): Given a set P of N unit-
norm points in R, fix ¢ > 0, and let ® be a random
matrix whose entries are i.i.d. Normal random variables with
zero mean and % variance. Then, ® is an ¢-SCE of P with
probability exceeding 1 — N2e(-@E=e)g)

Proof: Applying the JL lemma for Gaussian matrices [27]
to vectors u + v and u — v we know that with probability
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exceeding 1 — ge— (= m/4,
(1—e)u+v)3 < @u+v)3<d+e)lutvl3
(1—e)u—v|3 < @u—-Vv)3<+e)lu—v|3

We can rewrite the inner product as:

4(®u, ®v) = [|®(u+ V)[3 — | @ — V)3
> —e)utvil—1+e)lu—v|3
= a(u,v) =2z (Jlul + IVI3) = 4(u,v) — 4e.

Hence, we can write:

P(|(u, v) — (®u, ®V)| > ¢) < de~ )%

Given a set P of N points, there are (g] ) possible (u,v).
‘We can use the union bound to find a concentration of measure
for any (u, v).

N m
P (|(u,v) — (®u, ®V)| = &) < ( 2)4e<8“3>T
< N26(27(82783)%).

|

Theorem 5 (Circulant Matrices): Given a set P of N points

in R" within the unit ball, fix ¢ € (0, %) and let ® = ®_.S

where ®. is an m X n circulant matrix with the first row

being an i.i.d. sequence of Normal random variables with zero

mean and 1 variance or an i.i.d. sequence of Rademacher

random varzables rescaled by a factor —= 1 , and S is a diagonal

matrix of i.i.d. equiprobable *1. Then ® is an ¢-SCE of

Zf(cmcz)%
P with probability exceeding 1 — N?e , for some
constant c.

Proof: The proof basically follows the one for Gaussian

matrices and uses the result in [24], which shows that for any
vector X, the following holds:

P((1 =o)X < [@xI3 < (1 +2)[x]3) = 1 = 2e7)"

Applying it to u 4+ v and u — v for a fixed pair u,v € P we
can derive:

1/3

P({u,v) — (®u, ®v)| <) >1— 4e—c(m52)

Finally, we can apply the union bound to all the points in P,
to obtain:

P((u,v) — (®u, ®V)| < ) = 1 — N2~

|
We remark that according to the previous results, Gaussian
matrices require m = O (¢7>log N) measurements, while
circulant matrices require m = O (8_2 log® N ) measurements.
However, the latter result is not sharp and recent
works [15], [28] focused on improving the bound, closing
some of the gap with respect to the result on Gaussian
matrices. This highlights the slight reduction on performance
due to the circulant structure with respect to a fully
random matrix.
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B. Binary Measurements

We now analyze the case of binary measurements. The role
previously played by the inner product is now played by the
angle between uncompressed fingerprints u and v and the
Hamming distance between their binary measurement vectors.
Here we introduce a binary equivalent of Definition 2.

Definition 6: An e-stable binary embedding (e-SBE) of a
set P of N points of R" is a map ¢ : R* — {0, 1} such that:

ds(u,v) —& <du(p(u), p(v)) <ds(u,v) +¢ (19

for allu,v € P.

In the binary case, it is difficult to rigorously derive closed-
form bounds to the probabilities of detection and false alarm,
analogue to Theorem 3. Nevertheless, we conjecture that the
performance of the compressed binary system is related to
the constant ¢ of the embedding ¢-SBE, and tends to the
performance of the uncompressed system as ¢ tends to zero.
In our case, ¢(u) = sign(®u), and the conjecture is supported
by experimental evidence, shown in Section V. In [16], the
authors defined a property (called BeSE), which is similar to
Definition 6, but restricted to x-sparse signals. When & is
a Gaussian matrix, [16] also showed that sign(®u) provides
a BeSE with high probability. Since we are not concerned
with covering the set of all x-sparse signals, we can exploit
[16, Lemma 2] followed by a union bound argument, as we
did in the proof of Theorem 4, to prove that sign(®u) also
provides an e-SBE.

Extending the above theoretical result to circulant matrices
is an open problem, but experimental results seem to confirm
the validity of the ¢-SBE.

V. EXPERIMENTAL RESULTS

We tested the performance of the compressed system under
various conditions. We used two datasets of actual photographs
to obtain the receiver operating characteristic (ROC) of the
system under different scenarios. We constructed the first
dataset (PoliTO database) by shooting photographs of walls
with 8 different cameras. The uniform subject and the control
over light conditions make those photos nearly ideal for the
extraction of camera fingerprints. The second database is
the publicly available Dresden image database [29]. Each
database is constructed from a number of training photos,
while 7 additional photos are used for testing. Extraction
of the camera fingerprints is performed using the Camera
Fingerprint toolbox [30], [31].

Referring to the events described in Sec. III-D and the
probabilites defined in Section IV, we estimate the detection
probability Pp(;), averaged over all the camerasi =1,..., N,
with the true positive rate as

. # of detections
True Positive Rate = —————,

T
while the false alarm probability Pra(;, ), averaged over all
the cameras i = 1,..., N and j # i, is estimated with the

false positive rate as

# of false alarms

False Positive Rate =
(N -DT
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A first ROC plots the True Positive Rate vs. the False Positive
Rate. The ideal curve is one for any False Positive Rate.

Next, we estimate the true detection probability Pr(;,
averaged over all the cameras i = 1,...,N, with the
true detection rate, as

. # of true detections
True Detection Rate = T R

while the false acceptance probability Pr(;), averaged over
all the cameras i = 1,...,N, is estimated with the
false acceptance rate as

# of false acceptances
T

A second ROC plots the True Detection Rate vs. the False
Acceptance Rate. The ideal curve is the top-left-bottom-right
diagonal.

All the tests use detector (17), for reasons that will
be explained in Section V-E, and compressed finger-
prints are obtained using a circulant sensing matrix,
whose performance is compared to the one obtained using
Gaussian sensing matrices in Section V-F. We show the
results of the following experiments. First, we show in
Sections V-A, V-B, V-C and V-D how the choice of the
dimension m affects the performance of the system, both
for real-valued and binary random projections. It is clear
that dimensionality reduction degrades the performance with
respect to the uncompressed system, but we show that a
suitable choice of m allows to significantly reduce the storage
requirement and computational complexity with comparable
performance. Moreover, Sections V-C and V-D report a com-
parison with other state-of-the-art methods for fingerprint com-
pression, namely a fingerprint digest [9], [10] and fingerprint
binarization [12].

False Acceptance Rate =

A. Concentration of Correlation

In this section, we use simulated fingerprints to graphically
show how the correlation between compressed fingerprints
changes as a function of the number of measurements,
consequently affecting the performance. This is a more
intuitive representation of the theorems presented in Sec. IV.
The synthetic fingerprints are generated as vectors of i.i.d.
zero mean random Gaussian variables with unit variance.
Fig. 1 shows the empirical distribution of correlation of
matching and non-matching fingerprints. This figure has
been created by generating 50000 synthetic fingerprints
matching a reference fingerprint with correlation coefficient
0.05 + 107*, and 50000 non-matching synthetic fingerprints
(correlation: 0 = 1073). First of all, we notice that the corre-
lation between compressed fingerprints tends to concentrate
around the original correlation between the uncompressed
versions. Notice that the width of the concentration peak
is determined by the number of measurements but does not
depend on the original fingerprint size. This clearly appears in
the Johnson-Lindenstrauss lemma which claims a dependency
on m and N alone. It is evident that the original correlation
plays a key role in the number of measurements to be selected
because a sharper peak is needed for low correlations values.
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Fig. 1. Empirical distribution of correlation between matching and
non-matching compressed fingerprints. Uncompressed correlation coefficient
for matching: p = 0.05 £ 1074, Uncompressed correlation coefficient for
non-matching: p =0+ 1073,

TABLE I
SI1ZE OF POLITO DATABASE IN BYTES (8 CAMERAS)

Single precision Binary

m = 1000 31.25 KiB 1000 B

m = 2000 62.50 KiB 2000 B

m = 4000 125.00 KiB 4000 B

m = 8000 250.00 KiB 8000 B
Uncompressed 331.39 MiB 10.36 MiB

B. PoliTO Database

The PoliTO database is composed of pictures from 8
different consumer cameras. The pictures are defocused photos
of walls under good illumination conditions. Each camera has
at least 100 photos, all in landscape format, shot at the full
resolution and maximum quality JPEG compression. We use
60 photos of each camera to extract the ground truth fingerprint
to be stored in the database, while the remaining ones are used
for testing purposes. Each ROC curve is obtained by sweeping
the threshold parameter 7. Test images are presented to the
system one at a time, the noise residual is extracted and then
compressed using the same sensing matrix used to compress
the database. Figure 2 shows various ROCs parametrized by
the number of measurements. It can be noticed that a very
small number of random measurements is enough to get almost
indistinguishable performance from a perfect detector, while
saving a considerable amount of storage space. Table I shows
some actual figures for the space needed to store the dictionary
of fingerprints on disk (without any additional form of lossless
compression, which is anyway highly ineffective due to the
high entropy of the PRNU and of the random measurements).

C. Dresden Database

The database assembled in [29] is composed of both flatfield
images and scenes from indoor and outdoor environments.
We selected 53 cameras having both flatfield and natural
photos. The database is created from the flatfield images
in order to have high quality fingerprints, while the test
images are taken from the natural scenes. The natural photos
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TABLE II
SIZE OF DRESDEN DATABASE IN BYTES (53 CAMERAS)

Single precision Binary
m = 16000 3.23 MiB 103.51 KiB
m = 32000 6.47 MiB 207.03 KiB
m = 64000 12.94 MiB 414.06 KiB
m = 128000 25.88 MiB 828.13 KiB
m = 512000 103.52 MiB 3.23 MiB
Uncompressed 1882.15 MiB 58.82 MiB

present varying amounts of details and illumination conditions,
thus making this dataset much more challenging than the
PoliTO database. All photos are registered to the same sensor
orientation. Figure 3 shows the ROC curves parametrized
by number of measurements. It is observed that some test
photos are very challenging to match, thus the ceiling in
the ROC. This has been previously observed in [32] where the
authors observe that some camera models present uncommon
non-unique artefacts, mostly due to on-board post-processing.
As expected, a higher number of measurements is required for
this database due to the lower correlation between the noise
residual extracted from a test image and the fingerprint stored
in the database. We remark that a lower correlation on the
original uncompressed fingerprints implies a narrower angle
between them, hence a higher number of random projections
is required to preserve it with good accuracy. Table II shows
some actual figures for the space needed to store the dictio-
nary on disk. We also make a comparison with alternative
compression techniques based on trimming the fingerprint to a
fixed length [26] or creating a digest. The sequential trimming
technique simply retains a fixed number of entries of the
fingerprint in fixed locations, and then optionally quantizes
the entries. This is equivalent to using a partial identity as
a sensing matrix. However, a partial identity provides an
embedding which is less robust against bad inputs such as
the case of a localized strong noise in the retained area. The
digest technique, proposed in [11], is an adaptive compression
method that retains the d entries of the fingerprint with largest
magnitude. We note that the complexity of the method is
largely similar to the complexity of random projections; in
fact the digest creation requires a O(nlogn) step to iden-
tify the d largest elements, while the proposed techniques
require computing the random measurements, which is done
in O(nlogn) time thanks to the FFT. However, the digest
method requires to store the positions corresponding to the
retained entries. The comparison presented in Fig. 4 shows
two set of curves obtained for a fixed bit budget of 512000 bits
and of 128000 bits. Binary-quantized random projections are
compared with real-valued and binary-quantized fingerprints
trims (d entries in the top left corner are retained) and real-
valued and binary-quantized digests. The real-valued digest
uses 32 bits for pixel intensity and 24 bits for location
information, while the binary-valued digest uses only 1 bit
for pixel intensity and 24 bits for location information. It can
be noticed that binary random projections outperform all the
other methods, that the digest is better than trimming and that
binary quantization of the digest pixels marginally improves
the performance. Finally, Fig. 5 reports a simulation on a
synthetic database of N = 10 cameras (n = 10 - 10%) and
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ROC curves for the Dresden database. Binary random projections versus floating point and binary digest. Budget: 512000 bits, m = 512000,

d = 9142 float, d = 20480 binary. Budget: 128000 bits, m = 128000, d = 2285 float, d = 5120 binary. (a) True Positive Rate vs. False Positive Rate.
(b) True Detection Rate vs. False Acceptance Rate.

100 test fingerprints per camera (mean correlation coefficient
p = 0.02), generated as vectors of i.i.d. entries with stan-
dard Normal distribution. This simulated database confirms

the results obtained for the Dresden database, with binary
random projections outperforming the digest technique. A final
remark should be made about the matching complexity of the
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Fig. 5. ROC curves for a synthetic Gaussian database. Binary random projections versus floating point and binary digest. Budget: 192000 bits, m = 192000,
d = 3429 float, d = 7680 binary. (a) True Positive Rate vs. False Positive Rate. (b) True Detection Rate vs. False Acceptance Rate.
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(b) True Detection Rate vs. False Acceptance Rate.

digest technique. It would appear that since the digest has
fewer coefficients, it could provide faster matching even
though it is not as efficient as random projections in terms
of compression ratio. This is not entirely true because it does
not consider issues related to location information. A query
fingerprint must be subsampled at the locations stored in the
database, but such locations are different for each fingerprint.
This means that the correctly subsampled version of the
query must be assembled for every entry in the database and
this either implies serialization of the matching process or a
multiplication of the memory requirements equal to the degree
of parallelism. Moreover, in the case of the binary digest,
assembling the subsampled binary query has an even subtler
problem of accessing non-contiguous bits while the smallest
addressable unit of memory is typically a byte, thus causing
additional overhead.

D. 1-bit Compression

Figures 2 and 3 also report the performance with binary
quantization of random projections. In Section IV we have

given the theoretical reasons behind the good performance of
1-bit measurements. It is experimentally verified that binary
random projections have good performance. The gap with
respect to real-valued measurements is small compared to
the significant savings in terms of storage and complexity of
the matching operation. We experimentally observed that a
system with m binary random projections typically shows a
ROC nearly overlapped to the ROC of a system with m/2
real-valued measurements. Hence, as a rule of thumb we can
consider a factor of 2 penalty in the dimension of the measure-
ment space when using binary projections. However, storage
requirements reduce by a factor of 64 (in case of double-
precision measurements), so binary random projections exhibit
extremely competitive performance. Bayram et al. proposed
to compress fingerprints by binarization of the values [12].
This can be regarded as a limit case of the method proposed
in this paper when the sensing matrix is the identity.
Figure 6 shows that binary random projections yield further
compression at a small expense in terms of performance.
In particular, the test shown in the figures shows that the
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Fig. 7. ROC curves for the Dresden database. Uncompressed detectors described in Section III-B are compared. (a) True Positive Rate vs. False Positive Rate.
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PoliTo database ROC. Comparison between sensing matrices with i.i.d. Gaussian entries and circulant matrices and i.i.d. Gaussian entries in the

first row. (a) True Positive Rate vs. False Positive Rate. (b) True Detection Rate vs. False Acceptance Rate.

decrease in the performance is negliglible while the storage
requirements is reduced by 18 times with respect to binary
uncompressed fingerprints.

E. Suboptimal Detectors

We compare different types of detectors for the camera
identification problem. As explained in Section III-B the
optimal detector correlates the uncompressed noise residual of
the test image with the uncompressed fingerprint modulated by
the test image. As this cannot be mapped to the compressed
domain, we investigate the suboptimality of the uncompressed
detectors (17) and (18). From Fig. 7, we can notice that in
practice all the detectors exhibit the same performance thus we
settled on using detector (17), being the least computationally
expensive.

FE. Circulant vs. Gaussian Sensing Matrices

Several results, both theoretical and experimen-
tal [15], [33], [34], suggest that partial circulant matrices are

almost as effective as fully random Gaussian matrices, despite
their structure and limited randomness. We compare the ROC
obtained on the PoliTO database for Gaussian and circulant
matrices, having the first row drawn as Gaussian i.i.d..
Experimental results shown in Fig. 8 confirm that circulant
constructions perform very closely to the fully random
ones, though they provide enormous advantages in terms of
memory and computational requirements.

VI. CONCLUSIONS

This paper proposed a technique to address the issues
of storage and matching complexity in camera fingerprint
databases, by using random projections. Motivated by the
incoherent nature of fingerprints based on PRNU patterns
of camera sensors, we showed that random projections
can effectively preserve the geometry of the database and
significantly reduce the dimension of the problem with small
penalties. We characterized the usage of real-valued and
binary random measurements from a theoretical point of
view in terms of the detection and false alarm probabilities.
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Experimental tests have confirmed the validity of the
proposed method on two databases of actual photographs.
Practical issues such as the complexity of calculating random
projections are of significant importance when dealing
with million-pixel images, but we solved them by using
circulant sensing matrices. The use of random projections for
compression of camera fingerprints paves the way to many
interesting applications involving maintaining large databases
of fingerprints or applications requiring transmission of
fingerprints over bandlimited channels. From this perspective,
random projections are significantly better than the other
existing methods discussed in this paper because they can
provide higher compression ratios and improved scalability,
i.e., a fine-grained control over the compression/performance
tradeoff by modulating the number of projections according
to the specific needs, and an embedded representation where a
compressed version of the fingerprint already embeds versions
at higher compression ratios (fewer measurements used).
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