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For you, mum,
so near, so far.

Through dangers untold and hardships unnumbered,
I have fought my way here to the castle beyond the Goblin City
to take back the child that you have stolen,
for my will is as strong as yours, and my kingdom as great.
You have no power over me.
(cit. Sarah, Labyrinth)
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Abstract

This dissertation contributes to the definition of minimum–complexity approaches
that allows for representing realistic effects typical of modern fixed- and rotary-wing
configurations, limiting as much as possible increase in order and overall complex-
ity of the dynamic model of the class of aerial vehicles considered. In particular,
the thesis deals with (1) the development of a novel low–order mathematical model
for including structural deformation effects in the analysis of response to control
inputs of flexible aircraft; (2) the derivation of a simplified models for unsteady
aerodynamic effects, with an application to helicopter main rotor; (3) modeling and
assessment of the maneuvering potential for a novel quadrotor configuration with
tilting rotors.

A mixed Newtonian–Lagrangian approach is proposed for the derivation of flex-
ible aircraft equations of motion, where Lagrange equations are used for flexible
degrees of freedom, discretized by means of Galërkin method, whereas the evolu-
tion of transport degrees of freedom (position and attitude variables) is obtained by
means of Newton second law and generalized Euler equation. A strong link with
conventional rigid aircraft equations of motion is maintained, that allows highlight-
ing those terms less relevant for aircraft response. When negligible, these terms are
removed and a minimum complexity flexible aircraft model is derived, suitable for
real–time simulation and control law synthesis.

Similarly, unsteady aerodynamic effects over a rotating blade are modeled by
means of an available approach, namely the ONERA dynamic stall model. Some
reasonable simplifying assumptions based on the comparison of simulation results
with a quasi–static aerodynamic model are then derived and a minimum complexity,
6 degree–of–freedom helicopter model is proposed which takes into account the issues
related to retreating blade stall.

Finally, an existing inverse simulation algorithm is applied for the first time to
the determination of the control laws for tracking desired maneuvers by means of
an unconventional quad-rotor configuration featuring four tilting rotors. This novel
configuration allow access to an extended maneuver envelope and ad hoc instruments
are needed for assessing its maneuvering potential. For all the considered problems,
the approaches developed are demonstrated by means of numerical results, applied
to a particular class of modern fixed- or rotary-wing aircraft, but the possibility of
extending the results to different classes of vehicles is also highlighted.
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Chapter 1

Introduction

1.1 Motivation

In the last years a wide range of innovative configurations for aerial vehicles has
been developed. These new configurations (Fig. 1.1) can be a cross–over between
standard configurations (tiltrotor aircraft), or an evolution of standard ones (like the
double–bubble proposed by NASA), but sometimes they represent dramatic changes
with respect to previous configuration paradigms (as in the case of Prandtl plane
or the blended wing–body airliner). Some of the problems that need to be faced in
order to simulate the flight dynamics of such unconventional vehicles are quite com-
mon, but sometimes specific issues need to be addressed in order to derive reliable
simulation models. As an example flexibility of lifting structures (wings or blades),
unsteady aerodynamics effects induced by non–stationary periodic flow conditions,
are aspects that must be modeled independently on the vehicle considered if they are
relevant for the considered configuration. These effects may affect the ride comfort.
Other aspects, such as vehicle control, are specific to the particular configuration
considered (rotary vs fixed wings, redundancy of control surfaces, etc).

Traditional methods for flight dynamics analysis can fail by large amounts in
identifying correctly the expected behavior of these unconventional configurations.
This work is thus aimed at developing simplified models that take into account
some of these aspects, and with models that are suitable for preliminary design,
real–time simulations, and synthesis of control laws. The effects are analyzed in
different frameworks, because even if there is a strong dependency on the flight
condition, the model developed could be applied with some minor modification also
to a different vehicle.
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1 – Introduction

Figure 1.1: Unconventional configurations of atmospheric vehicles: a) tiltrotor;
b)Prandtl plane; c) NASA double–bubble; d)wing–body

1.2 Problem Statement, Approach, and

Contributions

The analysis of flight mechanics is an important task in the development of new
vehicles. The development of mathematical models capable of describing the most
relevant features of aerial vehicles behavior represented a fundamental need over the
whole aviation history. When properly linked with suitable numerical techniques,
these models allow for the evaluation of vehicle performance, agility potential and
handling qualities with various degrees of reliability, depending on model complexity
and availability of data.

The available models, thanks to modern advances in computation capabilities,
can reach high levels of complexity when various effects are taken into account.
The problem with such models is that the level of detail of the characteristics of
the vehicle considered and the computational effort needed are both too great to
allow for their use during the preliminary design phase when many features of the
configuration are still not known with sufficient detail, or for piloted simulations,
when computational effort is limited by the requirement of running the model in real
time. The need for simplified models for the analysis of the dynamic response of
aerial vehicles is still significant and often neglected. An example of this philosophy
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1 – Introduction

is discussed for the case of helicopter rotor aerodynamics in Ref. [69]. Peters in
this paper explain the success of the dynamic inflow method with five fundamental
reasons:

• the various models and improvements have always come in response to impor-
tant, yet unexplained, experimental results;

• the response to those results was invariably based on sound physical intuition
as to the nature of the discrepancies;

• the model improvements at each step were based on engineering physics, rather
then heuristic fit of data;

• the models included only enough physics to explain the phenomenon, and no
more;

• each model was hierarchical to earlier models so that no model was ever re-
placed.

The present study is focused on three different aspects, that represent a wide
benchmark of typical flight mechanics problems.

1.2.1 Structure Flexibility Effects

Stemming from the work by Tuzcu and Meirovitch, the main objective of the first
part of the work is to develop a minimum complexity model for flexible aircraft,
capturing the most important interactions between structural dynamics and over-
all vehicle motion variables. This is done by taking into account the effects of
bending and torsion of wing and fuselage on aircraft translational and rotational
motion. The modeling approach suits the representation of the dynamic behavior
of large commercial transport aircraft, for the development of real-time simulators
and the synthesis of guidance and control laws (e.g. a stability and control augmen-
tation systems, autopilots, etc.), where the importance of keeping model complexity
down to a minimum level is crucial for simplifying the control system task. The
approach proposed is based on the idea of splitting the equations into two classes
(mixed Newtonian-Lagrangian approach), using the conventional equations of flight
dynamics for transport degrees of freedom and a Lagrangian formulation for flexible
dynamics. The assumed modes method [45] is at the basis of the derivation of a low
order model for deformation variables. This method allows for representing major
features of structure deformation by means of a limited set of base functions that nat-
urally fulfill structure boundary conditions (e.g. clamped-free beam for half-wings),
when comparison functions are employed [45]. The same model can be applied with
only minor modifications also for the description of rotor blade flexibility.

3



1 – Introduction

Novelty of the method implemented lie in the overall simple representation of the
problem and in the analysis of the coupling between the effects due to the flexibility
(e.g. inertia moments changes) and the dynamic response of the aircraft. While
studies on blade flexibility have been widely covered [31, 35, 84, 90], similar works
for the analysis of wing flexibility are less common, and are are even more sporadic
research that consider the interaction with the flight mechanics with a low–level
model.

1.2.2 Unsteady Aerodynamics Effects

The analysis of the effects of unsteady aerodynamics and dynamic stall on an he-
licopter rotor has been performed. First a linear airloads theory was applied, thus
obtaining a set of generalized loads, that depend on generalized coordinates, i.e. a
representation of angle of attack, plunge motion, and morphing of the airfoil, and on
flowfield geometry, including the induced inflow. The representation of the induced
inflow is different in 2D and 3D cases, thus both models will be presented in the
following sections. The presence of dynamic stall modifies the loads obtained. The
method implemented considers that dynamic stall correction factor depends on the
actual conditions of the flow, and on the difference between the linear and static stall
airloads coefficients. Wind tunnel test data are available mainly for the 2D cases,
thus in the first a comparison was made in that condition. Then a comparison be-
tween static coefficients and unsteady aerodynamics rotor model was performed, and
eventually some simplifying assumptions were derived. The validity of the model
was discussed by means of a set of simulations for a complete helicopter dynamic
model response considering (1) static loads, (2) unsteady aerodynamic loads, and
(3) the simplified version of the latter.

Contribution of the present work is on the model simplifications used, that allow
for a compact representation of the problem, still accounting for the main effects on
the flight dynamics.

1.2.3 Performance Potential Analysis

In the third part of the study, an innovative quad–rotor configuration with tilting
rotors is considered and ad hoc methods are developed for analyzing its maneuver-
ing and agility potential, when compared to a conventional quad–copter. Control
of a conventional quad-rotor is based on the variation of thrust developed by the
four rotors, which is achieved by variations of rotor rotation rates. In hover all
rotors provide equal thrust, such that the total equals vehicle weight. Two rotors
turn in one direction and two in the opposite one, so that the overall yaw aerody-
namic moment is cancelled (Fig. 3.6.a). Yawing control moments are obtained by
unbalancing these aerodynamic moments by accelerating the rotors spinning in one
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1 – Introduction

direction and slowing down the other two. Pitch and roll moments are obtained
by unbalancing the thrust of forward and rear or lateral rotors, respectively, for a
conventional cruciform configuration. A variation of the rotation rates of all the
rotors allows for vertical acceleration and maneuvers at a load factor greater than
one. The possibility of tilting the rotors allows for a significantly greater flexibility
in obtaining control moments. With 4 more control variables, the system becomes
redundant, and it is possible to control flight conditions and perform maneuvers sim-
ply unachievable for a conventional quad-rotor configuration with fixed propellers.
A patent request has been issued for the configuration discussed here [6]. As an
example, it is possible to accelerate and fly in forward flight without the need for
pitching the vehicle down. In order to determine the control action necessary for
performing a prescribed maneuver, an inverse simulation algorithm is applied. In-
verse simulation has been considered in the past as a useful and versatile tool for
investigating several aspects of both fixed- and rotary-wing vehicle dynamics, [87].
An integration approach is here applied, which is derived from an algorithm that
was successfully applied to the evaluation of helicopter handling qualities, [7].

The quadrotor considered has an unconventional configuration that lead to re-
dundancy on the controls, that make the problem of control quite different from the
standard set up. In addition the extended inverse simulation algorithm used in [7]
was applied for the analysis of the quadrotor considering a more complex model for
the forward simulation.

1.3 Literature Review

1.3.1 Flexible Aircraft Models

Until recent times the additional complexity of flexible modes in the derivation of
aircraft dynamic equations was not necessary, and the development of simulation
models in the framework of atmospheric flight dynamics has been carried out for
almost a century under the assumptions of rigid aircraft [11]. As a consequence,
coupling between aeroelasticity and flight dynamics was neglected, thus limiting
resulting model complexity. This was possible, when structural dynamics did not
significantly affect aircraft response to either pilot inputs or external disturbances,
structural modes being faster than the fastest modes of aircraft dynamics (short
period and roll subsidence poles).

In spite of these practical considerations, the study on flexible aircraft models
has been undertaken since the late 50s. The unavailability of analytical solutions
on one side and, on the other hand, the lack of sufficient computational power for
dealing with the complex models necessary for representing flexible aircraft dynam-
ics, made it impossible at the time to tackle the problem without preliminarily
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considering strong simplifying assumptions [63, 80, 83]. Nonetheless, many of the
most promising approaches for developing a flexible aircraft simulation model, still
adopted nowadays, were derived during this early period.

As a major example, Milne [63] proposed a general approach for flexible aircraft
longitudinal motion, under the assumption that both flexible deformations and in-
crements of rigid-body variables from trim conditions were small. Three possible
choices for the aircraft-fixed reference frame were considered in Ref. [63], in order to
describe translational and attitude dynamics of a flexible aircraft, namely attached
axes, mean axes and principal axes. Mean axes were considered as the best choice, as
the contribution of deformation rate to the total angular momentum vanishes, when
represented in this particular reference frame, thus allowing to inertially decouple
transport degrees of freedom (rotation and translation) from deformation ones. An-
other important milestone in the development of elastic aircraft models was set by
Cavin III and Dusto [14], who used Hamilton’s principle to derive the equations for
the flexible body, looking for approximate solutions by means of the finite elements
method.

In the late 80s Buttrill, Airbuckle and Zeiler [12] created an integrated nonlinear
aircraft model with flexible degrees of freedom using Lagrange equations in a mean
axes reference frame for a F/A-18 aircraft. Unfortunately, an accurate estimate of
the position of the mean axes is far from trivial. This issue significantly affects the
overall uncertainty level of the model, and it makes the use of this approach rather
difficult in practice, when a reasonable approximation for their position relative
to the aircraft structure needs to be sought and/or a suitable procedure for their
determination from measurements realistically available on-board is required for
active control of the elastic aircraft.

Alternative approaches for modeling flexible aircraft dynamics not based on the
use of mean axes began to emerge in the late 90s, usually associated to the problem
of control law design. Meirovitch and Tuzcu [61] derived a flexible aircraft model
based on the formulation proposed by Meirovitch for flexible spacecraft [57], later
extended to generic flexible bodies [58] and flexible multibody systems [60] modeled
as a system of beam(s). A hybrid system of ordinary (for transport degrees of
freedom, namely position and attitude variables) and partial differential equations
(with proper boundary conditions for elastic degrees of freedom) in terms of quasi-
coordinates was derived. Transport variables are here associated to position and
attitude of a set of pseudo-body axes, fixed to the undeformed structure.

During the derivation based on a Lagrangian approach, the quasi-coordinate
system takes into account that some of the “velocity variables” (e.g. aircraft speed
and angular velocity expressed in terms of body frame components) are not the
derivatives of “position variables” (e.g. center of mass position vector, and Euler
angles). The formulation proposed by Meirovitch and Tuzcu is mathematically
elegant and effective in dealing with the problem, where the use of quasi-coordinates
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allows for a description of transport degrees of freedom in terms of standard flight
dynamic variables (namely translational velocity V B = (u,v,w)T and rotational
rate components ωB = (p,q,r)T ). At the same time, the derivation of the equations
of motion via a fully Lagrangian approach becomes more cumbersome, because of
the presence of additional terms introduced by the kinematic equations that relate
position and velocity variables. Moreover, a hybrid system of ordinary and partial
differential equations is obtained, that needs some form of discretization. After the
discretization, the identification of the origin of all the terms derived during the
procedure, from the global expression of the Lagrangian to the final finite order
system of nonlinear differential equations may not be straightforward.

1.3.2 Helicopter Modeling

The choice of helicopter model is fundamental in order to study performance and
handling qualities. Since the beginning of helicopter engineering, mathematical
models of increasing complexity and detail have been proposed. A helicopter model
needs to “embody the important aerodynamic, structural and other internal dynamic
effects (e.g., engine, actuation) that combine to influence the response of the aircraft
to pilot’s controls and external atmospheric disturbances” [65]. Usually a greater
effort is necessary for the study of main rotor dynamics. For this reason Padfield [65]
introduced a classification based on the complexity of rotor modelization levels that
will be described in detail in the next chapter.

Most of the textbooks on helicopter dynamics present a model for the description
of its dynamic response. Bramwell [10] described a relatively simple model that can
be useful for preliminary design as well as for the physical interpretation of dynamic
and aerodynamic phenomena. No dynamic equations are involved, but only static
equations derived from momentum theory. Padfield [65] moves forward in developing
a static model that features an equivalent hinge stiffness in the center of the rotor,
suitable for describing articulated and hingeless rotors. Other works use second
order TPP (Tip Path Plane) models for the evaluation of rotor loads transmitted to
the fuselage, defining empirical correction factors in order to match the helicopter
performances [3, 42, 49, 79].

A simplified first order TPP model was proposed by Heffley and Minch [32] in
order to minimize the number of parameters necessary to represent the helicopter for
pilot training purpose. In this work a quasi–static uniform inflow model is assumed,
but the use of a uniform dynamic inflow model is a rather straightforward possible
extension.

The work by Chen et al. [15] presents a second order TPP model for articulated
and teetering rotors, considering for the blade flapping a Fourier series truncated at
the first harmonic coefficients. Also in those work the aerodynamic considered for
blade sections is linear, with static uniform inflow. Tail rotor is described with a
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quasi–static TPP approach, that includes interference from main rotor downwash.
Individual blade models have been used by Howlett [39, 40] and Kim [48] for

the description of the UH–60A helicopter. This model includes a full non–linear
description of fuselage aerodynamics, rigid articulated blades, a triangular dynamic
inflow for the main rotor [73] and a dynamic uniform inflow for the tail rotor.
Flexibility effects on blades and fuselage, with the only exception of blade twist are
neglected. Also unsteady aerodynamic effects are not included in the model.

More recently, the description of blade flexibility and aerodynamic advanced
features allowed for the derivation of more realistic, but very complex helicopter
models. Regarding blade flexibility a one–dimensional finite element is often used
to model deformation in flap and lag directions, torsion along the blade span, and
elongation. An example of fully flexible rotor model is presented in [31,90].

1.3.3 Unsteady Aerodynamics

The first thin airfoil unsteady aerodynamic theory was developed by Max Munk in
1920 [64]. This study allows to determine aerodynamic loads on an airfoil easily,
using the hypothesis of a two dimensional flow in a non–viscous, incompressible
fluid, and small angles of attack. The work by Munk derived general integral rela-
tionships for the zero lift angle, static pitching moment, and center of pressure, and
demonstrated that these are properties of only the mean camber line geometry for
sufficiently thin airfoils.

Thin airfoil theory was later refined by Theodorsen and Garrick [85,86] in order to
include also the study of the mechanism of flutter. Using a simple harmonic motion
for the angle of attack and considering the Kutta condition, Theodorsen obtained a
frequency–response function for the airfoil. Further extensions of this theory were
carried out in the next two decades. Von Kármán [92] analyzed the leading edge suc-
tion peaks on a thin airfoil. Garrick [27] used Von Kármán equations to determine
the drag (or propulsive) force generated by flapping airfoils. Isaacs [41] extended
Theodersen theory considering that also the free stream can undergo harmonic os-
cillations. Greenberg [30] stemmed from the work of Isaacs and considered some
simplification on vortex spacing. Loewy [53] generalized Theodorsen theory for a
helicopter in hover or climb. The common characteristic of all these methods is that
the analysis is carried in the frequency domain. The study of unsteady aerodynamic
effects in the time domain was focused mostly on indicial methods [44,93] until 1970.
In the following twenty years many studies proposed methods for transforming the
response from the frequency to the time domain. One of the solutions proposed to
this problem is based on the use of approximate Padé functions [18, 20,21,91].

More recent work [28] analyzed the possibility of converting CFD results into
reduced order models that represent the non–linear behavior with adequate accuracy.

All the models described above are two–dimensional, thus cannot be directly
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applied to 3D cases. The method derived by Peters et al. [72,75,76] uses a Glauert
expansion, basing the theory on potential flow with a non-penetration boundary
condition on a thin surface in two dimensions, and applying the Kutta condition on
the trailing edge. There are many advantages in using this model. As an example,
Chebychev polynomials can be used for deriving a simple description of the airfoil
motion. Moreover, this model could be coupled with both 2D or 3D induced inflow
models. Ref. [76] added also the possibility to consider unsteady free stream velocity.
The limited number of terms required to describe the phenomena make this model
suitable for the preliminary analysis of airfoil aerodynamics, thus it was implemented
in the present work.

1.3.4 Dynamic Stall

The phenomenon of dynamic stall is one of the limiting factor for high speed heli-
copter performance. For fixed wing aircraft stall occurs at low speed, whereas for
helicopters it will occur at relatively high velocities. That is because the advancing
and retreating blades work in different conditions at high speed the advancing blade
operates at low values of angle of attack, but close to shock induced separation
boundary. On the other hand, the retreating blades operate at lower speed, with
large angle of attack, close to the airfoil stall condition. The condition in which the
blade operates are not constant, due to blade flapping, cyclic pitch inputs, velocity
fluctuations induced by rotor rotation in forward flight and wake inflow. For this
reason the phenomenon is referred to as dynamic stall.

CFD methods have been developed to analyze dynamic stall phenomenon, but
the computational effort required is large not suitable for flight mechanics applica-
tions such as real time simulation.

Mathematical models currently in use rearrange the results from 2D oscillating
wind tunnel experiments, either obtaining lookup tables of parameters (resynthesis
models, [13, 26]) or representing the essential physics using sets of linear and non–
linear equations for the aerodynamic loads, that use a set of empirical coefficients
(semi–empirical models, [8, 23, 29, 43, 50, 77]). Most of these models are reviewed in
Ref. [49].

The dynamic stall model used in this work is the ONERA method [77], including
the modification proposed by Peters in [68].

1.3.5 Quadrotor Modeling

In the last 20 years the study of Unmanned Vertical Take Off and Landing Vehicles
(VTOL UAVs) has raised a growing interest. In this framework, quad-rotors and
other multi-rotor configurations achieved an increasing popularity, because of their
mechanical simplicity, low cost and availability of reliable off–the–shelf vehicles.
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This makes this class of platforms ideal for various mission scenarios and research
on autonomous flight.

As an example, the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent
Control (STARMAC) quad-rotor helicopter is one of the many platforms analyzed
in the literature, [37]. For a standard configuration load-factor is controlled by total
thrust, and lateral and longitudinal accelerations are controlled through pitch and
roll angles of the aircraft. The main goal of the control is to minimize the effects
of disturbances. In Ref. [37] this is demonstrated for a rather complex simulation
model, where blade flapping and total thrust variation in translational flight are
considered.

The work by Stingu and Lewis, where the design and manufacturing of a quad-
rotor is presented, provides a simpler 6 DoF simulation model for quad-rotors, [81].
The main issue of this paper is to obtain a simple control system that successfully
stabilizes a custom-built quad-rotor platform in hover, in order to have a user-
friendly semi-autonomous machine.

Most of the quad-rotors found in literature are very small, with an overall mass
of less than 3 kg. One of the most notable exceptions is represent by the X-4
Flyer, [78]. Also in this case the model used for simulations and the control design
are both quite standard, and a PID controller is designed to stabilize the dominant
decoupled pitch and roll modes.

More recent studies are focused on the development of a self-stabilizing and self-
navigating quad-rotor. The problem of navigation and autonomous flight for this
class of vehicles, as well other VTOL UAVs, are well discussed in [47] and [62].

1.3.6 Inverse Simulation Algorithm

Inverse simulation has been considered in the past as a useful and versatile tool for
investigating several aspects of both fixed- and rotary-wing vehicle dynamics, [87]. A
wide plethora of methods for solving inverse simulation problems in flight mechanics
has been considered, that can be broadly grouped into three major categories:

• differential methods, [46], suitable for nominal problems only, where the num-
ber of control inputs equals that of tracked variables;

• integration methods, [33], where the required control action is evaluated over a
discrete time interval and can handle also redundant problems (e.g. by means
of a local optimization approach, [16]);

• global methods, where the time-history of the control variable is determined
over the whole duration of the tracked maneuver by means of a variational
approach, [9].
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An integration approach will be applied in this work, which is derived from
an algorithm that was successfully applied to the evaluation of helicopter handling
qualities, [7].

1.4 Outline

In what follows, Chapters 2 is dedicated to the description of the mathematical
model used for the description of flexible aircraft dynamics. The derivation of the
equation of motion of the aircraft are described in this chapter, considering the
Netwonian approach for the evolution of the transport degrees of freedom, and
Lagrangian for the elastic degrees of freedom of the two half–wings and the aft–
fuselage. Chapter 3 is dedicated to the description of rotorcraft models. First the
complete helicopter set of equation are presented, the the unified model implemented
for the derivation of the unsteady aerodynamic loads is discussed, for both the 2D
and 3D cases. Finally in the last part the simplified dynamic of a small quadrotor is
presented. Chapter 4, 5, and 6 present the results obtained for the model described.
In Chapter 4 the dynamic response of a transport aircraft is presented comparing
the rigid, fully flexible, quasi–static, and without inertia variation cases. Chapter
5 present some results for the analysis of helicopter response considering unsteady
aerodynamics on the blades. In the first part the 2D case is considered, then the
complete rotor response is analyzed considering some simplifying assumptions, and
in the end the complete helicopter performance are evaluated. In the last Chapter
the feasibility of some maneuvers using a tilting quadrotor are verified using a inverse
simulation algorithm and compared with a standard configuration one. In the last
section the same maneuvers are performed considering a more advanced model for
the tilting quadrotor.
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Chapter 2

Flexible Aircraft Model

2.1 Introduction

This section proposes a novel method for deriving simplified models of flexible air-
craft dynamics by means of a mixed Newtonian-Lagrangian approach. On one side, a
standard second-order matrix formulation for flexible degrees of freedom is obtained
from Lagrange equations, discretizing flexible displacement and torsion variables by
means of Galërkin method. [56] On the other hand the evolution of transport degrees
of freedom (namely translation and attitude variables) is obtained by means of sec-
ond Newton’s Law and generalized Euler equations, the latter suitable for describing
the dynamics of deformable bodies.

As a major advantage of the method with respect to previous (and mathemat-
ically more elegant) techniques, transport degrees of freedom are here described
in terms that closely resemble classical equations of motion for rigid aircraft, thus
making the engineering interpretation of the terms more intuitive. Moreover, defor-
mation variables are approximated from the beginning of the procedure by means
of a finite number of generalized coordinates. This allows for a direct derivation of
a finite-order system of ordinary differential equations, without the need for pass-
ing through a hybrid system of ordinary and partial differential equations, as in
Ref. [61]. At the same time, the use of a set of pseudo-body axes fixed to the un-
deformed aircraft structure [61] simplifies the description of its deformation, with
respect to the case when mean axes are used [22,63], as explained in more detail in
the next section.

Inertial coupling terms and the effects of structural deformations on aerodynamic
loads are easily highlighted in the equations of motion, and it is thus easier to drop
some of them, when either numerically negligible or hardly relevant for aircraft
response. A low-order, minimum complexity flexible aircraft model can thus be
derived. This is a particularly interesting feature, when the dynamic model is used
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for real-time simulation or control law synthesis. In the first case, computational
burden is minimized, thus allowing to run the simulation software on smaller CPU’s.
In the second case the synthesis of the controller becomes easier, if aircraft response
is described in a frequency range limited to the expected control task bandwidth.
In this latter framework, the presence of unnecessary high frequency modes makes
the derivation of the feedback law more demanding, possibly leading to high-order
control systems that may require high performance, high bandwidth actuators for
their implementation. High-order models of flexible aircraft derived by means of
finite element methods, where the number of degrees of freedom reaches the order
of hundreds of variables, may not suit these types of application [66].

2.2 Derivation of a Low-Order Flexible Aircraft

Model

2.2.1 Transport and deformation variables

The scope of this section is to develop a minimum complexity model for the dynam-
ics of a flexible aircraft, capturing the most relevant interactions between structural
dynamics and overall vehicle motion variables. As in Ref. [61], a pseudo-body set
of axes, FB = {O; xB,yB,zB} is chosen for representing position and attitude of
the vehicle, where the axes are chosen like a standard set of body-axes [22] for the
undeformed aircraft configuration. The origin O of the frame lies in the center of
mass of the undeformed airplane, the axes xB and zB lying in the longitudinal plane
with xB pointing forward. The axis yB completes a right-handed triad. The unde-
formed aircraft (in particular, its mass distribution, geometry and elastic properties)
is assumed symmetric with respect to the longitudinal plane.

Transport degrees of freedom are represented by the position r0 = (rN ,rE,−h)T

of the origin O of FB with respect to the surface of the Earth (assumed as flat
and non-rotating [22]) and attitude of the pseudo-body axis reference frame with
respect to a local vertical/local horizontal frame. Attitude is represented in terms
of roll, pitch and yaw angles, Φ = (φ,θ,ψ)T . The evolution of transport variables
and the associated linear and angular rates is described by means of a set of 12 non-
linear ordinary differential equations of motion. Dynamic equations for deformation
variables are derived using a Lagrangian formulation that, under the assumption
of small flexible displacement and perfectly elastic structure response, results into
a system of linear, second order ordinary differential equations, featuring a forcing
term that depends on transport variables only.

Deformations cause the center of mass to move from its nominal position in the
origin of the pseudo-body axes reference frame (that is, the center of mass in the
undeformed configuration) together with variations of the moments of inertia. Figure
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Figure 2.1: Architecture of the flexible aircraft model.

1 shows the architecture of the simulation model, where deformation of flexible
parts work like a dynamic feedback for dynamics of transport variables through the
aerodynamic model, whereas changes of inertial properties operate directly on it,
coupling the highest order derivatives of the two sub-systems (that is, linear and
angular accelerations and time-derivatives of deformation rates). Inertial effects can
sometimes be negligible with respect to the variation of aerodynamic loads due to
the deformation, and this assumption was at the basis of the flexible aircraft model
adopted in Ref. [4], where only the effects of structural deformation on aerodynamic
loads was taken into account in transport degrees of freedom, without any inertial
coupling. In this work changes of inertia properties are also included in the model.

Similarly to what was done in Ref. [4], the only deformations considered are
those of the two half-wings and that of the aft portion of fuselage, modeled as
cantilevered beams using the Euler-Bernulli beam model. Differently from [4], the
model is not a purely longitudinal one, but if features all 6 transport degrees of
freedom. Deformation variables considered are bending in the zB axis direction and
torsion for the two half-wings (variables ξwL

, ξwR
, ϑwL

, and ϑwR
), and bending along

the zB and yB axis and torsion for the aft portion of the fuselage (variables ξfz, ξfy,
and ϑf ) as represented in Fig. 2.2. Note that the two half wings are considered as
independent clamped-free beams. Symmetrical and non-symmetrical deformations
for the wing structure as a whole are thus obtained from the semi-sum and semi-
difference of assumed mode amplitudes for the two half wings, respectively.

The choice of the set of generalized coordinates is a key point to represent the
behavior of a flexible system by means of a minimum complexity model. Galërkin
method [56] is here adopted to describe the deformation state of flexible elements,
where deformation of each element depends on both time and a spatial variable
(i.e. an abscissa counted along the deformable element, for the beam case). It is
possible to approximate the evolution of the deformation by means of truncated
series expansions in the form
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Figure 2.2: Aircraft transport and deformation variables

ξi(xi,t) =

Ni
∑

j=1

Φj(xi)η
i
j(t) i = fz,fy,wL,wR (2.1)

ϑi(xi,t) =

Ni
∑

j=1

Ψj(xi)ζ
i
j(t) i = f,wL,wR (2.2)

where ηij(t) and ζ ij(t) are amplitudes of the assumed modes represented by shape
functions Φj(xi) and Ψj(xi) for bending and for torsional degrees of freedom, re-
spectively.

Summarizing, the state vector x of the model includes transport variables (namely
position and velocity of the origin O of the pseudo–body axes frame, and attitude
angles and angular velocity components of the same frame) together with gener-
alized coordinates for bending and torsion of deformable structural elements of
the aircraft, and their derivatives. The state vector can thus be partitioned as
follows, x = (xV ,ẋD,xP ,xD)

T where xV = (u,v,w,p,q,r)T groups velocity vari-
ables (that is, speed components and angular rates), xP = (φ,θ,ψ,rN ,rE, − h)T

groups position variables, and deformation variables are listed in the vector xD =
(ηz1, . . . ,η

z
nz
, . . . ,ηy1 , . . . ,η

y
ny
,ζ1, . . . ,ζnϑ

)T , where ny and nz are the total numbers of
generalized coordinates used for representing bending deformations in the y and z
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directions, respectively, whereas a total of nϑ generalized coordinates are associated
to torsion deformations of wing and fuselage.

Note that, like in conventional flight dynamics, yaw angle and position with
respect to the horizontal plane (rN and rE) can be dropped since the beginning,
together with h, if a constant air density ρ is assumed for simplicity [22]. This is
not possible when a fully Lagrangian approach is adopted and all position variables
need to be accounted for during the whole derivation process of the equations of
motion. Decoupled variables can be dropped only a posteriori.

2.2.2 Translational dynamics

The equations of motion for transport variables result from the application of New-
ton’s second law to the deformable vehicle. Under the hypothesis of flat, non-rotating
Earth, the acceleration of the origin of the pseudo-body axes can be written as

a0 = aCoM −
d2rCoM

dt2
(2.3)

where the acceleration of the center of mass, aCoM , can be expressed according to
Newton’s second law as the sum of external forces (thrust, aerodynamic forces and
weight) divided by the total gravity. When all the vector quantities are represented
in the pseudo-body axis frame, one gets

V̇ 0B+ωB×V 0B = F /m−r̈CoMB
−2ωB×ṙCoMB

−ω̇B×rCoMB
−ωB×(ωB × rCoMB

)
(2.4)

where V 0B = (u,v,w)T and ωB = (p,q,r)T are linear and angular velocity compo-
nents in FB, respectively, and the external force F = F A + F T +mgB is given by
the sum of aerodynamic forces, thrust and weight.

The distance between the origin of the reference frame and the center of mass,
rCoM , depends on the displacements of the flexible parts. Assuming that torsion
of the deformable elements does not affect significantly the position of the center
of mass, it is possible to express rCoMB

as a function of the generalized coordi-
nates η = (. . . ,ηij, . . . )

T adopted in Eq. (2.1) for representing bending displace-
ments. Assuming small elastic displacements for the deformable elements modeled
as clamped-free beams of length ℓk and linear density µ(xk), the components of
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rCoM = (xCoM ,yCoM ,zCoM)T are

xCoM = 0

yCoM =
1

m

Ny
∑

k=1

{

∫ lk

0

[

µ(xk)

Nk
∑

j=1

Φj(xk)η
y
j (t)

]

dxk +mtipk

Nk
∑

j=1

Φj(ℓk)η
y
j (t)

}

=

ny
∑

j=1

Λj,yηj

zCoM =
1

m

Nz
∑

k=1

{

∫ lk

0

[

µ(xk)

Nk
∑

j=1

Φj(xk)η
z
j (t)

]

dxk +mtipk

Nk
∑

j=1

Φj(ℓk)η
z
j (t)

}

=
nz
∑

j=1

Λj,zηj

(2.5)

where Ny and Nz are the numbers of deformable elements that can bend in the y and
z directions of FB, and Nk the number of assumed modes used for approximating
its deformation. In the present application, no deformation in the xB direction is
present and it is ny = Nfy and nz = Nfz +NwR

+NwL
. For the considered aircraft

model, a tip mass mtipk is present only at the edge of the aft portion of the fuselage,
that is, the assembly of horizontal and vertical tail empennages.

Equation (2.5) can be recast in matrix form as rCoM = Λη, where the matrix

Λ =





0 . . . . . . . . . . . . 0
Λy,1 . . . Λy,ny

0 . . . 0
0 . . . 0 Λz,1 . . . Λz,nz



 (2.6)

is constant under the hypothesis of linear, purely elastic, deformations. The equation
that describes translational dynamics of the origin of FB can thus be written in the
form

V̇ 0B +Λη̈− (Λη)× ω̇B = F /m−ωB ×V 0B − 2ωB ×Λη̇−ωB ×ωB ×Λη (2.7)

2.2.3 Rotational dynamics

The evolution of attitude degrees of freedom of the pseudo-body reference frame can
be expressed using the generalized form of angular momentum equation, expressed
in the pseudo-body axis reference frame

dh

dt
+ S × a0 = M (2.8)

where the static moment is S = mrCoM = mΛη and the absolute acceleration of O
expressed in FB is a0B = V̇ 0B +ωB×V 0B . When projected in terms of components
in the pseudo-body axis frame, Eq. (2.8) achieves the compact form

Iω̇B + İωB +ωB × (IωB)+ ḣrel+ωB ×hrel+mΛη×
(

V̇ 0B + ωB × V 0B

)

= M 0B

(2.9)
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Note that, for a deformable body, the moment of inertia tensor I depends on the
deformation states, that is, in the present case, on the values of η and, to a minor
extent, ζ. As a consequence, I is no longer constant, like in the rigid-body case,
and its time derivative İ shows up in the equations of motion. The inertia tensor
can be written as I = I0 + ∆I, where I0 is the (constant) moment of inertia for
the undeformed configuration and the elements of the matrix ∆I can be expressed
as linear functions of deformation states. The expressions for ∆I and İ = ∆İ are
derived following an approach similar to that used in the derivation of Eq. 2.5, but
the procedure is omitted for the sake of conciseness.

The term hrel in Eq. (2.9) represents the contribution of the deformation rate
to the relative angular momentum

hrel =

Ndef
∑

k=1

[∫

Bk

rOP × ξ̇δm+

∫

Bk

δI(ϑ̇τ̂ k + ξ̇
′

) +mtipkrtip × ξ̇ + I tipk(ϑ̇τ̂ k + ξ̇
′

)ℓk

]

(2.10)
where rOP = (x,y + ξy,z + ξz)

T is the position of the mass element δm in FB, δI its
moment of inertia, ξ̇ is the deformation rate, and the relative angular rate is given
by the sum of the torsion rate ϑ̇ around the torsion axis τ̂ k and the rotation rate

ξ̇
′

induced by bending deformations. Again, the fuselage features a tail assembly at
the tip with moment of inertia I tipk .

Once the approximations for the deformation variables, Eqs. (2.1)-(2.2), are
substituted into the definition of hrel, it is possible to derive a linear expression for
hrel as a function of η̇ and θ̇. The effect of torsion rate is usually smaller than that
of bending and it can be omitted. In such a case one gets

hrel = Γη̇

Also in this case, the expressions of the elements of Γ depend on shape functions,
and the derivation is omitted for the sake of conciseness. The final expression for
rotational variable dynamics is given by

Iω̇B+Γη̈+(mΛη)×V̇ 0B = M 0B−İωB−ωB×(IωB)+(Γη)×ωB−m(Λη)×(ωB × V 0B)
(2.11)

2.2.4 Kinematic equations

The evolution of transport variables is ruled by kinematic equations, their rate of
variation being expressed as a function of linear and angular velocity components.
The derivative of the position of the origin of FB is simply given by

ṙI = T IB(φ,θ,ψ)V B0
(2.12)
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where T IB is the coordinate transformation matrix from pseudo-body to inertial
frame, that depends on Euler angles [22]. Euler angle rates depend on angular
velocity components as [22]

φ̇ = p+ (q sinφ+ r cosφ) tan θ

θ̇ = q cosφ− r sinφ (2.13)

ψ̇ = (q sinφ+ r cosφ)/ cos θ

2.2.5 Aerodynamic model

Strip theory is used for the determination of aerodynamic force and moment compo-
nents. This method has the great advantage of simplicity and limited computational
effort, because it describes the aerodynamic loads as a function of the direction of
the local flow only, thus avoiding unnecessary complexity in the aerodynamic model.
This is possible in all those cases where the analysis is focused on piloting task (band-
widths below 2 Hz) and aeroelastic coupling between unsteady aerodynamics and
higher frequency structural dynamics is not accounted for.

The wing is divided in spanwise elements, where properties of each section are
assumed uniform and aerodynamic forces and moments are evaluated from the local
two-dimensional flow. Lift, drag and aerodynamic moment are thus determined
for each element as a function of the local angle of attack only, independently of
the angle of attack at any other station. Integrating aerodynamic loads over the
wing span the total aerodynamic load generated by the wing is obtained. A similar
approach is used for fuselage elements and horizontal and vertical tail surfaces. Note
that aerodynamic loads will depend also on deformation rate, inasmuch as this will
affect the local direction of the flow.

2.2.6 Deformation variable dynamics

The equations of motion of flexible dynamics are derived using the Lagrangian ap-
proach after the elastic displacements has been represented by means of a finite
number of generalized coordinates. This method can easily accommodate any de-
sired level of complexity in the representation of elastic degrees of freedom, from
low frequency, fundamental ones up to high frequency modes.

Lagrange’s equation is given in general by [59]

d

dt

∂L

∂q̇
−
∂L

∂q
= Q (2.14)

where the Lagrangian L = T −U is defined as the difference between kinetic (T ) and
potential energy (U), and q is a vector of generalized variables. In the present case
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the vector of generalized variables is represented by the amplitude of the assumed
modes in the expansions of flexible degrees of freedom provided by Eqs. (2.1) and
(2.2). For flexible dynamics, Lagrange equation can be written in compact form as

d

dt

(

∂T

∂q̇

)

−
∂T

∂q
+
∂U

∂q
= Q (2.15)

The total kinetic energy of the system is defined as the sum of kinetic energy
of different parts, namely, fore fuselage, considered as rigid, aft fuselage (where the
tail assembly is modeled as a tip mass) and two half-wings. The kinetic energy of
the whole body is given by

T =
1

2

∫

B

V T
PV P δm+

∫

B

ΩT
P δIΩP (2.16)

where V P represents the local speed of the generic point, ΩP is the angular speed
for both rigid and flexible parts and δI is the inertia tensor of the structure element.
In general, V P and ΩP are expressed as

V P = V 0 + ωB × rOP + ξ̇(xP ,t)

ΩP = ω + ϑ̇(xP ,t)τ̂ P + ξ̇
′

(xP ,t)

For rigid elements the terms ξ̇, ϑ̇ and ξ̇
′

vanish (e.g. for the forward portion of
the fuselage and the tail empennages, in the example model considered in the next
section).

The potential energy can be written as the sum of the elastic energy of the system
flexible parts plus gravitational potential,

U = Uf + UwL
+ UwR

+mghCoM

where hG is the vertical displacement of the center of mass CoM . Provided that
altitude variations are several orders of magnitude larger than center of mass dis-
placement from the origin O of the pseudo-body axes frame, it is possible to assume
hCoM ≈ hO. In this way, the latter term is not affected by deformation variables
and it can be dropped.

For the flexible elements, the strain energy can be expressed as

Uf =
1

2

∫ lf

0

[

(EIy)f
(

ξ′′fz
)2

+ (EIz)f

(

ξ′′fy

)2

+ (GJt)f
(

ϑ′

f

)2
]

dxf (2.17)

for the aft portion of the fuselage, that can bend in the y and z directions, whereas
if is

UwX
=

1

2

∫ lw

0

[

(EI)w
(

ξ′′wX

)2
+ (GJt)wX

(

ϑ′

wX

)2
]

dxw , X = L, R (2.18)

for the two half-wings, for which the only bending deformation considered is in the
direction normal to the wing planform.
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2.2.7 Forces acting on the deformable elements

Generalized forces Q, on the right-hand side of the Lagrangian equations, can be
derived through the principle of virtual works. For each flexible part the virtual work
can be expressed as a function of external forces that act on it (i.e. aerodynamic
distributed and concentrated loads) multiplied by the virtual displacements

δWi =

∫

B

f i
extδξi i = wL,wR,fy,fz (2.19)

The aerodynamic load on each section of the two half-wings is a function of the
local angle of attack, which is given by the sum of aircraft angle of attack, αWB,
wing twist angle iw, roll and pitch rates, p and q, bending rate ξ̇, torsion angle ϑ and
its time derivative, ϑ̇. Aerodynamic force and moment acting on the wing section
are thus given by

fAw =
1

2
ρSU2CLα

[

αWB + iW (xw) +
pyw − qxw

U
+
ξ̇

U
+ ϑ+

ϑ̇(xϑ − xCA)

U

]

MAw =
1

2
ρSU2CLα(xϑ − xCA)

[

αWB + iW (xw) +
pyw − qxw

U
+
ξ̇

U
+ ϑ+

ϑ̇(xϑ − xCA)

U

]

(2.20)

where xw and yw are the coordinates of the wing section aerodynamic center in FB

and xϑ−xCA is the distance between the torsion center and the airfoil aerodynamic
center.

External aerodynamic force and moment can be written in the form

fA(x) = fA0
+
∂fA

δξ̇
ξ̇

MA(x) =MA0
+
∂MA

δϑ̇
ϑ̇

(2.21)

where the subscript 0 indicates the aerodynamic load generated by the “frozen”
configuration, for the current values of transport and deformation variables, whereas
the second term indicates the increment generated by deformation rates. The virtual
work of aerodynamic forces acting on the k-th deformable element can thus be
expressed as

δWk,b =

∫ ℓk

0

(fAδξ)dxk =

∫ ℓk

0

(fA0
δξ)dxk +

∫ ℓk

0

(

∂fA

δξ̇
ξ̇

)

δξdxk

δWk,t =

∫ ℓk

0

(MAδϑ)dxk =

∫ ℓk

0

(MA0
δϑ)dxk +

∫ ℓk

0

(

∂MA

δϑ̇
ϑ̇

)

δϑdxk

(2.22)

Generalized forces QA0
associated to the “frozen” term of the aerodynamic load,

fA0
, are determined by the projection of the local aerodynamic load on the assumed
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modes. The increment induced by deformation rates can be expressed in terms of a
Rayleigh dissipation function [45, 59]. Considering the k-th deformable element, it
is
∫ ℓk

0

(

∂fA

δξ̇
ξ̇

)

δξdxk =
N
∑

j=1

∂F
(k)
b

∂η̇j
δηj ;

∫ ℓk

0

(

∂MA

δϑ̇
ϑ̇

)

δϑdxk =
N
∑

j=1

∂F
(k)
t

∂ζ̇j
δζj(2.23)

(2.24)

where F
(k)
b and F

(k)
t are defined as

F
(k)
b =

1

2

∫ ℓk

0

∂fA

δξ̇
ξ̇2dxk ; F

(k)
t =

1

2

∫ ℓk

0

∂MA

δϑ̇
ϑ̇2dxk (2.25)

Both terms in the definition of the dissipation function can be recast in a quadratic
form as

F
(k)
b = η̇TC

(k)
b η̇ ; F

(k)
t = ζ̇

T
C

(k)
t ζ̇

where the elements of the positive definite matrices C
(k)
b and C

(k)
t are given by

(Cb)
k
i,j =

1

2

∫ lk

0

∂fAk

∂ξ̇k
Φi(xk)Φj(xk)dxk (2.26)

(Ct)
k
i,j =

1

2

∫ lk

0

∂MAk

∂ϑ̇k

Ψi(xk)Ψj(xk)dxk (2.27)

where the subscript b is related to bending and t is related to torsion.

2.2.8 Tail surfaces

Fuselage is assumed for simplicity as a non-lifting body, so that its deformation is
induced by the aerodynamic loads acting on the horizontal and vertical tail em-
pennages. These loads are assumed as concentrated at the tip of the deformable
element. The angle of attack of the horizontal tail, αH , depends on transport and
deformation variables,

αH = αWB + iH + ξ′fz(ℓf ,t) +
ξ̇(ℓf ,t)

U
−
qℓH
U

(2.28)

where iH is horizontal tail incidence, ξ′fz = ∂ξfz/∂xf is the rotation of fuselage

tip due to bending in the z direction, ξ̇(ℓf ,t) is its deformation rate and ℓH is the
distance between horizontal tail aerodynamic center and aircraft center of mass.
The magnitude of the aerodynamic force acting on the horizontal tail surface is
then given by

fAh
=

1

2
ρSHU

2CLαH
αH (2.29)
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In the FB frame the resulting components are
[

fAh

]

B
= fAh

(sin(αH − iH),0, −

cos(αH − iH))
T .

Similarly, the local sideslip angle evaluated at the fuselage tip, equal to the angle
of attack of the vertical tail surface, is given by

βV = βWB + ξ′fy +
pzP − ryP

2U
+
ϑ̇fzP
U

(2.30)

where ξ′fy = ∂ξfz/∂xf is the rotation of the terminal fuselage section around the z
axis due to fuselage bending out of the longitudinal plane, and (yP ,zP ) is the position
of the vertical tail aerodynamic center on a plane perpendicular to the fuselage axis.
Given the above definitions, the vertical fin generates a lateral aerodynamic load
and a torsion moment,

fAfy =
1

2
ρSVU

2CY βf
βV (2.31)

MAfz =
1

2
ρSVU

2CY βf
βV zp (2.32)

Tail surfaces generate contributions to both global and local aerodynamic loads,
to be accounted for in the definition of force and moments driving transport variable
dynamics as well as increments to the virtual work δW , that provides the generalized
forces for the equations of motion of deformation variables. The derivation of these
terms, performed in a way similar to the approach discussed above for aerodynamic
loads acting on a wing section, is omitted.

2.2.9 Equation of motion for deformation variables

Once all the terms considered in the previous subsections are expressed in terms of
generalized coordinates for the amplitude of the assumed modes, flexible dynamics
achieves the form

MẍD +MCẋV = −CẋD −KxD +QA0
(xV ,xP ,xD) + f in(xV ) (2.33)

where M is a mass matrix, MC is the matrix of inertial coupling terms with trans-
port variables, generated by the term ∂(∂T /∂q̇)/∂t in Lagrange’s equation, C is the
damping matrix, introduced by the dissipative aerodynamic terms, K is the stiff-
ness matrix, QA0

is a vector of generalized aerodynamic forces, and, finally, f in(xV )
collects the inertia terms related to current values of transport velocity variables.
Mass, damping and stiffness matrices are all properly partitioned.
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2.2.10 Complete flexible aircraft model

Considering Eq. (2.7), (2.11), (2.12), (2.13) and (2.33), the complete system of
equations can be expressed in the following compact form:

A(x)ẋ = b(x,u) (2.34)

where A(x) is the matrix of the coupling terms. Some of the coefficients of M
depend on the state vector x, so that, in general, it is not constant in time. In
particular, there are coupling terms in the dynamics of transport variables that
depend on center of mass displacement. As a consequence, the matrix A needs
to be calculated at every time step and its inverse evaluated in order to obtain an
explicit formulation for the equations of motion, suitable for numerical integration.

The matrix A is partitioned as follows

A =

[

Ã 0

0 I

]

with

Ã =

[

Arig Af2r

Ar2f Aflex

]

where Arig is the inertial coupling matrix between transport degrees of freedom,
Aflex = M is the mass matrix, while Af2r and Ar2f are the inertial coupling
matrices between transport and deformation variables.

If the displacement of the center of mass, Λη, remains small and terms such
as Λη × ω̇ and Λη × V̇ 0B in Eqs. (7) and (11) become negligible, than the cou-
pling matrix Ã becomes independent of the current state and it can be evaluated
once, before numerically integrating the equations of motion. When possible, this
simplification saves a significant amount of computational time.
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Chapter 3

Rotorcraft Mathematical Models

3.1 Levels of Rotorcraft Modeling

The mathematical modeling of rotorcraft is not an easy task, because usually differ-
ent elements that have coupled non–linear dynamics should be analyzed. Consid-
ering conventional helicopters, which main components are shown in Fig. 3.1, each
element can be described by means of models that use different levels of complex-
ity. Padfield [65] proposed a classification based on the complexity of rotor models
for simulation. This classification has been later modified by Torasso [89] adding a
lower level of modelization. The complete classification is shown in table 3.1.

Level 0 can be used for the study of preliminary configurations, giving a rela-
tion between design parameters, vehicle characteristics, and expected performances.
Level 1 models are used to determine parametric trends for flying qualities and per-
formance studies well within operational flight envelope, as well as design of low
bandwidth control. Level 2 models are used for the study of the whole flight en-
velope, and for the design of medium bandwidth of control tasks. Finally level 3
models are use for the vibration analysis, for the rotor design and analysis, and for
the study of the safe flight envelope.

One of the goal of this work is to provide a level 0/1 model that can take
into account some of the higher complexity effects, like those in level 2 models,
but considering a simplified approach, suitable for the preliminary study or the
implementation of control algorithm, like the inverse simulation approach.

In the last section of this chapter two simplified model for quadrotors are derived,
one for the standard configuration and the second for a tilting rotor one.
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Figure 3.1: Interacting main subsystems of an helicopter [65].

3.2 Helicopter Equations of Motion

In this work an articulated rotor will be taken into account and, in particular, the
characteristics considered will be those of a UH–60A main rotor. This is because
the details and configurations of this helicopter are easily available in literature [39].
The flap and lag hinge axes of this rotor are coincident, but the model can be easily
modified in order to describe a different set of hinges or a hingeless rotor.

The equation of motion for an helicopter, written using a Newtonian approach
and written in the body–fixed coordinate system are as follow:

m (v̇B + ωB × vb) = F B (3.1)

Iω̇B + ωB × (IωB) = MB (3.2)

where F B and MB are the external forces and moments. This can be divided in
contributions by the main rotor loads, fuselage aerodynamic loads, horizontal and
vertical tail aerodynamic loads, tail rotor loads, and weight. In this section a brief
description of the equations of motions of the different components are presented,
while detail of complete derivation can be found in Appendix B, as the definition of
the reference frames and their transformation are in Appendix A.
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Table 3.1: Levels of rotor modeling ( [65], [89])

Level 0 Aerodynamics linear airfoil aerodynamics
static uniform inflow with momentum theory
analytically averaged aerodynamic loads

Dynamics rigid blades featuring
steady–state flapping motion
described in terms of multi blade coordinates

Level 1 Aerodynamics linear 2-D dynamic inflow
local momentum theory
analytically integrated loads

Dynamics rigid blades:
quasi–steady motion
3 DoF flap
6 DoF flap + lag
6 DoF flap + lag + quasi–steady torsion

Level 2 Aerodynamics nonlinear (limited 3-D) dynamic inflow
local momentum theory
local effects of blade vortex interaction
unsteady 2-D compressibility
numerically integrated loads

Dynamics rigid blades with options as in Level 1
limited number of blade elastic modes

Level 3 Aerodynamics nonlinear 3-D full wake
analysis (free or prescribed) unsteady
2–D compressibility
numerically integrated loads

Dynamics detailed structural representation
as elastic modes
or finite elements

3.2.1 Main Rotor

The main rotor is the most important component of the helicopter, because it pro-
vides most of forces and moments that control the vehicle. As a matter of fact the
dynamic of the main rotor influence greatly the overall response of the helicopter,
and for this reason it is very important the model used for its description. In section
3.3 the mathematical model used to describe the rotor dynamics is shown, while
in section 3.4 the unsteady aerodynamic model used for the determination of the
aerodynamic loads is described. The model used for the description of the unsteady
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aerodynamic is not alternative to the CFD analysis, but rather a reduced order
model, that can be used in flight simulation or during preliminary design.

For this work the rotor states equation of motion are derived for individual blade
model, so that the vector of states is:

xr =
(

βi, . . . ,βNb
,β̇i, . . . ,β̇NBL

,

ζi, . . . ,ζNBL
,ζ̇i, . . . ,ζ̇NBL

,ϕi, . . . ,ϕNBL
,ϕ̇i, . . . ,ϕ̇NBL

)T

(3.3)

In addition to those the aerodynamic states should be considered, thus the dynamic
inflow and the dynamic stall states.

3.2.2 Fuselage

The methods used to determine the fuselage aerodynamic forces and moments in
flight dynamics applications use some simplifications in order to be comparable to
the wind tunnel tests or CFD results. In the simpler models the fuselage drag
is calculated using an equivalent parasite area, and the dependency on the act of
motion is given only by the flow speed. More complex approaches describe the
forces and moments as a function of the fuselage angle of attack and sideslip. The
relationship can be expressed as polynomial interpolating functions [82] or tables
[39]. The use of polynomial can be faster, but in this work the lookup table for a set
of data implemented for [89] was used, as it allow the representation of some local
behavior and guarantee greater accuracy. Most of the database was taken from [39]
and [34], and for the flight conditions for which data were not available they were
deduced on the basis of empirical considerations [79] or other publications [96]– [65].
The final forces and moments are written as a function of the coefficients evaluated
as explained:

F F =
1

2
ρV 2

FSref





CA,xF
(αF ,βF )

CA,yF (αF ,βF )
CA,zF (αF ,βF )



 (3.4)

MF =
1

2
ρV 2

FSrefℓref





CA,lF (αF ,βF )
CA,mF

(αF ,βF )
CA,nF

(αF ,βF )



+ rF
B × F F (3.5)

3.2.3 Tail Rotor

The tail rotor can be described using the main rotor models, but the level of detail
required is generally lower. There are many simpler models available, some are based
on Bailey coefficient [39]– [48], others use tip path plane models [82], and some use
data from wind–tunnel tests.
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The most challenging part in the description of tail rotor is the evaluation of the
rotor and fuselage downwash effect. This effect is rather complex and furthermore
the tilt rotor is affected only in limited speed range, so that this interaction is usually
evaluated using lookup tables as function of the advance ratio, rotor skew angle, and
tip path plane tilt.

In this work tail rotor forces and moments are computed using the momentum
theory, as described in [42], as a function of the collective command θ0tr.

3.2.4 Empennage

In the considered configuration of helicopter there are both vertical and horizontal
tail, so that yaw and longitudinal stability are improved.

The horizontal tail is modeled as a finite wing, thus lift and drag are given in
the classical form:

LHT =
1

2
ρV 2

HTSHTCL(αHT ) (3.6)

DHT =
1

2
ρV 2

HTSHTCD(αHT ) (3.7)

CL and CD evaluated from wind–tunnel tests or CFD simulations. The effects of
main rotor and fuselage influence greatly and in a complex way the angle of attack
and the flow speed on the horizontal tail, as for the tail rotor. For the helicopter
model considered it is possible to find in literature wind–tunnel and CFD data that
describe precisely this effect, so that the airspeed can be evaluated as

V HT =
(

vB + ωB × rHT
B

)

kHT + vλHT (3.8)

where vλHT collects the influence of the rotor and fuselage wake, while kHT is a
factor that account for the loss of dynamic pressure.

Considering the vertical tail the same approach can be used, paying attention
that the lift and drag coefficient will be function of the sideslip rather than the angle
of attack.

3.3 Main Rotor Model

The following assumptions were made for the development of the model, as in [89]:

• rotor blades are assumed rigid in flap and lag direction

• blade mass is assumed to be concentrated along the blade span axes

• blade torsional degree of freedom is modeled empirically as a dynamic twist
affecting independently each blade
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• aerodynamic moments developed by the airfoil around the blade pitch axis are
neglected

• flap and lag hinges are assumed to be coincident, with the flap rotation fol-
lowing the lag rotation in sequence

• no pitch–flap coupling KPC is included

• the weight of the blade is assumed as negligible, and it would be not included
in the flap and lag equation of motion

Considering the evaluation of aerodynamic loads two models will be compared. The
baseline model is the same as in [89] and the only unsteady effect considered is the
dynamic inflow, while the second one take into account also the effect of unsteady
aerodynamic and dynamic stall.

The motion of the generic blade elements is obviously related to the motion of
the complete helicopter. Given the motion of the helicopter as linear and angular
velocities, vB = (uB,vB,wB)

T and ωB = (pB,qB,rB)
T respectively, it is possible to

obtain the motion of the blade elements using a series of rotation from one reference
frame to another. The complete evaluation for the linear and angular speed in the
blade span reference frame will be given in Appendix B, nevertheless the linear speed
in the blade reference frame is given by:

v′

BL = LBL,R

(

vR + ωR × r
R,BL
R + ṙ

R,BL
R

)

(3.9)

The speed of the blade with respect to the surrounding air should include the
effects given by the inflow. The inflow model used for the evaluation of the aero-
dynamic loads is described in section 3.4.2. Anyhow calling URλ and UPλ the speed
components obtained along the y and z direction respectively, then

vBL = U ′

T iBL + (U ′

R + URλ)jBL + (U ′

P + UPλ)kBL (3.10)

= UT iBL + URjBL + UPkBL (3.11)

The angle of attack of the blade element is then defined as

α = θG + tan−1 UP

UT

(3.12)

where the geometric pitch is given by the commands, the blade twist, and the
dynamic twist:

θG = θ0 + A1s cosψ + B1s sinψθTW + θDT (3.13)

The blade twist is a geometric non–linear function of the blade element radial posi-
tion that can be found using lookup table. The dynamic twist is also a non–linear
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function of the radial position, that can be described by a second order dynami-
cal system, using generalized coordinate (ϕ1 and ϕ2). The complete dissertation
about the dynamic twist can be found in Appendix B. The aerodynamic loads are
a function of the angle of attack, calculated for NS = 5 section of the blade. In the
baseline model a lookup table that contains the lift and drag coefficients as a func-
tion of angle of attack and Mach number is used, while the evaluation considering
unsteady aerodynamics is explained in detail in the next section.

The inertia forces can be found using the expression of the blade element accel-
eration in non–rotating frame (derived from 3.9) substituted in

FI,xS
=

∫ R

e

ρBLaS,xdr (3.14)

FI,yS =

∫ R

e

ρBLaS,ydr (3.15)

FI,zS =

∫ R

e

ρBLaS,zdr (3.16)

It is evident that from the expressions above highest order derivative states would
appear. It is thus more convenient to group this terms in order to obtain an expres-
sion of the form

MFIẋC = fFI (3.17)

where xC is the vector of coupled velocity variables xC =
(

uB,vB,wB,pB,qB,rB,

β̇1, . . . ,β̇NBL
,ζ̇i, . . . ,ζ̇NBL

)T

. Inertial moments are generated by the inertial forces:

M IS = re
S × F IS (3.18)

In a similar fashion this equation can be rearranged in order to obtain one of the
form

MMIẋC = fMI (3.19)

The system obtained is composed by six equations for 14 variables. In order to close
the problem is necessary to add the flap and lag dynamic equations. The equations
follow the approach proposed in Refs. [39]– [48], thus the sum of the moments applied
to the hinges, that is aerodynamic, inertial, hinge spring, and lag damper moments,
must be equal to zero. The final form that can be obtained is

MβẋC = fβ (3.20)

M ζẋC = f ζ (3.21)
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The dynamic of the rotor is dependent on the dynamic of the overall helicopter
due to the coupled variables, so that the set of variables that describe its dynamic
are

x =
(

uB,vB,wB,pB,qB,rB,βi, . . . ,βNb
,β̇i,

. . . ,β̇NBL
,ζi, . . . ,ζNBL

,ζ̇i, . . . ,ζ̇NBL
,ϕi, . . . ,ϕNBL

,ϕ̇i, . . . ,ϕ̇NBL

)T

(3.22)

3.4 Unsteady Aerodynamics

3.4.1 Extended thin airfoil theory

Consider a thin airfoil that moves through a mass of still air, like the one presented
in fig. 3.2 [75]. The coordinate system is located in the mid chord. The motion of
the air, as seen from the coordinate system, is described by the horizontal speed u0,
the vertical speed v0, and the rotation v1 along the z axis.

Figure 3.2: Geometry of the airfoil.

Circulation is assumed to be shed along the x axis. As in classical thin airfoil
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theory it is possible to apply the non–penetration boundary condition:

w = v̄ + λ = u0
δh

δx
+
δh

δt
+ v0 + v1

x

b
(3.23)

where w is the total induced flow, λ is the induced flow from the shed circulation,
h are the displacements, and v̄ is the induced inflow from bound circulation. From
the Biot–Savart law v̄ and λ can be expressed as a function of the bound circulation
for unit length γb and wake circulation γw respectively (see [75]– [49])

v̄ = −
1

2π

∫ +b

−b

γb(χ,t)

x− χ
dχ (3.24)

λ = −
1

2π

∫ +∞

+b

γw(χ,t)

x− χ
dχ (3.25)

On the airfoil (so for −b ≤ x ≤ +b) it is possible to define a relationship between
the pressure and the bound circulation

∆P = ρu0γb + ρ

∫ x

−b

δγb
δt
dχ (3.26)

Defining the total bound circulation Γ of the airfoil as

Γ =

∫ +b

−b

γbdχ (3.27)

the conservation of circulation requires that

δλ

δt
+ u0

δλ

δx
−

1

2π

dΓ/dt

b− x
= 0 (3.28)

In order to transform eq. 3.23–3.28 in a matrix form easier to apply for the
generalized loads all the variables must be expressed as expansions of the Glauert
variable ϕ. The change of variable is given by

x = b cosϕ (3.29)

so that when x = −b, ϕ = 0, and when x = +b, ϕ = π. The expansions of the
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considered variables are

γb = 2

[

γs
sinϕ

−
γ0 cosϕ

sinϕ
+

∞
∑

n=1

γn sin(nϕ)

]

(3.30)

∆P = 2ρ

[

τs
sinϕ

−
τ0 cosϕ

sinϕ
+

∞
∑

n=1

τn sin(nϕ)

]

(3.31)

w =
+∞
∑

n=0

wn cos(nϕ) (3.32)

λ =
+∞
∑

n=0

λn cos(nϕ) (3.33)

h =
∞
∑

n=0

hn cos(nϕ) (3.34)

where the terms cos(nϕ) are equivalent to the Chebychev polynomials. As shown
in Fig. 3.3 it is possible to evidence the physical meaning of the coefficient for
the generalized airfoil displacements, for instance, the first term (h0) represent the
plunge motion, the second (h1) the pitch, and the third (h2) the camber, while all
the following represent other displacements modes. In this work only the first 3
displacements modes would be considered, and for the third one only static camber
would be used.

The equation 3.31 can be simplified by means of the Kutta condition expressing
τs as a function of the Glauert loads

τs = fτ0 (3.35)

where f is the reversed flow parameter. The sign of f must change accordingly with
the direction of the velocity u0. The choice for f can be many, but the main cases
are

• f = 1 if there is not any flow reversion

• f = sgn(u0) if the loads change sign instantaneously

• f = cos(α) if the reversion is smooth.

In the first case the zero pressure point is always in x = +b, while in the second
case it can be either in x = +b or x = −b according to sign of u0.
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Figure 3.3: Physical meaning of the first three shape functions.

Combining the previous equations [75] the following expressions are obtained

u0(w0 − λ0) = τ0 (3.36)

b(ẇ0 −
1

2
ẇ2 + u0w1) = τ1 (3.37)

b

2n
(ẇn−1 − ẇn+1) + u0wn = τn n ≥ 2 (3.38)

so that the loads are functions of airfoil motions w and the uniform component of
induced flow λ0.

The generalized loads can be expressed using the virtual work

Ln =

∫ +b

−b

∆P cos(nϕ)dχ = −

∫ π

0

∆P cos(nϕ) sinϕdϕ (3.39)

where Ln is a force for unit length. Substituting here the expansion of eq. 3.31 the
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final form for the generalized loads is

L0 = −2πρbfu0(w0 − λ0)− πρbu0w1 − πρb2(ẇ0 −
1

2
ẇ2) (3.40)

L1 = πρbu0(w0 − λ0)−
1

2
πρbu0w2 −

1

8
πρb2(ẇ1 − ẇ3) (3.41)

L2 =
1

2
πρbu0(w1 − w3) +

1

2
πρb2(ẇ0 −

1

2
ẇ2)−

1

12
πρb2(ẇ2 − ẇ4) (3.42)

Ln =
1

2
πρbu0(wn−1 − wn+1) +

1

4(n− 1)
πρb2(ẇn−2 − ẇn) +

−
1

4(n+ 1)
πρb2(ẇn − ẇn+2) n ≥ 3 (3.43)

In this case the load L0 represent a uniform force that act in the negative y direction,
so its absolute value is the lift for unit length, while L1 is a linear force distribution,
thus L1x/2 is the nose up pitching moment about the mid chord. The total bound
circulation can be expressed as

Γ = 2πb

[

f(w0 − λ0) +
1

2
w1 −

1

2
λ1

]

(3.44)

Although the lift is perpendicular to the local airfoil surface, a parallel component
of force can be defined as

D =

∫ π

0

b∆P
δh

δx
sinϕdϕ− 2πρbf(w0 − λ0)

2 (3.45)

where a positive value represent a induced drag and a negative value implies a
propulsive force.

In order to rewrite the generalized loads in a more compact form it is useful to
express the total induced inflow expansion coefficients, using eq. 3.23, as

w0 = v0 + ḣ0 + u0

∞
∑

n=1,3,5

nhn
b

(3.46)

w1 = v1 + ḣ1 + 2u0

∞
∑

n=2,4,6

nhn
b

(3.47)

wm = ḣm + 2u0

∞
∑

n=m+1,m+3

nhn
b

m ≥ 2 (3.48)
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Substituting in eq. 3.40–3.45 and rearranging the matrix form obtained is

1

2πρ
Ln = −b2M

[

ḧn + v̇n

]

− bu0C
[

ḣn + v0 − λ0

]

− u20Khn +

−bG [u̇0hn − u0vn + u0λ0] (3.49)
1

2π
Γ = bUT [C −G]

[

ḣn + vn − λ1

]

+ u0U
TKhn (3.50)

1

2πρ
D = −b

[

ḣn + vn − λ0

]T

S
[

ḣn + vn − λ0

]

+ b
[

ḧn + v̇n

]T

Ghn +

−u0

[

ḣn + vn − λn

]T

[K −H ]hn + [u̇0hn − u0vn + u0λ0]
T
Hhn

(3.51)

The definition of the matrix and vector used above are given in Appendix C.

3.4.2 Dynamic inflow motion

2D inflow

In order to compute the loads in the 2D case it is necessary to know the λ0 component
of the induced inflow. This is easily found using a two dimensional inflow model.
From reference [76] and [19] the expansion coefficients of the induced inflow are
written as a function of a functional

Q[f(x)] = −
1

π

∫

∞

b

γwf(x)dx = −
1

π

∫

∞

b

γwg(η) sinh(η)dη (3.52)

with f(x) and g(η) are two generic function, thus

Γ =
1

2
Q[1] (3.53)

λ0 =
1

2
Q

[

1

sinh(η)

]

(3.54)

λn =
1

2
Q

[

e−nη

sinh(η)

]

(3.55)

Applying the functional to eq. 3.28 and integrating by parts then

Q̇[f ] =
1

π

∫

∞

b

dγw
dx

f(x)dx

= −
1

π
f(1)γw(1)−

1

π

∫

∞

0

dγw
dx

f(x)dx = 2Γ̇f(1) +Q

[

df

dx

]

=

= 2Γ̇g(0)

[

dg/dη

sinh(η)

]

(3.56)
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In order to ensure that g(0) = f(1) is finite then g(η) should be in the form

g(η) =
e−(n−1)η − e−(n+1)η

sinh(η)
= 2e−nη (3.57)

To determine λ0 is necessary another expression, that relate it with λn. Writing
Z = e−η, for each η greater than zero it is valid

1 ≈
∞
∑

n=1

bnZ
n 0 < Z ≤ 1 (3.58)

Then λ0 can be expressed as

λ0 ≈
1

2

∞
∑

n=1

bnλn (3.59)

with the constraint
∑

bn = 1. There are many different choices for bn, but one of
the best is the augmented least squares

bn = (−1)n−1 (N + n)!

(N − n)!

1

(n!)2
n = 1,2, . . . ,N − 1

bN = (−1)N−1 (3.60)

Applying the identity to equation 3.28 the result differential equation for the gen-
eralized inflow states can be obtained

b

(

λ̇0 −
1

2
λ̇2

)

+ u0λ1 =
Γ̇

π

b

2n

(

λ̇n−1 − λ̇n+1

)

+ u0λn =
Γ̇

nπ
n ≥ 2 (3.61)

Combining eq. 3.44, 3.59, and 3.60 and differentiating, the right hand side of previ-
ous equation becomes

Γ̇ = 2πb

[

f(ẇ0 −
1

2
bT λ̇) +

(ẇ1 − λ̇1)

2

]

+ Γ̇0 (3.62)

where Γ0 is the total bound circulation due to stall. Substitution in eq. 3.61 and
rearranging in a matrix form, the expression for the induce inflow is

λ̇ = A−1

[

c

(

eT
(

v̇n + ḧn

)

+
u0
b
fT ḣn +

Γ̇0

2bρ

)

−
u0
b
λ

]

(3.63)

Only λ0 is required to obtain the airloads, but all λn are coupled, thus many states
are necessary.
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3D inflow

If the whole rotor is considered it is necessary to evaluate the effective 3D induced
inflow. In this case the Peters–HaQuang induced airflow can be considered [73].
This model uses three dynamic variables as states for the description of the inflow.
The advantage of this model is that describes the nonlinear dynamic inflow model,
including perturbations in hub motions, in skew angle, and in yaw angle, but keeping
low complexity with respect to higher order models (e.g. [74]).

The inflow velocity field is thus described by three components, the first one,
ν0, represents the uniform component, while the other two, νc and νs, are the first
harmonic terms, or rather the longitudinal and lateral variations of the inflow. The
velocity field is therefore described as

νi(x,ψ) = ΩR
(

ν0 + ν ′s
rel
R

sinψ + ν ′c
rel
R

cosψ
)

(3.64)

The time histories of the components of the velocity field are described by the
following equation in hub wind axes:

1

Ω
Mλ







ν̇0
ν̇ ′s
ν̇ ′c







+L−1
λ







ν0
ν ′s
ν ′c







=







CT

C ′

l

C ′

m







(3.65)

where CT , C
′

l , and C
′

m are the aerodynamic contribution to the thrust, and roll and
pitch moment coefficients, the apparent mass matrix is defined as

Mλ =





8/3π 0 0
0 −16/45π 0
0 0 −16/45π



 (3.66)

and the static gain matrix is

Lλ =







1
2vT

0 15π
64vM

tan χ
2

0 − 4
vM (1+cosχ)

0
15π
64vM

tan χ
2

0 − 4 cosχ
vM (1+cosχ)






(3.67)

In order to express in the non–rotating shaft frame is is necessary to multiply for
the rotating matrix L̃wS (defined in Appendix A) so that

1

Ω
M







ν̇0
ν̇s
ν̇c







+L−1







ν0
νs
νc







=







CT

Cl

Cm







(3.68)
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3.4.3 Dynamic Stall Model

As described in section 1.3.4 there are many methods for the description of the
dynamic stall phenomenon. The ONERA method for the study of dynamic stall has
the advantage that is not based on curve fitting process from experimental data,
but is instead based on ordinary differential equations.

Considering fig. 3.4 it can be seen the static stall phenomenon. When the angle
of attack go beyond a certain limit (αS) the airfoil begin to stall, so that a static loss
of lift occur. The difference between the linear lift and the static lift is the driving
factor in the equation for the dynamic stall in the ONERA method [77]. The same
logic can be applied for any airloads.

Figure 3.4: Static stall illustration

In literature a closed–form for the study of dynamic stall does not exist, but it
is possible to define it as a transfer function [77]. At first the differential equations
associated to transfer functions were found by comparison with experimental re-
sults on an airfoil undergoing small amplitude oscillation. Later version of ONERA
method considered bigger oscillations and separated the effects of plunge and pitch
motions.

The model inputs are the instantaneous angle of attack, its first and second
derivatives, and speed of the airfoil. Each load can be described as a sum of two
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components, one described by a first order differential equation and the second by a
second order equation, whit which time delay and overshoot due to the shed vorticity
can be taken into account. The first components represent the response to airfoil
oscillations below stall, while the second the variation introduced beyond stall.

Using F to represent the airload considered, then

F = F1 + F2 (3.69)

Ḟ1 + λF1 = λFl + (λs+ σ) α̇ + sα̈ (3.70)

F̈2 + ηḞ2 + ω2F2 = −ω2

(

∆F0 + e
δ∆F0

δθ
θ̇

)

(3.71)

where ∆F0 represent the departure of the static coefficient from its linear trend
(as shown in Fig. 3.4), and λ, σ, s, η, ω, and e can be determined by parameter
identification. If, for example, the lift coefficient is substituted in eq. 3.70–3.71,
then the first equation is used to determine the static lift coefficient, while using the
second the lift loss can be calculated.

Reference [68] shows that the model can be written in terms of lift coefficient,
CL, non–dimensional circulation, Γ, or non–dimensional lift, L. If the free stream
velocity is steady then the three forms are exactly equivalent, while the presence of
variations in that term can change the response. The same reference determines that
the behavior closer to experimental results is obtained using the non–dimensional
circulation in expression 3.70–3.71. From comparisons with experimental results
some observations were made in [68] that led to some modifications on the original
ONERA method, thus for example

• the angle of attack due to plunge should be treated separately

• circulatory and mass lift should not be treated by the same transfer function

The final form of the ONERA method in a rotating reference frame can be written
as

k̄Γ+
1 + λ̂Γ1 = +λ̂âU + σ̂b̄ǫ̂ (3.72)

k̄2Γ++
2 + k̄η̂Γ+

2 + ω̂2Γ2 = −ω̂2

[

U∆CL + êk̄

(

U+∆CL +
δ∆CL

δθ
U+

)]

(3.73)

where + represent the differentiation with respect to the non dimensional time based
on the averaged u0, ǫ̂ represents the rotation rate of the airfoil with respect to the
air mass, and

k̄ =
b

r
(3.74)

b̄ =
b

R
(3.75)
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The coefficient involved in equation 3.73 are generally time dependent, but ON-
ERA assume that the variations are sufficiently slow to be found by means of dy-
namic perturbations of angle of attack. Both ONERA and NASA performed tests
in order to obtain values for the parameters that led to a behavior similar to ex-
periments [77], [54]. The functional form of the dynamic stall coefficient resulted to
be

ω̂ = ω0 + ω2 (∆CL)
2 (3.76)

η̂ = η0 + η2 (∆CL)
2 (3.77)

ê = e0 + e2 (∆CL)
2 (3.78)

3.4.4 The Unified Model

The unified model allow to use Peter’s finite state theory to compute the generalized
loads and then correct them using the ONERA dynamic stall method. The dynamic
stall parameter are assumed constant for all the generalized loads, considering them
as a characteristic of the fluid. When considering the complete rotor it can be not
sufficient to consider the 2D inflow model, but it is more convenient to use the
Peters–HaQuang model [73]. Under this assumption then

λ0 = νi = ΩR
(

ν0 +
rel
R

sinψ +
rel
R

cosψ
)

(3.79)

The expressions for the generalized loads remains that of Eq. 3.50 through 3.51
using the appropriate inflow model described above, summed to the total dynamic
stall correction factor:

Ln,tot = Ln + ρuTΓ2 (3.80)

One of the benefits of the airloads theory presented here is that there is no need
to assume a particular direction for the linear lift. The rigorous application of the
definition of motion between the fluid and the airfoil gives back the x and y in the
correct way, without considering the small perturbation theory. The scheme used
to calculate the total airloads is presented in Fig. 3.5.

3.5 Small Scale Rotorcraft Models

The quad-rotor under consideration consists of a rigid cross frame equipped with
four rotors as shown in Fig. 3.6.a. The model is derived under the assumptions that
motor and rotor response is fast and their dynamics can therefore be neglected. Also,
rotor blades are assumed to be rigid (i.e. no blade flapping occurs). As outlined
above, control moments can be obtained either differentially changing the value of
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Figure 3.5: Unified model operating scheme

thrust and torque of each rotor changing its angular speed or tilting the rotor so
that thrust can be projected into a horizontal and a vertical component in the body
frame. The configuration of the quad-rotor with all the rotors tilted is shown in Fig.
3.6.b.

The equations of motion are developed in terms of the translational and rota-
tional velocities represented in body-frame components, vb and ωb, where attitude
is represented using quaternions, (q0,q

T )T , [95]:

v̇b = −ωb × vb +
F

m
+ gb (3.81)

ω̇b = J−1 [M − ωb × (Jωb)] (3.82)

q̇0 = −
1

2
ωb · q (3.83)

q̇ =
1

2
(q0ωb − ωb × q) (3.84)

ṙi = T bivb (3.85)

where F and M indicate aerodynamic force and moments, respectively, gb is gravity
acceleration, J is the inertia tensor, and T bi(q0,q

T ) is the coordinate transformation
matrix from inertial to body frame.

The use of quaternions for attitude representation allows the simulation of more
aggressive maneuvers, that requires unusual pitch attitude that cannot be repre-
sented using Euler angles. The aerodynamic force acting on the quad-rotor F is
given by the difference between rotor thrust and vehicle drag:

F = T −D (3.86)
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a)

b)

Figure 3.6: Quad-rotor configurations: a) conventional; b) with tilting rotors.
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Letting sδi = sin δi and cδi = cos δi, it is

T = kt





0 s(δ2) 0 −s(δ4)
s(δ1) 0 −s(δ3) 0
−c(δ1) −c(δ2) −c(δ3) −c(δ3)



















Ω2
1

Ω2
2

Ω2
3

Ω2
4















(3.87)

Drag is considered only for the quad-rotor body. The body is assumed to be a
prism with a square base. Following [32], the components of the drag force can be
expressed as

D =
1

2
ρ







CdxSxV
2
bx

CdySyV
2
by

CdzSzV
2
bz







(3.88)

with Cdx = Cdy = 0.8 and Cdz = 1.05, [36]. Similarly the moment applied on the
quad-rotor is defined as

M =



kt
b

2





0 −cδ2 0 cδ4
−cδ1 0 cδ3 0
sδ1 sδ2 −sδ3 −sδ4





+ kc





0 s(δ2) 0 s(δ4)
s(δ1) 0 s(δ3) 0
−c(δ1) c(δ2) c(δ3) −c(δ4)























Ω2
1

Ω2
2

Ω2
3

Ω2
4















(3.89)

The control inputs modify the variation of rotor angular rate and tilt angle.
Letting

δ =









1 0 1
1 1 0
1 0 −1
1 −1 0















w1

w2

w3







(3.90)

and UΩ = (Ω1,Ω2,Ω3,Ω4)
T = UΩ0

+∆Ω, with

∆Ω = Ω0









1 0 1 1
1 1 0 −1
1 0 −1 1
1 −1 0 −1























u1
u2
u3
u4















(3.91)

the vector of control inputs is given by
u = (u1,u2,u3,u4,w1,w2,w3)

T .
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With respect to the control inputs of a conventional single main rotor helicopter,
it is possible to notice that the variation of u1 increases overall rotor thrust and it is
thus equivalent to a collective command; u2 and w2 provide longitudinal control mo-
ments (that is, they are equivalent to a longitudinal cyclic pitch variation), whereas
u3 and w3 develop a roll control moment, equivalent to the effect of lateral cyclic;
finally u4 and w1 represent yaw commands, that substitute tail rotor pitch.
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Chapter 4

Flexible Aircraft Dynamic

Response

4.1 Case Study

The reference flexible aircraft model adopted for this study is a fictitious modern
highly deformable twin-engine wide-body aircraft designed for carrying 250 pas-
sengers. The main characteristics of the aircraft are summarized in Table 4.1 and
Fig. 4.1. A trim speed of V = 186 m/s at a cruise altitude of 37,000 ft (that is, 11,300
m) was selected for the stability analysis and for the determination of response to
controls. The corresponding Mach number is approximately equal to M= 0.6, such
that the flight condition lies in the subsonic range. Trim values for state and control
variables are reported in Table 4.2 for both rigid and deformable aircraft case. These
values are used as initial conditions for all the simulations reported in the sequel.
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Figure 4.1: Linear density and stiffness distribution for deformable elements: (a)
wing; (b) fuselage.

As outlined above, the elastic elements of the configuration are the aft fuselage
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Table 4.1: Aircraft data

Data Symbol Value Unit

Total mass m 235000 kg
Forebody mass mfb 57100 kg
Tail assembly mass mtipf 7000 kg
Wing span b 65.6 m
Length of wing deformable portion ℓw 25 m
Wing surface S 368 m2

Mean aerodynamic chord c̄ 7.14 m
Fuselage length Lf 59 m
Length of aft-fuselage deformable portion ℓf 19 m

Table 4.2: Aircraft trim data

Data Symbol Rigid Deformable Unit

Cruise altitude h 11300 11300 m
Trim speed V 186 186 m/s
Angle of attack α 8.4 8.25 deg
Elevator deflection δE 7.08 7.60 deg
Throttle setting δT 0.39 0.39

and the two half-wings, modeled as simple flexible beams. From the inertial point
of view, horizontal and vertical tail surfaces are modeled as masses at the tip of the
aft-fuselage, whereas engines are included as masses placed along the rigid part of
the two half-wings.

In order to obtain a minimum complexity model that can still capture the most
important effects of deformations with respect to the simpler rigid body model
(which will be referred to as Model R in the sequel), a total of four different flexible
aircraft models are considered in the sequel. Quite obviously, the fully flexible model
(Model FF) derived according to the approach outlined in the previous section, is
used as a reference, where the dynamic response of transport and deformation de-
grees of freedom includes the effects of deformation on aircraft aerodynamics, inertial
coupling terms and variations of inertia properties. Starting from Model FF, three
simplified models are then derived. Model QS is a quasi-static model, where all de-
formation variables are assumed at steady state, under the considered aerodynamic
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and maneuver loads. When an approximation of quasi-static deformation is retained
only for the (usually faster) torsional deformation dynamics, Model ST is derived,
where bending deformation is represented by means of the standard second order
dynamics, in the form of Eq. (2.33). Finally, the effects of deformation on moments
of inertia and position of the center of mass is neglected and a model with constant
inertia properties (Model CI) is derived. In this latter case, all deformation variables
are considered in their dynamic formulation.

In all cases, two assumed modes are considered for each deformation variable.
This means the the order of Model FF and CI is equal to n = 8 + 7 × 4 = 36. In
Model ST, 3 torsional degrees of freedom are dropped, that is a total of 12 state
variables, and n = 24. Finally, in Model QS deformation dynamics is no longer
accounted for and the order is n = 8, as in the standard rigid body model.

4.2 Static deformations vs deformable aircraft

In the first set of test cases presented, Models R and FF are compare with Models
QS and ST in order to assess the relevance of inertial coupling terms in the equations
of motion. When quasi-static deformation is assumed, dynamics of flexible modes is
neglected, and deformation depends on current values of maneuvering loads. Defor-
mation thus affects the evolution of transport degrees of freedom mostly because of
changes in stability derivatives and control power. The assumption of quasi-static
deformations is usually valid when frequency separation between flexible modes and
modes associated to transport variables is sufficiently large [22].

The eigenvalues of all the models considered are listed in Table 4.3, including
Model CI. The linearized systems are obtained for the reference trim condition
reported in Table 4.2 for all cases. A graphical representation of the eigenvalues
in the Gauss plane is provided in Fig. 4.2 for Models R, FF, QS and ST. A plot
of all the eigenvalues is reported in the upper half of Fig. 4.2, where most rigid-
body modes are hardly visible. An enlargement is thus provided in the bottom
portion of the figure. As expected, the frequency of modes associated to lower-order
flexible variables for half-wings and fuselage are close to fast rigid-body modes. This
means that these modes are expected to affect more significantly aircraft stability
and response.

Deformation dynamics clearly affects significantly only dutch roll and spiral
modes. These variations in the eigenvalues are associated to wing bending, that
increases dihedral effect, thus inducing a stabilizing effect for the spiral model, but
also a loss of damping for dutch roll. Conversely, longitudinal modes do not undergo
major changes, when structure deformation is accounted for in the dynamic model,
at any level of complexity. If on one side this is quite obvious for the low-frequency
phugoid mode, the fact that short period damping changes only marginally indicates
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Figure 4.2: Root locus: comparison between rigid, flexible, and quasi-static defor-
mation models.

that fuselage is relatively stiff, for the considered design.

A somehow more pronounced effect of fuselage bending on elevator control power
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Table 4.3: Aircraft eigenvalues for rigid (R), fully flexible (FF), quasi–static (QS),
static torsion (ST), and constant inertia (CI) cases

R FF QS ST CI

−0.15± 1.04i −0.15± 1.03i −0.15± 1.03i −0.15± 1.03i −0.15± 1.03i

−0.0022± 0.074i −0.0028± 0.073i −0.0028± 0.073i −0.0028± 0.073i −0.0022± 0.073i

−0.023± 0.68i −0.0055± 0.67i −0.0052± 0.67i −0.0054± 0.67i −0.0054± 0.67

−0.28 −0.25 −0.25 −0.24 −0.28

0.0034 −0.030 −0.030 −0.030 0.0053
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Figure 4.3: Open-loop response to a 2 deg step command on the elevator deflection,
rigid, complete and static cases comparison.

is highlighted in Fig. 4.3, where the response of the four aircraft models considered
in this section to a pitch down 2 deg step command on elevator deflection from
its value at trim is represented. Short period variables ∆α and q are reported in
Figs. 4.3.a and b, whereas Figs. 4.3.c and d provides the time-histories of wing-
tip torsional deformation and elastic displacement of fuselage tail, respectively. In
Fig. 4.3.a, increments in angle-of-attack are reported, rather than absolute value, to
account for minor difference in the values of α at trim for rigid model (R) on one
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Figure 4.4: Open-loop response to a 1 deg doublet command on the aileron deflec-
tion, rigid, complete and static cases comparison.

side and deformable models on the other one (FF, QS, and ST), that, conversely,
have the same values of state and control variables at trim.

In this longitudinal test case, a slight reduction in elevator control power is
visible, as both peaks on angle of attack and pitch rate response and angle of at-
tack increment at steady state are reduced when the effects of fuselage flexibility
is accounted for. Conversely, the reduction of short period damping is so small to
be hardly noticeable in aircraft response. As a final observation on this first test-
case, the quasi-static model (QS) follows almost exactly the evolution of transport
variables obtained from the complete flexible model (FF). In this case there is no
significant coupling between the response of transport variables and oscillations of
deformation degrees of freedom, and the main effect (a minor loss of control power)
is a static one, namely, the deformation induced on the fuselage by the incremental
load due to elevator deflection reduces the effective tail angle of attack, leading to a
lower initial pitch angular acceleration. As a consequence, longitudinal dynamics can
be represented by the quasi-static approximation, which allows savings as large as
approximately 40% of computational time (CPU time) for a non-linear simulation,
with respect to the CPU time required by a complete flexible model.

In Fig. 4.4 the response to a 1 deg doublet command on the aileron deflection are
shown. The same four cases are considered again for a lateral-directional command.
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Also in this second case the transient response of the rigid aircraft is quite similar
to that of the flexible cases. The effects of deformations is captured by the quasi-
static model, where the peak response on roll rate p is slightly reduced because of
wing torsional deformation. Also the damping of the oscillation of the rigid body
variables is lower. In this case anyway two of the main effects on the rigid body
variables is due mostly to wing bending rather then torsion (probably also because
the latter is quite small for this aircraft); first in the linear case the spiral mode
has become more stable and this means that also in the non-linear simulations the
variable Ψ does not diverge and there is a coupling between the oscillation of wing
bending and roll rate that could cause a reduction in the handling qualities and the
riding comfort, but this effect is completely lost using the completely quasi-static
case, while is well modeled by the other quasi-static one.

4.3 Approximately constant moments of inertia

Another simplification is represented by the assumption of constant inertia proper-
ties, i.e. inertia moments and/or position of the center of mass. If inertia moments
are constant in time, it is İ = 0, whereas when center of mass coincide with the
origin of the pseudo-body axis frame, it is ∆η̈ = 0, ∆η̇ = 0, and ∆η = 0.

Figure 4.5 shows the comparison between the root loci of the rigid, completely
flexible, and without the inertia effects models. It could be noted that the presence
or the absence of the inertia changes affects some of the flexible modes, but more
important the short period and the spiral mode, while the dutch roll, the roll sub-
sidence and the phugoid remain essentially unchanged. While the changes on the
short period mode are not so great, the spiral mode becomes closer to the rigid body
case then the flexible case.

Figures 4.6 and 4.7 show the response to the same commands used above for a
longitudinal and a lateral-directional maneuvers, comparing three cases: the per-
fectly rigid aircraft (dotted line), the complete deformable model (dashed line), and
the deformable model with constant inertia properties (solid line). From the simu-
lations it is clear that this kind of approximation well represents the response of the
aircraft for both the inputs considered.

The main advantage of this simplifying assumption is computational time: up to
75% of CPU time required for a nonlinear simulation can be saved, with repect to
the completely deformable case, with results close to more complete, fully coupled
model, at least for the set of stiffness parameters and mass distribution adopted
for the considered aircraft model. This is possible because, when center of mass
displacement is not accounted for, the time-varying terms in the mass matrix dis-
appear. It is thus possible to evaluate the coupling matrix A at the beginning of
the simulation and invert it only once, rather than at every time-step. Given the
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Figure 4.5: Comparison of root loci for rigid model, completely flexible, and without
inertia effects.

order of the system, the inversion of the coupling matrix is the computationally
most demaning term in the equations of motion.
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Figure 4.6: Open-loop response to a 2 deg pitch-down step command on the elevator
deflection, with or without inertia properties variations.
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Figure 4.7: Open-loop response to a 2 deg doublet command on the aileron deflec-
tion, with or without inertia properties variations.
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Chapter 5

Helicopter Unsteady

Aerodynamics

5.1 2D test case

In order to validate the model presented in Chapter 3 it was necessary to implement
it using consistent numerical values. In literature dynamic stall data considering a
NACA0012 airfoil can be easily found [55], so this airfoil was selected for the pre-
liminary analysis. As described before (3.4.3), some parameters are necessary to
describe the aerodynamic on the airfoil, that are the CL − α static curve charac-
teristics, and the coefficient for the description of the dynamic stall (ω0, ω2, η0, η2,
e0, and e2). Eq. 3.73 includes the terms ∆CL and (δ∆CL)/(δθ). There are many
expression for the static stall residual and its derivative in literature, see for exam-
ple [70,72,76], and the one that join accuracy and simplicity is that implemented in
the last work

∆CL = CL0 cosα + CLα sinα− CLs (5.1)

where CL0 and CLα are the magnitude and the slope for α = 0, while CLs is the
static value for the lift coefficient.

In order to completely describe the static stall it is necessary to define 3 co-
efficients, ω̂, η̂, and ê. As presented in 3.4.3 these parameters could be describe
in a functional form of the flight condition, so that 6 coefficients should be found.
In [77] the typical values for the system parameters were defined. Peters et al.
works [2,72,76] presented different solutions for the determination of these parame-
ters, using parameter identification such as genetic algorithm, in order to obtain the
values that allow a closer response of the phenomenon. Reasonable ranges for model
parameters proposed by Petot are presented in Table 5.1, together with those used
in the following works. Considering Fig. 5.1 it is evident that none of the consid-
ered parameters approximate clearly the experimental curve, thus a different set of
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Table 5.1: Dynamic Stall Parameter typical values

Petot Peters 1994 [72] Peters 2008 [71] Ahaus 2010 [2] Present

ω0 0.1÷0.4 0.2 0.2581 0.27 0.175
ω2 0÷0.5 0.1 -0.0264 0.13 0.2
η0 0.1÷0.4 0.52 0.3861 0.25 0.26
η2 0÷0.6 0.22 0.3973 0.1 0
e0 0 3.3 -0.0294 0 3.3
e2 -0.2÷0 -0.1 -0.1607 -0.3 -0.3

parameters was used, defined in a work by Tomasello [88]. The parameters chosen
do not drift apart much from the range defined by Petot, except for e0. However
Peters in [72] explains that using the ONERA method coupled with the finite state
requires a greater value for that parameter.

5.2 Main Rotor Results

Once all the parameters needed to describe the dynamic stall are set the complete
rotor behavior was considered. As outlined before the reference model used is a
Sikorsky UH–60, which main characteristics are listed in Table D.1. This helicopter
main rotor has four blades, and for the present analysis each blade was divided
in five sections as suggested in [39]. Velocity and angle of attack are evaluated as
the magnitude of the velocity component perpendicular to the blade axis and its
inclination with respect to the blade chord. All the test are compared to a baseline
model in which aerodynamic forces and moments coefficients are evaluated using
look–up tables that consider −180 ≤ α ≤ 180 and 0 ≤ M ≤ 1. In all models the
inflow dynamic is that described in section 3.4.2. Considering the single rotor in
the baseline model there are 28 states, that are the variables representing flap, lag,
twist angles, and inflow states dynamics plus the anomaly, whereas when dynamic
stall is considered 68 states are necessary, that are all the previous ones plus two
non–dimensional circulation states for each blade section. The input considered for
every model are collective, longitudinal and lateral cyclic.

5.2.1 Unsteady Aerodynamics Complete Unified Model

In section 3.4 was described the mathematical model used for the description of the
unsteady aerodynamic, as in section 3.3 the equations for the main rotor dynamics
were presented. The coupling of these model present some problems. In fact for the
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Figure 5.1: Comparison between CL − α curves obtained using the parameters de-
fined in Tab. 5.1 for k = 0.1

description of the aerodynamic loads is necessary the second time derivative of the
angle of attack, but this information is not analytically achievable from the rotor
dynamic. In order to estimate this derivative, guaranteeing a sufficient accuracy, but
without increasing excessively the computational cost, it was approximate using a
Taylor series stopped at the second order, thus

α(tk−2) = α(tk)− 2∆tα̇(tk)−
(2∆t)2

2
α̈(tk) (5.2)

α(tk−1) = α(tk)−∆tα̇(tk)−
(∆t)2

2
α̈(tk) (5.3)

where ∆t = tk − tk−1 = 0.5(tk − tk−2). Rearranging the expressions above it can be
obtained

α̇(tk) =
3α(tk)− 4α(tk−1) + α(tk−2)

2∆t
(5.4)

α̈(tk) =
α(tk)− 2α(tk−1) + α(tk−2)

(∆t)2
(5.5)
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Usually the ∆t used for the integration is small, (order of magnitude of 10−3s,
and in such cases the expression for α̈ of Eq. 5.5 could lead to numerical errors,
thus it is more convenient to save the actual values of the first derivative and use
an expression similar to Eq. 5.4

α̈(tk) =
3α̇(tk)− 4α̇(tk−1) + α̇(tk−2)

2∆t
(5.6)

Implementing the unsteady aerodynamic loads there are also other derivatives
that should be taken into account, that are the first and second derivatives of the
flap angle and the first derivatives of the velocity components on the blade section,
but the computation of these derivatives requires the aerodynamic loads obtained.
First the blade speed components time derivatives were expressed as a function of
the state states and their derivatives, thus

v̇BL = L̇BL,Rv
BL
R + LBL,Rv̇

BL
R =

= L̇BL,Rv
BL
R + LBL,R

(

v̇R + ω̇R × r
R,BL
R + ωR × ṙ

R,BL
R + r̈

R,BL
R

)

=

= L̇BL,Rv
BL
R + LBL,R

(

L̇RSvS + LRSv̇S +
(

L̇RSωS + LRSω̇S

)

× r
R,BL
R +

+ωR ×
(

L̇R,BLr
T
H

)

+ L̈R,BLr
T
H

)

(5.7)

where L̇BL,R and L̈BL,R are function of β̇, ζ̇, β̈, and ζ̈, while L̇RS depends on Ω
(see Appendix A). When only the rotor is considered, this manipulation lead to a
dependency of the unsteady aerodynamic loads only on the first two time derivatives
of flap and lag and on the dynamic of the angle of attack. During the integration
step the first derivatives hare included in the state vector, the only problem is on
the computation of the second time derivatives. All the aerodynamic loads can be
expressed as

C = C̃ +∆Cββ̈ +∆Cζ ζ̈ (5.8)

thus, for each blade, the flap, lag, and circulation derivatives expressions B.44,B.45,
and 3.73 can also be rearranged as

β̈ = b̃β +∆b
β
ββ̈ +∆b

β
ζ ζ̈ (5.9)

ζ̈ = b̃ζ +∆b
ζ
ββ̈ +∆b

ζ
β ζ̈ (5.10)

Γ̈ = b̃Γ +∆bΓβ β̈ +∆bΓζ ζ̈ (5.11)

These equations could then be rewritten as

MDS







β̈

ζ̈

Γ̈







=







b̃β
b̃ζ
b̃Γ







(5.12)
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Solved this equation the aerodynamic load coefficient for each blade can be computed
from 5.8. Once the coefficients are obtained the rotor aerodynamic loads can be
derived, thus all the state derivatives can be integrated.

The finite state method for unsteady aerodynamics implemented appear to have
problems when the incidence on the blade has a dynamic different from a sinusoid.
That is the case of the first sections, when the speed on the blade change abruptly,
and so does the angle of attack. When the helicopter forward speed is greater than
40 m/s the first and second time derivatives of the angle of attack reach very high
values, leading to an instability of the theory. The unsteady aerodynamic theory
was considered valid for −18◦ ≤ α ≤ 18◦ and −458◦/s ≤ α̇ ≤ 458◦/s, and outside
this range the quasi–steady theory was implemented.

5.3 Simplifying assumptions considered

5.3.1 Approximation of the derivatives

The addition of the unsteady aerodynamic and dynamic stall is obviously compu-
tational costly. One of the most expensive operation during the simulation is the
inversion of the matrix 5.12. In order to avoid this, each blade second time deriva-
tives of flap and lag angles can be approximate using the same methods described
for the angle of attack (Eq. 5.6). The first time derivative at the current integration
time step is already supplied in the steady state vector, while its values at the previ-
ous two time steps are saved in the output vector, thus the second time derivatives
could be calculated as

β̈(tk) =
3β̇(tk)− 4β̇(tk−1) + β̇(tk−2)

2∆t
(5.13)

ζ̈(tk) =
3ζ̇(tk)− 4ζ̇(tk−1) + ζ̇(tk−2)

2∆t
(5.14)

5.3.2 Harmonic Truncation

Another simplification considered stems from the idea that the local angle of attack,
the angle of flap, and the velocity, in the range of validity of the model, has a
oscillating behavior, that is basically function of the forward speed reached by the
helicopter and the position of the blade element with respect to the non–rotating
frame. Thus the values of α, β, and V for each blade section used to calculate the
aerodynamic loads can be truncated at the first harmonic, obtaining the following
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approximated expression

αi = α0i + α1i sin(Ωt+ Ψ̄) (5.15)

β = β0 + β1 sin(Ωt+ Ψ̄) (5.16)

Vi = V0i + V1i sin(Ωt+ Ψ̄) (5.17)

where i is the section considered, Ψ̄ is the delay with respect to the reference blade,
α0i, α1i, β0, β1, V0i, and V1i can be determined from look–up tables as function of
VS and the longitudinal and lateral commands. Once this approximated is used, it
is straightforward to evaluate their first and second derivatives:

α̇i = α1iΩcos(Ωt+ Ψ̄) (5.18)

α̈ = −α1iΩ
2 sin(Ωt+ Ψ̄) (5.19)

β̇ = β1Ωcos(Ωt+ Ψ̄) (5.20)

β̈ = −β1Ω
2 sin(Ωt+ Ψ̄) (5.21)

V̇ = V1iΩcos(Ωt+ Ψ̄) (5.22)

Substituting the expression of Eq. 5.15–5.22 into Eq. 3.73 allows for the definition
of the non–dimensional circulation Γ2 derivative as a function of time and of the
coefficients α0i, α1i, β0, β1, V0i, and V1i. Expressing the non–dimensional circulation
in harmonic form

Γ2i = Γ0i + Γsi sin(Ωt+ Ψ̄) + Γci cos(Ωt+ Ψ̄) (5.23)

the coefficients Γ0i, Γsi, and Γci can be obtained easily for each time step, without
the need of integration, substituting on the left hand side of equation 3.73. This
allows for the reduction of the number of states to be integrated, thus a great save
in computational effort.

5.3.3 Comparison

The results obtained here are presented for a speed of VS =20 m/s, thus the com-
mand applied, that are those would be necessary if the whole helicopter is consid-
ered, are θ0 = 16◦, A1S = −1.2◦, and B1S = 1◦. Fig. 5.2 show the CL − α curve
for each of the 5 sections considered for one of the blade (being the result cyclic it
is not necessary to present results for each blade). In some of the plots shown also
the static case presents a hysteresis that is only due to different Mach number for
the same angle of attack. The use of these approximation has guaranteed a good
computational time save: the first approximation allow for 17% of time saved with
respect to the complete case, while the second one has almost 40% of reduction with
respect to the complete case. It is immediately evident how the presence of dynamic
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stall influence mostly the sections nearer to the hub (Fig. 5.2.a and 5.2.b) then the
external (5.2.e). It should be noted that the step present in Fig. 5.2.a is due to the
fact that also for speed so low the limit of validity of the theory is reached. The
precision in prediction of the lift coefficient for the two approximation cases is not
perfect, but is still good enough to guarantee similar behavior for the state variables
as could be seen in the next figures.
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Figure 5.2: CL −α curves obtained for VS = 25.7m/s for each blade section, for the
quasi–static CL (solid line), complete (dash–dotted line), and the two approximate
cases (dashed line for the first, dotted the second).

Fig. 5.3 present the comparison between the actual and approximated flap sec-
ond time derivative obtained in the complete case, and the two approximated cases,
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the derivatives approximations and the harmonic truncation, for four different for-
ward speeds, V =0, 20, 40, 60 m/s. This derivative is well represented by both
approximations at lower speeds, while for higher velocities the behavior is more
complicated and is better represented by the first approximation, while the other
capture only the periodicity.
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Figure 5.3: Comparison of β̇ response considering the complete (continue) and two
approximate cases.

Figures 5.4 and 5.5 represent the dynamic response of flap angle and angle of
attack. It is evident that for fixed speed and controls the harmonic truncation does
not present a transient phase to reach the final value, but it follows quite well the
behavior of the variables, especially for lower speed.

5.4 Complete Helicopter Results

The model hitherto described was validated comparing the values obtained trim-
ming the complete helicopter model with the results obtained by the baseline model,
Flightlab model, and flight tests data. The Flightlab model is developed in [17] and
has a similar level of complexity compared to the baseline model developed in [89].
Data from wind–tunnel or flight tests are not easily achievable, because in most
cases the information are proprietary. In this work the informations published in [1]
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Figure 5.4: Comparison of β response considering the complete (continue) and two
approximate cases.

are used for comparison. The trimming conditions for the baseline and unsteady
aerodynamics models are derived using the periodic trim for full–order model de-
scribed in [89]. The configuration considered here presents a 6600 kg mass at about
1600m altitude.

As shown in the previous sections the approximation with α, β, and ζ described
with Taylor series gave a good estimate of the derivatives of these variables, so it
was chose in the validation of the complete helicopter trim condition. Figures 5.6–
5.7 present the comparison between the trim conditions for the commands and the
power required in steady flight condition for 4 cases specified before. The value
obtained for the commands in the unsteady aerodynamic case seems to be in good
agreement with the value from the flight test for lower velocities (in the range 0-
40 m/s), getting better results than the baseline and Flightlab cases, but it gets
worse for higher speeds.When the unsteady theory is considered the power necessary
increase, probably because the value of the drag coefficient is overestimated by
the model. The drag coefficient has low effect on the rotor dynamics, while its
greater consequence is to increment the power required for the steady flight. The
result given by the approximate model are also quite good concerning the commands
needed. Regarding the power required it results a little overestimated compared to
the baseline or Flightlab results at higher speeds, but lower than the continue line.
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Figure 5.5: Comparison of α response considering the complete (continue) and two
approximate cases.

The reason may be found in the rough approximation of the angle of attack and
flap angle dynamics in the harmonic truncation case, as discussed in the previous
section.
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Figure 5.6: UH–60 commands evaluation for unsteady aerodynamics (continue),
baseline (dashed), and Flightlab (dotted) models compared to flight tests
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Figure 5.7: UH–60 required power evaluation for unsteady aerodynamics (continue),
baseline (dashed), and Flightlab (dotted) models compared to flight tests
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Chapter 6

Quadrotor Dynamics

6.1 Agility Potential

6.1.1 Inverse Simulation Algorithm

As anticipated in the Introduction, the IS problem is solved by means of an integra-
tion algorithm [16,33]. When quad-rotor dynamics is expressed in terms of a set of
nonlinear ordinary differential equations, it can be represented in compact form as

ẋ = f(x,u) ; y = g(x) (6.1)

where a dot indicates the time derivative, x = (V T
b ,ω

T
b ,q0,

qT ,rT )T ∈ R
n is the state vector (with n = 13), u = (u1,u2,u3,u4,w1,w2,w3)

T ∈ R
m

is the vector of m = 7 control variables presented in the previous paragraph for
this unconventional configuration. Finally y ∈ R

p is the vector of tracked output
variables.

Once a desired variation with time of the output, ydes(t), is available, equations
of motion are integrated from an initial condition xI = xk at time tk over a time
interval ∆t for a piece-wise constant value u⋆

k of the control variables. The resulting
value yF = g(xF ) of the output variables at time tF = tk+1 = tk + ∆t is thus a
function of the (given) initial state xk and of the (unknown) constant control action,
u⋆

k.
Control variables can then be determined in such a way that yF matches the

value of ydes at time tF , that is, the inverse problem can be stated in terms of a set
of p algebraic equations in the form

yF = F (xk,u
⋆
k) = ydes(tF ) (6.2)

with m unknowns. When m = p, the problem is nominal and, if well posed, it
can be solved by means of standard numerical techniques, such as Newton-Raphson
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6 – Quadrotor Dynamics

(NR) method, [33]. If m > p the problem is redundant, as in many aeronautical
applications for fixed and rotary-wing aircraft. When the redundancy degree is
m− p = 1, as for the conventional quad-rotor, where u = (u1,u2,u3,u4)

T ∈ R
4, one

additional constraint is sufficient for making the problem nominal, where a desired
value of a relevant parameter can be enforced in order to obtain trajectories with
an additional desired feature (e.g. zero lateral acceleration or zero sideslip).

In the present case, the presence of 3 additional degrees of freedom makes the
system highly redundant. This marks a major difference between the standard and
the novel configuration, where the conventional quad-rotor features four controls
that are used to track three desired trajectory variables plus an additional constraint.
The resulting nominal inverse simulation problem is solved using a Newton-Raphson
algorithm. Conversely, the novel configuration features 7 control variables and this
requires a different approach for the solution of the inverse problem.

In [33] was proposed a solution method for redundant problems based on the use
of the so-called Moore-Penrose pseudo-inverse during NR iterations, which results
into the minimum-norm control vector that solves the problem. A more general
approach was proposed in [16], where an optimization problem is solved in order to
enforce, together with the constraints on trajectory variables, relevant properties to
the inverse solution by defining a suitable merit function to be minimized locally
at each time step of the inverse simulation. In the present case, the inverse simu-
lation step is solved using a sequential programming (SQP) numerical optimization
algorithm that, in addition to the constraints defined as for the conventional config-
uration, also minimizes the control effort on command variables u2, u3 and u4, and
deviations from desired values for roll and pitch angles.

A further problem with aeronautical applications of IS integration methods is
represented by undesirable oscillations in the control action or even instabilities in
the inverse solution, discussed in some details in [51, 52, 87,97], that may be due to
uncontrolled states and/or numerical issues in the evaluation of the output Jacobian
matrix J = ∂yF/∂u

⋆
k. These issues can be circumvented, at the cost of increasing

the computational burden, by solving the inverse problem stated by Eq. (6.2) over a
longer time-horizon, that is, choosing t⋆F = tk +N∆t > tk+1, that is, the piece-wise
constant control action is propagated for a longer time interval in order to allow for
uncontrolled dynamics to settle down. The initial condition xk+1 for the next step
is then evaluated at time tk+1, as in [16].

As a variation to a standard integration method, a different definition of the
algebraic system is adopted in this paper, where, rather than solving Eq. (6.2) in
terms of the actual value of the tracked variables at time tF , their increments over
the time step between tI and t⋆F are required to be equal. Equation (6.2) is thus
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replaced with

∆y = F (xk,u
⋆
k)− g(xk) = (6.3)

= ydes(tF )− ydes(tI) +K [ydes(tI)− g(xk)]

where the additional term in square brackets multiplied by a gain K avoids that
the actual solution “drifts” away from the desired path because of the incomplete
implementation of the considered step during the forward propagation, as outlined
above. This term also enforces asymptotic convergence on the tracked variables
when they achieve a steady value. By some simple manipulation, Eq. (6.3) can be
rearranged as

F (xk,u
⋆
k) = ydes(tF ) + (K − 1) [ydes(tI)− g(xk)] (6.4)

where for K = 0 the additional term disappears and one simply requires that the
increment of the actual output variables at the end of the whole inverse simulation
step ∆t = tF − tI equals the increment for the desired variation of y, whereas for
K = 1 the original formulation of Eq. (6.2) for the inverse problem is recovered.

This is the most general inverse simulation scheme implemented, unless otherwise
stated. Only for the last test case a few difference will be pointed out when discussing
the results for the roll tilt maneuver.

6.1.2 MPC algorithm

A Model Predictive Control (MPC) algorithm already used in [89] was also imple-
mented when a more complex model is available. The MPC scheme for the solution
of inverse simulation problem allows the use of the low–order model defined before
to calculate the inverse problem, while the higher–order model is implemented to
propagate forward in time. This allows a better accuracy than the inverse simula-
tion problem using only the low–order model, but lower CPU time than using the
higher–order one.

The architecture of the MPC–IS scheme used is described in Fig. 6.1. In the
forward simulation block the higher–order model is used, while the inverse simulation
block evaluates the command increment ∆u that achieves the desired increment
∆y, solving the optimization problem for the low–order model. The guidance block
defines the desired increment ∆y, defined similarly to what was done in the pure
inverse simulation problem. In [89] and [7] it has already been demonstrated the
advantages of this method over the pure inverse simulation. The novelty in this case
is the application to the quadrotor model developed in [24], where it was necessary
to transform the input from one model to the other. The model described in section
3.5 consider the change in rotor speed for the 4 rotors as thrust control while the
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Figure 6.1: MPC–IS scheme [89].

higher–order model of [24] uses constant speed, variable pitch propellers. The low–
order model was then modified so that the commands ui,i = 1, . . . 4 define a variation
in thrust and torque, but not on rotor speed. The input for the high–order model
becomes then the desired thrust value, from which the pitch value is then evaluated.

6.2 Results

Geometrical characteristics and other model parameters used for describing quad-
rotor dynamics are summarized in Table 6.1.

Table 6.1: Quadrotor data

Data Symbol Value Unit
Mass m 0.941 kg
Rotor radius R 0.127 m
Rotor distance from c.g. b 0.465 m
Height h 0.08 m
Width d 0.1 m
Inertia moments Jxx = Jyy 0.0121 kg m2

Jzz 0.0018 kg m2

Rotor rate at hovering Ω0 382.06 rad/s
Thrust constant kt 1.581 · 10−5 -
Torque constant kc 4.16 · 10−7 -

The inverse simulation algorithm is tested on 3 different maneuvers: a U turn,
a 360◦ yaw turn in straight flight, and a 90◦ roll tilt in forward flight. Table 6.2
summarizes data used to define the test cases. All the maneuvers start from a
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hovering condition, so that an initial acceleration is always included. A graphical
representation of the desired variation of the most relevant tracked outputs for the
three maneuvers are reported in Figs. 6.2-6.4.

Table 6.2: Test cases characteristics

Test case Duration Tracked outputs
U turn 16s Vx,d,Vy,d
360◦ yaw turn 22 s r,Vx,d
90◦ roll tilt 20 s φ,Vx,d
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Figure 6.2: U-turn: desired x (a) and y (b) inertial speed.

For the first two test cases the results obtained for the tilting rotor configuration
are compared with those of a standard configuration. The third maneuver cannot
be tracked by a conventional quad-rotor, which is thus not considered. For all the
maneuvers the inverse simulation algorithm determines a piece-wise constant control
over a time step ∆t = 0.1 s, but the inverse problem is solved over a longer interval,
N∆t = 0.2 s.
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Figure 6.3: Yaw rotation: desired ψ (a) and x inertial speed (b).
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Figure 6.4: Roll tilt: desired φ (a) and x inertial speed (b).
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6.2.1 U turn maneuver

The first maneuver is a U turn starting from hover. The quad-rotor initially accel-
erates in the x inertial direction, then it reverts its direction of flight. The desired
variation of Vx velocity is obtained using a fifth order polynomial in order to have
C2 continuity at the bounds of the time intervals in which the maneuver is divided
(acceleration, turn, forward flight in the reverse direction), whereas Vy is kept equal
to zero during the acceleration and final straight flight:

t < 1, Vx,d = 0,Vy,d = 0

1 < t < T/2, Vx,d = Ṽ
(

10τ 3 − 15τ 4 + 6τ 5
)

,Vy,d = 0

T/2 < t < T − 1,
Vx,d = Ṽ

(

63− 240τ + 360τ 2 − 260τ 3 + 90τ 4 − 12τ 5
)

Vy = (Ṽ 2 − V 2
x )

−1/2

t > T − 1, Vx,d = −Ṽ ,Vy,d = 0

where τ is the nondimensional time

τ = 2
t− 1

T − 2
(6.5)

and T is the total simulation time. During the whole maneuver the sideslip angle is
maintained as small as possible.

Figures 6.5 to 6.9 show the results for this test case. The variation of inertial
speed components (Vx,Vy, and Vz) are presented in figure 6.5. Velocity components
in the horizontal plane are tracked with acceptable errors by both the conventional
quad-rotor and the configuration with tilting rotors. Conversely, the speed compo-
nent along the vertical (z) axis presents more significant errors when the conven-
tional configuration is considered. In figure 6.6 the sideslip velocity (v) is shown.
It is evident that, during the maneuver, the novel configuration does not maintain
the desired zero-sideslip condition with the same accuracy achieved by the standard
quad-rotor. This is a side effect of the local optimization process, where pitch and
roll angle (θ and φ, shown in Fig. 6.7), are kept as small as possible, together with
u2, u3, and u4 control variables. When the quad-rotor performs a flat turn with
φ ≈ 0, a perfectly zero-sideslip condition cannot be maintained. When minor vari-
ations of the roll angle are allowed, the sideslip angle drops back almost exactly to
zero.

Figure 6.8 represents the variation of commands on rotor angular speed, ui,
i = 1,2,3,4, as defined in eq. (3.91). As expected, these commands are significantly
smaller when tilting rotor are employed. Only the collective rotor speed command
is significantly different from zero. Figure 6.9 shows rotors tilt angles for the tilting
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rotor case. Large variations of rotor inclination take the place of quad-rotor attitude
angles, a feature that potentially increases the effectiveness of the novel configuration
for observation of targets on the ground, provided that a camera mounted on the
vehicle would not undergo large rotations associated to vehicle maneuver state.
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Figure 6.5: Inertial speeds for the U turn maneuver, comparison between the stan-
dard case (dashed line) and the tilting rotor configuration (solid line)

6.2.2 360◦ yaw turn straight flight

The second maneuver starts again from hover. The quad-rotor is required to increase
its speed along the inertial x direction, during the first half of a full 360◦ yaw
rotation, while it must decelerate back to hover while completing the second half of
the rotation. In this maneuver the controlled variables are the longitudinal inertial
speed component Vx and the yaw rate r. The prescribed variations of these variables

76



6 – Quadrotor Dynamics

0 2 4 6 8 10 12 14 16
−10

0

10

20
u 

[m
/s

]

t [s]

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

v 
[m

/s
]

t [s]

0 2 4 6 8 10 12 14 16
−2

−1

0

1

w
 [m

/s
]

t [s]

 

 

Tilting rotors
Standard config.

Figure 6.6: Body speeds for the U turn maneuver, comparison between the standard
case (dashed line) and the tilting rotor configuration (solid line)
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Figure 6.7: Euler angles variation for the U turn maneuver, comparison between the
standard case (dashed line) and the tilting rotor configuration (solid line)
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Figure 6.8: Rotor speed commands for the U turn maneuver, comparison between
the standard case (dashed line) and the tilting rotor configuration (solid line)
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Figure 6.9: Tilting rotors angle command for the U turn maneuver

are

t < 1, Vx,d = 0, rd = 0

1 ≤ t < T/8, Vx,d = Ṽ
(

10τ 3 − 15τ 4 + 6τ 5
)

rd = r̃
(

640τ 3 − 3840τ 4 + 6144τ 5
)

1 < t < T/2, Vx,d = Ṽ
(

10τ 3 − 15τ 4 + 6τ 5
)

rd = r̃

T/2 < t < 7T/8
Vx,d = Ṽ

(

32− 120τ + 180τ 2 − 130τ 3 + 45τ 4 − 6τ 5
)

rd = r̃

T/8 < t < T/1
Vx,d = Ṽ

(

32− 120τ + 180τ 2 − 130τ 3 + 45τ 4 − 6τ 5
)

(
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where τ is defined as in eq. (6.5) and T = 22s.
Figures 6.10 to 6.13 present vehicle response and commands. Desired velocity

and yaw angle are tracked by both quad-rotor models, but roll and pitch angles
exhibit an undesired oscillatory response for the standard configuration. Vertical
inertial speed component remain close to zero in both cases, whereas lateral devia-
tions are more significant when the novel configuration is adopted, but this is the
cost associated to keeping roll and pitch attitude close to zero, in order to maintain
an almost perfectly horizontal attitude during the yaw rotation.
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Figure 6.10: Inertial speed for the 360◦ yaw turn maneuver, comparison between
the standard case (dashed line) and the tilting rotor configuration (solid line)

Note that the yaw command needed to perform a complete yaw rotation are
small for both models (see u4 control for the standard configuration in Fig. 6.12
and command w1 for the quad-rotor with tilting rotors case in Fig. 6.13). This is
due to two different reasons. On one side a low-speed maneuver is considered where
aerodynamic drag and moments remain small. At the same time, no aerodynamic
force in the rotor plane is included in this simple model, where rotors develop only
a thrust component in the direction normal to the rotor disk. This means that
aerodynamic yaw damping moments are largely underestimated.

6.2.3 90◦ roll tilt

The third maneuver demonstrates a maneuver capability that is simply unachievable
for a conventional quad-rotor. For this reason, only the tilting-rotor model is here
considered. The longitudinal inertial velocity component Vx is initially incremented
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Figure 6.11: Euler angle variations for the 360◦ yaw turn maneuver, comparison
between the standard case (dashed line) and the tilting rotor configuration (solid
line)

from hover to a desired value, Ṽ . Meanwhile the desired roll angle φ is incremented
from 0 to 90◦ and then brought back to 0◦. This maneuver can be useful when
the quad-rotor needs to cross a narrow vertical opening or passage, so that it is
necessary to tilt it 90◦ while flying along a straight trajectory.

Desired inertial velocity and roll angle are defined again using 5th order polyno-
mials:

t < 1, Vx,d = 0, φd = 0

1 < t < T/4, Vx,d = Ṽ
(

80τ 3 − 240τ 4 + 192τ 5
)

φd = 0

T/4 ≤ t < 5/8T, Vx,d = Ṽ

φd = φ̃
(

−6.71 + 49.38τ − 138.27τ 2 + 181.73τ 3+

−110.62τ 4 + 25.28τ 5
)

5/8T ≤ t < T − 1,Vx,d = Ṽ

φd = φ̃
(

240.20− 790.12τ + 1027.16τ 2 − 655.80τ 3+

+205.43τ 4 − 25.28τ 5
)

t > T − 1, Vx,d = Ṽ , φd = 0

with τ defined as in eq. (6.5), and T = 20 s.
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Figure 6.12: Rotor speed command for the 360◦ yaw turn maneuver, comparison
between the standard case (dashed line) and the tilting rotor configuration (solid
line)

The inverse simulation algorithm used in this case is slightly different from that
used for other maneuvers. Provided that precise tracking of the roll angle is not
required, as minor discrepancies in this variable with respect to the desired value
would not affect the result, the guidance term in the definition of the desired incre-
ment of φ was removed. In this case Eq. (6.4) for the roll angle φ is thus modified
and it is implemented in the form

F φ(φk,u
⋆
k) = φd(tF )− φd(tI) + g(xk) (6.6)

Figures 6.14 to 6.17 present the results obtained for this last case. The vehicle
follows the desired inputs, for both velocity and roll angle with satisfactory accuracy
(velocity components and roll angle).

The commands needed to perform the maneuver are reported in Figs. 6.16
and 6.17. The variations in rotor angular rates are kept small (Fig. 6.16). Only
the “collective” command u1 is increased when the quad-rotor is completely tilted,
which is clearly required by the need for providing enough lift force using only
two rotors, in order to maintain the required straight flight condition at constant
altitude. As for the other commands on tilt angles (Fig. 6.17), one can note that the
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Figure 6.13: Tilting rotors angle command for the 360◦ yaw turn maneuver, com-
parison between the standard case (dashed line) and the tilting rotor configuration
(solid line)
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Figure 6.14: Inertial speed for the 90◦ roll tilt maneuver

maneuver starts with a small increment for w3 that accelerates the vehicle in the x-
direction, than w2 takes over and this command provides most of the control power
for performing the unconventional roll maneuver in forward flight, where rotors 1
and 3 are tilted for most of the duration of the maneuver.
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Figure 6.15: Euler angle variations for the 90◦ roll tilt maneuver
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Figure 6.16: Rotor speed command for the 90◦ roll tilt maneuver

6.3 MPC control of a Quadrotor

The previous section described the solution of a inverse simulation problem for a
simple quadrotor model. If the model used for the dynamic description of the vehicle
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Figure 6.17: Tilting rotors angle command for the 90◦ roll tilt maneuver

is more complex the inverse simulation becomes too costly. The model predictive
control proposed by [89] allows for the evaluation of the solution of an inverse sim-
ulation complex model, starting from the solution of the inverse simulation step
obtained from a lower–order simplified model of the same vehicle. In this scheme
the complex model is used only for the forward simulation step. Differently from
what was done in [89] the MPC–IS scheme is implemented for a redundant prob-
lem, thus the Newton–Raphson algorithm was not suitable, but an optimization
algorithm was instead implemented.

The complex model considered was that described in [24]. This model takes into
account bot rotor and motor dynamics, but moreover differs from the simplified one
considered above because it considers that the thrust is controlled by variation on
the blade pitch for each propeller. This lead to a modification in the simplified
model: the thrust was then evaluated as

T = kt





0 s(δ2) 0 −s(δ4)
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−c(δ1) −c(δ2) −c(δ3) −c(δ3)



















σ1Ω
2
0

σ2Ω
2
0

σ3Ω
2
0

σ4Ω
2
0















(6.7)

where σi are appropriate variables that could be rewritten as
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
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so that the constraints on the command for the MPC–IS can remain the same as
those used in the previous section.

Figure 6.18: Inertial speeds for the U turn maneuver MPC–IS algorithm

Figure 6.18–6.22 present the preliminary results for the implementation of this
algorithm. The maneuver considered is the same as presented in 6.2.1. Comparing
with the results obtained there the main difference is that the Euler angles are not
as well commanded as before and also the sideslip response is worse. The desired
speeds are also in this case well followed and the considerations made on the control
inputs for the previous case are still valid.
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Figure 6.19: Body speeds for the U turn maneuver MPC–IS algorithm

Figure 6.20: Euler angles variation for the U turn maneuver MPC–IS algorithm

86



6 – Quadrotor Dynamics

Figure 6.21: Rotor speed commands for the U turn maneuver MPC–IS algorithm

Figure 6.22: Tilting rotors angle command for the U turn maneuver MPC–IS algo-
rithm
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Chapter 7

Conclusions

Aim of this work was to provide simplified models for the analysis of flight dynamics
of atmospheric vehicles that take into account specific issues of modern and innova-
tive configurations for various classes of flying vehicles, namely fixed– and rotary–
wing aircraft and small scale multi–rotor Unmanned Aerial Vehicles (UAVs). The
preliminary analysis often neglects aspects like those analyzed here, but the error,
as has been shown, can be quite large in some flight conditions. As stated above the
reason for neglecting them is that most of the studies present in literature develop
very complex models, computationally too demanding or that need large amounts
of informations. During real-time simulations, the information needed are usually
available, but the computation effort necessary require faster, thus more expensive,
computer. The models developed in the present work quite successfully deal with
this kind of problems, presenting viable approaches that could be used during pre-
liminary design or for pilot–in–the–loop simulations. The analysis was carried on
in different framework in order to show how these aspects are common for many
different aircraft.

First a minimum complexity flexible aircraft model is derived, which is based on
a limited set of structure parameters, which lends itself to a preliminary analysis of
coupling terms between the dynamics of transport variables and deformation states.
The derivation of the equations of motion hinges on a mixed Newtonian–Lagrangian
approach, where linear and angular momentum balance equations are used for deriv-
ing the dynamic equations of transport variables, whereas deformation dynamics is
obtained from the expression of the Lagrangian for the whole system, as a function
of generalized coordinates that represent the amplitude of structure assumed modes.
This modeling technique maintains a stronger link to classical rigid body equations,
where coupling terms between transport and deformation variable dynamics are eas-
ily identified and their relevance assessed in terms of effect on stability and response.
For the case study here considered, which represents a fictitious modern transport
aircraft, the response obtained for the fully flexible and completely rigid aircraft
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were compared to two quasi-static deformations models (one that consider both tor-
sion and bending as quasi–static, while in the second only the first one dynamic was
neglected) and constant moment of inertia one. From the analysis results that the
quasi–static model apparently capture most of the effects of flexibility on aircraft
behavior. The main advantage of the method proposed is that the magnitude of
the effects considered is evaluated more easily with respect to previous works. This
allows for the determination whether the effects of flexibility or its dynamics can be
neglected, thus the use of one of the simplified model lead to save computational
time during the simulation. The same approach, with some modification, was also
considered for the analysis of helicopter blade flexibility.

Then a unified model for the description of dynamic airloads of a helicopter rotor
model was discussed. The modelization of a conventional helicopter dynamics was
augmented with a thin airfoil theory and a ONERA dynamic stall model. In order
to determine the coefficients necessary for ONERA methods, first some tests were
performed on a 2D case and compared to the wind–tunnel test of a NACA0012
airfoil. The model thus obtained was then implemented on a rotor in order to
evaluate the differences with a quasi–static aerodynamic model. The same models
were then liken to simplified models, that consider approximations for the higher
order derivatives and states needed. From the analysis performed on the main
rotor it can be asserted that the simplifications used guarantee good results with
an improvement in the computational time necessary. One of the main drawback
of this method is that there is still a strong dependency on wind–tunnel test or, at
least, CFD analysis to determine the dynamic stall parameters, tests that are not
always available for all airfoils and flight conditions. Moreover the results presented
for the 3D case should be validate comparing with more results obtained from tests
on a actual helicopter. Anyway the results show that the presence of unsteady
aerodynamics modify the rotor loads and trim conditions, thus the overall helicopter
response, but these effect are well represented also when the simplifying assumptions
were considered.

Finally a novel quad-rotor configuration that features tilting rotors was analyzed
in order to assess the maneuvering potential of the vehicle and possible advantages
over conventional quad-rotors. When the two configurations are compared, it is
shown that tilting the rotors provides a larger control power that allows to maintain
a constant rotor rate. This would allow for the use of constant RPM variable pitch
rotors instead of fixed pitch, variable RPM propellers. In the former case rotor
thrust is controlled by means of propeller pitch, which results in a more efficient
propulsion system. Moreover, the inverse simulation algorithm used for tracking
three different maneuvers demonstrates that it is possible to use the additional
control degrees of freedom for either minimizing the control effort or for flying with
unconventional attitude, that range from a simple horizontal attitude in forward
flight (instead of the usual pitch down attitude of standard quadcopters) to more
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demanding transition to 90 deg roll attitude in forward rectilinear flight. The model
considered is simplified, thus the implementation of the MPC–IS scheme (Model
Predictive Control–Inverse Simulation) problem was considered also for a complex
non–linear quadrotor model, that take into account also motor and rotor dynamics,
for the forward simulation, thus obtaining more realistic results. Even if this scheme
has been implemented before on a helicopter configuration, here was modified to take
into account the optimization problem for a redundant case.
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Appendix A

Definition of the rotation matrices

A.1 Coordinate Systems

For the development of the helicopter equations of motion, the following reference
frames are used:

• inertial coordinate system FI

• body coordinate system FB

• wind coordinate system FW

• non–rotating shaft coordinate system FS

• rotating shaft coordinate system FR

• hub–wind coordinate system FHW

• rotating hub coordinate system FH

• blade span coordinate systems FBL,i with i = 1,2, . . . ,NBL

• tail rotor coordinate system FT

Coordinate transformation matrices between different frames are defined through
suitable sets of Euler angles.

A.2 Inertial reference frame

The inertial frame is assumed fixed to a flat, non rotating Earth, FI{N,E,D}
(North–East–Down). The coordinates of the center of mass of the aircraft are de-
fined in terms of latitude, longitude, and altitude h = −D.
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A – Definition of the rotation matrices

A.3 Body axes

The body fixed reference frame FB has its origin at the fuselage center of mass and
moves with it. The xB axis lies in the longitudinal plane towards the nose of the
aircraft, the zB axis lies in the longitudinal plane towards the bottom, and the yB
axis directed towards the right side of the aircraft completes a right–hand triad.
Aircraft equations of motion are written in body reference frame. The attitude of
the body fixed reference frame with respect to the inertial one can be described by
means of roll φ, pitch θ, ad yaw ψ angles. The transformation between the two
reference frames is given by the matrix

LBI =





cos θ cosψ sinψ cos θ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − cosφ cosψ cosφ cos θ



(A.1)

In order to prevent singularities, Euler angles are limited in the following range

−π ≤ ψ ≤ π

−π/2 ≤ θ ≤ π/2 (A.2)

−π ≤ φ ≤ π

A.4 Wind axes

The origin of the wind reference frame, FW , lies on the fuselage center of mass. The
xW axis points in the direction of the velocity, zW towards the bottom and yW com-
pletes a right–handed coordinate system, as shown in Fig. A.1. The transformation
between the body and wind reference frames is given by

Figure A.1: Wind axes reference frame.

LBW =





cosαF cos βF − cosαF sin βF − sinαF

sin βF cos βF 0
sinαF cos βF − sinαF sin βF cosαF



 (A.3)
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A – Definition of the rotation matrices

where αF is the fuselage angle of attack, whereas βF is the fuselage angle of sideslip.
The velocity vector in wind axis is written as vW = (V,0,0)T . In body reference
frame it becomes

vB = LBWvW (A.4)

A.5 Rotor reference frames

A.5.1 Non–rotating and Rotating shaft

Both non–rotating and rotating shaft coordinate systems, FS and FR, have their
origin at the rotor hub center, in position rHB with respect to the aircraft center of
mass. The orientation depends on shaft longitudinal iθ and lateral iφ tilt as shown in
Fig.A.2. The transformation between body and non–rotating shaft reference frames
is given by

Figure A.2: Non–rotating shaft reference frame

LSB =





cos(iθ) 0 − sin(iθ)
sin(iθ) sin(iφ) cos(iφ) cos(iθ) sin(iφ)
sin(iθ) cos(iφ) sin(iθ) cos(iθ) cos(iφ)



 (A.5)

The yR axis of FR is aligned with the reference blade, xR axis is aligned with the
reference blade advancing direction, while zR = zS is aligned with the z axis of the
non–rotating shaft frame, so that its orientation depends on the shaft longitudinal
iθ and lateral iφ tilt. The rotation angle between the non–rotating and rotating
shaft coordinate systems is given by the reference blade azimuth position counted
from the −xS axis and positive in the direction of rotation of the rotor, as described
in figure A.3. The transformation between nonrotating and rotating shaft reference
frames is given by, when the rotor turns in anticlockwise direction when seen from
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Figure A.3: Rotating shaft reference frame

above,

LRS =





sin(ψ) cosψ 0
− cosψ sinψ 0

0 0 1



 (A.6)

A.5.2 Blade span

The blade span coordinate system FBl,i with i = 1,2, . . . NBL, is centered at the ith

blade hinge, in a position rR,e
R = (0,e,0) in the rotating shaft reference frame with

respect to the rotor hub center, when an articulated rotor is considered. The yBL axis
is aligned with the blade, the xBL axis is aligned with the blade advancing direction,
and zBL completes a right–handed coordinate system. The transformation between
the rotating shaft (or rotating hub) and blade span reference frames depends on flap
(or coning) β and lag (if present) ζ angles and on the hinge system geometry. For
the UH–60A helicopter the lag and flap hinges are assumed as coincident but the
lag degree of freedom anticipates the flap one. The transformation matrix is thus
given by

LBL,R =





cos ζ − cos β sin ζ sin β sin ζ
sin ζ cos ζ cos β − cos ζ sin β
0 sin β cos β



 (A.7)

A.6 Tail rotor reference frame

Tail rotor coordinate system is fixed to the vehicle. The origin is placed at the tail
rotor centre. The xT axis is parallel to the xB axis, zT axis is aligned with the tail
rotor shaft. The tail rotor is canted with respect to the fuselage around the xT axis.
The tail rotor cant angle Γ correspond to the main rotor lateral can angle iφ. The
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transformation matrix between body and tail reference frame is given by

LRS =





1 0 0
0 cos Γ sin Γ
0 − sin Γ cos Γ



 (A.8)
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Appendix B

Evaluation of the Main Rotor

loads

B.1 Blade element kinematics

To describe the motion of a generic blade element, the motion of rotor hub is related
to the motion of the helicopter center of mass first, then the motion of the blade
element with respect to the rotor center is added. In this process the selection of
the correct reference frames is fundamental in achieving a formulation as compact
as possible. The equations are derived only in vector form. The components are
presented only for the most important variables. The starting points in the descrip-
tion of blade element motion are the linear (vB) and angular (ωB) velocities of the
helicopter in body–fixed reference frame, where

vB = (u,v,w)T (B.1)

ωB = (p,q,r)T (B.2)

To evaluate the linear and angular speed of the hub center in non–rotating frame,
the position vector rHB of the hub center in body frame is required,

rH
B = (xH ,yH ,zH)

T (B.3)

Using the transformation matrix LSB from body to non–rotating shaft reference
frames (see A.5) the linear and angular speed in non–rotating shaft are evaluated as

vS = (uS,vS,wS)
T = LSBv

S
B = LSB (vB + ωB × rHB) (B.4)

ωS = (pS,qS,rS)
T = LSBω

S
B = LSBωB (B.5)

The body frame and the non–rotating frame are both fixed to the fuselage. The only
difference lies in the shaft tilt angles iθ and iφ in the longitudinal and lateral plane
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respectively. The relative rotation speed ω
S/B
B between the two reference frames

is equal to zero and the transformation matrix LSB is constant in time. In the
description of blade motion and rotor force and moments the components of linear
and angular motion in the non–rotating frame are used in place of the components
in body frame to save the overhead of the rotation matrix and radius between center
of gravity and hub center.

The rotating shaft reference frame shares the same origin with the non–rotating
one, but the relative angular speed between the two frames ω

R/S
R is determined by

the rotor angular speed. For an anticlockwise rotation of the rotor when seen from
above, ω

R/S
R = (0,0,− Ω)T . Linear and angular speed in rotating frame are

vR = LRSvS (B.6)

ωR = LRSω
S
S + ω

R/S
R = LRSω

S
S + (0,0,− Ω)T (B.7)

To evaluate the speed of a generic blade element, the position vector r
R,BL
R with

respect to the origin of the rotating shaft reference frame is defined for a generic
blade element. This vector is characterized by two parts: the first part describes the
distance of the flap/lag hinge from the rotor center along blade span, whereas the
second term accounts for the radial distance r of the blade element from the hinge
in blade reference frame:

r
R,b
R = (0,e,0) +LR,BL(0,r,0)

T (B.8)

The speed of the generic blade element in rotating shaft frame is thus given by

vBL
R = vR + ωR × r

R,BL
R + ṙ

R,BL
R (B.9)

Finally, the speed of the blade element in blade span reference frame can be evaluated
as:

vBL = LBL,Rv
BL
R (B.10)

To determine rotor inertial force, blade element acceleration is required. Among the
reference frames available, the non–rotating shaft is preferred, as it allows to write
the equations in the most compact form. To evaluate the acceleration of the blade
element, as a first step the blade element speed is transformed into non–rotating
shaft components:

vBL
S = LSRv

BL
R (B.11)

Then the acceleration is evaluated as

aBL
S = v̇BL

S + ωS × vBL
S (B.12)

The derivation of blade equations of motion requires the blade element accelerations
written in blade span reference frame, so

aBL
BL = LBL,RLRSa

BL
S (B.13)
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B.2 Aerodynamic loads

Equation B.10 can be modified in order to include the speed of the blade element
with respect to the surrounding air including the effect of the inflow. In this respect,
the usual approach presented in the literature (see for example [48]) is to write the
components of vBL in terms of tangential, radial and vertical terms,

vBL = UT iBL + URjBL + UPkBL (B.14)

where the components UT ,UR, and UP are

UT = [uS sin(ψ + ζ) + vS cos(ψ + ζ)]− e(rS − Ω) cos ζ + r
{

ζ̇ cos β+

+sin β [pS cos(ψ + ζ)− qS sin(ψ + ζ)]− (rS − Ω)cosβ} (B.15)

UR = − [uS cos β cos(ψ + ζ)− vS cos β sin(ψ + ζ) + wS sin β] +

−e [sinβ(qS cosψ + pS sinψ) + (rS − Ω) cos β sin ζ] + URλ (B.16)

UP = [−uS sin β cos(ψ + ζ) + vS sin β sin(ψ + ζ) + wS cos β] +

+e [cosβ(qS cosψ + pS sinψ)− (rS − Ω) sin β sin ζ] +

+r
[

−β̇ + qS cos(ψ + ζ) + pS sin(ψ + ζ)
]

+ UPλ (B.17)

The contribution of the inflow to the local velocity components assuming a three–
states triangular inflow model (described in 3.4.2) are

URλ = ωR sin β
{

− ∋0 −ǫ (∋c cosψ+ ∋s sinψ)−
r

R
[∋c cos(ψ + ζ)+ ∋s sin(ψ + ζ)]

}

(B.18)

UPλ = ωR cos β
{

− ∋0 −ǫ (∋c cosψ+ ∋s sinψ)−
r

R
[∋c cos(ψ + ζ)+ ∋s sin(ψ + ζ)]

}

(B.19)

When the effects of inflow are included in the vertical and radial speed, the angle of
attack on the blade element can be evaluated as

α = θG + tan−1 UP

UT

(B.20)

where the geometric pitch θG at the desired blade element is given by

θG = θ0 + A1S cosψ + B1S sinψ + θTW + θDT (B.21)

In the most general case blade twist is a nonlinear function θTW = θTW (r) which can
be obtained from lookup tables as a function of blade element radial position. The
dynamic twist (when included in the model) is a function of radial position through
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a shape function in the spatial domain and of the generalized coordinate ϕ1, which
describe the motion in time, θDT = θDT (r,ϕ1). The dynamic twist is described in
detail in B.5.

The direction ϕ of the airstream imping on the blade element in blade span
reference frame is given by

ϕ = tan−1UP

UT

(B.22)

The lift and drag coefficient (CL and CD respectively) are read from lookup tables
as a function of angle of attack α and Mach number or computated using the unified
theory. The blade is divided into Ns elements with width ∆yBL and area SBL =
c∆yBL, which center is at a distance rk from the blade hinges. If the elements are all
equal, ∆yBL = (R−e)/Ns. The aerodynamic loads acting on the kth blade elements
are

F Ak =







1
2
ρV 2SBL (−CD cosϕ− CL sinϕ)

0
1
2
ρV 2SBL (CD sinϕ− CL cosϕ)







(B.23)

where V 2 = U2
P + U2

T . The aerodynamic load is assumed to act at the midpoint
rk of the blade element. The total aerodynamic shear forces at the hinge and the
aerodynamic moments about the hinge in blade span frame for the ith blade are
given by

F A,iBL
=

Ns
∑

k=1

F Ak (B.24)

MA,iBL
= (MβA,0,MζA)

T =
Ns
∑

k=1

rk × F Ak (B.25)

The force and moments of the ith blade in non rotating shaft can be evaluated as

F A,iS = LSRLR,BLi
F A,iBL

(B.26)

MA,iS = LSR [re
R × (LR,BLi

F A,iBL
)] (B.27)

B.3 Inertial loads

The inertia forces are derived integrating blade accelerations in the non–rotating
frame, as described in B.12. Shear forces are transmitted to the rotor hub through
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the hinges. The components of the inertia forces F IS = FI,xS
iS + FI,ySjS + FI,zSkS

for each blade can be evaluated as

FI,xS
=

∫ R

e

ρBLaS,xdr (B.28)

FI,yS =

∫ R

e

ρBLaS,ydr (B.29)

FI,zS =

∫ R

e

ρBLaS,zdr (B.30)

The main rotor inertial forces include terms which depend on state highest order
derivatives. For this reason these terms need to be grouped in an inertial coupling
matrix M. As a consequence, Eq. B.28–B.30 can be rearranged in the form

MFI,x
ẋc = fFI,x

(B.31)

MFI,y
ẋc = fFI,y

(B.32)

MFI,z
ẋc = fFI,z

(B.33)

where MFI,i
with i = x,y,z is the array which contains the term of the inertial forces

depending on highest order state derivatives and ẋc is the vector which contains the
derivatives of the velocity variables which are inertially coupled. These states are
expressed in body fixed reference frame and the vector of coupled velocity variables
for an articulated rotor with Nb blades is given by

xc =
{

uB,vB,wB,pB,qB,rB,β̇i, . . . , ˙βNBL
,ζ̇i, . . . , ˙ζNBL

}T

Equation B.31–B.33 and all the following equations in the present section are
referred to the ith blade. No i subscript is included in the formula in order to main-
tain the notation as simple as possible. The coupling matrices can be reorganized
as follows

MFI,x
=

(

MFI,xV
LSB,MFI,xV

LSB r̃
H
B +MFI,xω

LSB,MFI,xβ
,MFI,xζ

)

(B.34)

MFI,y
=

(

MFI,yV
LSB,MFI,yV

LSB r̃
H
B +MFI,yω

LSB,MFI,yβ
,MFI,yζ

)

(B.35)

MFI,z
=

(

MFI,zV
LSB,MFI,zV

LSB r̃
H
B +MFI,zω

LSB,MFI,zβ
,MFI,zζ

)

(B.36)

Inertial moments are generated by the inertial shear forces that the blade trans-
mit to the hub at the flap/lag hinge, which is placed at a distance e with respect
to the hub center. Rotor inertial moments M IS =MI,xS

iS +MI,ySjS +MI,zSkS in
the non–rotating frame are thus evaluated as

M IS = re
S × F IS (B.37)
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where the position of the flap/lag hinge in non–rotating frame is reS = (−e cosψi,e sinψi,0)
T .

The ith blade inertial forces and moments can be summed up as:

MFI,iẋc = F I,iS = fFI (B.38)

MMI,iẋc = M I,iS = fMI (B.39)

B.4 Blade equations of motion

The derivation of the blade equations of motion for articulated blades follows the
approach proposed in Refs. [Howlett, Kim]. The flap and lag equations of motion are
formulated by enforcing moment balance around the hinges. The applied moments
can be divided into aerodynamic moments (MβA and MζA), inertial moments (MβI

and MζI), hinge spring moments (MβK and MζK), and lag damper moments (MβLD

and MζLD). The moment balance can be expressed as

MβA +MβI +MβK +MβLD = 0 (B.40)

MζA +MζI +MζK +MζLD = 0 (B.41)

The expressions for aerodynamic moments are derived in B.2 whereas lag damper
loads are presented in B.6. The inertial moments are derived by integrating the con-
tribution of the acceleration of each differential blade element dr along blade span.
If we define ρBL as the linear mass density of the blade and take the acceleration of
the blade element in blade span reference frame aBL

BL, as described in Eq. B.13, the
moment of inertial forces is given by

MβI = −

∫ R

e

rρBLazdr (B.42)

MζI = −

∫ R

e

rρBLaxdr (B.43)

where ax and az are the components of the acceleration ab
b = axiBL + ayjBL + kBL

along x and z axes evaluated in Eq. B.13. The equations are written including the
hinge stiffness term for the seek of generality. The UH-60A helicopter has no springs
in the flap and lead/lag hinges and as a consequence no contribution of stiffness in
the flap and lag equations.

The equations derived can not be directly used in the simulation, as flap and lag
accelerations depend on the derivative of rigid body velocity variables, that is, flap
and lag dynamics are inertially coupled to fuselage degrees of freedom. As in the
previous section dedicated to the inertial forces and moments, the elements of the
coupling matrix here described are referred to the ith blade. A subscript i is omitted
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for the seek of conciseness. The flap and lag equation can be cast in matrix form as

Mβẋc = fβ (B.44)

Mζ ẋc = fζ (B.45)

where the coupling matrices Mβ and Mζ are given by:

Mβ =
(

MβV
LSB,MβV

LSB r̃
H
B +MβωLSB,Mββ

,Mβζ

)

(B.46)

Mζ =
(

MζV LSB,MζV LSB r̃
H
B +MζωLSB,Mζβ ,Mζζ

)

(B.47)

(B.48)

and the state derivative vector, xc is the same as defined before.

B.5 Dynamic twist

Together with pilot control (θ0, A1S and B1S) and built–in twist (θTW ), the local
feathering angle θG(r) of the section at station r along the blade span is affected by
aerodynamic loads, that twist the rotor blades. The value of θG is thus given by

θG = θ0 + A1S cosψ + B1S cosψ + θTW + θDT (B.49)

The dynamic twist θDT is expressed in terms of the product of a shape function
times a generalized state variable as

θDT = ϕ
[

0.28 + 0.72 sin(ǫ+
r

R
)
]

(B.50)

The dynamics of ϕ is described in terms of a second order dynamical system, so that
the evolution of θDT is described by two states (twist amplitude and twist rate). The
dynamic twist is driven by the x and z components of the aerodynamic load on the
blade FA:

ϕ̈(i)

ω2
θ

+
2ζθ
ωθ

ϕ̇(i) + ϕ(i) = Kθ

√

F 2
Ax + F 2

Az fori = 1, . . . NBL (B.51)

where

ζθ = 0.3 (B.52)

ωθ = 23.63 (B.53)

Kθ = −1.17 · 10−5 − 1.72 · 10−8(uB − 51.42) (B.54)

Kθ is expressed in rad/N and is bounded to −2.04 ·10−6 ≤ Kθ ≤ −1.17 ·10−5 so that
the twist is always negative. As a consequence, when dynamic twist is accounted
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for, the rotor requires more collective pitch to generate a given force compared to
the case when dynamic twist is neglected. To convert the constant Kθ to metric
system, and therefor be measured in rad/N, it must be multiplied by 0.0039.

The dynamic twist equation can be divided into two first order differential equa-
tions, assuming ϕ1 = ϕ and ϕ2 = ϕ̇, Eq. B.51 can be cast as

ϕ̇1 = ϕ2 (B.55)

ϕ̇2 = ω2
θ

(

Kθ

√

F 2
Ax + F 2

Az − ϕ1

)

− 2ζθωθϕ2 (B.56)

B.6 Lag damper

The lag damper model used in the present analysis is taken from Ref. [39]. Figure
B.1 presented the lag damper geometry and attachment points on both the hub and
blade sides.

Figure B.1: UH60 lag damper geometry.

To describe the lag damper, the attention should be focused on the relative
motion of the two attach points: ALD is the lag damper attach point on the rotor
hub, while BLD is the attach point on the rotor blade. The present formulation is
based on the peculiar geometry of the UH-60A lag damper, but the same approach
can be used for any helicopter once its geometry is known.

For the description of lag damper geometry, a new reference frame, named α, is
defined. This reference frame is centered at the flap/lag hinge (as the blade span
one) and is rotated ζ0 around the z axis. The rotation matrix LαR between the
rotating and the α reference frames is given by

LαR =





cos ζ0 sin ζ0 0
sin ζ0 cos ζ0 0
0 0 1



 (B.57)
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The position rc,ALD
α of the lag damper attach point on the rotor hub ALD

with respect to the flap/lag hinge in the α reference frame is given by rc,ALD
α =

(−dLD, − bLD,aLD)
T The position r

c,BLD

b of the lag damper attach point on the
blade BLD with respect to the flap/lag hinge in the blade span reference frame is
equal to: rc,BLD

BL = (−rLD cos θLD,cLD,rLD sin θLD)
T where aLD, bLD, cLD, dLD, rLD,

θLD are parameters which define the geometry of the lag damper. The attach point
ALD in blade reference frame is evaluated as rc,ALD

BL = LBL,RLRαr
c,ALDα so that its

components are

r
c,ALD

BL =







bLD sin(ζ + ζ0)− dLD cos(ζ + ζ0)
−bLD cos β cos(ζ + ζ0)− dLD cos β sin(ζ + ζ0)− aLD sin β
−bLD sin β cos(ζ + ζ0)− dLD sin β sin(ζ + ζ0) + aLD cos β







(B.58)

The vector which connects the two lag damper attach points is evaluated as rBLD,ALD

BL =

r
c,ALD

BL − r
c,BLD

BL while its length is equal to lLD =
∥

∥

∥r
BLD,ALD

BL

∥

∥

∥. As the lag damper

force is proportional to its speed, its deformation speed v
BLD,ALD

BL is given by

v
BLD,ALD

BL =



































bLDζ̇ cos(ζ + ζ0) + dLDζ̇ sin(ζ + ζ0)− rLDθ̇LD sin θLD
bLDβ̇ sin β cos(ζ + ζ0) + bLDζ̇ cos β sin(ζ + ζ0)+

+dLDβ̇ sin β sin(ζ + ζ0)− dLDζ̇ cos β cos(ζ + ζ0)− aLDβ̇ cos β

−bLDβ̇ cos β cos(ζ + ζ0) + bLDζ̇ sin β sin(ζ + ζ0)+

−dLDβ̇ cos β sin(ζ + ζ0)− dLDζ̇ sin β cos(ζ + ζ0)+

−aLDβ̇ sin β − rLDθ̇LD cos θLD



































(B.59)

The absolute speed V LD of the lag damper is given by

V LD =

(

(

r
BLD,ALD

BL

)T

v
BLD,ALD

BL

)

/lLD (B.60)

and is used to generate the damping force generated by the lag damper F LD =
F LD(V LD). In the case of the UH-60A a lookup table is used to evaluate the
lag damper force as the relation between F LD and V LD is highly nonlinear. The
moment generated by the lag damper in blade span reference is given by

MLD
BL =

F LD

lLD
(rc,BLD

BL × r
c,ALD

BL ) (B.61)

The components along the flap and lag degrees of freedom needed in Eq. B.41 are
evaluated as MLDBL

= (MβLD
,0,MζLD

)T .

B.7 Equations summary

Equations B.27 and B.39 describe the aerodynamic and inertial forces and moments
of the ith blade expressed in non–rotating shaft. Rotor forces and moments are
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B – Evaluation of the Main Rotor loads

obtained adding the contribution of all blades.

F rS =

NBL
∑

iS=1

(F I,iS + F A,iS) (B.62)

and

M rS =

NBL
∑

iS=1

(M I,iS +MA,iS +MLD,iS) (B.63)

where MLD,iS is the moment generated by the ith lag damper in non rotating shaft
reference frame and evaluated as MLD,iS = LSRLR,BLMLD,iBL

. A similar approach
is followed in the coupling matrix where the effect of all blades is added

MFIS =

NBL
∑

i=1

MFI,i (B.64)

MMIS =

NBL
∑

i=1

MMI,i (B.65)

Finally rotor force and moments in body.fixed frame can be evaluated as

F r = L−1
Sb
F rS (B.66)

M r = L−1
Sb
M rS + rH

B × F r (B.67)

and

MFr
= L−1

Sb
MFIS (B.68)

MMr
= L−1

Sb
MMIS + rHB ×MF r

(B.69)

Blade flapping and lagging equations Eq. B.44 and B.45 are already written in a
proper reference frame and need no transformation. Assuming

xc =
(

uB,vB,wB,pB,qB,rB,β̇i, . . . ,β̇NBL
,ζ̇i, . . . ,ζ̇NBL

)T

the part of the coupling

matrix which depends on the rotor can be assembled using MFr
, MMr

, Mβ, and Mζ

as

Mrc =























































MFr

MMr

Mβi

...
MβNBL

Mζi
...

MζNBL























































(B.70)
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B – Evaluation of the Main Rotor loads

This matrix is added to the contribution of the fuselage to generate the coupling
matrix Mc.

When dynamic twist is accounted for, Eq. B.56 needs to be added to include
the 2nd order dynamics.
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Appendix C

Matrices and vectors definition for

the Unsteady Thin Airfoil Theory

In this appendix the matrix and vectors necessary for the unified model derivation
are defined. N is the number of inflow states used for the 2D case, while M is the
number of states in the Glauert expansion.

1 = {1 0 0 0 . . .}T

b = {b1 b2 b3 . . . bN}
T

c = {2 1 2/3 1/2 . . . 2/N}T

d = {1/2 0 0 . . .}T

e = {1 1/2 0 0 . . .}T

f = {0 1 2 . . .M}T

hn = {h0 h1 h2 . . . hM}T

vn = {v0 v1 0 . . .}T

λ0 = {λ0 0 0 . . .}T

λ1 = {λ0 λ1 0 . . .}T

A = D + dbT + cdT +
1

2
cbT
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C – Matrices and vectors definition for the Unsteady Thin Airfoil Theory

C =















f 1 0 0 0 . . .
−1/2 0 1/2 0 0 . . .
0 −1/2 0 1/2 0 . . .

0 0 −1/2 0 1/2
. . .

...
...

. . . . . . . . . . . .















D =















0 −1/2 0 0 0 . . .
1/4 0 −1/4 0 0 . . .
0 1/6 0 −1/6 0 . . .

0 0 1/8 0 −1/8
. . .

...
...

. . . . . . . . . . . .















G =















0 1/2 0 0 0 . . .
0 0 1/4 0 0 . . .
0 −1/4 0 1/4 0 . . .

0 0 −1/4 0 1/4
. . .

...
...

. . . . . . . . . . . .















H =















0 0 0 0 0 . . .
0 1/2 0 0 0 . . .
0 0 2/2 0 0 . . .

0 0 0 3/2 0
. . .

...
...

. . . . . . . . . . . .















K =















0 f 2 3f 4 . . .
0 −1/2 0 0 0 . . .
0 0 −2/2 0 0 . . .

0 0 0 −3/2 0
. . .

...
...

. . . . . . . . . . . .















K ′ =















f 1/2 0 0 0 . . .
−1/2 0 1/4 0 0 . . .
0 −1/4 0 1/4 0 . . .

0 0 −1/4 0 1/4
. . .

...
...

. . . . . . . . . . . .














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M =























1/2 0 −1/4 0 0 . . .
0 1/16 0 −1/16 0 . . .

−1/4 0 1/6 0 −1/24 . . .

0 −1/16 0 3/32 0
. . .

...
. . . . . . . . . . . . . . .

0 0 0 −1/8M 0
M

4(M2 − 1)























S =















f 0 0 0 0 . . .
0 0 0 0 0 . . .
0 0 0 0 0 . . .
0 0 0 0 0 . . .
...

...
...

...
...

. . .














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Appendix D

Helicopter Configuration Data

This chapter collects the important configuration data for the rotorcraft used in this
study.
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D – Helicopter Configuration Data

Table D.1: Helicopter configuration data.

Fuselage mass m 7257.5 kg
moments of inertia IXX 6316.8 kg m2

IY Y 52215.0 kg m2

IZZ 49889.0 kg m2

IXZ 2551.6 kg m2

Main Rotor number of blades NBL 4
radius R 8.18 m
chord c 0.53 m
blade mass mBL 116.5 kg
blade first moment SBL 385.7 kg m
blade moment of inertia IBL 2050.8 kg m2

hinge eccentricity e 0.38 m
forward tilt iθ 3 deg
lateral tilt iφ 0 deg
blade pitch/flap coupling δ3 0 deg
rotor speed Ω 27 rad s−1

position in FB rS [0.3,0,-2.3] m

Tail Rotor number of blades NTR 4
radius RTR 1.68 m
cant angle Γ 70 deg
blade pitch/flap coupling δ3TR 35 deg
rotor speed ΩTR 124.6 rad s−1

position in FB rTR [-9.7,0.3,-2.5] m

Horizontal Tail surface SHT 4.18 m2

position in FB rHT [-8.8,0,-0.46] m

Vertical tail surface SV T 3.00 m2

position in FB rV T [-8.7,0,-1.2] m
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