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Abstract

Laser pulses incident on plasma targets are capable of exciting very intense

accelerating fields, that allow the acceleration of ions to high energies in very

short distances. This is why a lot of interest has been developed on the topic of

laser-driven ion acceleration over the past twenty years. Such a compact and

affordable ion source would have many potential applications in physics and

medicine, but several requirements are still far from being fulfilled.

In this thesis two mechanisms of ion acceleration are investigated: shock

wave acceleration and Coulomb explosion.

Ultraintense lasers shot on plasma targets are capable of driving strong

electrostatic shock waves that accelerate the plasma ions to high energies with

a narrow energy spectrum. In the present work, the mechanism of shock for-

mation and propagation in near-critical density plasmas is studied in detail.

An idealized scenario where shock waves arise from the interpenetration of

plasma slabs is studied. A theoretical kinetic model is derived and compared

with simulation results. The conditions to accelerate ions to high energies with

low energy spread are derived. The role of the laser in exciting shock waves

is analyzed. The factors leading to high energy ion beams with narrow energy

spectrum obtained in the simpler configuration are verified in this more com-

plex and realistic scenario. A scaling for the ion energy with the pulse intensity

is inferred for the ideal case of a plane wave and for a more realistic case of a

finite size laser spot.

The second mechanism of ion acceleration that has been considered is the

Coulomb explosion of pure ion nanoplasmas, an important subject in the field

of laser-cluster interaction. In this thesis, a detailed study of Coulomb explo-

sion in hetero-nuclear clusters consisting of different atomic species is carried

out. Numerical results indicate that, in the presence of different ion species,

lighter ions are accelerated in a quasi-monoenergetic way, in contrast with the

well known results on Coulomb explosion of clusters composed by a single ion

species, where the energy spectrum is much broader. A study on the formation

of shock shells, nonlinear structures that arises during Coulomb explosion of

homo-clusters when the initial density exhibits radial non-uniformity, is also

presented. The analysis is carried out comparing N-body simulation results,

that represent the exact solution since no approximations have been made,

to the collisionless kinetic theory. The study shows that there are consistent

differences between the real dynamics and the model based on the Vlasov-

Poisson equations.
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CHAPTER 1

INTRODUCTION

Nowadays, ion acceleration driven by super intense laser pulses is a vivid

field of investigation, attracting an impressive and steadily increasing research

interest. Intense laser pulses shined on plasma targets are capable of exciting

very strong electric and magnetic fields capable of accelerating ions to high

energies over very short distances (the acceleration gradients obtained in plas-

mas are 100− 1000 GeV/m, orders of magnitude higher than 10− 100 MeV/m

typical values of conventional accelerators), allowing for what is normally re-

ferred to as a table-top ion accelerator [1]. Such compact and affordable high

energy ion sources would have many possible potential applications in science

and medicine, which have been limited until now by the cost, the size and the

technological issues connected to conventional accelerator devices. However,

despite of these incredible features, there are still several difficulties that need

to be addressed and overcome (such as increasing the particle energy, spectral

and angular control of the beam, conversion efficiency from laser energy into

the ion beam, stability of the acceleration parameters, etc.) in order to consider

laser driven ion acceleration a mature technology. This has motivated a sig-

nificant theoretical, numerical and experimental effort devoted to understand

and optimize the physics behind the process of ion acceleration.

The continuous progress in high-power laser technology and in target man-

ufacturing and engineering has been leading to the proposal and demonstra-

tion of different acceleration mechanisms. Figure 1.1 shows the most common

regimes depending on the pulse duration and intensity. It is worth noticing

that these two parameters are important, but these are not the only param-
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FIGURE 1.1: Ion acceleration mechanisms depending on laser duration and intensity.

Values of the normalized vector potential a0 have been computed considering a pulse

with wavelength λ0 = 800 nm. Adapted from [2].

eters that determine the prevailing acceleration process and also that there

is no a real sharp separation between the different occurring scenarios. The

first part of this chapter provides an overview over some of the most studied

laser driven acceleration mechanisms, i.e. target normal sheath acceleration,

radiation pressure acceleration and break out after burner acceleration. The

concepts of shock wave acceleration and Coulomb explosion, subjects of this

thesis work, are then introduced. Afterwards, a comparison among the differ-

ent processes is also reported. Some possible applications for laser accelerated

ions are then illustrated.

1.1 TARGET NORMAL SHEATH ACCELERATION

When a linearly polarized laser pulse with intensity I > 1018 W/cm2 and

normalized vector potential a0 = 8.5 × 10−10
√

I[W/cm2]λ
2
[µm]

≥ 1 is incident

into a several microns thick solid target (Ltarget > 1 µm), the laser pre-pulse

ionizes the front side of the target forming an expanding plasma. When the

main pulse reaches the target, it is partially absorbed at the plasma critical den-

sity (i.e. density at which laser and plasma frequencies are the same), heating

up the surface electrons to temperatures of several MeV. Hot electrons recir-

culate inside the target and eventually leave it at the back surface, creating a

strong charge separation electric field directed along the normal to the surface.
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FIGURE 1.2: Schematic description of target normal sheath acceleration. The intense

laser pulse heats the electrons on the front side of the target (a). The hot electrons pen-

etrate the target and leave it at the back surface creating a sheath field that accelerates

ions to several MeVs (b).

As a consequence of the sheath field, ions are accelerated perpendicularly to

the surface (see figure 1.2), via a mechanism called Target Normal Sheath Ac-

celeration (TNSA) [3, 4]. The acceleration is most effective on protons, always

present in solid targets in the form of impurities. Heavier positive ions with

more inertia contribute in creating the charge separation field and are only

accelerated on longer time scales, when the proton charge is not enough to

balance the escaping hot electrons. The ion energy spectrum is usually broad

(the energy spread ∆ε/ε is about 100%) with a sharp cutoff at a maximum

energy, representing a limitation for applications requiring a monoenergetic

beam [5]. The highest proton energy measured in TNSA experiments has been

70 MeV [4].

1.2 RADIATION PRESSURE ACCELERATION

When the laser intensity increases up to 1020 W/cm2, a different acceler-

ation mechanism starts to dominate over TNSA. It is the so called Radiation

Pressure Acceleration (RPA) regime (figure 1.3). It is strictly connected with

the pressure that an electromagnetic wave exercises over a nontransparent

medium. Depending on the thickness of the target, two different scenarios

can take place: hole boring, if the target is thick and light sail, if the target is
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FIGURE 1.3: Schematic description of radiation pressure acceleration.

thin.

1.2.1 THICK TARGET: HOLE BORING REGIME

The intense radiation pressure of the laser pushes the surface electrons of an

overdense plasma inside the target. Since, in this early phase, the ions are im-

mobile, a positively charged region, in which the electron density is depleted,

and a cloud of compressed electrons are formed. The charge imbalance gives

rise to a quasistatic field, with a peak located at the border between the de-

pletion and the compression area. The field accelerates the ions, that cross

the compressed electron region and pile up at the end of it producing a sharp

density spike and causing the hydrodynamical collapse of the electron equi-

librium. This process leads to the production of a narrow bunch of fast ions

which penetrates further into the plasma bulk. Eventually, the quasiequilib-

rium is restored again and the process keeps on repeating as long as the laser

is turned on [6, 7].

1.2.2 THIN TARGET: LIGHT SAIL REGIME

When the target is thin (∼ plasma skin depth), the situation changes. All

the ions get accelerated before the end of the laser pulse. They cannot pile up

to a singular density because they constitute practically the whole target. The

laser pulse can then push the electrons further and the acceleration stage is
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repeated. Since the target is thin, ion motion is strictly bound to the electrons

and the target behaves as a rigid object [8] (see figure 1.4). Ion acceleration

is more efficient in this case because ions are not screened by the background

plasma, as they would be in the hole boring regime.

After this scheme was proposed by Esirkepov et al. [8], it has been realized

that a similar regime could be accessed using less intense circularly polarized

laser pulses. The use of a circular polarized laser inhibits the j × B heating

mechanism [10], because the electric field component perpendicular to the tar-

get surface is absent. This avoids that the thin target heats up and starts to

expand becoming underdense and therefore transparent to the laser. Since the

heating is suppressed, the target preserves its non-transparency; the energy

of the laser is largely reflected and the pulse acts like a piston driven by the

pressure of the radiation [11, 12].

1.3 BREAKOUT AFTERBURNER

When ultrathin foils are used as targets and the intensity of the laser is

smaller than in the RPA case, the foil expands, becoming progressively trans-
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parent to the laser during the short-pulse interaction. Another mechanism of

ion acceleration is excited at this point, called breakout afterburner (BOA) [13].

The electron heating is enhanced as the target becomes transparent. Electrons

reach relativistic temperatures and create a strong field that accelerates the ions

in a solitary bunch. The high drift between electrons and ions triggers the

relativistic Buneman instability [14, 15]. The phase speed of the instability is

resonant with the ion speed, benefiting ion acceleration.

1.4 SHOCK WAVE ACCELERATION

Particle acceleration by shock waves is a problem of great interest for astro-

physics [16]. The existence of an ion component reflected by the shock front is

a fundamental prerequisite in the basic fluid theory of collisionless electrostatic

shocks [17]. In the frame moving at the shock speed, ions are reflected by the

shock when their kinetic energy is higher than the potential energy associated

to the wave. Ions, initially at rest, are then accelerated to velocities up to twice

the shock speed.

Shock wave acceleration was proposed as a mechanism of ion acceleration

by Denavit [18] and Silva et al. [19]. In these previous works, the conditions

under which shocks are generated in solid targets were studied. The use of an

ultra-intense laser (I ≥ 1020 W/cm2) is required in order to achieve an efficient

electron heating. Moreover, in these simulations the narrow energy spectrum

of the ions is smeared out by the strong charge separation field at the back of

the target.

Recently, electrostatic shocks have been identified as the physical phenom-

enon responsible for the acceleration of monoenergetic ions (ε ≃ 20 MeV and

∆ε/ε ≃ 1%) in the interaction between a CO2 laser pulse of moderate intensity

(I ≃ 1016 W/cm2) and a hydrogen gas jet [20]. The experimental work mo-

tivated the theoretical and numerical study on shock wave acceleration pre-

sented in this thesis. In fact, despite of the great experimental results, sev-

eral aspects regarding the physics of shock generation in plasmas still need to

be addressed. Moreover, optimal conditions to obtain ion beams suitable for

practical applications has to be fully understood. Therefore, theoretical and

numerical studies have been carried out in order to obtain a deeper insight of

the physics of shock waves in plasmas. In particular, the existing theoretical

model on electrostatic shocks [21] has been generalized to include relativis-
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tic electron temperatures and ion reflection; calculations are shown in chapter

3. Numerical simulations carried out with particle-based codes presented in

detail in chapter 2 have been performed. An idealized scenario where shock

waves arise in the interaction between plasmas with different characteristics

has been examined in chapter 4. After the analysis of this configuration, that

despite of its simplicity allowed for identifying some optimal conditions for

shock formation and ion acceleration, the role of the laser in driving the shock

has been studied and results are presented in chapter 5. Numerical simulations

indicate that high-quality proton beams required for practical applications can

be obtained with existing laser systems.

1.5 COULOMB EXPLOSION

Coulomb explosion of pure ion nanoplasmas is an important problem in

the field of ultra intense laser-cluster interaction with relevance for plasma

physics, fusion research [22, 23] and imaging by “diffraction before destruc-

tion” [24].

Clusters are aggregates of atoms or molecules. They are formed in the su-

personic expansion of a gas through a conical nozzle. During the adiabatic ex-

pansion, the gas vapor cools down and the gas enters in a supersaturated state.

At this point gas particle collisions, present during the whole process, lead to

the formation of dimers that work as nucleation sites for the clusters [25].

A great interest developed during the past years around the topic of laser-

cluster interaction. The main motivation is represented by the efficient cou-

pling between cluster media and laser radiation. Nearly 100% of the total laser

energy is deposited within a few millimeters propagation length [26]. This

can be explained observing that clustered targets combine gas and solid target

features. The laser pulse propagates through the medium (clusters are usu-

ally sparse in a gas jet) strongly interacting with the individual clusters, which

can be seen as solid targets with extremely high surface-to-volume ratios [27].

The high energy absorption results in different experimental evidences, such

as bright x-ray emission [28,29], production of highly ionized matters [30] and

generation of energetic electrons and ions [31–33] . The acceleration of ions

due to Coulomb explosion of small clusters is the phenomenon analyzed in

the second part of this thesis.

Depending on the laser and cluster parameters, several scenarios can take
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place. Coulomb explosion occurs when all the cluster electrons are instanta-

neously swept away by the laser pulse, leaving behind a pure positive ion

cloud, that undergoes a violent explosion driven by the Coulomb repulsive

forces.

In chapter 6 the ion dynamics in the explosion of hetero-nuclear clusters

(i.e. clusters composed of different atom species) is studied. Numerical results

obtained by using the shell model (see chapter 2) are presented; simulations

indicate that, in the presence of different ion species, lighter ions are acceler-

ated in a quasi-monoenergetic way, in contrast with the well known results

about Coulomb explosion of clusters composed by single ion species, where

the energy spectrum is much wider. A theoretical model, useful for a deep

comprehension of the explosion dynamics, has been developed for the case of

a two-species pure ion spherical plasma; results of the theoretical model have

been compared with numerical simulations showing a perfect agreement. In

chapter 7, the formation of shock shells during the explosion of small clusters

is examined. In particular, a rigorous analysis carried out using the N-body

simulation method, whose details are described in chapter 2, is presented. Re-

sults are then compared with reference solutions for the collisionless kinetic

equations, normally utilized to study these phenomena, showing that kinetic

models based on the Vlasov-Maxwell system of equations fail when attempt-

ing to capture the physics of shock shells formation. Direct interactions be-

tween particles are not negligible and therefore the mean field theory of the

collisionless model does not provide the correct results.

1.6 LASER DRIVEN ION ACCELERATION: OVERVIEW

As seen in the previous sections, depending on the laser and target charac-

teristics, several ion acceleration mechanisms can be excited. Table 1.1 reports

a brief summary of the laser and target requirements necessary to excite each

physical processes previously described. The features of the accelerated ions

are also shown.

1.7 CURRENT AND FUTURE APPLICATIONS

One of the most peculiar features of MeV protons is the energy deposition

profile in dense matter: being the energy loss for ions dominated by Coulomb
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TNSA BOA RPA SWA CE

Laser

I [W/cm2] 1018 5 × 1019 1020 − 1022 1016 1015 − 1022

λ [µm] 1 1 0.8 10 1

a0 1 6 8 1.5 − 2.5 1

contrast 10−7 10−8 10−10 10−5 -

Target Ltarget [nm] 103 − 105 100 1-50 gas jet cluster

Ion
εmax [MeV] ∼ 70 > 100 < 5 > 22 1

∆ε/ε [%] 100 100 10-20 ≤ 10 100

TABLE 1.1: Summary of the features of some laser driven ion acceleration mecha-

nisms.

FIGURE 1.5: Dose deposited in water versus radiation range. While x-ray and elec-

trons release most of their energy at the beginning of their path, hadrons do it at the

end of their path in a very localized area, the Bragg peak. From [35].

collisions with higher cross-section at lower energies, most of the particles en-

ergy is released at the end of their path in what is called the Bragg peak [34].

The possibility of delivering energy in a very localized region makes positively

charged ions very interesting for applications like cancer therapy, isotope gen-

eration for medical applications, production and probe of “warm dense mat-

ter”, fast ignition of fusion targets and injectors for conventional ion accelera-

tors. These current and future applications are illustrated in details in the next

paragraphs.
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1.7.1 PROTON RADIOGRAPHY

Proton radiography has been proposed in the late 1960s as an alternative to

the traditional x-ray radiography. In 1968, Koehler demonstrated that proton

radiographic films could be produced with high image contrast, as long as the

proton range was equal to the thickness of the object to image [36].

Proton beams generated via laser-matter interaction show properties in

term of spatial resolution and temporal duration that make them perfect for

proton probing [37].

The most successful applications to date of proton probing are related to

the detection of electric and magnetic fields in plasmas [38, 39]. The high tem-

poral resolution is fundamental to monitor highly transient fields following

short-pulse interaction. Moreover the proton probing technique has been suc-

cessfully used to get detailed information on nonlinear phenomena occurring

in laser-plasma interaction experiments [40, 41].

In a general laser-plasma experiment (figure 1.6), a short and intense laser

pulse is focused on a thin solid foil in order to generate and accelerate an en-

ergetic and collimated proton beam with temporal duration comparable to the

laser pulse duration. The protons propagate then through the region of the

experiment, where a second laser is directed onto a target. Crossing this re-

gion, protons get deflected due to the fields in the plasma. Since the beam is

laminar, the proton source can be viewed as a point-like virtual source and the

geometrical magnification parameter M at the detector can be computed as

M =
L + l + ls

l + ls
≃ L

l
(1.1)

where L is the distance between the interaction target and the detector, l ≪
L is the distance between the foil and the interaction target, and ls ≪ l is

the distance between the virtual source and the foil. Finally, the proton beam

coming out from the interaction region is recorded on a spectrally resolved

detector [42]. The broad energy spectrum of a TNSA produced proton beam

has a time-energy correlation that allows for taking a movie of the examined

interaction. Protons with different energies penetrate up to different depths in

the stack camera and, releasing most of their energy in correspondence with

the Bragg peak, give a different volumetric signal deposition. All the different

frames taken in a single shot can then be merged to get temporal information

about the interaction evolution. The minimum spatial resolution is determined
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FIGURE 1.6: Proton probing technique general setup. Adapted from [42].

by the transverse size of the virtual source, allowing for resolving details of µm

size [7].

1.7.2 PRODUCTION OF WARM DENSE MATTER

Warm dense matter (WDM) is an extreme state of matter in a regime of

density between 1 and 10 times the solid density and temperature up to 100

eV [43]. The material is in a state between solid and plasma: it is too dense to

be described by weakly coupled plasma physics, but too hot to be described by

condensed matter physics. Studying these conditions is relevant in the fields

of material science, geophysics and planetary science [44–47].

In order to understand the properties (equation of state and opacity) of

WDM, it is necessary to heat up in a uniform way a large volume of solid den-

sity material. Therefore, ions, that can heat the material in depth, are suited for

this purpose. Other methods involve x-rays heating and shock compression,

but they are less effective in heating the sample uniformly.

Ion beams for this scope can be produced by conventional accelerators or

by electrical-pulsed ion sources. However, ion pulses from these sources will

have a long duration and will cause the materials to expand hydrodynamically

before the right temperature is reached. On the other hand, laser-generated

proton pulses have a shorter duration and can rapidly heat the sample before
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its expansion. Hence, the target stays at near solid density for a sufficient time

to investigate its properties [48].

1.7.3 FAST IGNITION OF FUSION TARGETS

According to the traditional scheme to achieve inertial confinement fusion

(ICF), the so called direct drive, laser pulses are used to compress to high den-

sities (≥ 1025 particles/cm3) and heat to high temperatures (≃ 10 keV) at the

same time the central hot spot of a Deuterium-Tritium pellet. Ignition occurs

following pulse compression. After the ignition has been achieved, a ther-

monuclear burning wave quickly propagates through the target leading to the

generation of a large amount of energy from the fusion chain reaction [49].

However, in order to reach ignition and obtain energy gain, a high degree of

symmetry in the explosion is required. Moreover, several hydrodynamics in-

stabilities can play a role in preventing the success of the experiment.

For these reasons, other approaches, called indirect drive, have been pro-

posed. In particular, referring to the fast ignition scheme, the fuel compression

phase is separated from the ignition stage. The first one is reached with the

use of several laser beams that ablate the target, creating an expansion wave

toward the outward, responsible for the fuel compression by momentum con-

servation. After the fuel has been compressed, ignition is driven by a separate

external trigger: a population of fast electrons generated by a second shorter

and more intense laser pulse. Energetic electrons will be stopped through col-

lisions at the core, heating and igniting the fuel [50]. However, also this ap-

proach presents some difficulties in the realization. In particular, since the en-

ergy deposition profile of electrons is a smooth function, producing a localized

hot spot is very difficult.

On the other hand, protons are characterized by a highly localized energy

deposition profile and offer a valid alternative as an ignitor beam. This ap-

proach has been proposed for the first time in [51], after the observation that

multi-MeV protons could be produced in petawatt experiments [4]. Moreover,

theoretical calculations showed that the wide energy spectrum of, for instance,

TNSA produced ions and the temporal dispersion of the beam do not have a

negative impact, but could actually benefit the core heating [52,53]. The proton

stopping range increases with the plasma temperature. Therefore, heating due

to the more energetic particles favors energy deposition by the less energetic

ones, that arrive later in time.
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1.7.4 BIOMEDICAL APPLICATIONS

HADRONTHERAPY

In hadrontherapy, protons or Carbon ions are used to irradiate cancer tu-

mor cells [54, 55]. These particles present several advantages compared to the

most commonly used x-rays. Irradiation of nearby healthy tissues is strongly

reduced because the range for positive ions is fixed by their energy. Moreover,

the well-localized Bragg peak leads to a substantial increase of the irradiation

dose in the proximity of the stopping point. In order to be effective for thera-

peutical treatments, protons with energy between 60 and 250 MeV and Carbon

ions with energy up to 400 MeV are necessary.

The use of laser-based accelerators, as alternative to conventional particle

accelerators, was proposed by several authors [56–59] that pointed out its ad-

vantages in term of cost and compactness. Different schemes were suggested,

from using laser-driven protons as high quality injectors in a rf accelerator [60]

to all-optical systems [57], in which ion beam acceleration takes place in the

treatment room itself and ion beam transport and delivery issues are thus min-

imized.

However, at current status, there are significant challenges before that laser-

driven proton beams reach the therapeutic specifications. In particular, ion

maximum energy, energy spectrum, repetition rate and reliability are still far

from accomplishing the requirements [61].

MEDICAL DIAGNOSIS

Multi-MeV proton beams can induce nuclear reactions in low-Z materials.

Therefore, laser-driven ion beams have been suggested for the production of

short-lived positron emitting isotopes to employ in positron emission tomog-

raphy (PET). The PET technique is used for medical imaging of blood flow and

amino acid transport and for tumor detection. Up to now, the 20 MeV protons

for PET have been produced by large size and costly cyclotrons. The possibil-

ity of using moderate energy, ultrashort, high-repetition tabletop lasers may

lead in a near future to the production of short-lived isotopes via laser-driven

proton beams. In order to reach an activity of about 1 GBq, necessary for PET,

a laser system with energy 1 J, duration 30 fs, intensity 1020 W/cm2 and kHz

repetition rate is necessary [62, 63].
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1.8 ORIGINAL CONTRIBUTIONS

In this thesis two different mechanisms of ion acceleration in laser-generated

plasmas are investigated. The first part of the thesis is devoted to the study of

shock wave acceleration in near critical density plasmas, while the second part

deals with the study of ion acceleration in Coulomb explosion. The main orig-

inal contributions of this work are as follows.

Chapter 2 is devoted to describe the numerical tools used to perform the

simulations presented in the thesis. A simple model for the study of electro-

static collisionless plasma problems characterized by a high degree of sym-

metry has been developed. The electric field acting on each computational

particle is evaluated by means of the Gauss law without the use of a spatial

grid. The absence of the latter allows for a simple and light algorithm that can

run on normal laptop or desktop machines in reasonable times providing ex-

tremely precise results that can represent a reference solution. Moreover, an

algorithm to perform N-body simulations has been implemented in order to

carry out statistical mechanics type of studies in systems characterized by few

degree of freedom, as in the case of nanoplasmas generated via laser-cluster

interaction.

In chapter 3, the theoretical model presented in [21] for the steady state

Mach number of electrostatic shocks formed in the interaction of two plasma

slabs of arbitrary density and temperature is generalized for relativistic elec-

tron and nonrelativistic ion temperatures. It is found that the relativistic correc-

tion leads to lower Mach numbers and as a consequence ions are reflected with

lower energies. The steady state bulk velocity of the downstream population

is introduced as an additional parameter to describe the transition between the

minimum and maximum Mach numbers that is dependent on the initial den-

sity and temperature ratios. In order to transform the solitonlike solution in

the upstream region into a shock, a population of reflected ions is considered

and differences from a zero-ion temperature model are discussed.

In chapter 4, electrostatic shocks driven by the interaction of two plasma

slabs with different density, temperature and/or drift velocity are studied with

numerical simulations. It is shown that when the density jump between the

two slabs is high enough, a shock wave capable of reflecting and accelerating

the upstream ions is generated and that the percentage of reflected ions in-

creases with the density ratio. It is demonstrated that a relative drift between

the two slabs plays a similar role and an increase in the value of the drift ve-
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locity leads to an increment in the energy and in the number of reflected ions.

Theoretical predictions about the shock critical Mach number (Mach number

at which ion reflection occurs) are confirmed by numerical results. Moreover,

when finite plasma slabs are considered, it has been seen that a TNSA field de-

velops at the plasma-vacuum transition. This charge separation field, respon-

sible to worsen the features of the reflected ion beams, can be controlled with

a smooth transition between the plasma and the surrounding vacuum. There-

fore tailored plasmas have been considered. Two possible configurations have

been studied: in the first one the abrupt plasma-vacuum transition has been

substituted with an exponentially decreasing density profile; in the second set

up, several plasma slabs with progressively decreasing density mimicking the

exponential profile have been used. Detailed parameter scans allowed to de-

termine the optimal conditions to obtain quasi-monochromatic ion beams.

In chapter 5, the role of the laser in the formation of electrostatic shocks is

analyzed. It is shown that the interaction of intense lasers with tailored near-

critical density plasmas allows for the efficient heating of the plasma electrons

and steepening of the plasma profile at the critical density interface, leading

to the generation of high velocity shock structures and high energy ion beams.

Scaling laws regarding the electron temperature and the ion energy have been

retrieved for the ideal case of a plane wave laser and for the realistic case of a

finite laser spot size.

Chapter 6 is dedicated to the study of Coulomb explosion in hetero-nuclear

clusters. Numerical simulations show that in heavy-light systems, composed

of two different ion species, the lighter ions get accelerated in a quasi-monoen-

ergetic way, in contrast with the well known results about Coulomb explosion

of clusters composed by single ion species, where the energy spectrum is much

wider. A theoretical model has been derived and results have been compared

with the numerical ones, showing an excellent agreement.

In chapter 7, the phenomenon of shock shell formation during the Coulomb

explosion of small clusters is analyzed. N-body simulation results are pre-

sented and compared with the standard collisionless kinetic theory, showing

consistent differences. This can be attributed to the fact that direct interac-

tions among particles play a important role in these scenarios and therefore,

the mean field theory of the collisionless kinetic model fails in describing the

system dynamics.

The work developed in this Thesis resulted in the following scientific pub-

lications (either published or in preparation):
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of mono-energetic ion beams´´. Physical Review Letters, vol. 109, p. 215001,

2012.

— F. Fiúza, A. Stockem, E. Boella, R. Fonseca, L. Silva, D. Haberberger, S. To-

chitsky, W. Mori, and C. Joshi. ”Ion acceleration from laser-driven electro-

static shocks´´. Physics of Plasmas, vol. 20, p. 056304, 2013.

— A. Stockem, E. Boella, F. Fiúza, and L. O. Silva. ”Relativistic generalization

of formation and ion-reflection condition in electrostatic shocks´´. Physical

Review E, vol. 87, p. 043116, 2013.

— A. Stockem, F. Fiúza, E. Boella, R. A. Fonseca, L. O. Silva, C. Joshi, and W.

B. Mori. ”Theoretical studies of collisionless shocks for laser-acceleration of

ions´´. The proceedings of SPIE, vol. 8779, p. 87790B, 2013.

— A. D’Angola, E. Boella, and G. Coppa. ”On the applicability of the collision-

less kinetic theory to the study of nanoplasmas´´. Submitted to Physics of

Plasmas, 2014.

— E. Boella and G. Coppa. ”Shell model: a simple gridless, particle-based tech-

nique for plasma simulation´´. To be submitted to Journal of Computational

Physics, 2014.

— E. Boella, F. Fiúza, A. Stockem, and L. Silva. ”Shock wave acceleration: an

optimization study´´. To be submitted to Physics of Plasmas, 2014.
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monochromatic ions from Coulomb explosion of hetero-nuclear clusters´´.

To be submitted to Physics of Plasmas, 2014.



CHAPTER 2

NUMERICAL METHODS FOR

SHOCK WAVE ACCELERATION AND

COULOMB EXPLOSION

Depending on the temporal and spatial scales involved in the problem

of interest, different numerical techniques can be employed to simulate the

physics of a plasma. This thesis focuses on the study of shock waves in col-

lisionless plasmas and on Coulomb explosion, phenomena that involve non

linear and kinetic processes. Therefore, particle methods are particularly suit-

able to tackle the physics of these phenomena. The study of shock wave ac-

celeration has been carried out using Osiris [64, 65], a state-of-the-art particle

in cell (PIC) code [66–68] and the shell model, a gridless particle-based kinetic

algorithm [69]. Coulomb explosion results have been obtained employing the

shell model and, when allowed by the size of the problem, solving directly

Newton’s equation, with an approach similar to the one adopted in molecular

dynamics simulations [70]. This chapter will describe in detail the numerical

schemes adopted.

2.1 PARTICLE IN CELL TECHNIQUE

The most general set of equations to describe a collisionless plasma (i.e. a

plasma with ν/ωp ≪ 1, being ν the collision frequency and ωp the plasma fre-
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quency and ǫp ≫ 1, being ǫp the plasma parameter, ratio between the plasma

kinetic and potential energy) is the Maxwell-Vlasov system [71]:
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(2.1)

where f j(x, p, t) is the distribution function of the species j, having mass mj and

charge qj, x = (x, y, z) is the position, v = (vx, vy, vz) = p/mjγ the velocity, p

the momentum, γ =
√

1 + p2/m2
j c2 the Lorentz factor, c the speed of light, E

the electric field, B the magnetic field and ρ and J are the charge and current

densities, defined as

ρ = ∑
j

qj

∫

f j(x, p, t)dp (2.2)

J = ∑
j

qj

mj

∫

p f j(x, v, t)dp (2.3)

Since the distribution function is 6-dimensional, solving the system 2.1 repre-

sents a big task and it would require computational resources that are still not

available. The problem can be overcome with a Lagrangian approach, using

a particle method. As reported in [67], ”Particle model is a generic term for

the class of simulation models where the discrete representation of physical

phenomena involves the use of interacting particles”. However, the idea of di-

rectly simulating the interaction between the particles that compose a plasma

is not feasible: in most cases (an exception will be shown in chapter 7), plas-

mas that one aims to simulate are composed by 1015 − 1020 particles. Since the

number of computational operations scales with the number of particles (in

the best case, it scales as N0 log N0 [72], where N0 is the number of particles),

it is clear that this approach will not be practical. A solution can be found ob-

serving the nature of the system that one aims to simulate. Many systems of
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FIGURE 2.1: Relation between (a) Vlasov and (b) a macro-particle approach. Adapted

from [74].

interest are composed by weakly coupled plasmas in which charged particles

are occasionally and rarely dominated by mutual electrostatic influence and

where collective electrostatic interactions prevail. Therefore a statistical ap-

proach can be used and instead of considering single particles, macro-particles,

representative of millions of real plasma particles, can be utilized. Computa-

tional particles can be viewed as small pieces of phase space [73] or as blobs

of incompressible phase fluid moving in phase space [67] (see figure 2.1). One

of the main features of macro-particles is the fact that they have a finite size.

In this way, the interaction among computational particles, whether there is

particle overlapping, is weaker than in the case of point-like particles. The

Coulomb force between point-like particles is proportional to 1/r2 in 3D and

to 1/r in 2D being r the distance between two particles. This means that the

force has a singularity for r → 0 while it slowly falls off for r → ∞. This trend

for large values of r is the reason behind the collective behavior of a collision-

less plasma. When the particles have finite sizes, they feel the same long range

force as if they were point particles, but as the distance becomes smaller than

their diameter, the particles start to overlap and the force drops off to zero. In

this way, the rapidly varying force associated with close encounters is reduced,

but the long range relations typical of a collisionless plasma are correctly mod-

eled. Moreover, since quantity variations smaller than a particle size cannot

be solved, a spatial grid with spacing about equal to the size of the particles is

used, allowing for a further simplification of the field calculations [68].

Summarizing, in a typical PIC algorithm, macro-particles are moved indi-
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vidually in Lagrangian fashion according to the Lorentz equation [74]

dpi

dt
= qi

(

E +
vi

c
× B

)

(2.4)

dxi

dt
=

pi

miγi
(2.5)

where the subscript i has been used to indicate the ith particle, with i = 1, 2, .., Np,

being Np the number of computational particles.

Charge and current densities at the grid points (ρ(xg) and J(xg)) needed

to solve Maxwell’s equation are obtained by mapping particle positions and

velocities on the grid [73]

ρ(xg) = ∑
i

qi NpSx(xg − xi) (2.6)

J(xg) = ∑
i

qi NpSx(xg − xi) (2.7)

where Sx is a function describing the shape of the particles.

Equations (2.6) and (2.7) are inserted into Maxwell’s equation to find the

new field values at grid points. Finally, these values are interpolated back to

the particle positions and the particles are advanced to a new position with

equation (2.5), as illustrated in figure 2.2.

2.1.1 OSIRIS FRAMEWORK

Osiris is a massively parallel, fully relativistic and fully object-oriented PIC

code for modeling intense beam plasma interactions. The code has been devel-

oped for more than ten years by the Osiris consortium composed by University

of California at Los Angeles and Instituto Superior Técnico [64, 65].

In order to advance the particles, the Boris pusher [66] has been imple-

mented. The method is based on a multi-step process and is second-order ac-

curate in time. Since the code is electromagnetic, only Ampere’s and Farday’s

equations are solved to advance the fields

∂B

∂t
= −c∇× E (2.8)

∂E

∂t
= c∇× B − 4πJ (2.9)
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FIGURE 2.2: Main loop of a typical electromagnetic PIC algorithm. Knowing the par-

ticle positions and velocities, the charge and current densities are computed on a grid.

These values are plugged into Maxwell’s equation to compute the fields. The fields

are then interpolated back to the particle position to compute the force acting on the

particles. The force is finally used to advance the particles to new positions and veloc-

ities.

The rotational operator is replaced by a finite difference approximation on

the grid and fields and current are defined on shifted meshes for achieving

a second-order accuracy. The integration in time follows a second order accu-

racy scheme. A charge-conserving current deposition algorithm [75] has been

enforced.

Computational particles are loaded into the simulation according to the

quiet start technique [68]. Particles have a different weight depending on the

initial density profile to simulate.

The code is written in Fortran 90 in an object-oriented way. The paralleliza-

tion of the code is done for distributed memory system and it is based on the

Message Passing Interface (MPI) paradigm [76]. The parallelization is based on

a domain decomposition across the available nodes. The output data are saved

in the HDF [77] format, a standard, platform independent and self-contained

file format. Simulation result visualization is performed with visXD, a custom

designed set of IDL (Interactive Data Language) based tools [78].

Recently, Osiris demonstrated excellent scaling in parallel performance on

a BlueGene/Q based architecture machine with 1.6 million cores called Se-

quoia [79], actually the third fastest world supercomputer [80]. Osiris obtained



22 Numerical methods for shock wave acceleration and Coulomb explosion

75% efficiency in what is called strong scaling (increasing number of cores for

a fixed size problem) and 97% efficiency in weak scaling (increasing number

of cores proportional to the increasing size of the problem).

2.2 SHELL MODEL

PIC codes are powerful tools for simulating phenomena in collisionless

plasma. However, in many problems of interest for plasma physics, the nu-

merical particle-mesh technique can be further simplified. This is the case, for

instance, of the studies carried out in the present thesis: pure electrostatic phe-

nomena characterized by a high symmetry degree. In these cases, the numeri-

cal PIC scheme has been efficiently substituted by a particle-based method, in

which the electric field is computed exploiting the Gauss law directly at the

position of the computational particles, without using a spatial grid. Imagin-

ing, for simplicity, particles distributed at different radii of a sphere, the electric

field can be computed considering that each particle behaves like a “shell” and

therefore the field at the particle position will be proportional to the charge in-

side that “shell” (fig. 2.3 (a)). In fact, each shell has an infinitesimal width h

with h → 0 and the electric field, discontinuous across each “shell”, has a linear

behavior inside it. Therefore, the force acting on each computational particle

is calculated as the product between the charge and the average between the

electric field at the left and at the right hand side of the “shell” (see fig. 2.3 (b))

Ep =
El + Er

2
(2.10)

where the subscript p, l and r have been used to identify the electric field felt

by the particle and the electric field at the left and right surfaces of the “shell”,

respectively.

It is important to notice that in such models the plasma collisionality is

already low due to the fact that each shell does not represent a real charge, but

rather a charge density (the charge is in fact distributed along a “shell”) and

gets further reduced when the number of shells Np increases, vanishing for

Np → ∞. Hence, the shell algorithm is appropriate for the study of plasmas

dominated by collective electrostatic interactions.

Since it is a gridless algorithm, the shell model reduces computational re-

quirements and provides precise reference solutions. Moreover, it allows, in

principle, for studying an infinite domain.
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(a) (b)

FIGURE 2.3: (a) Spherical shells constituted by the particles sorted on the radius of

a sphere. (b) Qualitative field variations between two “shells” and inside a “shell”,

where the field is assumed to vary linearly.

A similar scheme has been used by Dawson and by Eldridge and Feix [81,

82], who employed this technique to investigate the properties of systems in

thermal equilibrium. Particles were represented by sheets moving along an

axis of finite length and interacting through the electric field. Unlike the “shell”

model, where the field acting on the particles is computed after each finite time

step ∆t, sheets are accelerated according to a constant field until two sheets

cross and only at this point field, velocity and position values are updated.

Following a similar approach, a reduced electrostatic code called the shell

code has been developed. The typical temporal loop of the code is shown in

figure 2.4. For the first time the code has been used to study the interaction

of two plasma slabs (chapter 4) and the expansion of a plasma into vacuum in

spherical geometry (chapter 6).

FIGURE 2.4: Shell algorithm loop. Given the position of the particles, the electric field

is computed. The value is then used to update the particle speed and position.
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2.2.1 SPHERICAL GEOMETRY

In spherical geometry, once the computational particles have been loaded

into the simulation and they have been sorted according to their radii ri, as-

suming spherical symmetry, the self consistent radial electric field at a given ri

can be computed as

E(ri) =
Q(ri)

r2
i

(2.11)

where Q(ri) is the charge contained in the sphere of radius ri, given by the sum

of the single charges qj whose position rj is smaller than ri.

Q(ri) = ∑
j<i

qj +
1

2
qi (2.12)

Since the shell model in spherical geometry is implemented according to

a 1D3V scheme, after the radial electric field has been calculated at particle

position ri, the three components of the particle velocity vi = (vx,i, vy,i, vz,i)

and position ri = (xi, yi, zi) are directly updated as

dvi

dt
=

qi

mi
E(ri)

r

r i
(2.13)

dri

dt
= vi (2.14)

In fact, noticing that particle motion happens always on a plane (see fig.

2.5), it is possible to decrease the number of computational operations to per-

form by replacing r and v with two component vectors whose coordinates will

be (r, 0) and (vr, v⊥), with vr and v⊥ defined as

vr = v · r

r
(2.15)

v⊥ =
∣

∣

∣
v − r

r
vr

∣

∣

∣
(2.16)

This allows for a further reduction of the computational time of the model.

2.2.2 PLANE GEOMETRY

In plane geometry, the electrostatic field at the position of each particle can

be computed as

E(xi) = 4πQ(xi) (2.17)



2.2 Shell model 25

FIGURE 2.5: Relation between coordinates (x, y, z) and (r, 0) and (vx, vy, vz) and

(vr, v⊥).

where Q(xi) is given by

Q(xi) = ∑
j<i

qj +
1

2
qi (2.18)

2.2.3 IMPLEMENTATION DETAILS

The model has been numerically implemented in Matlab (for spherical ge-

ometry) and in Fortran 90 (for plane geometry).

MATLAB IMPLEMENTATION

Particles are loaded into the simulations with the random start technique

[73], using existing Matlab functions RAND for pseudorandom number uni-

formly distributed and RANDN for pseudorandom number distributed ac-

cording to a Maxwellian. If a particular distribution is needed, there is the

possibility to load particles according to it, using a routine that implements

the rejection sampling.

At each time step, particles are sorted according to their radial position

using the predefined Matlab function SORT.

Results are saved in files .mat and Matlab routines have been written to

analyze and plot them.
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FORTRAN IMPLEMENTATION

Particles are loaded into the simulations with the random start technique.

The pseudorandom number generator supplied by the IBM Fortran compiler

has been used to create a uniform distribution in space and in velocity. The re-

jection sampling has been implemented to create ad hoc particle distributions

in space and velocity.

The heapsort algorithm, having a O(Np log Np) computational complexity,

has been implemented to sort the particles at each time step. Particle sorting

is the critical point in terms of performance. A possible solution would be

implementing a parallel sorting algorithm, like the parallel marge sort, with

computational complexity O(log Np).

The output data, consisting of particle positions and velocities and electric

field, are saved in the HDF format, with a structure comparable to the Osiris

output data. Therefore, the visualization can be done using visXD.

2.3 N-BODY SIMULATION TECHNIQUE

In scenarios where the plasma involved is composed by a relativly small

number of particles (as, for instance, nanoplasmas generated by the interaction

of intense laser pulses with atomic clusters having N0 = 102 − 104 electrons

and ions), an accurate study of the particle dynamics can be obtained solving

numerically the system of equations of motion, where the Coulomb force act-

ing on a particle is due to the exact contribution of the other ones that compose

the system

dxi

dt
= vi (2.19)

dvi

dt
= ∑

j 6=i

q2
i

mi

xi − xj

|xi − xj|3
(2.20)

with i = 1, 2, .., N0.

When the system is composed by such a small number of particles, initial

conditions (i.e. initial positions and velocities) of the particles can play a sig-

nificant role in determining the time dynamics. In order to obtain results as

general as possible, ensemble averages have been calculated to take into ac-

count the possible different initial conditions of the system. In fact, at time t,
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any macroscopic quantity P of the system is a function of the initial condi-

tions, i.e., P(t, {xi0}, {vi0}). Using a different set of random numbers for the

initial conditions {xα
i0}, {vα

i0}, a generally distinct solution, Pα, is obtained.

Therefore, P is a random variable whose average, 〈P〉, is the expected value

of the physical quantity. Making use of the results of M different simulations,

〈P〉 can be estimated as 〈P〉 ≃ P , being

P =
1

M

M

∑
α=1

P(t, {x
(α)
i0 }, {v

(α)
i0 }) (2.21)

Moreover, the ensemble variance σ2
P

is also estimated as

σ2
P ≃ 1

M − 1

M

∑
α=1

[

P(t, {x
(α)
i0 }, {v

(α)
i0 })− P

]2
(2.22)

The standard deviation σP shows dispersion of Pα values from the aver-

age and one can say that a significative number of Pα lies in the interval
[

P − 2σP , P + 2σP

]

. The ensemble average P converges to the expected

value 〈P〉 as M−1/2, where σ̂M = σP/
√

M is an estimate of the statistical

error of P which lies in the interval [〈P〉 − 2σ̂M , 〈P〉+ 2σ̂M ] with probabil-

ity [83]
1√
2π

∫ 2
−2 e−t2/2dt ≃ 0.95.

2.3.1 IMPLEMENTATION DETAILS

Equations 2.19 and 2.20 have been solved numerically using the leap-frog

integration scheme [66], where the position is updated at integer time steps

and the velocity is updated at integer-plus-a-half time steps, resulting in a sec-

ond order integration algorithm.

Particles are loaded into the simulation according to the random start tech-

nique, using pseudorandom numbers.

The code has been written in Fortran 90 and has been parallelized with

Open-MPI. In particular, a parallelization over M simulations has been im-

plemented. The processor number 0 is in charge to generate M × N0 initial

conditions, where N0 is the real number of particles of the system. Although

this procedure has the advantage of avoiding problems with the generation of

random numbers, it is going to slow down the performance of the code. The

sets of initial conditions (xα
i0 and vα

i0 with i = 1, .. N0) for each simulation are
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saved in M different files in the HDF format. At this point the tasks are di-

vided among the processors available. Each processors will read a different

set of initial conditions and will evolve the particles according to equations

2.19 and 2.20. Results (particle positions and velocities and the electric field)

from each simulations are saved in M different folders, using the HDF file

formats. Matlab routines have been written to analyze the data and compute

the ensemble averages P , the variance σ2
P

and the standard deviation σ̂M for

different macroscopic quantities P .



Part I

Ion Shock Wave Acceleration





CHAPTER 3

THEORY OF ELECTROSTATIC SHOCK

WAVES

The formation of electrostatic shock waves in unmagnetized plasmas is as-

sociated to the steepening of ion acoustic waves (IAW) propagating in plas-

mas composed by cold ions and hot electrons [84]. Consider for example a

sinusoidal potential wave traveling in a plasma: the ions will experience a dif-

ferent acceleration depending on their position. In particular ions at the peak

of the wave will feel a force dragging them in the direction of the phase ve-

locity vph, while the ones at the back will feel a force dragging them in the

opposite direction. This process will cause a steepening of the wave shape.

Moreover, since the density perturbation is in phase with the potential, there

will be a net mass flow in the propagation direction. This will result in an in-

crease of the wave velocity that will eventually exceed the sound speed in the

unperturbed plasma. As a result the Mach number M, ratio between the wave

and the sound speed, will be higher than one.

3.1 ION ACOUSTIC SOLITON

Theoretical analysis of ion acoustic shock waves can be carried out apply-

ing the same techniques used to study ion acoustic solitons. To derive a theory

for electrostatic shocks waves, the so-called Sagdeev formalism [85] will be
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Φ

x

Ions

vs

FIGURE 3.1: Sketch of a soliton wave. In the soliton reference frame, cold plasma ions

are moving to the right. Electrons are considered always in equilibrium.

used. In this section, a review of the model for the simple case of an ion acous-

tic soliton will be illustrated.

Consider a soliton wave traveling in a plasma with cold ions and hot elec-

trons, as in figure 3.1. The wave is moving to the left with speed vs, much

smaller than the electron thermal velocity vth,e =
√

kBTe/me, where kB is the

Boltzmann constant, Te the electron temperature and me the electron mass. In

the reference frame of the wave (i.e. the frame in which the wave is at rest),

all the quantities do not depend on time and the equation of mass and energy

conservation can be applied in order to find the ion speed vi and density ni as

functions of the electrostatic potential Φ(x) of the wave

vi(Φ) =

√

v2
s −

2eΦ

mi
(3.1)

ni(Φ) =
n0

√

1 − 2eΦ

miv2
s

(3.2)

where e is the elementary charge, mi is the ion mass and n0 is the density in the

unperturbed plasma.

The electrons can be considered in equilibrium and therefore their density

is given by

ne = n0 exp

(

eΦ

kBTe

)

(3.3)
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Inserting equations (3.2) and (3.3) in the Poisson equation, the system closes

d2Φ

dx2
= −4πe(ni − ne) = −4πen0





1
√

1 − 2eΦ

Mv2
s

− exp

(

eΦ

kBTe

)



 (3.4)

Introducing the dimensionless quantities

ϕ =
eΦ

kBTe
(3.5)

χ =
x

λD
(3.6)

M =
vs

cs
(3.7)

where λD =
√

kBTe/4πe2n0 is the Debye length, cs =
√

kBTe/mi is the ion

sound speed and M is the soliton Mach number, the Poisson equation (3.4)

becomes
d2ϕ

dχ2
= −dΨ(ϕ)

dϕ
(3.8)

with the right hand side defined as

dΨ(ϕ)

dϕ
=

1
√

1 − 2ϕ
M2

− exp ϕ (3.9)

The quantity Ψ(ϕ) takes the name of Sadgeev potential from the analogy

with the equation of motion for the harmonic oscillator

m
d2x

dt2
+

dV

dx
= 0 (3.10)

Equation (3.10) has in fact the same structure of equation (3.8), where ϕ plays

the role of x and Ψ can be seen as a pseudo-potential.

Integration of the equation (3.8) respect to ϕ results in

1

2

(

dϕ

dχ

)2

+ Ψ − Ψ0 = 0 (3.11)

with

Ψ(ϕ) = − exp (ϕ)− M2

√

1 − 2ϕ

M2
+ Ψ0 (3.12)
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FIGURE 3.2: Sagdeev potential (Ψ) as a function of ϕ for M = 1.3 (dashed line) and

M = 1.5 (solid line).

where the constant Ψ0 is chosen in a way that Ψ(ϕ) = 0 for ϕ = 0, leading to

Ψ(ϕ) = 1 − exp (ϕ) + M2

(

1 −
√

1 − 2ϕ

M2

)

(3.13)

Figure 3.2 shows the shape of the pseudo potential Ψ. Consider a particle

entering from the left. It will go to the right, then it will be reflected and it will

come back making a single transit. In this case what has been called quasi-

particle is the potential disturbance of the soliton wave traveling with speed

vs.

Equation (3.11) determines the condition for the existence of a soliton solu-

tion as Ψ(ϕ, M) < 0 for ϕ ≪ 1

Ψ(ϕ)
ϕ≪1

≃ −ϕ2

2
+

ϕ2

2M2
< 0 (3.14)

determining the minimum Mach number

Mmin = 1 (3.15)

An additional condition to impose is that the potential does not raise indef-

initely: the virtual particle has to be reflected back. This is equivalent to ask

that Ψ(φ) > 0 at the maximum critical ϕcr

ϕcr =
M2

2
(3.16)
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By plugging this value inside equation (3.13), Mmax, the maximum Mach num-

ber, is obtained

M2 + 1 − exp

(

−M2

2

)

> 0 (3.17)

Mmax ≃ 1.6 (3.18)

In conclusion, soliton acoustic wave can exist in a cold-ion plasma only if their

Mach number is in the range 1 − 1.6.
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ϕ
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FIGURE 3.3: Sagdeev potential with points that lead to the determination of the mini-

mum and the maximum Mach number.

Equation (3.16) can also be rewritten as

eΦ ≤ 1

2
miv

2
s (3.19)

clearly showing that the potential energy can not exceed the kinetic energy of

the ions, in other case there would be no ions in the downstream region.
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3.2 SOLITARY SOLUTION CONSIDERING ELECTRON

DISTRIBUTION FUNCTIONS

So far electrons in equilibrium with the ions have been considered. The

model can be improved by looking at the different features of the particle pop-

ulations that maintain the double layer [21, 86, 87]. Referring to figure 3.4, we

can distinguish between free electrons and ions with kinetic energy higher

than the potential one and electrons trapped in the upstream region of the

shock, whose kinetic energy is less than the potential one. In the following

derivation, electrons are treated kinetically, while ions, that are supposed to be

cold, are treated as fluid. The electron distribution functions have to be solu-

tion of the stationary Vlasov equation and can be determined from the particle

distributions in the unperturbed plasma. Depending on the temperature of the

electrons, two different cases can be distinguished: classical, treated in subsec-

tion 3.2.1 and relativistic, discussed in subsection 3.2.2.

φ
1

φ
0

x
1

x
0

Free

electrons

Ions

Free

electrons

Trapped

electrons

FIGURE 3.4: Electrostatic shock in the shock reference frame. The line represents the

potential. Electron and ion populations are shown with their respective velocities,

temperatures and unperturbed densities in the upstream and downstream regions.

3.2.1 CLASSICAL THEORY

In the soliton reference frame, the free electron population propagating

from the upstream to the downstream region is described by the Maxwell-
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Boltzmann distribution function, with temperature T0 and fluid velocity vs

f0(v0) =
2N0

vth,0

√
2π

exp

[

− (v0 − vsh)
2

2v2
th,0

]

(3.20)

where N0 is the unperturbed electron density in the far upstream region (x →
−∞), v0 > 0 is the particle velocity and vth,0 represents the electron thermal

speed. The free electrons in the downstream region, whose fluid velocity is

equal to zero in the shock reference frame, obey the Maxwellian distribution

f1(v1) =
2N1

vth,1

√
2π

exp

[

− v2
1

2v2
th,1

+
e (Φ1 − Φ0)

kBT1

]

(3.21)

where N1 represents the density at x → −∞, v1 < 0 is the particle speed and

vth,1, different from vth,0, is the thermal velocity. The trapped electrons are

represented by the flat-top distribution function

f1t =
2N1√
2πvth,1

(3.22)

according to the so called maximum-density-trapping approximation [88, 89],

which guarantees f1(v1 = vc) = f1t at the critical velocity

vc =

√

2e(Φ1 − Φ0)

me
(3.23)

that discriminates between free (v1 < −vc) and trapped electrons (|v1| < vc).

Applying the conservation of energy, the electron velocity ve in the shock

frame can be written in terms of the upstream and downstream velocities

ve =

√

v2
0 +

2e(Φ − Φ0)

me
= −

√

v2
1 +

2e (Φ − Φ1)

me
(3.24)

The electron densities in the upstream n0 and in the downstream n1 are

computed integrating the distribution functions (3.20), (3.21) and (3.22) in the

proper limits

n0(∆ϕ) = N0e∆ϕ erfc(
√

∆ϕ) (3.25)

n1(∆ϕ) = N0Γe
∆ϕ
Θ erfc(

√

∆ϕ

Θ
) +

4√
π

N0Γ

√

∆ϕ

Θ
(3.26)
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where the dimensionless quantities ∆ϕ = e(Φ−Φ0)
kBT0

, Γ = N1/N0 and Θ = T1/T0

have been used and erfc denotes the complementary error function.

Using the fluid equations for ion mass and energy conservation and assum-

ing that the ions are cold and that none of them is reflected at the potential, the

ion density can be determined as

ni(∆ϕ) =
Ni

√

1 − 2(∆ϕ)
M2

(3.27)

Charge neutrality is imposed at x = x0 yielding to the relation between the

initial densities of electrons and ions Ni = N0 + N1. The particle densities are

then combined in Poisson equation

d2∆ϕ

dχ2
=

1

1 + Γ

(

e∆ϕ erfc
√

∆ϕ + Γe
∆ϕ
Θ erfc

√

∆ϕ

Θ
+

4Γ√
π

√

∆ϕ

Θ

)

− 1
√

1 − 2∆ϕ
M2

,

(3.28)

where the normalized quantity (3.6) has been introduced. The right hand side

of equation (3.28) can be defined as −dΨ(∆ϕ)
d∆ϕ , bringing up once again the sim-

ilarity to the harmonic oscillator and allowing to identify bounded solutions.

Integration of equation (3.28) with respect to ∆ϕ leads to

1

2

(

d∆ϕ

dχ

)2

+ Ψ(∆ϕ) − Ψ0 = 0 (3.29)

with the non-linear Sagdeev potential given by

Ψ̃(∆ϕ, M, Γ, Θ) = Ψ(∆ϕ, M, Γ, Θ) − Ψ0 =

= Pi(∆ϕ, M)− Pe0(∆ϕ, Γ)− Pe1(∆ϕ, Γ, Θ) (3.30)

where the quantities Pi, Pe0 and Pe1 represent the ion, the upstream electron

and the downstream electron pressures respectively

Pi(∆ϕ, M) = M2

(

1 −
√

1 − 2∆ϕ

M2

)

(3.31)

Pe0(∆ϕ, Γ) =
1

1 + Γ

(

2
√

∆ϕ√
π

+ e∆ϕ erfc
√

∆ϕ − 1

)

(3.32)

Pe1(∆ϕ, Γ, Θ) =
ΘΓ

1 + Γ

(

2√
π

√

∆ϕ

Θ
+ e

∆ϕ
Θ erfc

√

∆ϕ

Θ
+

8

3
√

π
∆ϕ

√

∆ϕ

Θ3
− 1

)

(3.33)

obtained by imposing Ψ(∆ϕ = 0) = Ψ0.
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FIGURE 3.5: Electron distribution functions upstream f0 (dashed line) and down-

stream f1 + f1t (solid line) for relativistic electron temperature (R) µ0 = 5 (blue)

and non-relativistic temperature (NR) µ0 = 50 (black) with Γ = 3, Θ = 2, (e(φ1 −
φ0)/mec

2 = 2 and βsh = 0.02. The more convenient variable u = βγ has been intro-

duced.

3.2.2 RELATIVISTIC THEORY

In the case of relativistic electron temperatures, the free electron popula-

tions are described by one-dimensional Jüttner distribution functions [90]

f0(γ0) = N0K−1
1 (µ0) γ0(γ

2
0 − 1)−1/2 exp[−µ0γ0(1 − β0βsh)] (3.34)

f1(γ1) = N1K−1
1 (µ1) γ1(γ

2
1 − 1)−1/2 exp

[

−µ1γ1 +
e(Φ1 − Φ0)

kBT1

]

(3.35)

where βα = vα/c > 0 is the normalized velocity of the electrons, c is the speed

of light, γα = (1− β2
α)

−1/2 is the Lorentz factor, µα = mec
2/kBTα is the thermal

parameter and βsh = vsh/c is the normalized velocity of the shock wave. The

normalization constants contain the density of the left and the right electron

population N0 and N1 in the far upstream region (x < x0) and the modified

Bessel function of the second kind K1. The downstream distribution function

takes into account the potential difference Φ1 − Φ0. The trapped electron pop-

ulation, described by the maximum density approximation as in the non rela-

tivistic theory, is rewritten using relativistic notation

f1t = N1K−1
1 (µ1) γ1(γ

2
1 − 1)−1/2 exp(−µ1) (3.36)

At the critical Lorentz factor γc = 1 + e(Φ1 − Φ0)/mec2, that discriminates

between free (β1 < −βc) and trapped electrons (|β1| < βc), f1(γ1 = γc) coin-
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cides with f1t . The electron distributions are shown in figure 3.5 as a function

of u = βγ for relativistic and non relativistic temperatures.

Introducing the electron Lorentz factor γe which accounts for the electro-

static potential in the shock frame, the upstream and downstream Lorentz fac-

tors can be written as

γe = γ0 + e(Φ − Φ0)/mec2 = γ1 − e(Φ1 − Φ)/mec2 ≥ 1 (3.37)

The electron density is computed as ne =
∫ ∞

1 fe(γe) dγe, thus obtaining the

electron densities in the upstream region

n0(∆ϕ) = N0 K−1
1 (µ0)e

∆ϕ
∫ ∞

1+∆ϕ/µ0

e−µ0γeγe(γ
2
e − 1)−1/2 dγe (3.38)

and in the downstream region

n1(∆ϕ) = N0ΓK−1
1 (µ0/Θ)

[

e∆ϕ/Θ
∫ ∞

1+∆ϕ/µ0

e−µ0γe/Θγe(γ
2
e − 1)−1/2 dγe+

+2e−µ0/Θ

√

(1 + ∆ϕ/µ0)
2 − 1

]

(3.39)

with the dimensionless quantities ∆ϕ = e(Φ − Φ0)µ0/mec2 and Θ = µ0/µ1.

Following the same procedure of section 3.2.1, the electron kinetic pressure

terms that appear in equation (3.30) can be evaluated as

Pe0(∆ϕ, Γ, µ0) =
1

1 + Γ





µ0

K1(µ0)

∫ ∞

1
dγ e−µ0γ

√

(

γ +
∆ϕ

µ0

)2

− 1 − 1





(3.40)

Pe1(∆ϕ, Γ, Θ, µ0) =
ΓΘ

1 + Γ

[

µ0e−µ0/Θ

ΘK1(µ0/Θ)






∫ ∞

1
dγ e−µ0(γ−1)/Θ

√

(

γ +
∆ϕ

µ0

)2

− 1

+ s
√

s2 − 1 − log
[

s +
√

s2 − 1
]}

− 1
]

(3.41)

with s = 1 + ∆ϕ/µ0. For highly relativistic electron temperatures, µ0 ≪ 1, the

pressures (3.40) and (3.41) are approximated by

Pr
e0(∆ϕ, Γ) =

∆ϕ(1 − µ0)

1 + Γ
(3.42)

Pr
e1(∆ϕ, Γ, Θ) =

∆ϕΓ

Θ(1 + Γ)

[

∆ϕ
(

1 − µ0

Θ

)

+ Θ
(

1 +
µ0

Θ

)]

(3.43)
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FIGURE 3.6: Sagdeev potential Ψ(ϕ) obtained from equations (3.30)-(3.41) for M =

1.7, Γ = 3, Θ = 1 and µ0 = 0.1 (red), 1 (green), 5 (blue), 100 (orange). The non-

relativistic and highly relativistic approximations given by equations (3.31), (3.32),

(3.33), (3.42), (3.43) are represented by dashed lines.

Figure 3.6 shows the Sagdeev potential for upstream electron temperatures

µ0 = 0.1− 100 and a comparison with the nonrelativistic and highly relativistic

approximations (3.31), (3.32), (3.33), (3.42), (3.43).

3.2.3 MACH NUMBER

As for the soliton case (see 3.1), the model holds for

∆ϕ < M2/2 = ∆ϕcr (3.44)

The ion pressure becomes imaginary when the electrostatic potential exceeds

the ion kinetic energy

e∆Φ >
1

2
miv

2
i (3.45)

and the ions are reflected by the shock potential. We define the Mach number

at which ion reflection sets in as the maximum Mach number Mmax. In order to

determine possible shock solutions with Mmax, we use equation (3.29) which

gives the condition for the existence of a monotonic double layer solution as
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FIGURE 3.7: Maximum Mach number versus density ratio for the highly relativistic

case µ0 = 0.1 (black) given by equation (3.49) and the non-relativistic case given in [21]

(blue) for a temperature ratio Θ = 1. The dependences for very small and very large

density ratios are indicated by the dashed lines.

Ψ̃ = Ψ(∆ϕ, M, Γ, Θ) − Ψ0 < 0. For a given Mach number M, a soliton-like so-

lution is possible only if the electron pressure exceeds the ion pressure. The so-

lutions are found numerically by solving Ψ̃(M2/2, M, Γ, Θ) = 0 and are shown

in figure 3.7.

As already found in [21], the analytical dependence of the maximum Mach

number in the non-relativistic approximation is given by

Mmax = 3
√

πΘ/8(1 + Γ)/Γ (3.46)

which is

Mmax ≃ 3
√

πΘ/8 (3.47)

for large density ratios and has a

Mmax ∝ Γ−1 (3.48)

dependence for low density ratios. In the case of highly relativistic tempera-

tures, µ0 ≪ 1, the maximum Mach number can be approximated as

Mmax =

√

2Θ

(

1 +
1 + µ0

Γ(1 − µ0/Θ)

)

(3.49)
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FIGURE 3.8: Different types of the Sagdeev potential Ψ̃(∆ϕ) = Ψ − Ψ0.

which is displayed in figure 3.7 together with the non-relativistic expression

(3.46). It can be easily seen that the maximum Mach number is constant for

high density ratios (Γ ≫ 1) as in the non-relativistic case

Mmax ≃
√

2Θ (3.50)

while it has a dependence

Mmax ≃
√

2Θ(1 + µ0)/Γ(1 − µ0/Θ) ∝ Γ−1/2 (3.51)

for Γ ≪ 1. The comparison of the non-relativistic and highly relativistic cases

in figure 3.7 for a temperature ratio Θ = 1 shows that for higher upstream

electron temperatures the maximum Mach number is reduced, in accordance

with the model for equal density and temperature ratios [91].

The lower limit and the range of possible Mach numbers for given tempera-

ture and density ratios have been analyzed. The shape of the Sagdeev potential

and thus the existence of shock solutions depends on the choice of Γ and Θ and

three different types of solutions (shown in Figure 3.8) can be distinguished.

Case (1) represents the case where shock solutions exist for Ψ̃ = Ψ − Ψ0 < 0

and ∆ϕ > 0. While the monotonously growing Sagdeev potential in case (3)

does not allow for shock solutions, case (2) defines the threshold with ∆ϕ = 0

and provides the conditions to determine the minimum Mach number, which

are given by dΨ̃/d∆ϕ = 0 and Ψ̃(∆ϕ) = 0. While in the highly relativistic limit

M = 1 is the lower limit, in the non-relativistic case a lower limit M > 1 exists.
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and comparison with the exact solution (black) for Γ = 1. The dashed vertical line

shows the transition from Mmin to Mmax for downstream velocities 0 ≤ vd ≤ vsh. (b)

Sagdeev potential for the minimum Mach number with ∆ϕ = 0 (black) and compari-

son with the approximation ϕ0 = 0 (red).

The Sagdeev potential is expanded for ∆ϕ ≪ 1 since the interesting solutions

will be for ∆ϕ → 0, obtaining

Ψ̃(∆ϕ, M, Γ, Θ) ≃ ∆ϕ2

[

1

2M2(1 − 2ϕ0

M2 )3/2
+

1

2(1 + Γ)
·

·
(

1 − ΓΘ−1/2

√
ϕ0π

− eϕ0erfc(
√

ϕ0)−
Γ

Θ
eϕ0/Θerfc(

√

ϕ0

Θ
)

)]

(3.52)

which is a function of the upstream potential ϕ0. The minimum Mach number

can then be found by solving Ψ̃(∆ϕ, M(ϕ0), Γ, Θ) = 0 with the Mach number

at the minimum of the Sagdeev potential given by

M(ϕ0) =

√

2ϕ0
√

1 − (1+Γ)2
[

eϕ0erfc[
√

ϕ0]+Γ

(

4
√

ϕ0
πΘ

+eϕ0/Θerfc[
√

ϕ0/Θ]

)]2

(3.53)

For large temperature ratios small deviations from the approximation ϕ0 = 0

[21], which is equivalent to Ψ0 = 0 in equation (3.29) have been found (see Fig-

ure 3.9 (a)). Panel (b) shows the respective Sagdeev potentials with Ψ0 = 0 for

the minimum Mach number according to ∆ϕ = 0 in black and for the approx-

imated model with ϕ0 = 0 in red. The exact solution predicts the formation of

electrostatic shocks at slightly lower Mach numbers.
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The transition between minimum and maximum Mach number can be de-

scribed as a function of the steady state ion speed in the downstream region,

vd. In the rest frame of the shock, the upstream ions propagate towards the

shock with velocity vi,us = vsh and are decelerated by the shock potential ϕ to

velocities in the downstream 0 ≤ vi,ds ≤ vsh. The velocity is vi,ds = 0 if the ions

are completely stopped by the potential and vi,ds = vsh if they are unaffected

and stream freely in the downstream region. In the upstream frame this corre-

sponds to ion downstream velocities −vi ≤ vi,du = −vd ≤ 0. Starting from the

energy conservation for ions, the downstream ion speed can be related to the

shock potential
vd

cs
= M −

√

M2 − 2∆ϕ (3.54)

and using

∆ϕd =
M2

2

[

1 −
(

1 − vd

vsh

)2
]

(3.55)

to find the zeros of the Sagdeev potential Ψ̃(∆ϕd , M, Γ, Θ) in order to determine

the Mach number M. This transition is shown in figure 3.9 (a). When the

shock propagates with a speed slightly above the minimum Mach number, the

downstream will have almost the same speed as the upstream population due

to the small potential jump that has only a weak effect on the particles. At the

maximum Mach number, the potential jump is so strong that the downstream

propagates with the same speed as the shock front.

3.3 ION ACOUSTIC SHOCK WAVE

So far, the solitary solutions in the upstream region have been described,

while the processes leading to a shock solution have not been treated. A shock

solution can arise due to different physical mechanisms that break the symme-

try [17]. For instance, a very small ion temperature is sufficient to lead to an

oscillating solution (cp. [92]). To describe this, a population of reflected ions

is included in the model. The electrostatic potential in the upstream region is

computed as in subsections 3.2.1 and 3.2.2, with the extension of a kinetic treat-

ment of the ions. On the basis of [93–95], the ion populations are described by

a Maxwellian distribution

fi =
ni√

2πvth,i

exp

[

− 1

2v2
th,i

(

√

v2 + 2c2
s0ϕ − cs0M

)2
]

(3.56)
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FIGURE 3.10: Sagdeev potentials for Te = 10 keV, Ti = 0.5 keV, M = 1.5 and Θ = Γ =

1. Potential Ψ1 (solid) corresponds to 0 ≤ χ ≤ χm and Ψ2 (dashed) to χ > χm.

with thermal velocity vth,i =
√

kBTi/mi and unperturbed ion density ni de-

fined to guarantee charge neutrality with the electrons in the far upstream re-

gion χ → −∞. The free particle population has velocities

v > vc =
√

2(ϕ − ϕ1)c
2
s0 (3.57)

and the reflected population 0 ≤ v ≤ vc. Since an exact analytical solution

cannot be found, the equations are numerically solved. The Sagdeev poten-

tial Ψ1 is computed for χ ≤ χm where χm is the position of the maximum of

the electrostatic potential and the connection point with the oscillatory down-

stream region of the shock, described by a second Sagdeev potential Ψ2 (see

figure 3.10). For the computation of the latter, two populations of free ions and

electrons as well as trapped electrons are considered.

Figure 3.11 shows the corresponding electrostatic potential against the spa-

tial coordinate, which consists of a monotonously increasing part for χ ≤ χm

and an oscillatory downstream region for χ > χm. We also compare the solu-

tion where ion reflection was neglected (dashed red) with the extended model.

For an ion temperature corresponding to 0.5 keV, we observe only a small de-

viation from the cold model. For the same potential difference, the maximum

Mach number increases as it was expected [21].

Figure 3.12 shows the electron and ion phase spaces, where the different

populations (free, trapped, reflected) can be identified. The ion density fol-
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FIGURE 3.11: Electrostatic potential for Te = 10 keV, M = 1.62, Θ = Γ = 1 and

Ti = 0.5 keV (solid black), Ti = 0 (red dashed).
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FIGURE 3.13: Spatial dependence of the ion (black, solid) and electron (red, dashed)

density for Te = 10 keV, M = 1.62, Θ = Γ = 1 and Ti = 0.5 keV.

lows the trend of the electrostatic potential ϕ (see figure 3.13). In the upstream

region, the increasing potential decelerates and accumulates the ions which

leads to an increase in the density. In the downstream, the ion density oscil-

lates around a mean value.



CHAPTER 4

ELECTROSTATIC SHOCK FORMATION

AND ION ACCELERATION IN PLASMAS

The interpenetration of collisionless plasmas with different density, tem-

perature and drift velocity leads to the generation of instabilities and to the

formation of nonlinear structures that can develop into shock waves.

For a better comprehension of the physics of electrostatic shock formation,

the interaction of two adjacent plasma slabs with different initial properties

has been analyzed. Electrostatic instabilities develop at the interface between

the plasma slabs building up an electrostatic potential. The induced wave can

then evolve in an electrostatic shock wave whenever dissipation is provided by

the electrons trapped behind the shock and by the ions reflected by the shock.

A series of 1D and 2D numerical simulations has been performed using the

shell model and Osiris, described in chapter 2. Infinite and finite plasma slabs

composed by cold ions and hot electrons have been considered. A parametric

study has been conducted varying the initial density and the electron temper-

ature of the slabs to understand the most favorable conditions for shock for-

mation and ion reflection. The effects related to finite size plasmas have been

analyzed and, with the purpose of achieving high quality ion beams, tailored

plasma profiles have been considered.
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4.1 SHOCK FORMATION AND ION REFLECTION IN

INFINITE PLASMA SLABS

The interaction of two semi-infinite plasma slabs P0 and P1 composed by

cold ions and hot electrons has been modeled. The initial density of the two

slabs is different, with Γ = n1/n0 = 4 , where n0 and n1 = 1019 cm−3 are the

plasma densities of the right and left slab respectively (see figure 4.1 (a)). The

initial electron temperature of the two slabs is the same, Θ = Te1/Te0 = 1,

where Te0 and Te1 = 1.5 MeV are the initial electron temperatures in the right

and left slabs respectively. It is important to underline that in all the fol-

lowing simulations P1 is always the slab with the highest density, tempera-

ture or drift velocity and will correspond to the downstream plasma once the

shock is formed; as a consequence P0 will correspond to the upstream plasma.

The interface between the two slabs is situated at x1 = 0.03 cm. A box with

length Lx1 = 600 c/ωp and width Lx2 = 60 c/ωp, where ωp =
√

4πe2n1/me

is the electron plasma frequency in the downstream slab, has been used, to-

gether with absorbing boundary conditions for fields and particles along x1

and periodic boundary conditions for fields and particles along x2. A grid with

2400 × 240 points, corresponding to ∆x = ∆y = 0.25 c/ωp and to a time step

∆t = 0.175 ω−1
p , has been employed. In each cell 36 cubic particles for every

species have been utilized. Particles have been pushed for more than 20000

temporal steps. Results are shown in figure 4.1. At early times, the denser

slab P1 starts to expand into P0, piling up the density around the discontinuity

and driving a non linear ion acoustic wave (IAW) (figures 4.1 ((b), (g), (l), (q)).

With time, the wave grows, the longitudinal electric field reaches high ampli-

tudes and ions start to get trapped, causing the formation of an ion acoustic

shock wave (IASW) (see figures 4.1 (c), (h), (m) and (r)). Clear signatures of the

IASW are the spike of the electric field and the peak of the density. Afterwards,

the potential energy associated with the wave becomes so high that the wave

starts to pick up the ions of the upstream slab and to reflect them to a velocity

that is about twice the shock speed, behaving as if it was a perfectly reflecting

moving wall (figures 4.1 (d), (e), (i), (j), (n), (o), (s) and (t)). The shock is mov-

ing at a constant speed vs ≃ 0.05 c, corresponding to a shock Mach number of

Ms = vs/cs0 ≃ 1.34, as shown in figure 4.2, where the position of the shock

versus time has been plotted. Consequently, the average speed of the reflected

ions is vi ≃ 2vs ≃ 0.10 c, in agreement with the simulations.

A set of simulations in which the only parameter varied was Γ has been
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FIGURE 4.1: Shock formation and ion reflection driven by the interaction of two

plasma slabs with Γ = n1/n0 = 4, Θ = Te1/Te0 = 1 and Te0 = 1.5 MeV. Snap-

shots of ion density profile ((a)-(e)), longitudinal electric field ((f)-(j)), longitudinal ion

phase space ((k)-(o)) and longitudinal electron phase space ((p)-(t)) are shown at t = 0

((a), (f), (k), (p)), 175 ((b), (g), (l), (q)), 2188 ((c), (h), (m), (r)), 2800 ((d), (i), (n), (s)) and

3588 ((e), (j), (o), (t)) ω−1
p . Simulation performed with Osiris.
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FIGURE 4.2: Shock position versus time for the same initial conditions as in figure 4.1.

The shock is moving with a constant speed vs ≃ 0.05 c, corresponding to a shock Mach

number Ms ≃ 1.34.
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20 (f), Θ = 1 and Te0 = 1.5 MeV. Simulations performed with Osiris.

performed in order to understand the role of the density jump in the physics

of shock formation. Figure 4.3 shows the ion phase space for Γ = 2, 3, 4, 5, 10

and 20 at t = 2450 ω−1
p . When the density jump between the two slabs is small

(Γ < 4), the expansion of the denser slab into the more rarified one drives a

non linear IAW, but the electrostatic potential associated with the wave is not

strong enough to reflect the background ions (figures 4.3 (a) and (b)). When

Γ ≥ 4 the amplitude of the IAW gets bigger and it starts to reflect ions. In

such cases, it is also possible to observe that some downstream plasma ions

get trapped in the nonlinear wave that follows the shock (figures 4.3 (c), (d)

and (e)). The ion trapping decreases when increasing Γ, in contrast to the ion

reflection in the upstream, that increases with Γ. For very high values of Γ the

ion trapping almost disappears, while the majority of the upstream ions gets

reflected by the shock (figure 4.3 (f)).

In order to get ion reflection when Γ is small, it is necessary for P1 to have

a drift velocity vd1 towards the upstream slab. The relative drift, together

with the density discontinuity, will drive a stronger wave able to reflect the

upstream ions, as illustrated in figure 4.4, where the ion phase space at t =
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FIGURE 4.4: Ion phase space at t = 2450 ω−1
p for Γ = 3, Θ = 1 and Te0 = 1.5 MeV.

The slab P1 has a drift velocity vd1 = 0.25 (a), 0.5 (b), 1 (c) and 1.6 (d) cs0. Simulations

performed with Osiris.

2450 ω−1
p is reported for Γ = 3 and increasing relative fluid velocity vd1. As a

consequence of a small speed (vd1 < 0.5 cs0) some ions in the downstream get

trapped by the non linear IAW, however the wave is still not strong enough to

reflect the upstream ions (figure 4.4 (a)). When vd1 is bigger, the wave driven

in the interaction becomes large enough to reflect the upstream ions (figure 4.4

(b)). A further increase on vd1 causes a stronger ion reflection and a weaker ion

trapping (figures 4.4 (c) and (d)).

The effect of a temperature jump Θ = Te1/Te0 has also been analyzed.

When the initial electron temperature is the only difference between the slabs,

no shocks are observed for the values of Θ tested (Θ = 1− 10). A relative drift

and/or a density discontinuity are necessary to excite the waves.

In order to find the most favorable conditions for ion reflection, the relation

between Mmax, Mach number at which ion reflection occurs, Γ and Θ has been

studied. Results obtained for low and high temperature electrons are reported

in figure 4.5, where a small relative drift has been added when ion reflection

was not directly driven by the expansion of P1 into P0. Simulation results are

in good agreement with the theoretical ones achieved in chapter 3. When the

density ratio Γ is high and the temperature ration Θ is low, ion reflection occurs

for shocks with lower Mach numbers. These types of shocks are easier to drive

in the laboratory which is why a high Γ and a low Θ are desirable conditions

to accelerate ions. However, since the ion speed is directly proportional to the

shock Mach number, the beam will have a lower energy. In order to increase
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the final energy of the beam, as vi ≃ 2Mcs0 and cs0 ∝
√

Te0, it is then necessary

to strongly heat the plasma [96].

4.2 SHOCK FORMATION AND ION REFLECTION IN

FINITE PLASMAS

With the aim of moving towards more realistic scenarios, simulations em-

ploying finite plasma slabs have been performed. Two adjacent finite plasma

slabs, P1 and P0, whose widths are 0.03 cm and 0.02 cm respectively, have been

considered. The right slab P0 is followed by a region of vacuum, as shown in

figure 4.6 (a). The downstream plasma slab P1 has a density n1 = 1020 cm−3

and Γ is 10. The electron temperature Te is 1.5 MeV in both slabs. At the sharp

plasma-vacuum transition, the hot electrons expanding into vacuum create a

strong charge separation field (fig. 4.6 (b)), whose maximum amplitude can be

estimated as [97]

ETNSA =

√
2kBTe

eλD
(4.1)

This field is responsible to accelerate the upstream ions up to a velocity v0.

The particles will be then reflected by the further coming shock to a velocity
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FIGURE 4.6: Shock simulation in finite plasmas with Γ = 10 for the case of an abrupt

plasma-vacuum transition: initial density (a) and electric field at t = 297.50 ω−1
p (b).

Simulations performed with Osiris.
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FIGURE 4.7: Shock simulation in finite plasmas with Γ = 10 for the case of a smooth

plasma-vacuum transition: initial density (a) and electric field at t = 297.50 ω−1
p (b).

Simulations performed with Osiris.

vions = 2Mcrcs0 + v0. Since the field is not uniform, it introduces a chirp in

the ion velocity [19], that will broaden the final energy spectrum as typical of

TNSA mechanism, as shown in figure 4.8 (a).

The sheath field can be controlled with a smooth transition between the

upstream plasma and vacuum. For instance, at early times (t ≪ 4Lg/cs0), an

exponentially decreasing plasma profile with scale length Lg gives rise to a

constant electric field [98]

ETNSA =
kBTe

eLg
(4.2)

which can be decreased by choosing a large scale length Lg. This will help pre-
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case of figure 4.7 (b).
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p for the case of figure 4.6 (black) and for the case of figure 4.7 (red).

serving the monoenergetic feature of the ions reflected by the shock. This can

be seen in figure 4.7 (a) and (b). The sharp transition plasma-vacuum has been

substituted by an exponentially decaying plasma profile with Lg = 0.02 cm.

The sheath field is now approximately constant and it will accelerate the ion

to a uniform and lower speed. The ions are then reflected by the shock, pre-

serving their narrow energy spread, as can be observed in figure 4.8 (b). Figure

4.9 shows the normalized ion distribution function confirming that a tailored

plasma can be used for the generation of monoenergetic ion beams.

In order to get a beam with low energy spread, it is crucial to address the

role of the competing accelerating fields. In particular, it is important to guar-
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antee that the velocity of the expanding upstream ions v0 = c2
s0t/Lg [98] is

small compared to the shock velocity, so that the shock can pick them up at the

time that the shock is formed τr:

vs ≫
c2

s0τr

Lg
(4.3)

For strong shocks, when ion reflection is the dominant mechanism, the ion

reflection time is similar to the shock formation time. A numerical estimate

of this quantity is given by Forsulnd and Shonk [86] in the case of low Mach

number shocks

τr =
4π

ωpi
(4.4)

Alternatively, one can define the ion reflection time as the time that an up-

stream ion takes to be accelerated to vs = Mcs0 in the presence of the shock

electrostatic field. Considering for simplicity an upstream ion at rest and a

uniform electric field associated to the shock Es = −Φ/Ls with Ls ≃ λD typi-

cal width of an electrostatic shock, τr can be computed as [96]

τr ≃
λD

Mcs0
=

1

Mωpi
(4.5)

obtaining a result consistent with equation (4.4). Plugging equation (4.4) into

expression (4.3), a constraint for monoenergetic ions is obtained [99]:

Lg ≫ 4πc2
s0

vsωpi
(4.6)

Besides this condition for monoenergetic ion generation, there is a stricter one

that concerns the ideal target thickness for optimal plasma heating. As it will

be discussed in chapter 5, uniform heating is a key factor to generate a stable

shock with constant velocity. In these simplified simulations, plasma electrons

have already a homogenous temperature at the beginning of the simulations,

therefore the more rigid condition does not apply directly to this fundamen-

tal configuration. However, since it imposes an upper limit on Lg, it appears

important considering it at this stage (see section 5.1.1):

Lg ≤ πc

ωpi
(4.7)

Assuming the superior limit of inequality (4.7) as the optimal Lg, theoretical

predictions have been tested with numerical simulations. The interaction of
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FIGURE 4.10: Upstream ion energy spread (a) and percentage of reflected upstream

ions (b) versus Lg at t = 3308 (black), 4734 (red) and 6688 (blue) ω−1
p . Simulations

performed with the shell algorithm.

two plasma slabs having a longitudinal density profile as shown in figure 4.7

(a) has been considered. The slab P1 has a width L1 = 0.01 cm, a density n1 =

1019 cm−3 and it is followed by a decreasing density profile described by

n0 =
n1

Γ
exp

(

−x − L1

Lg

)

(4.8)

with Γ = 10. A detailed parameter scan varying Lg around its optimal value

L
opt
g = πc/ωpi ≃ 0.02 cm has been performed. Results can be seen in figures

4.10, 4.11 and 4.12.

Figure 4.10 shows the energy spread of the reflected ion beam and the per-

centage of reflected upstream ions for different values of Lg at different times.

All the curves flatten around Lg ≃ L
opt
g , confirming the validity of the theoreti-

cal prediction 4.7. It is possible to notice that the beam energy spread increases

for longer times. In fact the shock speed, constant at early times, decreases at

later times. This is due to the fact that the wave is constantly transferring en-

ergy to the ions and since no plasma is injected into the simulation, it slows

down as a consequence of the dissipation, as illustrated in figure 4.11 and

previously noted in [100]. The speed of the reflected ions is then no longer

constant and a chirp is introduced in the ion spectrum, that causes the energy

spread to increase. It is also interesting to observe that the deceleration of the

shock wave depends on Lg. Right after the shock is formed, it starts to move

with the same speed, regardless of the decaying scale length, however, when

ion reflection gets important, at around t = 1000 ω−1
p , it starts to loose energy
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FIGURE 4.11: Shock speed versus time for Lg = L
opt
g (black), 5L

opt
g (red), and 20L

opt
g

(blue). Simulations performed with the shell algorithm.

and, therefore, it decelerates with a rate that increases with Lg, in agreement

with the model for soliton-like laser pulses propagating in inhomogeneus plas-

mas presented in [101].

Figure 4.12 shows the energy spread of the reflected ion beam and the per-

centage of reflected upstream ions versus Lg for different initial values of elec-

tron temperature at t = 3308 ω−1
p . Also in this case, all the curves show the

same trend and suggest that the upper limit (4.7) on Lg, which is critical in

laser driven ion acceleration but of no importance in this fundamental con-

figuration, will not prevent to obtain a much lower energy spread, since the

minimum value of ∆ε/ε is reached around Lg = L
opt
g . Moreover, as predicted

by the theory, numerical simulations indicate that the optimal decay length

does not depend on the initial electron temperature.

4.3 SHOCK FORMATION AND ION REFLECTION IN

MULTILAYER PLASMAS

A key factor for the generation of monoenergetic ions is represented by

the reduction of the fields that build-up at the interface between plasma and

vacuum. As seen in section 4.2, this is achieved when the upstream plasma

has the required exponentially decaying density profile.

With the purpose of exploiting the information on shock formation ac-
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FIGURE 4.12: Upstream ion energy spread (a) and percentage of reflected upstream

ions (b) versus Lg at t = 3308 ω−1
p for Te = 0.08 (blue), 0.2 (red) and 0.5 (black) MeV.

Simulations performed with the shell algorithm.

x
1

n

P1

P0
i

P0
1

FIGURE 4.13: Sketch of the multilayer plasma considered in the simulations of section

4.3.

quired modeling the interaction of two ideal plasma slabs for the generation

of shocks in laboratory, it has been realized that the conditions described in

section 4.2 may not be so straightforward to reproduce. For this reason, the

possibility of using several plasma slabs with progressively decreasing density

to mimic the exponential profile of equation (4.8) has been tested. The idea of

coupling micro or nano layers of various materials having different density

has been already explored in the contest of TNSA acceleration [102, 103]. For

the first time, such an engineered approach is explored in the context of shock
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(b), 0.022 (c), 0.018 (d) and 0.015 (e) cm. (f) Ion phase space for density profile of P0

according to equation (4.8). Simulations performed with Osiris.

acceleration.

Numerical simulations in which the upstream plasma P0 has been replaced

by several plasma layers Pi
0 with decreasing density (as shown in figure 4.13)

have been performed. The slab P1 is 0.03 cm long and has a density of n1 =

1019 cm−3. The density ratio Γ between P1 and P1
0 is 10. The length of the lay-

ers following P1 and their density have been varied. Figure 4.14 shows the

ion phase space at t = 5600 ω−1
p for an upstream plasma with density given

by equation (4.8) with Lg = L
opt
g = 0.02 cm and for an upstream plasma com-

posed by several layers with lengths Li
0 = 0.035, 0.025, 0.022, 0.018 and 0.015

cm, corresponding to a density ratio Γi
0 between two contiguous layers Pi

0 of

5.4, 3.3, 2.8, 2.3 and 2 respectively. The density discontinuity triggers the gen-

eration of non linear structures at the interfaces between the layers. These

structures are stronger for higher Γi
0 and can lead to the generation of smaller,

secondary shock waves, that reflect the upstream ions and give rise to ion trap-

ping, as can be seen in figures 4.14 (a)-(c). Their presence degrades the quality
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FIGURE 4.15: Ion momentum distribution for the case of figure 4.14 (a), (d) and (f)

of the accelerated ion beam, whose spectrum is no longer monoenergetic. For

smaller values of Γi
0, modulations in the upstream still occur (figures 4.14 (d)

and (e)), but their influence on the property of the reflected ions is weak. Fig-

ure 4.15 shows the ion distribution for the cases of figure 4.14 (a), (d) and (f).

While in the case of figure 4.15 (a), the ion energy spectrum is wide, in the case

of figure 4.15 (d), two peaks corresponding to the expanding upstream and to

the reflected ions, can be clearly identified. The spectrum looks very similar

to the one of figure 4.15 (f) obtained with the exponentially decaying profile.

The energy spread is measured to be around 10% in both cases, showing that

multilayer plasmas can be a promising alternative to achieve a high quality ion

beam, provided that the density discontinuity between two contiguous layers

is small (Γi
0 ≤ 2.5).



CHAPTER 5

LASER-DRIVEN

ELECTROSTATIC SHOCKS

As seen in chapter 4, two requirements are necessary to drive strong shock

waves in plasmas capable to accelerate ions: a density discontinuity and/or

a relative drift inside the plasma. They can be practically achieved in the in-

teraction between an intense laser pulse and a plasma target. However the

laser and the plasma parameters need to be accurately tuned to improve the

quality of the generated ion beam. For instance, as stated in section 4.1, a

strong electron heating is fundamental to reach high energy. For this reason,

a near critical density plasma is preferable. In this case, the pulse can inter-

act with the majority of the target, transferring a huge fraction of its energy

to the plasma electrons [96]. Moreover, as observed in section 4.2, a smooth

transition plasma-vacuum at the back of the target is essential to preserve the

monoenergetic features of the ion beam. Such condition can be obtained by

means of a slow and controlled expansion of the target, as a consequence of

the pre-heating due to the laser pre-pulse or due to a low intensity pulse before

the main one [99]. A valid alternative to this scheme is the use of multi-layer

targets, tailored in a way to reproduce the suitable density profile, as found in

section 4.3.
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5.1 SHOCK FORMATION AND ION REFLECTION IN

LASER-PLASMA INTERACTION

In order to understand the role of the laser in shock formation, 2D Osiris

simulations have been performed. The parameters of the CO2 laser available

at University of California at Los Angeles [104] have been used. The pulse

has intensity I ≃ 1017 W/cm2, wavelength λ0 = 10 µm and frequency ω0 =

2πc/λ0 = 0.2 fs−1. The normalized vector potential associated to the wave

is then a0 = eE0/mecω0 ≃ 0.85
√

I [W/cm2]λ2 [µm]/1018 [W/cm2] = 2.5. The

pulse is modeled as a plane wave polarized in the plane (p-polarization) with a

gaussian like polynomial profile in the longitudinal direction, whose envelope

is defined as f (t̂) = 10t̂3 − 15t̂4 + 6t̂5 being t̂ =
√

2t/τ, where τ = 14 ps is

the laser pulse duration at FWHM. The pulse interacts with a pre-formed cold

electron-proton plasma having a longitudinal density profile described by

n =























a0nc

16λ0
(x − 16λ0) for x ≤ 16λ0

a0nc exp

(

−x − 32λ0

Lg

)

for x > 32λ0

(5.1)

where nc ≃ 1019 cm−3 is the critical density, so that ω0 = ωp =
√

4πe2nc/me

and Lg ≃ 20 λ0 [20]. The critical density nc has been multiplied by a0 to take

into account the relativistic self-induced transparency [105]. A simulation box

with size 2500× 120 (c/ωp)2 and a grid of 10000× 480, corresponding to a spa-

tial step ∆x = ∆y = 0.25 c/ωp and a temporal step ∆t = 0.175 ω−1
p , have been

used. The boundary conditions have been chosen to be absorbing in the lon-

gitudinal direction and periodic in the transverse, both for particles and fields.

In each cell 64 computational particles for each species have been placed and

cubic interpolation has been utilized. Particles have been pushed for more

than 80000 time steps. Results are illustrated in figure 5.1. The laser interacts

with the portion of the target with density smaller than the critical one. When

it reaches the density peak, it corrugates the target surface and it causes the

density to steep, reaching values up to 4 times the original ones (figures 5.1 (a),

(b), (f), (g)). A strong electron heating occurs at the front of the target (figure

5.1 (p)). The hot electrons expand toward the unperturbed plasma and a return

current is set up due to the current imbalance. The cold electrons are dragged

back towards the laser by the strong electric field, as can be seen in figure 5.1
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(q), where a population of electrons with negative momentum is clearly vis-

ible. As a consequence of the electron recirculation, all the target is strongly

and uniformly heated up as can be seen in figure 5.1 (r). The small separation

field due to the hot electrons at the back of the target accelerates the upstream

ions initially at rest to a velocity v0 ≃ 0.04 c (figure 5.1 (w)). As seen in chap-

ter 4, both the density steepening and the relative drift contribute to form the

shock. The shock structure is characterized by a localized electric field and by

a density discontinuity at the shock front (figures 5.1 (c), (h), (m)). Once the

shock is formed, it starts to propagate towards the right and it starts to reflect

the upstream ions that have kinetic energy smaller than the potential energy

associated to the shock (figure 5.1 (w)). At later times, the shock has reflected

and accelerated a big portion of the upstream ions, as can be observed in figure

5.1 (y). The electron temperature has been measured at t = 3528 ω−1
p , when

the electron phase space clearly indicates that the refluxing of the electrons has

stopped and the thermal spread looks quite uniform all over the target, as can

be seen in figure 5.2 (a), where the electron distribution function f (γ) is shown.

The distribution function has then been fitted with a relativistic Maxwellian of

the form

f (γ) = Cγ
√

γ2 − 1exp(−µγ) (5.2)

where γ is the Lorentz factor, µ = mec
2/kBTe and kBTe has been evaluated

to be around 1.1 MeV, corresponding to cs0 = 0.03 c. The shock speed vs has

been mesaured as 0.11 c (see figure 5.3), leading to a Mach number of 2.3. The

upstream ion energy spectrum at t = 14896 ω−1
p is reported in figure 5.2 (b).

The shock accelerated ions have an average energy of 16 MeV and an energy

spread of 14%. As can be seen in figures 5.1, the shock has a width much

smaller than 10 c/ωp. The shock length is then of the same order of λD and

much smaller than the mean free path for electron-electron and ion-ion colli-

sions, clearly indicating that the shock is not mediated by particle collisions.

5.1.1 TARGET DECAYING LENGTH IMPACT ON LASER-DRIVEN

ION SHOCK WAVE ACCELERATION

As anticipated in section 4.2, a uniform electron temperature represents a

necessary factor to generate shocks having uniform speed and therefore able

to accelerate ions with low energy spread. That is why the initial phase of
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FIGURE 5.1: Shock formation and ion acceleration driven by a laser pulse with a0 = 2.5

interacting with a near critical density plasma. Snapshots of the ion density ((a)-(e)),

of the ion density integrated along x2 ((f)-(j)), of the longitudinal electric field ((k)-(o)),

of the electron ((p)-(t)) and the ion ((u)-(y)) longitudinal momentum at t = 1960, 2940,

4900, 10584, 14896 ω−1
p (first, second, third, fourth and fifth column, respectively).

the laser interaction with plasma is very crucial. It is necessary that the elec-

trons heated by the laser at the plasma surface recirculate in the target uni-

forming the temperature before ion reflection actually occurs. This means that

the shock formation time, that for strong shocks coincides with the reflection

time τr, has to be longer than the recirculation time [19]:

τr > 2Nrc
Ltarget

vrc
(5.3)

with Nrc ≥ 1 number of recirculation cycles, Ltarget length of the target and

vrc ≃ c recirculation speed. Considering a critical plasma and using expression
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FIGURE 5.2: Electron distribution function f (γ) at t = 3528 ω−1
p (a) and upstream

ion energy spectrum at t = 14896 ω−1
p (b) for the same case of figure 5.1. The elec-

tron distribution has been fitted to the Maxwell-Jüttner distribution function f (γ) =

Cγ
√

γ2 − 1exp(−µγ), with µ = mec
2/kBTe and kBTe = 1.1 MeV. Ions are accelerated

to an average energy of 16 MeV and an energy spread of 14%
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FIGURE 5.3: Ion density averaged over x2 versus time. The black dashed line indicates

the shock position. The speed of the shock has been measured to be 0.11 c.
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(4.4), an estimate for Ltarget is obtained

Ltarget <

√

mi

me
λ0 (5.4)

As noted in section 4.2, it is important to maximize the scale length at the back

of the target to get a good control over the TNSA field that develops at the

plasma-vacuum interface (see equation (4.6)). Therefore the target thickness

should be the maximum allowed. Supposing that the decaying profile is due

to a symmetric target expansion (Ltarget ≃ 2Lg), the optimal decaying length

can be evaluated as

L
opt
g ≃ λ0

2

√

mi

me
(5.5)

A set of simulations employing the same parameters as in figure 5.1, but

with different values of Lg have been performed. Figure 5.4 shows the ion

phase space at t = 13720 ω−1
p . When Lg ≪ L

opt
g (figure 5.4 (a)), the TNSA

field is dominant and the ion spectrum is wider (the ions are accelerated to

an average energy of 25 MeV with an energy spread of about 30% for Lg =

L
opt
g /2). For Lg ≫ L

opt
g (figure 5.4 (b), (c)), the laser cannot heat the whole

plasma. The induced shock is slower and therefore the energy of the reflected

ions is lower (the average energy is about 16, 2.1 and 0.5 MeV for Lg = 1, 2

and 4 L
opt
g respectively). The ion energy spread is of the same order of L

opt
g

(∆ε/ε ≤ 15%), while the charge of the beam decreases (the fraction of reflected

particles compared to the total amount of ions in the upstream is 10, 0.04 and

0.03% for Lg = 1, 2 and 4 L
opt
g respectively). These results, similar to the ones

achieved in section 4.2, where the shock was driven by a density jump in the

plasma, confirm that theoretical prediction about L
opt
g are valid also for laser-

driven shocks.

5.1.2 LASER POLARIZATION IMPACT ON LASER-DRIVEN ION

SHOCK WAVE ACCELERATION

The effect of laser polarization has been tested in the 2D configuration. Re-

sults comparing the electron distribution function f (γ) at t = 3528 ω−1
p and the

ion energy spectrum at t = 14896 ω−1
p for the cases of a pulse linearly polarized

in the plane (p-polarization), out of the plane (s-polarization) and of a circu-

larly polarized laser are shown in figure 5.5. A p-polarized laser can directly
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FIGURE 5.5: Electron distribution function f (γ) at t = 3528 ω−1
p (a) and upstream ion

energy spectrum at t = 14896 ω−1
p (b). The black curves have been obtained with a

laser pulse linearly polarized in the plane (p-polarization), the red ones with a pulse

linearly polarized out of the plane (s-polarization) and the green ones with a circularly

polarized laser.
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drive the electrons in the x − y plane across the density gradient, resulting in a

better coupling of this kind of pulse with the plasma electrons [106]. As a con-

sequence, the absorption coefficient of the laser increases [107] and the electron

heating is enhanced, resulting in higher electron temperatures. This leads to

the generation of a more stable shock moving with a faster and more uniform

speed. Therefore, ions are reflected and accelerated by the shock structure to

higher energy and with lower spread, as can be seen in figure 5.5 (b). It is pos-

sible to speculate that, while in reality, the difference between p and s polar-

ization will not be so pronounced and the final results will be a mixture of the

two cases, a circularly polarized pulse is completely ineffective. The absence

of the component of the laser electric field perpendicular to the target surface

and the oscillating part of the ponderomotive force annihilate most of the elec-

tron heating processes [11] (j × B heating [10], resonance absorption [108] and

vacuum heating [109]). As a result, the electron temperature is lower and the

generated shock is weaker.

5.1.3 ELECTRON HEATING AND ION ENERGY SCALINGS WITH

a0

The dependence of the electron temperature and, consequently, of the ion

energy on the laser intensity has been object of study in [96] and results will be

summarized here. Simulations have been performed for increasing values of

a0. The optimal plasma profile (equation (5.1)) has been considered; the peak

density has been increased with the intensity to compensate for the relativistic

transparency.

For high intensity and steep density profile at the laser-plasma interaction

region, the electron temperature scaling with a0 is expected to be close to pon-

deromotive [107]:

Te = mec
2





√

1 +
a2

0

2
− 1



 (5.6)

As can be seen in figure 5.6 (a), simulations clearly show that Te ∝ a0. In

particular, an empirical law has been deduced equating the electron energy

density

ue = 3a0ncLtargetkBTe (5.7)

to the absorbed laser energy density

ul = η Iτ (5.8)
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FIGURE 5.6: Electron temperature (a) and ion energy (b) for increasing laser amplitude

a0. A plane wave has been considered.

being η ≃ 0.5 the laser absorption efficiency. The electron temperature depen-

dence on a0 is then computed as [99]

Te[MeV] = 0.02ηa0
τ [ps]

Ltarget [mm]
(5.9)

Figure 5.6 (b) shows the ion energy scaling with a0. The simulation points

have been fitted with the following function

f (a0) = αa0 + βa3/2
0 + γa2

0 (5.10)

where the first and second term are connected with the shock acceleration,

which is the dominant process for low values of a0 and the third represents the

contribution of the upstream ion expansion, that becomes important at high

values of a0 [99].

In order to understand if the same scaling laws are valid in more realis-

tic scenarios, simulations using a finite spot size laser have been performed.

A pulse with a Gaussian transverse profile and a focal spot diameter 2w0 =

10 µm has been used.

When a finite spot size laser is used, the shock front has a curvature. The

acceleration occurs at an angle and the ion beam will have a certain divergence.

As a result, the ion beam will present a bigger energy spread. Figure 5.7 shows

a detail of the interaction area for a plane wave and for a pulse with a finite spot

size. The interaction region looks pretty different in the two cases. While the

plane wave is not stopped by the target, the finite spot size pulse can penetrate
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and 2w0 = 10 µm has been used to drive the shock.

only the under-dense region. When it reaches the critical density, it cannot

proceed further. At this point the pressure exerted by the laser contributes

in pushing the plasma inwards preferentially at the center of the focal spot, a

phenomenon called hole boring. The hole boring contributes in increasing the

laser absorption coefficient benefiting the electron heating [106]. Moreover, the

steepening of the density profile due to the intense radiation pressure, creates

the density jump necessary to trigger the shock. Figure 5.8 shows the ion phase

space, confirming that the ion beam is not collimated.

Electron temperature and ion energy have been measured. Results are re-

ported in figures 5.9 and 5.10. The electron distribution function indicates the

the electron temperature is not uniform (figure 5.9 (a)). There are, indeed, a
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FIGURE 5.10: (a) Upstream ion energy spectra at t = 10192 ω−1
p for the same cases of

figure 5.9. (b) Scaling of the ion energy with the laser amplitude a0.

group of hot electrons and a group of cold ones. This is due to the fact that the

region where the laser interacts with the target is smaller and there are portions

of the target not directly heated up by the laser. The hot electron distributions

have been fitted to a 3D relativistic Maxwellian (equation (5.2)). Figure 5.9 (b)

shows that, also when a finite spot laser is used, the temperature scales linearly

with a0. Figure 5.10 (a) reports the ion energy spectra at t = 10192 ω−1
p for dif-

ferent a0. The scaling on the average ion energy versus different values of a0

can be seen in figure 5.10 (b). Simulation points have been fitted with equation

5.10, showing that plane wave scalings can be retrieved in realistic scenarios.
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It is possible to notice that, also in this case (see figure 5.10 (a)), the ion expan-

sion contribution in the acceleration process becomes more important for high

laser intensities and causes the spectrum to broaden.



Part II

Ion acceleration in

Coulomb explosion





CHAPTER 6

COULOMB EXPLOSION

OF HETERO-NUCLEAR CLUSTERS

The interaction of ultraintense (I > 1016 W/cm2) and ultrafast (τ = 10 −
100 fs) laser pulses with gases composed by clusters (microscopic aggregations

of 102 − 107 atoms bounded together by Van der Waals forces, whose shape is

approximately spherical [110]) leads to the formation of completely ionized

nanoplasmas [30]. Depending on the laser and on the cluster characteristics,

different scenarios can take place ranging from hydrodynamic expansion of

quasi-neutral plasmas [111–113] to Coulomb explosion of pure ion clouds [26,

114, 115].

Coulomb explosion is a well known mechanism of ion acceleration [116].

It occurs when all the electrons are stripped away instantaneously from the

cluster. In this case, a cloud composed only by positively charged ions is

left behind and the Coulomb repulsive forces cause its explosion. Studies on

Coulomb explosion dynamics are relevant not only for plasma physics in gen-

eral, but also for fusion research [22,23] and imaging by “diffraction before de-

struction” [24]. This chapter will be devoted to investigate Coulomb explosion

in composite clusters consisting of different atomic species. The focus is on

heavy-light systems made of hydride molecules composed of C, H, N and O,

in order to collect valuable information for coherent diffractive imaging [117].



78 Coulomb explosion of hetero-nuclear clusters

6.1 COULOMB EXPLOSION OF A CLUSTER

COMPOSED BY TWO ION SPECIES

When clusters are irradiated by intense pulses, three different processes are

going to happen: matter gets ionized in a phenomenon usually referred to as

inner ionization, the free electrons heated by the laser start to escape the cluster

in what is called outer ionization [118] and finally the massive positive cloud

left behind expands under the effect of the pressure exerted by the hot electrons

and the Coulomb repulsive forces. The two latter are usually concurrent: when

the first one prevails, the cluster undergoes a hydrodynamic expansion, while,

in the other case, the cluster will simply explode.

In many realistic conditions, there is no need to model the inner ionization

process: usually the laser pre-pulse is sufficient to completely ionized the tar-

get and the nanoplasma approximation can be adopted [30, 119]. However, a

self-consistent treatment of the free electron dynamics is generally required to

correctly model the cluster expansion. Nevertheless, there are scenarios where

the electron dynamics can be ignored: this is the Coulomb explosion or clus-

ter vertical ionization case [27, 120]. When the initial radius of the cluster R0

is smaller than both the electron skin depth δe = c/ωp and the electron ex-

cursion length ξe ≃ xm, where xm is the maximum oscillation amplitude of

an electron in a ponderomotive field, the totality of the cluster electrons are

indeed cast away before the ions move significantly. The outer ionization is

occurring much faster than the bulk expansion and the ion dynamics does not

depend on the electrons [121]. That is why pure Coulomb explosion scenarios

can be modeled neglecting electrons.

6.1.1 SHELL MODEL SIMULATIONS

A pure ion sphere of initial radius R0 = 38 Å composed by N0 ≃ 450000

ions for an initial density of n0 = 2× 1024 cm−3 has been modeled. The cluster

is constituted by a mix of 70% Carbon ions ionized once and 30% Hydrogen

ions, so that β = mC/mH = 12, Θ = qC/qH = 1 and α = NH/N0 = 0.3

where m and q are the mass and the charge of the ions, N is the number of

ions and the subscripts H and C stand for Hydrogen and Carbon, respectively.

At the initial time, ions are at rest and uniformly distributed in the sphere. A

∆t = 0.002
√

4πR3
0me/3e2N0 has been used and particles have been pushed
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FIGURE 6.1: Ion density (1) and phase space (2) due to the explosion of a pure ion

sphere composed by H+ (a) and by a mixture of C+ (b) and H+ (c) at t = 0 (black), 24

(red), 48 (blue), 96
√

4πR3
0me/3e2N0 (green). The insert in figure (c2) shows a detail of

the light ions multi-flow occurring at the expansion front.

for more than 120000 time steps. Figures 6.1-6.3 show the explosion evolution.

For comparison purposes, the evolution of the explosion of a pure Hydrogen

sphere with the same radius R0 and density n0 is also reported. As in the single

species case, at the initial time, Hydrogen and Carbon ions contribute to cre-

ate a linear electric field responsible for the acceleration. Differences between

homo-nuclear and hetero-nuclear cluster explosions emerge immediately af-

ter. In the pure Hydrogen case, ions expand radially under the influence of

the field that is smaller at the center and stronger at the periphery, preventing

the particles to pass each other. As a result, the density stays uniform during

the whole process, the phase space appears always as a straight line and the

energy spectrum is broad and shows a cutoff value of εCE = 4/3πn0e2R2
0 for

t → ∞. When the cluster is composite, the linear electric field at t = 0 will ac-

celerate the H+ ions more, because of their smaller mass to charge ratio (com-

pared to C+ ions). Consequently, the lighter particles can overtake the heavier

ones and propagate ahead of them. The radial electric field, that is linearly in-

creasing inside the bulk sphere of the C+ ions, decreases as 1/r2 outside. The

faster light ions coming from the bulk reach the peripheral ones, that are much

slower due to the decaying field, forming a thin shell. The heavy ions act as

a Coulomb piston and accelerate the light ions in the shell to the same energy,

giving rise to a quasi-monoenergetic spectrum. Moreover the H+ phase space
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FIGURE 6.3: Hydrogen (a) and Carbon (b) and Hydrogen (c) energy spectrum evolu-

tion for the same cases of figure 6.1. Figures (b) and (c) refer to the composite cluster.

at late times shows a multi-flow of ions near the expansion front that is causing

the peak in the density.

A parameter scan has been performed varying the fraction α of light ions

inside the cluster. Results can be seen in figures 6.4 and 6.5. For small values

of α, the phase space (figure 6.4 (b)) indicates that there is a multi-flow of Hy-

drogen ions. The size of the multi-flow decreases for increasing values of α

and disappears for α > 0.3. This is due to a reduction of the accelerating field

with α (figure 6.4 (a)), that prevents the ions to overtake each other. A small

decrease of the multi-flow benefits the ion energy spectrum (figure 6.4 (c)) that

becomes narrower, being almost monochromatic for α = 0.3. For α > 0.3, the

phase space becomes a single-flow and the energy spectrum gets wider. This

can be seen also in figure 6.5 (a), where the energy spread versus α is reported

at different times. Moreover, for α = 0.3, almost all the H+ ions (about 94%)

have energy between [εavg − σ, εavg + σ], where εavg is the average energy of
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FIGURE 6.4: Radial electric field (a) and Hydrogen phase space (b) and energy spec-

trum (c) at t = 240
√

4πR3
0me/3e2N0 due to the explosion of a cluster composed by C+

and H+. The different curves correspond to α = 0.1 (black), 0.2 (red), 0.3 (blue), 0.4

(green), 0.5 (orange), 0.6 (yellow), 0.7 (magenta), 0.8 (violet) and 0.9 (light blue).

the particles and σ the standard deviation, this configuration being the one that

maximizes the number of monochromatic ions (figure 6.5 (b)). Figures 6.5 (c)

and (d) show the Hydrogen ions average and maximum energy versus α. The

average energy is inversely proportional to α and it is bigger when the concen-

tration of the light species is lower. The maximum energy (εmax) decreases for

small values of α until it reaches a plateau for α > 0.3.

The influence of the Carbon ionization level (and therefore of the q/m ra-

tio) on the dynamics of the explosion has also been studied. Results are shown

in figures 6.6 and 6.7. As expected the best results are obtained when the ion-

ization level of the heavy species is low and the q/m ratio between light and

heavy ions is maximized.

6.1.2 ANALYTICAL MODEL

As numerical simulations showed, when the pure ion sphere is constituted

by two species with different charge to mass ratio q/m and particles are uni-

formly distributed, they experience a different acceleration; in particular the

species with a bigger q/m move faster and advance more with respect to the

other, creating two concentric spherical regions, S1 and S2, with radius R1(t)

and R2(t) ≤ R1(t) (see figure 6.8). The sphere S2 contains a mix of light and

heavy particles and R2(t) represents the frontline of the heavy ions. The spher-

ical shell outside S2 contains instead only light particles and R1 is therefore the

frontline of the light ions. Simulations also indicate that the electric field is
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linear inside S2 (figure 6.2):

E(r, t) = A(t)r (6.1)

Using this assumption, the equation of motion for the light and the heavy

ions inside S2 can be written. Starting with the light ions, until they do not

cross the frontline of the heavy ions (i.e. they are still in S2), they obey to

m1
∂2r1

∂t2
= q1A(t)r1 (6.2)

where m1 is the mass of a light ion, q1 its charge and r1(t, r0) the radial posi-

tion at time t of a light ion with initial position r0 (r1(0, r0) = r0) and initial

speed equal to zero (∂r1(0, r0)/∂t = 0). Introducing the dimensionless quan-

tity ξ(t) = r1(t, r0)/r0, the dependency on r0 drops and equation 6.2 becomes

d2 ξ

d t2
=

q1

m1
A(t)ξ (6.3)
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Eq. (6.3) is completed by the initial conditions:

ξ(t = 0) = 1 (6.4)

d ξ

d t
(t = 0) = 0 (6.5)

The motion of the heavy ions is determined by

m2
∂2r2

∂t2
= q2A(t)r2 (6.6)

where m2 is the mass of a heavy ion, q2 its charge and r2(t, r0) the radial psi-

tion at time t of a heavy ion with initial position r0 (r2(0, r0) = r0) and initial

speed equal to zero (∂r2(0, r0)/∂t = 0). Introducing the dimensionless quan-

tity η(t) = r2(t, r0)/r0, as before, the dependency on r0 drops and equation

(6.6) becomes

d2 η

d t2
=

q2

m2
A(t)η (6.7)

where the following initial conditions hold

η(t = 0) = 1 (6.8)

d η

d t
(t = 0) = 0 (6.9)

A direct consequence of equation (6.7) is that

R2(t) = η(t)R0 (6.10)

The term A(t) is computed considering that the electric field at r = R2,

according to the Gauss law, is

E(R2(t), t) =
Q

R2(t)2
(6.11)

where Q = Q2 + Q1 is the total charge contained in S2, being Q2 the charge of

the heavy ions that at t = 0 were contained in the sphere of radius R0 and Q1

the charge of the light ions that at time t are still in S2

Q2 = q2
4π

3
R3

0n2(0) (6.12)

Q1 = q1
4π

3
r3

0n1(0) (6.13)
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with r0 defined as

r0 = R0
η

ξ
(6.14)

which ensures r1(t, r0) ≤ R2(t). Plugging equations (6.12) and (6.13), into

equation (6.11) and using equation (6.1), an expression for A can be found

A(t) =
4π

3

(

q1n1(0)

ξ3(t)
+

q2n2(0)

η3(t)

)

(6.15)

The trajectories of the light and heavy ions inside S2 are then determined

by solving the following system of equations


























d2ξ

dt2
=

4π

3

q1

m1

(

q1n1(0)

ξ3(t)
+

q2n2(0)

η3(t)

)

ξ

d2η

dt2
=

4π

3

q2

m2

(

q1n1(0)

ξ3(t)
+

q2n2(0)

η3(t)

)

η

(6.16)

Introducing the normalized units τ = tωpi,1 with ωpi,1 =
√

4πq2
1n1(0)/m1,

γ = n2(0)/n1(0) = (1 − α)/α, β = m2/m1 and Θ = q2/q1, system (6.16)

becomes


























d2ξ

dτ2
=

1

3

(

1

ξ3(t)
+ Θγ

1

η3(t)

)

ξ

d2η

dt2
=

1

3

Θ

β

(

1

ξ3(t)
+ Θγ

1

η3(t)

)

η

(6.17)

The system of equations (6.16) describes the trajectory of a light ion until

t = tc, time at which it reaches and passes R2, front line of the heavy ions. The

exact instant can be computed numerically solving equation

r1(tc) = R2(tc) (6.18)

Inserting the definitions previously used, equation (6.18) becomes

η(tc)

ξ(tc)
=

r0

R0
(6.19)

The electric field for r = r1 ≥ R2 can be computed as

E(r ≥ R2) =
Q

r2
(6.20)
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where the quantity Q depends only on r0 and is given by

Q(r0) =
4π

3

(

q2n2(0)R
3
0 + q1n1(0)r

3
0

)

(6.21)

The equation of motion for a light ion outside S2 is


































d2r

dt2
=

q1

m1

Q(r0)

r2

r(tc) = η(tc)R0

ṙ(tc) = r0ξ̇(tc)

(6.22)

Plugging equation (6.20) and (6.21) into (6.22) and introducing the dimen-

sionless quantities τ, γ, Θ and r̂ = r/R0, the system to solve becomes































d2r̂

dτ2
=

1

3

1

r̂2

(

γΘ + r̂3
0

)

r̂(τc) = η(τc)

ˆ̇r(τc) = r̂0ξ̇(τc)

(6.23)



6.2 Coulomb explosion of a cluster composed by three ion species 87

0 5 10 15
0

0.02

0.04

0.06

r [R
0
]

v
 [
(3

e
2
N

0
/4
π
R

0
m

e
)1

/2
]

0

0.1

0.2

0.3

0.4

0.5

n
 [
3

N
0
/4
π
R

03
]

(a1) (b1) (c1)

(a2) (b2) (c2)

FIGURE 6.10: H+ (a), C+ (b) and O+ (c) density (1) and phase space evolution (2)

during Coulomb explosion of a cluster with R0 = 38 Å and N0 ≃ 450000. The different

colors correspond to t = 0 (black), 24 (red), 96 (blue) and 240
√

4πR3
0me/3e2N0 (green).

Figure 6.9 shows the evolution of the frontline of the heavy and light ions

for a cluster composed by a mix of H+ and C+, with α = 0.3, γ = 2.3, β = 12

and Θ = 1. The initial radius of the cluster is R0 = 38 Å and the Hydrogen

density at t = 0 is n1 = 6 × 1023 cm−3. Theoretical results have been com-

pared with numerical ones obtained with the shell code, showing a perfect

agreement.

Equation (6.22) can be rewritten as

m1
d2r

dt2
= − ∂

∂r

(

q1Q(r0)

r

)

(6.24)

and then integrated respect to t to compute the asymptotic kinetic energy of

the light ions

ε∞ =
1

2
m1ṙ2(tc) +

q1Q(r0)

r(tc)
(6.25)
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FIGURE 6.12: H+ (a), C+ (b) and O+ (c) energy spectrum evolution for the same case

of figure 6.10.

6.2 COULOMB EXPLOSION OF A CLUSTER

COMPOSED BY THREE ION SPECIES

The explosion of multi-species clusters has also been modeled. A pure ion

sphere of initial radius R0 = 38 Å made of Hydrogen, Carbon and Oxygen (all

ionized ones) has been considered. The cluster contains N0 ≃ 450000 ions, dis-

tributed among the three species according to the following fractions: 1/2 H+,

1/4 C+ and 1/4 O+. At t = 0 ions are at rest and uniformly distributed inside

the sphere. A ∆t = 0.002
√

4πR3
0me/3e2N0 has been used and particles have

been pushed for more than 120000 time steps. The evolution of the explosion

can be seen in figures 6.10-6.12, where the density, the phase space, the electric

field and the energy spectrum are reported. In the presence of three species

with decreasing ratio q/m, the lightest and fastest ions overtake the heavier

ones and propagate in front of them, gathering in a thin shell and giving rise

to a quasi monoenergetic spectrum at early times, as in the case analyzed in
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section 6.1. At later times, also the Carbon ions, less massive than the Oxygen

ones, overtake the latter, ending in a zone where the electric field is decreasing

and getting therefore decelerated. As a result, the Carbon ions also gather to-

gether in a small shell, contributing to create a third spherical region between

the positive ion bulk and the Hydrogen ion front. This region is characterized

by an almost uniform electric field, that accelerates them to the same energy,

producing quasi-monochromatic C+ ions.





CHAPTER 7

N-BODY SIMULATIONS OF SHOCK

SHELLS IN COULOMB EXPLOSION

During the Coulomb explosion of an ideal pure ion sphere, in the presence

of a radial non-uniformity of the initial density profile, some of the ions can

overtake the others, leading to the formation of shock shells [122], which are

characterized by a multi valued phase space and by a peak in the density pro-

file. Moreover, if the initial ion density has a suitable shape, a large fraction

of the ions reaches the same radial position at the same time [123]. When this

shock occurs, a finite amount of charge is compressed infinitely.

The density can be opportunely tailored, in order to obtain the desirable

profile. This operation is done using a sequence of laser pulses with differ-

ent intensities [124, 125]: a first relatively weak pulse hits the cluster, stripping

off only a small number of electrons and inducing a slow hydrodynamics ex-

pansion, that causes the ion density to decrease at the periphery, while being

almost constant in the core; at this point, a second extremely intense pulse

reaches the cluster and sweeps away all the electrons, provoking the explosion

of the pure ion bulk. When the outer ionization process is complete, the den-

sity of the ions is higher in the center than at the periphery, therefore the inner

ions will feel a much higher repulsive force than the outer ones. Consequently,

the inner ions will gain a higher velocity and will overtake the slower outer

ions, leading to the formation of shock shells.

In the first part of this chapter collisionless theory and simulations about

the formation of shock shells in Coulomb explosion will be introduced. Finally,
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a rigorous analysis of the Coulomb explosion dynamics is presented by using

the N-body simulation method and the results will be compared.

7.1 THEORETICAL MODEL

The trajectory of each ion of a given distribution containing N0 ions in 1D

spherical geometry follows Newton’s law

m
d2r

dt2
= qE(r) (7.1)

being m and q the ion mass and charge and E the radial electric field, that can

be evaluated integrating Poisson’s equation

1

r2

d(r2E)

dr
= 4πqn(r) (7.2)

where n is the ion density, leading to

E =
qN(r)

r2
(7.3)

with N(r) defined as

N(r) =
∫ r

0
n(r′)4πr′2 dr′ (7.4)

Combining (7.1) and (7.3), the equation of motion becomes

m
d2r

dt2
= q2 N(r)

r2
(7.5)

Introducing the dimensionless quantities ζ = r/R0 and τ = t/t0, with R0

initial radius of the cluster and t0 =
√

mR3
0/(q2N0), equation (7.5) becomes

d2ζ

dτ2
=

Q(ζ)

ζ2
(7.6)

where Q(ζ) = N(ζ)/N0 is the charge enveloped by the ion along its trajectory.

Supposing that the ions do not overtake each other, the following property is

verified

Q(ζ(ζ0 , τ)) = Q(ζ0) (7.7)
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where Q(ζ0) denotes the charge within a sphere of radius ζ0 at τ = 0. Us-

ing property (7.7) and multiplying both sides of the equation for v = dζ/dτ,

equation (7.6) can be solved analytically, leading to an expression for the par-

ticle velocity v

v(ζ0, τ) =

√

2Q0(ζ0)

(

1

ζ0
− 1

ζ

)

(7.8)

Integrating (7.8), an equation to compute ζ is retrieved

F

(

ζ

ζ0

)

=

√

2Q0(r0)

r3
0

τ (7.9)

where

F

(

ζ

ζ0

)

=

√

ζ

ζ0

(

ζ

ζ0
− 1

)

+ log

(
√

ζ

ζ0
+

√

ζ

ζ0
− 1

)

(7.10)

A shock occurs when a set of ions reaches the position ζs at the same time

τs; for this to happen, the initial charge density distribution in the interval

[ζ0,1 ζ0,2] must have the particular form Q0 defined by

Q0(ζ0) =
ζ3

0

2τ2
s
F

2

(

ζs

ζ0

)

(7.11)

The interval [ζ0,1 ζ0,2] is found requiring that the density profile is physically

acceptable and that the no-overtaking assumption stays valid for τ < τs, i.e.,

∂v

∂ζ0
(ζ0,1, τs) = 0 (7.12)

dQ0

dζ0
(ζ0,2) = 0 (7.13)

These conditions guarantee that, for ζ0 < ζ0,2, Q0 is a monotonically grow-

ing function of ζ0 and that before the shocks, ions do not overtake each other.

Moreover, equations (7.12) and (7.13) yield ζ0,1 = 0.12 ζs and ζ0,2 = 0.61 ζs and,

normalizing the maximum value of Q0(ζ0) to 1, the shock time is uniquely de-

fined as τs = 0.59 ζ3/2
s . The charge profile for ζ0 < ζ0,1 can be chosen arbitrarily,

provided that it matches Q0(ζ0,1) and that it does not cause any ion to catch up

with the ion started at ζ0,1 before τs; in the simulations a flat top density profile

has been chosen.
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7.2 KINETIC SIMULATIONS OF SHOCK SHELL FOR-

MATION

The explosion of small clusters composed by N0 ≃ 1000 ions with charge

density profile described by equation (7.11) has been investigated using the

shell algorithm, that, as seen in chapter 2, provides a reference solution of the

Vlasov-Poisson model. Since the system is composed by a small number of

particles, in order to smooth out the graininess of the plasma and reduce the

collisionality, each particles has been split in NF ≫ 1 fragments with charge

and mass respectively q/NF and m/NF. When the total number of fractional

particles Np = N0 × NF → ∞, the plasma collisionality vanishes, as the dis-

crete charge density is transformed into a continuous distribution.

Moreover, for this particular study, ensemble averages have been calcu-

lated in order to take into account the different initial conditions of the system.

For each simulation, at time t, any macroscopic quantity P of the system is a

function of the number of computational particles Np and of the initial condi-

tions, i.e., P(t, Np, {xi0}, {vi0}). By considering the same number of compu-

tational particles Np, but using a different set of pseudorandom numbers for

the initial conditions {xα
i0}, {vα

i0}, a generally distinct solution, Pα, is obtained.

Therefore, P is a random variable whose average, 〈P〉, is the expected value

of the physical quantity. Making use of the results of M different simulations,

〈P〉 can be estimated as 〈P〉 ≃ P , being

P =
1

M

M

∑
α=1

P(t, Np, {x
(α)
i0 }, {v

(α)
i0 }) (7.14)

In fact, for a finite value for Np, the ensemble averages obtained with M →
+∞ does not represent the solution of the Vlasov equation but the results of

the dynamics of a statistical ensemble of a physical system made of Np point

charges interacting as they were spherical shells. The solution of the Vlasov

equation, PVlasov, can be obtained as the limit of P(t):

PVlasov(t) = lim
Np→+∞

P(t, Np) (7.15)

A Deuterium cluster composed by N0 = 1025 ions and having initial radius

R0 = 20 Å has been considered. It has been supposed that a slow and con-

trolled pre-expansion of the cluster creates the appropriate density profile in
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FIGURE 7.1: Ion density (a) and phase space (b) at t = 0, 0.5, 0.8, 1.8, 3.5, 4.7 t0 for a

Deuterium cluster composed by N0 = 1025 ions and having initial radius R0 = 20 Å.

Shell model results (black solid lines) have been compared with theoretical ones (red

dashed lines), showing a very good agreement.

such a way that rs = 4 R0. The ions are initially at rest and distributed in space

according to equation (7.11). Results are shown in figure 7.1. They represent

the average over M = 1000 simulations with Np = 16000 and ∆t = 0.002 t0.

At the beginning of the expansion, ions starting at r0 ∈ [0, r0,1] feel a linearly

increasing electric field, while outer ions with r0 > r0,1 perceive a decreasing

field. The inner ions are then accelerated more than the latter, causing the par-

ticles to pile-up around r = rs. When the ion trajectories cross, the density has

a big increment in a small localized region and the phase space becomes multi

valued. Shell model results have been compared with theoretical ones, given

by equations (7.9) and (7.8) showing a very good agreement.

It is interesting to notice that numerical results obtained by using the shell

technique do not change much when the number of computational particle Np

is decreased. The ion phase space at ts = 4.7 t0 obtained running simulations

with a different number of computational particles has been plotted in figure

7.2. All the curves, corresponding to different Np, lie on top of each other and

are practically indistinguishable, confirming that in the shell model the plasma

collisionality is strongly reduced. Hence the shell algorithm turns out to be a

tool suitable to study collisionless plasmas.
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FIGURE 7.2: Ion phase space at ts = 4.7 t0 for the same cluster of figure 7.1. Simulation

results have been obtained with Np = 400 (black), 800 (red), 2000 (blue) and 16000

(green) and are practically indistinguishable.

7.3 N-BODY SIMULATIONS OF SHOCK SHELL FOR-

MATION

In sections 7.1 and 7.2 the phenomenon of shock shell formation during

the Coulomb explosion of a pure ion plasma have been studied under the hy-

potheses that the collisionality was negligible and that kinetic theory was the

suitable model to investigate the problem. However, looking carefully to the

characteristics of the plasma, some questions about the accuracy of these as-

sumptions may arise. This study focuses on nanoplasmas created during the

interaction between intense laser pulses and small clusters composed by a rel-

ative small number of particles (N0 = 102 − 104). Kinetic theory usually ap-

plies to systems with an extremely large set of particles; therefore one should

wonder if a kinetic model is the tool to tackle this problem. Moreover, when

these shocks occur, a finite amount of charge is highly compressed, causing

a possible increment of the plasma collisionality. This is why a collisionless

technique that solves the Vlasov-Poisson model might not be very accurate.

For these reasons, the analytical solution obtained from expressions (7.9) and

(7.8) has been compared with the results of numerical simulations based on

the N-body method (see chapter 2), which provides the exact (numerical) so-

lution for the Coulomb explosion. Ensemble averages have been computed in

order to take into account the different initial conditions of the system. Ac-
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FIGURE 7.3: Schematic description of the calculation of ensemble averages according

to classical statistical mechanics. A generic macroscopic quantity calculated from the

kinetic equation, P , and the corresponding value 〈P〉, obtained as the average of the

Pα of every copy of the system.

cording to the classic treatment of the statistical mechanics, from the ensemble

average (figure 7.3) one obtains the total distribution function to be used as

initial condition for the kinetic model. If this model is correct, the value of ev-

ery macroscopic quantity P obtained by solving the kinetic equations and the

corresponding ensemble-averaged 〈P〉 should coincide at every time t.

The method shown in figure 7.3 has been tested for an ideal case: the

Coulomb explosion of a spherical plasma with ions uniformly distributed. A

pure Deuterium cluster with R0 = 20 Å and N0 = 1025 ions has been consid-

ered. At t = 0, ions are at rest and they start to expand due to the Coulomb

forces. A time step of ∆t = 0.002 t0 has been used. The ion density and the

phase space at different times can be seen in figure 7.4. The results have been

obtained averaging over M = 2000 N-body simulations and the mean values

have been compared with shell code results, showing a good agreement. Fig-

ure 7.5 shows the phase space at t = 1.2 t0. Each red dot corresponds to an ion.
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FIGURE 7.4: Ion density (a) and phase space (b) at t = 0, 0.48, 0.96, 1.2 t0 for a pure ion

sphere, composed by N0 = 1025 Deuterium ions and having raids R0 = 20 Å. N-body

simulation results (black) have been compared with shell model results (red, dashed).
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FIGURE 7.5: Ion phase space at t = 1.2 t0 for the same case of figure 7.4. Ensemble

average (black line) and single calculations (red dots) are reported.

Particles from M = 2000 simulations are plotted along with the mean value in

order to show the dispersion of the results. Figures 7.4 and 7.5 indicate that

the collisionless kinetic model agrees with the exact solutions of the equation

of motion, as far as mean values are considered, while in a single experiment

the calculated value may differ significantly from the average. Therefore, the

pure Coulomb explosion of a spherical plasma with ions uniformly distributed

can be study by means of a collisionless kinetic model.

The same procedure has been used to investigate the formation of shock

shells. A Deuterium cluster with the same properties of the one considered in

section 7.2 has been studied (N0 = 1025, R0 = 20 Å, rs = 4 R0 and density

profile according to equation (7.11)). Results obtained averaging over 4000
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FIGURE 7.6: Ion density (a) and phase space (b) at t = 0, 0.5, 0.8, 1.8, 3.5, 4.7 t0 for the

same Deuterium cluster of figure 7.1. N-body simulation results (in black) have been

compared with theoretical ones (in red).
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FIGURE 7.7: Standard deviation of the peak of the ion density for the same case of

figure 7.6 for t = 0.8 (green dotted line), 1.8 (blue dash-dot line), 3.5 (red dashed line),

4.7 t0 (black solid line).

simulations are shown in figure 7.6; in particular the ion density and phase

space evolutions have been reported together with the collisionless analytical

solution. Solutions start to differ already at early times. This can be attributed

to the fact that the plasma is highly coupled: the plasma parameter ǫp (ratio

between kinetic and potential energy) for this particular configuration tends

to infinite and two body correlations can not be ignored. Direct interactions

between particles cause them to diffuse preventing the shock formation. The

statistical errors as function of M number of simulations are presented in figure

7.7.





CHAPTER 8

CONCLUSIONS

In the thesis, two different mechanisms to accelerate ions in laser-produced

plasmas have been studied.

Numerical simulation tools, based on the particle technique, have been

largely used. In particular, the state-of-the art particle in cell code Osiris, which

is massively parallel, fully relativistic and object oriented, has been employed.

A reduced electrostatic model, called the shell model, has been developed.

Despite its simplicity, the technique has proved to be accurate in capturing

the physics involved in collisionless electrostatic phenomena and to provide

reduced computational times. Finally, an algorithm to carry out N-body sim-

ulations has been implemented. The technique allows for analyzing the exact

(numerically speaking) dynamics of a plasma, because it does not contain any

approximations. However, since it is computationally expensive, it has been

applied only to small systems containing a little number of particles.

The first part of the thesis has been devoted to study the process of shock

wave acceleration. Shock waves generated in plasmas can act as reflecting

moving walls, picking up ions at rest and accelerating them to high veloci-

ties. It has been shown analytically and with numerical simulations that such

electrostatic shocks can be generated by the interaction of two plasma regions

with different temperatures and densities. A kinetic theoretical model that

includes relativistic electron temperatures and a population of reflected ions

has been developed. It exploits the Sagdeev formalism and it allows to iden-

tify the conditions for shock formation and ion reflection. It shows that, in

order to accelerate ions in low Mach number shocks, easier to drive in labo-
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ratory, large density and low temperature ratios are favorable conditions. In

order to increase the final ion energy that depends on the shock Mach number

and on the ion sound speed cs ∝
√

Te, with Te electron temperature, it is then

necessary to maximize the electron heating. The theoretical predictions have

been confirmed by numerical simulations carried out with Osiris and the shell

model. An idealized scenario where the shock raised from the interpenetra-

tion of semi-infinite plasma slabs with different initial electron temperatures

and densities has been simulated. Results indicate that the percentage of re-

flected ions increases with the density ratio. The presence of a relative drift

between the two plasma regions has also been examined; an increase in vd

leads to an increment in the energy and in the number of reflected ions. Mov-

ing towards more realistic scenarios, finite plasma slabs have been considered.

In this case, it has been seen that a TNSA field develops at the plasma-vacuum

transition. The field is responsible to broaden the energy spectrum of the shock

accelerated ions. It has been shown that this charge separation field can be con-

trolled if the transition between plasma and vacuum is smooth. This is why

tailored plasmas have been considered. The abrupt plasma-vacuum transition

has been substituted with an exponentially decreasing density profile. In this

case the charge separation field is almost constant and does not degrade the

quality of the accelerated beam. An optimal decaying length has been derived

theoretically and confirmed by a parameter scan over a wide range of values.

A different approach has been proposed and tested: it consists in the use of

several plasma slabs with progressively decreasing density to reproduce the

exponential density profile. Simulation results indicate that multilayer plas-

mas can be a promising alternative to achieve a high quality ion beam. More-

over, it has been shown that the conditions necessary to drive a strong shock

(i.e. a density discontinuity or a drift inside the plasma) can be achieved in lab-

oratory by the interaction of a laser pulse with a near critical density tailored

plasma. The laser is absorbed at the critical density, leading to a density steep-

ening and to a strong electron heating. The fast electrons propagate through

the target, setting up a return current that drags cold electrons towards the

laser region. This causes a homogeneous electron heating all over the target.

Some of the electrons leave the target at the back, creating a small and constant

charge separation field that accelerates them to a uniform velocity. The small

drift, the density jump and the intense electron heating contribute in launch-

ing a strong electrostatic collisionless shock wave that reflects the background

ions leading to the generation of a high energy and high quality ion beam.

Theoretical predictions about the scale length of the plasma profile has been
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confirmed also in laser-driven shock scenarios. Finally, scaling laws regarding

the electron temperature and the ion energy have been retrieved for the ideal

case of a plane wave laser and for the realistic case of a finite laser spot size.

In the second part of this work, the problem of ion acceleration in the

Coulomb explosion of pure ion nanoplasmas has been investigated. A study

of the explosion dynamics of multi-species spherical plasmas, that can be pro-

duced via the interaction between intense laser pulses and cluster targets, has

been reported. Numerical simulations showed that in heavy-light systems,

composed of two different ion species, the lighter ions get accelerated in a

quasi-monoenergetic way (energy spread is less than 5%). It has been shown

that the phase space of the lighter species can exhibit multi-flows whose role

in determining the monochromaticity of the beam has been addressed. A pa-

rameter scan has been conducted where the relative percentage between heavy

and light ions and the ionization level of the heavier species have been varied.

An optimal light ion concentration leading to low energy spread and high ion

charge in the beam has been determined. Moreover, a theoretical model, use-

ful for a deep comprehension of the explosion dynamics, has been derived and

solutions have been compared with numerical ones, showing a perfect agree-

ment. Finally a study on shock shell formation during Coulomb explosion is

presented. Shock shells may arise in the presence of radial non-unoformities

of the initial ion density; in this case, since the electric field is no longer a

monotonic function of the radius, ions from the center can experience a bigger

acceleration than the ones at the periphery and overtake them. A particular

kind of shock shells, that are driven by a peculiar initial density profile, has

been investigated. According to the collisionless kinetic theory, when these

shocks occur, a large fraction of the ions reaches the same radial position at

the same time. A rigorous analysis on system composed by a small number

of ions has been carried out with the N-body simulation technique, which is

free from any assumption, thus providing insights on the real dynamics of the

explosion. In this case, ensemble averages of the quantities of interest have

been computed in order to take into account the different initial conditions of

the system. They have been compared with reference solutions of the Vlasov-

Poisson model, pointing out that the two approaches lead to different results.

In particular, N-body simulations show that direct interactions between parti-

cles, that are not considered by the kinetic model, cause them to repulse each

other and diffuse, preventing the shock formation.
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C. Rémond, A. Decoster, D. Batani, D. Beretta, and T. A. Hall, “Bromi-

nated plastic equation of state measurements using laser driven shocks,”

Applied Physics Letters, vol. 72, p. 1033, 1998.

[47] R. W. Lee, S. J. Moon, H.-K. Chung, W. Rozmus, H. A. Baldis, G. Gregori,

R. C. Cauble, O. L. Landen, J. S. Wark, A. Ng, S. J. Rose, C. L. Lewis,

D. Riley, J.-C. Gauthier, and P. Audebert, “Finite temperature dense mat-

ter studies on next-generation light sources,” Journal of the Optical Society

of America B, vol. 20, p. 770, 2003.

[48] P. K. Patel, A. J. Mackinnon, M. H. Key, T. E. Cowan, M. E. Foord,

M. Allen, D. F. Price, H. Ruhl, P. T. Springer, and R. Stephens, “Isochoric

heating of solid-density matter with an ultrafast proton beam,” Physical

Review Letters, vol. 91, p. 125004, 2003.

[49] S. Atzeni and J. Meyer-ter-Vehn, The physics of inertial fusion. Oxford

university press, 2004.

[50] M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Wood-

worth, E. M. Campbell, M. D. Perry, and R. J. Mason, “Ignition and high

gain with ultrapowerful lasers,” Physics of Plasmas, vol. 1, p. 1626, 1994.

[51] M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Foun-

tain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike,

H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and

H. Powell, “Fast ignition by intense laser-accelerated proton beams,”

Physical Review Letters, vol. 86, p. 436, 2001.

[52] M. Temporal, J. J. Honrubia, and S. Atzeni, “Numerical study of fast igni-

tion of ablatively imploded deuterium-tritium fusion capsules by ultra-

intense proton beams,” Physics of Plasmas, vol. 9, p. 3098, 2002.

[53] S. Atzeni, M. Temporal, and J. J. Honrubia, “A first analysis of fast ig-

nition of precompressed icf fuel by laser-accelerated protons,” Nuclear

Fusion, vol. 42, p. L1, 2002.

[54] R. R. Wilson, “Radiological use of fast protons,” Radiology, vol. 47, p. 487,

1946.



Bibliography 111

[55] J. H. Lawrence, “Proton irradiation of the pituitary,” Cancer, vol. 10,

p. 795, 1957.

[56] S. V. Bulanov and V. S. Khoroshkov, “Feasibility of using laser ion accel-

erators in proton therapy,” Plasma Physics Report, vol. 28, p. 453, 2002.

[57] S. V. Bulanov, T. Z. Esirkepov, V. S. Khoroshkov, A. V. Kuznetsov, and

F. Pegoraro, “Oncological hadrontherapy with laser ion accelerators,”

Physics Letters A, vol. 299, p. 240, 2002.

[58] E. Fourkal, J. S. Li, W. Xiong, A. Nahum, and C.-M. Ma, “Intensity mod-

ulated radiation therapy using laser-accelerated protons: a Monte Carlo

dosimetric study,” Physics in Medicine and Biology, vol. 48, p. 3977, 2003.

[59] V. Malka, S. Fritzler, E. Lefebvre, E. d
’
’Humières, R. Ferrand, G. Grillon,

C. Albaret, S. Meyroneinc, J.-P. Chambaret, A. Antonetti, and D. Hulin,

“Practicability of protontherapy using compact laser systems,” Medical

Physics, vol. 31, p. 1587, 2004.

[60] P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L. Palumbo, and C. Ron-

sivalle, “A compact post-acceleration scheme for laser-generated pro-

tons,” Physics of Plasmas, vol. 18, p. 073103, 2011.

[61] U. Linz and J. Alonso, “What will it take for laser driven proton accel-

erators to be applied to tumor therapy?,” Physical Review ST Accelerators

Beams, vol. 10, p. 094801, 2007.

[62] S. Fritzler, V. Malka, G. Grillon, J.-P. Rousseau, F. Burgy, E. Lefebvre,

E. d’Humieres, P. McKenna, and K. W. D. Ledingham, “Proton beams

generated with high-intensity lasers: Applications to medical isotope

production,” Applied Physics Letters, vol. 83, p. 3039, 2003.

[63] E. Lefebvre, E. d’Humières, S. Fritzler, and V. Malka, “Numerical simula-

tion of isotope production for positron emission tomography with laser-

accelerated ions,” Journal of Applied Physics, vol. 100, p. 113308, 2006.

[64] R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren,

W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and et al., “Osiris: a three-

dimensional fully relativistic particle in cell code for modelling plasma

based accelerators,” Lecture Notes in Computer Science, vol. 2331, p. 342,

2002.



112 Bibliography

[65] R. A. Fonseca, Experimental and numerical study of laser-plasma electron ac-

celerators. PhD thesis, Instituto Superior Técnico, Lisbon, 2002.
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