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Introduction

The scope of this dissertation is to give a contribution to the understanding of the mathemat-

ical description of cell and cellular aggregate mechanics,focusing on remodelling and growth

processes which occur inside living structures and on the interactions among cells and the extra-

cellular environment, during the process of cell migration.

Studying the mechanical behaviour of living systems, either as isolated cells or as multicel-

lular aggregates is of great interest both from the biological and the mathematical point of view.

Indeed, cellular aggregates have been shown to play an important role in many biological phe-

nomena and it has been recently found that many pathologies are accompanied by an alteration

of cell mechanical behaviors and hence the response of soft biological tissues may serve as an

important diagnostic parameter in the early detection of the disease [100, 138]. Moreover, cell

mechanics plays an important role in the capability of tumorcell to proliferate inside the host tis-

sue and then to migrate and invade the surrounding tissue, influencing tumor metastatic potential

[159]. Therefore a more detailed description of aggregatesmechanical properties is needed.

From the mathematical point of view, describing the mechanics of living materials is a really

challenging task. Indeed, cells and biological tissues arecomplex materials, made of multiple

subelements, characterized by a non-homogenous localization of mechanical properties inside

them and a high hetereogeneity among them [153, 155]. Furthermore, cells are able to actively

respond when subjected to stresses (mechanotransduction)[34, 111, 155] and to interact with

each other to form tissues and multicellular aggregates in some stages of their life.

This ability of cells to deform and generate forces in an active manner and their capability to

interact with each other and with the extracellular environment, coupled with their extreme com-

plexity and the high heterogeneity in their composition andin subcellular properties outlines the

need of a specific mathematical model to describe cellular dynamics.



Our goal is to make a step towards a more detailed understanding of cell and cellular aggre-

gate mechanics, developing a comprehensive continuum model in which, from the macroscopic

point of view, remodelling due to cell-cell bonds rupture, growth in response to nutrients and

the influence of the surrounding healthy tissue are considered. We therefore start considering

quiescent aggregates, in which cells do not proliferate andwe then move towards proliferative

aggregates. Finally we look at the last step of the biological process: at some stage of tumor

progression, cells can eventually detach from the primary cancer mass and migrate in the extra-

cellular environments, in order to invade the whole tissue and the whole organism. In this last

step, mechanical properties of single cells may play an important role, even though they have al-

ways been neglected in mathematical models aiming at describing this phenomenon. Therefore

we look at the influence on cell migration of the interplay between nucleus deformability and

cell capability to actively respond as a consequence of a cell-ECM bond formation, with the aim

to incorporate this information in the macroscopic model.

Our level of spatial detail is coarse enough, that we can formulate our problem in the framework

of continuum mechanics, with the aid of mixture theory, whencells and extracellular fluid are

separately considered. Indeed the most essential model of soft biological tissues, whose main

constituents are cells and extracellular fibers composing a"solid" porous structure and an inter-

stitial fluid, is a biphasic mixture.

This project was set in the Ph.D. in Mathematics for Engineering Sciences at the Politec-

nico di Torino, and, thus, both mathematical modelling and applications of analytical/numerical

methods are presented. In every chapter the motivations that guided the work are highlighted,

then the mathematical model is presented and an applicationof the model is exploited. Results

are discussed at the end of each chapter. When possible, the behaviour of the solution are ana-

lytically proved and the biomechanical meaning is pointed out.

In Chapter 1, we review the basis of the classicalTheory of Mixtures, introducing the kinematics

and dynamics of multiphase mixtures, that are useful for thecomprehension of this work. We

also explain how these concepts can be adapted to the description of living tissues, considering

structural changes inside cellular aggregates. Possible biological applications of the classical

Theory of Mixture and of Continuum Mechanics in general are then exploited in the following

chapters.

In particular, in Chapter 2, we apply the concepts presentedin Chapter 1 to the description of a

cylinder of soft biological tissue undergoing a confined compression. The influence of anelastic

phenomena on the distribution of cell volumetric fraction and pressure inside the specimen is
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highlighted. In this preliminary study anelastic process are assumed to be constant in time and

homogeneously distributed.

In Chapter 3 the evolution of anelastic deformation is introduced. In particular anelastic phe-

nomena are empirically related to the rupture of bonds between cells and to the reorganization

of cytoskeletal structures. The model is applied to the description of cell aggregate compression,

under different conditions (constant stress, constant force or constant deformation) and subse-

quent release. Results are compared with biological assays, when possible.

Anelastic phenomena related to growth of cells inside spheroids are then considered in Chapter

4. Here, the interplay between growth and remodelling inside tumor spheroids surrounded by

healthy tissues is studied for different morphologies (e.g. necrotic liquid core or necrotic calci-

fied core) and situations (e.g. nutrients availability, stress application, presence of surrounding

healthy tissue).

We then move to the microscopic scale, with the aim of introducing information deriving from

the smaller scale into continuum models. In Chapter 5 the influence of nucleus mechanical

deformability and cell contractility in response to adhesive bond formation is exploited. In par-

ticular we focus on cell adhesion and deformation while entering inside cylindrical structures,

composing the extracellular matrix networks.

Finally, in the Conclusions, we summarize the main achievements of this work, highlighting the

improvements that have been done.
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Chapter 1

Elements of classical Continuum

Mechanics

In this Chapter we will give an overview of the fundamental concepts of Continuum Mechanics,

without claiming to be exhaustive, but with the sole purposeof helping the comprehension of this

work. In particular we will focus on mixture theory, that it is employed throughout this Thesis.

The first subsections are devoted to the introduction of somefundamental notation in the me-

chanics of porous media and to recall the basic concepts of the kinematics of continua, present-

ing both the Lagrangian and Eulerian descriptions. We then move to the classical formulation of

dynamics, presenting balance laws. Finally, in the last section we will discuss the application of

classical mechanics to the description of living tissues and we will described the framework of

“materials with evolving natural configurations”, introduced in [86, 87, 126, 143].

1.1 Theory of Mixtures

1.1.1 Preliminary Definitions

Continuum Mechanicsis the mathematical description of the behaviour of deformable media

under the action of external forces (possibly in a generalized sense). In this work, we shall be

concerned with the study of “simple” continua, i.e., those media which can be studied in the Eu-

clidean space or on manifolds [105] and we will not treat generalized continua, i.e., those media

which may require higher order dimensional spaces (e.g., liquid crystals).

A body is said to be a continuum if the smallest characteristic length established by a certain

interaction is much greater than the molecular, or atomic, characteristic distances [21, 44].



1 – Elements of classical Continuum Mechanics

In particular this chapter is concerned with some fundamental aspects of thetheory of mix-

tures, which is used this work. Mixture theory is used to model multiphase systems, i.e., bodies

composed of different substances, using the principles of continuum mechanics. The basic as-

sumption is that, at any instant of time, all phases are present at every material point. The equa-

tions governing the coarse-scale evolution of biphasic systems can be found by averaging the

relations that describe the systems at a smaller scale. The averaging procedures are often based

on volume- and mass-average methods [19, 80]. These assume the existence of aRepresentative

Elementary Volume (REV), Ω(x) ∈ R3, which supplies information about the composition and

structure of the mixture at the pointx ∈ R3, whereR3 is the ambient space. The characteristic

size of the REV depends on the system under investigation. The subvolumeΩα(t,x), where the

subscriptα indicates theα-constituent, represents the subset ofΩ(x) occupied by theα-th phase

at timet. Thevolumetric fraction(or volume ratio) of theα-constituent is

φα(t,x) :=
|Ωα(t,x)|
|Ω(x)| ≡ 1

|Ω(x)|

∫

Ω(x)
ξα(t,x+s)dVs

where|(·)| denotes the measure of(·) andξα(t,x+ s) is the characteristic function of theα-

constituent, i.e.

ξα(t,x+s) =







1 if(t,x+s)∈ Ωα

0 otherwise.

In the following, the abbreviationsPα is used to denote theα-phase in the mixture.

The distribution of mass ofPα in Ωα is called the“true" mass densityof Pα , and is denoted

here byρ̂α . The productρα = ρα(t,x) = φα(t,x)ρ̂α measures the distribution of mass ofPα in

Ω , and is called“apparent" mass density(or simply mass density) ofPα . The density of the

mixture inx at timet is

ρ = ρ(t,x) =
N

∑
α=1

ρα(t,x) . (1.1)

1.1.2 Elements of Continuum Kinematics

We formulate the kinematic description of the mixture introducing standard definitions, that can

be found in several treatises about the classical Theory of Mixtures (cf., for example, [14, 21,

119, 147]).

We considerN continuous bodiesB1,...,BN. Each of them is visualized by the region it occupies

in R3. For a mixture, theseN bodies, are allowed to occupy common portions of physical space

6



1.1 – Theory of Mixtures

and are called phases. Then every portionx in the mixture is occupied byN particles.

As in continuum theory of single materials, each phase is assigned a motion, defined byχα ,

which is called thedeformation functionfor the α-constituent (orα-motion, [118]),χα(t, ·) :

Bα 7→ R
3, such that

x = χα(t,Xα) , (1.2)

whereXα is the position of a particle of theα-body, or constituent, in its initial configuration

andx ∈ R3 is the spatial position occupied at timet by the same particle. We remark that with

lower cases we refer tospatial coordinates, while upper cases indicatesmaterial coordinates.

The functionχα is assumed invertible for each timet and everyα = 1,...,N

Xα = χ−1
α (t,x) . (1.3)

The invertibility of the mapχα ensures that a particle ofBα at Xα cannot occupy two spatial

positions (i.e., no ruptures) and that two particles with positionsXα,1 andXα,2 6= Xα,1 cannot

occupy the same spatial position (i.e., no overlapping). Moreover, all functions are assumed to

be sufficiently smooth, in order to make any needed mathematical operations meaningful.

The gradient of deformation forXα at time timet is defined by the linear transformation

Fα = Gradχα(t,Xα) , (1.4)

where the symbol Grad denotes the gradient computed with respect to material coordinates (ma-

terial gradient), i.e.

Fα, jK =
∂x j

∂Xα,K
, (1.5)

with Fα = Fα, jK i j ⊗ iK, x = x j i j andXα = Xα,K iK.

The determinantof Fα , det(Fα) = Jα accounts for the change of volume of theα-constituent

and it is always positive, beingχα invertible.

The linear transformation inverse toFα is

F
−1
α = gradχ−1

α (t,x) , (1.6)

where the symbol grad denotes the gradient with respect to spatial coordinates.

We remark that

FαF
−1
α = F

−1
α Fα = I , (1.7)

7



1 – Elements of classical Continuum Mechanics

whereI is theidentity linear transformation.

Thevelocityof Xα at timet is defined as the time derivative ofχα

vvvα(t,x) = vvvα(t,χα(t,Xα)) =
∂ χα (t,Xα)

∂ t
(1.8)

where the subscriptα means that the material derivative follows the motion of theα-constituent

and velocities can be regarded as functions of(t,x), due to (1.3). It is possible to define the

velocity gradientat (t,x) as

Lα = gradvvvα(t,x) . (1.9)

Applying the chain rule, it is possible to show that

Lα = ḞαF
−1
α . (1.10)

Themean velocity, also called thevelocity of the mixtureat (t,x) is

vvv=
1
ρ

N

∑
α=1

ραvvvα(t,x) . (1.11)

In particular, considering a two-phase mixture, composed of a solid,Ps, and a liquid phase,Pℓ,

the velocitiesvvvs andvvvℓ, characterise the standard motion ofPs andPℓ.

The velocity of the centre of mass of the mixture, which is defined as in (1.11), becomes

vvv :=
ρsvvvs+ρℓvvvℓ

ρ
, (1.12)

where,ρ := ρℓ+ρs, from 1.1, denotes the mass density of the mixture as a whole.

One of the most used kinematic quantities in mixture theory is the relative velocity ofPℓ with

respect toPs, wwwℓs :=vvvℓ−vvvs. Other important quantities are the fluctuation velocitiesṽvvℓ :=vvvℓ−vvv

andṽvvs := vvvs−vvv, which describe the relative motion of each phase with respect to the motion of

the mixture as a whole.

The velocity gradient of the mixture at(t,x) is

L= gradvvv(t,x) . (1.13)

8



1.1 – Theory of Mixtures

We recall that, thematerial derivative, following the motion of theα-constituent, of a differen-

tiable function of(t,x), that we will generically callg(t,x), is defined by

ġα = Dαg=
∂g
∂ t

(t,x)+grad(g(t,x))vvvα(t,x) , (1.14)

whereas the derivative following the motion of the mixture is

ġ= Dg=
∂g
∂ t

(t,x)+grad(g(t,x))vvv(t,x) . (1.15)

Therefore, for each phase, we denote byaaaα (with α = ℓ,s in the case of a biphasic mixture) the

acceleration of that phase, which is defined by the convective derivative ofvvvα with respect to the

motion of the phasePα , i.e.

aaaα := ∂tvvvα +grad(vvvα)vvvα , (1.16)

where∂t(·) stands for the partial derivative of its argument with respect to t. The acceleration of

the mixture is indicated byaaa and is defined as the convective derivative ofvvv with respect to the

motion of the mixture as a whole, i.e.

aaa := ∂tvvv+grad(vvv)vvv. (1.17)

1.1.3 Balance laws

Balance lawsrelate physical quantities that govern the mechanics of materials. Balance prin-

ciples can be expressed either in integral (global) form or in differential (local) form [21]. In

regions of space where physical quantities vary sufficiently smoothly, balance laws are equiva-

lent to differential field equations; on the other hand, in the presence of surfaces of discontinuity,

balance laws in a strong form have to be supplemented by jump conditions. In the following, the

notion of conservation of mass and linear momentum, that will be used throughout this thesis,

are presented. In the case of mixtures, when we consider balance laws, we have to refer to the

balance of both each constituent and the mixture as a whole.

1.1.3.1 Balance of Mass

If a mass exchange occurs among the phases, associated with each constituent of the mixture,

there is themass supplyterm,Γα(t,x), which represents the rate of production/depletion of the

α-component per unit volume at timet in the positionx. The integral formulation of the mass

9



1 – Elements of classical Continuum Mechanics

balance for each constituent in a fixed spatial volume,V is

∂
∂ t

∫

V

ραdV =−
∫

∂V

ραvvvα ·ndS+
∫

V

ραΓαdV , (1.18)

wheren is the outward vector of the element of areadS, V is the volume in which the balance is

written, whereas∂V is the boundary of this volume.

For what concerns the mixture, the balance of mass reads

∂
∂ t

∫

V

ρdV =−
∫

∂V

ρvvv·ndS, (1.19)

provided that there’s no net production of mass inside the mixture, i.e.,

N

∑
α=1

∫

V

ραΓαdV = 0. (1.20)

By means of the divergence theorem (1.18) leads to

∫

V

∂
∂ t

ραdV =−
∫

V

div(ραvvvα)dV+

∫

V

ραΓαdV . (1.21)

Requiring that (1.21) holds for every spatial volumes, we can localize the mass balance for the

α-constituent and obtain the Eulerian, local form of the balance of mass for each component of

the mixture
∂
∂ t

ρα +div(ραvvvα) = ραΓα . (1.22)

In the same way it is possible to write the local form of (1.19)

∂
∂ t

ρ +div(ρvvv) = 0, (1.23)

which is valid if ∑N
α=1 ραΓα = 0. Equivalent forms of (1.22) and (1.23) are

ρ̇α +ραdiv(vvvα) = ραΓα , (1.24)

ρ̇ +ρdiv(vvv) = 0, (1.25)

where material derivatives are defined as in (1.14) and (1.15).

In particular, referring to biphasic mixtures, it is usefulto rewrite (1.24) with respect to the

motion of the solid phase, for both constituents. Thus, the mass balance (1.22), for the solid and

10



1.1 – Theory of Mixtures

the fluid phase specify to

Dsρs+ρsdiv(vvvs) = ρsΓs, (1.26)

Dsρℓ+ρℓdiv(vvvs)+div(ρℓwwwℓs) = ρℓΓℓ, (1.27)

Multiplying (1.26) and (1.27) byJ = Js, and passing to the material description lead to the

following form of the mass balance laws

˙
(Jρs) = JρsΓs, (1.28)

˙(Jρℓ)+Div(JρℓF
−1wwwℓs) = JρℓΓℓ , (1.29)

that follow from the identityJ̇α = Jα divvvvα . The operators “Div” and “Grad” are the divergence

and gradient operators computed with respect to the material coordinates. They are related to

“div” and “grad” by the formulae grad(AAA) = Grad(AAAχ)F
−1 and div(AAA) = Grad(AAAχ) : F−T , where

AAA is a given vector field, the symbol “:” denotes the inner product between tensors, and the index

“χ”, which will be dropped from here on, meansAAAχ(t, ·) =AAA(t, ·)◦χs(t, ·).

A simplification of the mass balance presented before, follows from requiring that the true

mass density of the constituent in the mixture,ρ̂α , is constant, so thatPα is incompressible. For

a mixture, with incompressible components, eq. (1.22) can be rephrased in terms ofφα , giving

∂
∂ t

φα +div(φαvvvα) = φαΓα . (1.30)

Eq. (1.26) and (1.27), for an incompressible biphasic mixture read

Dsφs+φsdiv(vvvs) = φsΓs, (1.31)

Dsφℓ+φℓdiv(vvvs)+div(φℓwwwℓs) = φℓΓℓ . (1.32)

Also in this case, passing to the material description, we have

˙(Jφs) = JφsΓs, (1.33)
˙

(Jφℓ)+Div(JφℓF−1wwwℓs) = JφℓΓℓ . (1.34)

Moreover, if we assume that the void spaces of the porous medium are completely filled with

the fluid, the medium is said to besaturated, and the conditionφs+φℓ = 1 applies at all times in

every point. Granted the incompressibility condition and the saturation constraint, (1.29) takes

11



1 – Elements of classical Continuum Mechanics

the simpler form

Div[JF−1qqqℓs] =−J̇+J(φsΓs+φℓΓℓ) , (1.35)

with qqqℓs := φℓwwwℓs.

1.1.3.2 Balance of Linear Momentum

Together with mass balance, also the balance of momentum hasto be studied. As done for

the mass balance, also in this case we present both the balance of momentum of the single

constituents and of the mixture as a whole.

The linear momentum balance for theα-constituent in a fixed volumeV is

∂
∂ t

∫

V

ραvvvαdV =−
∫

∂V

ραvvvα(vvvα ·n)dS+
∫

∂V

TαndS+
∫

V

(ραbα +mα +ραΓαvvvα)dV , (1.36)

whereTα is the Cauchy stress tensor of theα-constituent [21]. The term containingTα rep-

resents contact forces on theα-constituent inV resulting from the contact on∂V with the

α-constituent outsideV . The termmα represents the momentum supply [21, 148], also called

local or internal body force, since it accounts for the localinteractions of the constituent with

each other, whereasbα is the external body forces density and thus
∫

V
ραbαdV stands for exter-

nal forces acting on theα-constituent. The Eulerian local form of (1.36) is given by

∂
∂ t

(ραvvvα)+div(ραvvvα ⊗vvvα) = divTα +ραbα +mα +ραΓαvvvα . (1.37)

By differentiating the l.h.s and imposing (1.22), eq. (1.37) can be rewritten as

ραaaaα = divTα +ραbα +mα , (1.38)

which is the most common formulation of the local version of the α-constituent momentum

balance.

Then we shall consider the axioms of balance of linear momentum for the mixture. The external

body force for the mixture is defined by

b =
1
ρ

N

∑
α=1

ραbα .

12
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Truesdall and Toupin [148] introduces theinner partof the stress tensor for the mixture, which

is defined by

T̃=
N

∑
α=1

Tα ,

while the Cauchy stress tensor of the mixture is

T= T̃−
N

∑
α=1

ραṽvvα ⊗ ṽvvα , (1.39)

whereṽvvα = vvvα −vvv.

Adding together (1.37) for every constituent in the mixtureand applying the definitions just

introduced, as well as those of the accelerationsaaa andaaaα , the local form of linear momentum

balance for the mixture reads

ρaaa= divT+ρb , (1.40)

enforcing the condition
N

∑
α=1

mα +ραΓαvvvα = 0. (1.41)

An explanation of the physical meaning of (1.41) in terms of pore scale considerations can be

found, for example, in [80].

Finally, neglecting the inertial forces of every phases, the balances of momentum (1.37) and

(1.40) become

div(Tα)+ραbα +mα = 0 (1.42)

div(T)+ρb = div
(

T̃
)

+ρb = 0,. (1.43)

By means of the Piola transformations of (1.42) an (1.43), the momentum balance laws of the

mixture can be written with respect to the material placement, i.e.,

Div(Pα)+Jραbα +Jmα = 0, (1.44)

Div(P)+Jρbbb= 0, (1.45)

13



1 – Elements of classical Continuum Mechanics

where

Pα := JTαF
−T , (1.46)

P≡ P̃ :=
N

∑
α=1

Pα (1.47)

denote, respectively, the first Piola-Kirchhoff stress tensors of theα-constituent and of the mix-

ture.

We remark that, when the saturation constraint holds, a Lagrange multiplier, that we will name

p (because it has the meaning of pressure), shows up in the Cauchy stress tensor. In this disser-

tation, we will callTα the total Cauchy stress tensor of theα-constituent, whereas,T∗
α denotes

its constitutive part, i.e.

T
∗
α = Tα +φα pI .

In order to close the mathematical problem resulting from (1.21), (1.22), (1.37) and (1.40) it

is necessary to provide constitutive laws on the stressesTα of every constituent in the mixture

and the force densitiesραbα andmα .

1.1.4 Elements of the Theory of Constitutive Law

As it should be clear form Section 1.1.3, balance laws relatephysical quantities, providing a

set of necessary conditions that dependent variables must fulfil. However, balance laws are not

sufficient to formulate the mechanical problem in a self-consistent form since they involve a

number of unknowns which is bigger than the number of equations. Therefore, a certain number

of additional non-redundant conditions have to be imposed.These conditions must be consistent

with phenomenological observations and experimental results, and must be able to predict the

mechanical behaviour of the body. In particular, referringto the classical theory of Continuum

Mechanics, these conditions must be consistent with the Clausius - Duhem inequality [38].

These conditions are the so-calledConstitutive Laws.

We will not present the theory of constitutive laws and the interested reader should refer to the

principal books in Continuum Mechanics (e.g. [21, 77, 105]).

In the following, when a particular constitutive law is required, a short explanation of the different

terms involved is presented. Moreover some details on the requirements that constitutive laws

should satisfy are presented in Section 1.2.4, in a framework suitable to describe living systems.
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1.2 – Living tissues in the framework of Continuum Mechanics

1.2 Living tissues in the framework of Continuum Mechanics

Cells and biological tissues are complex materials, made ofmultiple elements [153]: each cell

is bounded by the plasma membrane to form a closed object containing the nucleus and a fluid,

the cytosol (made of water, soluble proteins, sugar and salt), where numerous organelles are im-

mersed. An important intracellular structure, that plays akey role in many biological process (e.g.

maintaining cell shape, enabling movement, aiding cellular division) and that strongly affects cell

mechanical behavior, is the cytoskeleton, a complex meshwork of polymers crossing through the

cytosol. Each subcellular element is different from the other and mechanical properties are non-

homogenously localized inside each of them [155]. For instance, cytoplasm properties strongly

depend on the amount of actin or tubulin and on the degree of polymerisation of these filaments.

Similarly, the membrane has a bending modulus which is dependent on the number and the type

of proteins embedded in it [155]. This high heterogeneity incell composition and in subcellular

properties makes mechanical response difficult to be modelled even for a single cell. In addition,

cellular materials are different from usual materials because they can develop an active response

when subjected to stresses. This response is due to mechanotransduction, which is the ability of

cells to transform mechanical external stresses into biochemical signals (and vice versa) in order

to transfer information to and from the nucleus [34, 111, 155]. This ability of cells to deform and

generate forces in an active manner, coupled with their extreme complexity and their non linear

response to mechanical stimuli, outlines the need of a specific mathematical model to describe

cellular dynamics.

Furthermore, cells are able to interact with each other to form tissues and multicellular aggregates

in some stages of their life. The rheological properties of such materials are quite uncommon,

because they contain both cells and fluids embedded inside each cell and in the extracellular

matrix (ECM) among them. It is then known that not only the intrinsic properties of the base

components - cells and collagen - but also their relative concentration can affect the rheological

properties of multicellular aggregates [35, 132, 154, 155].

Therefore there are big theoretical difficulties in classifying a cell aggregate as a liquid or as a

solid [10]. Indeed, treating it like a fluid may bring some simplifications (e.g. to deal with veloc-

ities rather than deformations). However, the fact that aggregates are made of both intracellular

and extracellular liquid and elastic solid components demonstrates the simplifications introduced

by such an hypothesis. On the other hand, it is not correct to consider multicellular spheroids as

standard elastic solids, because they are composed of living material: cells forming the aggre-

gates continuously duplicate and die, the ECM is constantlyremodelled by the same cells and,

even in absence of growth and death, cells can reorganize in response to an external mechanical
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stimulus [10]. Therefore it is impossible to define a time-independent “natural” state, towards

which the system will naturally evolve.

Due to this complexity, the mechanical behavior of multicellular systems is still far from being

understood [10] and most of our knowledge concerning the rheological and mechanical proper-

ties of cell aggregates comes from previous studies on soft biological tissues [154, 155], usually

corresponding to visco-elastic materials or to non-Newtonian fluids [63].

A biphasic mixture consisting of a solid and a fluid phase is perhaps the most essential model

of soft biological tissues and multicellular aggregates [1, 3, 9, 74, 117]. The solid phase that

forms the porous structure represents cells and the networkof fibers, whereas the fluid phase

stands for the interstitial fluid, that completely saturates the pores of the solid and may move

throughout it.

In this work, the medium is assumed to besaturated, and the conditionφs+φℓ = 1 applies at all

times to all points. It is sometimes assumed that cells and liquid only form a portion of the tissue

and that they can occupy a prescribed volume fraction, i.e.,φs+ φℓ = φmax. All the equations

presented in the previous sections hold withα = s,ℓ.

According to [118], we callBr the subset of the three-dimensional Euclidean spaceR3 in which

the solid skeleton in the mixture is embedded. We denote byX the coordinates of the centroid of

the REV associated withBr . The setBr is also said to be the “reference configuration” and the

coordinatesX may be called “material coordinates”. A smooth motion ofPs, which is referred

to ass-motion in [118], is a sequence of mappingsχs(t, ·) : Br 7→R3, such thatx= χs(t,X)∈R3.

The material gradient of the mapχs equals the deformation gradientFs := Grad(χs). In order

to describe the kinematics of the fluid phasePℓ, as done in [118], we introduce the material

manifoldBℓ, which consists of fluid particles. A fluid particle, labelled by Xℓ, is placed in the

Euclidean space by means of an embedding that locates the particle atx. A smooth motion ofPℓ,

theℓ-motion, is a sequence of mappings defined byχℓ(t, ·) : Bℓ 7→ R3, such thatx = χℓ(t,Xℓ).

The definitions ofs- andℓ-motion imply the chain of identities

x = χs(t,X) = χℓ(t,Xℓ), (1.48)

which means that both the solid and the fluid phase co-exist atthe same pointx of the Euclidean

space.

The main difficulty in describing cell aggregates and biological tissues consists in the fact

that even in the absence of growth the ensemble of cells undergoes an internal re-organization
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in response to an applied strain or stress, which is macroscopically translated in anelastic defor-

mation. Therefore, when the structural changes of the tissue are considered beside deformation,

the picture sketched in the previous sections becomes more complex. With the termstructural

changeswe mean processes that contribute to modify the properties of the tissue (e.g., the stiff-

ness, diffusivity and permeability) in response to growth,mass exchange between the fluid and

the solid phase, and re-organisation of cells and fibrils. Even though these phenomena are all

intermingled, a conceptual classification is usually pointed out in the biomechanical literature

(cf., for example, Fung [64] and Taber [143]), wheregrowth is said to lead to the variation of

mass of a body, while the re-organisation of cells and fibrilsis referred to asremodelling.

From the point of view of Continuum Mechanics, and in particular in the Theory of Plasticity,

the structural changes of the solid phase of a tissue are modelled by means of a class of defor-

mations that describe how the material particles are distributed in the tissue. The mathematical

object used to define these deformations is a second-order tensor, which we denote byFa. With

the terminology of [43],Fa measures the material inhomogeneities triggered by growth, mass

exchange processes, and cellular re-organisation. There is a strong conceptual difference be-

tween the standard deformations and those described byFa: whereas the former ones are related

to the gradient of displacement of the body, the latter deformations need not to be the gradient of

any vector field. Rather, they are primitive entities that define, together with displacements, the

parameters that are necessary and sufficient for describingthe kinematics of deformable bodies

with variable internal structure. WhenFa is not the gradient of any vector field (not integrable), it

is said to be incompatible. Physically, this represents thecase in which material points lose their

geometric compatibility and the reorganization possibly leads to residual stresses [108]. The

tensorFa represents the anelastic part of the deformation gradient tensor,Fs, which describes the

overall change of shape of a solid. The tensorFa individuates an evolving relaxed configuration

of body elements. The total evolution of the tissue is given through the deformation tensorF,

which is a mapping from the tangent space related to the reference configuration,Br , onto the

tangent space related to the current configurationBt that represents how the body is deforming

locally. Then it is possible to consider the map fromBr to Bt as composed of two parts: the first

one describes rearrangement of the internal structure, whereas the second one refers to the acco-

modating part of the deformation. In many cases the first partis related to anelastic processes,

whereas the second part refers to elastic deformations. This consideration leads to the introduc-

tion of a virtual configurations: the “natural” (or locally stress-free) stateBn, which takes into

account cell internal re-organization due to anelastic effects [120].
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FnFa

F

Br Bt

Bn

Reference configuration Current configuration

Natural configuration

Figure 1.1:Diagram of the states from the original unstressed configuration Br to the current configurationBt ,
in the framework of multiple natural configurations.Bn represents the natural state, which takes into account cell
internal re-organization.

The accommodating deformation, which determines the actual configuration of the body

from the relaxed one, also callednatural configuration, is denoted byFn, and obeys the multi-

plicative decompositionFs= FnFa [98]. In many cases,Fn is said to be the elastic part ofFs and

it is indicated withFe.

This setting, introduced in [120] in order to describe non-living materials undergoing structural

changes, was then successfully applied [1, 3, 86, 87, 126, 143], to describe the growth and re-

modelling mechanisms of several tissues, allowing to modelseparately the contribution due to

growth from the one due to deformation alone (see [6] for a review).

The rate of anelastic deformation,La = Ḟa(Fa)
−1, is related to the variation of body mass in

such a way that that the mass density of the body is constant when measured with respect to the

relaxed configuration [43].

To be more specific,Fa may be decomposed as the product of tensors, which distinguish the

anelastic deformations associated with growth from those associated with the reorganization of

cells and fibers, without any mass exchange.
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In particular, in Chapter 2 we will consider the simpler case, in whichFa is prescribed and con-

stant in time. In Chapter 3 the anelastic part of deformationis related to remodelling processes,

whereas in Chapter 4, the contribution due to growth is addedand thereforeFa = FpFg, where

Fg is the term related to pure growth, whereasFp is the term related to remodelling. In order

to make consistent the notation presented in the previous section with the theory for materials

with evolving natural configurations, we present a formulation that follows, with some slight

differences, the picture put forward by Quiligotti [118].

1.2.1 Kinematics

Referring to the definition introduced in Section 1.1.2, in order to complete the kinematic analysis

of the biphasic mixture undergoing structural changes, such as in the biological case, we have

to introduce a non-standard descriptor in addition to the standard velocities collected inVst :=

{vvvs,wwwℓs}. This descriptor has to model the internal structural change of the solid phase,Ps, in

response to interactions that lead to the variation and redistribution of its mass [74]. These types

of structural evolution are viewed as anelastic processes,as reported, for example, in [1, 3, 40,

43, 86, 87, 104, 126]. Therefore, the kinematic descriptor of these processes is the tensor of

anelastic deformation,Fa, which is related to the rate of anelastic deformation,La := ḞaF
−1
a .

1.2.2 Mass balance

The variations of volume of the solid phase due to the elasticand the anelastic deformations are

denoted byJn = det(Fn) andJa = det(Fa), respectively. The multiplicative decomposition ofFs

impliesJs= JnJa. The determinantsJs, Jn andJa are strictly positive.

In the following, the index “s” associated withFs andJs will be dropped for the sake of simpler

notation.

For what concerns the balance of mass, we remark that the product ρsr := Jρs in (1.28) defines

the mass ofPs measured per unit volume ofBr ; indeedρs is the mass ofPs measured per unit

volume ofBt andJ represents volumetric changes fromBr to Bt .

Using the fact thatJ = JnJa, the quantityρsr can be rewritten as

ρsr = JnJaρs= Jaρsn, (1.49)
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whereρsn := Jnρs indicates the mass density ofPs computed with respect to the natural config-

urationBn. Furthermore, substituting (1.49) into (1.28) yields

tr(La)ρsn+ ρ̇sn= ρsnΓs, (1.50)

beingJ̇a = Jatr(La) [74]. We enforce now the condition that the variation of bodymass is com-

pensated by the rate tr(La), which implies that the mass densityρsn is constant in time. Thus the

following relations hold

Γs= tr(La), ρsn= ρs0 , (1.51)

whereρs0 may be a function of material coordinates only. A consequence of (1.49)–(1.51) is that

the solution to (1.28) is given by

ρs =
ρsr

J
=

ρsn

Jn
= ρsn

Ja

J
= ρs0

Ja

J
. (1.52)

This means that the apparent density of the solid phase,ρs, is determined if the constant mass

distributionρsn is assigned, and the volumetric deformationsJ andJa are known.

A simplification may be obtained under the hypothesis that the true mass densitŷρs is a given

constant. This allows to reformulate (1.52) in terms of the stronger condition

φs=
φsn

Jn
= φsn

Ja

J
. (1.53)

In (1.53),φsn denotes the volumetric fraction ofPs “seen” byBn. We remark thatφsn is constant

and should be regarded as a known quantity of the model.

For the liquid phase, considering a saturated incompressible mixture, eq. (1.35) continues to

hold.

1.2.3 Momentum balance

The change of internal structure of the solid phase is a process whose kinematics are described by

the tensor mapFa and the generalised velocity gradientLa = Ḟa(Fa)
−1. The set of generalised

forces that perform working onLa = Ḟa(Fa)
−1 comprises an internal force,Zn, which drives the

structural evolution, and an external force,Yn, which models the interaction of the system with

its surrounding environment. Both forces are second-ordertensors. It is postulated [40] that they

obey the balance law

Zn = Yn, (1.54)
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The index “n” means thatZn andYn are conceived as forces acting on the natural configuration

Bn, although they can be also written with respect toBr andBt by performing proper transfor-

mations. Here, we simply state that, in analogy with the balance laws (1.43) and (1.42) (which de-

scribe a balance of forces that perform working on the set of standard velocities), also the forces

that perform working on the non-standard descriptorLa should satisfy a balance law. Some

extensions of the results presented in [40] can be found, forexample, in [4, 5, 9, 65, 71, 72, 73].

The internal force-like variablesmmmℓ andZn are responsible for dissipation, and should thus

comply with the dissipation inequality that characterisesthe system under investigation. In the

next Section the main step if the procedure are sketched.

1.2.4 Study of the residual dissipation inequality

We introduce the total internal power density of the system [74]

W
in(Bt) =W

in
st(Bt)+W

in
n-st(Bt), (1.55)

whereWin
st(Bt) andWin

n-st(Bt) describe, respectively, the working performed by the standard and

non-standard forces acting on the system. These two contributions are defined by the following

expressions

W
in
n-st(Bt) :=

∫

Bt

(Jn)
−1
Zn : La, (1.56)

W
in
st(Bt) :=

∫

Bt

{

−mmmℓ ·wwwℓs+Tℓ : grad(wwwℓs)+(Ts+Tℓ) : grad(vvvs)
}

. (1.57)

In a purely mechanical context, we call dissipation the quantity

∫

Bt

D :=−
∫

Bt

[

ρsDsΨs+ρℓDℓΨℓ

]

+W
in
st(Bt)+W

in
n-st(Bt)≥ 0, (1.58)

whereρΨ := ρsΨs+ρℓΨℓ is the overall Helmholtz free energy density of the system.

Invoking the saturation constraint, under the hypotheses of hyperelastic solid phase, depending

only on theFn term of the factorization of the tensor gradient of the deformation, and macro-

scopically inviscid fluid, the variation of the inequality (1.58) yields the following results for the

Cauchy stressesTs andTℓ [74]

Ts = −φspI+

(

ρs
∂Ψs

∂Fn

)

F
−T
a F

T , (1.59)

Tℓ = −φℓpI . (1.60)
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Requiring the invariance of constitutive laws under superimposed rigid motions places further

restrictions on the results (1.59) and (1.60). If a rigid motion is impressed, the pointsx ∈ Bt

transform asx 7→ x̄ = R x+ccc, whereR is a proper orthogonal tensor defining a pure rotation,

andccc is a vector defining a pure rigid translation [77, 107]. Consequently,F, Fn andFa transform

as follows

F 7→ F̄= RF, Fn 7→ F̄n = RFn, Fa 7→ F̄a = Fa. (1.61)

However, the Helmholtz free energy densityΨs has to remain invariant under these transforma-

tions. Therefore,Ψs may depend onFn only through the Cauchy stretch tensorCn = (Fn)
TFn,

which is independent onR. This yields the relation

(

ρs
∂Ψs

∂Fn

)

= Fn

(

2ρs
∂Ws

∂Cn

)

, (1.62)

whereWs is the Helmholtz free energy density of the solid phase written as a function ofCn. On

the other hand, the Cauchy stressesTs andTℓ transform as̄Tα = RTαR
T , with α = s,ℓ. Using

the definitions (1.53) and (1.46), the first Piola-Kirchhoffstress tensors become

Ps = −JaφsnpF−T +F

[

JaF
−1
a

(

2
∂Wsn

∂Cn

)

F
−T
a

]

, (1.63)

Pℓ = −(J−Jaφsn)pF
−T , (1.64)

whereWsn= φsnρ̂sWs. SinceF−T = F−T
n F−T

a , the stressPs can be rewritten as

Ps= JaPsnF
−T
a , Psn :=−φsnpF−T

n +Fn

(

2
∂Wsn

∂Cn

)

. (1.65)

Finally, the Mandel stress tensor is introduced [77]

Msn := JnF
T
nTF

−T
n = F

T
nPsn :=−φsnp+Cn

(

2
∂Wsn

∂Cn

)

. (1.66)

The constitutive results (1.63) and (1.64) allow for a simplification of the expression of dissipa-

tion. After localisation, we obtain

D =−m̌mmℓ ·wwwℓs+(Jn)
−1
Žn : La ≥ 0. (1.67)
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where

m̌mmℓ :=mmmℓ− pgrad(φℓ) , Žn :=Msn+Zn (1.68)

are the dissipative part of the force-like variablesmℓ andZn respectively.

Substitution of (1.68) into the balance laws (1.42) (withα = ℓ andbα = 0) and (1.54), and use

of the constitutive result (1.60) yield

m̌mmℓ = φℓgrad(p) , (1.69)

Žn = Msn+Yn . (1.70)

Before proceeding with the determination of the forces−m̌mmℓ and(Jn)
−1
Žn, a discussion about

the study of the dissipation inequality (1.67), and some of its implications, is mandatory.

Let us setLa = 0 and focus on the pair(−m̌mmℓ,wwwℓs). In Biomechanics, it is often assumed

that fluid flow obeys Darcy’s law [13, 103, 117, 155]. Darcy’s model of flow can be retrieved

consistently with the study of dissipation by expressing−m̌mmℓ as a constitutive function ofwwwℓs that

vanishes whenwwwℓs = 000 (see, for example, [80]). This function is then expanded inTaylor series

in a neighbourhood ofwwwℓs=000 and, for small velocities, only the first-order term of the expansion

is maintained.

−m̌mmℓ = Aφℓwwwℓs. (1.71)

Assuming thatA is a positive-definite second-order tensor that representsthe resistivity of the

medium, substitution of this result into (1.69),

φℓwwwℓs =−1
ν
Kgrad(p), (1.72)

whereK= νφℓA−1 is the permeability of the porous structure andν is the dynamic viscosity of

the fluid phase. Equation (1.72) is known as Darcy’s law.

Let us put nowwwwℓs = 000 and study the pair((Jn)
−1Žn,La). In some models of growth

mechanics, constitutive laws of the typeŽn = Hn : La have been proposed (cf., for example,

[4, 5, 9, 71, 73, 102]), beingHn a diagonally symmetric, positive-definite fourth-order tensor.

The rate of anelastic deformationLa is presented in the formLa = Gn : Žn, with Gn = (Hn)
−1.

Substitution of (1.70) in this relation yields

La =Gn : (Msn+Yn). (1.73)

23



1 – Elements of classical Continuum Mechanics

Equation (1.73) follows from the hypothesis thatŽn can be assigned as a constitutive function

of La that vanishes whenLa = 0. This function is then assumed to be smooth and linearised in

a neighbourhood ofLa = 0. For a positive-definiteGn, the formula (1.73) admits the follow-

ing interpretation: the rate of anelastic deformation,La, becomes zero when the external force

Yn can be tuned in such a way that the sum(Msn+Yn) vanishes. This situation implies that

Fa (which always satisfies the kinematic relationḞa = LaFa) either ceases to evolve in time or

remains equal to its initial value. In some biomechanical applications,Yn is thought of as the

“target stress” that regulates the process with which it is associated (when the target stress is

reached, the process ceases). For example, in the model of arterial growth proposed in [108],

Yn is related to the homeostatic stress. On the other hand, if the tensorYn is zero (or negligibly

small), the equalityLa = 0 cannot be recovered in general, since the Mandel stress,Msn, is not

compensated by any external force.

Another method for determining evolution laws is given in [29], where rate-independent

plasticity is investigated. The dissipation is defined as a function ofLa and is assumed to be

continuous, but generally non-differentiable, atLa = 0, while the tensořZn is constitutively

indeterminate atLa = 0. Within this framework, a maximum-dissipation criterionis formulated

and it is proven that the dissipation function is everywheresub-differentiable and, thus, convex

with respect toLa, and thaťZn must belong to the sub-differential of the dissipation function. The

evolution ofLa is determined by introducing a scalar yield criterion through the yield function

f and showing thatLa has to be an element of the sub-differential off . In the case of a smooth

yield function f , it is found thatLa follows the “normality rule”

La = λ
∂ f

∂ Žn
, (1.74)

whereλ is a Kuhn-Tucker multiplier satisfying the conditionsλ ≥ 0, f ≤ 0, λ f = 0, and deter-

mined by the consistency requirementλ ḟ = 0. Many of the mathematical tools for presenting

this theory can be found in [121, 122, 125].

We remark that (1.73)–(1.74) are all plausible ways to determine the evolution ofLa.
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Chapter 2

Confined compression of a cylindrical

sample of cartilage

The scope of this chapter is to study the transport of fluid in adeformable porous medium whose

mass and internal structure may vary in time. We formulate our problem with the aid of Mixture

Theory and the framework of multiple natural configurations, applying the concept presented in

Chapter 1.

Thus, we consider a biphasic mixture consisting of a solid and a fluid phase. The solid phase

represents the cellular constituent and the extracellularfibres, whereas the liquid phase stands for

the extracellular liquid filling void spaces.

Structural changes occurring inside the sample are described by the second-order tensorFa. In

this first work, the anelastic part of the deformation is taken constant in time and we do not

distinguish between anelastic deformation due to proliferation of cells and pure remodelling.

Based on this approximation, we study the influence of deviation from sphericity of the anelastic

deformation tensor,Fa (which correspond to different possible ways of changing the internal

structure of the solid phase) on the deformation and, thus, the displacement field, as well as the

distribution of pressure inside the medium.

The mathematical model is formulated in Section 2.2 and thenapplied to the compression of a

cylindrical sample of biological material in Section 2.2.1. Finally, results are presented in Section

2.3.
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2.1 Motivations

Among the factors that assess the health of a tissue, an important role is played by the amount

of constituents that supply nutriment to the cells and regulate their metabolism. These chemi-

cals are transported by liquid flowing in the "solid" structure composed of cells and extracellular

matrix. Accepting the applicability of Darcy’s law to such systems, fluid flow is determined by

the hydraulic conductivity,K, and pressure gradient. Therefore, the study of the transport of a

fluid in a deformable porous medium with variable mass and internal structure reduces to the

determination of the influence ofFa onK and pressure,p.

Under the hypothesis of negligible inertial terms and incompressible solid and fluid phases, the

unknowns to be determined are the displacement field (whose material gradient isF), the pres-

sure, andFa. We formulate a boundary value problem for the calculation of pressure and dis-

placements. In this preliminary study, we consider the veryparticular case in which the tensor of

anelastic deformation is kept constant (i.e.Fa is constant and known from the outset).

In particular, we show that different choices of the initialvalueFa0 lead to different pressure dis-

tributions and displacements. The latter ones, in turn, affectK and are thus able to influence the

capability of the medium of conveying fluid. The alteration of pressure may be relevant for some

biomechanical applications in which the health of the cellsof a tissue depends on the pressure.

For example, this is the case of chondrocytes in articular cartilage. Moreover the most essential

model for articular cartilage can be represented by a biphasic mixture, in which specialized cells

(chondrocytes), collagen fibres and matrix of proteoglycans form the solid phase. In these soft

tissues the flow of the fluid phase, comprising water, ions andvarious chemical compounds (i.e.

nutrients for the cells or products of the cellular metabolic activity), is of fundamental importance

in order to preserve its functionality. Furthermore, unlike other connective tissues, cartilage does

not contain blood vessels, therefore chondrocytes are supplied by diffusion, helped by the pump-

ing action generated by compression or flexion of the elasticcartilage due to load application.

2.2 Mathematical model

Our purpose is to study how the structural change of the solidphase influences fluid flow through

the modulation of the transport properties of the mixture. We use the concepts presented in

Chapter 1 and we accept the validity of Darcy’s law, so that the fluid flow depends on hydraulic

conductivity and pressure gradient. Therefore, to accomplish our task, we have to show how,
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2.2 – Mathematical model

for a given type of problem and assigned boundary conditions, different tensorsFa modulate the

hydraulic conductivity of the medium and the pressure field inside it.

We remark that the medium is assumed to be isotropic with respect to both its elastic properties

and permeability.

Referring to the concept introduced in Chapter 1, we indicate with φs the volume ratio of the

solid components of the mixture, i.e. cells and fibers, whereasφℓ stands for the volume ratio for

the extracellular liquid. By substituting (1.72) into (1.35), using the constitutive results (1.63)

and (1.64) and writing the pressure gradient in material coordinates, i.e. grad(p) = F−TGrad(p),

the equations to solve are

−Div
[

−JpF−T +P
∗
s

]

= 0, (2.1)

Div
[

KrGrad(p)
]

= J̇−Jaφsntr(La), (2.2)

Ḟa = LaFa (2.3)

whereP∗
s = JaFF

−1
a S∗snF

−T
a denotes from here on the constitutive part of first Piola-Kirchhoff

stress tensor,Ps (cf. (1.63)). S
∗
sn is the constituive part of the second Piola-Kirchhoff stress

tensor of the solid phase, measured with respect toBn, andKr is the material form of the tensor

of hydraulic conductivity, i.e.,Kr = JF−1KF−T . In the following, for sake of simplicity, we

will omit the apex∗ for the constitutive part of the stress tensor. The materialis assumed to be

hyperelastic and isotropic, and is modelled by the Neo-Hookean elastic energy given below [20],

which leads to the following expressions ofSsn

Wsn(Cn) =
µn

2

[

tr(Cn)−3
]

−µn ln(Jn)+
λn

2

[

ln(Jn)
]2
, (2.4)

Ssn= 2
∂Wsn

∂Cn
= µn[I− (Cn)

−1]+λn[ln(Jn)](Cn)
−1 . (2.5)

The tensorK is taken from [85] and adapted to our framework, i.e.

K= k0

[

φs0

1−φs0

J−φsnJa

Jaφsn

]m0

exp

{

m1

2

[

J2−J2
a

J2
a

]}

I (2.6)

where the numbersm0 andm1 featuring in (2.6) are material parameters. According to (2.6), the

hydraulic conductivity given in (2.6) is an isotropic tensor. However, other forms of hydraulic

conductivity, which account for tissue anisotropy, have been recently proposed in [13, 49].

To close the problem,La should be supplied by one of the formulae (1.73)–(1.74).

In the absence of anelasticity, the field equations (2.1) and(2.2) were studied in [42] in the case of
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2 – Confined compression of a cylindrical sample of cartilage

a linear viscoelastic biphasic model for soft tissues. Our analysis wants to focus on how different

anelastic deformation tensors,Fa, influence the pressure and flow inside the specimen. In order

to reduce the number of equations to solve numerically, we consider the very particular case in

which the tensor of anelastic deformation is constant (i.e.Fa is constant and known from the

outset), so that no anelastic evolution occurs. This implies thatLa is zero. In other words, we

assume that anelastic deformations have already taken place, which means that the tissue has

already grown and remodelled. Physically, this can be rephrased by saying that the tissue grows

and remodels over a time scale much larger than the scale overwhich fluid flows and elastic

deformations take place. This is consistent with the fact that, compared to other connective

tissues, cartilage grows and repairs more slowly.

Then, the unknowns of the problem are displacement,uuu(t,X) := χ(t,X)−X, and pressure,p.

Equations (2.1) and (2.2), which hold in the internal pointsof Br , are completed with conditions

prescribed on the boundary∂Br . For each unknown, the boundary∂Br is split into a Dirichlet-

and a Neumann-type subset. This means that∂Br admits the representations∂Br = Γ uuu
N ∪Γ uuu

D

and∂Br = Γ p
N ∪Γ p

D , whereΓ uuu
N andΓ p

N are the subsets of∂Br on which Neumann boundary

conditions for the displacement and pressure are prescribed, whileΓ uuu
D andΓ p

D are the subsets on

which Dirichlet conditions are supplied. Formally, boundary conditions are written as























uuu= ūuub, onΓ uuu
D ,

[

−JpF−T +Ps
]

NNN = fffrb, onΓ uuu
N ,

p= p̄b, onΓ p
D ,

[

−KrGrad(p)
]

·NNN = Qrb, onΓ p
N ,

(2.7)

whereNNN is the unit vector normal to∂Br . The surface forcefffrb is defined per unit area of the

reference boundaryΓ uuu
N and is generally different from the forcefffb associated with the actual

configurationBt . An analogous argument holds true for the quantitiesQrb andQb, the latter

being the flux prescribed per unit area of the boundary∂Bt of the actual configuration. The

pairs fffrb- fffb andQrb-Qb are related to each other by the formulae [20]

fffrb = J
√

NNN⊗NNN : C−1 fffb , QQQrb = J
√

NNN⊗NNN : C−1QQQb . (2.8)
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Fappl

Fappl(t)

Fmax

ttmax

Figure 2.1: Schematic representation of the parallel plateapparatus used in the benchmark prob-
lem: the lower plate is impermeable, whereas liquid can flow through the upper plate. Results
are reported in the case of an applied load linearly increasing in time.

2.2.1 Compression of a cylindrical sample

We apply the model presented in section 2.2 to describe a confined compression test under given

loading conditions. We consider the case in which the biphasic material is positioned inside a

rigid cylinder and left free to deform anelastically. In this preliminary study we do not distinguish

contributions due to pure growth from those due to the remodelling of bonds among cells and

fibers remodelling.

The cylindrical sample is then compressed between two plates: the lower plate is impermeable,

whereas the upper plate allows fluid exudation, so that the liquid embedded in the material can

escape from the specimen due to compression (see Fig. 2.1).

The formulation of the confined compression is based on the assumption that the matrix

representation of the deformation gradient is given a very simple diagonal form. Indeed, since

the cylindrical walls of the parallel-plate-apparatus aresupposed to be rigid and impervious, it is

reasonable to assume deformations and velocities of all constituents to be along theZ-axis.

Therefore, using a cylindrical coordinate system, the deformation generated by a uniaxial force

applied along theZ-axis is

χ r(t,X) = R, χϑ (t,X) =Θ , χz(t,X) = z, (2.9)

whereX = (R,Θ ,Z). We restrict our investigation to the case in whichχz depends onZ andt
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2 – Confined compression of a cylindrical sample of cartilage

only, so that the matrix representation of the deformation gradient tensor is diagonal and given

by

F= diag{1,1,∂Zχz} . (2.10)

We remark that, due to the particular form ofF, the identityJ = ∂Zχz holds true.

Then, we assume thatFa, the tensor of anelastic deformation that maps the tangent space of the

reference configuration,TBr , onto the tangent space of the natural configuration,TBn, has the

diagonal form

Fa = diag{g1,g1,g3} . (2.11)

We choose a non-spherical anelastic deformation in order tostudy the influence of anisotropy on

the distribution of load and pressure throughout compression. For the problem under investiga-

tion, g1 andg3 are assumed to be constant in time and given from the outset. From (2.10) and

(2.11), it follows that

Fn = diag

{

1
g1

,
1
g1

,
J
g3

}

. (2.12)

The next step is to re-write (2.1) and (2.2) in cylindrical coordinates. For ease of notation, we

introduce the symbol

QQQ :=−KrGrad(p) . (2.13)

It follows from (2.2) that

J̇ =−Div(QQQ) =−1
R

∂
∂R

(RQR)− 1
R

∂QΘ

∂Θ
− ∂QZ

∂Z
=−∂QZ

∂Z
, (2.14)

where the last identity holds true by requiring that the derivatives with respect to both the radial

and tangential directions vanish identically, and thatQR is zero. The latter condition amounts

to say that there is no fluid flow along the radial direction. Itis thus sufficient to determineQZ,

which is given by

QZ =−(Kr)
ZZ∂ p

∂Z
=−JK

1
J2

∂ p
∂Z

=−K
J

∂ p
∂Z

. (2.15)

By substituting (2.15) into (2.14), we obtain

J̇ =
∂

∂Z

(

K
J

∂ p
∂Z

)

. (2.16)
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Taking into account that the Piola-Kirchhoff stress tensorPs is diagonal, i.e.

Ps = diag
{

PrR,PϑΘ ,PzZ
}

(2.17)

= µnJadiag

{

1

g2
1

,
1

g2
1

,
J

g2
3

}

+

[

λn log

(

J
Ja

)

−µn

]

diag

{

Ja,Ja,
Ja

J

}

,

and that the liquid and the solid phases move along thez-direction only, the balance of momentum

(1.45) reduces to
∂ p
∂Z

=
∂PzZ

∂Z
. (2.18)

By coupling (2.18) with (2.16), we obtain

J̇ =
∂

∂Z

(

K
J

∂PzZ

∂Z

)

= (2.19)

=
∂

∂Z

[

K
J

∂
∂Z

(

µn
g2

1

g3
J+

(

λn log

(

J

g2
1g3

)

−µn

)

g2
1g3

J

)]

.

It can be proven that the partial derivative ofPzZ with respect to the axial direction reads

∂PzZ

∂Z
=

[

Jaµn

g2
3

+
Jaµn

J2 +
Jaλn

J2 − Jaλn

J2 ln

(

J
Ja

)]

∂J
∂Z

. (2.20)

Therefore, the mass balance law acquires the form of a nonlinear diffusion equation, in which

the “transported” quantity is the volumetric deformationJ. Indeed, by substituting (2.20) into

(2.19), we obtain

J̇ =
∂

∂Z

[

D(J)
∂J
∂Z

]

(2.21)

whereD(J) represents a effective diffusion coefficient defined by

D(J) := K

[

Jaµn

Jg2
3

+
Jaµn

J3 +
Jaλn

J3 − Jaλn

J3 ln

(

J
Ja

)]

. (2.22)

It is important to notice thatD(J) is always positive, beingJ < J(0,Z) = Ja because of compres-

sion, which leads toJn < 1. Therefore, all the terms on the right-hand-side of (2.22)are positive.

This is consistent with the diffusive nature of the problem and it will be important also in defining

boundary conditions.
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Finally, the diffusion equation (2.21) has to be solved together with the auxiliary equations

∂ χz

∂Z
= J, (2.23)

∂ p
∂Z

=

[

Jaµn

g2
3

+
Jaµn

J2 +
Jaλn

J2 − Jaλn

J2 ln

(

J
Ja

)]

∂J
∂Z

. (2.24)

We remark, however, that (2.23) and (2.24) are decoupled from (2.21), and can thus be solveda

posteriorionceJ is known, provided proper boundary conditions are supplied.

2.2.1.1 Boundary and initial conditions.

In order to solve (2.19), (2.23) and (2.24), we have to supplyboundary conditions (BCs) and

an initial condition (IC). In particular, the mass balance (2.19) requires two BCs and one IC,

whereas both (2.23) and (2.24) require one BC only. Boundaryconditions have to be provided

at the boundary pointsZ = 0 andZ = L, which identify the lower and upper boundary of the

specimen, respectively.

The boundary conditions have to be consistent with the following requirements:

(i) the axial stress at the upper boundary of the specimen hasto be equal to the applied load,

Pappl(t);

(ii) the velocity of the fluid and of solid phase have to be zeroat the bottom because the lower

plate is impermeable and fixed;

(iii) the pressurep has to be zero atZ= L since the liquid is in equilibrium with the atmosphere.

These observations are translated in the following set of boundary conditions

χz(t,0) = 0, (2.25)

QZ(t,0) = 0 ⇒ ∂ p
∂Z

(t,0) = 0, (2.26)

−Jp
(

F−T)zZ
(t,L)+PzZ(t,L) = Pappl(t), (2.27)

p(t,L) = 0. (2.28)

We remark that, by virtue of the identity (2.18), we may rephrase (2.26) as follows

∂PzZ

∂Z
(t,0) =

[

Jaµn

g2
3

+
Jaµn

J2 +
Jaλn

J2 − Jaλn

J2 ln

(

J
Ja

)]

(t,0)

∂J
∂Z

(t,0) = 0. (2.29)
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We recall that the argument in the square brackets is always positive. Therefore, this condition

leads to a homogeneous-Neumann BC forJ at the lower boundary:

∂J
∂Z

(t,0) = 0. (2.30)

On the other hand, (4.32) leads to a Dirichlet condition onJ at the upper boundary:

µn
JaJ(t,L)

g2
3

−µn
Ja

J(t,L)
+λn

Ja

J(t,L)
ln

(

J(t,L)
Ja

)

= Pappl(t) . (2.31)

Since this equation is nonlinear with respect toJ(t,L), solutions can be found by applying New-

ton’s method or other techniques.

As initial condition, we takeJ(0,Z) = Ja(0,Z)Jn(0,Z) = Ja. Indeed, at the initial time, there

is no elastic deformation, although the anelastic deformation has already occurred. We remark

that, for consistency, the conditionFn(0,X) = I entails thatg1 = 1.

2.2.2 Discretization

Equation (2.19) can be solved using central differences forspace derivatives and then a proper

ODE solver to obtain the temporal evolution. In the following we depict the main step of this

procedure.

The 1D-domain, represented by the interval[0,L], is divided intoN−1 subintervals of the

same width∆Z through the introduction ofN equispaced nodes

0= Z1 < Z2 = Z1+∆Z < ... < Z j < ... < ZN−1 < ZN = L .

Spaces derivatives are then approximated by finite differences, so that the following system of

N−2 equations is obtained:

J̇j =
1

(∆Z)2

(

K j+1

Jj+1
PzZ

j+1−
(

K j+1

Jj+1
+

K j

Jj

)

PzZ
j +

K j

Jj
PzZ

j−1

)

. (2.32)

Here, j enumerates the nodes of the grid, i.e.Jj = J(t,Z j), K j = K(t,Z j) andPzZ
j = PzZ(t,Z j),

with j = 2,...,N−1. The boundary valuesJ1 andJN are given by (2.30) and (4.34). A special

treatment is performed for the initial node: in order to preserve the second-order-accuracy of the

discretization method, a fictitious nodeZ0 is introduced, and the Neumann boundary condition
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(2.30) is approximated by the central difference [17]

J2−J0

2(∆Z)
= 0,

which impliesJ0 = J2. This allows to prolong the validity of the discretization used in (4.67) to

the nodej = 1.

At the upper boundary, we solve (4.34) numerically in order to determineJN. For this pur-

pose, we implement a standard Newton-Raphson method. According to this procedure, the

initial partial differential equation (2.19) is approximated by a system of ordinary differential

equations that can be integrated by choosing a stable ODE solver, with the initial condition

Jj(0) = J(0,Z j) = g2
1g3, for j = 1, . . . ,N.

After computingJ, the functionχz is calculated by invoking (2.23) coupled with (4.30), and

using a standard forward Euler method. The variation of pressure inside the specimen can be

calculated a posteriori, oncePzZ is known. Indeed, integrating the balance of momentum (2.18),

with the boundary conditionp(t,L) = 0 MPa, yields

p(t,Z) = PzZ(t,Z)−PzZ(t,L) . (2.33)

2.3 Results

The model presented in the previous sections is applied to describe the compression of a cylin-

dric specimen of soft biological tissues, which is positioned in a chamber delimited by a rigid

cylindric wall and two parallel plates. The wall and the lower plate are impermeable to liquid,

whereas the upper plate allows for fluid exudation. An external compressive force is applied at

the upper plate, parallel to the symmetry axis of the specimen. The experimental apparatus is

schematically shown in Fig. 2.1.

We restrict our analysis to the case in which the external force increases linearly in time until

tmax= 30 s when the maximum force,Fmax=−0.2 ·9.81 N, is reached.

In (2.11), we consider

Fa = diag{g1,g1,g3}= diag{g,g,g+ ε} , (2.34)

whereε measures the deviation ofFa from a spherical anelastic deformation. Therefore, dif-

ferent values ofε stand for different capabilities of the biological sample to change its internal

structure.
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The numerical results shown in this section are obtained by implementing in MatlabR© the proce-

dure described in section 2.2.2. All the parameters are listed in Table I.

TABLE I

PARAMETERS OF THE BENCHMARK PROBLEM

Parameter Description Value

L Height of the specimen 10 mm

2R Diameter of the specimen 5 mm

Fmax Maximum applied force −0.2·9.81 N

tmax Time of load application 30 s

k0 Hydraulic conductivity 3.6454·10−12 m4/(N ·s)
m0 Material parameter 0.0848

m1 Material parameter 4.638

φs0 Referential value of solidity. 0.6

φsn Solidity in the relaxed configuration 0.6

λn Lamé’s first modulus 0.3137 MPa

µn Shear modulus 0.3566 MPa

We recall that, for the considered problem, the only possible value ofg is unity. This implies

that the deviations ofFa from a referential spherical tensor are actually the deviations from the

identity tensor.

Equation (2.19), integrated with the initial conditionJ(0,Z) = Ja and BCs (2.30) and (4.34),

gives origin to the curves in Fig. 2.2-(a), which representJ(t,Z) plotted over space, at different

instants of time (every 5 s for 30 s). In this simulation, we set ε = 0.1. The corresponding volu-

metric fraction of the solid,φs(t,Z) = φsnJa[J(t,Z)]−1, is reported in Fig. 2.2-(b).

The characteristic time of the diffusive process describedin (2.19) is defined bytd := L2[D(J)]−1,

which is a function of time and material coordinates throughJ. For the considered load,D(J) is

an increasing function ofJ. Thus, the maximum characteristic time,tM
d , corresponds to the min-

imum value ofJ, which is reached at the end of the simulation inZ = L (cf. Fig. 2.2-(a)). On the

other hand, the minimum characteristic time,tm
d , is reached at the beginning of the simulation,

for J(0,Z) = Ja andD(J(0,Z)) = k0(µng−2
3 + µnJ−2

a +λnJ−2
a ) = k0(2µn+λn)J−2

a . We remark

that the factor(2µn+λn) coincides with the P-wave modulus of the material.

For the parameters listed in Table I, we findtM
d ≈ 38.26 s andtm

d ≈ 32.32 s. We notice thattM
d

andtm
d are of the same order astmax.
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Figure 2.2: Evolution in time and space ofJ(t,Z) (a) and solid volumetric fraction (b), when
ε = 0.1, starting from the initial valuesJ(0,Z) = Ja andφs = φsn. Solutions are reported every
5 s for 30 s, which correspond to the maximum time of load application. All the parameters used
in the simulation are listed in Table I.
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Figure 2.3: Evolution in time and space ofPzZ(t,Z) (a) and relative displacement,
[z(t,Z)−z(0,Z)]/Lin (b), with PzZ(0,Z) = 0 MPa andz(0,Z) = JaZ. Results are plotted every
5 s up to 30 s, in the case of the parameters listed in Table I andε = 0.1.

The axial component of the constitutive part of the first Piola-Kirchhoff stress tensor,PzZ,

and the relative displacement,[z(t,Z)−z(0,Z)]/Lin are plotted in Fig. 2.3-(a) and Fig. 2.3-(b),

respectively. Here,Lin denotes the length of the specimen at timet = 0s, which is defined by

Lin :=
∫ L

0 ∂Zχz(0,Z)dZ = JaL consistently with (2.23).

The value ofPzZ at the upper boundary is given byPzZ(t,L)=
(

Fappl(t,L)
)

/S, whereFappl(t,L)=
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Fmax[t/tmax] andS= pR2, the area of the surface over which the applied load is distributed, coin-

cides with the cross section of the specimen in the referenceconfiguration.

The amplitude of the displacement increases in time with theapplied load (cf. Fig. 2.3-(b)). This

behaviour is qualitatively the same also for the other values of ε considered in the following.

However, the diffusive process tends to become slower asε gets bigger.

In the following, we run a set of simulations with varyingε in order to highlight the influence

of this parameter on the response of the material (e.g., distribution of stress and deformation

inside the specimen). Results are presented in Figs. 2.4 and2.5 for ε = {0,0.01,0.1,0.2}. In

particular, the volumetric deformationJ, which solves (2.19), and the volumetric fraction of the

solid phase attmax= 30 s are reported in Fig. 2.4-(a) and 2.4-(b), respectively.We remark that

the value of the solid volumetric fraction at the upper boundary, φs(t,L), is the same for every

value ofε becauseJa[J(t,L)]−1 is constrained to satisfy (4.34) independently ofε.

Pressure and relative displacements are plotted in Fig. 2.5at timet = tmax. Pressure is obtained

solving eq. (2.33), consistently with the condition (4.33). The value of the pressure at the lower

boundary rises asε increases, and the pressure distribution tends to become more inhomogeneous

for larger deviations ofFa from sphericity.

For the considered load, the normalised final displacement,[z(tmax,Z)−z(0,Z)]/Lin, which is

zero at the bottom of the specimen, diminishes with increasing ε (cf. Fig. 2.5-(b)).
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Figure 2.4: Distribution ofJ (a) and solid volumetric fraction (b) at the final time of compression
tmax= 30 s, for different values ofε.

The results of the simulations obtained by means of the computational methods outlined in

sections 2.2.2 are in good agreement with the results obtained through finite element simulation.
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Figure 2.5: Evolution of the pressure over space (a) and relative displacement (b) at the final time
of compressiontmax= 30 s, for different values ofε.

Fig. 2.6 and 2.7 show the results for two values ofε, for comparison with the results obtained in

MatlabR©. The finite element simulations have been developed in collaboration with a group of

the Institute of Computational Science at the Universitá della Svizzera Italiana (Lugano, Switzer-

land) [74].

(a) t = 5 s (b) t = 15 s

(c) t = 20 s (d) t = 30 s

Figure 2.6: Time evolution of the displacement and the pressure without growth (ε = 0).
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(a) t = 5 s (b) t = 15 s

(c) t = 20 s (d) t = 30 s

Figure 2.7: Time evolution of the displacement and the pressure withε = 0.1.
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2.4 Discussion

In this chapter, we apply the theory of biphasic materials with variable mass and internal structure

to the description of the uniaxial compression of a cylindrical sample of soft biological tissue.

The structural change, described by the second-order tensor Fa, and the variation of mass (which

is assumed to be due to growth) are connected with each other since the rate at which mass

increases (or decreases),γs, is related to the rate of anelastic deformationLa throughγs= tr(La).

For our purposes, however, we considered a simplified framework in whichLa is set equal to

zero. Consequently,Fa is taken to be constant. This amounts to study situations in which the

biphasic medium evolves under external actions after anelastic re-organization and growth has

already occurred. Physically, this means that we are hypothesising that the time scale over which

the medium grows and reorganizes is much slower than the scale over which it deforms. Based on

this approximation, we study how different choices ofFa (which correspond to different possible

ways of changing the internal structure of the solid phase) influence the deformation and, thus,

the displacement field, as well as the distribution of pressure inside the medium.

Our next goal is to consider fully coupled equations, in which the value ofFa changes in time.

Moreover we are also interested in distinguish the contribution due to pure growth from the

one due to remodelling. Thus, in Chapter 3 we introduce an evolving equation able to describe

anelastic contributions due to the rupture of adhesive bonds, whereas in Chapter 4 we introduce

the growth of the cellular constituent.
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Chapter 3

Uniaxial compression of spheroids

In this chapter we apply the notion of multiple natural configurations, presented in Chapter 1 to

study the mechanical behavior of multicellular aggregatesunder compression. Cell and aggre-

gate responses to mechanical stimuli have been successfully described using this framework in

[7, 115, 116]. However, the viscous contribution of the liquid encapsulated inside the multicel-

lular system has always been neglected, except for the termsmodelling the exchange of linear

momentum among the phases. In many situations, this simplification leads to unrealistic results

when compression is released.

We will treat the system as a deformable porous material, composed of cells and filled with

physiological liquid, in order to analyse the non-linear mechanical behavior related to the re-

organization of multicellular structures, when a load is applied.

The cellular constituent is responsible for the elastic andthe plastic behavior of the material. In

particular, the plastic component is due to the rearrangement of adhesion bonds between cells

and it is translated into the existence of a yield stress in the macroscopic constitutive equation.

On the other hand, the liquid constituent is responsible forthe viscous-like response during de-

formation.

In section 3.1 we present the biological motivation that guides this work and we revised previous

work present in literature.

The general mathematical framework is outlined in Section 3.2.1, where the constitutive

equation for cellular aggregates is introduces. The model is obtained under the hypothesis of

incompressible homogeneous material, withφs constant in space and time and deformations

depending on time only, so that equations presented in Chapter 1 simplifies considerably.

Then the model is applied to describe uniaxial homogeneous compression (3.2.2) in the three

following situations
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• application of a constant pressure, possibly repeated overtime (section 3.3.1),

• compression at constant force and subsequent release (section 3.3.2),

• imposition of a fixed deformation and subsequent release (section 3.3.3).

The qualitative properties of the solution are described indetail, with proofs and the numerical

results (in terms of spheroid deformation and applied stress) are compared with the prediction of

previous models [115, 116] and mechanical experiments performed in [52].

3.1 Motivations

In recent years, many studies, focused on cell microrheology and mechanical behavior, aim at

establishing the constitutive equation of cells and aggregates [1, 3, 7, 115] and at measuring

properties like cell interfacial energy, elastic modulus and relaxation times [52, 53, 54, 159]. In

particular, in [7, 115] it was shown that the phenomena observed during some compression ex-

periments performed in [52, 53, 54], where a fixed deformation is applied to the cell aggregate,

or in [90], where a dense cell suspension is subjected to shear, can be explained using the con-

cept that the natural configuration evolves, due to the rearrangement of adhesion bonds. Then,

aggregate mechanical behavior can be modelled coupling theviscoelastic behaviors with a yield

condition, generating a plastic reorganization, when the stress becomes too high.

However, pressure controlled experiments (e.g. creep test) and stress-release experiments can

not be fully explained with the models in [7, 115], in which the liquid encapsulated in the system

is not considered. Indeed experimental evidence [52, 53, 54] suggests that, when an imposed

deformation is removed, the shape recovery dynamics of aggregates, requires some time. On the

contrary in [1, 3, 7, 115, 116], when the stress is released, the shape recovery is instantaneous. A

similar behavior is found when a stress is suddenly applied.

In addition, if the imposed stress is sufficiently high, whenthe stress is removed, the initial

configuration is no longer reached, which can not be described with the models presented in

[52, 53, 54], that are based essentially on the existence of asurface tension holding together the

cell aggregate. A similar difficulty is encountered when dealing with the description of periodic

compressions of spheroids.

Therefore, in this chapter we extend the elasto-visco-plastic model presented in [115] to

include the effects described above. On one hand, we take into account the existence of a maxi-

mum stress that can be sustained by the cell aggregate beforereorganizing and on the other hand,
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we consider the fact that the total stress exerted by the specimen is not only due to the cellular

component, but also to a further viscous term due to the action of the liquid phase.

3.2 Mathematical Model

3.2.1 The Constitutive Model of Cell Spheroids

Cellular spheroids used in biological experiments [52, 53,54] have a diameter ranging from

200 and 600µm, which means 104−105 cells. Therefore cell aggregates can be modelled as

continuum media, presenting elastic, viscous and plastic behaviors:

• the elastic component is mainly due to the cytoskeleton, which is composed of elastic

filaments strongly cross-linked,

• the dissipative component, responsible for the viscous behavior, originates primarily from

the flow of the cytosol along with and through the cytoskeleton meshwork and from extra-

cellular fluid movements,

• the plastic component is due to the re-organization of adhesion bonds between cells and to

actin network remodelling inside cells.

We use the theory for materials with evolving natural configurations [86, 87, 126, 144], pre-

sented in Chapter 1, Section 1.2.

In particular, in the case of mechanical testing of multicellular aggregates, it is natural to assume

that no growth occurs during stress-induced deformation, since mitosis and apoptosis occur on

a much longer time scale (several hours) than the typical time scale of mechanical deformation.

Therefore, referring to Fig. 1.1 the anelastic part of the deformation is merely due to the remod-

elling of the internal structure of aggregates, that we willindicate withFp. It is therefore possible

to introduce the following multiplicative decomposition of the total deformation gradient

F= FnFp , (3.1)

whereFn identifies the deformation without cell reorganization (describing how the body is de-

forming locally while going from the natural configurationBn to Bt ), Fp describes the anelastic

component due to the internal re-organization of cells (evolution fromBr to Bn).

In order to introduce the viscous contribution due to the liquid encapsulated inside cells and

among them, we apply the concepts of Mixture Theory, presented in Chapter 1. Cells form the
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solid structure, with volume ratioφs, whereas the liquid phase has volume fractionφℓ and obvi-

ously the saturation assumption holds:φs+φℓ = 1. We will assume thatφs andφℓ do not change

in time and thus they can be considered given constant of the problem. The total tension of the

mixture as a whole,T, is due both to the stress exerted by the cellular constituent, Ts, and to the

one exerted by the fluid contained in cells and in which the spheroid is immersed,Tℓ. Hence,

neglecting inertial terms, eq. (1.39) yields

T= Ts+Tℓ . (3.2)

Treating the fluid as a linear incompressible Navier-Stokesfluid and assuming that cells and

liquid move with the same velocity, the second term in equation (3.2) readsTℓ =−pφℓI+2νφℓD,

whereD= (L+LT)/2 andp is a Lagrangian multiplier due to the volume additivity of the con-

stituents and it represents the interstitial fluid pressure.

Obviously this is only an approximation and a better description of the phenomenon should sep-

arate the contribution of the intracellular liquid, from that of the extracellular liquid described,

for instance, by Darcy’s law (1.72). The introduction of theviscous term is consistent with

Saramito’s work [130, 131] on elasto-visco-plastic fluids,such as liquid foams, emulsions and

blood flows. Indeed in these works the 1D total stress is represented byσ = τ +ηε̇ , whereτ is

an extension of the Oldroyd model coupled with the Bingham constitutive equation, whereas the

second term takes into account viscous phenomena.

Concerning the tensorTs representing the stress of the cellular constituent, a unique represen-

tation of the constitutive equation representing living matter behavior is still under investigation.

In this work we assume that cells behave elastically, obeying a Neo-Hookean law, with coef-

ficient of the isotropic term−(p+Σs(φs)) and shear modulusµ, the first term of the sum in

equation (3.2) is

Ts =−φs(p+Σs(φs))I+µφsBn , (3.3)

whereBn = FnF
T
n .

For what concern the description of the anelastic part, we refer to [115], where plastic effects are

included starting from the idea that the rearrangement of adhesion bonds during the deformation

of multicellular spheroids is related to the existence of a yield condition in the macroscopic

constitutive equation of the stress tensor. The yield stress is a very important quantity in rheology

and it is associated with the existence of strong interactions, causing the impossibility for a fluid

44



3.2 – Mathematical Model

to flow when small shear stresses are applied.

Indeed experimental evidence suggest that when a cell aggregate undergoes compression:

1. for moderate values of applied stress, cell aggregates deform elastically;

2. above a limit value, the cell aggregate undergoes internal re-organization which can be

modelled at a macroscopic level as a visco-plastic deformation.

The so-called yield stress, denoted byτ(φs), depends on the number of cells per unit volume

because the threshold of the onset of cell re-organization is proportional to the area of the cell

membranes in contact times the bond energy, that representsthe work needed to break cell-to-cell

bonds. This is related to the experimental observation thatadhesion bonds between cells have a

finite strength and might break or build up during the evolution [15, 27, 139].

To translate this idea into formal terms, we propose a modification of the model presented

in [115]. Using the virtual-power formulation and considering that the Cauchy tensor,Ts, is

work-conjugate with the elastic deformation rateLn = ḞnF
−1
n whereas the plastic tensor,Tp, is

work-conjugate withLp = ḞpF
−1
p and it should be deviatoric being trLp = 0, it can be proved

[77] that

Tp = devMsn= JFT
nT

′
sF

−T
n , (3.4)

whereMsn is defined in (1.66) and we use the fact thatJp = 1 so thatJn ≡ J. We remark thatT′
s

is the deviatoric part ofTs, i.e.,T′
s= Ts− 1

3(trTs)I .

Recalling Chapter 1, Section 1.2, we introduce the constitutive free energyψ and we pos-

tulate a dissipation principle, such that we can postulate the following inequality for the solid

constituent [77]

φsψ̇s−Ts : Ln−J−1
n Tp : Dp ≤ 0. (3.5)

Then takingψs= ψ̂s(Fn) and using the classical Coleman-Noll procedure for the exploitation of

second law of thermodynamics, we obtain

Ts = φs
∂ψ̂
∂Fn

F
T
n (3.6)

Tp : Dp ≥ 0. (3.7)
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ThereforeLp = G(Tp) satisfies the previous relations, given any positive linearoperatorG.

Taking into account the mechanical observations on the existence of a yield criterion and the fact

that the material can be considered isotropic, we can choose

G(·) = 1
2η(φs)

[

1−
(

τ(φs)

f(T′
s)

)α]

+

sym(·) , (3.8)

wheref(T′
s) is a suitable frame invariant measure of the stress of the cellular constituent and

[·]+ and sym(·) stand for the positive and symmetric part of their argumentsrespectively. The

parameterα is in the range[0,1] and determines the viscous behavior at high shear rates. In

the following, the particular caseα = 1 will be considered, to obtain the following constitutive

equation

Lp = Dp =
J

2η(φs)

[

1− τ(φs)

f(T′
s)

]

+

sym
(

F
T
nT

′
sF

−T
n

)

. (3.9)

Assuming isochoric transformations,J = 1, and thus (3.9) becomes

Lp = Dp =
1

2η(φs)

[

1− τ(φs)

f(T′
s)

]

+

sym
(

F
T
nT

′
sF

−T
n

)

. (3.10)

Equation (3.10) can be interpreted, considering that a crucial role in the reorganization of cells

is played by the sheart ·T′
sn that can be mapped back to the natural configuration taking into

account that a material vector transforms liket = Fntn whereas the normal to a material surface

like n = det(Fn)F
−T
n nn = F−T

n nn, sinceFn is an isochoric transformation. Then, one has that

t ·T′
sn = tn ·FT

nT
′
sF

−T
n nn. Therefore a crucial role in determining whether the material reorga-

nizes is the tensorTp = FT
nT

′
sF

−T
n .

We observe that in (3.10), the term containing the yield stress switches on just when the stress

overcomes the yield stress in terms of the set measure. In this case the energy is no longer elas-

tically stored but it is spent in cell unbinding and cytoskeleton reorganization at the microscopic

scale, which produces the spheroid rearrangement at the macroscopic scale.

Referring back to equation (3.10), we explicitly observe that

tr(T′
s) = tr(FT

nT
′
sF

−T
n ) = tr(Dp) = 0, (3.11)

and that the eigenvalues ofF−T
n T′

sF
T
n are the same as those ofT′

s.

Furthermore beingT′
s objective, we have to study how the quantities in equation (3.10) transform
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under an euclidean change of frame. Denoting with a bar¯(·) the value of a field after the change

of frame and withR an orthogonal tensor, thanks to the relations (1.61) introduced in chapter 1,

one has

Dp = Dp (3.12)

if and only if

G
(

FT
nT

′
sF

−T
n

)

= G
(

F
T
nR

T
T

′

sRF
−T
n

)

= G
(

F
T
nT

′
sF

−T
n

)

, (3.13)

which implies the frame indifference ofT′
s.

3.2.2 Uniaxial compression

In this section we will study in more detail the response of a material satisfying (3.2) - (3.3)

(3.10) subject to a uniaxial compression test. Though the results of this section also apply to

an elongation test, we focus on compressive forces, becausethey are the more relevant from the

biological point of view.

Typical experiments can be performed under the following conditions:

• a constant pressure is imposed to the specimen and the corresponding deformation is

recorded upon time. Possibly the compression is released after some time allowing a

stress-free evolution of the specimen. Then, the process ofcompression with the same

constant load can be re-iterated. We will call the first experiment stress-controlled test

or creep testand we will denote the last process ascyclic stress-controlled test(or cyclic

creep test).

• a constant force is imposed to the specimen and the corresponding deformation is measured

(force-controlled test). Also in this case, the compression is released after some time and

the process with the same constant force is reiterated (cyclic force-controlled test). We

remark that, considering the increase in the transverse section of the aggregate, the applied

stress is no more constant.

• a fixed deformation is applied and the evolution of the stressinside the body is moni-

tored (stress relaxation test). Finally the same deformation is applied periodically, letting
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spheroids to freely expand between two subsequent compressions. In the following we

will refer to this process ascyclic deformation test.

We will assume that the deformation, generated by a uniaxialforce or strain applied along

thez-axis, is homogeneous inside the body, keeping a constant volume ratioφs, and is given by

x=
X

√

ϕ(t)
, y=

Y
√

ϕ(t)
, z= ϕ(t)Z . (3.14)

Then the deformation gradient from the initial to the final configuration is given by

F= diag

{

1
√

ϕ(t)
,

1
√

ϕ(t)
,ϕ(t)

}

. (3.15)

The deformation gradient due to the internal reorganization of the cytoskeleton can be repre-

sented by

Fp = diag

{

1
√

Ψp(t)
,

1
√

Ψp(t)
,Ψp(t)

}

, (3.16)

whereΨp(t) is a measure of how much the aggregate has reorganized and thenatural configura-

tion has evolved. ForΨp(t) = 1 we have no contribution due to rearrangement of bonds inside

the body.

From equations (3.15) and (3.16), beingF= FnFp it is clear that

Fn = diag

{
√

Ψp(t)

ϕ(t)
,

√

Ψp(t)

ϕ(t)
,

ϕ(t)
Ψp(t)

}

. (3.17)

Therefore, considering that in the uniaxial compression test the total force is applied in the

z-direction, eq. (3.2) and (3.3) lead to

T=−(p+φsΣs(φs))I+µφsBn+2(1−φs)νD= diag
{

0,0,−Pappl(t)
}

, (3.18)

where we considerPappl to be positive for a compressive load.

In a stress-controlled test,Pappl is a known constant and it vanishes in the stress release phase,

whereas it is a function of time, when we consider that the applied force,Fappl, is kept constant,

i.e., Pappl =
Fappl

Sappl
. Indeed, in this case the stress decreases in time as the areaover which the

force is applied increases. Finally in a stress-relaxationexperiment under constant deformation,
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the applied force is one of the unknown of the problem.

Considering that the liquid and the cellular component movewith the same velocity,

D = diag

{

−1
2
,− 1

2
,1

}

ϕ̇(t)
ϕ(t)

,

being

Bn = diag

{

Ψp(t)

ϕ(t)
,
Ψp(t)

ϕ(t)
,
ϕ2(t)
Ψ2

p (t)

}

,

we obtain the following equation for the stress exerted by the mixture

T = −ΣI+µφsdiag

{

Ψp(t)

ϕ(t)
,
Ψp(t)

ϕ(t)
,
ϕ2(t)
Ψ2

p (t)

}

+

+2ν(1−φs)diag

{

−1
2
,− 1

2
,1

}

ϕ̇(t)
ϕ(t)

, (3.19)

where we callΣ = p+φsΣs(φs).

Imposing the condition on the r.h.s. of (3.18), we have

Σ(t) = µφs
Ψp(t)

ϕ(t)
−ν(1−φs)

ϕ̇(t)
ϕ(t)

, (3.20)

Pappl(t) = µφs
Ψ3

p (t)−ϕ3(t)

Ψ2
p (t)ϕ(t)

−3ν(1−φs)
ϕ̇(t)
ϕ(t)

. (3.21)

The first term in the r.h.s. of both (3.20) and (3.21) is the same obtained in [115], taking account

the cellular constituent only, whereas the second terms arise from the introduction of the viscous

phase in the model. Equation (3.21) can provide the stress exerted by the aggregate when a

deformation is imposed along thez-axis (e.g. a fixed deformation,ϕ0), or it can be used to derive

the evolution ofϕ(t) when, for instance, a constant load is applied

ϕ̇
ϕ

= − Pappl

3ν(1−φs)
+

µφs

3ν(1−φs)

Ψ 3
p −ϕ3

ϕΨ2
p

, (3.22)

where we omit the dependence fromt for sake of simplicity. As a particular case, equation (3.22)

can be used to model the stress-free evolution of the system,imposingPappl = 0.

We observe that, when no load is imposed in eq. (3.22), the ratio
ν(1−φs)

µφs
plays the role of a
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characteristic time in the shape recovery process. Considering the fact that we are compressing

a multicellular aggregate, this characteristic time can berelated to the consolidation time of a

saturated porous material filled with fluid,
µwL2

kE
, whereµw is the dynamic viscosity of the phys-

iological liquid, L the multicellular aggregate height,k the permeability of the porous structure

andE its elastic modulus. In this way it is possible to derive the parameterν from physical

quantities measurable in experiments and by means of known estimates ofk, e.g. the Kozeny-

Carman relation. Therefore, it is important to remark that,in (3.22), the viscous coefficient,ν,

is proportional to the viscosity of the fluid encapsulated inthe cellular specimen, but it is not

simply the viscosity of the physiological liquid.

Equation (3.22) needs to be joined with equation (3.10), taking into account that

T
′
s = µφsdiag

{

−1
3
,− 1

3
,
2
3

} ϕ3−Ψ3
p

Ψ2
p ϕ

. (3.23)

and postulating an equation forf(T′
s).

Here we consider that the frame invariant measure of the stress is the maximum shear stress

magnitude, given by half of the difference between the maximum and the minimum stress in the

principal directions (Tresca’s criterion)

f(T′
s) =

|T′zz
s −T ′xx

s |
2

=
µφs

2

|Ψ3
p −ϕ3|
ϕΨ 2

p
, (3.24)

which means that cell unbinding is primarily caused by the slippage of cells along the maximum

shear stress surface, which seems reasonable in a cellular aggregate under compression. In a

more general case, in which the principal stresses are not trivially known, it is possible to use

the von Mises criterion, taking into account that Tresca’s criterion is more conservative and,

therefore, it predicts plastic reorganization for stresses that are still elastic according to the von

Mises criterion.

The evolution for the internal reorganization is therefore

Ψ̇p

Ψp
=− 1

3λ

[

1− 2τ
µφs

ϕΨ2
p

|Ψ3
p −ϕ3|

]

+

Ψ3
p −ϕ3

ϕΨ2
p

. (3.25)

whereλ =
η(φs)

µφs
is thecell-reorganization time(or plastic rearrangement time) andτ = τ(φs).

Equation (3.25) states that when the quantity inside the square parenthesis is positive, thenΨp
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will evolve. In the following we will callϕy(Ψp,0) the unique value ofϕ that switches on the

square brackets for fixedΨp =Ψp,0, i.e.,

Ψ3
p,0−ϕ3

y (Ψp,0)

Ψ 2
p,0ϕy(Ψp,0)

=
2τ
µφs

. (3.26)

when the imposed deformation is known, only values ofϕ0<ϕy(1) are able to trigger the internal

reorganization of the aggregates. Moreover, as we will see more in detail in Section 3.3.3, in a

stress relaxation experiment with constant deformation equal to ϕ0 < ϕy(1) the equilibrium of

(3.25) is reached when
Ψ3

p −ϕ3
0

ϕ0Ψ2
p

=
2τ
µφs

, i.e., from (3.22) atPappl = 2τ, independently ofϕ0 as

in [115].

3.3 Results

The model presented in Section 3.2.2 can provide some usefulinformation on the mechanical

behavior of aggregates both when they are compressed with a constant force and when they are

released. In Section 3.3.1 and 3.3.2 we present the results obtained in the case of a cyclic creep

test and a cyclic force-controlled test, respectively. Section 3.3.3 is devoted to the the cyclic

deformation test, as performed in the experiments in [52].

The following proposition will be useful.

Proposition 1. When the aggregate is compressed according to the followingimposed deforma-

tion and stress histories:

a) any given compressive deformation,ϕ(t) with ϕ̇(t)≤ 0

b) any sequence of givenϕ(t) with ϕ̇(t)≤ 0 for t ∈ [t2i,t2i+1] followed by a stress release for

t ∈ [t2i+1,t2(i+1)] with i = 0,...,n

c) any compressive load, Pappl(t)> 0

d) any sequence of compressive load, Pappl(t)> 0, for t ∈ [t2i,t2i+1] followed by stress release

for t ∈ [t2i+1,t2(i+1)], with i= 1,...,n.

if Ψp(0)≥ ϕ(0), then

Ψp(t)≥ ϕ(t) ∀t > 0.
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3 – Uniaxial compression of spheroids

This proposition allows to get rid of the modulus in (3.25) and rewrite (3.22) and (3.25) as

Ψ̇p(t) = − 1
3λ

[

Ψ3
p (t)−ϕ(t)3

ϕ(t)Ψ2
p (t)

− 2τ
µφs

]

+

Ψp(t) , (3.27)

ϕ̇(t) = − Pappl(t)

3ν(1−φs)
ϕ(t)+

µφs

3ν(1−φs)

Ψ3
p (t)−ϕ(t)3

Ψ2
p (t)

. (3.28)

Proof. Case a)

We first prove the proposition in the case of a given deformationϕ(t)< 1 with ϕ̇(t)≤ 0 applied

to the cellular aggregate fort ∈ [0,t1], wheret1 is the time when the upper plate is possibly lifted

up. The same proof holds fort1 → ∞.

Considering thatΨp(0) = 1, if the imposed deformationϕ(t) is so small thatϕ(t) < ϕy(1),

whereϕy(1) satisfies the yield condition (3.26), from (3.25) the quantity in the square parenthesis

is always negative andΨp(t) = 1> ϕ(t).

On the other hand, if the imposed deformation is not so small and the yield condition is over-

come, then we can rewrite equation (3.25) regulating the evolution of the internal reorganization,

as

Ψ̇p =− 1
3λ

[

|Ψ3
p −ϕ3|
ϕΨ 2

p
− 2τ

µφs

]

+

sgn(Ψp−ϕ)Ψp . (3.29)

It is trivial to check that starting fromΨp(0) = 1,Ψp(t) is always positive. For the thesis, we then

definew(t) =Ψp(t)−ϕ(t) and consider the positive part,w+, given by

w+(t) = max{w(t),0}=
{

w(t) w(t)> 0;

0 w(t)≤ 0;

and the negative partw− defined as

w− = max{−w(t),0}=
{

−w(t) w(t)< 0;

0 w(t)≥ 0.

Therefore the functionw can be expressed in terms ofw+ andw−, asw= w+−w−.

Thenw evolves according to

ẇ=− 1
3λ

[

|Ψ3
p −ϕ3|
ϕΨ2

p
− 2τ

µφs

]

+

sgn(w)Ψp− ϕ̇ . (3.30)
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starting fromw(0)> 0, since at the initial timeΨp(0) = 1≥ ϕ(0).
We multiply each side of (3.30) byw− and integrate from 0 to an arbitrary timet̃ ∈ (0,t1] to get

∫ t̃

0
ẇw−dt = − 1

3λ

∫ t̃

0

[

|Ψ3
p −ϕ3|
ϕΨ 2

p
− 2τ

µφs

]

+

sgn(w)w−Ψpdt−
∫ t̃

0
ϕ̇w−dt =

=
1

3λ

∫ t̃

0

[

|Ψ3
p −ϕ3|
ϕΨ2

p
− 2τ

µφs

]

+

w−Ψpdt+
∫ t̃

0
−ϕ̇w−dt ≥ 0 , (3.31)

being both integrands non negative∀t̃ ∈ (0,t1]. Hence

0≤
∫ t̃

0
ẇw−dt =−

∫ t̃

0
ẇ−w−dt =−1

2
w2
−(t̃)≤ 0 ,

where we used the conditionw(0)≥ 0, i.ew−(0) = 0.

Therefore

w2
−(t̃) = 0=⇒ w(t̃)≥ 0=⇒Ψp(t̃)≥ ϕ(t̃) ∀t̃ ∈ (0,t1] .

Case b)

If at any time,t = t1, the upper plate is lifted up, then, the equations regulating the evolution of

the system, fromt = t1 on, are (3.22) and (3.25), that can be rewritten as

Ψ̇p = − 1
3λ

[

|Ψ3
p −ϕ3|
ϕΨ2

p
− 2τ

µφs

]

+

sgn(Ψp−ϕ)Ψp (3.32)

ϕ̇ =
µφs

3ν(1−φs)

Ψ3
p −ϕ3

Ψ2
p

. (3.33)

We apply the same method presented above, computing for an arbitrary timet̃ ∈ (t1,t2], where

t2 is the time when the compression is possibly restored (obviously the same proof holds for

t2 → ∞)

∫ t̃

t1
ẇw−dt = −µφs

3η

∫ t̃

t1

[

|Ψ3
p −ϕ3|
ϕΨ2

p
− 2τ

µφs

]

+

sgn(w)w−Ψpdt+

− µφs

3ν(1−φs)

∫ t̃

t1

Ψ2
p +ϕΨp+ϕ2

Ψ2
p

ww−dt . (3.34)
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We observe that also in this case,w−(t1) = 0, beingw(t1) =Ψp(t1)−ϕ(t1) ≥ 0 (as demon-

strated before) and then
∫ t̃
t1

ẇw−dt =−1
2

w2
−. On the other hand, both terms on the left hand side

are always greater or equal to zero, being sgn(w)w− =−w− ≤ 0 andww− =−w2
− ≤ 0.

Then also in this case, we can conclude that

w(t̃) = w+(t̃)≥ 0=⇒Ψp(t̃)≥ ϕ(t̃) ∀t̃ ∈ (t1,t2] .

Then it is possible to reiterate the process, together with the one in casea) to demonstrate the

thesis.

Case c)

In the case of the application of a compressive stress,Pappl(t)> 0, along the negativez-axis

Ψ̇p = − 1
3λ

[

|Ψ3
p −ϕ3|
ϕΨ2

p
− 2τ

µφs

]

+

sgn(Ψp−ϕ)Ψp (3.35)

ϕ̇ = − Pappl

3ν(1−φs)
ϕ +

µφs

3ν(1−φs)

Ψ3
p −ϕ3

Ψ2
p

. (3.36)

Using the same definition forw(t) we have that

∫ t̃

0
ẇw−dt = −µφs

3η

∫ t̃

0

[

|Ψ3
p −ϕ3|
ϕΨ2

p
− 2τ

µφs

]

+

sgn(w)w−Ψpdt+

− µφs

3ν(1−φs)

∫ t̃

0

Ψ2
p +ϕΨp+ϕ2

Ψ2
p

ww−dt+

+
∫ t̃

0

Pappl

3ν(1−φs)
ϕw−dt (3.37)

The last integral in equation (3.37) is obviously non negative and therefore also in this case

Ψp(t)≥ ϕ(t).

Case d)

If at any timet = t1 the plate compressing the aggregate is lifted up, the equation regulation the

evolution are the same presented in case b) and the conditionbeingw(t1) =Ψp(t1)−ϕ(t1) ≥ 0

continues to hold thanks to case c). Thus adopting the same reasoning of case b), the thesis is

easily demonstrated.
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3.3.1 Cyclic creep test

In a cyclic creep test a constant pressure is applied while the strain induced on the spheroids

is measured over a period of time and then the stress on the upper plate is removed. Consid-

ering only forces directed along the negativez-axis, it was shown in Proposition 1 (casec) that

Ψp(t) ≥ ϕ(t) and therefore equations (3.27)-(3.28) hold. Obviously, when the upper plate is

lifted-upPappl = 0 in equation (3.28).

Using Proposition 1, scaling times with 3λ and introducing the dimensionless quantities

τ̃ =
2τ
µφs

, µ̃ =
µλφs

ν(1−φs)
, P̃(t) =

Pappl

µφs
,

the system (3.27)-(3.28) can be written in dimensionless form as

{

Ψ̇p =−[g(Ψp,ϕ)− τ̃]+Ψp ,

ϕ̇ = µ̃ [g(Ψp,ϕ)− P̃(t)]ϕ ,

(3.38a)

(3.38b)

whereg(Ψp,ϕ) =
Ψ3

p −ϕ3

Ψ2
p ϕ

. It can be readily noticed thatg is a decreasing function ofϕ for fixed

Ψp and an increasing functions ofΨp for fixed ϕ.

The system (3.38) admits non trivial steady state only ifP̃≤ τ̃, as it is stated in the following

proposition.

Proposition 2. In creep tests

a) if P̃≤ τ̃, thenΨp(t) = 1 andϕ(t)≥ ϕc : g(1,ϕc) =
1
ϕc

−ϕ2
c = P̃ are solutions of the system

(3.38), with initial conditionsΨp(0) = 1 andϕ(0) = 1.

b) if P̃(t)> τ̃ , ∀t, then equations (3.27) and (3.28) admit only the trivial steady state.

Proof. Case a)

If P̃(t) ≤ τ̃ , ∀t, from equations (3.38), beingΨp(0) = 1 andϕ(0) = 1 the right hand side of

(3.38a) is initially null, that meanṡΨp(0) = 0, whereas from (3.38b)̇ϕ(0)< 0. MoreoverΨp = 1
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andϕ ≥ ϕc makes[ · ]+ of (3.38a) equal to 0. Indeed, beingg(1,ϕ) a decreasing function ofϕ,

g(1,ϕ)− τ̃ ≤ g(1,ϕ)− P̃≤ g(1,ϕc)− P̃= 0, (3.39)

which holds for allt ≥ 0.

From (3.38b) it is then clear thatϕ = ϕc andΨp = 1 makesϕ̇ = 0 and thatϕ > ϕc and

Ψp = 1 makesϕ̇ < 0. We will then show thatϕ(t) ≥ ϕc∀t > 0, using the same argument as in

Proposition 1. We definew= ϕ −ϕc and hence

∫ t̃

0
ẇw−dt = µ̃

∫ t̃

0

(

g(1,ϕ)− P̃
)

ϕ w−dt ≥ 0, (3.40)

where we used the fact that whenw− 6= 0, ϕ < ϕc and the parenthesis in the integral is positive.

Therefore

0≤
∫ t̃

0
ẇw−dt =−1

2
w2
−(t̃)≤ 0 ,

thanks to the conditionw(0)≥ 0, i.ew−(0) = 0.

For the arbitrariness of̃t, this means thatϕ(t)≥ ϕc∀t > 0.

Case b)

The stationary condition for equation (3.38a) is reached either if Ψp(t) = 0 or if the expression

in square brackets is negative (i.e. the region above the redline in Fig. 3.1 on the right).

If P̃(t)> τ̃, this second condition corresponding tog(Ψp,ϕ)≤ τ̃, would make the right hand

side of (3.38b) always strictly negative.

Therefore the only possible stationary point for (3.38) isΨp,∞ = 0 , ϕ∞ = 0

In the particular case of constantP̃, the right hand side of (3.38b) vanishes for non nullΨp

only if g(Ψp,ϕ) = P̃ that makes the r.h.s. of (3.38a) vanishing only ifP̃ ≤ τ̃. As it is evident

plotting the vector field corresponding to (3.38), ifP̃ ≤ τ̃ the solution starting fromΨp(0) =

ϕ(0) = 1 will keepΨp = 1 whileϕ will tend toϕc : g(1,ϕc) = P̃ (see Fig. 3.1, left). On the other

hand, ifP̃> τ̃, solutions of (3.38) will tend to the trivial equilibria (Fig. 3.1, right).

Hence in a certain range of stress, i.e. forP̃ ≤ τ̃, or equivalentlyPappl ≤ 2τ, the cellular

aggregate does not undergo an internal reorganization, then Ψp(t) = 1, whereasϕ(t) decreases

until the valueϕc is reached. In this case, if after some time the load is removed, the specimen

will go back to the initial configuration,ϕr = 1, following the classical visco-elastic response,

due to the elastic response of cells and the viscous term of the liquid component (see Fig. 3.2).
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Figure 3.1:Vector field (blue arrows) corresponding to (3.38), ifP̃≤ τ̃ (on the left) andP̃> τ̃ (on the right). The
red curve corresponds tog(Ψp,ϕ) = τ̃ , whereas the green curve tog(Ψp,ϕ) = P̃. It is clear that ifP̃≤ τ̃, ϕ andΨ
will tend to the green curve. On the other hand ifP̃> τ̃, Ψp → 0 andϕ → 0.

0 0.5 1 1.5 2
0.88

0.9

0.92

0.94

0.96

0.98

1

t̃

ϕ

Figure 3.2:Cycle of compressions wheñP< τ̃ is applied and then removed. The simulation is performed setting
the yield stressτ = 0.2PaandPappl = 0.25Pa, according to the yield condition. The cellular volume ratio, φs is set
equal to 0.8, which is consistent with biological observations [149] and the cell-reorganization time isλ = 22s. The
other parameters can be scaled according to the chosenτ (here:µ = 1Pa andν = 20Pa· s). The compression and
release times are both equal to 3/2λ = 33s. The applied stress being under the yield condition, there is no internal
reorganization of bonds (Ψp(t) = 1), therefore when the compression is removed aggregates progressively go back
to the initial configuration,ϕr = 1. The liquid component in the mixture is responsible of the delay introduced in
the recovery dynamics of spheroids when the upper plate is lifted up.
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We observe that if the stress is not constant, but smaller than 2τ ∀t, Ψp(t) = 1 is still a solution

of (3.27).

In order to trigger spheroid internal reorganizationP̃ must be larger thañτ. In this caseΨp

will decrease fromΨp(0) = 1 according to (3.38a), causing a macroscopic remodelling of the

multicellular body. Therefore when the upper plate is removed a plastic deformation of the ag-

gregate can be observed. The internal reorganization rate depends on the intensity of the load

applied to the aggregate, compared to the yield stress (see Fig. 3.3) and, ifP̃(t) > τ̃ ∀t, it con-

tinues until the stationary condition is reached, thenΨp → 0 andϕ → 0. This physically means

that the aggregate is totally squeezed out between the upperand lower plates of the apparatus.

These results are intuitively reasonable and analyticallycorrect, however they need to be verified

with experimental tests, that unfortunately are not present in literature yet. It is important to

observe that standard creep tests used for the measurement of mechanical properties of inert ma-

terial, eventually need to be modified to be suitable for the application to living cell aggregates,

that must be kept in healthy conditions during measurements.
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Figure 3.3:Creep test and release for values ofPappl above the yield condition, i.e.̂P = P̃/τ̃ > 1. The other
parameters are the same specified in Figure 3.2. It is possible to see that, because of the internal reorganization that
occurs within the spheroid under compression (Ψp dynamics), the natural configuration of the aggregate changes
and when the upper plate is removed the multicellular body does not recover its original shape and a macroscopic
deformation can be seen. The process that leads to the plastic deformation of aggregates is faster asPappl increases
and, independently ofPappl, Ψp → 0 andϕ → 0, which physically means the rupture of the aggregate.
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3.3.2 Cyclic force-controlled test

In the previous section, a description of creep tests, i.e.,mechanical experiments at constant

stress, is proposed. The assumption of constant stress leads to the total disruption of the ag-

gregate when the imposed pressure is above the threshold that induces the internal reorganiza-

tion. However, in many cases, experimental machines works under controlled force conditions.

Therefore in this case, the stress is no longer constant, since the transverse section of the sample

increases as the aggregate is compressed and therefore the constant force is distributed over a

larger area.

In this Section, we aim to study the influence of the increasing transverse section on the ca-

pability of aggregates to reorganize in order to bear the external load. We assume a cylindrical

sample of soft biological material under a homogeneous compressive constant force directed

along thez-axis,Fappl(t). Some properties of the solution are proved and numerical results are

presented for a cycle of constant compressive forces and subsequent releases, making a compar-

ison with the results obtained in the previous section for a creep test under constant stress.

We remark that eq. (3.27)-(3.28) continue to hold, definingPappl(t) = Fappl(t)/Sappl(t) where

Sappl(t) is the surface on which the load is applied. In order to define the external applied stress

we need to do some hypothesis on the geometry of the biological sample. In this case we as-

sume a cylindrical sample of soft biological material, thus, due to the definition ofF, we have

Pappl(t) = Fappl(t)ψ(t)/π .

As done before, we use Proposition 1 and we scale times with 3λ . Introducing the new dimen-

sionless quantities

F̃(t) =
Fappl

πµφs
,

and the functionh(Ψp,ϕ) =
Ψ3

p −ϕ3

Ψ2
p ϕ2 , the system (3.27)-(3.28) can be written in dimensionless

form as
{

Ψ̇p =−[g(Ψp,ϕ)− τ̃]+Ψp ,

ϕ̇ = µ̃ [h(Ψp,ϕ)− F̃(t)]ϕ2 ,

(3.41a)

(3.41b)

where, as before,g(Ψp,ϕ) =
Ψ3

p −ϕ3

Ψ2
p ϕ

= h(Ψp,ϕ)ϕ . It can be readily noticed that bothg andh

are decreasing functions ofϕ for fixedΨp and increasing functions ofΨp for fixed ϕ. We recall
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thatϕy(Ψp,0) stands for the unique value that invertsg= τ̃ for fixedΨp =Ψp,0, i.e., such that

g(Ψp,0,ϕy(Ψp,0)) =
Ψ3

p,0−ϕ3
y (Ψp,0)

Ψ2
p,0ϕy(Ψp,0)

= τ̃ .

Similarly, we define byϕc,F(Ψp,0) the unique value that invertsh = FM = maxt{F̃(t)} with

respect toϕ for fixedΨp =Ψp,0, i.e., such that

h(Ψp,0,ϕc,F(Ψp,0)) =
Ψ3

p,0−ϕ3
c,F(Ψp,0)

Ψ2
p,0ϕ2

c,F(Ψp,0)
= FM , (3.42)

where of course we assume that the applied force is bounded.

We first derive, also in this case, the yield condition that trigger the internal reorganization of

cellular aggregates.

Proposition 3. For any givenΨp,0

ϕy(Ψp,0)≤ ϕc,F(Ψp,0) ⇐⇒ FM ≤ τ̃
ϕy(Ψp,0)

. (3.43)

If FM >
τ̃

ϕy(1)
the unique solution of the system

{

g(Ψp,ϕ) = τ̃ ,
h(Ψp,ϕ) = FM ,

(3.44)

in (0,1]2 is ϕ = τ̃/FM andΨp such that

h

(

Ψp,
τ̃

FM

)

= FM . (3.45)

Proof. Sinceh is a decreasing function ofϕ, if ϕy(Ψp,0)≤ ϕc,F(Ψp,0),

FM = h(Ψp,0,ϕc,F(Ψp,0))≤ h(Ψp,0,ϕy(Ψp,0)) =
g(Ψp,0,ϕy(Ψp,0))

ϕy(Ψp,0)
=

τ̃
ϕy(Ψp,0)

.
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Viceversa, ifFM ≤ τ̃
ϕy(Ψp,0)

, we have

h(Ψp,0,ϕy(Ψp,0)) =
g(Ψp,0,ϕy(Ψp,0))

ϕy(Ψp,0)
=

τ̃
ϕy(Ψp,0)

≥ FM = h(Ψp,0,ϕc,F(Ψp,0))

and because of the fact thath is a decreasing function ofϕ, we can conclude thatϕy(Ψp,0) ≤ ϕc,F(Ψp,0).

On the other hand, for smallϕ andΨp it is possible to prove that the curveh(Ψp,ϕ) = FM behaves

like

ϕ =Ψp−
FM

3
Ψ2

p ,

while g(Ψp,ϕ) = τ̃ behaves like

ϕ = αΨp , with α < 1, solution of α3+ τ̃α −1= 0.

This means that in the square(0,1]2 of the plane(Ψp,ϕ), for small Ψp, the implicit curve

g(Ψp,ϕ) = τ̃ always starts belowh(Ψp,ϕ) = FM and ends (atΨp = 1) below or above accord-

ing to the criterium (3.43) (see Fig. 3.4). Hence, ifFM >
τ̃

ϕy(1)
there is at least a solution of

(3.44). Uniqueness can be readily realized by observing that g= hϕ and thus, substituting in the

equations (3.41) the valueϕ = τ̃/FM, Ψp is given by the solution of

h

(

Ψp,
τ̃

FM

)

= FM ,

which is unique due to the monotonicity ofh.

We first consider a specimen subject to a controlled constantforceF(t) = FM. We will then

generalize the results for the case in which a bounded force is imposed to the specimen and

the corresponding deformation is recorded upon time. Depending on the imposed load, internal

reorganization can be triggered during cell aggregate deformation (see the previous proposition).

We observe that initially in the experimentsϕ(0) =Ψp(0) = 1. However, we will generalize the

following statement to anyΨp(0) =Ψp,0 ≥ ϕ0, because the result will be useful for the discussion

after the Corollary.

Proposition 4. If ϕ(0) = ϕ0 > ϕc,F(Ψp,0) andΨp(0) = Ψp,0 ≥ ϕ0, applying a constant force

F̃(t) = FM ≤ τ̃/ϕy(Ψp,0),∀t, thenΨp(t) =Ψp,0, ∀t and the solution of eq. (3.38b), is such that

ϕ(t)≥ ϕc,F(Ψp,0)≥ ϕy(Ψp,0).

Proof. First of all, beingFM ≤ τ̃/ϕy(Ψp,0), from (3.43), we haveϕ0 > ϕc,F(Ψp,0)≥ ϕy(Ψp,0).
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Figure 3.4:Vector field (blue arrows) corresponding to (3.41), ifFM ≤ τ̃/ϕy(1) (on the left) andFM > τ̃/ϕy(1)
(on the right). The red curve corresponds tog(Ψp,ϕ) = τ̃ , whereas the green curve toh(Ψp,ϕ) = FM. If Fappl(t)≤
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starting fromϕ =Ψp = 1 will tend to the intersection of the two curves (square green mark), which represents the
solution of the system (3.41). The green curve delimiting region IV is thicker because is composed of non-isolated
stationary points.

We have

h(Ψp,0,ϕ0)− F̃(0)< h(Ψp,0,ϕc,F(Ψp,0))−FM = 0,

and g(Ψp,0,ϕ0)− τ̃ < g(Ψp,0,ϕy(Ψp,0))− τ̃ = 0,

because bothgandhare decreasing functions ofϕ for fixedΨp. ThenΨ̇p(0)= 0, whileϕ initially

decreases. ActuallyΨp(t) =Ψp,0 until ϕ eventually reachesϕy(Ψp,0). If this value is overcome,

then the material yields andΨp can only decrease (see region II in Fig. 3.4, right panel).

However, we will now prove thatϕ(t) does not decrease belowϕc,F(Ψp,0) > ϕy(Ψp,0), so the

material never yields andΨp(t) =Ψp,0, ∀t.

To demonstrate thatϕ(t) ≥ ϕc,F(Ψp,0) ,∀t > 0, we definew= ϕ −ϕc,F(Ψp,0) and recalling that

ϕ0 > ϕc,F(Ψp,0), so thatw−(0) = 0, we have

0≥−w2
−(t̃)
2

=

∫ t̃

0
ẇw−dt =

∫ t̃

0
µ̃
[

h(Ψp,0,ϕ)−h(Ψp,0,ϕc,F(Ψp,0))
]

ϕ2w−dt .

Then the r.h.s. either vanishes ifϕ > ϕc,F(Ψp,0) (becausew> 0), or is positive ifϕ < ϕc,F(Ψp,0),

becauseh is a decreasing function ofϕ for fixedΨp. Hence, because of the arbitrariness oft̃,
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w−(t) = 0∀t and thus

ϕ(t)≥ ϕc,F(Ψp,0)≥ ϕy(Ψp,0) , ∀t .

The condition on the constancy ofF̃(t) can be relaxed, if we assume thatΨp,0 = ϕ0 = 1, as

stated in the following Corollary.

Corollary 5. If ϕ(0) = 1 andΨp,0 = 1 andF̃(t)≤ τ̃/ϕy(1), thenΨp(t) = 1, ∀t and the solution

of eq. (3.38b) is such thatϕ(t)≥ ϕc,F(1)≥ ϕy(1).

Proposition 4 implies, for instance, that in the case of pre-stressed aggregates that have al-

ready deformed plastically, during cyclic compression tests at constant load, beingΨp,0 ≥ ϕ0

at the beginning of every interval of compression (see Proposition 1), then remodelling is not

triggered ifFM ≤ τ̃/ϕy(Ψp,0) andϕ(t)≥ ϕc,F(Ψp,0)≥ ϕy(Ψp,0) ,∀t .

The corollary 5 states that if an undeformed aggregate is subjected to compression with bounded

forceF(t), with maximum below the critical valuẽτ/ϕy(1), then the deformation of the aggre-

gate occurs without any plastic effect andϕ(t) ≥ ϕc,F(1) ≥ ϕy(1). This result can be applied

to the description of a cyclic creep test and release in whichthe force is maintained constant,

F(t) = FM, during compression and it is equal to zero during releases.Therefore, when a con-

stant external forceFM is periodically applied and then removed, ifFM ≤ τ̃/ϕy(1), no reorganiza-

tion occurs and the unloaded specimen will go back to the initial configuration,ϕ = 1, following

the classical visco-elastic response, due to the elastic response of cells and the viscous term of

the liquid component (see Fig. 3.5, top curve).

On the other hand, as we shall see, when a constant forceFM > τ̃/ϕy(1) is applied, trajectories

enter in the region II identified in Fig. 3.4, right panel, andthe natural configuration of the ag-

gregate changes, so that the solution tends to the intersection between the two curves in Fig. 3.4,

right panel. In this case, when the upper plate is removed themulticellular body does not recover

its original shape and a macroscopic deformation can be seen(lower curves in Fig. 3.5, right

panel). The internal reorganization rate depends on the intensity of the load applied to the aggre-

gate, compared to the yield stress and, in particular, it is faster and more intense asFM increases,

as shown in Fig. 3.5, left panel. In particular we demonstrate the following proposition.

Proposition 6. If FM > τ̃/ϕy(1), solutions of (3.41) starting fromϕ(0) >
τ̃

FM
andΨp,0 > ϕ(0),

are such thatϕ(t) ∈
[

τ̃
FM

,1

]

andΨp(t) ∈ [Ψp,∞,1], whereΨp,∞ is the solution of (3.45).
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Proof. To prove the thesis we proceed by absurd assuming that there exists a firstt̄ with

Ψp(t̄) =Ψp,∞ , Ψ̇p(t̄)< 0, and ϕ(t̄)≥ τ̃
FM

,

or ϕ(t̄) =
τ̃

FM
, ϕ̇(t̄)< 0, and Ψp(t̄)>Ψp,∞ .

In the former case, sinceϕy(Ψp,∞) = ϕc,F(Ψp,∞) =
τ̃

FM
, the same reasoning of the previous

proposition can be used. If the lineΨp =Ψp,∞ is reached, then the solution will always stay there.

In fact,

g(Ψp(t̄),ϕ(t̄)) = g(Ψp,∞,ϕ(t̄))≤ g

(

Ψp,∞,
τ̃

FM

)

= τ̃ ,

which implies that[g(Ψp(t̄),ϕ(t̄))− τ̃]+ = 0 and thereforėΨp = 0, against what assumed.

In the latter case,

h(Ψp(t̄),ϕ(t̄)) = h

(

Ψp(t̄),
τ̃

FM

)

> h

(

Ψp,∞,
τ̃

FM

)

= FM ≥ F̃(t) ,

which implies thatϕ̇ > 0, against what assumed.

Corollary 7. If F̃(t) = FM, being the r.h.s of (3.41) continuous and locally Lipschitzfor ϕ and

Ψp belonging to the compact invariant set

[

τ̃
FM

,1

]

× [Ψp,∞,1], then solutions of (3.41) will tends

to the stationary point

(

τ̃
FM

,Ψp,∞

)

, whereΨp,∞ is the solution of (3.45).

The results demonstrated in Proposition 5 and 7 are also evident plotting the vector field cor-

responding to (3.41). Indeed, if̃F ≤ τ̃/ϕy (see Fig. 3.4, left panel),ϕ andΨp will tend to the

green curve, which corresponds to the conditionh(Ψp,ϕ) = FM. Then the solutions of the system

(3.41) starting fromϕ(0) = 1 andΨp(0) = 1, will keepΨp = 1 while ϕ will tend to ϕc,F(1).

On the other hand ifFM > τ̃/ϕy(1) (see Fig. 3.4, right panel),ϕ andΨp will tend to the the

intersection of the green and red curve, which represents the solution of the system (3.44).

We remark that the conditionFM > τ̃/ϕy(1) is coherent with the one found in the previous sec-

tion for creep tests at constant stress. Indeed, defining theyield stressP∗
appl = FMϕy/π , the creep

test yield condition becomesP∗
appl = 2τ.

However, in this case also the steady state deformation and the maximum internal reorganization

that can be induced depend on the intensity of imposed loads and do not necessary tend to the

trivial state, i.e.,Ψp → 0 andϕ → 0, if the compression is maintained, in contrast with what
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shown in Fig. 3.3. This means that, as remodelling takes place, cellular aggregates reorganize

(i.e.,Ψp decreases) in order to bear the load. Moreover beingϕ decreasing, the external stress

Pappl generated by a constant force, decreases in time.
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Figure 3.5:Cycle of compressions, when a constant external forceFM is periodically applied and then removed:
reorganization (on the left) and deformation (on the right). The simulations are performed settingτ̃ = 0.625 and
µ̃ = 1.6. The compression and release times are both equal tot̃c = t̃r = 3/2. From top to bottom the applied force
increases.

3.3.3 Cyclic deformation test

In the compression experiments, like those performed in [52, 53, 54], a fixed deformation is ap-

plied to cellular spheroids, using a thermostated parallelplate apparatus, immersed in a chamber,

filled with pre-warmed tissue culture medium. The specimensused in [52, 53, 54] were obtained

from 5 to 6 day old chick embryos, whose cells were dissociated in a solution of trypsin and then

placed in a tissue culture medium, to allow them to reorganize. When cultured for about a day,

in a 37◦C shaker bath, these multicellular aggregates adopted an almost perfect spherical shape,

with a diameter ranging from 200µm to 500µm.

Recording the force exerted by aggregates upon the upper compression plate, it is possible to ob-

serve that living structures undergoing constant deformation, are able to relax the internal stress

until an asymptotic value is reached [52, 54].

A variation of this experiment is the cyclic deformation test, like those performed in [52, 53],

in which multicellular bodies are forced to periodic compressions at controlled deformation and
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3 – Uniaxial compression of spheroids

the compressive force is briefly interrupted at intervals during the approach to shape equilib-

rium. When compression is interrupted early in this process(as compared to the reorganization

time, λ ), aggregates can be observed to almost retrieve their initial shape, over the course of a

few seconds, whereas after some releases from compressions, a macroscopic deformation can be

measured. The process is reiterated until the attainment ofan asymptotic behavior, described in

the following.

The force relaxation curve and the presence of a plastic deformation are consistent with the

visco-elastic model combined with the existence of a yield stress, described in [115], where the

experimental stress-relaxation curves are reproduced qualitatively (a direct comparison is not

possible due to the lack of some fundamental data as the imposed deformation or the contact

area where the force is applied). Indeed the internal reorganization (due to the presence ofτ),

leads to the relaxation of a part of the stress,Pappl(t) to the yield value,Pappl,∞ = 2τ, regardless

of the magnitude of the applied strainϕ0, as long asϕ0 < ϕy(1), whereϕy(1) is defined by

(3.26). Indeed (3.26) determines the critical value ofϕ that makes the square bracket in (3.25)

positive and thus it switches on the evolution ofΨp. For ϕ ∈ (0,1], beingg(Ψp,ϕ) a positive

and decreasing function ofϕ, only values ofϕ sufficiently small, so that the yield condition is

satisfied, are able to trigger the internal reorganization inside spheroids.

For such values ofϕ0, if the deformation is released, then the spheroid will not recover its initial

shape, because in the meantime the natural configuration haschanged. As pointed out in the

motivation, the model proposed in [115] is not able to reproduce the stress-release dynamic,

predicting an instantaneous shape recovery: if at any instant t1 the compression is released,

thenΨp(t) =Ψp(t1), ∀t ≥ t1 andϕ will suddenly adjust to the valueϕ(t) =Ψp(t1), ∀t ≥ t1 so

that Pappl = 0 (see top curve in Fig. 3.6). This result does not couple wellwith biological

experiments [52, 53, 54], where aggregates progressively expand in height trying to recover their

previous shapes, in a process that takes few seconds (e.g. inthe specific case of 5-day-old chick

embryonic liver cells, 11 s were allowed for this) [52].

The introduction of the viscous component in (3.2), due to the aqueous constituents of ag-

gregates is able to take into account of this phenomenon. To show the behavior of the model

described in Section 3.2.2 and in order to compare the results obtained with mechanical data in

[52], we simulate cycles of compressions at constant deformation.

We know thatΨp(t)≥ ϕ(t) during the entire process thanks to Proposition 1 (caseb). Hence dur-

ing the compression stage, the deformation is imposed and equation (3.27) holds, withϕ(t)= ϕ0,

whereas when the upper plate is removed, equation (3.27) combined with (3.28) and the condi-

tion Pappl = 0 (stress-free evolution) can describe the shape recovery stage.
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Figure 3.6:Shape dynamics of cell aggregates when the imposed deformation (ϕ0 = 0.7), above the yield value,
is released at a given timet2 (heret2 = λ/2, whereλ = 22s). All the simulations are performed with the fixed value
of τ = 0.25Pa andφs = 0.8, whereasµ = 1Pa. The blue curves represent the model with no viscous effect,ν = 0
corresponding to the model in [115]. It is possible to observe the influence of the viscous parameter,ν̂ = ν/τ , on
the internal reorganization and shape recovery dynamics. According to the experiments in [52] the shape recovery
requires tens of seconds, which can be reproduced in our simulations (see magenta curve) settingν̂ = 40s (i.e.
ν = 10Pa·s).

The results of the integration of these two systems is plotted in Fig. 3.6, where it is clear that the

shape recovery is not instantaneous and its dynamics is controlled by the viscous coefficient: as

ν increases the shape recovery will require more time.

Indeed the characteristic time for the shape recovery is given byν/(µφs). Moreover, the body

will not recover the original height,Z, but it presents some plastic deformation. Keeping the me-

chanical properties of the spheroid fixed, the amplitude of the remodelling and hence the shape

recovery depend on the time under compression. In Fig. 3.7, it is possible to see that in our

simulations, with a reorganization time of 22 seconds, a compression of 1 second will be recov-

ered up to 98% while a 10 second compression up to 95%. These results are consistent with

biological observations, in fact in Figure 4 of [54] the spheroid aggregate compressed for few

seconds almost recovers the original shape, showing a little flattening of the top.

It is also important to remark that even for very long compression times,t1 ≫ λ , the body will

still recover an amount of the deformation, corresponding to the elastic component. Indeed,

keeping the compression for times much larger than the reorganization time, spheroids will still

experience an elastic recovery that can be considerably smaller (almost 75% in our case, see the

leftmost curve in Fig. 3.7), consistently with Figure 5 of [54]. In other words, aggregates will

not keep the imposed deformation,ϕ0 even if the upper plate is removed after a very long time.
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3 – Uniaxial compression of spheroids

It is also interesting to see that during the stress-free evolution of spheroids, the internal reorgani-

zation continues following equation (3.27) until the stationary situation is reached, corresponding

to the new natural configuration of the remodelled body.
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Figure 3.7:Uniaxial compression test for different values of compression time, t1 (measured in seconds). The
viscosity is chosen in order to reach the stationary shape ina period of 11 seconds (i.e.ν = 10Pa·s, see Fig. 3.6).
The shape recovery gets smaller and smaller as the compression time increases, approaching a limit value.

Turning to cycles of compressions at constant deformation and releases, as in [52], a typical

result for a twenty-cycle compression/release test is shown in Fig. 3.8. It is possible to see

that, at the end of the simulation, the aggregate reaches themaximum of internal reorganization

corresponding to the imposed deformationϕ0 and therefore an asymptotic behavior in the shape

recovery is attained. An interesting parameter in the modelis µ, which affect the recovery

dynamics, along withν: for small values of this parameter, we have no internal reorganization,

becauseϕ0 > ϕy(1), with ϕy(1) satisfying the yield condition (3.26) and therefore we haveno

changes in aggregate shapes; on the other hand, asµ increases, the plastic reorganization of

aggregates is more pronounced (see Fig. 3.9).

In [52] measurements are presented in terms of height/widthratio over time under compres-

sion. We try to report the results of our simulations in a similar way, observing that in our model
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Figure 3.8:Spheroid behavior under a cycle of 20 compressions at constant deformation and subsequent stress
releases. The figures report the internal reorganizationΨp (left) and the deformation gradient along thez-axis, ϕ
(right). The simulation is performed letting the aggregatereorganize under compression for a timetc = λ/4 and
then remove the upper plate for 11s (corresponding toλ/2).
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Figure 3.9:Influence ofµ̂ = µφs/τ on spheroid behavior under a compression cycle test (n= 6). Aggregates are
compressed fortc = λ/2 and are let free to expand fortr = 2λ (in order to allow the fulfilment of shape recovery).
For the imposed deformation,ϕ0 = 0.7, value ofµ̂ < 2.1309 are not able to induce the internal reorganization of
cells, becauseϕ0 > ϕy(1). ThereforeΨp = 1 (blue curve) and when the compression is released the multicellular
body comes back to the original shape in few seconds.

this quantity is represented byϕ3/2(t), from equation (3.14). The results are presented in Fig.

3.10 for different values of the parameterµ and in Fig. 3.11 for different values of reorganization

time (keepingµ fixed). The best fit is obtained for a reorganization time equal to 66s, whereas
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Figure 3.10:Height/width ratio chart for a cubic multicellular aggregate. The height and width are computed
through equation (3.14) and therefore the ratioh/ℓ is represented by the quantityϕ3/2 that is plotted for different
value ofµ̂ = µφs/τ, considering the same imposed deformationϕ0 = 0.7 andλ = 50s. Experimental data obtained
by Forgacs et al. [52] are marked with squares.

the best-fitting values ofµ depends on the imposed deformation. Indeed it is possible toobserve

that the equilibrium of (3.22) and (3.25) is reached whenϕ(t) = Ψp(t) = Ψp,∞, satisfying the

condition indicated in the following proposition.

Proposition 8. During the cyclic deformation test at constant deformation, ϕ0 >ϕy(1), such that

ϕy(1) satisfies the yield condition (3.26),Ψp is non increasing, tending to the asymptotic value

Ψp,∞ satisfying

g(Ψp,∞,ϕ0) = τ̃ (3.46)

Asymptotically,ϕ(t) ∈ [ϕ0,Ψp,∞).

Proof. During each compression phase at constant deformation above the yield condition, equa-

tion (3.27) states thatΨp is non increasing and thaṫΨp = 0 wheng(Ψp,∞,ϕ0) = τ̃, that corre-

sponds, recalling equation (3.21), toPappl = 2τ.

Considering the system (3.27) and (3.28), with the limit conditionΨp(t1) =Ψp,∞ andϕ(t1) =
ϕ0, we have thatΨ̇p(t1) = 0 whereasϕ̇(t1) > 0. Actually, beingϕ(t)≤Ψp ∀t ≥ t1 (Proposition
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Figure 3.11:Height/width ratio chart for a cubic multicellular aggregate, for different value ofλ (s). The param-
eterµ is fixed, in order to obtain the right asymptotic value (see Fig. 3.10), whereasη changes. The best fit with
experimental data (square mark) is obtained forλ = 66s.

1), ϕ̇(t)> 0 and thenϕ increases until the limit value ofϕ =Ψp is reached, which corresponds

to the equilibrium of (3.28). From the physical point of viewthis means that the aggregate

expands when the compressive force is removed. At the same time, asϕ(t) increases,g(Ψp,ϕ)
decreases, so that square brackets in (3.27) is still equal to zero and thereforėΨp(t) = 0∀t ≥ t1,

thenΨp(t) =Ψp,∞.

Thus at the stationary condition we haveϕ∞ =Ψp,∞ : g(Ψp,∞,ϕ0) = τ̃.

The physical interpretation of the result presented in Proposition 8 is straightforward. In

the stress release process, the deformation gradient between the deformed configuration (where

ϕ(t) = ϕ0) and the final configuration (whereϕ(t) = ϕ∞) is

Fn = diag

{√

ϕ0

ϕ∞
,

√

ϕ0

ϕ∞
,
ϕ∞
ϕ0

}

then

Bn = diag

{

ϕ0

ϕ∞
,
ϕ0

ϕ∞
,
ϕ2

∞
ϕ2

0

}

.
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Figure 3.12:Height/width ratio chart for a cubic multicellular aggregate, for different value of initial deformation
ϕ0. To obtain the best fit with experimental data (squares) [52], µ is computed according to equation (3.46).

If we consider the asymptotic stateΨp = ϕ =Ψp,∞ as the reference configuration, a deforma-

tion
ϕ0

ϕ∞
will not trigger further reorganization and the energy is elastically stored, as

Tm =−ΣI+µφsBn = diag{0,0,2τ} ,

where we consider that, when the remodelling inside the spheroid has attained the maximum, the

internal stress is equal to 2τ.

We obtain

Σ = µφs
ϕ0

ϕ∞
, (3.47)

−ϕ0

ϕ∞
+

ϕ2
∞

ϕ2
0

=
2τ
µφs

. (3.48)

Taking into account thatϕ∞ =Ψp,∞ this is the same result we have obtained only with analytical

considerations.

Thereforeϕ3/2
∞ is the asymptotic value in Fig. 3.10 and 3.11, and it is a function of ϕ0,τ,µ,φs.
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Thanks to this result, it is possible to find for eachϕ0 a value ofµ (see Fig. 3.12), fitting experi-

mental data from [52], where the imposed deformation is unfortunately not known. As shown in

Fig. 3.12, knowing this datum it would be possible to get the best fitting value ofµ̂ =
µφs

τ
.

3.4 Discussion

The 3D elasto-visco-plastic model provided here is based onthe existence of a yield criterion,

above which cells reorganize.

Indeed, the cyclic deformation test presented in [52] cannot be described only resorting on a

surface tension model, while the model characterized by a yield condition, as the one presented

here, is able to qualitatively reproduce the deformation dynamic observed during biological ex-

periments.

With the introduction of the liquid component, we have improved the model presented in [115],

to take into account the viscous component of cell aggregates. Though the constitutive model is

kept as simple as possible, we have shown how it can reproducecompression tests performed by

[52, 53, 54] and how it can explain creeping phenomena.

In particular, results presented in Section 3.3.1 refer to an experiment in which the external stress

is preserved constant in time and it is always above the threshold that induces the ruptures of

bonds. The internal reorganization continues until all bonds are totally broken, i.e., the aggre-

gates is disrupted. On the other hand, the results presentedin section 3.3.2, highlight that, when

the force (and not the stress) is maintained constant, even if the load is initially able to trigger

the rupture of adhesive bonds, cells re-allocate in order toincrease the transverse section and to

reach a new internal configuration that does not undergo reorganization under the same imposed

load.

Unfortunately, in both cases only a partial comparison withbiological experiment is possible.

In Section 3.3.3 we show that, thanks to the the introductionof the viscous term, the model is

able to reproduce aggregate release dynamics observed during biological experiments.

Of course, the model can be improved in several directions inorder to reproduce more closely

the behavior of cell aggregates. An extension can be represented by the inclusion of more cell

re-arrangement times, that can be related, for instance, tothe detachment of different adhesion

proteins inside the cell membrane or to the response occurring inside the cell itself with the rear-

rangement of the actin cytoskeleton. The introduction of more relaxation times would certainly

lead to a better understanding of the mechanics and a better fit of experimental data. Indeed in
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the experiments in [52] it is evident the existence of at least two relaxation times in the cellular

matter (one of the order of few seconds and the other of the order of tens of seconds). More-

over eq. (3.10) is based on empirical observations and it does not take into account the micro-

scopic mechanisms that leads to the rupture of bonds betweencells. A more detailed description

of the reorganization mechanism should incorporate information deriving from the subcellular

scale. Furthermore, more realistic 2D and 3D simulations ofaggregates deformation have to be

performed, in order to obtain a more precise calculation of the height/width ratio, which is of

relevant importance for comparing computational data to experimental ones.
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Chapter 4

Growth and remodelling of cancer

spheroids

In this Chapter, we present a theoretical and numerical study of growth and remodelling of a

cancer spheroid, surrounded by healthy tissue, considering both the cellular constituent and the

fluid phase. In order to consider separately the contribution of pure growth from the one due

to pure remodelling, a new virtual configuration is added, the “grown configuration". Thus, the

anelastic part of the deformationFa, introduced in Chapter 1, Section 1.2 is further decomposed

in Fg, which describes deformations due to growth, andFp, which refers to internal reorganiza-

tion. Thus, by means of the multiplicative decomposition, we haveFa = FpFg.

Section 4.1 is devoted to the presentation of the biologicalproblem and a brief review of

some existing papers on spheroid growth is provided. We do not claim to be exhaustive, because

the literature on the growth of cellular aggregates is widespread, so that we will focus only on

those contributions that were fundamental for this work. Balance laws and constitutive equations

are summarized in Section 4.2.1. For more details on the derivation of equations, please refer to

Chapter 1. Equations are then set in spherical coordinates in Section 4.2.2 and some details on the

dimensionless formulation of the problem and on the discretization are discussed in Section 4.2.3

and 4.2.4, respectively. Results are presented in Section 4.3, considering different situations. As

a first step, the effect of the surrounding tissue is modelledas a known stress exerted at the outer

boundary of the spheroid: both the case of quiescent aggregates undergoing pure remodelling

(Section 4.3.1) and the case of growing aggregates, with andwithout remodelling (Section 4.3.2)

are considered. For what concerns the growth term, we first consider that cell proliferation

depends on the volume fraction only (4.3.2.1). Then, we introduce the diffusion of nutrients
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inside the cellular structure, so that cell growth is limited by the availability of these chemical

substances (Section 4.3.2.2). Finally, in (Section 4.3.3)we model the surrounding tissue as an

ensemble of cells in which growth is balanced by physiological death, i.e., the net growth is equal

to zero.

4.1 Motivations

The formulation of a mathematical model able to simulate theprocess of cell growth in vitro and

in vivo is of great interest both from the biological and the mathematical point of view. Indeed

modelling the proliferation of tumors has the potential of shedding light on the biological mech-

anisms involved and on their interactions, becoming a fundamental tool in cancer research.

From the mathematical point of view, due to the high complexity of living structures, this prob-

lem is a really challenging task, that has risen more and moreattention in the mathematical com-

munity. However, the attempt to give a unified description oftumor progression is still hopeless,

both because there are several tumors with different originand characteristics and because there

are many concurrent causes on tumor development and evolution [12].

Solid tumours develop initially as a single mass of cells, that proliferate more rapidly than the

healthy cells around them. Tumors are known to progress through two distinct phases of growth

[50, 51]:

• the avascular phase, so called because it is not associated with the formation of new blood

vessels;

• the vascular phase, which sets up with tumor ability to induce new blood vessels from

the surrounding tissue, that sprout towards the cancer cells, surround the tumor mass and

gradually penetrate into it, providing an adequate blood supply.

The very early stages of tumour growth are rarely seen clinically because of the small size of the

cell masses and the absence of symptoms. However, the initial avascular growth phase can be

easily studied in vitro, by culturing cancer cells in the form of 3D multicellular spheroids in a

liquid medium containing appropriate nutrients [41, 106].This assay, introduced by Sutherland

and coworkers in the early 1970s [140, 141], has been used extensively to study properties of

tumor spheroids, to investigate subsequent stages of tumour progression, and to predict the re-

sponse to therapeutic treatments (see [78, 95] for reviews). This in vitro multicellular system can

be of great value in understanding the progression of tumors, because it possess growth kinetics

which are very similar to the one shown by tumors in vivo.
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Multicellular spheroids have a well-established characteristic structure: tipically the avascular

mass grows up to several millimetres in diameter [30, 135], then, cell towards the centre, being

deprived of vital nutrients, die forming the central necrotic core [69]. Proliferative cells can be

found in a thin layer (a few hundredµm thick) at the outer boundary of the tumor mass. Between

these regions there is a layer of quiescent cells, which are not dividing but are alive, and can begin

dividing again if environmental conditions change. At the same time, a portion of the quiescent

cells can be recruited by the proliferative ring or they can undergo apoptosis, i.e., programmed

death, increasing the size of the necrotic region. The reason for cells in a multicellular spheroid

becoming quiescent and then undergoing necrosis has been studied extensively, but there is still

no definitive answer [135]. Levels of oxygen and glucose playan important role, but several

other factors can be involved (e.g. growth factors, reducedmitochondrial function,...).

From the biological point of view, the study of multicellular spheroid is well set, and many

experimental data on the internal architecture of spheroids and on the distribution of nutrients

[41, 56, 57, 75, 142, 158] are available in literature. However, the introduction of this huge

amount of data in mathematical modelling is still missing.

Indeed, even though mathematical modelling of avascular tumour growth has a long history,

dating back to the middle ’50s [146], a reliable complete model able to predict the growth of

multicellular spheroids in vivo is still needed.

The description of solid tumors as a multiphasic mixtures date back to the late-1990s [113, 114].

In the last years several multiphase models have been developed and applied with success to

describe tumor growth [2, 22, 23, 24, 25, 31, 55]. For a more detailed review of mathematical

modelling of solid tumor growth, refer to [11, 18, 68, 103].

We formulate our model using the tools provided by mixture theory. Indeed, as we saw in

Chapter 1, Section 1.2, in a first approximation, one can say that cells, forming a compact tu-

mor, live in a watery environment full of proteins, including nutrients, that cells need to survive

and duplicate, and chemical factors, in particular chemotactic factor, growth promoting and in-

hibitory factors, which trigger sub-cellular chemical pathways determining the behavior of cells

[12].

Therefore, we study the growth and remodelling of a spheroid, modelled as a porous medium

composed of a “solid" fraction,φs, representing cells, and a liquid phase,φℓ, representing the

interstitial fluid. We assume that the saturation conditionfor the aggregate isφs+ φℓ = φmax,

whereφmax is a given constant.

Then, we adopt the theory for materials with evolving natural configurations (see Chapter 1,
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Section 1.2), in order to distinguish the plastic componentof the deformation, from the elastic

response of the material to stresses and strains. The plastic component refers both to growth and

to the internal reorganization of cells, that are modelled separately. Therefore, we consider the

deformation gradient,F, as composed of three parts:

• the first one related to pure growth/death (therefore accompanied with cell mass variation),

• the second one due to internal rearrangement of cells

• the third one due to stress-induced deformation

Growth and remodelling are responsible of the plastic deformation of the tissue. Elastic defor-

mations and internal reorganization are assumed to occur without changes of mass.

These considerations leads to the introduction of one more virtual configuration, betweenBr

andBt , besides the “natural state"Bn (introduced in Chapter 1, Section 1.2 and exploited in

Chapter 2 and 3): the “grown configuration",Bg that represents cells that have undergone pure

growth, without undergoing either remodelling or stress-induced deformation (see Fig. 4.1).

Therefore tensorFg represents the growth of the material, mapping vectors attached toBr into

vectors attached toBg, whereas the tensorFp is a mapping from the tangent space related to the

grown configurationBg onto the tangent space related to the relaxed configurationBn and thus it

represents anelastic deformations due to remodelling. Finally Fn, which gives the evolution from

the natural configuration to the actual state, refers to the elastic component of the deformation,

as in Chapter 2 and 3. Hence,

F= FnFpFg . (4.1)

The variations of volume of the solid phase due to the deformation when no growth and re-

modelling take place is denoted byJn = det(Fn), whereas the volume increase due to growth

is represented byJg = det(Fg). We assume that deformations due to remodelling takes place,

without changes in volume, i.e.Jp = det(Fp) = 1. Thus, the multiplicative decomposition ofF

impliesJ = JnJpJg = JnJg.

The model presented follows the work done by Ambrosi and Mollica [1, 3], in which the

response of tumor spheroids undergoing growth is studied, and by Preziosi and Ambrosi [7, 115]

in which the role of remodelling in tumor response is introduced. In [1, 3], spheroids are con-

sidered as a monophasic elastic material, undergoing growth depending on the external loading

and the availability of nutrients, without considering therole of remodelling. On the other hand
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FnFg

F

Fp

Br Bt

Bg Bn

Reference configuration Current configuration

Natural configurationGrown configuration

Figure 4.1:Diagram of the states from the original unstressed configuration Br to the current configurationBt ,
in the framework of multiple natural configurations.Fn identifies the deformation without anelastic deformations,
Fp describes the internal reorganization of cells andFg the growth of the aggregate.

in [115] a remodelling equation is introduced, but the process of growth inside spheroidal aggre-

gates is not exploited. In [7] a similar model, with different remodelling equation, is presented

and applied to the description of tumor growth inside cylindrical duct (with rigid wall). More-

over, in these works the presence of the surrounding host tissue and the diffusion and transport of

nutrients are not exploited. Nutrient availability controls the duplication of cells and its depletion

limits the expansion of the tumor spheroids. In order to properly describe the flow of nutrients

inside multicellular spheroids, the introduction of the liquid phase is fundamental.

We start considering a simple setting, composed of a necrotic core and a quiescent ring, under-

going radial compression (Section 4.3.1). We then considerthe interplay between growth and

remodelling in a tumor composed of a necrotic core and a proliferative ring (Section 4.3.2). In

these models we consider both the case in which the central necrotic core is composed by calci-

fied debris resulting from the death of cells (i.e., rigid necrotic core) and the case in which debris

have been removed and the spheroid is left with a liquid necrotic core. Both morphologies have

been observed in biological experiments.

In these first models the presence of the blood vessels is not considered and nutrients are assumed
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to penetrate in the whole spheroid. Indeed mathematical modelling of avascular tumours is the

first step in building models for tumour growth in later stages. Finally, we introduce the diffu-

sion of nutrients, from vessels surrounding the tumor mass,so that cell growth is limited by the

availability of these chemical substances (Section 4.3.2.2). Then, in (Section 4.3.3) we model the

surrounding tissue, an an ensemble of cells in which growth is balanced by physiological death,

i.e., the net growth is equal to zero.

Figure 4.2: Schematic representation of the different spheroid configurations that we consider in
this Chapter. First we look at the mechanical response of quiescent aggregates with a necrotic
core. Then we consider the case of proliferative aggregates: in a first assumption we can con-
sider that all cells in the tumor mass can proliferate until the maximum cell volume fraction is
reached, then nutrients are included in order to model the quiescent region. We then implement
the comprehensive model in which also the surrounding healthy tissue is described.

4.2 Mathematical model

4.2.1 Balance laws

Referring to Chapter 1, we consider the balance law in their Lagrangian local form, in order

to have all the quantities expressed in the reference configuration which is fixed in time. For a

biphasic mixture, composed by incompressible solid and liquid phases (i.e. the true densities

ρ̂s and ρ̂ℓ are constant), eq. (1.28) and (1.29) hold. Enforcing the saturation assumption and
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assuming thatρ̂s = ρ̂ℓ (which is reasonable being cells mainly composed of water) and that

φsΓs=−φℓΓℓ (i.e., growth of cells occurs with liquid absorption from the outside), eq. (1.28) and

(1.35) become

˙
(Jφs) = JφsΓs, (4.2)

J̇+Div
(

JφℓF−1(vvvℓ−vvvs)
)

= 0, (4.3)

where the operator Div is the divergence computed with respect to the material coordinates.

As observed in Chapter 1, Section 1.2.2 the solution of (4.2)is given by (1.53), i.e.,φs = φsn
Jg

J
.

This means that the volumetric fraction of the solid phase,ρs, is determined if the constant mass

distributionφsn is assigned, and the volumetric deformationsJ andJg are known. We remark that

φsn is constant and should be regarded as a known quantity of the model.

Together with mass balance, we have to provide also the balances of momentum of the cel-

lular and liquid phases.

We accept the validity of Darcy’s law, so that the fluid flow depends on the permeability of the

medium (K) and on the gradient of the interstitial pressure,p

νφℓ(vvvℓ−vvvs) =−Kgrad(p), (4.4)

whereν is the dynamic viscosity of the fluid. Substitution of this result into (4.3) yields

J̇ =
1
ν

Div
(

JF−1
KF

−TGrad(p)
)

, (4.5)

where we wrote the pressure gradient in material coordinates, i.e., grad(p) = F−TGrad(p).

The material, local form of the momentum balance law for the mixture, written with respect

to the reference placementBr and neglecting inertial terms, is given by (1.45). assumingthat

the external body force density is null, we have

Div(P) = 0, (4.6)

whereP is the first Piola-Kirchhoff stress tensor of the mixture, given by (1.47), i.e., it can be

approximated with the sum of the stress tensors of the solid and liquid phase,P= Ps+Pℓ where
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Ps andPℓ are defined through the Piola transformations (1.46)

Ps := JTsF
−T (4.7)

Pℓ := JTℓF
−T . (4.8)

whereTs andTℓ denote the Cauchy stress tensors of the solid and fluid phase.We remark that

in (4.7) and (4.8),J andF refers to the solid phase. In order to close the mathematicalproblem

resulting from (4.5) and (4.6), it is necessary to provide information about the stressesTs andTℓ.

The cellular component is assumed to be a hyperelastic and isotropic material, and it is mod-

elled by the following constitutive relation [7]:

Ts =−φs

(

p+Σ(φs)+
1
3

tr(µBn)

)

I+µφsBn , (4.9)

whereBn = FnF
T
n andΣ(φs) is a stress function that in the following we will assume to have

the formΣ(φs) = E
φs−φ0

φmax−φs
. We will use the apex′ to indicate the deviatoric part of the stress

tensor of the solid phase, whereas the apex∗ stands for the constitutive part, i.e.,

T
′
s = Ts−

1
3

tr(Ts)I , T
∗
s = Ts+φspI .

Once it is known how the material behaves from the natural configuration to the actual state, we

need to describe how the natural configuration evolves, through remodelling and growth.

For the evolution of the internal reorganization, we use therelation (3.10), introduced in Chapter

3, i.e.,

Lp =
J

2η(φs)

[

1− τ(φs)

f(T′
s)

]

+

F
T
nT

′
sF

−T
n ,

where the different terms have the meaning explained in Chapter 3.

We then have to set an equation representing the growth of thecellular constituent. In [7], it was

shown that
J̇g

Jg
= Γs, (4.10)

that can be rephrased as

tr
(

ĠG
−1)= Γs. (4.11)

The termΓs is the source term in the mass balance equation and it can assume different forms,

depending on the assumption we use. The simplest equation for this term isΓs = γ(φmax− φs)

which states that the proliferation of cells continues until the maximum cell volume fraction is
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reached. Of course, more complicated relation can be chosen. In particular we will also consider

the case in whichΓs depends on nutrient concentration.

4.2.2 Spherical symmetry

We apply the model presented in section (4.2.1) to describe the growth of tumor spheroids.

Since all processes are considered homogeneous and isotropic, the initial spherical geometry is

preserved. Therefore it is reasonable to rewrite equations(4.5) and (4.6) in material spherical

coordinates,(R,Θ ,Φ). We assume deformations and velocities of all constituentsto be along the

R-axis.

We restrict our investigation to the case in which the radialdeformation depends onRandt only.

Therefore we have

r(t,XXX) = χ(t,R), ϑ(t,XXX) =Θ , ϕ(t,XXX) = Φ , (4.12)

so that the matrix representation of the deformation gradient tensor is diagonal and given by

F= diag
{

∂Rχ ,
χ
R
,
χ
R

}

. (4.13)

We remark thatJ= ∂Rχ χ2

R2 holds true. Then, beingJp = 1 and enforcing spherical symmetry, we

take

Fp = diag

{

R2

Ψ2
p
,
Ψp

R
,
Ψp

R

}

, (4.14)

whereΨp =Ψp(t,R) is a measure of the internal remodelling of the spheroid. We then assume a

spherical growth

Fg = diag{g,g,g} , (4.15)

whereg= g(t,R). The next step is to re-write (4.5) and (4.6) in spherical coordinates.

We assume that the medium is isotropic with respect to both its elastic properties and permeabil-

ity. Thus the permeability tensor is diagonalK= K(φs)I. It follows, from (4.5), that

J̇ =
1

νR2

∂
∂R

(χ2K(φs)Π R) , (4.16)
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which leads to

J̇ =
1
ν

χ2

R2

∂
∂R

(K(φs)Π R)+2
K(φs)

ν
J
χ

Π R, (4.17)

whereΠ R is the radial component of the material gradient of the interstitial pressure pulled-

forward to the actual configuration and it can be computed through (4.6), as

F
−TGradp=

1
J

Div(P∗
s) = (Π R,0,0)T , (4.18)

whereP∗
s = diag

(

(P∗
s )

rR,(P∗
s )

ϑΘ ,(P∗
s )

ϕΦ) is the constitutive part of the first Piola-Kirchoff stress

tensor of the cellular component. Writing (4.18) in spherical coordinates we obtain

Π R =
1
J

[

∂
∂R

(P∗
s )

rR+
2
R

(

(P∗
s )

rR− (P∗
s )

ϑΘ
)

]

. (4.19)

Using the constitutive equation (4.9) and the Piola transformation, we have

(P∗
s )

rR = −Jφs

(

Σ(φs)+
1
3

µ
J2Ψ6

p +2χ6

g2Ψ2
p χ4

)

χ2

JR2 +Jφsµ
JΨ4

p

χ2g2R2 , (4.20)

(P∗
s )

ϑΘ = (P∗
s )

ϕΦ =−Jφs

(

Σ(φs)+
1
3

µ
J2Ψ6

p +2χ6

g2Ψ2
p χ4

)

R
χ
+Jφsµ

χR
g2Ψ2

p
. (4.21)

Equation (4.17) needs to be coupled with equations (4.11) and (3.10), representing the evolution

in time ofg andΨp respectively, i.e.,

ġ =
Γs

3
g (4.22)

Ψ̇p = −Jφsµ
6η













1− 2τ

µφs

∣

∣

∣

∣

∣

J2Ψ6
p −χ6

g2Ψ2
p χ4

∣

∣

∣

∣

∣













+

J2Ψ6
p −χ6

g2Ψpχ4 . (4.23)

In (4.23), as done in Chapter 3, we use the Tresca criterion inorder to give a representation of

frame invariant measure of the stress in (3.10), i.e.,f(T′
s) = |(Trr

s )′− (Tϑϑ
s )′|/2. Moreover it is

possible to rewrite (4.23) as

Ψ̇p =−Jµφs

6λ

[∣

∣

∣

∣

∣

J2Ψ6
p −χ6

g2Ψ2
p χ4

∣

∣

∣

∣

∣

− 2τ
µφs

]

+

sign
(

J2Ψ6
p −χ6

)

Ψp , (4.24)
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whereλ = η/µ. Equations (4.17)-(4.22)-(4.24) should be solved together with the auxiliary

equation

∂
∂R

χ = J
R2

χ2 . (4.25)

We remark that, eq. (4.18) leads to

∂
∂R

p(t,R) = J
R2

χ2Π R, (4.26)

that can be solved a posteriori, once the other unknowns havebeen determined.

In order to solve (4.17)-(4.22)-(4.24)-(4.25), we have to supply proper boundary conditions

(BCs) and initial conditions (ICs) for the unknowns. In particular, the mixture mass balance

(4.17) requires two BCs and the value ofJ at the initial time, whereas eq. (4.25) is well defined

provided that one BC is given. In order to solve eq. (4.22) and(4.24) the initial conditions ong

andΨp are required.

As initial condition, we set

J(0,R) = 1, (4.27)

Ψp(0,R) = R, (4.28)

g(0,R) = 1. (4.29)

Indeed, at the initial time, there are no elastic and plasticdeformations and we assume that also

the deformation due to growth is null.

For what concerns boundary conditions, we have to distinguish between internal calcified

core and liquid core. We consider a spheroid of initial radius,R= Rout with an internal calcified

core of radiusR0. Therefore equations (4.17)-(4.25) hold forR0 < R< Rout.

For what concerns the calcified core case, boundary conditions have to be consistent with the

following requirements:

(i) the radial stress at the external boundary of the specimen has to be equal to the applied

stress,Pappl(t);

(ii) the velocities of the fluid and of solid phases have to be zero at the inner boundary because

we assume that the necrotic core is impermeable and fixed;
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(iii) the pressurep has to be zero atR= Rout since the liquid is in equilibrium with the liquid

outside the spheroid.

These observations are translated in the following set of boundary conditions

χ(t,R0) = R0, (4.30)

Π R(t,R0) = 0 (4.31)

(T∗
s )

rr (t,χ(Rout)) = Pappl(t), (4.32)

p(t,χ(t,Rout)) = 0. (4.33)

Indeed (4.30) guaranties that the interface between the necrotic calcified core and the surround-

ing living cells is fixed, whereas (4.31) states that the flux at the inner boundary is null, being

velocities null. Eq. (4.32) and (4.33) arise directly from conditions (i) and (iii), respectively.

We remark that (4.31) is a Robin BC forJ at the inner boundary, whereas (4.32) looks like a

Dirichlet condition onJ at the external boundary, even thoughJ depends on the derivative ofχ .

Indeed, for the particular form ofΣ(φs) that we chose,

[

−φs

(

E
φs−φ0

φmax−φs
+µ

1
3

J2Ψ6
p +2χ6

g2Ψ2
p χ4

)

+µφs
J2Ψ4

p

χ4g2

]

χ(t,Rout)

= Pappl(t) . (4.34)

Since this equation is nonlinear with respect toJ(t,Rout), solutions can be found by applying

Newton’s method or other techniques.

On the other hand, when we consider the case of spheroids withnecrotic liquid core, we can-

not assume that the inner boundary of the spheroid is impermeable and fixed. Initial conditions

are still valid and equations (4.17)-(4.25) still hold forR0 < R< Rout, with the conditions (4.32)-

(4.33) atR= Rout, whereas at the inner boundary, BCs have to be consistent with the following

requirements:

(i) the radial stress exerted by the mixture equals the liquid core radial stress,Trr
ℓ ;

(ii) the flux at the inner boundary is preserved and the inner boundary moves with the solid

phase.
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These observations are translated in the following set of boundary conditions

χ̇(t,R0) = vvvs, (4.35)

Trr
m (t,χ(t,R0)) = Trr

ℓ (t,χ(t,R0)) , (4.36)

that replace eq. (4.30)-(4.31). Eq. (4.36) entails that

(T∗
s )

rr (t,χ(t,R0)) = 0. (4.37)

Looking at the mass-balance equation of the liquid and the cellular phase for an incompressible

mixture, (1.30), we can write

∂
∂ t

φs+div(φsvvvs) = φsΓs, (4.38)

∂
∂ t

φℓ+div(φℓvvvℓ) = φℓΓℓ . (4.39)

(4.40)

As already observed, the global mass balance impliesφℓΓℓ =−φsΓs, so that

div(φsvvvs+φℓvvvℓ) = 0 (4.41)

holds, thanks to the saturation assumption. Enforcing spherical symmetry and assuming that the

velocities of the components are directed along ther-axis, the previous relation can be rephrased

as

∂
∂ r

(

r2(φsvvvs+φℓvvvℓ)
)

= 0, (4.42)

which entails

r2(φsvvvs+φℓvvvℓ) = constant. (4.43)

Beingvvv= φsvvvs+φℓvvvℓ continues across the interface,

(φsvvvs+φℓvvvℓ)|χ(R0) = 0,
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becausevvv= 0 in the liquid core. Thus, in (4.43), constant= 0 and

vvvℓ =−φs

φℓ
vvvs (4.44)

in the whole spheroid domain.

Substituting the previous relation in the Darcy’s equationand coming back to the Lagrangian

formulation, we have

vvvs=
K(φs)

ν
Π R. (4.45)

Observing thatTℓ =−pI, conditions (4.35) and (4.37) can be rephrased, thanks to (4.45), giving

the following set of BCs

χ̇(t,R0) =
K(φs)

ν
Π R(t,R0), (4.46)

[

−φs

(

E
φs−φ0

φmax−φs
+

1
3

µ
J2Ψ6

p +2χ6

g2Ψ2
p χ4

)

+µφs
J2Ψ4

p

χ4g2

]

χ(t,R0)

= 0 (4.47)

[

−φs

(

E
φs−φ0

φmax−φs
+

1
3

µ
J2Ψ6

p +2χ6

g2Ψ2
p χ4

)

+µφs
J2Ψ4

p

χ4g2

]

χ(t,Rout)

= Pappl(t) , (4.48)

p(t,χ(t,Rout)) = 0. (4.49)

We remark that in this case we have Dirichlet conditions onJ both at the internal and at the exter-

nal boundary, whose solutions can be found by applying Newton’s method or other techniques.

Both in the liquid and in the calcified core case, eq. (4.18) requires the condition (4.33), in order

to be solved, once the other variables are known.

4.2.3 Dimensionless system

Results in Section 4.3 are presented in terms of dimensionless quantities. We report here the

dimensionless system. Spatial quantities are scaled with respect to the initial external radius

of the spheroid,Rout, whereas temporal quantities scale with the typical cell proliferation time,

tr =
1

φmaxγs
, whereγs is the coefficient weighting the growth term (i.e.,Γs= γs(φmax−φs)). Ten-

sion and material parameters scale with respect to the shearmodulus of the material,µ and the
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volume fraction are compared to the maximum cellular volumefraction,φmax. Thus, introducing

R̃=
R

Rout
, r̃ = χ̃ =

χ
Rout

, Ψ̃p =
Ψp

Rout
,

t̃ =
t
tr
, φ̃s =

φs

φmax
,

Ẽ =
E
µ
, τ̃(φ̃s) =

τ(φs)

µφmax
, P̃appl =

Pappl

µφmax
, λ̃ =

λ
tr
,

the system of equations (4.17)-(4.22)-(4.24) becomes

dJ
dt̃

= k̃p
χ̃2

R̃2

∂
∂ R̃

(K̃(φ̃s)Π̃ R)+2k̃p
J
χ̃

K̃(φ̃s)Π̃ R R̃0 < R̃< 1, (4.50)

Π̃ R =
1
J

[

∂
∂ R̃

(P̃∗
s )

rR+
2

R̃

(

(P̃∗
s )

rR− (P̃∗
s )

ϑΘ
)

]

R̃0 < R̃< 1, (4.51)

∂ χ̃
∂ R̃

= J
R̃2

χ̃2 R̃0 < R̃≤ 1 (4.52)

dg
dt̃

=
1
3

Γ̃sg=
1
3
(1− φ̃s)g R̃0 ≤ R̃≤ 1, (4.53)

dΨ̃p

dt̃
= −Jφ̃s

6λ̃

[∣

∣

∣

∣

∣

J2Ψ̃6
p − χ̃6

g2Ψ̃2
p χ̃4

∣

∣

∣

∣

∣

− 2τ̃(φ̃s)

φ̃s

]

+

sign
(

J2Ψ̃6
p − χ̃6

)

Ψ̃p R̃0 ≤ R̃≤ 1, (4.54)

wherek̃p =
k0µφmaxtr

νR2
out

and(P̃∗
s )

rR = (P∗
s )

rR/(µφmax), (P̃∗
s )

ϑΘ = (P∗
s )

ϑΘ/(µφmax) are given by

(P̃∗
s )

rR = −Jφ̃s

(

Ẽ
φ̃s− φ̃0

1− φ̃s
+

1
3

J2Ψ̃6
p +2χ̃6

g2Ψ̃ 2
p χ̃4

)

χ̃2

JR̃2
+Jφ̃s

JΨ̃4
p

χ̃2g2R̃2
(4.55)

(P̃∗
s )

ϑΘ = −Jφ̃s

(

Ẽ
φ̃s− φ̃0

1− φ̃s
+

1
3

J2Ψ̃6
p +2χ̃6

g2Ψ̃ 2
p χ̃4

)

R̃
χ̃
+Jφ̃s

χ̃R̃

g2Ψ̃2
p
. (4.56)

The frame invariant measure of the stress is defined, as in Chapter 2, through the Tresca criterion

and thus

f̃(T′
s) =

φ̃s

2

∣

∣

∣

∣

∣

J2Ψ̃6
p − χ̃6

g2Ψ̃2
p χ̃4

∣

∣

∣

∣

∣

(4.57)

The tensorK is taken from [85] and adapted to our framework, i.e.,

K̃(φs) =

[

φ̃s0

1− φ̃s0

J−φsnJg

Jgφ̃sn

]m0

exp

{

m1

2

[

J2−J2
g

J2
g

]}

. (4.58)
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The dimensionless form of (4.26) is

∂
∂ R̃

p̃(t̃,R̃) = J
R̃2

χ̃2Π̃ R, (4.59)

with p̃= p/(µφmax).

Initial conditions (4.27) and (4.29) continues to hold, whereas (4.28) rephrases as

Ψ̃p(0,R̃) = R̃ (4.60)

For what concerns boundary conditions, in the case of a calcified core we have

χ̃(t̃,R̃0) = R̃0, (4.61)

Π̃ R(t̃,R̃0) = 0 (4.62)

p̃(t̃,χ̃(1)) = 0, (4.63)
[

−φ̃s

(

Ẽ
φ̃s− φ̃0

1− φ̃s
+

1
3

J2Ψ̃6
p +2χ̃6

g2Ψ̃2
p χ̃4

)

+ φ̃s
J2Ψ̃ 4

p

χ̃4g2

]

χ̃(1)

= P̃appl(t̃) . (4.64)

On the other hand, when we consider the case of spheroid with necrotic liquid core, we have

∂ χ̃
∂ t̃

(t̃,R̃0) = k̃pK̃(φs)Π̃ R(t̃,R̃0) , (4.65)
[

−φ̃s

(

Ẽ
φ̃s− φ̃0

1− φ̃s
+

1
3

J2Ψ̃6
p +2χ̃6

g2Ψ̃2
p χ̃4

)

+ φ̃s
J2Ψ̃ 4

p

χ̃4g2

]

χ̃(R̃0)

= 0 (4.66)

and conditions (4.63) and (4.64) continue to hold.

In the following for sake of simplicity in the notation, we will drop the ˜(·) and all the quantities

reported are dimensionless.

4.2.4 Discretization

We solve the system of equations (4.50)-(4.52)-(4.53)-(4.54) using central differences for space

derivatives and then a proper ODE solver to obtain the temporal evolution [17]. In the follow-

ing we depict the main steps of this procedure. The 1D-domain, represented by the interval

[R0,1], is divided intoN+1 subintervals of width∆Rj = Rj+1−Rj through the introduction of
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N Chebyshev nodes in(R0,1)

Rj =
1
2
(1+R0)+

1
2
(1−R0)cos

(

2 j −1
2n

π
)

with j = 1,...,N. Spaces derivatives are then approximated by finite differences, so that the

following system of 3N+4 equations is obtained:

J̇j = kp
χ2

j

R2
j

K j+1(φs, j+1)Π R
j+1−K j(φs, j)Π R

j

(∆Rj)
+2kp

Jj

χ j
K j(φs)Π R

j , j = 1,...,N , (4.67)

ġ j =
Γs, j

3
g j , j = 0,...,N+1,(4.68)

Ψ̇p, j = −Jjφs, j

6λ

[∣

∣

∣

∣

∣

J2
j Ψ6

p, j −χ6
j

g2
jΨp, jχ4

j

∣

∣

∣

∣

∣

− 2τ
φs, j

]

+

sign
(

J2
j Ψ

6
p, j −χ6

j

)

Ψp, j , j = 0,...,N+1.(4.69)

Here, j enumerates the nodes of the grid, i.e.Jj(t) = J(t,Rj), Ψp, j(t) = Ψp(t,Rj) andg j(t) =

g(t,Rj), φs, j(t) = φs(t,Rj) = φsng(t,Rj)
3J(t,Rj)

−1 andK j(t) = K(t,Rj).

In eq. (4.67)Π R is given by (4.51), that, approximated with finite differences, gives

Π R
j =

1
Jj

(P∗)rR
j − (P∗)rR

j−1

(∆Rj−1)
+2

(P∗)rR
j − (P∗)ϑΘ

j

JjRj
. (4.70)

The functionχ is calculated by invoking (4.52) and using a standard forward Euler method.

χ j+1(t) = χ j(t)+Jj(t)
R2

j (t)

χ2
j (t)

∆Rj , (4.71)

coupled with (4.30) for the calcified core and (4.35) for the liquid core. Condition (4.30) gives

χ0(t) = R0, whereas (4.35) can be rephrased as

χ i+1
0 = χ i

0+∆ tkpK i
0(Π

R
0 )

i , (4.72)

where the apexi enumerates the discretized instant in time. The boundary valuesJ0 andJN+1 are

computed imposing boundary conditions (4.31)-(4.34) for the calcified core and (4.37)-(4.34) for

the liquid core.

The boundary valuesJN+1, both for the calcified core and the liquid core, is given by (4.34),

which is solved numerically, by means of a Newton-Raphson method.
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In the case of liquid core simulations (4.37) gives the valueof J0, always using the Newton-

Raphson method, whereas in the case of the first node, we impose Π R
0 = 0, according to (4.31),

in eq. (4.67) prolonged to nodej = 0.

According to this procedure, the initial system of partial differential equations (4.50)-(4.53)-

(4.54) is approximated by a system of ordinary differentialequations that can be integrated by

choosing a stable ODE solver, with the initial conditionsJj(0) = J(0,Rj) = 1, g j(0) = g(0,Rj) =

1,Ψp, j(0) =Ψp(0,Rj) = Rj , for j = 1, . . . ,N.

The variation of pressure inside the specimen can be calculated a posteriori, onceΠ R is

known, using (4.59), that can be solved with the boundary condition (4.33) with an explicit Euler

scheme.

4.3 Results

In this section we first present the results of a quiescent spheroid undergoing pure remodelling

due to the application of an external load at the outer boundary (Section 4.3.1). We then consider

the case of a proliferative spheroid with a necrotic core (Section 4.3.2.1). Nutrients are included

in Section 4.3.2.2 in order to model the presence of a quiescent region in which cells do not

proliferate because of the lack of nutrients. The presence of the healthy tissue is modelled in

Section 4.3.3.

4.3.1 Remodelling without growth

We first consider the case of a spheroid composed of a necroticcore (that can be either com-

posed of calcified debris, i.e., rigid, or filled with liquid)and a quiescent shell, in which cell

proliferation is compensated by death. Therefore in this case we do not have any net production

of the cellular phase, i.e.,Γs= 0 in (4.53), which impliesg(t,R) = 1,∀t and∀R. The evolution of

the system is represented by (4.50)-(4.52)-(4.54), coupled with the initial conditions (4.27) and

(4.60) and the boundary conditions (4.61)-(4.62)-(4.64) for the rigid necrotic core and (4.64)-

(4.65)-(4.66) for the liquid core. We remark that if no stress is applied at the outer boundary,

the stationary case corresponds to the initial condition, i.e. we do not have any evolution of the

system.

The external stress can represent a controlled stress exerted in vitro by the gel in which cancer

cells are plated or the stress exerted by the external tissue. In this case the stress exerted at the

outer boundary is known.

Applying an external compressive load,J decreases, which means that the volume of the spheroid
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Figure 4.3: Calcified core without growth: simulations for dimensionless parametersPappl =
−0.2809,kp = 0.7745,m0 = 0.0848,m1 = 4.638,τ = 0.0281,λ = 0.0281,E = 0.2809. Lines
report the evolution in space of the variable at the instant of time specified. For the final time
reported the system is at the stationary condition.

diminishes, and, if the applied load is sufficiently high, the internal reorganization of the spheroid

is triggered.

Fig. 4.3 shows the evolution in time and space ofφs(t,R) = φsn/J(t,R), Ψp(t,R)−R, χ(t,R)−R

and p(t,R) for a spheroid subjected to a constant stress at the outer boundary. Every curve

represents the trend overR of the different quantities at a fixed time step (see legend).It is

possible to see that, in the first time steps, the cell volumetric fraction strongly increases at the
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outer boundary where the load is applied. Then the whole aggregate is strongly compressed (see

Fig. 4.3-(a)). We remark that aftert ≈ 0.1 the trend in the curves changes in proximity of the

internal boundary. This change corresponds to the activation of the internal reorganization (see

Fig. 4.3-(b)). For what concerns remodelling, we remark that F rR
p =

R2

Ψ2
p

, whereasFθΘ
p =FφΦ

p =

Ψp

R
, thus

• Ψp−R< 0 ⇐⇒ F rR
p > 1 andFθΘ

p = FφΦ
p < 1, which means that remodelling occurs

through extensions along the radial direction and compression in the transverse directions;

• Ψp−R> 0 ⇐⇒ F rR
p < 1 andFθΘ

p = FφΦ
p > 1, which means that remodelling occurs

through compression along theR-axis and extensions along theΘ andΦ directions.

Fig. 4.4 intuitively explains the biological meaning of theremodelling term.

Ψp−R> 0 Ψp−R= 0 Ψp−R< 0

Figure 4.4: Diagram of the possible internal reorganization occurringinside a spheroid: remodelling through
compression (on the left), physiological condition (centre), remodelling through extension (on the right).

In Fig. 4.3-(b), it is possible to see that, in the first instants of time, consistent remodelling

occurs at the external boundary due to compression along theR direction and extension along

theΘ andΦ directions, as a consequence of the external compressive load application. Then

remodelling at the external boundary reaches the steady state condition (indeed, for the specific

parameters used in Fig. 4.3, aftert ≈ 0.06 the curves at the external boundary almost overlap),

while remodelling starts at the internal boundary where cells are constrained not to penetrate the
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necrotic core. Close to the internal boundary,Ψp−R > 0, being cell compressed towards the

necrotic core. Also in this case, remodelling continues until a stationary condition is reached

(after t ≈ 0.5). We remark that, thanks to the remodelling occurring in the region near the cal-

cified core and in the outer region,φs is higher than in the central region, where remodelling is

not triggered. Therefore the effect of bonds rupture, when the aggregate is constrained on both

sides, leads to a closer packaging of cells.

Moreover we observe that, for the parameters setted in this simulations, remodelling occurs only

in some region of the aggregate, therefore we have that the mechanical behaviour of the aggre-

gate changes in space: in the central region it behaves elastically, whereas close to the inner and

the outer boundary it behaves as an elasto-plastic material. This difference in the mechanical

response of cells leads to the non-homogeneous distribution of variables inside the domain.

For what concerns displacement it is possible to see that thespheroid radius decreases until the

stationary condition is reached and due to the BC (4.61) the displacement is null in proximity

of the necrotic core. Moreover at the end of the simulation the pressure in homogeneously dis-

tributed in the whole domain, which implies that fluxes are null and thus the stationary condition

is reached (aftert ≈ 0.5).

On the other hand, looking at the liquid core case, in Fig. 4.5we observe that, also in this

case, in the first instants of time, cells are more compressedat the outer boundary (Fig. 4.5-(a)),

then, as the deformation of the aggregate increases (see Fig. 4.5-(c)), cells volumetric fraction

increases in the whole domain. However, in this case, the solid volumetric fraction in the region

near the necrotic core is less influenced by the application of an external load, being cells not

compressed towards a rigid wall. Indeed in this case, cells can move toward the liquid core, as

fluid encapsulated inside the central core flows inside the aggregate, leading to the decrease of the

central liquid core radius (χ(t,R0)−R0 < 0 in Fig. 4.5-(c)). Moreover, consistent remodelling

initially occurs at the external boundary, due to compression along theR direction and exten-

sion along the transverse directions. In order to reach the steady state condition, in proximity of

the external boundary where load is applied, remodelling slightly decreases until the condition

f (T′
s) = τ is reached. Then, remodelling starts at the internal boundary. We remark that in this

case, at the internal boundary,Ψp−R is negative which means that remodelling occurs through

extension along theR-axis. Indeed the effect of bond rupture, in this case, is to allow cells to

move more freely towards the central liquid core, as long as the necrotic region is all filled by

cells. For what concerns displacement it is possible to see that the spheroid radius decreases and

intense negative displacements are recorded also at the inner boundary, where cells move toward
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Figure 4.5: Liquid core without growth: simulations for thesame value used in the simulation
of the calcified core. Lines report the evolution in space of the variable at the instant of time
specified. We remark that in this case at timeT = 1 the steady state is not yet reached. Indeed,
for the liquid core undergoing remodelling the internal boundary continues to move until cells
fill all the internal gap.

the necrotic liquid core. In this case, fort = 1 the steady state condition is not reached yet.
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Figure 4.6: Liquid core without growth and without remodelling: simulations for the same value
used in the simulation of the calcified core, but for a value ofτ for which no remodelling occurs.
Lines report the evolution in space of the variable at the instant of time specified. We remark that
at the stationary state (aftert ≈ 15) there’s still some liquid in the central necrotic core.

Fig. 4.6 reports the value ofφs(t,R) andχ(t,R)−R in the case in which a quiescent aggregate

with a liquid necrotic core is compressed, without experiencing remodelling. Differently from

what observe in the case in which the internal reorganization is triggered, in this case, at the

steady state condition (which is reached after 15 unit of time), the internal liquid core is not fully

filled by cells.

Fig. 4.7 reports the values ofφs(t,R), Ψp(t,R)−R and χ(t,R)−R at the reference time

t = 5, both for the calcified core with and without remodelling (red and blue curves, respectively)

and the liquid core with and without remodelling (purple andlight-blue curves, respectively).

From Fig. 4.7 it is clear that, for the calcified core, where remodelling is triggered, cells are

closer-packed than in the region in which remodelling does not occurs. Thus, at the internal

and external boundaries, the cell volumetric fraction is higher than in the central region. On

the other hand, remodelling in the liquid core strives to maintain the cell volumetric fraction

closer to the physiological value and thus, when it is triggered, less intense volumetric changes

are perceived in proximity of the necrotic region. Indeed, in this case, the rupture of bonds

leads to more intense cell movements toward the central necrotic region and thus more intense

displacement are recorded at the interface between the necrotic and the quiescent regions. When

no remodelling is triggered, the displacement of the solid phase at the interior boundary is smaller

and soφs is bigger, compared to case in which remodelling occurs.
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We remark that in the case in which the solid volumetric fraction changes consistently, due to

growth or the application of an external load, the assumption that the permeabilityK is a function

of φs is fundamental. Asφs increases (i.e.J decreases), beingK(φs) an increasing function of

J in the interval(φsn,1), the velocity of the fluid and the solid phases decreases consistently,

leading to a slowing-down of the overall process.

4.3.2 Growth and remodelling

We consider the growth of a cancer spheroid with a given applied load at the outer boundary. We

consider both the case in which the central core is composed of calcified cells debris, i.e., the

tumor has a central rigid necrotic core, and the case in whichthe central core is filled with water.

In a first assumption we consider that growth depends only on the cellular volume fraction

(Section 4.3.2.1). This condition represents a cellular aggregate composed of a necrotic core

and a proliferative shell in which growth is limited only by contact inhibition. We then include

nutrients (Section 4.3.2.2), in order to model the presenceof a quiescent ring between the necrotic

core and the proliferative ring, in which the concentrationof nutrients is not enough in order to

support the anomalous growth of cancer cells.

4.3.2.1 Growth depending only on the cell volumetric fraction

Fig. 4.8 shows the evolution of the dependent variablesJ(t,R), g(t,R), Ψp(t,R)−R, φs(t,r) =

φsng3/J(t,r), χ(t,R)− R and T∗rr
m (t,r) along R at different time steps (different lines) for a

spheroid with a necrotic rigid core, whose growth is limitedonly by geometrical constraints,

i.e., cells duplicate until the maximum cell volume fraction is reached. ThereforeΓs = (1−φs),

which biologically means that the growth of cells is governed only by contact inhibition. Thus

g(t,R) > 1 in all the domain (see Fig. 4.8-(b)). This situation represents the case in which nu-

trients are available in all the domain and thus it is suitable to describe only tumors in the first

stages. When remodelling occurs, consistent volumetric changes are experienced both at the in-

ternal and the external boundary of the tumor (see Fig. 4.8-(a)). Indeed, at the external boundary,

the spheroid is let free to expand and thus volume increases (Pappl = 0). Cells at the interior of

the spheroid are pulled from the cells at the outer boundary that can freely move and so the ag-

gregate expands. However in living cells closed to the calcified core are forced to stay attached to

the central necrotic core. If remodelling occurs (see Fig. 4.8-(c)), bonds breaks and cells detach

one from the others. In this caseΨp−R is highly negative in the region close to the necrotic
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Figure 4.7: Comparison between liquid core and calcified core without growth: results at time
t = 5.
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core, because remodelling occurs through extension along theR-axis and compression along the

Θ and Φ directions, as explained in Section 4.3.1. Moreover, also at the external boundary,

where cells can move,Ψp−R is negative. We remark that, being the growth terms dependent

only by the cellular volumetric fraction, whereJ increases alsog increases (see Fig.4.8-(b)). The

action of remodelling on an expanding cellular spheroid is to maintain the solid volumetric frac-

tion, φs =
φsnJ
g3 close to the physiological value: where remodelling does not occurφs is higher

than in those region in which bonds break and cells are more motile. We remark that intense

displacements are experienced also in proximity of the central necrotic core (Fig. 4.8-(e)).

We observe that in our model, we do not fix the volumetric fraction of the cellular constituent to

be equal toφ0, but the boundary condition onJ is obtained imposing the free stress condition at

the outer boundary and, thus, it is in general different fromφ0 even whenPappl = 0.

Fig. 4.8-(f) reports the radial component of the constitutive Cauchy stress tensor of the mixture,

T∗rr
m . We remark that at the external boundaryTrr

m equals the imposed load, which is zero in this

case.

In Fig. 4.9 we reports the results of the growth of a spheroid with calcified liquid core,

without remodelling. Parameters are the same used in Fig. 4.8, except forτ that we choose in

order not to have remodelling.

In this case, being the mechanical behaviour of the aggregate the same in the whole domain, the

curves are smoother. In particular we observe that, when remodelling does not occur, cells at the

interior of the spheroid, being attached to the central necrotic core, are less motile (indeed in this

case, we do not have any reorganization).

Therefore, volumetric changes are less consistent in proximity of the inner boundary (see Fig.

4.9-(a)), and the growth of cells is less intense (see Fig. 4.9-(b)), because cells are more packed

(see Fig. 4.9-(c)). In this case, displacements in proximity of the necrotic core are less intense

(cf. Fig. 4.9-(d) with 4.8-(e)). The total mass is preservedbecause of the higherφs.

We then look at the growth of a spheroid under compressive loads (see Fig. 4.10). In the first

instants of time the aggregate is compressed due to externalload, then cells duplication becomes

high enough in order to make the spheroid expands (aftert ≈ 1.6). Indeed, if we look at the

evolution ofχ(t,R)−R it is possible to see that when an external load is imposed, the aggre-

gate size decreases,χ(t,R)−R< 0 until t < 1.6. Then growth predominate and the spheroid

expands,χ(t,R)−R> 0. Consistently,J(t,R)> 1 in the first instants of time in the whole do-

main. Looking at remodelling it is possible to see thatΨp−R is positive at the outer boundary
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Figure 4.8: Free growth of a spheroid composed of a calcified core surrounded by a proliferative
shell. All the other parameters are the same used for the simulation without growth.
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Figure 4.9: Free growth without remodelling of a spheroid composed of a calcified core sur-
rounded by a proliferative shell. In this simulationτ is chosen in order not to have internal
reorganization of the multicellular aggregate. All the parameters are the same used for the simu-
lation with growth and remodelling.

of the tumor, indeed while expanding, cells at the outer boundary are compressed because of the

application of the external stress. On the other hand, at theinner boundary,Ψp−R is initially

positive, which means that remodelling occurs through compression along theR-axis, as in the

case of the compression of a quiescent aggregate, then, as proliferation increases,Ψp−R< 0

because proliferative cells expand.

Fig. 4.11 shows the typical results for the stress free growth of an aggregate with a necrotic
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Figure 4.10: Calcified core simulation under compressive load at the external boundary,Pappl =
−0.1. All the other parameters are the same used for the simulation without growth.
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Figure 4.11: Free growth of a spheroid with a necrotic liquidcore. Growth is limited only
by contact inhibition, so that the internal boundary expands towards the central necrotic core.
Simulations are performed settingkp = 0.0333,m0 = 0.0848,m1 = 4.638, τ = 3, λ = 0.03,
E = 0.33.

liquid core. It is possible to see that in this case we have consistent volumetric changes also in

proximity of the necrotic core of the spheroid. Indeed in this case the spheroid is not constrained

by a rigid wall; therefore cells can proliferate also in proximity of the necrotic region (Fig. 4.11-

(b)) and proliferative cells moves towards the liquid core (Fig. 4.11-(d)). We remark that for the

particularΓs chosen, the production of new cells is limited only by the availability of space. This

simulation corresponds, for instance, to the case in which aspheroid is left free to grow inside an

environment in which nutrients are not sufficient. Thus the necrotic core is formed. Then, after

some time the spheroid is positioned in an environment full of nutrients and the quiescent cells
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in the central region can re-start to grow, filling the central void space.

However, considering the growth of a spheroid inside a tissue it is unlikely that cell growth

can occur in proximity of a necrotic region. It is therefore fundamental to introduce nutrients

diffusion in order to consider the dependency of growth fromthese chemical factors.

4.3.2.2 Inclusion of nutrients

Results presented in the previous subsection are strictly linked to the assumption we made on

the expression of the growth term,Γs, which depends only on the volume fraction of the cellular

constituent, i.e., in the dimensionless formulation,Γs = (1− φs). This assumption means that

cell can grow until the saturation condition is reached, without any other constraints. This as-

sumption leads to the unrealistic growth of cells even in proximity of a necrotic region, as seen

in Fig.4.8-(b), 4.9-(b) and 4.11-(b).

In reality, cell growth is limited by different factors. In particular the availability of nutrients,

that diffuse inside the tissue and are transported by the liquid moving in the interstitial space,

strongly affects cells capability to duplicate.

In this section, we include nutrients, in order to differentiate the proliferative region from the qui-

escent region of the spheroid. In particular we fix a minimum threshold of nutrients concentra-

tion,cn0 above which cells can proliferate. It can be postulated thatΓs= γs(φmax−φs)(cn−cn0)+.

In this way we have the introduction of a quiescent zone in which the amount of nutrients is not

sufficient to maintain cell proliferation.

In order to insert the dependency on nutrients in the growth term, it is necessary to give the evo-

lution of these chemicals inside the spheroid.

The mass balance for nutrients dissolved in the liquid phase, in Lagrangian coordinates, reads

[73]

ċn =
1

νφℓ

(

F
−1

K(φs)F
−TGradp

)

·Gradcn+
1

Jφℓ
Div

(

JF−1DnF
−TGradcn

)

−ζ
φs

φℓ
cn , (4.73)

wherecn = mn/mℓ is the mass concentration of the nutrients,ζ is the rate of consumption of

nutrients for cell biological functions andDn is the diffusion coefficient of nutrients.

Eq. (4.73) is obtained from the mass balance of nutrients

d
dt

∫

V
φℓcndV =

∫

∂V
φℓcnvvvℓ ·ndS−

∫

∂V
φℓj ℓ ·ndS+

∫

V
ΓℓφℓcndV+

∫

V
GndV , (4.74)
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where j ℓ = −Dngradcn is given by the Fick’s law andGn represents the production/decay of

nutrients. The local form of (4.74) is

∂
∂ t

(φℓcn)+div(φℓcnvvvℓ) = div(φℓDngradcn)+Γℓφℓcn+Gn , (4.75)

which in the Lagrangian formulation, reads

˙
(Jφℓcn)+Div(JφℓcnF

−1wwwℓs) = Div(JφℓF−1DnF
−Tgradcn)+JΓℓφℓcn+JGn , (4.76)

Recalling the mass balance of the liquid phase (1.34) and theDarcy’s Law (1.72), eq. (4.73) is

easily obtained, settingGn =−ζ φscn.

Eq. (4.73) in spherical coordinates reads

ċn =
1
ν

χ2

JφℓR2K(φs)Π R∂cn

∂R
+

+
Dn

J(1−φs)R2

∂
∂R

(

χ4

JR2

∂cn

∂R

)

−ζ
φs

φℓ
cn . (4.77)

Writing eq. (4.77) with respect to the dimensionless quantities presented in Section 4.2.3 and

the quantity ˜cn = cn/cb, wherecb is the mass concentration of the nutrients in the blood , we

have

˙̃cn =
k̃p

φmax

χ̃2

J(1− φ̃s)R̃2
K̃(φ̃s)Π̃ R∂ c̃n

∂ R̃
+

+ D̃n
1

J(1− φ̃s)R̃2

∂
∂ R̃

(

χ̃4

JR̃2

∂ c̃n

∂ R̃

)

−ζ
φ̃s

(1− φ̃s)
c̃n , (4.78)

whereD̃n =
Dntr

φmaxR2
out

. We remark that, in this case, for the particular expressionof Γs, we have

that tr = 1/(γsφmaxcb), so that eq. (4.53) holds. Eq. (4.78), coupled with (4.50)-(4.52)-(4.53)-

(4.54) and the new growth term

Γ̃s= (1− φ̃s)(c̃n− c̃0)+ , (4.79)

represents the evolution of a spheroid, whose growth is limited by the availability of nutrients.

Indeed ˜c0 represents the threshold of nutrients concentration, above which cells can duplicate.

For what concerns boundary conditions, we can assume that, when all the domain is composed
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by tumor cells, both in the case of a calcified core and in the case of a liquid core, we have that

c̃n(t̃,1) = 1, (4.80)

which corresponds to the presence of a vessel in proximity ofR̃out = 1 with a wall perfectly

permeable to nutrients.

On the other hand for what concerns the internal boundary, wecan assume that the rigid necrotic

core is impermeable to nutrients, which leads to the condition

∂ c̃n

∂ R̃
(t̃,R̃0) = 0. (4.81)

In the liquid core case, we can consider that the concentration of nutrients in the central liquid

region is homogeneous, which leads also in this case to the condition

∂ c̃n

∂ R̃
(t̃,R̃0) = 0. (4.82)

In the following, in order to simplify the notation, we will omit the tilde, as done for the other

dimensionless variables.

Results are shown in Fig. 4.12 for the rigid necrotic core and4.13 for the liquid necrotic core.

We remark that, in the free growth case, i.e. withPappl = 0, the condition at the inner boundary

does not affect significantly the results of the simulations, being the growth concentrated at the

external boundary that can freely move. Both in the calcifiedand in the liquid core case, it is

possible to see that the more intense volumetric changes arefocused at the external boundary

(see Fig. 4.12-(a) and 4.13-(a)), where nutrients concentration is above the threshold (Fig. 4.12-

(d) and 4.13-(d)) that guarantee the proliferation of cells(Fig. 4.12-(b) and 4.13-(b)). In this

case remodelling is due to deformations occurring for the proliferation of cells and not to the

application of an external load.

Therefore in the first instants of time proliferation of cells occurs without remodelling (up to

t ≈ 0.9). Then remodelling due to extension along theR-direction starts at the external boundary

(see Fig. 4.12-(c) and 4.13-(c)). The solid volumetric fraction highly increases in the proliferative

region. In the first instants of time cells in the quiescent region are pulled by proliferative cells

and thusφs slightly decreases in the proliferative region. Then, as the proliferative process goes

on, φs increases in the whole domain (Fig. 4.12-(e) and 4.13-(e)).From the displacement plot

(Fig. 4.12-(f) and 4.13-(f)) it is possible to see that the whole aggregate is expanding.
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Figure 4.12: Free growth of a spheroid with a calcified core, aquiescent region and an external
proliferative ring. The amplitude of the proliferative ring is determined by nutrient diffusion and
consumption. Here we setcn0 = 0.5, ζ = 0.5, Dn = 0.01.
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Figure 4.13: Free growth of a spheroid with a liquid core, a quiescent region and an external
proliferative ring. The parameters are the same setted in the simulation with a calcified core.
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4.3.3 Inclusion of surrounding tissue

Finally, in order to make a step towards a more realistic description of tumor growth in-vivo, we

introduce the surrounding healthy tissue.

In order to consider the influence of the surrounding tissue,we have to split our computational

1D-domain into two parts:

• the tumor region,R0 ≤ R≤ RT

• the healthy tissue regionRT < R≤ 1

For the moment we will consider that the tumor grows pushing the healthy tissue, without induc-

ing the death of the surrounding cells and we will assume thatcell proliferation is balanced by

cell death in the healthy region. Therefore in this region wedo not have any anomalous prolifer-

ation and theΓs term in (4.53) is null, whereas cells can proliferate in the central tumor region,

for R0 ≤ R≤ RT . We first consider the case in which the growth term depends only on the cell

volumetric fraction. Thus, eq. (4.50)-(4.52)-(4.53)-(4.54) hold forR0 ≤ R≤ RT , whereas (4.50)-

(4.52)-(4.54), withΓs= 0 andg(t,R) = 1 hold inRT < R≤ 1. Being the mathematical model is

different in the two domains, the continuity of the dependent variables is no more guaranteed in

the whole domain, but only forR0 < R< RT andRT < R< 1. In order to solve the problem, we

apply the domain decomposition technique [17]. The domain decomposition technique requires

to solve the problem separately in the two subdomains and then to transmit the information from

one subdomain to the other, imposing additional conditionson the interface, keeping in mind the

physical origin of the continuum model used.

We indicate the dependent variables in the tumor domain withthe apex(1), whereas the apex(2)

refers to quantities in the healthy tissue. Therefore the problem can be formulated as

dJ(1)

dt
= k(1)p

χ(1)2

R2

∂
∂R

(K(1)(φ (1)
s )Π R(1))+2k(1)p

J(1)

χ(1)
K(1)(φ (1)

s )Π R(1), (4.83)

Π R(1) =
1

J(1)

[

∂
∂R

(P∗rR
s )(1)+

2
R

(

(P∗rR
s )(1)− (P∗ϑΘ

s )(1)
)

]

(4.84)

∂ χ(1)

∂R
= J(1)

R2

χ(1)2
(4.85)

dg(1)

dt
=

1
3

Γ (1)g(1) (4.86)

dΨ (1)
p

dt
= −J(1)φ (1)

s

6λ (1)





∣

∣

∣

∣

∣

∣

J(1)
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for the tumor domain and

dJ(2)

dt
= k(2)p

χ(2)2

R2

∂
∂R

(K(2)(φ (2)
s )Π R(2))+2k(2)p

J(2)

χ(2)
K(2)(φ (2)

s )Π R(2), (4.88)
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2
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∂ χ(2)

∂R
= J(2)

R2

χ(2)2
(4.90)

dΨ (2)
p

dt
= −J(2)φ (2)

s

6λ (2)





∣

∣

∣

∣

∣

∣

J(2)
2Ψ (2)

p
6
−χ(2)6

Ψ (2)
p

2
χ(2)4

∣

∣

∣

∣

∣

∣

− 2τ

φ (2)
s





+

sign

(

J(2)
2
Ψ (2)

p
6
−χ(2)6

)

Ψ (2)
p ,(4.91)

for the healthy tissue, whereg(2) = 1.

The material interface between the tumor and the healthy tissue, located atR=RT moves with

tumor cells, with velocity,vvvs. In particular, we have to guarantee the continuity of displacement,

stress and flux inR= RT , i.e.,

JχK|RT = 0 (4.92)

JpK|RT = 0 (4.93)

JTrr
m K|χ(RT) = 0 (4.94)

Jφℓ(vvvℓ−vvvs) ·nK|χ(RT) = 0, (4.95)

whereJ(·)K indicates the jump of the variable(·) across the boundary located inR= RT . Eq.

(4.95) entails that

J(K(φs)F
−TGradp) ·nK|χ(RT) = JK(φs)Π RK|χ(RT) = 0. (4.96)

These conditions, coupled with the BCs (4.61)-(4.62)-(4.63)-(4.64) for the necrotic rigid core,

fully define the problem in both domains. Indeed boundary conditions are provided at the interior

boundary and the outer boundary of the tissue, i.e., onJ(1)(t,R0) andJ(2)(t,Rout), through the

conditions (4.62) and (4.64), whereas at the tumor interface, we impose

χ(1)(t,RT) = χ(2)(t,RT) (4.97)

T∗rr
m

(1)(t,RT) = T∗rr
m

(2)(t,RT) (4.98)

K(φs)
(1)Π R(1)(t,RT) = K(φs)

(2)Π R(2)(t,RT) . (4.99)
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In both domains, the dependent variableχ has a Dirichlet BC prescribed in the first node, which

allows to solve (4.85) and (4.90). The value ofJ in the first node of each domain is determined

through a Robin BC, whereas the value ofJ in the last node is given by a Dirichlet condition.

Indeed eq. (4.98) can be seen as a Dirichlet condition onJ(1)(RT), provided thatJ(2)(RT) is

known, whereas eq. (4.99) gives a Robin BC onJ(2)(RT), givenΠ R(1)(t,RT). Since the value of

J(1)(RT) andJ(2)(RT) are unknowns, the solution has to be computed via an iterative procedure.

At every time step one has to

1. set a guessed value ofJ at the interface,Jguess

2. solve (4.83)-(4.85)-(4.86)-(4.87), with BCsJ(1)(RT)= Jguess, Π R(1)(R0)=0 andχ(1)(R0)=

R0

3. compute the flux through the interfaceq ·n = K(1)Π (1)

4. solve (4.88)-(4.90)-(4.91), withK(2)Π (2) = q ·n, J(2)(RT) given by (4.64) andχ(2)(RT) =

χ(1)(RT)

5. compute the stress at the interface,Trr (2)(RT)

6. calculateJ(1)(RT) in order to insure the continuity of stress along ther-axis,Trr (1)(RT) =

Trr (2)(RT)

7. go back to step 2, puttingJguess= (1− α)J(1)(RT) +αJold
guess (whereα is a relaxation

parameter) and iterate until convergence.

Fig. 4.14 reports the results of a spheroid whose growth is limited only by contact inhibition,

i.e.,Γs = (1−φs). We remark that in this case, we consider only spheroids witha necrotic core

composed by calcified debris.

Finally, we modelled the effects of a nutrient-controlled growth on a spheroid growing inside

an healthy tissue. In this case the growth inside the tumor region is controlled by nutrients,

whereas in domain 2 nutrients are not considered being the net growth null. Therefore in (4.86)

we set

Γ (1) = (1−φs)(cn−c0)+ .
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Equations (4.83)-(4.85)-(4.86)-(4.87) are coupled with the dimensionless equation representing

the evolution of nutrients

ċ(1)n =
k(1)p

φ (1)
max

χ(1)2

J(1)(1−φ (1)
s )R2

K(1)(φ (1)
s )Π R(1) ∂c(1)n

∂R
+

+ D(1)
n

1

J(1)(1−φ (1)
s )R2

∂
∂R

(

χ(1)4

J(1)R2

∂c(1)n

∂R

)

−ζ
φ (1)

s

(1−φ (1)
s )

c(1)n , (4.100)

in domain 1. We assume that vessels are located at the border of the tumor, therefore

cn(t,RT) = 1. (4.101)

At the boundary between the tumor and the necrotic calcified core, condition (4.81) holds.

Fig. 4.15 shows the simulations in which the effect of nutrients is considered.

In both cases, the most consistent volumetric changes are experienced in proximity of the

interface between the tumor and the healthy tissue (see Fig.4.14-(a) and 4.15-(a)).

In particular, in the case in which the growth of cells occursin the whole spheroid (4.14-(b))

because it is limited only by cell volume fraction,J> 1 in the expanding tumor domain, whereas

J < 1 in the healthy tissue, which is compressed by proliferative cells. Healthy cells are more

compressed in proximity of the tumor boundary. Cell volumetric fraction increases in the tumor

region due to cell growth, but we can observe also some slightincrease, i.e.φs > φsn, also in the

healthy tissue, due to the compression of cells (Fig. 4.14-(c)).

We remark thatJ(t,R) andg(t,R) are not continuous in the whole domain and that no restriction

on φs are imposed, neither at the interface between the tumor and the healthy tissue nor at the

external boundary of the tissue, but the value ofφs is obtained by the continuity of stresses (Fig.

4.14-(f)). Indeed, we observe that pressure (Fig. 4.14-(e)) and stresses (Fig. 4.14-(f)) as well as

displacements (Fig. 4.14-(d)) are continuous at the interface, as imposed in the domain decom-

position procedure. For the instant of time considered and the parameters used in the simulation,

no remodelling is observed inside the spheroid.

With the introduction of nutrients, the model is able to simulate the necrotic core, the quies-

cent region and the proliferative shell, along with the surrounding healthy tissue (Fig. 4.15).

Nutrients diffuses and are transported by the fluid moving inside the spheroid, from the network
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Figure 4.14: Growth of a tumor spheroid with calcified core inside an healthy tissue. The growth
of cell here is limited only by contact inhibition, so that cells proliferation is not null in the whole
tumor domain.
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of vessel inRT . Only in the region close to the vessel, nutrient concentration is high enough in

order to guarantee the proliferation of cells (see Fig. 4.15-(f)). Thusg> 1 only in the external

portion of the tumor spheroid, which correspond to the proliferative shell (see Fig. 4.15-(b)). In

the rest of the tumorg = 1 (quiescent region). Volumetric changes occurs at the interface be-

tween the tumor and the healthy tissue. As before, where cells proliferateJ > 1, whereas where

cells are compressedJ < 1. We remark that in this case, not only healthy cells are compressed

by proliferative cancer cells, but also quiescent cells in proximity of the proliferative region are

compressed (cf. Fig. 4.15-(a) with Fig. 4.14-(a)). Thusφs increases both in the proliferative

region and in the region close to the proliferative one (Fig.4.15-(e)). From the displacement

plot (Fig. 4.15-(d)) it is clear that the proliferative shell expands both toward the healthy tissue

and towards the quiescent region. Some remodelling due to extension along the radial directions

occurs where cells are proliferating (Fig. 4.15-(c)).

4.4 Discussion

In this Chapter we formulated a mathematical model able to reproduce the growth of a tumor

spheroid, described as a biphasic material.

The model is able to take into account anelastic deformations resulting both from growth pro-

cesses and internal reorganization of cells. At the same time, thanks to the introduction of the

liquid phase, the transport of nutrients regulating growthcan be properly described. The effect

of the surrounding tissue on the overall process can be introduced in this framework, in order to

obtain a comprehensive model of tumor growth in-vivo.

Therefore, the model presented is able to simulate different experimental conditions.

In particular, here we show that when an external load is imposed to a quiescent aggregate

with liquid necrotic core, if no remodelling occurs, the aggregate is able to bear the load, if it is

not too high. On the other hand if remodelling occurs, bonds break and the internal liquid core

is filled by cells.

Looking at proliferative aggregate, the introduction of nutrients is fundamental in order to guar-

antee that no growth occurs at the interior of the spheroid. Depending on nutrients diffusion and

transport inside the aggregate, the amplitude of the proliferative region changes.

Finally, the introduction of the surrounding tissue is veryimportant in order to simulate a situa-

tion closer to the pathological one, in which tumor cells aresurrounded by healthy cells.

However, more simulations should be performed in order to better characterize the effect of
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remodelling on the overall process. At the same time, more efficient ways to solve the model can

be proposed in order to speed up simulations and to increase the accuracy. From the biological

point of view, in order to apply the model to study the real evolution of tumor growth both in

vitro and in vivo, simulations need to be fitted to biologicalexperiments, through parameter

estimation.
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Figure 4.15: Nutrient-controlled growth of a tumor spheroid with calcified core surrounded by
tissue. In this case, the proliferation of cells inside the tumor mass is not null only when nutrient
concentration is above a fixed threshold (herecn0 = 0.5).
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Chapter 5

Influence of nucleus deformability on cell

entry into cylindrical ECM structures

In this Chapter we study the influence of cell mechanical properties on the process of single cell

migration inside the surrounding fibrous environment, withthe aim to incorporate this informa-

tion into a macroscopic model describing the movement of an ensemble of cells.

Looking at the process of an ensemble of cell moving in the surrounding tissue, as long as contin-

uum models are concerned, cell movements inside the extracellular matrix (modelled as a porous

structure) are described by Darcy’s law [103, 117, 155]. In order to properly define this process,

it becomes important to determine the permeability of the porous structure in order to quantify

its capability of transporting matter. This capability depends on geometrical factors of the porous

structure (i.e., geometry of the pore space) but also on mechanical properties of single cells com-

posing the whole cellular aggregate. However, to our knowledge, mechanical properties of cells

have always been neglected in the description of cell aggregates migration in porous structures.

We start to tackle this complex problem, looking at the process of a single cell entering inside a

cylindrical channel composed of extracellular matrix (ECM) in order to highlight the influence

of cell deformability and the capability of cell to generateactive forces on the overall process of

cell migration.

In Section 5.1 we briefly review the biological experiments done in order to assess cell and

cell nucleus mechanical properties. In particular, micropipette experiments and the related clas-

sical aspiration criteria are presented in Section 5.2, commenting how they can be applied to

the the description of a cell entering an ECM channel, where the force is provided by the active

contraction of cell cytoskeleton. Indeed in order to migrate, cells form adhesive sites with the
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external environment, though the expression of transmembrane proteins of the integrin family.

As a consequence of bond formation, an internal tensile force is generated, through actomyosin

contraction. Migrating cells exert traction on the underlying substrate or ECM, where the bond

is formed. The active traction force is responsible of cell movement along the ECM fiber and

of the deformation of the cell nucleus. Cell traction force is essential for migration in many

types of cells, being the way in which cells move along the ECMfiber and deform their nucleus.

However, recent findings [96, 124] have highlight that othermechanism of motion, that do not

require adhesion, are possible.

A simple mathematical model for active forces, required to accomplish the process, is analysed

in Section 3. We focus here only on integrin-dependent migration [160], in which the process of

cell adhesion with the substrate is fundamental in order to activate the actomyosin contraction

necessary for nucleus deformation and cell movement along the track.

Here, we started from the biological observations that the traction force is related to focal adhe-

sion [156] and we make different hypothesis on the active traction force (acting on the nucleus),

generated after the formation of a single bond. In particular, we point out two possible repre-

sentations of the active force generate after the formationof a single cell-ECM bond (linear vs.

constant) and we make some considerations on the extension of the adhesive area (boundedness

assumption). The results obtained applying the active force models proposed coupled with the

micropipette criteria are presented in Section 5.5.1, showing that they lead to some unrealistic

results, because they do not consider the boundedness of cells.

We therefore derive an energetic approach in order to describe the process of cell migration.

The mathematical model presented in Section 5.4, based on anenergetic approach, is able to

describe the deformation of a spherical finite elastic structure (representing the nucleus) into an

elongated deformed one, that can move inside the channel. Two different representations for nu-

clear deformation are implemented (ellipsoidal vs. cigar-shaped). The nucleus is mechanically

assimilated either to an elastic membrane (Section 5.4.2) or to an elastic solid (Section 5.4.3).

The computational findings are reported and discussed in Section 5.5.2. Results are presented

in terms of dimensionless parameters that represent the interplay between active and mechanical

properties. With the term active properties we will refer tocell adhesive and contractile skills,

which together determine the capability of the cell to actively generate forces.
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5.1 Motivations

Cell migration inside extracellular matrix networks playsa critical role in many physiological and

pathological processes. For instance, in wound healing thedeposition of ECM and the migration

of cells through it contribute to repair both epithelial layers and connective tissues, whereas in

immune surveillance and inflammation, leukocytes activelymigrate towards the site of infection

[60]. On the other hand, in pathological conditions, cell migration is involved, for example, in

chronic inflammatory diseases and in cancer cell invasion and metastasis formation [129].

Moreover, with the advent of tissue engineering, the process of cell migration is finally ex-

ploited in biomedical applications for the regeneration ofvarious tissues, both in vivo and in

vitro [28, 163].

From the biological point of view, an increasing number of experimental works has been de-

signed in order to determine cell properties and functions that are involved in the dynamics of

motion inside the extracellular microenvironment, and thecontribution of this complex network

of structural fibrous proteins on the overall process (see, for instance, [76, 97, 127, 160]). In

particular, the key factors for cell migration on flat substrates are the dynamic adhesion of cells

on it via the expression of adhesive molecules (in particular integrins) and the generation of

the force necessary for propulsion by contraction of cytoskeletal elements [61]. These are also

the basic “ingredients" in the process of migration inside three-dimensional (3D) porous envi-

ronments. However, in this case, cells require steering their way throughout steric obstacles.

This process can be supported by the production of proteolytic enzymes (e.g. Matrix Metallo-

proteinases, MMPs) able to degrade matrix components in order to open gaps for cell movement

[58, 59, 128, 162]. The migratory and invasive process in three-dimensional environments is gen-

erally associated with both significant cell deformation and cytoskeletal force generation while

passing through constricted openings of the ECM [127, 160].The cell body basically consists of

the cytoplasm and the nucleus. The cytoplasmatic region is highly adaptable to morphological

changes and it can adjust to virtually any shape [62]. On the other hand, the nucleus, is 5-10

times stiffer tha the surrounding cytoskeleton and it can resists to changes in shape [26, 62].

Thus, nucleus deformability is a limiting factor in the process of cell migration [62, 160].

Cell nuclei are exposed are exposed to a variety of mechanical stresses and deformations [93],

especially, when the proteolytic machinery is inhibited orduring migration inside artificial rigid

scaffolds. Cellular and nuclear deformation require substantial reorganization of the cytoskeleton

and compression of the keratin envelope of the nuclear region, in order to acquire an elongated

configuration, allowing the entire cell to completely squeeze and stretch (see Fig. 5.1(a)). In-

deed, it has been observed that inside ECM channels, nucleusshape and keratin network structure
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strongly deviate from the normal spatial distribution in the undeformed cell [127].

These biological findings highlight that the geometry of theenvironment strongly affects cell

migratory capabilities and that the deformability of the cell, and in particular of the nucleus, are

crucial for cell migration in 3D structures.

The first efforts in describing mechanical behaviour of living cells were aimed at understanding

cell response to mechanical stress in the vascular system (e.g., red and white blood cells) [136].

In order to measure the mechanical properties of cells, these must be deformed by a known force

or stress and the corresponding deformation must be measured.

In the last years several tests have been developed to this aim. In particular some of the most

used mechanical instruments are atomic force microscope (AFM), optical trap (laser tweezers),

microcompression method and micropipette suction [83, 84,101]. Despite the wide range of

technological instrument available, the description of mechanical properties of cells is still at a

primitive stage and a constitutive theory able to describe cell behaviour is still missing.

Even though the scientific community is becoming aware of theimportance of mechanical prop-

erties of cells in their process of migration inside porous structures, poor investigations have been

carried from the mathematical modelling point of view and mechanical information is generally

neglected in the description of cell movements.

Nowadays, if we want to describe the movement of a populationof cells inside a region contain-

ing extracellular matrix, from the continuum mechanics point of view, Darcy’s Law is generally

used

vvvc =− k(φECM)

ν(1−φECM)
∇P.

Therefore cells are viewed as a liquid continuum with velocity vvvc and dynamic viscosityν that

can flow through the static and rigid ECM structure, with porosity ε = 1− φECM (whereφECM

is the volume fraction of the ECM) driven by the gradient of the interstitial pressure,∇P. The

permeability,k(φECM), which is a scalar only if the ECM is isotropic (with respect to the flow),

is generally a function of porosity (e.g. Kozeny-Carman or Holmes-Mow [85]), but it is often

assumed to be a constant [103, 117, 155]. Sometimes the orientation of ECM fibres is considered

[32, 33, 109]. However, to our knowledge, mechanical properties of cells are always neglected

in the description of cell migration in porous structures. In the Conclusion section we will give

some hints on how the model of single cell migration can give some information on the perme-

ability coefficient.

Even when we move towards the length scale at which discrete models are used, the mechanical

properties of cells are poorly considered, unless we move towards really detailed models of the
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cells. One of them, is the tensegrity model [88, 89], in whichloads are supported by struts in

compression and cables in tension. Clearly, this description is close to reality, but the high com-

plexity of this model makes it difficult to be used in simulations with a big number of cells and

to be up-scaled to the description of macroscopic behaviours.

Some first efforts to include cells mechanical properties inside the description of cell movement

on 2D and inside 3D substrates has been done in [133, 134] using Cellular Potts Models (CPM),

which allow intuitive representation of cells and their mechanical properties, without requiring

too expensive computations.

The introduction of microscopic mechanical properties of cells into continuum macroscopic

equations are of fundamental importance in order to make a step towards a more comprehen-

sive representation of cells and tissue. To do that, we studyhow the nucleus deformability can

influence the process of a cell entering a 3D extracellular structure, using a continuum descrip-

tion of the cell nucleus. Even though, in vivo, fibre structures and bundles are arranged into

really complex networks of strongly varying local densities [161], that create pores and gaps, we

simplify the problem, considering the ECM structured in parallel cylindrical channels composed

of fibres and bundles that provide directional guidance cuesto cells. This is of course a strong

assumption of the far more complex real structure of the extracellular environment, but it can be

a good approximation for regular scaffolds used in tissue engineering, for microchannel set-up

used to test cell deformability and migration capacity, forpacked collagen bundles consisting of

multiple aligned fibers, for myofibers and for nerve strands [162]. Moreover it helps to make a

first step towards the description of the real phenomenon.

5.2 Mathematical Model of Micropipette Aspiration

A cell can be schematically represented as consisting of twomain compartments, the cytoplasm

and the nucleus, both surrounded by lipid bilayer membranes. The cytoplasm holds all cell’s

internal sub-structures (except for the nucleus) immersedin what is called cytosol. The cytosol,

which fills much of the volume of the cell, is composed by a complex mixture of cytoskeleton

filaments, dissolved macro-molecules and water. The cell cytoskeleton is a network of long fila-

ments interacting with motor proteins, which use the energyderiving from the hydrolysis of ATP
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(a) (b) (c)

Figure 5.1: Nuclear deformation during cell migration: biological experiments and schematic
representation of the process. (a) Confocal time-lapse snapshot of cell migration inside mid-
density collagen (3.3 mg/ml) shows nuclear (in green) and cytoplasmic (in red) shape change
(with permission from [62]). (b) Biological sketch of the process of cell migrating through 3D
matrix of fibres. Dots denote focal contacts, pink lines stand for ECM fibres (adapted from [62]).
(c) Schematic representation of the geometry considered inthe model: the cytosol (light blue)
can freely move into one of the cylindrical channels composed of ECM bundles, whereas the
nucleus stands on the back and progressively deforms in order to enter the channel.

(adenosine triphosphate hydrolysis) to produce active force and deform the network and conse-

quently cell nucleus [81]. The nucleus, however, is less deformable than the cytoplasm [26, 62]

and its deformability is mainly regulated by both chromatinstructure, and lamin intermediate

filaments [62, 66].

When migrating inside a thick 3D fibrous environment made of extracellular matrix, with typical

channel size smaller than the cellular diameter, cells needto deform both their cellular body and

their nucleus. Being the nucleus the stiffest organelle [26, 62], the nuclear deformability strongly

contributes to the migratory efficiency of a cell, whereas itis much easier for the cytosol (and the

embedded organelles) to intensively change its shape and toextend into the channel while the

nucleus lags behind (see Fig. 5.1(a)).

In order to describe the above complex environment we simplify the geometry considering the

motion of a cell in a cylindrical microchannel. In this respect micropipette aspiration is one of the

most common way to study the mechanical behavior of living cells and it can help understanding

the process of a cell entering inside a channel. In a typical experiment, a cell is aspirated into a

small glass tube applying a suction pressure. The leading edge of its surface is tracked with light

microscopy. It is observed that, if the suction pressure is sufficiently high, both soft cells (e.g.,

neutrophils, that normally transmigrate across small pores) and more rigid cells (e.g., chondro-

cytes and endothelial cells) completely enter pipettes, within a certain range of calibers (see [84]

for a review). In both cases the response to an aspiration pressure is similar until a hemispherical
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5.2 – Mathematical Model of Micropipette Aspiration

projection is formed inside the pipette. Beyond that point,for cells behaving like a liquid sur-

rounded by a membrane, a further increase in the suction pressure can cause the complete entry

of the cell into the channel [48]. On the other hand, when cells behaving like a solid are aspirated,

they do not flow into the micropipette when the aspiration length (Lp in Fig. 5.2) exceeds the

pipette radius, rather the surface extends until a new equilibrium position is reached [91, 145].

Because of the small suction pressures relative to the osmotic pressure of isotonic saline solution

in which cells are positioned, in all these experiments cells usually deform at constant volume

[84].

Some simple continuum models, treating the cell either as a liquid droplet surrounded by an

elastic cortical shell [164], or as a homogeneous elastic membrane [37], or as a solid [145] have

been formulated in order to fit experimental data. Even though these models average out the high

heterogeneity in cell composition, they surprisingly makegood predictions of the cell deforma-

tion response to known suction forces produced by the pipette and they are still used today in the

biomechanical community.

In Evans’ model [164], cells are described as passive viscous liquid droplet encapsulated by a

distinct cortical layer, with cortical tension,Tc. The equilibrium condition comes directly from

Laplace law applied to the suction of a cell until a hemispherical projection is formed inside the

pipette. CallingLp the aspired length andRp the pipette radius, the critical suction pressure drop

∆Pc is obtained forLp/Rp = 1, when the following relation holds

∆PcRp

Tc
= 2

(

1− Rp

Rc

)

(5.1)

whereRc is the radius of the cell outside the pipette (whenLp/Rp = 1).

This relation can be easily obtained [46], observing that ifno friction exists between the pipette

wall and the cell membrane, then the membrane tension is uniform over the cell surface and

the Laplace Law can be applied, both to the cap of the projection inside the pipette and to the

spherical portion outside the pipette (see Fig. 5.2),

Pcell−P0 =
2Tc

Rc
, (5.2)

Pcell−Pp =
2Tc

Rp
. (5.3)

wherePcell,Pp,P0 are respectively the pressure inside the cell, in the pipette and outside the cell.

Eliminating the cell cell pressure from (5.2), it is possible to obtain (5.1), defining∆Pc = P0−Pp.

The cortical tension creates a threshold pressure drop below which the cell will not enter the
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5 – Influence of nucleus deformability on cell entry into cylindrical ECM structures

Figure 5.2: Schematic representation of the geometry used to derive Evans’ and Chien’s equation.

pipette and above which cells can flow into it. Moreover Evanset al. [164] observed that the rate

at which a cell flows into a pipette is almost constant, with only a small nonlinearity over time

until the cell completely enters the pipette.

When the cell has totally entered the pipette all the microscopic “ruffles" and “folds" have been

pulled smooth. However they observed that there exists a lower limit below which cells cannot

enter the pipette, that for the specific cells used in their biological experiments (granulocytes)

corresponds to a caliber of 2.7µm [47, 48].

For what concerns cells behaving like a solid, many studies have been done on human red

blood cell. The biconcave shape of this anucleate cells comes from their membrane. The de-

formation of such cells has been studied under a constant area assumption [37, 45, 46, 157], to

derive the suction pressure∆P needed to aspire a portion of cell of lengthLp inside a cylindri-

cal channel of radiusRp (see Fig. 5.2), which is given by the following relation (that holds for

Lp > Rp)

∆PRp

γ
= 2

Lp

Rp
−1+ log

(

2
Lp

Rp

)

, (5.4)

whereγ is the shear elastic modulus of the membrane.

Eq. (5.4) is obtained as the stationary condition of the dynamic relation

∆PRp

γ
= 2

Lp

Rp
−1+ log

(

2
Lp

Rp

)

+4
η
γ

L̇p

Rp
, (5.5)
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5.2 – Mathematical Model of Micropipette Aspiration

where a viscoelastic stress-strain relation is assumed forthe membrane. Therefore in (5.5)γ
represents the elastic properties of the membrane, whereasη is its viscosity.

It has been experimentally observed that, when
Lp

Rp
> 1, the relation between

∆PRp

γ
and

Lp

Rp
is

almost linear, with a slope equal to 2.45. This consideration leads to the well known Chien’s

relation [37]
∆PRp

γ
= 2.45

Lp

Rp

(

Lp

Rp
> 1

)

. (5.6)

Finally, Theret et al. [145] studied the entry into a channelof a cell treated as a homogeneous

elastic solid, with Young’s modulus equal toE. Their analysis for an infinite, homogeneous

half-space drawn into a micropipette can be summarized by the following relation

∆P
E

=
2π
3

Φ
Lp

Rp
, (5.7)

whereΦ is a factor linking the external and internal radius of the pipette, which is assumed to be

equal to 2.1 in many works [84].

The process of a cell entering a glass tube has some similarities with the process of a cell

entering a channel composed of ECM fibres. Of course in the biological movement of cell mi-

gration across matrix channels, we do not have any aspiring pressure, but what makes the cell

deform and enter the channel is the capability of the cell to form adhesive bonds with the ECM

and translate this “adhesive information" into the contraction of the internal cytoskeletal struc-

ture, that actively pull the cell and deform the nucleus. This migratory mechanism is strictly

linked to cell capability to establish bonds (integrin-dependent migration) and it is the preferen-

tial way of moving of those kind of cells which are highly adhesive (e.g. smooth muscle cells and

fibroblasts). Recent works [96, 124] show that integrin-independent mechanisms of motion are

possible in confined environment. However in this paper we will refer only to adhesion-driven

motion. Therefore, trying to apply these classical model tothe description of a cell entering a

channel, the∆P in eq. (5.4)-(5.7) should be related to the active force generated through cy-

toskeleton contraction as a consequence of cell-ECM bond formation,πR2
p∆P≈ FZ

ad−trac, where

FZ
ad−trac is the component on the long axis of the cell. We will give moredetails about this force

in Section 5.3

Moreover, we can assume that only the nucleus of the cell behaves as an elastic material, apply-

ing eq. (5.4)-(5.7) to the deformation of the cellular nucleus only. Even though results obtained

under these hypothesis seem promising (see Section 5.5.1),we have to be aware that we are push-

ing the criteria away from their limit of validity. In fact, Chien’s and Theret’s models have been
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5 – Influence of nucleus deformability on cell entry into cylindrical ECM structures

obtained assuming, respectively, an infinite 2D membrane and a 3D half space aspired inside a

pipette. Moreover, the pipettes used in Chien’s biologicalexperiments ranged from 0.3µm up to

0.8µm and the volumes aspired into the pipettes were always< 5% of the cell volume [37]. At

the same time, even though the pipettes used by Theret et al. [145] were bigger (with an inter-

nal diameter ranging between 2µm and 3µm), the portion of the cell aspired was two-to-four

timesRp. Therefore both validations stay away from the complete entry of the cell. Actually,

all these studies were designed in order to determine the mechanical properties of cells in the

first stages of the deformation and they better apply to problems in which deformations are quite

small (normallyLp/Rp up to 5 [145]), whereas micropipette experiments account also for the

total aspiration of the cell.

5.3 Active forces in integrin-dependent motion

To describe cell entry into ECM channels, a fundamental stepis the definition of active forces,

that lead to cell deformation and migration inside the channel.

Cell migration into 3D environments consists of different steps, cyclically reiterated by the cell

[62]. In integrin-mediated locomotion, first the cell polarizes, assembling actin at the cell front

into filaments which push the plasma membrane outward and form protrusions. Then these

protrusions interact with the ECM, building strong adhesion points with the substrate, through

the expression and activation of transmembrane receptors of the integrin family [81, 96]. At

this stage, cell eventually activate the proteolytic degradation and realignment of ECM fibers,

forming tracks for cell motion. Then actomyosin contracts the actin networks, generating local

traction and the force necessary for nucleus deformation and cell movement along the track [62].

For most cell types, adhesion and migration is so intimatelylinked that regulation of substrate

adhesiveness is the main factor guiding the locomotion (haptokinetic). In this type of cells, the

internal cytoskeleton is strictly linked to the ECM, through transmembrane receptors (primarily

integrins), on one side, and to the cellular nucleus, on the other side, through the lamin inter-

mediate filaments forming a part of the nuclear envelope [62,66]. This adhesiveness largely

determines cell shape and nuclear deformation [160]. Moreover, it has been experimentally ob-

served [156] that the traction force generated through myosin contraction depends on the focal

adhesion area of the cell.

Even though recent works [96, 124] shows that, at least for some kind of cells (e.g. leukocytes

and some metastatic tumor cells), the migration in confined environment is sustained by integrin-

independent mechanisms, here, we consider only adhesion-dependent movements, in which the
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5.3 – Active forces in integrin-dependent motion

deformation of the nucleus during cell movement is driven bythe generation of an active force

in the cytoskeleton meshwork, as a consequence of bond formation. We do not give an explicit

model of active force generation, but we postulate different constitutive forms for the force ex-

erted after the formation of a bond.

Then, the active force related to adhesive processes can be,thought as the resultant of all forces

generated by cytoskeleton contraction after single cell-ECM bond formation on the surface of

adhesion. Cell-matrix adhesion is mainly mediated by integrins on the cell surface that con-

nect ECM to the cytoskeleton. The adhesion can be modulated by the density of expressed and

activated integrins,ρb = Nintegrin/Scell−ECM (whereNintegrin is the number of integrins over the

surface of contact between the cell and the ECM,Scell−ECM), and by the density of substratum

ligands (ECM adhesive sites), here represented by the ECM surface ratio,αECM=SECM/Schannel.

We will assume that the cytoplasm can easily penetrate inside the channel, acquiring an elongated

shape with an hemispherical cap (see Fig. 5.3), so that the traction will cause on one hand the

displacement of the cytosolic region (keeping the same shape with a tip that will be modelled as

a spherical cap) and on the other hand the advancement of the nucleus, that, being at the entrance

of the microchannel, will deform to penetrate into it. We assume that the length of the region on

which bonds are formed is constant in time and it correspondsto the portion of the cell in contact

with the channel wall and in front of the nucleus. Therefore,referring to Fig. 5.3 and defining

S=
{

(X,Y,Z) : X2+Y2 = R2
p , Z̄low(t)< Z < Z̄up(t)

}

the surface for which ECM-bonds are ex-

pressed, we can say that the length for which bonds are formed, Lb = Z̄up(t)− Z̄low(t) remains

constant in time during cell deformation.

Accepting that the density of bonds on cell surface,ρb, and the portion of the channel wall com-

posed of ECM adhesive sites,αECM, do not depend on time, the total integrin-dependent active

force is

Factive=

∫

S
ρb(X)αECM(X)Fbond(X)dS, (5.8)

whereFbond(X) is the traction force exerted on the nucleus through cytoskeleton contraction, as

a consequence of bond formation. Thoughρb andαECM may be generally functions of the space,

in the homogeneous case, eq. (5.8) simplifies into

Factive= ρbαECM

∫

S
Fbond(X)dS. (5.9)

Considering only theZ-component of this force, we have

FZ
active= 2πρbαECMRp

∫ Lb

0
FZ

bonddZ. (5.10)
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5 – Influence of nucleus deformability on cell entry into cylindrical ECM structures

The total active force pulling the cell is therefore a function of the radius of the pipette, the density

of bondsρb, the surface fraction of the channel composed of extracellular matrix,αECM, and the

integral of the single bond forces over the contact surface.In particular, under the assumption

that the bonds are formed only on the portion of the cell in front of the nucleus in contact with

the channel (see Fig. 5.3), we have

Lb = L0
cell −Rp−L0

n (5.11)

whereL0
cell is the initial length of the cell inside the channel (which corresponds to the length of

the region filled by the deformed cytoplasm) andL0
n is the portion of the nucleus that can enter

the pipette without any deformation. To obtain (5.11), we have assumed that the cytoplasm forms

an hemispherical projection inside the channel. Imposing the conservation of the volume for the

cytosol (before and after the entrance in the channel) we have

4
3

π(R3
c−R3

n) = πR2
p

(

L0
cell −Rp

)

−
(

L0
n

)2
(

Rn−
1
3

L0
n

)

+
2
3

πR3
p , (5.12)

whereRp is the radius of the cylindrical channel,Rn the radius of the nucleus andRc the radius

of the spherical cell. Thus, the left-hand-side of (5.12) represents the volume of the cytosol in

the spherical cell, whereas the left-hand-side stands for the volume of the cytosol totally inside

the channel (see Fig. 5.3). Eq. (5.12) leads to

L0
cell = Rp

[

4
3

R3
c−R3

n

R3
p

+
1
3
+

1
R3

p

(

L0
n

)2
(

Rn−
1
3

L0
n

)

]

,, (5.13)

whereL0
n = Rn−

√

R2
n−R2

p. Once that a proper function representing bond forces is provided,

the description of active force is accomplished. In particular, we will consider the following

simple forms ofFZ
bond, which is theZ-component of the force transmitted to the nucleus when a

bond is established.

Linear bond force

We assume that, as a consequence of a single bond formation, aforce proportional to the distance

between the nucleus and the site in which the bond is formed isexerted on the nucleus, through
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5.3 – Active forces in integrin-dependent motion

Figure 5.3: Schematic representation of the length of the adhesive region and of the types of
forces considered.

actomyosin contraction, i.e.,

FZ
bond= kbZ , (5.14)

wherekb is the elastic constant of a virtual spring linking the bond site to the nucleus Substituting

(5.14) into (5.9) we obtain

FZ
active= πRpρbαECMkbL2

b . (5.15)

This relation takes into account the biological observation that the biggest traction forces are

expressed at the apical portion of the cell [8, 39, 99, 112]. However, it has the disadvantage

that there is no upper limit to the force that can be exerted, which is not true. This may become

important when the size of the channel is very small causing long cell extensions (see Section

5.5.2 and 5.5.2).
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Constant bond force

We assume that the traction force acting on the nucleus, generated by a single bond activation, is

constant,FZ
bond= FM

b , which implies that

FZ
active= 2πRpρbαECMFM

b Lb . (5.16)

This relation represents the fact that there is a mean force that can be exerted and a maximum

traction force above which bonds break [15, 110, 112, 139] and thus the cytoskeleton no more

contracts, because the cell looses adhesion to the substrate.

Force over a bounded region

We consider the case in which cells are able to form bonds onlyover a certain area of the contact

region, e.g. the apical portion of the deformed cell. Therefore, taking a constant force assump-

tion, we haveFZ
bond= FM

b χLM
b
(Z), whereLM

b represents the length of the maximal area of contact

for which bonds are formed (adhesive region) and

χLM
b
(Z) =







1 if (Lb−LM
b )+ < Z < Lb

0 if 0 ≤ Z ≤ (Lb−LM
b )+∨Z ≥ Lb

where(·)+ stands for the positive part of(·), to take into account that for protrusions smaller

thanLM
b all the cytoplasmic membrane participates in the adhesion process. Therefore, the total

active force is represented by the following relation

FZ
active= 2πRpρbαECMFM

b L∗
b , (5.17)

whereL∗
b = min

{

Lb,LM
b

}

. This relation prevents active forces to growth dramatically for Rp → 0

and it represents the fact that for very small pipette radiusthe cell cannot extend his protrusion

over too large areas.

A similar relation would be achieved if the interval overZ is substituted by several disconnected

intervals. In this caseχ is the sum of the sizes of the intervals. Also the localization of these

“adhesive sites" does not affect the final result, provided that the overall length is the same.

Analogously, it is possible to use the linear force assumption, takingFZ
bond = kbZχLM

b,el
(Z), that

leads to

FZ
active= 2πRpρbαECMkbL∗

b,el

(

Lb−
1
2

L∗
b,el

)

, (5.18)
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whereL∗
b,el = min

{

Lb,LM
b,el

}

. However with a proper re-definition ofLM
b,el as a function ofLM

b ,

eq. (5.18) leads to the same results as (5.17), whenLb > LM
b .

5.4 Energy Balance Models

In order to overcome the limits of models present in literature, in which the finite size of the

cell is not considered, we tackle the problem of a cell entering into a cylindrical structure by

an energetic approach. Always working under constant volume assumption, we develop two

models to analyse the total energy required to deform the initial spherical nucleus (see Fig. 5.4-

(a)) into a nucleus that is totally inside a cylindrical channel. As observed in [156] the central

nucleus takes an elongated shape when the cell is forced to cross channels of different radius.

Experimental evidence [92, 156] suggests that, when the cell elongates, the initially spherical

nucleus significantly deforms, orienting with respect to the cell long-axis direction. Cell elonga-

tion is associated with the formation on either sides of the nucleus of actin bundles parallel to the

channel wall, that are responsible of the nuclear deformation and help maintaining the deformed

configuration. Indeed, during cell elongation, the tensionin actin filaments grows and generates

compressive forces acting laterally on both sides of the nucleus [156].

The shape of the deformed cell, when it is totally inside the channel can be approximated either

The shape of the deformed cell can be approximated either

• by a prolate ellipsoid [156, 162], with smaller axisRp (see Fig. 5.4(b)) or

• by a cigar-like shape (see Fig. 5.4(c)), with cylindrical central region of radiusRp and

hemispherical caps [62].

Both morphologies have been observed in vivo and in vitro experiments [26, 62, 156]. Of course

the morphology acquired in vivo by the nuclear shape, especially if the geometry of the channel

is not so regular, can be more complex.

Concerning the calculation of the energy required to deformthe nucleus, we consider the two

cases in which:

• all the energy is spent to increase the membrane area of the nucleus, whereas the material

inside is treated as an inviscid liquid that freely rearranges according the geometry of the

channel (see subsection 5.4.2);
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• all the energy is spent to deform the internal solid nucleus of the cell, treated as an elastic

material (see subsection 5.4.3).

Of course, these hypotheses can be considered extreme casesand intermediate situations should

be studied (i.e., energy of membrane plus bulk energy). We recall once again that, in both cases,

the cytoplasm can freely move inside the channel.

The energy required to deform the initial spherical shape will then be compared to the work

done by active forces, described in section 5.3, to make the cell advance in the microchannel. We

will give more details on the work done by adhesive-mediatedtraction in subsection 5.4.1.

(a) (b) (c)

hH

zz

x
x y

y

Z

X

Y

he

Rn

Rp

INITIAL
CONFIGURATION

ELLIPSOIDAL
DEFORMATIONDEFORMATION
CIGAR-SHAPED

Figure 5.4: Deformation from (a) the initial spherical configuration to the final one, considering
(b) an ellipsoidal and (c) a cigar-shaped deformed nucleus

5.4.1 Active force work

The work required to have the cell completely inside the channel should be provided by active

forces. We can express this work as

Wactive= FZ
active∆L , (5.19)
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where∆L is the total displacement of the cell nucleus inside the channel, andFZ
active is the re-

sultant directed along theZ-axis of all bond forces developed after cell-ECM bond formation,

described in Section 5.3. In the following we will assume that ∆L = L f in
n −L0

n, whereL f in
n is the

final length of the nucleus when it is totally inside the channel and it varies depending on the

representation chosen for the deformation of the nucleus. Indeed, for the ellipsoidal shape we

have thatL f in
n,ellips= 2he, where

he=
R3

n

R2
p

(5.20)

is the longer semi-axis of the prolate ellipsoid that preserves the initial volume, whereas con-

sidering the cigar nucleusL f in
n,cigar = 2(h+Rp), whereh can be easily computed, assuming the

conservation of the nuclear volume

h=
2
3

Rp
R3

n−R3
p

R3
p

. (5.21)

On the other handL0
n is the initial length of the nucleus that can freely enter thechannel without

any deformation and it is given by eq. (5.13).

5.4.2 Membrane Energy Model

As a first example, we consider the case in which the volume of the nucleus is treated as a liquid

droplet surrounded by an elastic shell. The energy requiredto increase the surface area,W S
tot, can

be approximated by the following relation [46]

W
S

tot = λ (∆S)2 (5.22)

where∆S is the increase in the surface area of the cell passing from aninitial spherical shape to

its final conformation.

More complex formulae can be applied to describe the energy required to increase shell area,

such as those proposed in [82, 137, 150, 151], however eq. (5.22) can be used to make easy

analytical computations and it has been shown to well represent cell behaviour at least in a

certain range of deformations [46].

The increment in the surface area,∆S, can be easily calculated, assuming that the volume is

preserved and computing the new surface area of the deformednucleus. Using the ellipsoidal
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(a)

(b)

(c)

Figure 5.5: Schematic representation of cell displacementand nucleus deformation.
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deformation assumption, the increment in the surface area is given by

∆Sellips = Sellips−Ssphere= 2πR2
p

(

1+
he

Rpe
sin−1(e)

)

−4πR2
n =

= 4πR2
n





1
2

R̃2
p



1+
1

R̃3
p

√

1− R̃6
p

sin−1
(
√

1− R̃6
p

)



−1



 . (5.23)

wheree=

√

1−
R2

p

h2
e

andhe is given by (5.20) and all distances have been conveniently scaled

with the nucleus radius, defining the dimensionless quantity R̃p = Rp/Rn. Therefore
W S

(4πR2
n)

2

is a function ofR̃p. Actually, in the following all the quantities with a tilde represent the corre-

sponding distance scaled withRn.

On the other hand, using the cigar-shaped deformation hypothesis we have

∆Scigar = Scigar−Ssphere= 4πR2
p+2πRp(2h)−4πR2

n =

= 4πR2
n

(

1
3

R̃2
p+

2

3R̃p
−1

)

(5.24)

where the height of the cylindrical portion of the cigar, 2h, is given by (5.21).

5.4.3 Solid Nucleus Model

To compute the energy required to deform the nucleus of the cell treated as a simple solid,

we have to assume a proper constitutive equation, representing the response of the material to

deformations, and calculate the deformation gradient,F.

Nowadays, a representation of the Cauchy stress tensor for cellular components is still under

investigation. For sake of simplicity, we assume an incompressible neo-Hookean constitutive

law for the nucleus of the cell, therefore the elastic storedenergy per unit volume is given by

W
V =

µ
2

[

tr(C)−3
]

, (5.25)

whereC = J−2/3
F

T
F, J = det(F) andµ is the shear modulus of the nucleus [20]. We observe

that being the nucleus incompressible,J = 1.

In both the cases in which the deformed nucleus has an ellipsoidal shape and the case in which
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it takes a cigar-shaped conformation, we assume that parallel planes perpendicular to the axis of

the cylinder in the undeformed configuration,Z = c, are mapped into parallel planes in the final

deformed geometry,z= c′, with c,c′ ∈ R. Using the standard notation of continuum mechanics,

capital letters refers to quantities in the initial configuration whereas lower cases refer to quanti-

ties in the deformed configuration. Therefore with(X,Y,Z) we indicate the cartesian coordinates

in the undeformed configuration and with(x,y,z) the corresponding cartesian spatial coordinates.

Sometimes cylindrical coordinates are used, denoted with(ρ ,Φ ,Z) and with(r,φ ,z) in the un-

deformed and deformed configuration, respectively. The calculation shown in the following are

based on merely geometrical considerations.

5.4.3.1 Ellipsoidal deformed nucleus

The deformation of a sphere in a prolate ellipsoid with the same volume is simply given by a

uniaxial deformation

F= diag

{

Rp

Rn
,
Rp

Rn
,
R2

n

R2
p

}

= diag

{

R̃p,R̃p,
1

R̃2
p

}

. (5.26)

For the particularF given by (5.26), we can rewrite eq. (5.25) as

W
V =

µ
2

(

2R̃2
p+

1

R̃4
p
−3

)

, (5.27)

which integrated over the total volume of the initial spheregives the total energy required to pass

from the initial to the final configuration, i.e.,

W
V

tot =

∫

Vr

W
VdV =

2
3

µπR3
n

(

2R̃2
p+

1

R̃4
p
−3

)

, (5.28)

whereVr is the volume of the cell in the reference configuration.

Eq. (5.28) links the elastic energy of deformation to the mechanical properties of the nucleus,µ,

the morphological properties of the nucleusRn and the radius of the channel,Rp.

5.4.3.2 Cigar-shaped nucleus

Another slightly different possibility is that the solid sphere (representing the nucleus), deforms

into a cigar-shaped nucleus, composed of a cylinder of radius R̃p and heighth̃ =
h
Rn

and two
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hemispherical caps (see Fig. 5.4-(c)).

In order to obtain the deformation gradient we subdivide theinitial spherical nucleus into three

regions: the central one, of scaled heightH̃ =
H
Rn

, is mapped into the cylindrical portion of

dimensionless radius̃Rp and scaled height̃h defined by (5.21), whereas the upper and lower poles

of the nucleus are mapped into the apical and basal hemispheres of the cigar-shaped nucleus.

Therefore the deformation gradient can be described as

F=



















FN−pole for H̃ ≤ Z ≤ 1;

Fc for − H̃ < Z < H̃ ;

FS−pole for −1≤ Z ≤−H̃ .

(5.29)

Assuming symmetry, we can restrict our analysis to the upperhalf of the nucleus, i.e., 0≤ Z≤ 1.

To derive the deformation gradient of the central region,Fc, we consider a reference slice of

heightε and volumeVr(ε), which is mapped into the final volumeVf (ε) (see Fig. 5.6). Assuming

that the volume is conserved and passing to the infinitesimallimit, we obtain

1= lim
ε→0

Vf (ε)
Vr(ε)

= lim
ε→0

πR̃2
p(z(Z+ ε)−z(Z))

π (1−Z2)ε −π
(

Zε2+
ε3

3

) =
R̃2

p

1−Z2

∂z
∂Z

, (5.30)

which leads to
∂z
∂Z

=
1−Z2

R̃2
p

. (5.31)

We assume that all the slices of the reference “barrel" remain parallel while deforming, i.e.,

x= x(X,Y,Z), y= y(X,Y,Z) andz= z(Z). We then consider an internal volume of the reference

spherical region of heightε and volumeVr(ε) = πρ2ε +o(ε) (for ε → 0), which is deformed

into a volumeVf = πr2(z(Z+ ε)−z(Z)). Keeping in mind the relation (5.31) we obtain

r =
ρ√

1−Z2
R̃p . (5.32)

Assuming thatφ = Φ , for the central volume of the sphere, one then has the following matrix

representation of the deformation gradient in normalized bases of cylindrical coordinates (for
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5 – Influence of nucleus deformability on cell entry into cylindrical ECM structures

Figure 5.6: To derive the deformation gradient of a sphere deforming in a cigar, we consider a
reference slice of heightε in the central region of the sphere which is mapped into a cylinder of
radiusRp and heightd1 = z(Z1+ ε)− z(Z1) and a slice of heightε in the upper portion of the
sphere which is mapped in the spherical segment of heightd2 = z(Z2+ ε)−z(Z2).

both configurations)

Fc =



















R̃p√
1−Z2

0
R̃pZρ

(1−Z2)
3/2

0
R̃p√

1−Z2
0

0 0
1−Z2

R̃2
p



















. (5.33)

To fulfil the problem of describing the total deformation gradient, we have to consider the

upper and lower portion of the sphere, which are mapped into the two hemispheres of the cigar-

shaped nucleus. Considering a slice in these region (see Fig. 5.6), in analogy with the central

region case, we have the followingzZ-component of the deformation gradient

∂z
∂Z

=
1−Z2

R̃2
p− (z− h̃)2

, (5.34)

wherez= z(Z). An explicit relation betweenzandZ will be derived in the following. We remark

that (5.34) holds forH̃ ≤ Z ≤ 1 andh̃≤ z≤ h̃+ R̃p.

Also in this case, assuming that undeformed parallel planesremain parallel in the deformed
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configuration, we obtain

r =

√

R̃2
p− (z− h̃)2

√
1−Z2

ρ , (5.35)

that coupled with the hypothesisφ = Φ gives the following deformation gradient in cylindrical

coordinates, for the upper pole of the sphere

FN−pole=























√

R̃2
p− (z− h̃)2

√
1−Z2

0 Γ (Z)ρ

0

√

R̃2
p− (z− h̃)2

√
1−Z2

0

0 0
1−Z2

R̃2
p− (z− h̃)2

,























(5.36)

where

Γ (Z) =





Z
√

R̃2
p− (z− h̃)2

(1−Z2)
3/2

− (z− h̃)
√

1−Z2

(

R̃2
p− (z− h̃)2

)3/2



 .

We observe that, for the particular form ofFc andFN−pole the deformation gradient,F is contin-

uous. IndeedFN−pole(Z = H̃) = Fc(Z = H̃), beingz(H) = h̃.

In order to express all the quantities in the material frame,we integrate eq. (5.34), which gives

the implicit relation between the eulerian coordinatezand the corresponding material one,Z

(z− h̃)3−3R̃2
p(z− h̃)+3(Z− H̃)− (Z3− H̃3) = 0. (5.37)

Eq. (5.37) is a cubic function inzand it has three real solutions, but only the root

z(Z) = h̃+2R̃pcos

[

1
3

cos−1

(

(Z− H̃)(Z2+ H̃2+ZH̃ −3)

2R̃3
p

)

+
4
3

π

]

(5.38)

is acceptable, in order to satisfy the conditionh< z< h+Rp, and can be substituted in (5.36) to

have the deformation gradient in terms of the Lagrangian coordinates.

Eq. (5.37) can also be used to deriveH̃, givenh̃. Indeed substitutingz= h̃+ R̃p, with h̃ given by

eq. (5.21), andZ = 1 in (5.37) we have a cubic function of the new unknownH̃, which gives the

only acceptable solution

H̃ = 2cos

[

1
3

cos−1(R̃3
p−1

)

+
4
3

π
]

. (5.39)
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5 – Influence of nucleus deformability on cell entry into cylindrical ECM structures

As for the ellipsoidal deformation, once that the deformation gradient is known it is possible to

compute the total energy required to pass from the initial configuration to the final configuration.

Still assuming an incompressible neo-Hookean constitutive law (5.25) for the nucleus of the cell,

the elastic energy stored per unit volume in the central portion of the sphere is

W
V

c =
µ
2

[

2
R̃2

p

1−Z2 +
R̃2

pZ2ρ2

(1−Z2)
3 +

(

1−Z2
)2

R̃4
p

−3

]

, (5.40)

whereas the energy for the upper and lower poles of the spheres is

W
V

N−pole= W
V

S−pole =
µ
2

[

2
R̃2

p− (z− h̃)2

1−Z2

]

+

+
µ
2











Z
√

R̃2
p− (z− h̃)2

(1−Z2)
3/2

+
(z− h̃)

√
1−Z2

(

R̃2
p− (z− h̃)2

)3/2





2

ρ2






+

+
µ
2

[

(

1−Z2
)2

(

R̃2
p− (z− h̃)2

)2 −3

]

, (5.41)

wherez= z(Z) is given by (5.38). To obtain the total energy required to pass from the initial

spherical configuration to the cell totally deformed insidethe channel, we have to integrate over

the corresponding domains in the undeformed body, i.e.,

W
V

tot =
∫

Vc
r

W
V

c dV+
∫

VN−pole
r

W
V

N−poledV+
∫

VS−pole
r

W
V

S−poledV =

= 2

(

∫

Vc+
r

W
VdV+

∫

VN−pole
r

W
V

N−poledV

)

, (5.42)

whereVc
r is the volume of the central zone in the reference configuration,VN−pole

r andVS−pole
r

are the volume of the north and south pole of the sphere andVc+
r is the volume of the upper-half

central part of the sphere, i.e.,

Vc+
r =

{

(ρ ,Θ ,Z) ∈ R
3 : 0≤ ρ ≤

√

1−Z2,0<Θ ≤ 2π ,0≤ Z < H̃
}

,

whereas

VN−pole
r =

{

(ρ ,Θ ,Z) ∈ R
3 : 0≤ ρ ≤

√

1−Z2,0<Θ ≤ 2π , H̃ ≤ Z ≤ 1
}

,
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The previous integral can be easily computed in the central region

W
tot

c = µπR3
n

[

2R̃2
pH̃ +

1
2

R̃2
p

(

tanh−1H̃ − H̃
)

]

+

+ µπR3
n

[

1

R̃4
p

(

H̃ − H̃3+
3
5

H̃5− 1
7

H̃7
)

−3

(

H̃ − H̃3

3

)

]

. (5.43)

We observe that sincẽH is a function ofR̃p through (5.39),
W tot

c

µR3
n

is a function ofR̃p .

On the other hand, for what concerns
∫

VN−pole
r

W V
N−poledV, using the fact that the domain of

integration is normal with respect to theXY-plane, we can express the triple integral as a simple

integral

W
tot

N−pole =
πµ
2

R3
n

[

2
∫ 1

H̃

[

R̃2
p− (z− h̃)2]dZ

]

+

+
πµ
2

R3
n







1
2

∫ 1

H̃





Z
√

R̃2
p− (z− h̃)2

(1−Z2)
3/2

+
(z− h̃)

√
1−Z2

(

R̃2
p− (z− h̃)2

)3/2





2

(

1−Z2)2
dZ






+

+
πµ
2

R3
n

[

∫ 1

H̃

(

1−Z2
)3

(

R̃2
p− (z− h̃)2

)2dZ−2+
(

2+ R̃2
p

)

√

1− R̃2
p

]

, (5.44)

that needs to be evaluated numerically, in order to obtain anestimate of the total energy required

to deform the nucleus.

5.5 Results

In subsection 5.5.1 we present results obtained adapting models from the literature for mi-

cropipette aspiration of a cell through a cylindrical channel, conscious that we are pushing

Chien’s and Theret’s criteria far from their limit of validity. In subsections 5.5.2 we show re-

sults obtained with our energetic approach, both under the elastic membrane and the elastic solid

nucleus assumptions.

5.5.1 Micropipette models applied to cell migration insidechannels

We consider here the case in which nucleus entry obeys the classical relations (5.4) or (5.7), de-

forming the initial spherical nucleus into a cigar-like shape, with the assumption thatLp in (5.4)
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5 – Influence of nucleus deformability on cell entry into cylindrical ECM structures

and (5.7) represents the length of the deformed nucleus, i.e. Lp = L f in
n,cigar = 2(h+Rp) with h

given by eq. (5.21). We define the critical pressure as the value of∆P for which Lp = L f in
n,cigar

and we assume that a proper representation for∆P in eq. (5.4) and (5.7) is
FZ

active

πR2
p

, whereFZ
active

is theZ-component of the active traction force given either by eq. (5.15) or (5.16) or (5.17).

Then, for a pressure above the critical one, the cell moves inside the pipette. This way we obtain

the yield value of the ratio between mechanical and active parameters that a cell should have in

order to enter the channel, depending on the geometrical properties (i.e.Rn, Rc andRp).

The inequalities that should be satisfied in each case are summarized in Table 5.1, as a function

of the diameter ratiõRp =
Rp

Rn
. On the left-hand-side of each relation we have characteristic pa-

rameters representing the ratio between cell active properties and nuclear mechanical properties

of cell nucleus. In particular, we identify

Gk
γ =

ρbαECMkbR2
n

γ
, GF

γ =
ρbαECMFM

b Rn

γ
,

Gk
E =

ρbαECMkbRn

E
, GF

E =
ρbαECMFM

b

E
.

Table 5.1: Entry criteria
Model Linear Force Constant (bounded) Force

Chien Gk
γ ≥

2
L̃p

R̃p
−1+ log

(

2
L̃p

R̃p

)

L̃2
b

GF
γ ≥

2
L̃p

R̃p
−1+ log

(

2
L̃p

R̃p

)

2L̃(∗)
b

Theret Gk
E ≥ 2π

3
Φ

L̃p

L̃2
b

GF
E ≥ 2π

3
Φ

L̃p

2L̃(∗)
b

On the right-hand-side of each relation we have the criticalvalue of the characteristic number

(indicated withG
j
i , with with i = {γ,E} , j = {k,F}), which is a function of the diameter ratio,

being

L̃p =
Lp

Rn
=

2
3

R̃p

[

1+2

(

1

R̃p

)3
]

,

L̃b =
Lb

Rn
= R̃p

[

4
3

(

R̃c

R̃p

)3

− 1

R̃3
p
+

1
3
+

(

L̃0
n

)2

R̃3
p

(

1− 1
3

L̃0
n

)

]

with L̃0
n = 1−

√

1− R̃2
p andR̃c = Rc/Rn. The notatioñL(∗)

b means that the value ofL̃b = Lb/Rn is
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Figure 5.7: Critical value of the characteristic numbers obtained applying (a) Chien’s model and
(b) Theret’s model, under the assumption of a linear force (blue), a constant force (black) or a
constant force over a bounded region (red dashed). We remarkthat Φ is a factor linking the
external and internal radius of the pipette, which is assumed to be equal to 2.1 in many works
[84].

used in the case of the constant force assumption whereas thevalue ofL̃∗
b = L∗

b/Rn is considered

for the bounded adhesive region case.

The critical characteristic numbers are plotted in Fig. 5.7as a function of the diameter ratio of

the channel. The graphs represent the minimum value that each dimensionless parameter should

assume in order to have the cell totally inside the channel, according to Chien’s criterion (Fig.

5.7(a)) and Theret’s one (Fig. 5.7(b)). Results obtained with the linearized Chien’s equation

(5.6) are comparable with the ones obtained with the more complex formula (5.4). In Fig. 5.7

the dashed line represents results obtained using constantforces over a bounded domain (where

we setL̃M
b = 5). It is possible to see that for big̃Rp, G

F
γ andG

F
E are obviously not influenced by

the assumption on the boundedness of the contact region in which integrins are expressed (i.e.,

the red-dashed curve and the black-solid one overlap). Indeed, it exists anR̃∗
p such thatL∗

b = Lb

for R̃p ≥ R̃∗
p, whereasL∗

b = LM
b for R̃p < R̃∗

p. Therefore the work of active forces is influenced by

the boundedness assumption only forR̃p < R̃∗
p.

For instance, Fig. 5.8 explains how these graphs can be interpreted (for the particular case

of Chien model): the bar charts below the graph represent therange ofR̃p for which a cell

characterized by a givenGk
γ or a givenGF

γ can enter the channel.

In the figure, ’cell 1’ (orange) is characterized by higherGk
γ or GF

γ than ’cell 2’ (violet).

This means that ’cell 1’ is either a softer cell (i.e., smallγ) or a cell that is able to establish
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Figure 5.8: Interpretation of the results: bar charts represents the range for which a cell, with a
givenGk

γ or GF
γ can enter the channel, for the different hypothesis of bond forces.

a higher number (i.e., higherρbαECM) of stronger (i.e., biggerkb or FM
b ) adhesive bonds. In

any case, the range for which ’cell 1’ can enter the pipette isbigger than for ’cell 2’ (orange

bars vs. violet bars), according to what we expect from biological observations. Moreover,

using the constant force assumption it is possible to see that the range for which cells can enter

the pipette is bounded both from below and from above. On the other hand, using the linear

force assumption, we do not have any inferior limit, in contrast with biological observation.

This contradictory result is due to the hypothesis used in the representation of forces. Indeed

in this case the more the cytoplasm of the cell spread inside the channel (small̃Rp), the more

bonds can pull the nucleus inside. In particular, even though the force required to deform the

nucleus grows as̃R−3
p , as R̃p → 0, the bond force raises faster, sinceL̃2

b = O
(

R̃−4
p

)

. On the

other hand, when a constant force assumption is used, for small R̃p, the length for which bonds

are formed augments
(

L̃b = O
(

R̃−2
p

)

forR̃p → 0
)

. Thus, the total active force increases, but it

is not sufficient to compensate the greater deformation required to the nucleus, which goes like

R̃−3
p forR̃p → 0. Conversely, introducing the boundedness assumption onLb, the active force is

limited.

In particular, we have that for̃Rp → 0, G
γ
F goes likeR̃−α

p (with α = 1 for unboundedLb and

α = 3 when the adhesive region is limited) andG
γ
K grows linearly.
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On the other hand, when the radius of the pipette is very big, the entry of the cell into the channel

is limited due to the decrease in the contact area between thecell and the channel wall, where

adhesive bonds are formed. It is likely that, in this case, the bond force is not equal to the

maximum applicable force. Thus, a linear force can better describe the physiological behaviour.

Therefore, a good choice for the bond force relation could bea ramp force on a bounded adhesive

region, which is also the most conservative case.

In Theret’s model it is possible to see that, forR̃p → 0, G
k
E = O

(

R̃2
p

)

andG
F
E = O (1) when

the constant force assumption with unbounded adhesive region is implemented. Thus neither the

constant force assumption nor the linear force one can account for the inferior limit in pipette

calibers. Only enforcing the boundedness of the adhesive region, the capability of cells to enter

very small channels is prevented.

Both Chien’s and Theret’s models, with the assumption of constant bond forces over a bounded

region, provide evidence for a biphasic cell migratory behavior that reveals most optimal migra-

tion at channel sizes at nuclear and subnuclear diameters and diminishes at gaps greatly bigger

or smaller than the cell nucleus diameter.

However, even though results obtained applying the classical models above seem promising,

especially when adhesion is active on a bounded domain, theycannot account for the finite

boundaries of the nucleus. Indeed Chien’s model refers to aninfinite 2D membrane, whereas

Theret’s one was derived for a 3D half space aspired inside a pipette, only for a small portion.

Therefore these criteria cannot be applied to describe the total entry of the cell into a pipette. The

consequence of this assumption are evident in Fig. 5.7, where, for R̃p = 1, the force needed to

deform the nucleus does not vanish.

Table 5.2: Behaviours ofGγ andGE for R̃p → 0
Model Linear Force Constant Force Bounded adhesive region

Chien G
k
γ = O

(

R̃p
)

G
F
γ = O

(

1

R̃p

)

G
F
γ = O

(

1

R̃3
p

)

Theret G
k
E = O

(

R̃2
p

)

G
F
E = O (1) G

F
E = O

(

1

R̃2
p

)

147



5 – Influence of nucleus deformability on cell entry into cylindrical ECM structures

5.5.2 Energetic models

In this subsection we present the results obtained with the energy balance model, presented in

Section 5.4. When the elastic membrane model (subsection 5.4.2) is used, we consider that the

cell can enter the channel if

Wactive≥ W
S

tot , (5.45)

whereWactive is given by (5.19) andW S
tot has the form presented in eq. (5.22). On the other

hand, when the elastic solid nucleus model (subsection 5.4.3) is applied, the nucleus can enter

the cylindrical structure if

Wactive≥ W
V

tot , (5.46)

whereW V
tot has the form presented in either eq. (5.28) for the ellipsoidal deformation or eq. (5.42)

for the cigar-shaped one. Depending on the hypothesis used to describe the adhesive-dependent

active force (linear vs. constant vs. bounded) and the geometry chosen for the deformed nucleus

(ellipsoid vs. cigar-shaped), inequalities (5.45) and (5.46) lead to the results presented in Table

5.3, with respect to the diameter ratioR̃p. As before,̃L(∗)
b stands either for̃Lb = Lb/Rn in the case

of the constant force assumption orL̃∗
b = L∗

b/Rn for the bounded adhesive region case. By scaling

all distances withRn and writing all material parameters on the right-hand-side, we identify four

dimensionless numbers that represent the ratio between active properties and nuclear mechanical

parameters. In particular, for the elastic membrane model we name

Gk
λ =

ρbαECMkb

λ
and GF

λ =
ρbαECMFM

b /Rn

λ
,

whereas, when the elastic nucleus model is used, we introduce

Gk
µ =

ρbαECMkbRn

µ
and GF

µ =
ρbαECMFM

b

µ
.

At the numerator we have all the parameters that characterize bonds forces (densities of bonds,

surface ratio of ECM, elasticity or maximum executable force) whereas at the denominator we

have the parameter describing the mechanical properties ofthe cell nucleus (λ in the case of an

elastic membrane,µ in the case of an elastic solid).

In Table 5.3,

I (R̃p) =
W tot

c
4
3

πµR3
n

+2
W tot

N−pole

4
3

πµR3
n

,
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Table 5.3: Energy based criteria
Model Linear Force Constant (bounded) Force

Elastic Ellipsoid Gk
λ ≥ 16π

[

1
2

R̃2
p

(

1+
sin−1 (e)

R̃3
pe

)

−1

]2

R̃pL̃2
b∆ L̃ellips

GF
λ ≥ 8π

[

1
2

R̃2
p

(

1+
sin−1 (e)

R̃3
pe

)

−1

]2

R̃pL̃(∗)
b ∆ L̃ellips

membrane Cigar Gk
λ ≥ 16π

(

1
3

R̃2
p+

2

3R̃p
−1

)2

R̃pL̃2
b∆ L̃cigar

GF
λ ≥ 8π

(

1
3

R̃2
p+

2

3R̃p
−1

)2

R̃pL̃(∗)
b ∆ L̃cigar

Elastic Ellipsoid Gk
µ ≥ 2

3

2R̃2
p+

1

R̃4
p
−3

R̃pL̃2
b∆ L̃ellips

GF
µ ≥ 2

3

2R̃2
p+

1

R̃4
p
−3

R̃pL̃(∗)
b ∆ L̃ellips

nucleus Cigar Gk
µ ≥ 4

3
I (R̃p)

R̃pL̃2
b∆ L̃cigar

GF
µ ≥ 2

3
I (R̃p)

R̃pL̃(∗)
b ∆ L̃cigar

whereW tot
c andW tot

N−pole are defined in (5.43) and (5.44) respectively. The right-hand-side of

each relation identifies the critical value of the characteristic number and it is indicated in the

following with G
j
i (with i = {λ ,µ} , j = {k,F}). Therefore, once a proper model is chosen, for

every diameter ratiõRp, it is possible to define the value ofG
j
i , above which a cell, with a nucleus

of dimensionRn can enter a channel of radiusR̃pRn.

We remark that this model, taking into account the finitenessof the nuclear dimensions, is valid

only for R̃p ≤ 1. Indeed, whenR̃p → 1, the elastic energy required to deform the nucleus is

almost null, whereas, allowing the cytoskeleton to enter the channel, the work done by active

forces is not null and it can easily pull the nucleus inside the channel.

Fig. 5.9 shows the value of (a)G
k
λ in the case of linear forces, (b)G

F
λ in the case of constant

forces and (c)G
F
λ for constant force over a bounded adhesive region, above which the cell can

enter a channel of scaled radiusR̃p, when the elastic membrane model is used. On the other

hand, Fig. 5.10 reports the ratios (a)G
k
µ and (b-c)G

F
µ obtained applying the elastic nucleus

model, under the same hypothesis of active traction forces.

Both in Fig. 5.9 and 5.10 solid lines represent ellipsoidal deformations, whereas dashed lines

stand for cigar-shaped final configurations. In any case, theassumption on the geometry ac-

quired by the deformed nucleus does not affect the qualitative behaviour of the solutions.

We remark that in Fig. 5.9-(a) and (b), for very small radius,the energy required to increase the

area of the nuclear membrane increases but the active force increases faster and therefore, for

R̃p → 0, the criticalGk
λ andGF

λ go to zero when the unboundedLb is used, giving rise to the

contradiction that cell can enter pipettes of very small diameters.
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Indeed, when the radius of the channel is small, the length ofthe cytoplasm inside it grows

considerably, leading, in the linear case, to active traction forces that are unrealistically high.

In particular, forR̃p → 0, we have that the energy required to deform the elastic membrane in-

creases as̃R−2
p , given that the increase in the surface area grows asR̃−1

p . On the other hand, at

the denominator ofG j
i , we have∆L = O

(

R̃−2
p

)

andLb = O
(

R̃−2
p

)

. Therefore, when the linear

force assumption is used,G
k
λ = O

(

R̃3
p

)

for R̃p → 0, whereas, when the bond force is assumed

constant,G
F
λ =O

(

R̃p
)

for R̃p → 0. In order to avoid the unphysical result, we more realistically

assume that bonds are formed on the surface of the channel until the maximum length,LM
b is

reached. Restricting the extent for which bonds are formed to a certain length (Lb = L∗
b), will

dramatically limit the work done by active forces for very small R̃p. In this case, forR̃p → 0,

Lb = O (1) and thus the criticalGF
λ goes to infinity likeR̃−1

p (see Fig. 5.9-(c)).

The same unrealistic result is obtained using the linear force model coupled with the elastic solid

nucleus model (see Fig. 5.10-(a)). In this case, for very small radii, the energy required to de-

form the elastic nucleus grows asR̃−4
p and hence, under the linear force assumption, the critical

Gk
µ goes linearly forR̃p → 0. On the other hand, when a constant force assumption is used, we

have thatG
F
µ goes to infinity asR̃−1

p , whereas limiting the adhesive region, it goes likeR̃−3
p , for

R̃p → 0.

Fig. 5.10-(b) reports the results obtained applying the elastic solid nucleus model with the con-

stant force assumption, whereas Fig. 5.10-(c) is obtained under the boundedness assumption. In

both cases the relation betweenG
F
µ andR̃p is a bijection. Therefore, for everỹRp it is possible

to uniquely define a minimum value ofGF
µ above which the nucleus is pulled inside the chan-

nel, conversely knowing nuclear mechanical and active properties, the minimum value ofRp that

allows the nucleus of radiusRn to enter the channel, is determined.

Table 5.4: Behaviours ofGλ andGµ for R̃p → 0
Model Linear Force Constant Force Bounded adhesive region

Elastic membrane G
k
λ = O

(

R̃3
p

)

G
F
λ = O

(

R̃p
)

G
F
λ = O

(

1

R̃p

)

Elastic nucleus G
k
µ = O

(

R̃p
)

G
F
µ = O

(

1

R̃p

)

G
F
µ = O

(

1

R̃3
p

)

Being the discrepancy between results obtained assuming the cigar-shaped and the ellipsoidal

deformation very small, it is possible to use the analyticalrelation obtained for the ellipsoidal
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Figure 5.9: Elastic membrane model: (a)G
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λ (in the case of linear forces),G

F
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constant forces (b) and in the case of constant forces over a bounded region, with̃LM
b = 5 (c).

The curves indicate the minimum value of the characteristicnumbers that need to be overcome
in order to have the cell enter a channel of radiusR̃p.
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µ in the case of constant forces over a bounded region (withL̃M

b = 5),
above which the cell can enter a channel of radiusR̃p.

case

G
F
µ =

2
3

[

2R̃2
p+

1

R̃4
p
−3

]

R̃pL̃(∗)
b ∆ L̃ellips

. (5.47)

BeingGF
µ the ratio between active and mechanical properties, eq. (5.47) shows that with respect

to cells with softer nuclei, in order to enter the same channel, more rigid cells (greaterµ) should
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either increase the number of adhesive bonds (ρb) or the number of focal points in contact with

ECM (αECM) or even force strength (FM
b ). This finding is in qualitative agreement with a number

of experimental works, such as [16, 127, 160], where cell migratory capability is associated with

nuclear deformations and the existence of critical channelradius above which cell can enter

has been observed. Moreover, it is comparable with the results obtained with discrete model

[133, 134], confirming that mechanical properties of the nucleus can affect the cell entry into

channels.

Eq. (5.47) can be of great value, for instance, in scaffold design. Indeed, assuming that cell

mechanical properties and their capabilities to express bonds are known it is possible to evaluate

the pore size that allows the cells to penetrate the rigid network.

5.6 Discussion

Due to the increasingly recognized importance of cell migration process in extracellular matrix

environments and its exploitations, e.g., in tissue engineering, theoretical models, able to analyse

the relative influence of single and interrelated parameters on the overall migratory process, are

needed.

We identified some energy-based criteria that take into account the mechanical properties of

cell nucleus, the adhesive characteristics of cell membrane, the active force generated through

cytoskeleton contraction, the finiteness of the nucleus andthe aspect ratio of the structures in-

volved in cell migration, trying to maintain the model as simple as possible in order to obtain

easily manageable results.

For the examples presented, some analytical results are obtained, providing the relation between

active and mechanical properties that should be satisfied inorder to have cells entering a channel

of given radius. Therefore, knowing the adhesive, mechanical and contractile properties of the

cell, it is possible to derive the minimum channel size and, conversely, observing experimentally

the capability of a cell to enter cylindrical channels of different dimensions, it is possible to char-

acterize the interplay between mechanical and active properties.

Results show that cells are able to enter ECM-networks only for pore radii bigger than a crit-

ical one, depending on the stiffness of the nucleus of the cell and their capabilities to express

adhesion molecules in order to bind to the extracellular matrix. Indeed, a rigid cell body would

nullify any attempt of the cell to squeeze through channels and network gaps narrower than the

nucleus dimension, as observed in [127, 160].

Therefore the approach described here could be applied to the design of synthetic scaffolds,
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with optimal values of pore size and fibre density, that may accelerate cell transport and in-

growth, critical for regenerative treatments (see Fig. 5.11(a)). Moreover results show that ap-

plying Darcy’s law to describe the motion of a continuum of cells, we have to consider that the

permeability depends not only on the geometry and dimensions of the pores, but also on the

microscopic mechanical properties of cells nucleus. Indeed there is a region in which the perme-

ability of the structure is null even though the radius of thepore is not null (see Fig. 5.11(b)).

(a)

(b)

Figure 5.11: Application of the energetic model proposed: (a) determination of the minimum
pore size in the design of scaffold with cylindrical channels; (b) definition of a region with null
permeability.
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However, in order to obtain reliable quantitative results,more studies are required, both from

the biological and from the mathematical point of view. In particular, more experiments are

needed in order to characterize cell mechanical response and a proper relation for the integrin-

mediated active force. A more comprehensive understandingon the microscopical mechanism

regulating nucleus deformation and cytoscheletal reorganization, when the cell is anchored to

ECM, can also help to obtain a more realistic description of the process. Indeed, it has been

observed that one of the major determinants of cell rigidityis the filamentous cytoskeleton. In

particular, microtubules seem to be implicated in cell shape changes and migration, whereas actin

filaments are generally considered more important for elastic resistance to deformation [92].

Moreover, biological experiments are necessary to validate the model presented, once the me-

chanical characterization of cells is accomplished.

From the mathematical point of view, the model can be improved in several directions in order

to reproduce more closely the behavior of cells. For instance, in our ongoing work we want to

study the whole dynamic process, considering all the steps of the cell entering the channel. In-

deed, the model we proposed is based on an “integral" approach, i.e., it considers the total work

required to pass from the initial to the final configuration and, thus, it gives an estimate of the

“mean" active force required, scaled by the mechanical deformability of the nucleus. However,

this method does not take into account the possible existence of intermediate states in which the

force exerted by bounds should be greater than the force needed to squeeze the nucleus inside

the channel. That is, the integral criterion used here to obtain analytical expressions gives a nec-

essary but not sufficient condition for the passage of the cell inside the channel. Therefore, a

criterion able to establish the maximum force needed would be more precise, though it requires

3D time-dependent numerical simulations.

Of course, one could use more realistic constitutive modelsrepresenting cell response to stress

(hopefully supported by experimental tests) and more complex relations for the active force ex-

erted by the cytoskeleton. In order to obtain a model able to reproduce more closely the behaviour

of cells, in particular, it seems very promising to study theactive component that characterizes

living matter response to external stimuli.

In spite of all possible developments, the energetic framework presented here is quite general

and continues to be valid even for more complex cell and membrane constitutive assumptions.
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This work presents some crucial aspects of cell and cellularaggregates mechanics. All the prob-

lems have been addressed in the continuum mechanics framework and referring to specific sys-

tems, relevant from the biophysical point of view.

Chapters 2, 3 and 4 are devoted to the macroscopic description of an ensemble of cells, whereas

Chapter 5 refers to processes occurring at the cellular scale.

The results exposed in Chapter 2-3 and 4 represents a development of previous models [1, 3, 7,

115, 116]. The mathematical theory stands on known results,while the novelty of this contribu-

tion is in the application of such results to a comprehensivemultiphase model, in which both the

cellular and the liquid phase are considered, along with nutrients diffusion and the presence of

the healthy tissue. In particular, the aim of these Chaptersis the exploitation of the remodelling

equation proposed in [7, 115] and its introduction into a complete model able to simulate a vari-

ety of physiological and pathological conditions.

In Chapter 2, we apply the theory of biphasic mixtures to the description of the uniaxial com-

pression of a cylindrical sample of soft biological tissue.In this preliminary work, the internal

structural changes are prescribed and constant in time. Therefore we do not have any evolu-

tion of the natural configuration. Starting from this approximation, we study how different ways

of changing the internal structure of the solid phase (i.e. different choices ofFa) influence the

deformation and, thus, the displacement field, as well as thedistribution of pressure inside the

medium. We show that deviation from the sphericity of the anelastic tensorFa affects the distri-

bution of pressure inside the sample of soft biological material, which can be of great interest in

all those biological processes in which the transport of substancesis fundamental.

The evolution of the natural configuration is considered in Chapter 3. Here, we propose a modi-

fication of the equation introduced in [7, 115], which empirically linked the evolution of internal

structural changes to anelastic contributions due to the rupture of adhesive bonds. The new model

is based on the existence of a yield criterion, above which cells reorganize. In particular, the



5 – Influence of nucleus deformability on cell entry into cylindrical ECM structures

elasto-plastic model proposed in [115] is extended in orderto incorporate the viscous contribu-

tion due to the fluid encapsulated in the cellular structure.The 3D elasto-visco-plastic model we

derived is able to reproduce the dynamic observed during experiments, providing an explanation

of the stress-relaxation phenomenon and of the dynamic observed during the stress-free shape

recovery procedure. Indeed, the cyclic deformation test presented in [52] cannot be described

only resorting on a surface tension model, whereas a model characterized by a yield condition,

as the one presented here, can account for the phenomenologies observed during biomechanical

experiments.

At the same time, thanks to the introduction of the viscous constituent, the model is able to re-

produce aggregate release dynamics observed during biological experiments.

Moreover, in Chapter 4 we introduce into this framework the contribution due to cell prolifera-

tion. The model proposed is able to describe the remodellingand growth of a cellular spheroid,

under different simulation settings. In particular we lookat different stages of tumor progression:

we first describe the mechanical response of a quiescent aggregate with a necrotic core. We show

that if the imposed load is not able to trigger the internal reorganization of cells, the aggregate is

able to bear the load even if the necrotic core is filled by liquid. We then consider the capability

of cells to proliferate, when they are not subjected to an external mechanical stress and in the

case in which the aggregate is compressed. Then, in order to give a more detailed description of

the growth terms, nutrients are introduced. The continuum description of cell aggregates allows

to introduce in the framework also the presence of the surrounding tissue, which would be com-

putationally too expensive with a discrete model.

The model provided in Chapter 4 is therefore able to simulatethe growth of a tumor spheroid,

described as a biphasic material, taking into account anelastic deformations resulting both from

growth processes and internal reorganization of cells. At the same time, thanks to the introduc-

tion of the liquid phase, the transport of nutrients regulating growth can be properly described.

The model also allows to describe the surrounding tissue, inorder to obtain a comprehensive

model of tumor growth in-vivo.

Finally, in Chapter 5, we focus on the last stage of tumor progression: the detachment and

migration of single cells across the surrounding extracellular environment in order to invade the

whole organism. In particular, in recent year, it has gainedattention the study of different factors

involved in cell migration inside 3D structures, because itcan be fundamental in order to assess

the metastatic potential of cancer cells and it can be exploited in bioengineering studies, e.g.,

tissue engineering.
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Despite the great importance of this subject, a mathematical model able to incorporate the me-

chanical properties of cells in the description of cell migratory process is still lacking.

We apply the tools provided by continuum mechanics in order to describe the effects of nucleus

deformability on the process of cell migration inside cylindrical channels. In particular, we iden-

tified some energy-based criteria that take into account themechanical properties of cell nucleus

and the active characteristics of the cell, trying to maintain the model as simple as possible in

order to obtain easily manageable results.

Results show that cells are able to enter inside cylindricalchannels only if the lumen radius is

bigger than a critical one, which depends on the rigidity of the nucleus and its capabilities to

express molecules of adhesion in order to bind to the extracellular matrix. The results shown

in Chapter 5 can therefore be of great value in the design of synthetic scaffolds, with optimal

values of pore size and fiber density, that may accelerate cell in-growth, critical for regenerative

treatments. Moreover the results highlight that applying Darcy’s law to describe the motion of a

continuum of cells, we have to consider that the permeability depends not only on the geometry

and dimensions of the pores, but also on the microscopic mechanical properties of cells nucleus.

Even though, we are conscious that a realistic description of the mechanical behaviour of sin-

gle cells and multicellular aggregates is still far from being achieved, we believe that this work

provides the basis for a more detailed understanding of the influence of remodelling phenomena

on tumor response to stress and on the interplay between remodelling and growth. Moreover, we

provide some new hints on modelling the influence of nucleus deformability and the capability

of cells to actively develop a force when anchored to the ECM,during the migratory process.

Of course, we are aware that the models presented in this Dissertation can be improved in several

directions in order to reproduce more closely the behavior of cells and multicellular aggregates.

In particular, future works, should be addressed to the derivation of the remodelling equation

directly from microscopic measurements on the detachment forces of single adhesion bonds.

Indeed the inclusion of microscopic information into continuum models and a rigorous math-

ematical theory to upscale data arising from the subcellular scale are still at their first stage.

Moreover the simulation of the whole 3D process, both for thespheroid compression and growth

problem, in absence of symmetry, and for the process of cell migration is highly required.

At the same time, from the biological point of view, more experiments are needed in order to

characterize cell constitutive response to stress, to find aproper expression of the force arising

from cytoskeletal contraction during cell movements into 3D environments and to better under-

stand the microscopical mechanism regulating nucleus deformation and cytoscheletal reorgani-

zation. Moreover, biological experiments are necessary tovalidate the models presented and to
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find realistic parameters.

In spite of all the possible improvements, the framework presented in this work is quite general

and it continues to be valid even if more complicated relation for cell capability to reorganize,

proliferate, adhere to the ECM and respond to stress are provided.
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