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Abstract: Modeling, simulation and control have become effective tools for the treatment of
type 1 diabetic patients in the last decades. The availability of reliable models able to predict
and/or simulate the behavior of diabetic patients is thus fundamental in this context. Several
models, based on first principles or black-box approaches, have been proposed to fulfill this
need. However, a common problem to these approaches is that they are not able to recover or to
systematically account for the various unmeasured signals which affect a diabetic patient (e.g.
food, physical activity, emotions, etc.). In this paper, we propose a blind identification approach,
which allows us to derive accurate models of type 1 diabetes patients and to efficiently recover
the unmeasured input signals. A simulated example, regarding identification of the blood glucose
concentration in type 1 diabetes patients, is presented to demonstrate the effectiveness of the
proposed approach.

Keywords: Diabetes modeling and control, blind identification, nonlinear systems.

1. INTRODUCTION

In the last decades, there has been a growing interest in
modeling, simulation, prediction and control of diabetes
mellitus type 1 (DMT1), with the aim of improving blood
glucose regulation so to avoid the complications resulting
from hyperglycemia, Bequette (2012); Harvey et al. (2010);
Renard et al. (2013). Control of diabetes is accomplished
by planning and applying the most proper therapy strat-
egy for a given patient. This strategy can be either manual
or automated. If automated, it is called “artificial pan-
creas” and represents an extremely promising technology
for the future, Cobelli et al. (2011); Lee et al. (2013). In
both cases, control of the blood glucose concentration has a
fundamental role in terms of patient wellness and integrity
of organs that may be damaged due to DMT1.

Control of the blood glucose concentration implies the
availability of reliable models able to predict and/or simu-
late the behavior of metabolic control in diabetes. Different
models and modeling techniques have been proposed in the
literature, where physiology equations are used to describe
the glucose and insulin kinetics in the body, Ajmera et al.
(2013); Dube et al. (2013). However, these models are
in general not extremely accurate as their equations do
not take into account all the dynamics, parameters and
disturbances involved in the patient system. Black-box
models have the potential of contributing to the solution of
this problem, Cobelli et al. (2009); Gonzalez-Olvera et al.
(2009); Stahl and Johansson (2009); Finan et al. (2009).
These models are directly identified from experimental
data and, for this reason, are in general more accurate than
models based on the first-principles. Another important
advantage of input-output techniques is that they easily al-
low the construction of personalized patient models, which
can be more effective for simulation, control and analysis

of DMT1 than models providing an average description of
the patient population.

In the diabetes context, a relevant problem common to
both first-principle and black-box approaches is that a
patient is a system affected by unmeasured (or not easily
measurable) inputs (e.g. food, physical activity, emotions,
etc.), and the techniques frequently used for model iden-
tification are in general not able to recover or to account
for such unmeasured signals. Statistical techniques may
be used to estimate the unmeasured inputs, but recov-
ery is usually possible (asymptotically) only when these
signals are white noises. However, inputs such as food,
physical activity, emotions, etc. are far from being white
processes and thus can be hardly recovered using standard
techniques.

Indeed, modeling of a diabetes patient can be seen as a
blind identification problem: not only the patient system
has to be identified but also some of the system input
signals, Abed-Meraim et al. (1997). For this reason, blind
identification problems are in general significantly more
difficult than the standard identification problems, where
all the inputs are assumed to be measured (except that
some noise with given statistical or boundedness proper-
ties). A number of approaches to blind identification have
been developed for linear systems, see e.g. Abed-Meraim
et al. (1997); Ohlsson et al. (2013). Several approaches
can also be found for nonlinear systems, but these mainly
regard Hammerstein, Bai and Minyue (2002), Wiener,
Wills et al. (2011), bilinear, Kalouptsidis et al. (2003),
and Volterra, Mileounis and Kalouptsidis (2009), systems.
To the best of the authors’ knowledge, no solutions are
available for the problem considered here, involving gen-
eral nonlinear systems.



In this paper, we propose a novel black-box model iden-
tification approach for general nonlinear systems, based
on `1 sparsification, allowing us to derive accurate models
of DMT1 patients and to recover the unmeasured input
signals (called also disturbances in the following). More
precisely, the approach allows us to recover a surrogate dis-
turbance signal which describes the effect of all unknown
inputs acting on the patient system.

A simulated example, regarding identification and predic-
tion of the blood glucose concentration in DMT1 patients,
is presented to demonstrate the effectiveness of the pro-
posed blind identification approach.

2. BLIND IDENTIFICATION OF NONLINEAR
SYSTEMS

2.1 Problem formulation

Consider a nonlinear discrete-time system in regression
form:

yk = go(yk−1, yk−2, . . . , yk−n,
uk, uk−1, . . . , uk−n,
wk, wk−1, . . . , wk−n)

(1)

where yk ∈ R is the output, uk ∈ Rnu and wk ∈ Rnw are
external inputs, and n is the system order. Suppose that
uk and yk can be measured, wk cannot be measured, and
the function go is unknown. Let a set of noise-corrupted
measurements

DI .
= {ỹk, ũk}Lk=1 (2)

be available, where the tilde denotes the measured values
of the variables. In this paper, we consider the problem of
deriving a reliable model of the system (1), together with
some estimate of the unknown input wk, k = 1, . . . , L.

This problem can be seen as a blind identification problem,
since not only the system has to be identified but also some
of the system input signals, Abed-Meraim et al. (1997). A
further difficulty besides the fact that wk is unknown is
that it appears nonlinearly in the system equation (1). Its
estimation could thus require to solve a very hard non-
convex optimization problem. In this paper, we propose
a solution for general nonlinear systems where, in order
to deal with convex optimization, we estimate a surrogate
dok of wk, which describes the effect of wk on the system
output.

Assume that the function go is differentiable with respect
to wk, . . . , wk−n and define

rk
.
= (yk−1, . . . , yk−n, uk, . . . , uk−n) ∈ Rm.

where m = n+(n+ 1)nu. From the Mean Value Theorem
it follows that, for some w̄k, . . . , w̄k−n ∈ Rnw ,

yk = go(rk, 0, . . . , 0) +

n∑
i=0

qk,i · wk−i

where qk,i
.
= ∂go(rk,w̄k,...,w̄k−n)

∂wk−i
is the gradient of go with

respect to wk−i computed in (w̄k, . . . , w̄k−n), and · denotes
the dot product. The system (1) can thus be written as

yk = fo (rk) +

n∑
i=0

qk,i · wk−i (3)

where fo (rk)
.
= go(rk, 0, . . . , 0). Consider now the mean

over i of qk,i: q̄k
.
= 1

n+1

∑n
i=0 qk,i. Defining dok−i

.
= q̄kwk−i,

from (3), we obtain the following system representation:

yk = fo (rk) +

n∑
i=0

dok−i + eok (4)

where eok
.
=
∑n
i=0(qk,i − q̄k)wk−i is a noise and dok is an

unknown input which describes the effect on the system
output of wk in (1).

The problem considered in this paper is the following:

Problem: From the data set (2), find reliable estimates f̂

and d̂ = (d̂1, . . . , d̂L) of the regression function fo and the
input sequence do = (do1, . . . , d

o
L), respectively. �

2.2 Basic assumptions

According to (4), the L measured data in (2) can be
described as

ỹk = fo (r̃k) +

n∑
i=0

dok−i + ek, k = n+ 1, . . . , L (5)

where ek is a noise accounting for eok in (4) and for the
measurement noises corrupting yk and rk.

Without assumptions on the regression function fo, on
the input dok and on the noise ek, the blind identification
problem is ill-posed, in the sense that infinitely many
functions, input sequences and noise sequences exist which
are consistent with the measured data (i.e. satisfy equation
(5)). In this paper, we consider the following assumptions.

Assumption on ek. The noise sequence e = (en+1, . . . , eL)
is bounded as

‖e‖2 ≤ ε (6)

where ‖·‖2 is the vector `2-norm. This assumption is
standard Milanese and Vicino (1991). �

Assumption on fo. The regression function fo is de-
scribed by a linear combination of basis functions:

fo (rk) =

N∑
i=1

aoiφi (rk) (7)

where φi : Rm → R are basis functions and aoi ∈ R
are coefficients. This assumption is standard in system
identification Sjöberg et al. (1995). �

Assumption on dok. The input sequence do admits a
sparse representation:

dok =

M∑
i=1

boiψi (k) , k = 1, . . . , L (8)

where ψi : Z → R are basis functions and the coefficient
vector bo = (bo1, . . . , b

o
M ) is sparse, i.e. it has only a limited

number of non-zero components. More precisely, bo has
minimum `0-quasi-norm over all vectors consistent with
(5), (7), (6) and (8). The `0-quasi-norm of a vector is
defined as the number of its non-zero components. This
assumption is widely used in signal processing and infor-
mation theory, and relies on the idea that many signals in
the real world can be represented by a limited number of
basis functions Fuchs (2005); Tropp (2006); Donoho et al.
(2006); Candes and Tao (2006)Donoho et al. (2006). Note
that this assumption is not restrictive. Indeed, in practice,
a “large” number of basis functions can be considered to
form the expansion (8), including possibly different types
of functions (e.g. Gaussian, wavelet, polynomial, trigono-
metric). The identification algorithm presented in Section
2.3 below will allow us to select, among this “large” set
of functions, those which are more appropriate to describe
the unknown sequence do. �



2.3 Identification algorithm

Based on assumptions (7) and (8), estimates of the un-
known regression function fo and input dok are looked for,
of the following form:

f̂ (rk) =

N∑
i=1

âiφi (rk)

d̂k =

M∑
i=1

b̂iψi (k)

(9)

where âi and b̂i are parameters to be identified. In order
to ensure consistency with the measured data (described
by (5)) and assumption (6), these parameters must satisfy
the following inequalities:∣∣∣∣∣∣ỹk −

N∑
i=1

âiφi (r̃k) +

n∑
j=0

M∑
i=1

b̂iψi (k − j)

∣∣∣∣∣∣ ≤ ε
for k = n + 1, . . . , L, which can be written in the more
compact matrix form

‖ỹ − Φa− Ωb‖2 ≤ ε (10)
where

ỹ = (ỹn+1, . . . , ỹL) ∈ R(L−n)

a = (a1, . . . , aN ) ∈ RN
b = (b1, . . . , bM ) ∈ RM .

The matrices Φ ∈ R(L−n)×N and Ω ∈ R(L−n)×M are
defined as follows:

Φ
.
=

 φ1 (r̃n+1) · · · φN (r̃n+1)
...

. . .
...

φ1 (r̃L) · · · φN (r̃L)


Ψ

.
=

 ψ1 (1) · · · ψM (1)
...

. . .
...

ψ1 (L) · · · ψM (L)


Λ
.
=


1 · · · 1 0 · · · · · · 0
0 1 · · · 1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · · · · 0 1 · · · 1


Ω
.
= ΛΨ

(11)

where the sequence 1 · · · 1 on each row of Λ has length
n+ 1. Without loss of generality, we assume that Φ and Ω
have columns normalized in `2-norm.

The idea is to look for parameter vectors â and b̂ that,
among all vectors consistent with the measured data and
prior assumptions (i.e. all vectors which satisfy inequality
(10)), give a maximally sparse representation of the distur-

bance signal d̂k. This task is accomplished by the following
convex optimization problem:

(â, b̂) = arg min
(a,b)
‖b‖1

subject to ‖ỹ − Φa− Ωb‖2 ≤ ε
(12)

where the vector `1-norm is used to maximize the sparsity

of b̂ (and thus of the disturbance representation).

The identified model is described by the following differ-
ence equation:

ŷk = f̂ (r̂k) +

n∑
i=0

d̂k−i (13)

where r̂k
.
= (ŷk−1, . . . , ŷk−n, uk, . . . , uk−n), f̂ and d̂k are

given by ((9)), and the parameters âi and b̂i defining f̂

and d̂k are obtained from the optimization problem (12).

The choice of the basis functions φi and ψi is clearly an
important point of the identification process. In some cases
of practical interest, the basis functions may be known a
priori, see Novara (2011, 2012). In other cases, the basis
functions are not known and their choice can be carried
out considering the numerous options available in the
literature (e.g. Gaussian, exponential, sigmoidal, wavelet,
polynomial, trigonometric). Observation of the measured
signals can eventually be used for the proper basis function
choice, see the example presented in Section 3.

Conditions under which the minimization problem (12) is
able to recover the unknown signal dok in (8), are given in
Vincent and Novara (2013).

3. IDENTIFICATION OF DIABETES SYSTEMS
(SIMULATED DATA)

3.1 Description of the considered diabetic patient system

The model shown in Figure 1, representing a type 1
diabetes patient has been considered in this example. The
inputs of this model are the carbohydrate-based meal
input and the insulin input function, the output is the
blood glucose concentration (glycemic response). The state
equations defining the model are the following:

dy(t)

dt
= − [p1 + η(t)] y(t) + p1Gb +

w(t)

Vg
dη(t)

dt
= −p2η(t) + p3[I(t)− Ib]

dI(t)

dt
=

ka
Vd
I2(t)− keI(t)

dI1(t)

dt
= −k21I1(t) + u(t)

dI2(t)

dt
= k21I1(t)− (kd + ka)I2(t)

(14)

where y(t) is the blood glucose concentration (the system
output), I(t) is the blood insulin concentration, η(t) is the
insulin concentration in a remote compartment, Vg is the
volume distribution, w(t) is the carbohydrate-based meal
input (a system input), I1(t) is the subcutaneous insulin
mass in the injection depot, I2(t) is the subcutaneous
insulin mass proximal to plasma and u(t) is the insulin
input function (a system input). p1, p2, p3 are individual
subject parameters, Vd is the plasma distribution volume,
k21, ka, kd, and ke are insulin pharmacokinetic parameters,
Ib is the basal blood insulin concentration and Gb is the
basal blood glucose concentration. The first two equa-
tions of (14), describing the glucose dynamics, have been
taken from the Bergman model, Bergman et al. (1981);
the last three equations of (14), describing the insulin
kinetics, have been taken from the Shimoda model, Nucci
and Cobelli (2000). The following parameter values have
been assumed: p1 = 0.031 min−1, p2 = 0.012 min−1,
p3 = 9.56e−6 1/min2/µU/mL, Vg = 1.45 dL/kg, Vd =
0.2 mL/kg, k21 = 0.0166 min−1, ka = 0.0133 min−1,
kd = 0.0033 min−1, ke = 0.3 min−1, Ib = 0 µU/mL and
Gb = 180 mg/dL. In this simulated example, the model
(14) represents the “true” patient system to be identified.

Note that the model (14) is not the most recent that can
be found in the literature and may also be not sufficiently
adequate to describe a real diabetes patient. However,
the aim of this numerical example is to test our blind
identification algorithm on a non trivial nonlinear system
and thus the particular choice of the model used as the
“true” system is not so relevant for this kind of test. A



Fig. 1. Model of a DMT1 patient.

further aspect for which this example is of interest is that
we can compare the estimated disturbance with the true
one (this cannot be done in a real problem).

3.2 Data generation and organization

A simulation of the patient system (14) has been per-
formed, where the insulin input has been taken from a
set of experimental data, measured on a real patient.
The meal input has been simulated as a superposition of
exponentially decaying signals wj(t) j = 1, 2, . . ., where
each contribution wj(t) represents a single meal. These
signals are of the form

wj(t) =

{
0, t < tj
(t− tj) e−0.6(t−tj), t ≥ tj

where tj is the time at which the patient started to eat.
The times tj have been realistically chosen in order to
have an insulin injection a few minutes before a meal. The
output signal (the blood glucose concentration) resulting
from this simulation has been corrupted by a white noise,
having a noise-to-signal standard deviation ratio of 3%.

A set of 3000 data has been collected from this simulation,
using a sampling time of 5 minutes. The set DI .

=
{ỹk, ũk}1500

k=1 , composed of the first 1500 data, called the
identification set, has been used for model identification.
The set DV .

= {ỹk, ũk}3000
k=1501, composed of the remaining

data, called the validation set, has been used for model
validation.

3.3 Model identification and meal input recovering

A model of the form (13), called here BIM, has been
identified on the identification set DI by means of the
proposed algorithm (12), assuming the order n = 5.
Polynomial basis functions φi with degree ranging in
the interval [0, 2] have been considered for the function
fo. Gaussian basis functions have been assumed for the
disturbance do:

ψi (k) = e−β(k−l)2 (15)
where l = 1, . . . , 1500, β = 0.05, 0.2, 0.5 and, for each
combination of l and β in (15), we assigned a progressive
index i = 1, . . . ,M , with M = 4500. Both polynomial
and Gaussian basis functions represent standard choices
in system identification and signal processing. Note that
the parameter β in (15) does not need to be chosen:
it is sufficient to consider a set of values reasonable
for this parameter; then, selection of the most suitable

DI DV

FIT 87% 85%

Table 1. FIT indexes obtained by the BIM
model in simulation on the identification and

validation sets.

parameter values is performed by algorithm (12), thanks
to minimization of the signal coefficient `1-norm. Once the
basis functions have been defined, the value ε = 58 has
been taken for the noise bound in (12). This value has
been chosen by means of a trial and error procedure on
the identification set. The CVX toolbox Grant and Boyd
(2010) has been used to solve the optimization problem
(12). The identified model is described by the difference

equation (13), where f̂ and d̂k are given by (9).

The BIM model has been first tested on the identification
set DI . A simulation of the model has been performed,
using as inputs the insulin signal described above and

the disturbance d̂k estimated by algorithm (12). The
FIT index has been considered to evaluate the model
performance. This index measures the percentage of data
that are correctly explained by the model, and is defined
as

FIT
.
= 100

(
1−

‖y − ŷ‖2
‖y −mean(y)‖2

)
%

where y and ŷ are the measured output signal and the
one simulated by the model, respectively. The FIT value
obtained in the simulation is shown in Table 1.

Then, the BIM model has been tested on the validation
set DV . A simulation of the model has been performed,

using as inputs the insulin signal and the disturbance d̂k
estimated on the validation set, solving the optimization
problem (12) only with respect to b, with a fixed and equal
to the vector previously estimated on the identification
set. The FIT value obtained in the simulation is shown in
Table 1. The output simulated by the model is compared to
the measured one in Figure 2. The estimated disturbance

d̂k is compared to the meal input in Figure 3 for a portion
of the validation set.

From these results, it can be concluded that the identified
BIM model is able to reproduce quite accurately the
behavior of the “true” system. Moreover, the recovered

disturbance d̂k correctly describes the unmeasured meal
input, since it provides a quantitative information on the
times when the meals have occurred and on the entity of

these meals. We remind that d̂k is not an estimate of the
unmeasured input wk but a surrogate of it, describing the
effect of wk on the system output.

3.4 Identification of prediction models

Besides simulation, models are important in the diabetes
context for obtaining accurate predictions of the blood
glucose concentration, since these predictions can be effec-
tively used e.g. for therapy decision or predictive control
design. Thus, a prediction time horizon of half an hour,
corresponding to 6 steps with the used sampling time of
5 minutes, has been considered, since this time horizon
can be of interest for predictive control. Considering the
identification data set, a model and a disturbance signal
have been estimated by means of algorithm (12). While in
Section 3.2, the disturbance has been recovered in an anti-

causal way (to obtain the estimate d̂k at time k, the past,
current and future data (ỹl, r̃l), with l = 1, . . . , k, . . . L
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Fig. 3. Disturbance recovering (validation set). Continu-
ous (black) line: glucose rate of appearance in the
blood (unknown). Dashed (green) line: recovered dis-
turbance.

have been used), here a causal estimate of the disturbance
has been obtained (only the past and current data (ỹl, r̃l),

with l ≤ k, have been used to estimate d̂k). Next, using the
identified model and solving the optimization problem (12)
only with respect to b, a causal estimate of the disturbance
has been obtained also for the validation set. Then, a
prediction model, called BIP, has been estimated from the
identification set using the Matlab System Identification
Toolbox, considering as inputs the insulin signal and the
causally recovered disturbance. In particular, an ARMAX
model of order 5 has been obtained from this identification.
Note that the model originally identified together with
the disturbance may be very accurate in simulation but
is not suitable for prediction, since one of its inputs is the
anti-causally recovered disturbance and this signal clearly
cannot be used for prediction.

The BIP model has been tested in prediction on the vali-
dation set DV . The FIT index obtained by the model is
reported in Table 2. Note that, solving the optimization
problem (12) with the setting considered here requires
about 20 seconds on an average personal computer (with-
out using ad-hoc algorithms). Thus, online optimization
can be reasonably performed in the case of a real diabetes
patient, since model predictive control requires signifi-
cantly longer sampling times for this application.

For comparison, several ARX, ARMAX and OE linear
models and several NARX nonlinear models of order 5
have been estimated on the identification set DI , using
the Matlab System Identification Toolbox, following a
“standard” approach (i.e. considering as input only the
insulin signal and not the recovered disturbance). Most of
the “standard” models showed negative FIT indexes or
even input-output (IO) instability in simulation both on

BIP NARX ARX

FIT 78% 71% 52%

Table 2. FIT indexes obtained by the best
models in 6-step ahead prediction on the vali-

dation set.

the identification and validation sets. Nevertheless, some
of these models displayed a good performance in 6-step
ahead prediction. In Table 2, the FIT indexes obtained
on the validation set DV by the best linear and nonlinear
models are reported.

From these prediction results, it can be concluded that,
thanks to the utilization of the (causally) recovered dis-
turbance, the BIM model can achieve better accuracies
than other models obtained using “standard” approaches.

4. CONCLUSIONS

In this paper, a novel black-box model identification ap-
proach has been proposed to derive accurate models of
glucose control in Type 1 diabetic patients. This approach,
allows us to recover a signal describing the effect of all
unknown (or not easily measurable) inputs acting on the
patient system (e.g. meal input, physical activity, emo-
tions, etc. ) . Simulations have been performed to show and
confirm the advantages in using this new approach. The
identified model has been used to simulate the behavior
of the patient system, taking realistically into account the
effects of the unknown external inputs. Moreover, using
a model and a reliable estimate of the unknown external
inputs allowed us to obtain improved prediction perfor-
mances with respect to “standard” prediction approaches.
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