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Summary

Objective of this thesis is to describe the design and realisation phases of

a multirotor to be used for low risk and cost aerial observation. Starting

point of this activity was a wide literature study related to the techno-

logical evolution of multirotors design and to the state of the art. Firstly

the most common multirotor configurations were defined and, according to

a size and performance based evaluation, the most suitable one was cho-

sen. A detailed computer aided design model was drawn as basis for the

realisation of two prototypes. The realised multirotors were “X-shaped”

octorotor with eight coaxially coupled motors. The mathematical model of

the multirotor dynamics was studied. “Proportional Integral Derivative”

and “Linear Quadratic” algorithms were chosen as techniques to regulate

the attitude dynamics of the multirotor. These methods were tested with

a nonlinear model simulation developed in the Matlab Simulink R� environ-

ment. In the meanwhile the Arduino board was selected as the best compro-

mise between costs and performance and the above mentioned algorithms

were implemented using this platform thanks to its main characteristic of

being completely “open source”. Indeed the multirotor was conceived to

be a serviceable tool for the public utility and, at the same time, to be an

accessible device for research and studies. The behaviour of the physical

multirotor was evaluated with a test bench designed to isolate the rotation

about one single body axis at a time. The data of the experimental tests

were gathered in real time using a custom Matlab code and several indoor

tests allowed the “fine tuning” of the controllers gains.

Afterwards a portable “ground station” was conceived and realised in ad-

herence with the real scenarios users needs. Several outdoor experimental

flights were executed with successful results and the data gathered during

the outdoor tests were used to evaluate some key performance indicators as



the endurance and the maximum allowable payload mass. Then the fault

tolerance of the control system was evaluated simulating and experimenting

the loss of one motor; even in this critical condition the system exhibited

an acceptable behaviour.

The reached project readiness allowed to meet some potential users as the

“Turin Fire Department” and to cooperate with them in a simulated emer-

gency. During this event the multirotor was used to gather and transmit

real time aerial images for an improved “situation awareness”.

Finally the study was extended to more innovative control techniques like

the neural networks based ones. Simulations results demonstrated their ef-

fectiveness; nevertheless the inherent complexity and the unreliability out-

side the training ranges could have a catastrophic impact on the airworthi-

ness. This is a factor that cannot be neglected especially in the applications

related to flying platforms.

Summarising, this research work was addressed mainly to the operating pro-

cedures for implementing automatic control algorithms to real platforms.

All the design aspects, from the preliminary multirotor configuration choice

to the tests in possible real scenarios, were covered obtaining performances

comparable with other commercial o↵-the-shelf platforms.



Sommario

Obiettivo di questa tesi è la descrizione delle fasi di progettazione e realiz-

zazione di una piattaforma multirotorica per l’osservazione aerea a basso

rischio e costo. Punto di partenza del lavoro è stata una vasta ricerca

storico-bibliografica e↵ettuata allo scopo di conoscere l’evoluzione tecnolo-

gica nel design dei multirotori ed il relativo stato dell’arte. Sono state

dunque individuate le principali configurazioni di multirotori e sulla base

della valutazione delle dimensioni minime e delle potenziali prestazioni ot-

tenibili è stata scelta la configurazione ottima tra quelle possibili. Succes-

sivamente è stato realizzato un modello CAD di dettaglio sulla cui base

sono stati costruiti due prototipi di multirotore con otto rotori coassiali a

coppie. Constestualmente è stata e↵ettuato uno studio di dettaglio sulla

modellazione matematica del comportamento dinamico del prototipo. Sono

stati inoltre progettati due regolatori automatici, uno di tipo “Proporzionale

Integrale Derivato” e l’altro di tipo “Lineare Quadratico” per il controllo

della dinamica di assetto del velivolo costruito. Questi controllori sono stati

validati in ambiente Matlab Simulink R� verificandone l’interazione con il

modello non lineare del velivolo. Nel contempo è stata eseguita un’ indagine

di mercato sui principali produttori di hardware programmabili per il con-

trollo automatico ed è stata selezionata la scheda Arduino come miglior

compromesso tra costo ed adeguatezza al raggiungimento degli obiettivi

prefissati. Lo studio delle caratteristiche di tale scheda elettronica e del

relativo linguaggio di programmazione ha permesso di implementare su tale

piattaforma gli algoritmi di controllo delle tecniche precedentemente men-

zionate. E’ d’uopo menzionare che una caratteristica peculiare del sistema

di controllo utilizzato è la logica open source, valida sia per quanto at-

tiene all’hardware che per quanto concerne il software. Il velivolo è stato

difatti concepito con l’obiettivo di essere immediatamente utilizzabile per



l’osservazione aerea ed essere, al tempo stesso, un dispositivo di studio

e ricerca con il quale sperimentare, senza vincoli imposti dal produttore,

nuove leggi di controllo automatico ed ulteriori funzionalità. Il comporta-

mento del velivolo è stato dunque testato mediante un banco prova svilup-

pato ad hoc con l’obiettivo di isolare la variazione di uno solo dei tre angoli

di Eulero per ogni test di dinamica eseguito. Al fine di valutare rapidamente

e con precisione l’e�cacia del sistema di controllo, è stato sviluppato, in am-

biente Matlab, un software di acquisizione ed elaborazione dei parametri di

assetto e dei comandi acquisiti in tempo reale. L’esecuzione di numerosi

test al banco prova ha permesso di e↵ettuare il fine tuning dei guadagni

dei controllori. L’attività descritta è stata seguita dall’assemblaggio di una

ground station portatile realizzata in modo da poter rispondere alle esigenze

degli utenti in uno scenario reale. E’ stata dunque eseguita una campagna

di test sperimentali nella quale è stato valutato e confrontato l’e↵etto dei

controllori automatici sulla dinamica di assetto del velivolo. I dati rac-

colti sono stati utilizzati per verificare le stime dei parametri prestazionali

più limitanti per questa tipologia di velivoli quali l’autonomia di durata

ed il massimo carico utile. Successivamente è stato sperimentato, prima

in simulazione e poi realmente, il comportamento del velivolo in caso di

perdita totale di spinta da parte di uno degli otto rotori disponibili. I test,

che hanno avuto esito positivo, hanno permesso di verificare la robustezza

dei controllori di assetto implementati, nei limiti di accettabilità prevedi-

bili per un possibile impiego reale. La maturità raggiunta dal progetto ha

reso fattibile l’incontro con potenziali utenti. Particolare interesse è stato

manifestato dai Vigili del Fuoco del Comune di Torino con i quali è stata

avviata una stretta collaborazione. Questo ha permesso di partecipare at-

tivamente a simulazioni di calamità naturali fornendo, ai gestori del piano

di emergenza, la trasmissione, in tempo reale, di immagini aeree dell’area

interessata e garantendo dunque la necessaria situation awareness.

Parallelamente è stata data enfasi allo studio dei fondamenti teorici alla

base di più innovative tecniche di controllo automatico. In particolare sono

state utilizzate le tecniche basate sull’uso di reti neurali per costruire, al cal-

colatore, delle simulazioni di sistema closed loop. I risultati ottenuti hanno



permesso di dimostrare la potenziale e�cacia di questo strumento quando

utilizzato nei range di addestramento della rete neurale. Tuttavia l’attività

di ricerca eseguita in tale ambito ha permesso di evidenziare che l’intrinseca

complessità e l’inattendibilità del controllore al di fuori dei range di adde-

stramento potrebbero avere e↵etti catastrofici sulla condotta di un volo e

pertanto esistono ancora necessari margini di perfezionamento prima che

queste tecniche possano di↵ondersi, con adeguata garanzia di successo, nel

settore aeronautico.

In conclusione l’attività di ricerca è stata principalmente indirizzata all’ap-

prendimento delle modalità operative di implementazione di leggi di con-

trollo su piattaforme aeree reali. Gli aspetti progettuali inerenti lo sviluppo

di tali sistemi sono stati curati nella loro interezza, dalla fase preliminare

di scelta della configurazione alla realizzazione e sperimentazione in scenari

operativi, evidenziando performance comparabili a quelle di velivoli com-

merciali della medesima categoria disponibili sul mercato.





To my darling wife



The master in the art of living makes little distinction

between his work and his play, his labor and his leisure,

his mind and his body, his education and his recreation,

his love and his religion. He hardly knows which is which.

He simply pursues his vision of excellence at whatever he does,

leaving others to decide whether he is working or playing.

To him he is always doing both.

From the Zen Buddhist Text
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Introduction

1.1 UAVs

Unmanned Aerial Vehicles (UAVs) are autonomous or remotely piloted aircraft. They

range in size from full-scale craft, similar to those flown by humans, to miniature air-

craft centimetres in size. UAVs are driven by a variety of power plants, including petrol

engines, gas turbines and electric motors. The utility of UAVs in military applications

is readily apparent, UAVs can potentially carry out the range of tasks normally ex-

ecuted by piloted aircraft without placing human pilots in jeopardy. However, these

benefits also carry over to civilian aircraft that operate in hazardous conditions or re-

quire tedious or onerous piloting during lengthy operations. For example, unmanned

aircraft could carry out power-line inspection in close proximity to live electrical ca-

bles, a task currently performed by manned aircraft as reported in [4]. Autonomous

rotorcraft also have the potential to revolutionise commercial practice in a variety of

fields such as mining, infrastructure and agriculture, which do not presently employ

aircraft due to the size and expense of full-scale vehicles as detailed in [5]. Small-scale

UAVs, or “Micro Air Vehicles” (MAVs), expand the range of possible aero-robot duties

further with their high portability and ability to operate in small spaces as reported

in [6]. Recent advances in miniaturisation, battery and control technology have made

very small rotorcraft possible [7].
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1.2 Multirotors

Multirotors are a special form of rotorcraft UAV that use pairs of counterrotating rotors

to provide lift and directional control. Unlike conventional helicopters, multirotors

typically have fixed-pitch blades and vary their thrust by changing rotors speed. Flight

attitude is regulated entirely by rotors speed. When the vehicle tilts, a component

of the thrust is directed sideways and the aircraft translates horizontally. Two major

motivators for multirotors are reliability and compactness, both are essential for a

system that will be portable and useful in close proximity to people and structures

in commercial applications. Conventional helicopters are mechanically very complex.

They rely on a complex, adjustable mechanism that causes each blade to go through

a complete pitch cycle each revolution of the rotor, providing attitude control of the

rotor plane that, in turn, is used to control airframe attitude. The most common system

used is a “swashplate” structure that consists of two parallel moving bearings fixed on

the rotor mast to transmit angular displacement to the pitch horns of the rotor blades

(see Fig. 1.1). Small helicopters may further require a Bell-Hillier stabilizer linkage to

Figure 1.1: Full-scale helicopter swashplate [1]
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Chapter 1. Introduction 1.3 Historial context

slow the natural dynamic response of the rotor. Swashplates are sophisticated pieces

of high-speed machinery operating in a vibrating environment and are highly prone to

failure without constant maintenance. Failure of the swashplate causes catastrophic

loss of cyclic control and, typically, destruction of the vehicle. The inherent mechanical

robustness of electric multirotors stems from the simplicity of the rotor head. The

easy and inexpensive maintenance required by multirotors is a key consideration for

civilian craft that must operate reliably in proximity to humans, without regular skilled

maintenance. The compactness of multirotors is due to reduced rotor diameters and

closely spaced layout. They do not have a single large rotor or long tail boom that

can readily collide with nearby obstacles and, instead, use small rotors that are easily

shrouded for protection. This makes them ideal for tasks indoors or in enclosed spaces,

such as inspecting ceilings of a factory, flying down mine shafts or scanning close to

civil infrastructure such as bridges or dam walls.

1.3 Historial context

The utility of unmanned aerial vehicles has always been dictated by the technology

available to control and direct the craft. As early as 1917 (only 14 years after the in-

vention of the aeroplane itself) Elmer Sperry constructed a self-stabilising aircraft using

gyroscopes, barometers and servo-motor control [8]. After take-o↵ controlled by a hu-

man, the Hewitt-Sperry Automatic Aeroplane was capable of flying up to 48 km and

dropping a bag of sand within 3.2 km of a predefined target. The first fully-unmanned

flight was the 1918 Curtis-Sperry Flying Bomb, which was launched from a moving

car and flew a preset distance of 900 m [9]. In the 1930s, development continued on

both sides of the Atlantic, but the emphasis was on radio-controlled drones for target

practice rather than on autonomous vehicles. The outbreak of the Second World War

in 1939 prompted renewed interest in flying bombs. Advances in radio, gyroscopic con-

trol technology and television produced more sophisticated weapons, but with mixed

results. The Allies focused on radio-control of modified bombers, using telemetry taken

from cameras in the nose looking forward and in the cockpit pointed at the instruments.

These attempts had only limited success. The Axis flying bombs, specifically the V-1,

enjoyed great notoriety for their part in the London blitz. The V-1 used a weighted
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pendulum for attitude control, a gas-powered gyroscope compass for bearing and a

barometer for altitude control [8]. A free-wheeling propeller at the front of the craft

estimated distance and caused the bomb to dive when a preset number of rotations

was reached. In practice the V-1 was as inaccurate as other flying bombs of the era,

but the sheer number of launches accounted for more than 6,000 casualties. Captured

V-1s catalysed the Allies to continue developing cruise-missile, Remote-Piloted Vehicle

(RPV) and radio-controlled drone technology, which formed the basis of modern UAVs.

Notable among the early post-war RPVs was the QH-50 Gyrodyne (see Fig. 1.2), the

first unmanned helicopter. Developed for anti-submarine warfare in 1950, the Gyro-

dyne was remotely piloted from ships and used gyroscope feedback control stability in

the air [10]. Post-war cruise-missiles such as Navaho and Matador advanced the capa-

Figure 1.2: QH-50 gyrodyne ASW UAV

bilities of fixed-wing drones. The N-69 Snark and X-10 Navaho introduced an Inertial

Navigation System (INS) to manoeuvre through a trajectory on approach to its target

[8]. The TM-61C Matador had a microwave-based positioning system that allowed

it to map its location using signals received from known transmitters. The TM-76A

had INS and down-looking terrain-following radar. Drones such as the MQM-57 Fal-

coner and Model 147J Lightning Bug added cameras and automated flight capability

to remotely-piloted aircraft; they were used for reconnaissance missions over China and

the Soviet Union after the loss of several U-2 spy planes in the 1960s. This technology

culminated in the SLCM Tomahawk missile, which features INS, Global Positioning

System (GPS), terrain-following radar and terminal guidance based on video feature
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recognition. The Tomahawk was used to good e↵ect during the 1992 Gulf War, demon-

strating a 94% strike rate in its first combat deployment [11]. Today, robot aircraft

combine modern computer power with technology originally developed for drones and

cruise missiles to perform a variety of roles including reconnaissance, surveillance, air-

to-ground and air-to-air attack missions. Progress in computers, light-weight cameras

and Micro Electro-Mechanical System (MEMS) inertial sensors [12] has now made UAV

technology a↵ordable for non-military use.

1.4 Manned Quadrotors

The first manned quadrotor was the Bréguet-Richet “Gyroplane No. 1” constructed

in 1907 (see Fig. 1.3). The gyroplane consisted of a cross-beam fuselage with four

Figure 1.3: Bréguet-Richet Gyroplane No.1 - The First Quadrotor

bi-plane rotors (for a total of 32 blades) at each end. The machine could carry a small

person but it never flew outside of ground e↵ect. As can be read in [13], its handling

was reported to be poor and it required a team of men to stabilise it during hovering

flight. Other early quadrotors that achieved flight were the 1921 Æhmichen quadrotor

and 1922 Jerome-de Bothezat quadrotor “Flying Octopus” [2]. Two notable manned

quadrotor craft were built during the 1960s as part of the United States “X-Plane”

research vehicle series. The Curtiss-Wright X-19 (see Fig. 1.4) was a quad tilt-rotor

the size of a business jet that used a special type of radial propeller. The propellers

used high-angle high-twist rotors to induce vertical thrust even when the rotors were

aligned horizontally. The X-19 was destroyed on its first test flight and the radial lift

rotor technology was not developed further [14]. The Bell X-22 was a quad ducted-

fan craft that saw long service as a research vehicle (see Fig. 1.5). The X-22 could

be configured to emulate the flight behaviour of theoretical aircraft and was used as
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Figure 1.4: Curtiss-Wright X-19 Radial Propeller Craft

Figure 1.5: Bell X-22 Ducted Fan Research Vehicle
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a test-bed for the Hawker Siddeley GR.1 Harrier [14]. Both the X-19 and the X-22

used variable pitch rotors for attitude control and the X-22 had additional vanes in its

outflow to allow for low-speed yaw control. Following the success of the V-22 Osprey

tilt-rotor, Boeing produced conceptual designs for a quad tilt-rotor based on the same

technology. Although no aircraft has yet been built, quad tilt-rotor models have been

tested in wind tunnels for aeroelastic loading of its wings and surfaces (see Fig. 1.6) as

well as in simulation with complex Computational Fluid Dynamics (CFD) programs

for analysis of inflow behaviour and vortex-ring states that plagued the V-22.

Figure 1.6: Boeing Quad Tilt-rotor Half-model in the Langley Wind Tunnel

1.5 Micro Quadrotors

In the last 15 years the number and variety of micro quadrotor vehicles has increased

substantially. Early e↵orts to build small quadrotors were based upon radio-controlled

toys. The Hoverbot, built in 1992, was constructed from four radio-controlled heli-

copters joined at the tail [15] (see Fig. 1.7). The aircraft could lift o↵ in a test frame

and stabilise itself in orientation using potentiometers built into its test gimbal. It used

variable pitch on all four rotors to change thrust. The mid-90s “Roswell Flyer” and

“HMX-4”, later to become the “Draganflyer”, consisted of cheap motors and rotors,

a foam frame and early MEMS gyros in feedback for pilot-assist. The craft were very

light and small, limited to carrying tens of grams of payload. Flying the craft required

continuous pilot attention. This craft has formed the basis of numerous research ve-

hicles. The “Mesicopter” was a late-90s Stanford University project aimed at creating
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Figure 1.7: Borenstein Hoverbot

centimetre-scale quadrotors. The total aircraft weight was of the order of a gram and

special wafer-cut moulds were required to fabricate its rotors. The first “Mesicopter”

prototypes had fixed-pitch rotors in a conventional quadrotor configuration, but later

models used shrouded rotors with inverted mass and a passive aerodynamic system with

rotor cowls and fixed vanes for control [16] (see Fig. 1.8). Post-2000, quadrotors have

Figure 1.8: Stanford “Mesicopter” Micro UAV

proliferated as toys and research tools. The Draganfly Innovations produced several

multirotor versions aimed at professional applications as shown in [17] and illustrated

in Fig. 1.9. The basic Draganflyer quadrotor lifts approximately 250 g of payload for

about 10 minutes. The pilot must stabilise the craft with the assistance of damping

from rate gyros, although more advanced models can self-stabilise using ultrasonic sen-

sors. Draganflyer parts are used by many control and robotics researchers around the

world. The number of purpose-built quadrotors is low, compared with derivative craft,

due to the high overheads involved in constructing aircraft from scratch. Typically, a

research quadrotor will consist of Draganflyer chassis, rotors and motors complemented
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Figure 1.9: Draganflyer “X4-P”

by custom avionics and control. Numerous universities have used quadrotors for re-

search into attitude control, visual servoing, swarm control and aerodynamics. The

following is only a brief overview of selected quadrotor research projects. CEA’s “X4-

Flyer” project seeks to develop quadrotor technology for intuitive pilot operation and

operation in hazardous environments [18]. This quadrotor is a novel departure from

other modified Draganflyers in that it doubles the number of blades on each motor as

illustrated in Fig. 1.10.

It also has custom drive electronics consisting of 1 GHz Discrete Signal Processor

Figure 1.10: CEA’s “X4-Flyer”

(DSP) card that provides excellent flight stability. In 2008 Guenard added four ducts

around the rotors [19]. Bourquardez used visual feedback in an outer control loop for po-

sition and altitude [20]; the system can guide the CEA’s quadrotor through waypoints

using a single down-facing camera. The École Polytechnique Fédérale de Lausanne

(EPFL) “OS4” project is aimed at developing autonomous indoor Vertical Take-O↵

and Landing (VTOL) vehicles [21], capable of using di↵erent navigation schemes. The
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“OS4” quadrotor began as a Draganflyer test-bed on a gimbal but has evolved into

an entirely original vehicle, including custom avionics, airframe and rotors (see Fig.

1.11). The craft has been successfully used for testing a variety of control schemes as

Figure 1.11: EPFL “OS4” Quadrotor

detailed in [22, 23]. Tayebei and McGilvray have investigated quadrotors deeply, focus-

ing on quaternion and nonlinear control [24]. Their experimental apparatus consists of

a non-flying modified Draganflyer with original airframe and drive systems, but with

custom avionics. The quadrotor is fixed to a ball-joint test rig with o↵-board power

that allows limited rotation in all three axes [25]. The Stanford Testbed of Autonomous

Rotorcraft for Multi-Agent Control (STARMAC) project uses multiple vehicles flying

in formation for collision and obstacle avoidance [26]. Quadrotors were chosen for this

project because they are not as cumbersome as other rotorcraft and can operate in

small environments. The STARMAC quadrotors use Draganflyer rotors and motors

(see Fig. 1.12), but incorporate a sliding-mode controller for attitude stability [27].

MIT’s Aerospace Controls Laboratory uses quadrotors for UAV swarm experiments.

As many as five quadrotors may fly simultaneously and cooperate with Unmanned

Ground Vehicles (UGVs). In one experiment, a quadrotor was landed successfully

on a moving UGV. MIT uses unmodified Draganflyers with onboard video, which are

controlled by o↵-the-shelf hobby radios via a PC interface connected to the handset’s

“trainer port” [28]. KITECH’s Division of Applied Robotic Technology Quad-Rotor

Type (QRT) is designed to investigate quadrotor technology for use in indoor emer-

gency observation applications [29]. The QRT consists of a 1.5 kg custom-made flyer

built around a Draganflyer chassis. It uses rigid hobby propellers, driven by geared
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Figure 1.12: Stanford STARMAC Quadrotor

motors with encoders, that produce a total maximum “mass thrust” of 1.8 kg for 20%

headroom; no information is given on flight time or non-battery payload. The QRT uses

custom avionics, INS and has an onboard camera, IR and ultrasonic sensors. UTC’s

Centre de Recherche de Royallieu quadrotor project aims to develop simple control

strategies for four-rotor helicopters [30, 31]. The early hardware setup was similar to

that used by MIT, the quadrotor was an unmodified Draganflyer with mounted inertial

sensors transmitting wirelessly to a PC interfaced to a hobby radio handset. In this

case, the PC interface card is connected to the handset potentiometers, rather than

to a “trainer port” [32]. More recently, the onboard system was replaced with custom

electronics built around the Rabbit Microprocessor RCM3400 core, which reads inertial

sensors, controls the motors and communicates over a wireless modem [33]. It includes

onboard video transmitting to an o↵board PC that sends command signals via the radio

handset. The University of Pennsylvania quadrotor project focuses on vision control

for autonomous UAV rotorcraft. The quadrotor consists of an HMX-4 connected to a

tether that allows it to fly vertically and pitch, roll and yaw without lateral translation

[34]. A pair of cameras connected to a PC detect flyer position and pose, using coloured

blobs attached to the craft. A second PC receives the pose information and controls

the orientation of the flyer via a parallel port “remote control device” [35]. Next to the

Hoverbot, the largest quadrotor found was the 6.2 kg Cornell Autonomous Flying Ve-

hicle (AFV). The craft was custom-built and consisted of hobby rotors, motors, speed

controllers and early lithium polymer batteries. A try-and-see method was used to find

the best mix of rotors, motors and gearing. The craft used rotor speed control loops
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via shaft encoders and performed bias estimation for its inertial sensors using Kalman

filters. Although the vehicle achieved hover stability on a test platform with tethered

power, damage during testing prevented free flight experiments.

1.6 Multirotor most common configurations

This section presents an overview of the most common multirotor flight and design

configurations. They are shown from Fig. 1.13 to Fig. 1.19.

Fig. 1.13 shows two possible tricopter flight configurations; in the first one, to the

left, all the rotors are co-rotating; in the second one, to the right, one of the three

rotors (coloured in green) counterrotates. In both configurations the rotation axis of

one motor can be modified by means of a servo motor.

Figure 1.13: Trirotor flight configurations

Fig. 1.14 shows the, probably, most widely di↵used configuration: the quadrotor.

Quadrotors, as well as hexarotors (see Fig. 1.15) and octorotors (see Fig. 1.16), can be

controlled to fly either in “+ flight configuration”, i.e. pointing an arm in the navigation

direction, or in “X flight configuration”, i.e. with the navigation direction in the middle

plane between two arms.

Figure 1.14: Quadrotor + and X flight configurations
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Figure 1.15: Hexarotor + and X flight configurations

Figure 1.16: Octorotor + and X flight configurations

Some other, less common, design configurations, more suitable for heavier payload and

major safety demanding flight missions, are possible. Fig. 1.17 shows the octorotor V

design configuration in which the 8 motors are equally split on two divergent bars.

Figure 1.17: Octorotor V design configuration

Fig. 1.18 presents the hexarotor Y design configuration in which the multirotor is lifted

by 6 coaxially coupled rotors.
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Figure 1.18: Hexarotor Y design configuration

The case in which 8 rotors are coaxially coupled represents the octorotor X design

configuration (see Fig. 1.19).

Figure 1.19: Octorotor X flight and design configuration

This thesis presents a thorough analysis of an octorotor, in flight and design X configu-

ration, named Qx-Rotor, developed at Politecnico di Torino, Italy. This design config-

uration has been chosen for its higher thrust to weight ratio among the most common

ones. Fig. 1.20 shows the Qx-Rotor preliminary computer aided design (CAD), while

Fig. 1.21 shows the realized prototype.
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Figure 1.20: Octorotor CAD

Figure 1.21: Qx-Rotor : the realized prototype

15



2

Reference frames

This chapter describes the various reference frames and coordinate systems that are

used to define the position and the orientation of an aircraft and the transformation

between these coordinate systems. It is necessary to use several di↵erent coordinate

systems for the following reasons:

• Newton’s equations of motion are derived relative to a fixed, inertial reference

frame. However, motion is most easily described in a body-fixed frame.

• Aerodynamic forces and torques act on the aircraft body and are most easily

described in a body-fixed reference frame.

• On-board sensors like accelerometers and rate gyros measure information with

respect to the body frame. Alternatively, GPS measures position, ground speed

and course angle with respect to the inertial frame.

• Most mission requirements like loiter points and flight trajectories, are specified

in the inertial frame. In addition, map information is also given in an inertial

frame.

One coordinate frame is transformed into another through two basic operations: rota-

tions and translations. Section 2.1 describes rotation matrices and their use in trans-

forming between coordinate frames. Section 2.2 describes the specific coordinate frames

used for MAV systems. In section 2.3 we derive the Coriolis formula which is the basis

for transformations between translating and rotating frames.
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Chapter 2. Reference frames 2.1 Rotation Matrices

2.1 Rotation Matrices

We begin by considering the two coordinate systems shown in Fig. 2.1. The vector p

Figure 2.1: Rotation in 2D

can be expressed in both the F0 frame (specified by (̂i0, ĵ0, k̂0)) and in the F1 frame

(specified by (̂i1, ĵ1, k̂1)). In the F0 frame we have

p = p0
x

î0 + p0
y

ĵ0 + p0
z

k̂0.

Alternatively in the F1 frame we have

p = p1
x

î1 + p1
y

ĵ1 + p1
z

k̂1.

Setting these two expressions equal to each other gives

p1
x

î1 + p1
y

ĵ1 + p1
z

k̂1 = p0
x

î0 + p0
y

ĵ0 + p0
z

k̂0.

Taking the dot product of both sides with î1, ĵ1, k̂1 respectively and stacking the result

into matrix form gives

p1 ,

0

@

p1
x

p1
y

p1
z

1

A =

0

@

î1 · î0 î1 · ĵ0 î1 · k̂0
ĵ1 · î0 ĵ1 · ĵ0 ĵ1 · k̂0
k̂1 · î0 k̂1 · ĵ0 k̂1 · k̂0

1

A

0

@

p0
x

p0
y

p0
z

1

A .

From the geometry of Fig. 2.1 we get

p1 = R1

0

p0, (2.1)
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Chapter 2. Reference frames

where

R1

0

,

0

@

cos ✓ sin ✓ 0
� sin ✓ cos ✓ 0

0 0 1

1

A .

The notation R1

0

is used to denote a rotation matrix from coordinate frame F0 to

coordinate frame F1. Proceeding in a similar way, a right-handed rotation of the

coordinate system about the y-axis gives

R1

0

,

0

@

cos ✓ 0 � sin ✓
0 1 0

sin ✓ 0 cos ✓

1

A ,

and a right-handed rotation of the coordinate system about the x-axis results in

R1

0

,

0

@

1 0 0
0 cos ✓ sin ✓
0 � sin ✓ cos ✓

1

A .

As pointed out in [36], the negative sign on the sin term appears above the line with

only ones and zeros. The matrix R1

0

in the above equations are examples of a more

general class of rotation matrices that have the following properties:

P.1. (Rb

a

)�1 = (Rb

a

)T = Ra

b

.

P.2. Rc

b

Rb

a

= Rc

a

.

P.3. det
�

Rb

a

�

= 1.

In the derivation of Eq. (2.1) note that the vector p remains constant and the new

coordinate frame F1 was obtained by rotating F0 through a righted-handed rotation

of angle ✓. We will now derive a formula, called the rotation formula that performs

a left-handed rotation of a vector p about another vector n̂ by an angle of µ. Our

derivation follows that given in [36]. Consider Fig. 2.2 which is similar to Fig. 1.2-2 in

[36]. The vector p is rotated, in a left-handed sense, about a unit vector n̂ by an angle

of µ to produce the vector q. The angle between p and n̂ is �. By geometry we have

that

q = ~ON + ~NW + ~WQ. (2.2)

The vector ~ON can be found by taking the projection of p on the unit vector n̂ in the

direction of n̂:

~ON = (p · n̂)n̂.
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Chapter 2. Reference frames 2.1 Rotation Matrices

Figure 2.2: Left-handed rotation of a vector p about the unit vector n̂ by an angle of µ

to obtain the vector q

The vector ~NW is in the direction of p� ~ON with a length of NQ cosµ. Noting that

the length NQ equals the length NP which is equal to kp� ~ONk we get that

~NW =
p� (p · n̂)n̂

kp� (p · n̂)n̂kNQ cosµ =

= (p� (p · n̂)n̂) cosµ.

The vector ~WQ is perpendicular to both p and n̂ and has length NQ sinµ. Noting

that NQ = kpk sin� we get

~WQ =
p⇥ n̂

kpk sin�NQ sinµ =

= �n̂⇥ p sinµ.

Therefore Eq. (2.2) becomes

q = (1� cosµ)(p · n̂)n̂+ cosµp� sinµ(n̂⇥ p), (2.3)

which is called the rotation formula. As an example of the application of Eq. (2.3)
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Chapter 2. Reference frames

Figure 2.3: Rotation of p about the z-axis

consider a left handed rotation of a vector p0 in frame F0 about the z-axis as shown in

Fig. 2.3. Using the rotation formula we get

q0 = (1� cos ✓)(p · n̂)n̂+ cos�p� sin�n̂⇥ p =

= (1� cos�)p0
z

0

@

0
0
1

1

A + cos�

0

@

p0
x

p0
y

p0
z

1

A � sin�

0

@

�p0
y

p0
x

0

1

A =

=

0

@

cos� sin� 0
� sin� cos� 0

0 0 1

1

A p0 =

= R1

0

p0.

Note that the rotation matrix R1

0

can be interpreted in two di↵erent ways. The first

interpretation is that it transforms the fixed vector p from an expression in frame F0

to an expression in frame F1 where F1 has been obtained from F0 by a right-handed

rotation. The second interpretation is that it rotates a vector p though a left-handed

rotation to a new vector q in the same reference frame.

Right-handed rotations of vectors are obtained by using (R1

0

)T .

2.2 Multirotor Coordinate Frames

For multirotors there are several coordinate systems that are of interest. In this section

we will define and describe the following coordinate frames:
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Chapter 2. Reference frames 2.2 Multirotor Coordinate Frames

• the inertial frame,

• the vehicle frame,

• the vehicle-1 frame,

• the vehicle-2 frame,

• and the body frame.

Throughout the thesis we assume a flat, non-rotating earth: a valid assumption for

multirotors.

2.2.1 The inertial frame Fi

The inertial coordinate system is an earth fixed coordinate system with origin at the

defined home location. As shown in Fig. 2.4, the unit vector îi is directed North, ĵi is

directed East and k̂i is directed toward the center of the earth.

Figure 2.4: The inertial coordinate frame. The x-axis points North, the y-axis points

East and the z-axis points into the earth

2.2.2 The vehicle frame Fv

The origin of the vehicle frame is at the center of mass of the multirotor. However, the

axes of Fv are aligned with the axis of the inertial frame Fi. In other words, the unit

vector îv points North, ĵv points East and k̂v points toward the center of the earth, as

shown in Fig. 2.5.
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kî

jî

iî

(East)

(into the Earth)

(North)
kv^

jv̂

iv̂

(East)

(into the Earth)

(North)

Figure 2.5: The vehicle coordinate frame. The x-axis points North, the y-axis points

East and the z-axis points into the earth

2.2.3 The vehicle-1 frame Fv1

The origin of the vehicle-1 frame is identical to the vehicle frame, i.e, the center of

gravity. However, Fv1 is positively rotated about k̂v by the yaw angle  so that if the

airframe is not rolling or pitching, then îv1 would point out the nose of the airframe,

ĵv1 points out the right, k̂v1 is aligned with k̂v and points into the earth. The vehicle-1

frame is shown in Fig. 2.6. The transformation from Fv to Fv1 is given by

pv1 = Rv1

v

( )pv,

where

Rv1

v

( ) =

0

@

cos sin 0
� sin cos 0

0 0 1

1

A .

2.2.4 The vehicle-2 frame Fv2

The origin of the vehicle-2 frame is again the center of gravity and is obtained by

rotating the vehicle-1 frame in a right-handed rotation about the ĵv1 axis by the pitch

angle ✓. If the roll angle is zero, then îv2 points out the nose of the airframe, ĵv2 points

out the right and k̂v2 points out the belly, as shown in Fig. 2.7. The transformation
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Chapter 2. Reference frames 2.2 Multirotor Coordinate Frames

jv̂

iv̂

(East)

ψ

(North) iv1
^

jv1
^

Motor 1 UP & 6 DOWN
Motor 2 UP & 5 DOWN

Motor 3 UP & 8 DOWN
Motor 4 UP & 7 DOWN

π/2

Figure 2.6: The vehicle-1 frame. If the roll and pitch angles are zero, then the x-axis

points out the nose of the airframe, the y-axis points out to the right and the z-axis points

into the earth

iv1
^

kv1
^

iv2
^

kv2
^

θ

Figure 2.7: The vehicle-2 frame. If the roll angle is zero, then the x axis points out the

nose of the airframe, the y-axis points out the right and the z axis points out the belly
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jv2 ^

jb̂

kv2 ^

kb ^

ɸ
1, 4

6, 7

2, 3

5, 8

Figure 2.8: The body frame. The x-axis points out the nose of the airframe, the y-axis

points out the right and the z-axis points out the belly

from Fv1 to Fv2 is given by

pv2 = Rv2

v1

(✓)pv1,

where

Rv2

v1

(✓) =

0

@

cos ✓ 0 � sin ✓
0 1 0

sin ✓ 0 cos ✓

1

A .

2.2.5 The body frame Fb

The body frame is obtained by rotating the vehicle-2 frame in a right handed rotation

about îv2 by the roll angle �. Therefore, the origin is the center of gravity, îb points

out the nose of the airframe, ĵb points out the right and k̂b points out the belly. The

body frame is shown in Fig. 2.8. The transformation from Fv2 to Fb is given by

pb = Rb

v2

(�)pv2,

where

Rb

v2

(�) =

0

@

1 0 0
0 cos� sin�
0 � sin� cos�

1

A .
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Chapter 2. Reference frames 2.3 Equation of Coriolis

The transformation from the vehicle frame to the body frame is given by

Rb

v

(�, ✓,  ) = Rb

v2

(�)Rv2

v1

(✓)Rv1

v

( ) =

=

0

@

1 0 0
0 cos� sin�
0 � sin� cos�

1

A

0

@

cos ✓ 0 � sin ✓
0 1 0

sin ✓ 0 cos ✓

1

A

0

@

cos sin 0
� sin cos 0

0 0 1

1

A =

=

0

@

c✓c c✓s �s✓
s�s✓c � c�s s�s✓s + c�c s�c✓
c�s✓c + s�s c�s✓s � s�c c�c✓

1

A ,

where c� , cos� and s� , sin�.

2.3 Equation of Coriolis

In this section we provide a simple derivation of the famous equation of Coriolis. We

will again follow the derivation given in [36]. Suppose that we are given two coordinate

frames Fi and Fb as shown in Fig. 2.9. For example, Fi might represent the inertial

frame and Fb might represent the body frame of a multirotor. Suppose that the vector

p is moving in Fb and that Fb is rotating and translating with respect to Fi. Our

objective is to find the time derivative of p as seen from frame Fi. We will derive

the appropriate equation through two steps. Assume first that Fb is not rotating with

respect to Fi. Denoting the time derivative of p in frame Fi as
d

dt
i

p we get

d

dt
i

p =
d

dt
b

p. (2.4)

On the other hand, assume that p is fixed in Fb but that Fb is rotating with respect

to Fi, let ŝ be the instantaneous axis of rotation and �� the (right-handed) rotation

angle. Then the rotation formula, Eq. (2.3), gives

p+ �p = (1� cos(���))(p · ŝ)ŝ+ cos(���)p� sin(���) (ŝ⇥ p) .

Using a small angle approximation and dividing both sides by �t gives

�p

�t
⇡ ��

�t
(ŝ⇥ p) .

Taking the limit as �t ! 0 and defining the angular velocity of Fb with respect to Fi

as !
b/i

, ŝ�̇ we get
d

dt
i

p = !
b/i

⇥ p. (2.5)
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Chapter 2. Reference frames

Figure 2.9: Derivation of the equation of Coriolis

Since di↵erentiation is a linear operator we can combine Eq. (2.4) and Eq. (2.5) to

obtain
d

dt
i

p =
d

dt
b

p+ !
b/i

⇥ p, (2.6)

which is the equation of Coriolis.
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3

Kinematics and Dynamics

In this chapter we derive the expressions for the kinematics and the dynamics of a

rigid body following the approach given in [37]. While the expressions derived in this

chapter are general to any rigid body, we will use notation and coordinate frames that

are typical in the aeronautics literature. In particular, in section 3.1 we define the

notation that will be used for the state variables of a multirotor. In section 3.2 we

derive the expressions for the kinematics and in section 3.3 we derive the dynamics.

3.1 Multirotor State Variables

The state variables of the multirotor are the following twelve quantities:

p
n

= the inertial (north) position of the multirotor along îi in Fi,

p
e

= the inertial (east) position of the multirotor along ĵi in Fi,

h = the altitude of the aircraft measured along k̂i in Fi,

u = the body frame velocity measured along îb in Fb,

v = the body frame velocity measured along ĵb in Fb,

w = the body frame velocity measured along k̂b in Fb,

� = the roll angle defined with respect to Fv2,
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Chapter 3. Kinematics and Dynamics

✓ = the pitch angle defined with respect to Fv1,

 = the yaw angle defined with respect to Fv,

p = the roll rate measured along îb in Fb,

q = the pitch rate measured along ĵb in Fb,

r = the yaw rate measured along k̂b in Fb.

The state variables are shown schematically in Fig. 3.1. The position (p
n

, p
e

, h) of the

multirotor is given in the inertial frame, with positive h defined along the negative Z

axis in the inertial frame. The translational velocity (u, v, w) and the angular velocity

(p, q, r) of the multirotor are given with respect to the body frame. The Euler angles

(roll �, pitch ✓ and yaw  ) are given with respect to the vehicle-2 frame, the vehicle-1

frame and the vehicle frame respectively.

(u, ɸ, p) 
Roll axis

(v, θ, q) 
Pitch axis

(w, ψ, r) 
Yaw axis

1
6

2
5

3
8

4
7

Figure 3.1: Definition of axes

3.2 Multirotor Kinematics

The state variables p
n

, p
e

, and�h are inertial frame quantities, whereas the velocities

u, v and w are body frame quantities. Therefore the relationship between position and
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Chapter 3. Kinematics and Dynamics 3.2 Multirotor Kinematics

velocities is given by

d

dt

0

@

p
n

p
e

�h

1

A = Rv

b

0

@

u
v
w

1

A =

= (Rb

v

)T

0

@

u
v
w

1

A =

=

0

@

c✓c s�s✓c � c�s c�s✓c + s�s 
c✓s s�s✓s + c�c c�s✓s � s�c 
�s✓ s�c✓ c�c✓

1

A

0

@

u
v
w

1

A ,

where c� , cos� and s� , sin�.

The relationship between absolute angles �, ✓ and  and the angular rates p, q and r

is also complicated by the fact that these quantities are defined in di↵erent coordinate

frames. The angular rates are defined in the body frame Fb, whereas the roll angle �

is defined in Fv2, the pitch angle ✓ is defined in Fv1 and the yaw angle  is defined in

the vehicle frame Fv.

We need to relate p, q and r to �̇, ✓̇ and  ̇. Since �̇, ✓̇ and  ̇ are small and noting that

Rb

v2

(�̇) = Rv2

v1

(✓̇) = Rv1

v

( ̇) = I,

we get
0

@

p
q
r

1

A = Rb

v2

(�̇)

0

@

�̇
0
0

1

A+Rb

v2

(�)Rv2

v1

(✓̇)

0

@

0
✓̇
0

1

A+Rb

v2

(�)Rv2

v1

(✓)Rv1

v

( ̇)

0

@

0
0
 ̇

1

A =

=

0

@

�̇
0
0

1

A+

0

@

1 0 0
0 c� s�
0 �s� c�

1

A

0

@

0
✓̇
0

1

A+

0

@

1 0 0
0 c� s�
0 �s� c�

1

A

0

@

c✓ 0 �s✓
0 1 0
s✓ 0 c✓

1

A

0

@

0
0
 ̇

1

A =

=

0

@

1 0 �s✓
0 c� s�c✓
0 �s� c�c✓

1

A

0

@

�̇

✓̇

 ̇

1

A , (3.1)

where c� , cos� and s� , sin�.

Inverting we get

0

@

�̇

✓̇

 ̇

1

A =

0

@

1 sin� tan ✓ cos� tan ✓
0 cos� � sin�
0 sin� sec ✓ cos� sec ✓

1

A

0

@

p
q
r

1

A . (3.2)
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3.3 Rigid Body Dynamics

Let v be the velocity vector of the multirotor. Newton’s laws only hold in inertial

frames, therefore Newton’s law applied to the translational motion is

m
dv

dt
i

= f ,

where m is the mass of the multirotor considered constant, f is the total force applied

to the multirotor and
d

dt
i

is the time derivative in the inertial frame. From the equation

of Coriolis we have

m
dv

dt
i

= m

✓

dv

dt
b

+ !
b/i

⇥ v

◆

= f , (3.3)

where !
b/i

is the angular velocity of the airframe with respect to the inertial frame.

Since the control force is computed and applied in the body coordinate system and since

!
b/i

is measured in body coordinates, we will translate Eq. (3.3) in body coordinates

obtaining

m

✓

dvb

dt
b

+ !b

b/i

⇥ vb

◆

= f b, (3.4)

where vb , (u, v, w)T , !b

b/i

, (p, q, r)T and f b , (f
x

, f
y

, f
z

)T are all expressed in

the body reference frame. Therefore Eq. (3.4) becomes
0

@

u̇
v̇
ẇ

1

A =

0

@

rv � qw
pw � ru
qu� pv

1

A+
1

m

0

@

f
x

f
y

f
z

1

A . (3.5)

For rotational motion, Newton’s second law states that

dh

dt
i

= m,

where h is the angular momentum and m is the applied torque. Using the equation of

Coriolis we have
dh

dt
i

=
dh

dt
b

+ !
b/i

⇥ h = m. (3.6)

Again, Eq. (3.6) is most easily resolved in body coordinates giving

dhb

dt
b

+ !b

b/i

⇥ hb = mb, (3.7)

where hb = J!b

b/i

and J is the constant inertia matrix given by

J =

0

@

R

(y2 + z2) dm �
R

xy dm �
R

xz dm
�
R

xy dm
R

(x2 + z2) dm �
R

yz dm
�
R

xz dm �
R

yz dm
R

(x2 + y2) dm

1

A ,
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,

0

@

J
x

�J
xy

�J
xz

�J
xy

J
y

�J
yz

�J
xz

�J
yz

J
z

1

A .

As shown in Fig. 1.19, the multirotor is essentially symmetric about all three axes,

therefore J
xy

= J
xz

= J
yz

= 0, which implies that

J =

0

@

J
x

0 0
0 J

y

0
0 0 J

z

1

A .

Therefore

J�1 =

0

B

@

1

J

x

0 0
0 1

J

y

0

0 0 1

J

z

1

C

A

.

Defining mb , (⌧
�

, ⌧
✓

, ⌧
 

)T we can write Eq. (3.7) as
0

@

ṗ
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ṙ

1
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=
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@
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J

x

0 0
0 1

J

y

0

0 0 1

J

z
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C

A

2

6

4
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@

0 r �q
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0 0
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0
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J
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@

p
q
r

1

A+

0

@

⌧
�

⌧
✓

⌧
 

1

A

3
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0
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�J

x

J

y

pr
J

x
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pq
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+
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@

1

J

x

⌧
�

1

J
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⌧
✓
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⌧
 

1

C

A

.

The six degree of freedom model for the multirotor kinematics and dynamics can be

summarized as follows:

0

@

ṗ
n

ṗ
e

ḣ

1

A =

0

@

c✓c s�s✓c � c�s c�s✓c + s�s 
c✓s s�s✓s + c�c c�s✓s � s�c 
s✓ �s�c✓ �c�c✓

1

A

0

@

u
v
w

1

A (3.8)

0

@

u̇
v̇
ẇ

1

A =

0

@

rv � qw
pw � ru
qu� pv

1

A+
1

m

0

@

f
x

f
y

f
z

1

A (3.9)

0

@

�̇

✓̇

 ̇

1

A =

0

@

1 s� tan ✓ c� tan ✓
0 c� �s�

0 s�
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1

A

0

@
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1

A (3.10)
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0
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1

C

A

, (3.11)

where c� , cos� and s� , sin�.
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4

Physical architecture

4.1 Physical architecture and parameters

The primary structure of the prototype is constituted by the central fiberglass housing

which accommodates the control electronics, the power distribution board, the flight

sensors and the power supply. Four arms, equally spaced, depart from the primary

structure, each one sustaining, at its extremity, two brushless coaxial, counterrotating

DC motors and the relevant electronic speed controllers (ESCs).

The body fixed reference frame (Fb) of the multirotor is set, as shown in Fig. 1.19, in

its centre of gravity (COG), with:

• the X
b

axis along the front direction;

• the Y
b

axis in the right direction;

• the Z
b

axis resulting downwards.

The used control electronics, available on the market, is named Ardupilot Mega board

(A.P.M.); the board can be coupled with an Inertial Measurement Unit (IMU) plat-

form, namely OilPan IMU, that contains accelerometers and gyroscopes from whose

measurements we derive the attitude and velocity of the multirotor. The chosen board

allows linking other useful devices like a sonar for height measurements. The A.P.M.

is supplied by a lithium polymer battery and a dedicated board distributes power to

sensors and rotors. Communication with a ground control station is possible through
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the use of XBee radios. For a more thorough description of the used electronics refer

to [38].

Qx-Rotor is composed of several major (e.g. motors, batteries, etc...) and minor com-

ponents (e.g. bolt, screws, etc...); in order to reduce the mass analysis complexity, all

the single masses have been concentrated in some major units, as presented in Tab. 4.1.

The mass of the whole multirotor results accordingly to be equal to m = 2.645 [Kg].

With the aim of simplifying the identification process and seeking a good approximation

Table 4.1: Main components masses

Component Quantity Mass value [Kg] Symbol

Motor 8 0.071 m
m

Propeller 8 0.020 m
p

Battery 2 0.432 m
b

Central structure 1 0.937 m
cs

Arm 4 0.029 m
a

Totale mass // 2.645 m

of the parameters, the multirotor inertial structure is regarded as two perpendicular

rods, with four concentrated masses, at the four ends. Each one of these four concentred

masses, m
c

, is given by Eq. (4.1).

m
c

= 2m
m

+ 2m
p

+ 1/2m
a

= 0.197 [Kg] (4.1)

Recalling that the Fb is set as in Fig. 1.19, the distance of these four concentrated

masses from the Z
b

axis is equal to � = 0.220 [m], while the distances from the X
b

and

Y
b

axes are both equal to �
c

= �cos(⇡/4) = 0.156 [m].

The aircraft mass balance (i.e. the central structure, the batteries and the half part

of each arm) is assumed to be homogeneously distributed inside a sphere of radius

⇢ = 0.070 [m], centred at the origin of the body axes. The mass of this sphere, m
s

, is

shown in Eq. (4.2).

m
s

= m
cs

+ 2m
b

+ 1/2 · 4 ·m
a

= 1.859 [Kg] (4.2)

Hence we can calculate the moments of inertia with respect to the body axes as in Eqs.

(4.3) and (4.4).

J
x

= J
y

= 4m
c

�
c

2 +
2

5
m

s

⇢2 = 0.023[Kg m2] (4.3)
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J
z

= 4m
c

�2 +
2

5
m

s

⇢2 = 0.042[Kg m2] (4.4)

4.2 The Ardupilot Mega board

The Ardupilot Mega board (A.P.M.) is a printed circuit board (P.C.B.) provided with

an embedded processor and combined with circuitry to switch between the radio control

(R.C.) and the autopilot control. The A.P.M. is shown in Fig. 4.1.

It is based on a 16 MHz Atmega 2560 processor and provided with a built-in hardware

Figure 4.1: The Ardupilot Mega board

failsafe that uses a separate circuit (multiplexer chip and Atmega 328 processor) to

transfer control from the R.C. system to the autopilot and back again.

The A.P.M. dual processor design allows 32 million instructions per second (M.I.P.S.)

and supports up to 700 waypoints memorization, thanks to the 4 Kb EEPROM. Other

memory embedded devices are a 128 Kb Flash Program Memory and a 8 Kb SRAM.

The board is equipped with a 6-pin G.P.S. connector, 16 spare analog inputs - each one

provided with an analog to digital converter (A.D.C.) - and 40 digital inputs/outputs

for additional sensors. Four dedicated serial ports for two-way telemetry (using XBee

modules) are available. Finally 8 R.C. channels, including the autopilot on/o↵ one, can
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be processed by the autopilot. Sensors are mounted on a di↵erent P.C.B., the Inertial

Measurement Unit (I.M.U.) board, commercially known as OilPan I.M.U., shown in

Fig. 4.2. This P.C.B. is equipped with

• a dual 3.3 volts voltage regulator,

• 3-axis accelerometers,

• 3-axis gyros,

• 12-bit A.D.C. for gyros,

• a built-in 16 MB data logger (”the black box”),

• a temperature sensor,

• a barometric pressure sensor for altitude sensing,

• a voltage sensor for battery status.

Figure 4.2: The OilPan Inertial Measurement Unit

4.3 Competitiveness aspects

Two are the main competitiveness aspects linked to the described autopilot system.

The first one is the overall price of about 400 $ comprising the A.P.M., the OilPan
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I.M.U., the sensors and the telemetry modules. This price is far away from the other

C.O.T.S. platforms.

The main factor is, of course, the open source nature of this autopilot system, since

it is made of both open source software and hardware. This means that the hardware

schematics, P.C.B. files, parts list are all freely available on the web, published under a

Creative Commons license that allows free use and modifications as long as the resulting

product retains the producer credit.

Also the software is open source, published under a Lesser General Public License

(L.G.P.L.) that allows free use and modification, as long as also the resulting product

is open source and the producer attribution is retained.

4.4 Endurance

One of the main issue with multirotors is the endurance. Multirotors are generally

supplied by lithium polymer (LiPo) batteries. A LiPo battery can consist of multiple

cells. One cell delivers approximatively 3.7 Volts [V]. A three cells LiPo battery is

called a 3S LiPo and can supply 11.1 [V]. Another important parameter to know when

dealing with LiPo batteries is the discharge rate identified with the letter “C”. For

example a discharge rate of “25C to 40C” means that 25C is the nominal discharge

rate and 40C is the maximum burst discharge rate. It is advisable to stay on or below

nominal discharge level to preserve battery future life. Not all brands say something

about the peak discharge rate on the battery itself. The battery capacity is defined

in milli-Ampere per hour [mAh]. A battery with a 1000 [mAh] capacity can deliver

1000 milli-Ampere [mA] for 1 hour as well as 1 [mA] for 1000 hours and so on so far.

The battery capacity, together with the LiPo battery discharge rate, will define its

maximum current output (Ampére, [A]). This fact is very important to keep in mind,

when choosing a LiPo battery. The combination of capacity and discharge rate is what

we have to focus on. It is important to know that the battery cells do not count up for

maximum current draw. The amount of cells only determine the voltage of the LiPo,

as needed for the equipment.
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4.4.1 Calculation of discharge rate

For the multirotor described in the thesis, two 3S LiPo batteries, in parallel connection,

have been used. Each one of them has a capacity of 5000 [mAh] giving a total avail-

ability of 10000 [mAh] which is equal to 10 [Ah]. The nominal discharge rate is 30C

and the maximum burst discharge rate is 50C. When connected in parallel the whole

pack has a discharge rate of 30C as well. Therefore the maximum current draw can be

calculated as

C · dr
n

= 10[Ah] · 30C = 300[A] (4.5)

where

• C is the battery capacity,

• dr
n

is the nominal discharge rate.

So, a 10000[mAh]/30C LiPo battery can only handle a maximum current draw of 300

[A]. This clarifies why the combination capacity/discharge rate is of such importance

for selecting the right LiPo for the own project.

4.4.2 Calculation of maximum flying time

During this research it has been decided to evaluate the Qx-Rotor endurance charac-

teristics for several payload masses.

Two flight tests techniques have been considered. The first one could have been a brute

force approach, consisting in measuring the flight times for several payload configu-

rations. The second one, more elegant technique, consisted in designing opportune

manoeuvres to highlight the endurance for several virtual payload masses although

keeping the real payload constant. The second approach has been followed and the

chosen manoeuvres were a simple sequence of vertical accelerations. As shown in Fig.

4.3 during this sequence of manoeuvres the vertical position, the current draw and the

voltage were measured. These graphs allow us to observe that the average current draw

to keep the Qx-Rotor in hovering is approximatively 50 [A]. Moreover it can be observed

that obviously the current peaks correspond, with a small delay, to the altitude peaks

reached by the multirotor. The second time derivative of the altitude position is the

vertical acceleration. The vertical acceleration multiplied by the Qx-Rotor mass, equal
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Figure 4.3: Parameters measured during the sequence of vertical accelerations

to 2.645 [Kg], gives the excess or the lack of thrust with respect to the hovering needed

thrust which allows the multirotor to climb or descend. This thrust is a force but in

order to give a better perception of its magnitude it has been preferred to calculate the

relevant mass. Therefore the exceeding or lacking thrust has been divided by the grav-

ity acceleration obtaining the values shown in the second graph of Fig. 4.3, graphically

aligned with the relevant drawn current values. These graphs are truly significative

since they give the indication of the current draws relevant to the peaks values of the

exceeding thrust. By analysing numerically the relation between these peaks we observe

that there exist an average proportionality factor, p̄
f

, between the current draw and

the exceeding thrust. This value, derived experimentally and valid only in the Qx-Rotor

case, is presented in Eq. (4.6),

p̄
f

, I
d

T
e,m

= 0.039
[A]

[g]
(4.6)

where

• I
d

is the drawn current expressed in Ampére,

• T
e,m

is the exceeding thrust expressed in terms of mass grams,
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• p̄
f

is the average proportionality factor.

This value allows to express the Qx-Rotor endurance as a function of the payload mass

as in Eq. (4.7),

E(p
g

) =
C

I
d

|
hov

+ p
g

· p̄
f

· 60 (4.7)

where

• p
g

is the payload mass, expressed in grams, that is the function independent

variable,

• C is the battery capacity, expressed in Ampere per hour [Ah], equal to 10 [Ah]

in the Qx-Rotor case,

• I
d

|
hov

is the current drawn while the multirotor is in hovering condition, expressed

in Ampére, equal to 50 [A] in the Qx-Rotor case,

• p̄
f

is, again, the average proportionality factor, equal to 0.039 in the Qx-Rotor

case,

• E is the endurance, expressed in minutes [min], that is the function dependent

variable.

Equation (4.7) is graphically translated into Fig. 4.4 considering the whole range of

possible payload masses, until the maximum value of 800 [g], evaluated experimentally.

During the flight tests a safety endurance value, equal to the 80% of the total endurance,

has been considered. This is extremely advisable due to the high risk of damage in case

of impact and since it is not recommended to completely drain the LiPo batteries. The

curve of the safety endurance is also illustrated in Fig. 4.4.
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Figure 4.4: Multirotor endurance as a function of the payload mass

4.5 Coaxial rotors

One advantage of the contrarotating coaxial rotors design is that the net size of the

rotors is reduced (for a given multirotor gross weight) because each rotor now provides

vertical thrust. However, the two rotors and their wakes interact with one another,

producing a somewhat more complicated flow field than is found with a single rotor

and this interacting flow incurs a loss of net rotor system aerodynamic e�ciency. In

[39] Coleman gives a good summary of coaxial helicopter rotors and a comprehensive

list of relevant citations on performance, wake characteristics and method of analysis.

Following [40], consider a simple momentum analysis of the hovering coaxial rotor

problem. Assume that the rotor planes are su�ciently close together and that each

rotor provides an equal fraction of the total system thrust, 2T , where T = W

2

. The

e↵ective induced velocity of the rotor system will be

(v
i

)
e

=

s

2T

2⇢A
. (4.8)

Therefore, the induced power is

(P
i

)
tot

= 2T (v
i

)
e

=
(2T )

3
2

p
2⇢A

. (4.9)
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However, if we treat each rotor separately then the induced power for either rotor will

be Tv
i

and for the two separate rotors

P
i

=
2T

3
2

p
2⇢A

. (4.10)

If the interference-induced power factor 
int

is considered to be the ratio of Eqs. (4.9)

and (4.10) then


int

=
(P

i

)
tot

P
i

=

 

(2T )
3
2

p
2⇢A

! 

2T
3
2

p
2⇢A

!�1

=
p
2, (4.11)

which is a 41% increase in induced power relative to the power required to operate the

two rotors in complete isolation. This simple momentum analysis of the problem has

been shown to be overlay pessimistic when compared with experimental measurements

for closely spaced coaxial rotors as reported in [39, 41]. The main reason for the over

prediction of induced power is related to the actual (finite) spacing between the two

rotors. Generally, on coaxial designs the rotors are spaced su�ciently far apart that the

lower rotor operates in the vena contract of the upper rotor. This is justified from the

flow visualisation result of Taylor reported in [42]. Based on ideal flow considerations

this means that only half of the area of the lower rotor operates in an e↵ective climb

velocity induced by the upper rotor. This problem can be tackled by means of the

simple momentum theory and the application of the mass, momentum and energy

conservation equation in the integral form. We will assume that the performance of

the upper rotor is not influenced by the lower rotor. The induced velocity at the upper

rotor is

v
u

=

s

T

2⇢A
= v

h

, (4.12)

where A is the disk area and T is the thrust on the upper rotor. The vena contract

of the upper rotor is an area of A

2

with velocity 2v
u

. Therefore, at the plane of the

lower rotor there is a velocity of 2v
u

+ v
l

over the inner one-half of the disk area as

shown in Fig. 4.5. Over the outer one-half of the disk area, the induced velocity is

v
l

. Assume that the velocity in the fully developed slipstream of the lower rotor (plane

3 in Fig. 4.5) is uniform with velocity w
l

. The mass flow through the upper rotor

is (⇢Av
u

)2v
u

= 2⇢Av2
u

. This is the momentum of the fluid into the lower rotor. The
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Figure 4.5: Flow model for a coaxial rotor analysis where the lower rotor is considered

to operate in the fully developed slipstream of the upper rotor [2]

mass flow rates over the inner and outer parts of the lower rotor are ⇢(A
2

)(2v
u

+v
l

) and

⇢(A
2

)v
l

, respectively. Therefore,

ṁ = ⇢
A

2
(2v

u

+ v
l

) + ⇢

✓

A

2

◆

v
l

= ⇢A (v
u

+ v
l

) . (4.13)

The momentum flow out of plane 3 is ṁw
l

, so the thrust on the lower rotor is

T
l

= ⇢A(v
u

+ v
l

)w
l

� 2⇢Av2
u

. (4.14)

The work done by the lower rotor is

P
l

= T
l

(v
u

+ v
l

), (4.15)

and this is equal to the gain in kinetic energy of the slipstream. Therefore,

T
l

(v
u

+v
l

) =
1

2
⇢A(v

u

+v
l

)w2

l

� 1

2
⇢

✓

A

2

◆

(2v
u

)(2v
u

)2 =
1

2
⇢A(v

u

+v
l

)w2

l

�2⇢Av3
u

. (4.16)

Assuming T
l

= T
u

= T , then T = 2⇢Av2
u

, then from Eq. (4.14) we get

T
l

= T =
1

2
⇢A(v

u

+ v
l

)w
l

, (4.17)
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and from Eq. (4.16) we get

T (2v
u

+ v
l

) =
1

2
⇢A(v

u

+ v
l

)w2

l

. (4.18)

Using Eqs. (4.17) and (4.18) gives w
l

= 2v
u

+ v
l

, substituting this into Eq. (4.17) and

remembering that T = 2⇢Av2
u

gives

4⇢Av2
u

= ⇢A(v
u

+ v
l

)w
l

= ⇢A(v
u

+ v
l

)(2v
u

+ v
l

). (4.19)

Rearranging as a quadratic in terms of v
l

and solving gives

v
l

=

 

�3 +
p
17

2

!

v
u

= 0.5616v
u

. (4.20)

The power for the upper rotor is P
u

= Tv
u

= Tv
h

and for the lower rotor P
l

=

T (v
u

+ v
l

) = 1.5616Tv
h

. Therefore, for both rotors the total power is 2.5616Tv
h

. This

is compared to 2Tv
h

when the rotors are operating in isolation. This means that the

induced power factor from interference, 
int

, is given by


int

=
(P

i

)
coax

(2P
i

)
isolated

=
2.5616Tv

h

2Tv
h

= 1.281, (4.21)

which is 28.1% increase compared to a 41% increase when the two rotors have no

vertical separation. This is closer to the values deduced from experiments for which


int

⇡ 1.160, as reported in [43], but the theory still overpredicts the interference value.

When the coaxial is operated at equal rotor torque, it can be shown that the induced

power factor is given by


int

=
2P

u

(T
u

+ T
l

)v
u

= 2
p
2

✓

T
u

T
l

◆

3
2
✓

1 +
T
u

T
l

◆� 3
2

= 1.281, (4.22)

which is the same result as for the thrust balanced case when compared to two isolated

rotors operated at the same thrust. When compared to two isolated rotors at the

thrusts needed for a torque balance, then 
int

= 1.266.

4.6 Classical vs. X8 octorotor configuration

Figures 1.16 and 1.19 show two possible octorotor configurations. The choice among

them depends on the specific needs and mission requirements. Two main parameters

can be used to compare them:
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• endurance,

• minimum possible size.

4.6.1 Endurance comparison

From section 4.5 it is known that two coaxial rotors are less e�cient than two isolated

identical rotors. This means that, at equal overall produced thrust, the coaxial system

absorbs more power with respect to the two isolated rotors. Section 4.5 explained

also that the ratio between these values is between 
int

⇡ 1.160 (experimental) and


int

= 1.281 (theoretical). Since the absorbed power is directly proportional to drawn

current which, in turn, is inversely proportional to the endurance, we have that the

endurance of the classical octorotor system of Fig. 1.16 is 
int

times higher than the

endurance of the X8 octorotor shown in Fig. 1.19.

Unfortunately this is not exactly true since a classical octorotor requires four more arms

compared to an X8 shaped one. Moreover the arms need to be longer to guarantee

adequate spacing among the rotors. In our case we have that the arm mass per unit

length is m
as

= 1.32g/cm. As illustrated in Fig. 4.6, considering propellers with

a diameter equal to d
p

= 25.4cm (10 inches), the minimum arm length for an X8

octorotor is equal to

l
aX8

=
1

2
·
p
2 · d

p

= 17.96cm, (4.23)

which corresponds to a mass of

m
aX8

= m
as

· l
aX8

= 23.70g. (4.24)

Therefore the total minimum arms mass for the X8 octorotor case is equal to

m
aX8

tot

= 4 ·m
aX8

= 94.80g. (4.25)

The minimum arm length for a classical octorotor is instead equal to

l
a8

=

s

a2
8

+

✓

1

2
· d

p

◆

2

= 33.18cm, (4.26)

where a
8

is the apothem of the octagon depicted in Fig. 4.6 that can be calculated as

a
8

=
1

2 · tan
�

⇡

8

� · d
p

= 1.207 · d
p

= 30.66cm. (4.27)
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Therefore the minimum arm mass for the classical octorotor case is equal to

m
a8

= m
as

· l
a8

= 43.80g (4.28)

and the total minimum arms mass for the classical octorotor case is equal to

m
a8

tot

= 8 ·m
a8

= 350.40g. (4.29)

This calculations guide us to define that there is a minimum di↵erence between the

total arms mass of the X8 octorotor with respect to the classical octorotor that is equal

to

m
diff

min

= m
a8

tot

�m
aX8

tot

= 255.60g (4.30)

and the ratio between these two masses is equal to

m
ratio

min

=
m

a8

tot

m
aX8

tot

= 3.70. (4.31)

It follows that, if we want to derive the endurance for the classical octorotor config-

uration, we have to consider the e↵ect of the increased mass which, obviously, has a

negative impact on the endurance. In Fig. 4.7 the classical and X8 octorotor endurances

are compared. The red continuous line represents the X8 octorotor endurance. The

blue dash-dot line represents the endurance of the classical octorotor derived from the

X8 endurance times 
int

= 1.281 and translated to the left by the m
diff

min

= 255.60g

mass. The black dashed line is instead obtained for 
int

= 1.160. Thus, from Fig.

4.7, we observe that the maximum possible endurance gain that can be derived from

the classical configuration is, on average, equal to 11%. In particular when considering


int

= 1.160, that is the interference factor derived experimentally, the endurance of

the two configurations are, on average, approximately equal; in other words there is a

very low endurance advantage in using the classical octorotor configuration.

From Fig. 4.6 we observe also another important aspect that is the overall size.

Indeed the ratio between the areas of the circles circumscribed around the minimum

size classical octorotor and the X8 octorotor is equal to 2.24. This can be considered a

significative advantage of the X8 configuration.

For the reasons expressed above the configuration chosen for this work is the X8 one.
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Propeller diameter = 25.4 cm 

r8, min = 45.88 cm 
A8, min = 0.66 m2 
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A8, min
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= 2.24

Figure 4.6: Comparison between the classical and X8 octorotor minimum size
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Figure 4.7: Comparison between the classical and X8 octorotor endurance
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4.7 Telemetry and Ground Control Station

Wireless telemetry has been added using two 433 MHz XBee modules, the airborne

and the ground transceiver. This solution has been chosen to avoid interferences with

the 2.4 GHz R.C. gear and because of its guaranteed outdoor line-of-sight range of 1.5

Km.

In Fig. 4.8 it is possible to see the realised Ground Control Station (G.C.S.). It is com-

Figure 4.8: Portable Ground Control Station

posed of a Fujitsu STYLISTIC Q572 tablet running Microsoft Windows 7, a Futaba

8FG radio transmitter with 14 channels and a radio tray attached to a shoulder har-

ness. The total weight of the G.C.S. hardware is 2.1 Kg therefore it can be considered

easily portable. The G.C.S. software is open source and it is named Mission Planner.

This software is based on the open source MAVLink Micro Aerial Vehicle Communi-

cation Protocol. This hardware and software setup allows visualising and recording

several telemetry information like

• the UAV attitude in terms of roll, pitch and yaw angles,

• the current three dimensional G.P.S. positioning and heading,

• the throttle level,
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• the airborne lithium-polymer battery level,

• the airspeed (if airspeed sensors are connected),

• an aerial image of the overflown area, downloaded in real time from the Google

servers, through an on site web connection.

The main features of this software are linked to the possibility to change the flight

parameters while the aircraft is airborne. Several data can be modified from the G.C.S.,

for instance the controller gains. Another characteristic that needs to be pointed out is

the ability of changing and assigning waypoints directly from the G.C.S. while the UAV

is operating and flying. Moreover the MAVLink Protocol supports up to 255 vehicles

simultaneously, opening the panorama of autonomous formation flying vehicles.
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5

Multirotor modelling

The objective of this chapter is to describe the multirotor behaviour firstly with a

complete nonlinear system of equations and then with a simplified version of the same

model suitable for state estimation and control design.

5.1 Nonlinear model

The forces and moments that act on the multirotor are primarily due to gravity and to

the eight propellers.

Fig. 1.19 shows a schematic view of the multirotor systems. Each motor produces a

force F and a torque ⌧ . The total force acting on the multirotor is given by

F =
8

X

i=1

F
i

.

The rolling torque is produced by the forces of the right and left motors as

⌧
�

= �
c

(F
2

+ F
3

+ F
5

+ F
8

� F
1

� F
4

� F
6

� F
7

),

where �
c

is defined as

�
c

= � cos
⇣⇡

4

⌘

= 0.156 [m],

and � = 0.220 [m] is the length of the multirotor arm. Similarly, the pitching torque

is produced by the forces of the front and back motors as

⌧
✓

= �
c

(F
1

+ F
2

+ F
5

+ F
6

� F
3

� F
4

� F
7

� F
8

).
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Due to Newton’s third law, the drag of the propellers produces a yawing torque on the

body of the multirotor. The direction of the torque will be in the oppositive direction

of the motion of the propeller. Therefore the total yawing torque is given by

⌧
 

= (F
1

+ F
3

+ F
5

+ F
7

� F
2

� F
4

� F
6

� F
8

)c ,

where the term c is a proportional constant between the force and the reaction torque

produced by the propellers rotation.

Forces and torques need to be converted into the controller board language. The thrust

vector is therefore translated into a Pulse Width Modulation (PWM) input vector to

the hardware. PWM is a commonly used technique for controlling power to inertial

electrical devices, made practical by modern electronic power switches. The average

value of voltage (and current) fed to the load is controlled by turning the switch be-

tween supply and load on and o↵ at a high frequency. The longer the switch is on

compared to the o↵ periods, the higher the power supplied to the load is.

In our case, the relation between the single motor thrust (F
i

) and the relevant PWM
i

input has been derived experimentally. The test setup included a precision balance and

a computer to monitor the given input PWM values. The computer was connected

to the multirotor processor by means of a serial port. Several tests were performed

changing the throttle, i.e. the PWM, and measuring the equivalent mass, thus calcu-

lating the generated thrust. The gathered experimental data were interpolated using

the cubic function shown in Eq. (5.1) and shown in Fig. 5.1.

PWM
i

= 6.16F 3

i

� 50.47F 2

i

+ 195.5F
i

+ 1064 (5.1)

Note that the PWM commands are defined to be between zero and one. The pre-

sented PWM values are not in this range because they are directly scaled to the input

requested by the used Arduino controller.

In addition to the force exerted by the motor, also gravity exerts a force on the multi-

rotor. In the vehicle frame Fv, the gravity force acting on the center of mass is given

by

fv
g

=

0

@

0
0
mg

1

A .
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However, since v in Eq. (3.9) is expressed in Fb, we must transform to the body frame

to give

f b
g

= Rb

v

0

@

0
0
mg

1

A =

=

0

@

�mg sin ✓
mg cos ✓ sin�
mg cos ✓ cos�

1

A .

Therefore, Eqs. (3.8)-(3.11) become

0
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ṗ
n

ṗ
e

ḣ

1
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0

@

c✓c s�s✓c � c�s c�s✓c + s�s 
c✓s s�s✓s + c�c c�s✓s � s�c 
s✓ �s�c✓ �c�c✓

1

A
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@

u
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w

1

A (5.2)
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pw � ru
qu� pv

1

A+
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, (5.5)

where c� , cos� and s� , sin�.

5.2 Simplified Models

Equations (5.2)-(5.5) are the equations of motion to be used in our six degree-of-freedom

simulator. However, they are not appropriate for control design for several reasons. The

first reason is that they are too complicated to gain significant insight into the motion.

The second reason is that the position and orientation are relative to the inertial world

fixed frame, whereas camera measurements will measure position and orientation of the

target with respect to the camera frame.

5.2.1 Model for estimation

For the multirotor, we are not able to estimate the inertial position or the heading

angle  . Rather, we will be interested in the relative position and heading of the

multirotor with respect to a ground target. The relative position of the multirotor will

be measured in the vehicle-1 frame, i.e., the vehicle frame after it has been rotated by

the heading vector  . The vehicle-1 frame is convenient since x, y, and z positions

are still measured relative to a flat earth, but they are vehicle centered quantities as

opposed to inertial quantities. Let p
x

, p
y

, and p
z

denote the relative position vector

between the target and the vehicle resolved in the vehicle-1 frame. Therefore Eq. (5.2)

becomes
0

@

ṗ
x

ṗ
y

ṗ
z

1

A =

0

@

c✓ s�s✓ c�s✓
0 c� �s�

�s✓ s�c✓ c�c✓

1

A

0

@

u
v
w

1

A . (5.6)
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5.2.2 Model for control design

Assuming that � and ✓ are small, Eq. (5.4) can be simplified as

0

@

�̇

✓̇

 ̇

1

A =
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@
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r

1

A . (5.7)

Similarly, Eq. (5.5) is simplified by assuming that the Coriolis terms qr, pr and pq are

small to obtain
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ṙ

1

A =

0

B

@

1

J

x

⌧
�

1

J

y

⌧
✓

1

J

z

⌧
 

1

C

A

. (5.8)

Combining Eq. (5.7) and (5.8) we get
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Di↵erentiating Eq. (5.2) and neglecting Ṙv

b

gives

0
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Neglecting the Coriolis terms and plugging Eq. (5.3) into Eq. (5.10) and simplifying

gives
0
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@
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Therefore, the simplified inertial model is given by

p̈
n

= (� cos� sin ✓ cos � sin� sin )
F

m
(5.12)

p̈
e

= (� cos� sin ✓ sin + sin� cos )
F

m
(5.13)

ḧ = g � (cos� cos ✓)
F

m
(5.14)

�̈ =
1

J
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⌧
�

(5.15)
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1
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(5.16)

 ̈ =
1
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⌧
 

. (5.17)

The dynamics given in Eqs. (5.12)-(5.17) are expressed in the inertial frame. This

is necessary for the simulator. However, we will be controlling position, altitude, and

heading using camera frame measurements of a target position. In this setting heading

is irrelevant. Therefore, instead of expressing the translational dynamics in the inertial

frame, we will express them in the vehicle-1 frame Fv1, which is equivalent to the

inertial frame after rotating by the heading angle.

Di↵erentiating Eq. (5.6) and neglecting Ṙv1
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Neglecting the Coriolis terms, plugging Eq. (5.3) into Eq. (5.18) and simplifying gives

0

@

p̈
x

p̈
y

p̈
z

1

A =

0

@

0
0
g

1

A+

0

@

�c�s✓
s�

�c�c✓

1

A

F

m
. (5.19)

Therefore, the simplified model in the vehicle-1 frame is given by

p̈
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= � cos� sin ✓ · F
m

(5.20)
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6

Sensors

The objective of this chapter is to describe the main characteristics of the sensors

primarily used during the experimental research activity detailed in this thesis. These

sensors are rate gyros and accelerometers. Moreover a deep insight into camera sensors

is provided.

6.1 Rate Gyros

A MEMS rate gyro contains a small vibrating lever. When the lever undergoes an

angular rotation, Coriolis e↵ects change the frequency of the vibration, thus detecting

the rotation. The output of the rate gyro is given by

y
gyro

= k
gyro

⌦+ �
gyro

+ ⌘
gyro

,

where

• y
gyro

is in Volts,

• k
gyro

is a gain,

• ⌦ is the angular rate in radians per second,

• �
gyro

is a bias term,

• ⌘
gyro

is zero mean white noise.
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The gain k
gyro

should be given on the datasheet of the sensor. However, due to varia-

tions in manufacturing it is imprecisely known. The bias term �
gyro

is strongly depen-

dent on temperature and should be calibrated prior to each flight. If three rate gyros

are aligned along the x, y and z axes of the multirotor, then the rate gyros measure

the angular body rates p, q and r as follows:

y
gyro,x

= k
gyro,x

p+ �
gyro,x

+ ⌘
gyro,x

y
gyro,y

= k
gyro,y

q + �
gyro,y

+ ⌘
gyro,y

y
gyro,z

= k
gyro,z

r + �
gyro,z

+ ⌘
gyro,z

.

MEMS gyros are analog devices that are sampled by the on-board processor. We will

assume that the sample rate is given by T
s

.

6.2 Accelerometers

A MEMS accelerometer contains a small plate attached to torsion levers. The plate

rotates under acceleration and changes the capacitance between the plate and the

surrounding walls [12].

The output of the accelerometers is given by

y
acc

= k
acc

A+ �
acc

+ ⌘
acc

,

where

• y
acc

is in Volts,

• k
acc

is a gain,

• A is the acceleration in meters per second,

• �
acc

is a bias term,

• ⌘
acc

is zero mean white noise.

The gain k
acc

should be given on the datasheet of the sensor. However, due to variations

in manufacturing it is imprecisely known. The bias term �
acc

is strongly dependent on

temperature and should be calibrated prior to each flight.
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Accelerometers measure the specific force in the body frame of the vehicle. Another in-

terpretation is that they measure the di↵erence between the acceleration of the aircraft

and the gravitational acceleration. A physically intuitive explanation is given in [36].

Additional explanation is given in [44]. Mathematically the accelerometers readings

are
0

@

↵
x

↵
y

↵
z

1

A =
dv

dt
b

+ !
b/i

⇥ v �Rb

v

0

@

0
0
g

1

A ,

which can be expressed in component form as

↵
x

= u̇+ qw � rv + g sin ✓

↵
y

= v̇ + ru� pw � g cos ✓ sin�

↵
z

= ẇ + pv � qu� g cos ✓ cos�.

It can be seen that each accelerometer measures elements of linear acceleration, Coriolis

acceleration and gravitational acceleration. The voltage output of an accelerometer is

converted into a number corresponding to the voltage inside the autopilot microcon-

troller by an analog-to-digital converter at a sample rate T
s

. Through calibration, this

voltage can be converted to a numerical representation of the acceleration in meters

per second squared. Assuming that the biases can be removed through the calibration

process, the accelerometer signals inside the autopilot can be modelled as

y
acc,x

= u̇+ qw � rv + g sin ✓ + ⌘
acc,x

y
acc,y

= v̇ + ru� pw � g cos ✓ sin�+ ⌘
acc,y

y
acc,z

= ẇ + pv � qu� g cos ✓ cos�+ ⌘
acc,z

.

where ⌘
acc,x

, ⌘
acc,y

and ⌘
acc,z

are zero-mean Gaussian processes with variance �2
acc,x

,

�2
acc,y

and �2
acc,z

respectively. Because of the calibration, the units of y
acc,x

, y
acc,y

and

y
acc,z

are in m

s

2 .

6.3 Camera

The control objective is to hold the position of the multirotor over a ground based

target that is detected using the vision sensor. In this section we will briefly describe

how to estimate p
x

and p
y

in the vehicle-1 frame.
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Figure 6.1: Camera model for the multirotor

We will assume that the camera is mounted so that the optical axis of the camera is

aligned with the body frame z-axis and so that the x-axis of the camera points out the

right of the multirotor and the y-axis of the camera points to the back of the multirotor.

The camera model is shown in Fig. 6.1. The position of the target in the vehicle-1

frame is (p
x

, p
y

, p
z

). The pixel location of the target in the image is (✏
x

, ✏
y

). The

geometry for p
y

is shown in Fig. 6.2. From the geometry shown in Fig. 6.2, we can see

that

p
y

= p
z

tan

✓

�� ✏
x

⌘

M
y

◆

, (6.1)

where ⌘ is the camera field-of-view and M
y

is the number of pixels along the camera

y-axis. In Fig. 6.2, both p
y

and ✏
x

are negative. Positive values are toward the right

rotor. A similar equation can be derived for p
x

as

p
x

= �p
z

tan

✓

✓ � ✏
y

⌘

M
y

◆

. (6.2)
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Figure 6.2: Geometry introduced by the vision system. The height above ground is given

by �p
z

, the lateral position error is p
y

, the roll angle is �, the field-of-view of the camera is

⌘, the lateral pixel location of the target in the image is ✏
x

and the total number of pixels

along the lateral axis of the camera is M
x
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7

State Estimation

The objective of this chapter is to describe techniques for estimating the state of the

multirotor from sensor measurements. We need to estimate the following states: p
x

,

p
y

, p
z

, u, v, w, �, ✓,  , p, q, r.

The angular rates p, q and r can be obtained by low pass filtering the rate gyros. The

remaining states require a Kalman filter. Both are discussed below.

7.1 Low Pass Filters

The Laplace transforms representation of a simple low-pass filter is given by

Y (s) =
a

s+ a
U(s),

were u(t) is the input of the filter and y(t) is the output. Inverse Laplace transforming

we get

ẏ = �ay + au. (7.1)

Using a zeroth order approximation of the derivative we get

y(t+ T )� y(t)

T
= �ay(t) + au(t),

where T is the sample rate. Solving for y(t + T ) we get

y(t + T ) = (1� aT )y(t) + aTu(t).
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For the zeroth order approximation to be valid we need ↵T ⌧ 1. If we let ↵ = aT then

we get the simple form

y(t + T ) = (1� ↵)y(t) + ↵u(t).

Note that this equation has a nice physical interpretation: the new value of y (filtered

value) is a weighted average of the old value of y and u (unfiltered value). If u is noisy,

then ↵ 2 [0, 1] should be set to a small value. However, if u is relatively noise free, then

↵ should be close to unity.

In the derivation of the discrete-time implementation of the low-pass filter, it is possible

to be more precise. In particular, returning to Eq. (7.1), from linear systems theory, it

is well known that the solution is given by

y(t + T ) = e�aT y(t) + a

Z

T

0

e�a(T�⌧)u(⌧)d⌧.

Assuming that u(t) is constant between sample periods results in the expression

y(t + T ) = e�aT y(t) + a

Z

T

0

e�a(T�⌧)d⌧u(t)y(t + T ) =

= e�aT y(t) + (1� e�aT )u(t). (7.2)

Note that since

ex = 1 + x+
x2

2!
+ . . .

we have that

e�aT ⇡ 1� aT and 1� e�aT ⇡ aT .

Therefore, if the sample rate is not fixed (common for micro-controllers) and it is desired

to have a fixed cut-o↵ frequency, then Eq. (7.2) is the preferable way to implement a

low-pass filter in digital hardware.

We will use the notation LPF (·) to represent the low-pass filter operator. Therefore

x̂ = LPF (x) is the low-pass filtered version of x.
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7.2 Angular rates p, q and r

The angular rates p, q and r can be estimated by low-pass filtering the rate gyro signals:

p̂ = LPF (y
gyro,x

) (7.3)

q̂ = LPF (y
gyro,y

) (7.4)

r̂ = LPF (y
gyro,z

). (7.5)

7.3 Dynamic Observer Theory

The objective of this section is to briefly review the observer theory. Suppose that we

have a linear time-invariant system modelled by the equations

ẋ = Ax+Bu

y = Cx.

A continuous-time observer for this system is given by the equation

˙̂x = Ax̂+Bu
| {z }

copy of the model

+ L(y � Cx̂),
| {z }

correction due to sensor reading

(7.6)

where x̂ is the estimated value of x.

Letting x̃ = x� x̂ we observe that

˙̃x = (A� LC)x̃

which implies that the observation error decays exponentially to zero if L is chosen

such that the eigenvalues of A–LC are in the open left half of the complex plane.

In practice, the sensors are usually sampled and processed in digital hardware at some

sample rate T
s

. How do we modify the observer equation shown in Eq. (7.6) to account

for sampled sensor readings?

The typical approach is to propagate the system model between samples using the

equation

˙̂x = Ax̂+Bu (7.7)
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Figure 7.1: Observation process

and then to update the estimate when a measurement is received using the equation

x̂+ = x̂� + L(y(t
k

)� Cx̂�),

where t
k

is the instant in time that the measurement is received and x̂� is the state

estimate produced by Eq. (7.7) at time t
k

. Equation (7.7) is then reinstantiated with

initial conditions given by x̂+. The continuous-discrete observer is summarized in Tab.

7.1.

The observation process is shown graphically in Fig. 7.1. Note that it is not necessary

to have a fixed sample rate. The continuous-discrete observer can be implemented

using Algorithm 1 presented in Tab.7.1.

Note that we did not use the fact that the process was linear. Suppose instead that we

have a nonlinear system of the form,

ẋ = f(x, u) (7.8)

y = c(x) (7.9)

then the continuous discrete observer is given in Tab. 7.2.

The real question is how to pick the observer gain L.
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Table 7.1: Continuous-Discrete Linear Observer

Algorithm 1 Continuous-Discrete Observer

1: Initialize: x̂ = 0.

2: Pick an output sample rate T
out

which is much

less than the sample rates of the sensors.

3: At each sample time T
out

:

4: for i = 1 to N do {Prediction: Propagate the state equation.}

5: x̂ = x̂+

✓

T
out

N

◆

(Ax̂+Bu)

6: end for

7: if A measurement has been received from sensor i

then {Correction: Measurement Update.}
8: x̂ = x̂+ L

i

(y
i

� C
i

x̂)

9: end if

System model :

ẋ = Ax+Bu

y(t
k

) = Cx(t
k

)

Initial Condition x(0).

Assumptions :

Knowledge of A, B, C, u(t).

No measurement noise.

Prediction : In between measurements (t 2 [t
k�1

, t
k

)):

Propagate ˙̂x = Ax̂+Bu.

Initial condition is x̂+(t
k�1

).

Label the estimate at time t
k

as x̂�(t
k

).

Correction : At sensor measurement (t = t
k

):

x̂+(t
k

) = x̂�(t
k

) + L(y(t
k

)� Cx̂�(t
k

)).
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Table 7.2: Continuous-Discrete Nonlinear Observer

System model :

ẋ = f(x, u)

y(t
k

) = c(x(t
k

))

Initial Condition x(0).

Assumptions :

Knowledge of f, c, u(t). No measurement noise.

Prediction : In between measurements (t 2 [t
k�1

, t
k

)):

Propagate x̂ = f(x̂, u).

Initial condition is x̂+(t
k�1

).

Label the estimate at time t
k

as x̂�(t
k

).

Correction : At sensor measurement (t = t
k

):

x̂+(t
k

) = x̂�(t
k

) + L(y(t
k

)� c(x̂�(t
k

))).

7.4 Essentials from Probability Theory

Let X = (x
1

, . . . , x
n

)T be a random vector whose elements are random variables. The

mean or expected value of X is denoted by

µ =

0

B

@

µ
1

...
µ
n

1

C

A

=

0

B

@

E{x
1

}
...

E{x
n

}

1

C

A

= E{X},

where

E{x
i

} =

Z

⇠f
i

(⇠)d⇠,

and f(·) is the probability density function for x
i

. Given any pair of components x
i

and x
j

of X, we denote their covariance as

cov(x
i

, x
j

) = ⌃
ij

= E{(x
i

� µ
i

)(x
j

� µ
j

)}.

The covariance of any component with itself is the variance, i.e.,

var(x
i

) = cov(x
i

, x
i

) = ⌃
ii

= E{(x
i

� µ
i

)(x
i

� µ
i

)}.

The standard deviation of x
i

is the square root of the variance:

stdev (x
i

) = �
i

=
p
⌃
ii

.
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Chapter 7. State Estimation 7.4 Essentials from Probability Theory

Figure 7.2: Level curves for the probability density function of a 2D Gaussian random

variable

The covariances associated with a random vector X can be grouped into a matrix

known as the covariance matrix:

⌃ =

0

B

B

B

@

P

11

P

12

· · ·
P

1n

P

21

P

22

· · ·
P

2n

...
. . .

...
P

n1

P

n2

· · ·
P

nn

1

C

C

C

A

= E{(X � µ)(X � µ)T } = E{XXT }� µµT .

Note that ⌃ = ⌃T so that ⌃ is both symmetric and positive semi-definite, which implies

that its eigenvalues are real and nonnegative.

The probability density function for a Gaussian random variable is given by

f
x

(x) =
1p
2⇡�

x

e
� (x�µ

x

)2

�

2
x ,

where µ
x

is the mean of x and �
x

is the standard deviation. The vector equivalent is

given by

f
X

(X) =
1p

2⇡ det⌃
exp



�1

2
(X � µ)T⌃�1(X � µ)

�

,

in which case we write

X ⇠ N(µ, ⌃),

and say that X is normally distributed with mean µ and covariance ⌃. Fig. 7.2 shows

the level curves for a 2D Gaussian random variable with di↵erent covariance matrices.
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7.5 Derivation of the Kalman Filter

In this section we assume the following state model:

ẋ = Ax+Bu+G⇠

y
k

= Cx
k

+ ⌘
k

,

where y
k

= y(t
k

) is the kth sample of y, x
k

= x(t
k

) is the kth sample of x, ⌘
k

is

the measurement noise at time t
k

, ⇠ is a zero-mean Gaussian random process with

covariance Q and ⌘
k

is a zero-mean Gaussian random variable with covariance R. Note

that the sample rate does not need to be be fixed. The observer will therefore have

the form presented in Tab. 7.3. Our objective is to pick L to minimize tr(P (t)) where

P (t) is the covariance of the estimation error at time t, defined as

P (t) , E{x̃(t)x̃(t)T }. (7.10)

Table 7.3: Observer

Prediction : In between measurements (t 2 [t
k�1

, t
k

]):

Propagate ˙̂x = Ax̂+Bu.

Initial condition is x̂+(t
k�1

).

Label the estimate at time t
k

as x̂�(t
k

).

Correction : At sensor measurement (t = t
k

):

x̂+(t
k

) = x̂�(t
k

) + L(y(t
k

)� Cx̂�(t
k

)).

7.5.1 Between Measurements

Di↵erentiating x̃ we get

˙̃x = ẋ� ˙̂x =

= Ax+Bu+G⇠ �Ax̂�Bu =

= Ax̃+G⇠.

Then we have that

x̃(t) = eAtx̃
0

+

Z

t

0

eA(t�⌧)G⇠(⌧)d⌧.
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We can therefore compute the evolution for P as

Ṗ =
d

dt
E{x̃x̃T } =

= E{ ˙̃xx̃T + x̃ ˙̃xT } =

= E{Ax̃x̃T +G⇠x̃T + x̃x̃TAT + x̃⇠TGT } =

= AP + PAT +GE{⇠x̃T }T + E{x̃⇠T }GT .

As in the previous section we get

E{⇠x̃T } = E
n

⇠(t)x̃
0

eA
T

t +

Z

t

0

⇠(t)⇠T (⌧)GT eA
T

(t�⌧)d⌧
o

=

=
1

2
QGT ,

which implies that

Ṗ = AP + PAT +GQGT .

7.5.2 At Measurements

At a measurement we have that

x̃+ = x� x̂+ =

= x� x̂� � L(Cx+ ⌘ � Cx̂�) =

= x̃� � LCx̃� � L⌘.

Therefore

P+ = E{x̃+x̃+T } =

= E
n

(x̃� � LCx̃� � L⌘)(x̃� � LCx̃� � L⌘)T
o

=

= E
n

x̃�x̃�T � x̃�x̃�TCTLT � x̃�⌘TLT+

�LCx̃�x̃�T + LCx̃�x̃�TCTLT + LCx̃�⌘TLT =

= �L⌘x̃�T + L⌘x̃�TCTLT + L⌘⌘TLT

o

=

= P� � P�CTLT � LCP� + LCP�CTLT + LRLT . (7.11)
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Our objective is to pick L to minimize tr(P+). A necessary condition is

@

@L
tr(P+) = �P�CT � P�CT + 2LCP�CT + 2LR = 0 )

) 2L(R+ CP�CT ) = 2P�CT )

) L = P�CT (R+ CP�CT )�1.

Plugging back into Eq. (7.11) gives

P+ = P� + P�CT (R+ CP�CT )�1CP� � P�CT (R+ CP�CT )�1CP�+

+P�CT (R+ CP�CT )�1(CP�CT +R)(R+ CP�CT )�1CP� =

= P� � P�CT (R+ CP�CT )�1CP� =

= (I � P�CT (R+ CP�CT )�1C)P� =

= (I � LC)P�.

For linear systems, the continuous-discrete Kalman filter is summarized in Tab. 7.4.

If the system is nonlinear, then the Kalman filter can still be applied but we need to

linearize the nonlinear equations in order to compute the error covariance matrix P

and the Kalman gain L. The extended Kalman filter (EKF) is given in Tab. 7.5 and a

procedure to implement the EKF is the Algorithm 2 presented in Tab. 7.6.
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Chapter 7. State Estimation 7.5 Derivation of the Kalman Filter

Table 7.4: Continuous-Discrete Kalman Filter

System model :

ẋ = Ax+Bu+ ⇠

y
i

(t
k

) = C
i

x(t
k

) + ⌘
k

Initial Condition x(0).

Assumptions :

Knowledge of A, B, C
i

, u(t).

Process noise satisfies ⇠ ⇠ N(0, Q).

Measurement noise satisfies ⌘
k

⇠ N(0, R).

Prediction : In between measurements (t 2 [t
k�1

, t
k

]):

Propagate ˙̂x = Ax̂+Bu.

Propagate Ṗ = AP + PAT +Q.

Correction : At the ith sensor measurement (t = t
k

):

L
i

= P�CT

i

(R
i

+ C
i

P�CT

i

)�1,

P+ = (I � L
i

C
i

)P�,

x̂+(t
k

) = x̂�(t
k

) + L
i

(y
i

(t
k

)� C
i

x̂�(t
k

)).

Table 7.5: Continuous-Discrete Extended Kalman Filter

System model :

ẋ = f(x, u) + ⇠

y
i

(t
k

) = c
i

(x(t
k

)) + ⌘
k

Initial Condition x(0).

Assumptions :

Knowledge of f, c
i

, u(t).

Process noise satisfies ⇠ ⇠ N(0, Q).

Measurement noise satisfies ⌘
k

⇠ N(0, R).

Prediction : In between measurements (t 2 [t
k�1

, t
k

]):

Propagate ˙̂x = f(x̂, u),

Compute A =
@f

@x
|
x=x̂(t)

,

Propagate Ṗ = AP + PAT +Q.

Correction : At the ith sensor measurement (t = t
k

):

C
i

= @c

i

@x

|
x=x̂

� ,

L
i

= P�CT

i

(R
i

+ C
i

P�CT

i

)�1,

P+ = (I � L
i

C
i

)P�,

x̂+(t
k

) = x̂�(t
k

) + L
i

(y
i

(t
k

)� c
i

(x̂�(t
k

))).
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Table 7.6: Continuous-Discrete Extended Kalman Filter

Algorithm 2 Continuous-Discrete Extended Kalman Filter

1: Initialize: x̂ = 0.

2: Pick an output sample rate T
out

which is much

less than the sample rates of the sensors.

3: At each sample time T
out

:

4: for i = 1 to N do {Prediction: Propagate the state equation.}

5: x̂ = x̂+

✓

T
out

N

◆

f(x̂, u)

6: A =
@f

@x
(x̂, u)

7: P = P +

✓

T
out

N

◆

(AP + PAT +GQGT )

8: end for

9: if A measurement has been received from sensor i

then {Correction: Measurement Update.}
10: C

i

= @c

i

@x

|
x=x̂

� ,

11: L
i

= P�CT

i

(R
i

+ C
i

P�CT

i

)�1,

12: P+ = (I � L
i

C
i

)P�,

13: x̂+(t
k

) = x̂�(t
k

) + L
i

(y
i

(t
k

)� c
i

(x̂�(t
k

))).

14: end if
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Chapter 7. State Estimation 7.6 Application to the multirotor

7.6 Application to the multirotor

In this section we will discuss the application of the Algorithm 2 shown in Tab. 7.6 to

the multirotor. We would like to estimate the state

x̂ =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

p̂
x

p̂
y

p̂
z

˙̂p
x

˙̂p
y

˙̂p
z

�̂

✓̂

 ̂

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

where the rate gyros and accelerometers will be used to drive the prediction step and

an ultrasonic altimeter and camera will be used in the correction step.

The propagation model is obtained from Eqs. (5.4) and (5.20)-(5.22) as

f(x, u) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

ṗ
x

ṗ
y

ṗ
z

cos� sin ✓ ↵
z

� sin� ↵
z

g + cos� cos ✓ ↵
z

p+ q sin� tan ✓ + r cos� tan ✓
q cos�� r sin�

q sin�

cos ✓

+ r cos�

cos ✓

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

where we used the fact that the z-axis of the accelerometer measures ↵
z

= �F/m.

Di↵erentiating we obtain

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 �s

�

s
✓

↵
z

�c
�

c
✓

↵
z

0
0 0 0 0 0 0 �c

�

↵
z

0 0
0 0 0 0 0 0 �s

�

c
✓

↵
z

�c
�

s
✓

↵
z

0

0 0 0 0 0 0 qc
�

t
✓

� rs
�

t
✓

qs

�

+rc

�

c

2
✓

0
0 0 0 0 0 0 �qs

�

� rc
�

0 0

0 0 0 0 0 0
qc

�

�rs

�

c✓

�(qs
�

+ rc
�

) t✓
c

✓

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Note that it may be adequate (not sure) to use a small angle approximation in
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the model resulting in

f(x, u) =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

ṗ
x

ṗ
y

ṗ
z

✓↵
z

��↵
z

g + ↵
z

p
q
r

1

C

C

C

C

C

C

C

C

C

C

C

C

A

,

and

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 ↵

z

0
0 0 0 0 0 0 �↵

z

0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

.

If this form works, then the update equation for P can be coded by hand, significantly

reducing the computational burden.
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Control Design

The control design will be derived directly from Eqs. (5.20)-(5.25). Equations (5.23)-

(5.25) are already linear. To simplify Eqs. (5.20)-(5.22) we define

u
x

, � cos� sin ✓ · F
m

(8.1)

u
y

, sin� · F
m

(8.2)

u
z

, g � cos� cos ✓ · F
m
, (8.3)

to obtain

p̈
x

= u
x

(8.4)

p̈
y

= u
y

(8.5)

p̈
z

= u
z

. (8.6)

The control design proceeds by developing PID control strategies for u
x

, u
y

and u
z

.

After u
x

, u
y

and u
z

have been computed, we can compute the desired force F , the

commanded roll angle �c and the commanded pitch angle ✓c from Eqs. (8.1)-(8.3) as

follows. From Eq. (8.3) solve for F/m as

F

m
=

g � u
z

cos� cos ✓
. (8.7)

Substituting Eq. (8.7) into Eq. (8.2) gives

u
y

=
g � u

z

cos ✓
tan�.
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Figure 8.1: The size of the target is S in meters and the size of the target in the image

plane is denoted by ✏
s

in pixels. The focal length is f and the height above the target

is� p
z

Solving for � and letting this be the commanded roll angle gives

�c = tan�1

✓

u
y

cos ✓

g � u
z

◆

. (8.8)

Similarly, we can solve for the commanded pitch angle as

✓c = tan�1

✓

u
x

u
z

� g

◆

. (8.9)

8.1 Vision Based Altitude Hold

For the altitude hold we need to develop an expression for u
z

to drive p
z

to a desired

altitude based on the size of the object in the image. We will assume that the camera

returns the size of the object in the image plane in pixels, which is denoted by ✏
s

. Fig.

8.1 shows the geometry of the multirotor hovering over a target of size S. From similar

triangles we have that
�p

z

S
=

f

✏
s

.

Solving for p
z

and di↵erentiating we obtain

ṗ
z

=
fS✏̇

s

✏2
s

. (8.10)

Di↵erentiating again gives

p̈
z

=
fS✏̈

s

✏2
s

� 2fS
✏̇2
s

✏3
s

.

76



Chapter 8. Control Design 8.2 Sonar Based Altitude Hold

Substituting u
z

= p̈
z

and solving for ✏̈
s

gives

✏̈
s

=

✓

✏2
s

fS

◆

u
z

+ 2
✏̇2
s

✏
s

.

Defining

u
s

,
✓

✏2
s

fS

◆

u
z

+ 2
✏̇2
s

✏
s

(8.11)

we get

✏̈
s

= u
s

.

We can now derive a PID controller to drive ✏
s

! ✏c
s

as

u
s

= k
p

s

(✏c
s

� ✏
s

)� k
d

s

✏̇
s

+ k
i

s

Z

t

0

(✏c
s

� ✏
s

) d⌧.

Solving (8.11) for u
z

we get

u
z

=
fS

✏2
s

k
p

s

(✏c
s

� ✏
s

)�
✓

k
d

s

fS

✏2
s

+ 2
fS✏̇

s

✏3
s

◆

✏̇
s

+ k
i

s

fS

✏2
s

Z

t

0

(✏c
s

� ✏
s

) d⌧. (8.12)

The downside to this equation is that it requires knowledge of the target size S and

the focal length f . This requirement can be removed by incorporating fS into the PID

gains by defining

k̂
p

s

, fSk
p

s

k̂
i

s

, fSk
i

s

k̂
d

s

, fSk
d

s

,

and by noting from Eq. (8.10) that fS✏̇

s

✏

2
s

= w. Therefore Eq. (8.12) becomes

u
z

= k̂
p

s

(✏c
s

� ✏
s

)

✏2
s

�
 

k̂
d

s

✏2
s

+ 2
w

✏
s

!

✏̇
s

+
k̂
i

s

✏2
s

Z

t

0

(✏c
s

� ✏
s

) d⌧. (8.13)

8.2 Sonar Based Altitude Hold

The equation of motion for the altitude is given by Eq. (5.22). We will use a PID

controller to regulate the altitude as

F = k
p

p

z

(pc
z

� p
z

)� k
d

p

z

ṗ
z

+ k
i

p

z

Z

t

0

(pc
z

� p
z

) d⌧, (8.14)
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p

Figure 8.2: A block diagram of the roll attitude hold loop

where pc
z

is the commanded altitude position. In the Laplace domain, the Eq. (8.14)

can be rewritten as in (8.15).

F (s) =

✓

k
p

p

z

+ sk
d

p

z

+
k
i

p

z

s

◆

(P c

z

(s)� P
z

(s)) (8.15)

Slight modifications could help improving this controller performance. In the appli-

cation discussed here, we added a filter to the derivative of the error obtaining the

controller transfer function presented in (8.16).

F (s) =

 

k
p

p

z

+ k
d

p

z

N

1 +N 1

s

+
k
i

p

z

s

!

(P c

z

(s)� P
z

(s)) (8.16)

The same approach has been applied to the roll, pitch and yaw angles regulation.

8.3 Roll Attitude Hold

The equation of motion for roll is given by Eq. (5.23) as �̈ = ⌧

p

J

x

. We will use a PID

controller to regulate the roll attitude as

⌧
p

= k
p

�

(�c � �)� k
d

�

p+ k
i

�

Z

t

0

(�c � �) d⌧.

A block diagram of the control structure is shown in Fig. 8.2. The gains k
p

�

, k
i

�

and

k
d

�

are selected one at a time using a method called successive loop closure. To pick

k
p

�

note that if the input command �c is a step of value A, then at time t = 0, before

the integrator has time to begin winding up, ⌧
p

is given by

⌧
p

(0) = k
p

�

A.

78



Chapter 8. Control Design 8.4 Pitch Attitude Hold

Therefore, setting k
p

�

= M

A

, where M is the command limit, will just saturate the

actuators when a step value of A is placed on �c. To select k
d

�

, let k
p

�

be fixed and let

k
i

�

= 0 and solve for the characteristic equation in Evan’s form verses k
d

�

to obtain

1 + k
d

�

1

J

x

s

s2 +
k

p

�

J

x

= 0.

The derivative gain k
d

�

is selected to achieve a damping ratio of ⇣ = 0.9.

The characteristic equation including k
i

�

in Evan’s form verses k
i

�

is given by

1 + k
i

�

1

J

x

s3 +
k

d

�

J

x

s2 +
k

p

�

J

x

s
= 0.

The integral gain k
i

�

can be selected so that damping ratio is not significantly changed.

Also here we added a filter to the derivative of the error obtaining the controller transfer

function shown in Eq. (8.17).

⌧
p

(s) =

 

k
p

�

+ k
d

�

N

1 +N 1

s

+
k
i

�

s

!

(�c(s)� �(s)) . (8.17)

8.4 Pitch Attitude Hold

The equation of motion for pitch is given by Eq. (5.24) as ✓̈ = ⌧

q

J

y

. Similar to the roll

attitude hold, we will use a PID controller to regulate pitch as

⌧
q

= k
p

✓

(✓c � ✓)� k
d

✓

q + k
i

✓

Z

t

0

(✓c � ✓) d⌧.

Also here we added a filter to the derivative of the error obtaining the controller transfer

function shown in Eq. (8.18).

⌧
q

(s) =

 

k
p

✓

+ k
d

✓

N

1 +N 1

s

+
k
i

✓

s

!

(⇥c(s)�⇥(s)) . (8.18)
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8.5 Vision Based Position Tracking

From Eq. (8.5) the lateral dynamics are given by p̈
y

= u
y

, where p
y

is the relative

lateral position which we drive to zero using the PID strategy

u
y

= �k
p

y

p
y

� k
d

y

v + k
i

y

Z

t

0

p
y

d⌧.

The relative position error p
y

is given by Eq. (6.1).

From Eq. (8.4) the longitudinal dynamics are given by p̈
x

= u
x

, where p
x

is the relative

lateral position which we drive to zero using the PID strategy

u
x

= �k
p

x

p
x

� k
d

x

u+ k
i

x

Z

t

0

p
x

d⌧.

The relative position error p
x

is given by Eq. (6.2).

8.6 Relative Heading Hold

The heading dynamics is given in Eq. (5.25) as  ̈ = ⌧

r

J

z

. We define  d as the inertial

heading of the target and  ̃ ,  �  d as the relative heading. The camera directly

measures  ̃. Assuming that  d is constant we get ¨̃
 = ⌧

r

J

z

. We regulate the relative

heading with the PID strategy

⌧
r

= �k
p

 

 � k
d

 

r � k
i

 

Z

t

0

 d⌧.

Also here we added a filter to the derivative of the error obtaining the controller transfer

function shown in Eq. (8.19).

⌧
r

(s) =

 

+k
p

 

+ k
d

 

N

1 +N 1

s

+
k
i

 

s

!

( c(s)� (s)) . (8.19)

8.7 Feedforward

When the multirotor is tracking a ground robot, the motion of the robot will cause

tracking errors due to the delayed response of the PID controller. If we can communi-

cate with the robot and we know its intended motion, we should be able to use that
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Figure 8.3: Standard PD loop

information to help the multirotor predict where the robot is moving. To motivate

our approach, let’s consider a simple example to gain intuition. Consider the double

integrator system

ÿ = u,

where y is position and u is commanded acceleration. If r is the reference signal then

the standard PD loop is shown in Fig. 8.3.

Let e = r � y, then

ë = r̈ � ÿ =

= r̈ � u =

= r̈ � k
p

e+ k
d

ẏ =

= r̈ � k
p

e� k
d

ė+ k
d

ṙ.

In other words we have

ë+ k
d

ė+ k
p

e = r̈ + k
d

ṙ.

Therefore, the signal r̈ + k
d

ṙ drives the error transfer function
1

s2 + k
d

s+ k
p

.

From the expression ë = r̈ � u we see that if instead of u = k
p

e� k
d

ẏ, we use

u = r̈ + k
p

e+ k
d

ė,

then we get

ë+ k
d

ė+ k
p

e = 0,

which ensures that e (t) ! 0 independent of r (t). The associated block diagram is

shown in Fig. 8.4.
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Figure 8.4: Feedforward term is added to a standard PD loop

8.8 Digital implementation of PID loops

In this section we briefly describe how PID loops can be implemented in discrete time.

A general PID control signal is given by

u(t) = k
p

e(t) + k
i

Z

t

�1
e (⌧) d⌧ + k

d

de

dt
(t),

where e(t) = yc(t) � y(t) is the error between the commanded output yc(t) and the

current output y(t). In the Laplace domain, we have

U(s) = k
p

E(s) + k
i

E(s)

s
+ k

d

sE(s).

Since a pure di↵erentiator applied to a noisy signal gives unreliable results, the standard

approach is to use a band-limited di↵erentiator so that

U(s) = k
p

E(s) + k
i

E(s)

s
+ k

d

s

⌧s+ 1
E(s).

To convert to discrete time, we use the Tustin or trapezoidal rule, where the Laplace

variable s is replaced with the z-transform approximation

s 7! 2

T
s

✓

1� z�1

1 + z�1

◆

,

where T
s

is the sample period [45]. Letting I(s) , E(s)

s

, an integrator in the z domain

becomes

I(z) =
T
s

2

✓

1 + z�1

1� z�1

◆

E(z).

Transforming to the time domain, we have

I[n] = I[n� 1] +
T
s

2
(E[n] + E[n� 1]) . (8.20)
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A formula for discrete implementation of a di↵erentiator can be derived in a similar

manner. Letting D(s) ,
⇣

s

⌧s+1

⌘

E(s), the di↵erentiator in the z domain is

D(z) =

2

T

s

⇣

1�z

�1

1+z

�1

⌘

2⌧

T

s

⇣

1�z

�1

1+z

�1

⌘

+ 1
E(z) =

⇣

2

2⌧+T

s

⌘

�

1� z�1

�

1�
⇣

2⌧�T

s

2⌧+T

s

⌘

z�1

E(z).

Transforming to the time domain, we have

D[n] =

✓

2⌧ � T
s

2⌧ + T
s

◆

D[n� 1] +

✓

2

2⌧ + T
s

◆

(E[n]� E[n� 1]) . (8.21)

Matlab code that implements a general PID loop is shown below.

1 function u = pidloop(y_c, y, flag, kp, ki, kd, limit, Ts, tau)

2 persistent integrator;

3 persistent differentiator;

4 persistent error_d1;

5 if flag==1,

6 % reset (initialize) persistent variables when flag==1

7 integrator = 0;

8 differentiator = 0;

9 error_d1 = 0; % _d1 means delayed by one time step end

10 end

11 error = y_c - y; % compute the current error

12 integrator = integrator + (Ts/2)*(error + error_d1);

13 % update integrator

14 differentiator = (2*tau-Ts)/(2*tau+Ts)*differentiator...

15 + 2/(2*tau+Ts)*(error - error_d1);

16 % update differentiator

17 error_d1 = error; % update the error for next time through

18 % the loop

19 u=sat(... % implement PID control

20 kp * error + ... % proportional term

21 ki * integrator + ... % integral term

22 kd * differentiator, ... % derivative term

23 limit... % ensure abs(u)<=limit

24 );
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25 % implement integrator anti-windup

26 if ki ~=0

27 u_unsat = kp*error + ki*integrator + kd*differentiator;

28 integrator = integrator + Ts/ki * (u - u_unsat);

29 end

30 function out = sat(in, limit)

31 if in > limit; out = limit;

32 elseif in < -limit; out = -limit;

33 else out = in;

34 end

The inputs on line 1 are:

• the commanded output yc,

• the current output y,

• flag used to reset the integrator,

• the PID gains k
p

, k
i

, and k
d

,

• the saturation command limit,

• the sample time T
s

,

• the time constant ⌧ of the di↵erentiator.

Line 11 implements Eq. (8.20) and Lines 12-13 implement Eq. (8.21). A potential

problem with a straight-forward implementation of PID controllers is integrator wind

up. When the error yc - y is large and a large error persists for an extended period of

time, the value of the integrator, as computed in Line 11, can become large or wind

up. A large integrator will cause u, as computed in Lines 19-24, to saturate, which

will cause the system to push with maximum e↵ort in the direction needed to correct

the error. Since the value of the integrator will continue to wind up until the error

signal changes sign, the control signal may not come out of saturation until well after

the error has changed sign, which can cause a large overshoot and may potentially

destabilise the system. Since integrator wind up can destabilise the autopilot loops,

it is important that each loop have an anti-wind-up scheme. A number of di↵erent
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anti-wind-up schemes are possible. A particularly simple scheme, which is shown in

Lines 26-29, is to subtract from the integrator exactly the amount needed to keep u at

the saturation bound. In particular, let

u�
unsat

= k
p

e+ k
d

D + k
i

I�

denote the unsaturated control value before updating the integrator, where I� is the

value of the integrator before applying the anti-wind-up scheme and let

u+
unsat

= k
p

e+ k
d

D + k
i

I+

denote the unsaturated control value after updating the integrator, where

I+ = I� +�I,

and �I is the update. The objective is to find �I so that u+
unsat

= u, where u is the

value of the control after the saturation command is applied. Noting that

u+
unsat

= u�
unsat

+ k
i

�I,

we can solve for �I to obtain

�I =
1

k
i

�

u� u�
unsat

�

.

The multiplication by T
s

in line 28 is to account for the sampled-data implementation.

8.9 Linear Quadratic Regulator

An appealing alternative for the control of Multiple Input Multiple Output (MIMO)

systems is the Linear Quadratic Regulator, usually referred to by the abbreviation LQ

or even LQR. A detailed study of this topic can be found in [46].

Given a state-space description of the plant as in Eq.(8.22),

⇢

ẋ = Ax+Bu
y = Cx+Du

(8.22)

where
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• x is the state vector defined as

x =
⇥

p
z

ṗ
z

� �̇ ✓ ✓̇   ̇
⇤

T

, (8.23)

• u is the command vector defined as

u =
⇥

F ⌧
p

⌧
q

⌧
r

⇤

T

, (8.24)

the state-feedback matrix of gains is determined, in the LQ approach, as

K
lqr

(1) = R�1BTS(1) (8.25)

where S(1) = S is the solution of the Algebraic Riccati Equation (A.R.E.)

ATS + SA� SBR�1BTS +Q = 0 (8.26)

which minimizes the linear quadratic cost function

J1 =
1

2

Z 1

0

(xTQx+ uTRu)dt (8.27)

considering the infinite horizon situation. In order to improve the LQ regulation per-

formances only the adjustment of the weighing matrices Q and R, in the minimisation

criterion (8.27), is required. Q and R are diagonal and can be initialized as identity

matrices. By increasing the weight of the q
i,i

element of matrix Q, the regulation on

the ith state becomes faster, usually requiring a stronger control action, whereas the

penalisation of the jth input is obtained by increasing the weight of the r
j,j

element of

matrix R.
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9

Simulations and tests

Several simulations of the nonlinear linear system have been realized using Matlab

Simulink R�. This environment can be used for multi-domain simulations and Model-

Based Design for dynamic systems. It provides an interactive graphical environment

and a customizable set of block libraries which allows to design, simulate, implement

and test a variety of time-varying systems. The model of the whole system is composed

of several interconnected blocks in a classical feedback structure.

9.1 PID control simulation

Target of the virtual simulation was to find the starting values of the constant control

gains k
p

, k
i

, k
d

and N which optimized the behaviour of the system in tracking the

reference variables. These values, presented in Tab. 9.1, have been found empirically,

with a trial and error approach and have been tested on a nonlinear Simulink R� sim-

ulation of the multirotor system. Fig. 9.1 shows the behaviour of the PID regulated

Table 9.1: PID control gains

k
p

k
i

k
d

N

p
z

2.21 0.05 8.46 6.41

� 4.83 1.82 1.17 101.60

✓ 4.83 1.82 1.17 101.60

 4.22 1.10 1.47 70.30

87



Chapter 9. Simulations and tests

system in case of an aggressive maneuver in which we want the multirotor to reach the

state specified by (9.1).

~x
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(9.1)

In Fig. 9.1, it is interesting to observe the secondary e↵ect, on the roll dynamics, due
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Figure 9.1: Nonlinear dynamics of a PID regulated aggressive maneuver; the rotors

position in the figure recalls the physical rotors position in the multirotor

to the coupling with the imposed pitch dynamics. This e↵ect is considered negligible,

therefore not appreciable, in the linear modelling.
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9.2 LQR control simulation

A virtual model of the LQ regulated dynamics has been realized in the Matlab Simulink R�

environment using a continuous time form of the model matrices. The error between

the current state and the reference signal, times the K
lqr

matrix, gives the command

inputs. The simulation was conceived to help finding, iteratively, the elements of the

matrices Q and R and, consequently, K
lqr

, which optimized the behaviour of the closed

loop system in pursuing the target variables. These matrices are presented in (9.2) and

(9.3).
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R =
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4
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0 0.17 0 0
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7
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(9.3)

Consequently the K
lqr

matrix has been calculated and it is shown in (9.4).
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4

5.48 0 0 0
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0 0 0 3.46
0 0 0 2.51

3
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7

7

7

7

7

7

7

7

7

5

T

(9.4)

Fig. 9.2 shows the behaviour of the LQ regulated system in case of an aggressive

maneuver in which we want the multirotor to reach the state specified by (9.1). As

observed in the PID regulated case, in Fig. 9.2, it is interesting to appreciate the

secondary e↵ect, on the roll dynamics, due to the coupling with the imposed pitch

dynamics.
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Figure 9.2: Nonlinear dynamics of a LQ regulated aggressive maneuver; the rotors posi-

tion in the figure recalls the physical rotors position in the multirotor

9.3 PID vs. LQ

This section compares the performances of the two regulation techniques applied to the

nonlinear model of the multirotor. In particular, Fig. 9.3 shows the height, roll, pitch

and yaw closed loop responses to reach a step reference value. These responses can be

synthetically evaluated on the basis of some classical parameters, known from the basic

control theory as explained in [47]. In detail, Tab. 9.2 refers to the height dynamics

control, Tab. 9.3 refers to the roll and pitch dynamics and Tab. 9.4 presents the yaw

response properties. Practically both control methods allow to achieve very satisfactory

results and it is not technically reasonable to state that one approach performs always

better than the other, since both can be always further improved by means of a more

accurate tuning.

Nevertheless it is worthwhile to mention that the two di↵erent control techniques, al-

though resulting in comparable reference tracking performances, are characterized by

totally di↵erent control inputs strategies, as illustrated in Fig. 10.21. This figure shows
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the control inputs from the initial time instant to 0.5 [s] in order to zoom the di↵erence

between the two strategies. The analysis of the control inputs e↵orts denotes a higher

and more quickly time varying control actions demand in the PID approach.

As already explained in the relevant theory description, the LQR method gives the

chance to directly calibrate the references tracking error and the control actions de-

mand, while in the PID approach the control inputs are not directly tuned but they

result, as a consequence, from the PID gains definition. This characteristic represents,

without any doubt, an advantage of the LQR with respect to the PID control technique.

Another interesting observation is relevant to the cross-coupling between the roll and

pitch dynamics. As visible from Fig. 9.1 and Fig. 9.2, while requiring less aggressive

control inputs, the LQR approach is able to minimize by ten times this undesired e↵ect.

Table 9.2: Height: step response properties

PID LQR

Rise time 0.68 [s] 1.52 [s]

Settling time 64.08 [s] 10.23 [s]

Overshoot 68.72 % 27.86 %

Undershoot 0 % 0 %

Peak 1.69 [m] 1.28 [m]

Peak time 3.08 [s] 3.75 [s]

Table 9.3: Roll and pitch: step response properties

PID LQR

Rise time 0.43 [s] 0.99 [s]

Settling time 4.78 [s] 1.77 [s]

Overshoot 7.65 % 0 %

Undershoot 0 % 0 %

Peak 1.08 [rad] 1.00 [rad]

Peak time 1.30 [s] 15.02 [s]
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Figure 9.3: Height (p
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), roll (�), pitch (✓) and yaw ( ) angles regulation performance:

PID vs. LQR
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Table 9.4: Yaw: step response properties

PID LQR

Rise time 0.56 [s] 1.55 [s]

Settling time 5.81 [s] 2.79 [s]

Overshoot 5.64 % 0 %

Undershoot 0 % 0 %

Peak 1.06 [rad] 1.00 [rad]

Peak time 1.84 [s] 23.40 [s]

9.4 Failure simulation

The simulation developed in Matlab Simulink R� was designed to describe the behaviour

of the controlled system even in case of one or more motors failures. In particular it

was simulated the failure of the front right upper motor, identified as motor “1” in

Fig. 1.19. In order to have an acceptable behaviour of the PID controlled plant it was

necessary to retune the control gains with respect to the case without failures. The

new found values are presented in Tab. 9.5. The system behaviour is shown in Fig. 9.5

Table 9.5: PID control gains retuned for improved performance in case of one motor

failure

k
p

k
i

k
d

N

p
z

33.37 2.65 35.02 21.23

� 31.75 25.68 2.74 212.29

✓ 31.75 25.68 2.74 212.29

 37.18 28.38 5.40 172.04

where the position of the motors inputs graphs recalls the disposition of the motors in

the multirotor in order to improve the figure readability. In more details the first row

of graphs in Fig. 9.5 shows the system height and attitude regulation capability, in the

presence or in the absence of a motor failure. The second and third rows illustrate the

relevant PWM inputs to the motors. One of the latter graphs can be distinguished for

the di↵erent background color. That graph shows clearly the constant input given to

the motor “1” that corresponds to a null force from rotor 1. It can be seen either as a

failure of the motor or as a complete failure of the propeller. Fig. 9.5 highlights that,
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with adequate gains, a PID control structure is able regulate the multirotor system

even in case of loss or damage of one propeller and/or motor.
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Figure 9.5: PID control simulation in case of motor “1” failure

9.4.1 Cooper-Harper rating evaluation

The behaviour of the system in case of a single motor failure has been evaluated also

experimentally by means of the Cooper-Harper rating scale, described in [3]. The

Cooper-Harper rating scale is a set of criteria used by test pilots and flight test engi-

neers to evaluate the “handling qualities” of an aircraft during flight test. As shown in

Fig. 9.6, the scale ranges from 1 to 10, with 1 indicating the best handling character-

istics and 10 the worst. “Handling qualities” are defined in [48] as “those qualities or

characteristics of an aircraft that govern the ease and precision with which a pilot is

able to perform the tasks required in support of an aircraft role”. From this definition,

it is clear that handling quality is characteristic of the combined performance of the

pilot and vehicle acting together as a system in support of an aircraft role. Fundamen-

tal to the subject of handling qualities is the definition of the system whose handling

is to be assessed. Aircraft and flight control designers often focus on the dynamics of
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Figure 9.6: Cooper-Harper rating scale [3]
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the vehicle, since that is the system element whose characteristics can be selected, the

pilot is not readily alterable. The piloted-vehicle dynamics, however, are very much

a↵ected by the pilot actions as a controller; he is a key element in the system. In the

functional diagram of Fig. 9.7, the pilot role is delineated as the decision-maker of

what is to be done, the comparator of what is happening vs. what he wants to happen

and the supplier of corrective inputs to the aircraft controls to achieve what he desires.

This, then, is the system: the pilot and aircraft acting together as a closed-loop system,

the dynamics of which may be significantly di↵erent from those of the aircraft acting

without him. The handling qualities of a given aircraft are task dependent: what is

Figure 9.7: Pilot-vehicle dynamic system [3]

preferred for one task may be less desirable for another.

In our specific case two tasks have been selected: taking o↵ and landing with one

failed motor. With respect to the former task, we observed the multirotor was still

controllable, the performance was attainable with a tolerable pilot workload and no

improvements were considered necessary. The multirotor characteristics were evaluated

as good since pilot compensation was not a factor for the desired take o↵ performance.

The Cooper-Harper rating given by the pilot was 2. Concerning the landing task the

rating was 3 since a minimal pilot compensation was required to reach the desired

performance.
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9.5 Experimental tests

After designing and evaluating the simulated PID and LQ regulation performances,

these control laws were implemented on the flight control computer, the APM. This

allowed verifying the real physical behaviour of the automatically controlled vehicle.

The first tests were conducted allowing one single multirotor rotation per time. As

matter of example, Fig. 9.8 shows the data gathered during an experimental test in

which the pitch rotation was the only free degree of freedom. The vertical dotted line,

visible in Fig. 9.8, underlines the time instant at which the external solicitation was

at its maximum and the system was realized to react automatically. The figure shows

also the capability of the control architecture to regulate the system at the desired

zero pitch angle with some minor residual oscillations depending on the unavoidable

measurement noise. Fig. 9.8 shows also the motors inputs necessary to exhibit the

regulated pitch angle behaviour.
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Figure 9.8: Experimental PID controlled pitch output and relevant motors inputs

While Fig. 9.8 refers to the PID regulation of the pitch angle dynamics, Fig. 9.9 refers

to the LQ regulation of the yaw angle dynamics. As for the experimental application

of the PID approach, the LQ control strategy demonstrated the required capability to
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Figure 9.9: Experimental LQ regulated yaw output and relevant motors inputs

stabilize the physical system around the desired zero yaw angle.

The vertical and all the three rotation dynamics tests have been singly conducted, both

for the PID and the LQR control architectures, requiring only some minor tunings of the

control gains with respect to the same parameters tuned with the Matlab Simulink R�

simulations.

Finally, the multirotor was tested in a completely free flight. Further minor tunings of

the control gains were requested to adequate the control sharing between the human

pilot and the automatic controller. This sharing cannot be predefined with certainty, it

may be chosen according to the human pilot skills and handling qualities preferences.

Fig. 9.10 shows the height and attitude data registered during a free flight while,

starting from the hovering condition, the multirotor was commanded to reach the height

of 150 [cm] above the ground, keeping all the attitude angles equal the 0 [deg]. Fig.

9.10 shows an acceptable height tracking capability while the attitude angles errors can

be bound within the interval [-0.2 0.2] [deg], during the whole interval of the vertical

maneuver. This result is valid when applying both the PID and the LQR strategy.
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Figure 9.10: PID and LQR controlled height and attitude angles during free flight
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10

Neural control

The purpose of this chapter is to provide a quick overview of neural networks and to

explain how they can be used in control systems. We introduce the most common

neural network architecture, the multilayer perceptron and describe how it can be used

for function approximation. The backpropagation algorithm (including its variations)

is the principal procedure for training multilayer perceptrons and it is briefly described

here. Care must be taken, when training perceptron networks, to ensure that they do

not overfit the training data and then fail to generalise well in new situations. Several

techniques for improving generalisation are discussed. The chapter also presents the

model reference adaptive control. We demonstrate the practical implementation of this

controller on the automatic height control of a multirotor system.

Finally various sensors setups are conceived and their implications on the control law

are evaluated. For the purposes of this chapter we will look at neural networks as

function approximators. As shown in Fig. 10.1, we have some unknown function that

we wish to approximate. We want to adjust the parameters of the network so that it

will produce the same response as the unknown function, if the same input is applied

to both systems. For our applications, the unknown function may correspond to a

system we are trying to control, in which case the neural network will be the identified

plant model. The unknown function could also represent the inverse of a system we

are trying to control, in which case the neural network can be used to implement the

controller. In the next section we will present the multilayer perceptron neural network

and will demonstrate how it can be used as a function approximator.
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Figure 10.1: Neural network as function approximator

10.1 Multilayer perceptron architecture

10.1.1 Neuron model

The multilayer perceptron neural network is built up of simple components. We will

begin with a single-input neuron, which we will then extend to multiple inputs. We

will next stack these neurons together to produce layers. Finally, we will cascade the

layers together to form the network.

A single-input neuron is shown in Fig. 10.2. The scalar input p is multiplied by the

scalar weight w to form wp, one of the terms that is sent to the sum block. The other

input, 1, is multiplied by a bias b and then passed to the sum block. The sum block

output n, often referred to as the net input, goes into a transfer function f, which

produces the scalar neuron output a.

Figure 10.2: Single input neuron
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The neuron output is calculated as

a = f(wp+ b). (10.1)

Note that w and b are both adjustable scalar parameters of the neuron. Typically

the transfer function is chosen by the designer and then the parameters w and b are

adjusted by some learning rule so that the neuron input/output relationship meets

some specific goal. The transfer function in Fig. 10.2 may be a linear or a nonlinear

function of n. One of the most commonly used functions is the log-sigmoid transfer

function, which is shown in Fig. 10.3.

Figure 10.3: Log-sigmoid transfer function

This transfer function takes the input (which may have any value between plus and mi-

nus infinity) and squashes the output into the range 0 to 1, according to the expression

a =
1

1 + e�n

. (10.2)

The log-sigmoid transfer function is commonly used in multilayer networks that are

trained using the backpropagation algorithm, in part because this function is di↵er-

entiable. Tipically, a neuron has more than one input. A neuron with R inputs is

shown in Fig. 10.4. The individual inputs p
1

, p
2

, ..., p
R

are each one weighted by

corresponding elements w
1,1

, w
1,2

, ..., w
1,R

of the weight matrix W.

The neuron has a bias b, which is summed with the weighted inputs to form the net

input n:

n = w
1,1

p
1

+ w
1,2

p
2

+ w
1,R

p
R

+ b. (10.3)
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Figure 10.4: Multiple-input neuron

This expression can be written in matrix form as

n = Wp+ b, (10.4)

where the matrix W for the single neuron case has only one row.

Now the neuron output can be written as

a = f(Wp+ b). (10.5)

Fig. 10.5 represents the neuron in matrix form.

Figure 10.5: Neuron with R inputs, matrix notation

10.1.2 Network architecture

Commonly one neuron, even with many inputs, is not su�cient. We might need five

or ten, operating in parallel, in what is called a layer. A single-layer network of S
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neurons is shown in Fig. 10.6. Note that each of the R inputs is connected to each

of the neurons and that the weight matrix now has S rows. The layer includes the

weight matrix W, the sum blocks, the bias vector b, the transfer function boxes and

the output vector a. Some authors refer to the inputs as another layer, but we will not

do that here. It is common for the number of inputs to a layer to be di↵erent from the

number of neurons (i.e., R 6= S ).

Figure 10.6: Layer of S neurons

The S-neuron, R-input, one-layer network also can be drawn in matrix notation, as

shown in Fig. 10.7.

10.1.2.1 Multiple layers of neurons

Now consider a network with several layers. Each layer has its own weight matrix

W, its own bias vector b, a net input vector n and an output vector a. We need to

introduce some additional notation to distinguish between these layers. We will use

superscripts to identify the layers. Thus, the weight matrix for the first layer is written

as W1 and the weight matrix for the second layer is written as W2. This notation

is used in the three-layer network shown in Fig. 10.8. As shown, there are R inputs,
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Figure 10.7: Layer of S neurons, matrix notation

S1 neurons in the first layer, S2 neurons in the second layer, etc.. As noted, di↵erent

layers can have di↵erent numbers of neurons.

The outputs of layers one and two are the inputs for layers two and three. Thus layer

2 can be viewed as a one-layer network with R = S1 inputs, S = S2 neurons and an

S1 x S2 weight matrix W2. The input to layer 2 is a1 and the output is a2. A layer

whose output is the network output is called an output layer. The other layers are

called hidden layers. The network shown in Fig. 10.8 has an output layer (layer 3) and

two hidden layers (layers 1 and 2).

Figure 10.8: Three-layer network
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10.2 Approximation capabilities

Two-layer networks, with sigmoid transfer functions in the hidden layer and linear

transfer functions in the output layer, are universal approximators [49]. A simple

example can demonstrate the power of this network for approximation.

Consider the two-layer, 1-2-1 network shown in Fig. 10.9. For this example the transfer

function for the first layer is log-sigmoidal and the transfer function for the second layer

is linear. In other words

f1(n) =
1

1 + e�n

and f2(n) = n. (10.6)

Figure 10.9: Example function approximation network

Suppose that the nominal values of the weights and biases for this network are

w1

1,1

= 10

w1

2,1

= 10

b1
1

= �10

b1
2

= 10

w2

1,1

= 1

w2

1,2

= 1

b2 = 0.

106



Chapter 10. Neural control 10.2 Approximation capabilities

The network response for these parameters is shown in 10.10, which plots the network

output a2 as the input p is varied over the range [-2, 2]. Notice that the response

consists of two steps, one for each of the log-sigmoidal neurons in the first layer. By

adjusting the network parameters we can change the shape and location of each step,

as we will see in the following discussion. The centers of the steps occur where the net

input to a neuron in the first layer is zero:

n1

1

= w1

1,1

p+ b1
1

= 0 ) p = � b1
1

w1

1,1

= ��10

10
= 1 (10.7)

n2

1

= w1

2,1

p+ b1
2

= 0 ) p = � b1
2

w1

2,1

= �10

10
= �1. (10.8)

The steepness of each step can be adjusted by changing the network weights.

Figure 10.10: Nominal Response of Network of Fig. 10.9

Fig. 10.11 illustrates the e↵ects of parameter changes on the network response. The

nominal response is repeated from Fig. 10.10. The other curves correspond to the

network response when one parameter at a time is varied over the following ranges:

�1 w2

1,1

 1

�1 w2

1,2

 1

0 b1
2

 20

�1 b2  1.
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Fig. 10.11(a) shows how the network biases in the first (hidden) layer can be used to

locate the position of the steps. Fig. 10.11(b) and Fig. 10.11(c) illustrate how the

weights determine the slope of the steps. The bias in the second (output) layer shifts

the entire network response up or down, as can be seen in Fig. 10.11(d).

Figure 10.11: E↵ect of parameter changes on network response

From this example we can see how flexible the multilayer network is. It would appear

that we could use such networks to approximate almost any function, if we had a

su�cient number of neurons in the hidden layer. In fact, it has been shown that two-

layer networks, with sigmoidal transfer functions in the hidden layer and linear transfer

functions in the output layer, can approximate virtually any function of interest to

any degree of accuracy, provided su�ciently many hidden units are available. It is

beyond the scope of this chapter to provide detailed discussions of approximation theory

but there are many papers in the literature that can provide a deeper discussion of

this field. In [49], Hornik, Stinchcombe and White present a proof that multilayer

perceptron networks are universal approximators. Pinkus gives a more recent review

of the approximation capabilities of neural networks in [50]. Niyogi and Girosi, in [51],

develop bounds on function approximation error when the network is trained on noisy

data.
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10.3 Training multilayer networks

Now that we know multilayer networks are universal approximators, the next step is to

determine a procedure for selecting the network parameters (weights and biases) that

will best approximate a given function. The procedure for selecting the parameters for

a given problem is called training the network. In this section we will outline a training

procedure called backpropagation, which is based on gradient descent (more e�cient

algorithms than gradient descent exist and are often used in neural network training).

As we discussed earlier, for multilayer networks the output of one layer becomes the

input to the following layer (see Fig. 10.8). The equations that describe this operation

are

am+1 = fm+1(Wm+1a+ bm+1)

for m = 0, 1, ...,M � 1, (10.9)

where M is the number of layers in the network. The neurons in the first layer receive

external inputs:

a0 = p (10.10)

which provides the starting point for Eq. (10.9). The outputs of the neurons in the

last layer are considered the network outputs:

a = aM. (10.11)

10.3.1 Performance index

The backpropagation algorithm for multilayer networks is a gradient descent optimiza-

tion procedure in which we minimize a mean square error performance index. The

algorithm is provided with a set of examples of proper network behaviour:

{p
1

, t
1

}, {p
2

, t
2

}, ..., {p
Q

, t
Q

} (10.12)

where p
Q

is an input to the network and t
Q

is the corresponding target output. As

each input is applied to the network, the network output is compared to the target.
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The algorithm should adjust the network parameters in order to minimize the sum

squared error

F (x) =
Q

X

q=1

e2
q

=
Q

X

q=1

(t
q

� a
q

)2 (10.13)

where x is a vector containing all network weights and biases. If the network has

multiple outputs this generalizes to

F (x) =
Q

X

q=1

eT
q

e
q

=
Q

X

q=1

(t
q

� a
q

)T (t
q

� a
q

). (10.14)

Using a stochastic approximation, we will replace the sum squared error by the error

on the latest target:

F̂ (x) = (t(k)� a(k))T (t(k)� a(k)) =

= eT (k)e(k) (10.15)

where the expectation of the squared error has been replaced by the squared error at

iteration k.

The steepest descent algorithm for the approximate mean square error is

wm

i,j

(k + 1) = wm

i,j

(k)� ↵
@F̂

@wm

i,j

(10.16)

bm
i

(k + 1) = bm
i

(k)� ↵
@F̂

@bm
i

(10.17)

where ↵ is the learning rate.

10.3.2 Chain rule

For a single-layer linear network, these partial derivatives in Eq. (10.16) and Eq. (10.17)

are conveniently computed, since the error can be written as an explicit linear function

of the network weights. For the multilayer network, the error is not an explicit function

of the weights in the hidden layers, therefore these derivatives are not computed so

easily.
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Because the error is an indirect function of the weights in the hidden layers, we will use

the chain rule of calculus to calculate the derivatives in Eq. (10.16) and Eq. (10.17):

@F̂

@wm

i,j

=
@F̂

@nm

i

⇥ @nm

i

@wm

i,j

(10.18)

@F̂

@bm
i

=
@F̂

@nm

i

⇥ @nm

i

@bm
i

. (10.19)

The second term in each of these equations can be easily computed, since the net input

to layer m is an explicit function of the weights and bias in that layer:

nm

i

=
S

m�1
X

j=1

wm

i,j

am�1

j

+ bm
i

. (10.20)

Therefore

@nm

i

@wm

i,j

= am�1

j

@nm

i

@bm
i

= 1. (10.21)

If we now define

sm
i

⌘ @F̂

@nm

i

(10.22)

(the sensitivity of F̂ to changes in the ith element of the net input at layer m), then

Eq. (10.18) and Eq. (10.19) can be simplified to

@F̂

@wm

i,j

= sm
i

am�1

j

(10.23)

@F̂

@bm
i

= sm
i

. (10.24)

We can now express the approximate steepest descent algorithm as

wm

i,j

(k + 1) = wm

i,j

(k)� ↵sm
i

am�1

j

(10.25)

bm
i

(k + 1) = bm
i

(k)� ↵sm
i

. (10.26)

In matrix form this becomes:

Wm(k + 1) = Wm(k)� ↵sm(am�1)T (10.27)

bm(k + 1) = bm(k)� ↵sm (10.28)

where the individual elements of sm are given by Eq. (10.22).
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10.3.3 Backpropagating the sensitivities

It now remains for us to compute the sensitivities sm, which requires another application

of the chain rule. It is this process that gives us the term backpropagation, because it

describes a recurrence relationship in which the sensitivity at layer m is computed from

the sensitivity at layer m+1:

sM = �2ḞM (nM )(t� a) (10.29)

sm = Ḟ
m

(nm)(Wm+1)T sm+1,

m = M � 1, ..., 2, 1 (10.30)

where

Ḟm(nm) =

2

6

6

6

4

ḟm(nm

1

) 0 . . . 0
0 ḟm(nm

2

) . . . 0
...

...
...

0 0 . . . ḟm(nm

s

m

)

3

7

7

7

5

(10.31)

See reference [52], chapter 11, for a derivation of this result.

10.3.4 Variation of backpropagation

In some ways it is unfortunate that the algorithm we usually refer to as backprop-

agation, given by Eq. (10.27) and Eq. (10.28), is in fact simply a steepest descent

algorithm. There are many other optimization algorithms that can use the backpropa-

gation procedure, in which derivatives are processed from the last layer of the network

to the first (as given in Eq. (10.30)). For example, conjugate gradient and quasi-Newton

algorithms are generally more e�cient than steepest descent algorithms and yet they

can use the same backpropagation procedure to compute the necessary derivatives.

The Levenberg-Marquardt algorithm is very e�cient for training small to medium-size

networks and it uses a backpropagation procedure that is very similar to the one given

by Eq. (10.30).
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10.3.5 Generalization (interpolation & extrapolation)

We now know that multilayer networks are universal approximators but we have not

discussed how to select the number of neurons and the number of layers necessary to

achieve an accurate approximation in a given problem. Moreover we have not discussed

how the training data set should be selected. The trick is to use enough neurons to

capture the complexity of the underlying function without having the network overfit

the training data, in which case it will not generalize to new situations. We also need

to have su�cient training data to adequately represent the underlying function. To

illustrate the problems we can have in network training, consider the following general

example. Assume that the training data is generated by the following equation:

t
q

= g(p
q

) + e
q

(10.32)

where p
q

is the system input, g(.) is the underlying function we wish to approximate,

e
q

is measurement noise and t
q

is the system output (network target). Fig. 10.12 shows

an example of the underlying function g(.) (thick line), training data target values t
q

(circles) and total trained network response (thin line). The two graphs of Fig. 10.12

and Fig. 10.13 represent di↵erent training strategies.

Figure 10.12: Example of overfitting

In the example shown in Fig. 10.12, a large network was trained to minimize squared

error (Eq. (10.13)) over the 15 points in the training set. We can see that the network

response exactly matches the target values for each training point. However, the total
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Figure 10.13: Example of a good fit

network response has failed to capture the underlying function. There are two major

problems. First, the network has overfit on the training data. The network response is

too complex, because the network has more than enough independent parameters and

they have not been constrained in any way. The second problem is that there is no

training data for values of p greater than 0. Neural networks (and other nonlinear black

box techniques) cannot be expected to extrapolate accurately. If the network receives

an input that is outside of the range covered in the training data, then the network

response will always be suspect.

While there is little we can do to improve the network performance outside the range

of the training data, we can improve its ability to interpolate between data points. Im-

proved generalization can be obtained through a variety of techniques. In one method,

called early stopping, we place a portion of the training data into a validation data set.

The performance of the network on the validation set is monitored during training.

During the early stages of training the validation error will come down. When overfit-

ting begins, the validation error will begin to increase and at this point the training is

stopped.

Another technique to improve network generalization is called regularization. With

this method the performance index is modified to include a term which penalizes net-

work complexity. The most common penalty term is the sum of squares of the network
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weights:

F (x) =
Q

X

q=1

eT
q

e
q

+ ⇢
X

(wk

i,j

)2. (10.33)

This performance index forces the weights to be small, which produces a smoother

network response. The trick with this method is to choose the correct regularization

parameter ⇢. If the value is too large, then the network response will be too smooth

and will not accurately approximate the underlying function. If the value is too small,

then the network will overfit. There are a number of methods for selecting the optimal

⇢. One of the most successful is Bayesian regularization.

Fig. 10.13 shows the network response when the network is trained with Bayesian

regularization. Notice that the network response no longer exactly matches the training

data points, but the overall network response more closely matches the underlying

function over the range of the training data. In the next section we will describe how

multilayer networks can be used in neural control applications.

10.4 Control systems applications

Multilayer neural networks have been applied successfully in the identification and

control of dynamic systems. Rather than attempt to survey the many ways in which

multilayer networks have been used in control systems, we will concentrate on one

typical neural network controller, the model reference control. This controller is rep-

resentative of the ways in which multilayer networks are used in control systems. As

with most neural controllers, it is based on standard linear control architectures.

There are typically two steps involved when using neural networks for control:

1. system identification,

2. control design.

In the system identification stage, we develop a neural network model of the plant that

we want to control.

In the control design stage, we use the neural network plant model to design (or train)

the controller. The next subsection of this chapter discuss the model reference control

and will describe how it can be applied in practice.
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10.4.1 Model reference control

10.4.1.1 System identification

The first stage of model reference control is to train a neural network to represent the

forward dynamics of the plant. The prediction error between the plant output and the

neural network output is used as the neural network training signal. The process is

represented by Fig. 10.14.

Figure 10.14: Plant identification

One standard model that can be used for nonlinear identification is the Nonlinear

Autoregressive-Moving Average (NARMA) model - detailed in [53] -:

y(k + d) = h[y(k), y(k � 1), ...

..., y(k � n+ 1), u(k), u(k � 1), ...

..., u(k �m+ 1)] (10.34)

where u(k) is the system input, y(k) is the system output and d is the system delay.

For the identification phase, we train a neural network to approximate the nonlinear

function h. The structure of the neural network plant model is given in Fig. 10.15,

where the blocks labeled TDL are tapped delay lines that store previous values of the

input signal. The equation for the plant model is given by

y
m

(k + 1) = ĥ[y
p

(k), ..., y
p

(k � n+ 1), u(k), ...,

..., u(k �m+ 1);x], (10.35)

where ĥ[.;x] is the function implemented by the neural network and x it the vector

containing all network weights and biases. We have modified our previous notation
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Figure 10.15: Neural network plant model

here, to allow more than one input into the network. IWi,j is a weight matrix from

input number j to layer number i. LWi,j is a weight matrix from layer number j to

layer number i.

Although there are delays in this network, they occur only at the network input and the

network contains no feedback loops. For these reasons, the neural network plant model

can be trained using the backpropagation methods for feedforward networks described

in the first part of this chapter. It is important that the training data cover the entire

range of plant operation because we know from previous discussions that nonlinear

neural networks do not extrapolate accurately. The input to this network is an (n
y

+

n
u

)-dimensional vector of previous plant outputs and inputs. It is this space that must

be covered adequately by the training data.

10.4.1.2 Neural network controller

Model reference control architecture uses two neural networks: a controller network

and a plant model network, as shown in Fig. 10.16. The plant model is identified

first and then the controller is trained so that the plant output follows the reference

model output. The online computation of the model reference controller is minimal.

However the model reference architecture requires a separate neural network controller

to be trained, in addition to the neural network plant model. The controller training

is computationally expensive since it requires the use of dynamic backpropagation.

On the positive side, model reference control applies to a large class of plants which

requires the plant to be approximated by a companion form model.
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Figure 10.16: Model reference control architecture

Fig. 10.17 shows the details of the neural network plant model and the neural network

controller. There are three sets of controller inputs:

1. delayed reference inputs,

2. delayed controller outputs (plant inputs),

3. delayed plant outputs.

For each of these inputs, we select the number of delayed values to use. Typically, the

number of delays increases with the order of the plant. There are two sets of inputs to

the neural network plant model: delayed controller outputs and delayed plant outputs.

The plant identification process for model reference control uses the NARMA model

given by Eq. (10.34). It is clear from Fig. 10.17 that the model reference control

structure is a recurrent (feedback) network. This type of network is more di�cult to

train than the feedforward networks that were discussed in the first half of this chapter

and that are used for plant identification. Suppose that we use the same gradient de-

scent algorithm, Eq. (10.16), that is used in the standard backpropagation algorithm.

The problem with recurrent networks is that when we try to find the equivalent of Eq.

(10.23) (gradient calculation) we note that the weights and biases have two di↵erent ef-

fects on the network output. The first is the direct e↵ect, which is accounted for by Eq.

(10.23). The second is an indirect e↵ect, since some of the inputs to the network, such

as u(t � 1), are also functions of the weights and biases. To account for this indirect

e↵ect we must use dynamic backpropagation to compute the gradients for recurrent
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Figure 10.17: Detailed model reference control structure

networks. A detailed description of dynamic backpropagation is anyway beyond the

scope of this chapter.

In addition to the di�culty in computing the gradients for recurrent networks, the error

surfaces for these networks pose special di�culties for gradient-based optimization al-

gorithms. Gradient-based training procedures that are well suited to training recurrent

networks are discussed in reference [54]. The data used to train the model reference

controller is generated while applying a random reference signal which consists of a se-

ries of pulses of random amplitude and duration. This data can be generated without

running the plant, but using the neural network model output in place of the plant

output.

10.4.2 Application: vertical position control of a multirotor

The potentiality of the model reference control technique will be demonstrated con-

trolling the vertical dynamics of a multirotor. Referring to Eq. (5.22), the equation of

motion that describes the vertical dynamics of a multirotor in the vehicle-1 frame is

p̈
z

= g � cos� cos ✓ · F
m

(10.36)
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where

• p̈
z

is the multirotor centre of gravity acceleration in the vehicle-1 frame,

• g is the gravity acceleration,

• � and ✓ are the roll and pitch angles,

• F is the total thrust force acting on the multirotor,

• m is the multirotor mass.

10.4.2.1 Plant identification

The system was sampled at intervals of 0.05 seconds. To identify the system, input

pulses with intervals between 0.01 and 5 seconds and amplitude between -11 [N] and 20

[N] have been used. The neural network plant model used two delayed values of thrust

(m = 2), two delayed values of multirotor position (n = 2) as input to the network

and 15 neurons were used in the hidden layer (a 5-15-1 network). Fig. 10.18 shows the

Matlab tool that, opportunely tuned, allows defining the plant neural network.

Figure 10.18: Matlab graphical user interface for plant identification and training
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10.4.2.2 Neural network controller

We define as objective for the control system that the multirotor vertical position tracks

the reference model

ÿ
r

= �6ẏ
r

� 9y
r

+ 9r (10.37)

where y
r

, is the output of the reference model and r is the input reference signal.

For the controller network, it has been used a 5-13-1 architecture. The inputs to the

controller consisted of two delayed reference inputs, two delayed plant outputs and one

delayed controller output. The controller was trained using a BFGS (Broyden, Fletcher,

Goldfarb and Shanno) quasi-Newton algorithm, with dynamic backpropagation used

to calculate the gradients. Fig. 10.19 shows the Matlab tool that, opportunely tuned,

allows to define the neural network controller.

Figure 10.19: Matlab graphical user interface for the neural network controller identifi-

cation and training

The graph of Fig. 10.20 shows the reference height signal and the multirotor position

along the z axis of the vehicle-1 frame, using the trained model reference controller.

The system is able to follow the reference and the control actions (shown in Fig. 10.21)

are smooth. At certain set points there is some steady state error. This error could be

reduced by adding more training data at those steady state conditions where the error

is largest. The problem can occur in the plant model or in the controller network.
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Figure 10.20: Neural network controlled vertical position
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Figure 10.21: Control action and multirotor controlled vertical dynamics

122



Chapter 10. Neural control 10.5 Distance sensor embodiment

10.5 Distance sensor embodiment

In order to allow the implementation of an automatic sense & avoid system a suitable

sensor embodiment has been conceived. This concept is shown in Fig. 10.22.

Figure 10.22: Distance sensor embodiment

It is mainly based on the Cardan shaft (see Fig. 10.23) mechanical property.

Figure 10.23: Cardan shaft

One arm of the shaft is connected to a stepper motor that is linked to the multirotor

structure. This arm axis is named c
1

in the Fig. 10.22. This axis is aligned with

the z
body

axis. The stepper motor is inserted in order to allow rotations of the laser

distance sensor around the c
2

axis. For the mechanical properties of the Cardan shaft,

in fact, a certain angular velocity around the c
1

axis will be equally transmitted to the

second arm, i.e. a rotation around c
2

will take place. The joint conjunction between
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the first and the second arm is intended to be left free, i.e. without an active motor

control, since, due to the gravity force it will constantly (with certain oscillations to be

passively damped) maintain its vertical position.

Control requisite is then derived from the obstacles perception with the above explained

sensor setup. The measured distance of the multirotor from the closest obstacle is

� = �
max

sin� (10.38)

where �
max

is defined as the maximum distance that can be measured by the sensor.

With the aim to define the required control reaction rise time of our sense & avoid

system a time to collision t
c

value has to be defined. This time is approximately found

as follow

t
c

⇡ �

V cos �
. (10.39)

For example, if a multirotor is flying at

V cos(�) = 10m/s

and the maximum distance that can be measured by the sensor is

�
max

= 30m,

if � is equal to 80� then

t
c

⇡ 30 · sin(80�)
10

= 2.95s.

This value sets an important constraint for our controller performances. Having a rise

time minor than 2.95 s, the neural network controller previously designed could sustain

the above presented condition but for more restrictive cases, as for example if the speed

increased above 10 m/s or for lower quality sensors, the previous neural controller could

not be satisfying anymore, if we maintained the same network design.

10.5.1 Using only one forward looking distance sensor

The case in which only one sensor is used for height tracking has been simulated using

Matlab Simulink R� environment. The idea behind the simulation is that the unique

sensor is mounted in a way that it allows a perception of the forward surface variation,

t
c

seconds before that the multirotor arrives on it. Simulation results are shown in Fig.
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Figure 10.24: Multirotor dynamics using only one forward looking distance sensor

10.24. In this case t
c

is equal to 2 s and the multirotor is required to fly 1 m above the

surface. As it could be foreseeable, the multirotor has a good approach to the obstacle

but while it flies beyond, it is no more able to see the obstacle under itself and it crashes

against the surface.

For the sake of simplicity, lasers shadowing has not been accounted for. This because

the simulation was conceived with the aim to highlight the not su�cient capability of

this sensor setup for obstacles avoidance.

10.5.2 A three sensors setup

In order to solve the issue explained in the precedent paragraph a three sensors setup

is proposed. This sensor embodiment is presented in Fig. 10.25. To be noted that

the normal vector to the sensor “1”, namely z
sensor1

, has to be kept constantly aligned

with the gravity vector. This target could be pursued following a passively controlled

cardan shaft setup or using an actively controlled platform able to move contrasting

with the pitch and roll multirotor motion. This requires the development of a specific

control law. With the aim to have a draft sketch of what could be the multirotor vertical

dynamics the simulation shown in Fig. 10.26 has been realized. This simulation shows a
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Figure 10.25: A three sensors setup
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Figure 10.26: Multirotor dynamics using three distance sensors
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comforting behaviour of the multirotor vertical position, giving the idea that this is the

right way to follow. The reader has to be aware of the fact that the simulation presented

in Fig. 10.26 does not account for the sensors shadowing. Further investigations could

be done improving this geometrical model.

10.5.2.1 Limits of a three sensors setup

A three sensors setup like the one previously shown could be suited when the multirotor

dynamics is bounded in the sensors plane. For this reason it is necessary to build a

proper sensors platform able to rotate around the z
sensor1

axis. This rotation angle

could be derived from the pitch and roll angle, following the equations of the dynamics

of the multirotor system. This clarifies the necessity for another specific control law

with the aim to keep, automatically, the three sensors in the motion plane.
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Conclusions and future work

This thesis presented the mathematical modelling, validation and physical testing of

two di↵erent control algorithms applied to the height and attitude regulation of a

multirotor. To this end a nonlinear mathematical model was derived to reproduce

the multirotor dynamics and two di↵erent linear control laws were applied. Several

nonlinear simulations validated as successful the chosen control strategies and two pro-

totypes were built to evaluate them experimentally. Single degree of freedom indoor

tests demonstrated that all the regulated states followed the target with satisfactory

time responses and control actions demands and these results have been confirmed by

successful outdoor flights. More innovative control techniques have been investigated

with special focus on the neural networks based one.

None of the investigated techniques can be considered superior to the others as a gen-

eral rule. None of them requires an excessive online computation and therefore they

are all suitable for multirotor attitude control applications. The PID technique is for

sure the easiest, able to guarantee an acceptable result without an excessive designing

e↵ort. When there are no safety implications, PID gains can also be tuned in real time

on the physical system. These characteristics make the PID technique the most widely

di↵used control approach. Also the LQR technique is characterised by simplicity but

it requires a better modelling of the dynamical system and it is not as intuitive as the

PID technique. The advantage can be found, instead, in the possibility to calibrate the

weighing matrices to penalise the control energy demand or the tracking error. The

neural networks based control is surely characterised by an inherent complexity. This
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is due to the need for a very coherent model of the system or for experimental data

to obtain an e↵ective training of the controller. The second drawback is linked to the

poor performance of the neural control outside the range of training. This is di�cult

to be accepted by the certification authorities responsible for the airworthiness of the

air vehicles. The last issue is related to the di�culty in debugging the neural networks,

since the calculated weights and biases are not directly related to physical quantities

and therefore isolating possible errors is not straightforward. The advantage is instead

in the theoretical capability to approximate any kind of function, even nonlinear ones.

However the distinguishing ability of the neural networks is their learning capability,

factor that opens the perspective to learning controllers that could be trained in real

time by human users or by other trained controllers. To reach this objective a suitable,

generally very large, database should be created. This database has to cover the widest

possible range of input commands and output dynamics inside the flight envelope. The

research in this field could be a natural progression of the studies presented in this

thesis. Fault-tolerant control systems represent another interesting point that could

be investigated as continuation of this research. Here this concept was introduced and

a possible application was experimented but some aspects have not been treated as,

for example, the automatic fault detection and the mapping of all the possible failure

modes with the relevant control strategies. It is indisputable that a systematic solution

to this issue will play a key role in the acceptance of the UAVs in the public air space.
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