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Introduction

The scope of this dissertation is to give a contribution ® tinderstanding of the mathemat-
ical description of cell and cellular aggregate mecharfmsysing on remodelling and growth
processes which occur inside living structures and on ttegantions among cells and the extra-
cellular environment, during the process of cell migration

Studying the mechanical behaviour of living systems, eitiseisolated cells or as multicel-
lular aggregates is of great interest both from the biolalggnd the mathematical point of view.
Indeed, cellular aggregates have been shown to play an famaole in many biological phe-
nomena and it has been recently found that many pathologgescaompanied by an alteration
of cell mechanical behaviors and hence the response of imbdigical tissues may serve as an
important diagnostic parameter in the early detection efdisease [100, 138]. Moreover, cell
mechanics plays an important role in the capability of tuneskto proliferate inside the host tis-
sue and then to migrate and invade the surrounding tissiggicing tumor metastatic potential
[159]. Therefore a more detailed description of aggregateshanical properties is needed.

From the mathematical point of view, describing the meatgaf living materials is a really

challenging task. Indeed, cells and biological tissuescareplex materials, made of multiple
subelements, characterized by a non-homogenous locatizat mechanical properties inside
them and a high hetereogeneity among them [153, 155]. Funtire, cells are able to actively
respond when subjected to stresses (mechanotransdu@r)11, 155] and to interact with
each other to form tissues and multicellular aggregatesnmesstages of their life.
This ability of cells to deform and generate forces in anvacthanner and their capability to
interact with each other and with the extracellular enwinent, coupled with their extreme com-
plexity and the high heterogeneity in their composition anslubcellular properties outlines the
need of a specific mathematical model to describe cellulaanhycs.



Our goal is to make a step towards a more detailed undersigodicell and cellular aggre-

gate mechanics, developing a comprehensive continuuminmoaddich, from the macroscopic
point of view, remodelling due to cell-cell bonds ruptureowgth in response to nutrients and
the influence of the surrounding healthy tissue are consitlevWe therefore start considering
guiescent aggregates, in which cells do not proliferatevaadhen move towards proliferative
aggregates. Finally we look at the last step of the bioldgicacess: at some stage of tumor
progression, cells can eventually detach from the primancer mass and migrate in the extra-
cellular environments, in order to invade the whole tisso@ e whole organism. In this last
step, mechanical properties of single cells may play an maporole, even though they have al-
ways been neglected in mathematical models aiming at dé&sgrihis phenomenon. Therefore
we look at the influence on cell migration of the interplayvisetn nucleus deformability and
cell capability to actively respond as a consequence ofld&€&\ bond formation, with the aim
to incorporate this information in the macroscopic model.
Our level of spatial detail is coarse enough, that we can titaite our problem in the framework
of continuum mechanics, with the aid of mixture theory, wicetls and extracellular fluid are
separately considered. Indeed the most essential modeftdbislogical tissues, whose main
constituents are cells and extracellular fibers compositspld™” porous structure and an inter-
stitial fluid, is a biphasic mixture.

This project was set in the Ph.D. in Mathematics for EngiimgeSciences at the Politec-
nico di Torino, and, thus, both mathematical modelling ampliaations of analytical/numerical
methods are presented. In every chapter the motivationgthded the work are highlighted,
then the mathematical model is presented and an applicatithre model is exploited. Results
are discussed at the end of each chapter. When possiblegliagibur of the solution are ana-
lytically proved and the biomechanical meaning is pointed o
In Chapter 1, we review the basis of the classidaory of Mixturesintroducing the kinematics
and dynamics of multiphase mixtures, that are useful forcttraprehension of this work. We
also explain how these concepts can be adapted to the destopliving tissues, considering
structural changes inside cellular aggregates. Possiblegical applications of the classical
Theory of Mixture and of Continuum Mechanics in general &ientexploited in the following
chapters.

In particular, in Chapter 2, we apply the concepts present€&hapter 1 to the description of a
cylinder of soft biological tissue undergoing a confined poession. The influence of anelastic
phenomena on the distribution of cell volumetric fractiordgressure inside the specimen is
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highlighted. In this preliminary study anelastic process assumed to be constant in time and
homogeneously distributed.

In Chapter 3 the evolution of anelastic deformation is idtroed. In particular anelastic phe-
nomena are empirically related to the rupture of bonds batveells and to the reorganization
of cytoskeletal structures. The model is applied to the migtson of cell aggregate compression,
under different conditions (constant stress, constamefor constant deformation) and subse-
guent release. Results are compared with biological asadne possible.

Anelastic phenomena related to growth of cells inside sptsrare then considered in Chapter
4. Here, the interplay between growth and remodelling ms$ianor spheroids surrounded by
healthy tissues is studied for different morphologies.(@ggrotic liquid core or necrotic calci-
fied core) and situations (e.g. nutrients availabilityes$rapplication, presence of surrounding
healthy tissue).

We then move to the microscopic scale, with the aim of intoialy information deriving from
the smaller scale into continuum models. In Chapter 5 theienfte of nucleus mechanical
deformability and cell contractility in response to adlkredbond formation is exploited. In par-
ticular we focus on cell adhesion and deformation while emgeinside cylindrical structures,
composing the extracellular matrix networks.

Finally, in the Conclusions, we summarize the main achiemsof this work, highlighting the
improvements that have been done.






Chapter 1

Elements of classical Continuum
Mechanics

In this Chapter we will give an overview of the fundamentatoepts of Continuum Mechanics,
without claiming to be exhaustive, but with the sole purpafdeelping the comprehension of this
work. In particular we will focus on mixture theory, that&eémployed throughout this Thesis.
The first subsections are devoted to the introduction of sitméamental notation in the me-
chanics of porous media and to recall the basic conceptediitiematics of continua, present-
ing both the Lagrangian and Eulerian descriptions. We thevento the classical formulation of
dynamics, presenting balance laws. Finally, in the lagi@@eve will discuss the application of
classical mechanics to the description of living tissues \ag will described the framework of
“materials with evolving natural configurations”, introzkd in [86, 87, 126, 143].

1.1 Theory of Mixtures

1.1.1 Preliminary Definitions

Continuum Mechanics the mathematical description of the behaviour of defdrimanedia
under the action of external forces (possibly in a genegdlizense). In this work, we shall be
concerned with the study of “simple” continua, i.e., thosedilm which can be studied in the Eu-
clidean space or on manifolds [105] and we will not treat geliweed continua, i.e., those media
which may require higher order dimensional spaces (equidicrystals).

A body is said to be a continuum if the smallest characterisingth established by a certain
interaction is much greater than the molecular, or atonharacteristic distances [21, 44].



1 — Elements of classical Continuum Mechanics

In particular this chapter is concerned with some fundaaiexgpects of théheory of mix-
tures which is used this work. Mixture theory is used to model nphiase systems, i.e., bodies
composed of different substances, using the principle®oficuum mechanics. The basic as-
sumption is that, at any instant of time, all phases are ptegeevery material point. The equa-
tions governing the coarse-scale evolution of biphasitesys can be found by averaging the
relations that describe the systems at a smaller scale. vignagang procedures are often based
on volume- and mass-average methods [19, 80]. These askareristence of Representative
Elementary Volume (REVJ(x) € R3, which supplies information about the composition and
structure of the mixture at the poirte R3, whereR?3 is the ambient space. The characteristic
size of the REV depends on the system under investigatioa slihvolume2,(t,x), where the
subscripto indicates thexr-constituent, represents the subse®dk) occupied by ther-th phase
at timet. Thevolumetric fraction(or volume ratig of the a-constituent is

. |'QC!(t7X)| — l
Ba(00) 1= S0 = 1T o Satx G

where|(-)| denotes the measure 0f) and §4(t,x +s) is the characteristic function of the-
constituent, i.e.

1 if(tx+s) eQ

Ea (t,X-i— S) — ( ) a

0 otherwise
In the following, the abbreviations’, is used to denote the-phase in the mixture.
The distribution of mass of?, in Q, is called the'true™ mass densityof &4, and is denoted
here byp,. The producpy = pq (t,X) = @ (t,X) pa measures the distribution of mass#, in
Q, and is calledapparent” mass densit{or simply mass density) of?,. The density of the
mixture inx at timet is

N
p= p(t,X) = Z pa<t,X) . (11)
a=1

1.1.2 Elements of Continuum Kinematics

We formulate the kinematic description of the mixture idwoing standard definitions, that can
be found in several treatises about the classical Theoryigfukes (cf., for example, [14, 21,
119, 147]).

We consideN continuous bodie%.,...,%N. Each of them is visualized by the region it occupies
in R3. For a mixture, thesd bodies, are allowed to occupy common portions of physicatep

6



1.1 — Theory of Mixtures

and are called phases. Then every porkon the mixture is occupied bi particles.

As in continuum theory of single materials, each phase igyasd a motion, defined byg,
which is called thedeformation functiorfor the a-constituent (orar-motion, [118]), X« (t,-) :
By — R3, such that

X= Xa(t,Xa), (1.2)

whereX, is the position of a particle of the-body, or constituent, in its initial configuration
andx € R3 is the spatial position occupied at tih®y the same particle. We remark that with
lower cases we refer wpatial coordinateswhile upper cases indicatesaterial coordinates

The functiony, is assumed invertible for each tihand everya = 1,...,N

Xg = Xq (X). (1.3)

The invertibility of the mapx, ensures that a particle o8, at X, cannot occupy two spatial
positions (i.e., no ruptures) and that two particles witBipons Xy 1 and Xy 2 # X441 cannot
occupy the same spatial position (i.e., no overlapping)rédwer, all functions are assumed to
be sufficiently smooth, in order to make any needed matheaiatperations meaningful.

The gradient of deformation fof, at time timet is defined by the linear transformation

Fa = Gradka (t,Xa), (1.4)

where the symbol Grad denotes the gradient computed wiplece$so material coordinates (ma-
terial gradient), i.e.

Fa,jk = (1.5)

OXa k'’
with Fg = Fy jk 1] ® ik, X=Xjij and Xq = Xq K ik.
The determinantof Fy, det{F,) = Jy accounts for the change of volume of theconstituent
and it is always positive, being, invertible.

The linear transformation inversefy is

F,! = grady,(t,x), (1.6)

where the symbol grad denotes the gradient with respectiiaépoordinates.
We remark that
FaFgl=F,Fq =1, (1.7)



1 — Elements of classical Continuum Mechanics

wherel is theidentitylinear transformation.
Thevelocityof X4 at timet is defined as the time derivative g§

Va (t,X) = Va (t,Xa (1,Xq)) = W (1.8)

where the subscrifit means that the material derivative follows the motion ofdiheonstituent
and velocities can be regarded as functiongtof), due to (1.3). It is possible to define the
velocity gradiengt (t,x) as

Ly = gradvg(t,Xx). (1.9
Applying the chain rule, it is possible to show that
Lo = FaFal- (1.10)

Themean velocityalso called thevelocity of the mixturat (t,x) is

bll—\

N
Z PaVa (t,X) (1.11)

In particular, considering a two-phase mixture, composedsolid, %, and a liquid phase?,,
the velocitiesrs andv,, characterise the standard motion®f and &2,.
The velocity of the centre of mass of the mixture, which ismedias in (1.11), becomes

Vi M, (1.12)

P
where,p := p,+ ps, from 1.1, denotes the mass density of the mixture as a whole.

One of the most used kinematic quantities in mixture thestyé relative velocity of”, with
respect ta#s, Wys := V; —Vs. Other important quantities are the fluctuation velocfies=v, —v
andvs := Vs —V, which describe the relative motion of each phase with &dpethe motion of
the mixture as a whole.

The velocity gradient of the mixture &t x) is

L = gradv(t,x). (1.13)



1.1 — Theory of Mixtures

We recall that, thenaterial derivative following the motion of thex-constituent, of a differen-
tiable function of(t,x), that we will generically calf(t,x), is defined by
a9

gcr =Dqg= E(LX) + grad(g(t,x))va (t,X) ) (114)

whereas the derivative following the motion of the mixtwse i

g=Dg= %(t,x) +grad(g(t,x))v(t,x). (1.15)

Therefore, for each phase, we denotea@y(with a = /,s in the case of a biphasic mixture) the
acceleration of that phase, which is defined by the conwedivivative ol with respect to the
motion of the phase/,, i.e.

ag 1= 0Vg +9gradVvy )V , (1.16)

whered;(-) stands for the partial derivative of its argument with respet. The acceleration of
the mixture is indicated bg and is defined as the convective derivativarefith respect to the
motion of the mixture as a whole, i.e.

a:= gv-+grad(v)v. (2.17)

1.1.3 Balance laws

Balance lawgselate physical quantities that govern the mechanics oénas$. Balance prin-
ciples can be expressed either in integral (global) forrnadifferential (local) form [21]. In
regions of space where physical quantities vary suffiggesttioothly, balance laws are equiva-
lent to differential field equations; on the other hand, e pinesence of surfaces of discontinuity,
balance laws in a strong form have to be supplemented by jumgittons. In the following, the
notion of conservation of mass and linear momentum, thdtb&ilused throughout this thesis,
are presented. In the case of mixtures, when we considendelaws, we have to refer to the
balance of both each constituent and the mixture as a whole.

1.1.3.1 Balance of Mass

If a mass exchange occurs among the phases, associatechalitlt@nstituent of the mixture,
there is themass supplyerm, 4 (t,X), which represents the rate of production/depletion of the
a-component per unit volume at timen the positionx. The integral formulation of the mass

9



1 — Elements of classical Continuum Mechanics

balance for each constituent in a fixed spatial volutties

i/ padV:—/ pava-ndS-l—/ PaladV, (1.18)
ot Jy v %

wheren is the outward vector of the element of addd ¥ is the volume in which the balance is
written, wherea® 7  is the boundary of this volume.
For what concerns the mixture, the balance of mass reads

i/ pdV:—/ pv-nds, (1.19)
ot Jy oV

provided that there’s no net production of mass inside theurg, i.e.,

N
)3 / puladV =0. (1.20)
a=1'7

By means of the divergence theorem (1.18) leads to

/ ipo,dV:—/ div(pava)dv-l—/ PaladV. (1.21)
v Ot % 4

Requiring that (1.21) holds for every spatial volumes, we lcealize the mass balance for the
a-constituent and obtain the Eulerian, local form of the beéaof mass for each component of
the mixture

0 .

In the same way it is possible to write the local form of (1.19)

0 .

5P +div(pv) =0, (1.23)
which is valid ifz§:1 pala = 0. Equivalent forms of (1.22) and (1.23) are

pa + pad'V(Va) - pa,_a , (124)
p+pdiv(v) = 0, (1.25)

where material derivatives are defined as in (1.14) and J1.15
In particular, referring to biphasic mixtures, it is usetal rewrite (1.24) with respect to the
motion of the solid phase, for both constituents. Thus, taesalance (1.22), for the solid and

10



1.1 — Theory of Mixtures

the fluid phase specify to

Dsps+ psd|V<Vs) — psl_s, (126)
Dspy + prdiv(Vs) + div(pWes) = pel, (1.27)

Multiplying (1.26) and (1.27) byl = Js, and passing to the material description lead to the
following form of the mass balance laws

(\]Ps) = Jpsls, (1.28)

(Jp¢) + Div(IpF~wys) = Jpel (1.29)

that follow from the identit)da = Jq divvy. The operators “Div’ and “Grad” are the divergence
and gradient operators computed with respect to the mhtertadinates. They are related to
“div” and “grad” by the formulae gra@h) = GradA,)F~* and diA) = GradAy) : F~ T, where
Ais a given vector field, the symbol “:” denotes the inner pidietween tensors, and the index
“ X", which will be dropped from here on, meaAg(t, ) = A(t,-) o Xs(t,-).

A simplification of the mass balance presented before, @l&rom requiring that the true
mass density of the constituent in the mixtyvg, is constant, so tha¥?, is incompressible. For
a mixture, with incompressible components, eq. (1.22) @rephrased in terms @f, giving

0 ,

Eq. (1.26) and (1.27), for an incompressible biphasic mextead

Ds%‘i‘ %C“V(Vs) - %rs, (131)
Ds@ + @div(vs) +div(oWws) = @l ;. (1.32)

Also in this case, passing to the material description, we ha

@ =J@ls, (1.33)

(@) +Div(I@F W) = Jgl7. (1.34)

Moreover, if we assume that the void spaces of the porousumedre completely filled with
the fluid, the medium is said to Isaturated and the conditios+ @ = 1 applies at all times in
every point. Granted the incompressibility condition ahe saturation constraint, (1.29) takes

11



1 — Elements of classical Continuum Mechanics

the simpler form
Div[IF Yays] = —J+I(@ls+ @), (1.35)

1.1.3.2 Balance of Linear Momentum

Together with mass balance, also the balance of momentunohaes studied. As done for
the mass balance, also in this case we present both the baddmaomentum of the single
constituents and of the mixture as a whole.

The linear momentum balance for tbheconstituent in a fixed volum#” is

0
—/ paVadV:—/ paVa(Van)dS‘l_/ TandS‘l_/ (paba+ma +pal—aVa)dV, (136)
ot )y o o v

whereTq is the Cauchy stress tensor of theconstituent [21]. The term containirigy, rep-
resents contact forces on tlmeconstituent in?” resulting from the contact od”?” with the
a-constituent outside”. The termmg represents the momentum supply [21, 148], also called
local or internal body force, since it accounts for the laoétractions of the constituent with
each other, whereds, is the external body forces density and thygo,bodV stands for exter-
nal forces acting on the-constituent. The Eulerian local form of (1.36) is given by

0 . .
E(Pa%r) +div(paVa ®Va) = divTg + pabg +Mg + palaVy - (1.37)

By differentiating the I.h.s and imposing (1.22), eq. (3.8d@n be rewritten as
Padq = divTy + pabg + Mg, (1.38)

which is the most common formulation of the local version led tr-constituent momentum
balance.

Then we shall consider the axioms of balance of linear moumerdr the mixture. The external
body force for the mixture is defined by

N
b: z paba.
a=1

12
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1.1 — Theory of Mixtures

Truesdall and Toupin [148] introduces tlmer partof the stress tensor for the mixture, which
is defined by

. N
T: Z Ta,
a=1

while the Cauchy stress tensor of the mixture is
_ N
T:T— Z pa\?a ®\7a, (139)
a=1

whereVy =Vvg —V.
Adding together (1.37) for every constituent in the mixtared applying the definitions just
introduced, as well as those of the accelerat@masda,, the local form of linear momentum
balance for the mixture reads

pa=divT + pb, (1.40)

enforcing the condition
N

Z ma+paravG :O (141)
a=1

An explanation of the physical meaning of (1.41) in terms ofgpscale considerations can be
found, for example, in [80].

Finally, neglecting the inertial forces of every phaseg balances of momentum (1.37) and
(1.40) become

le(TC{) + paba + Mg = 0 (142)
div(T) + pb = div (T) +pb = 0.. (1.43)

By means of the Piola transformations of (1.42) an (1.43,ntomentum balance laws of the
mixture can be written with respect to the material placemmen,

Div(Pa) +Jpabg +JImg =0, (1.44)
Div(P) +Jpb =0, (1.45)

13



1 — Elements of classical Continuum Mechanics

where

Py = JTGF T, (1.46)

% Pq (2.47)
a=1

==
Il
g
I

denote, respectively, the first Piola-Kirchhoff stresst@s of thea-constituent and of the mix-
ture.
We remark that, when the saturation constraint holds, adragy multiplier, that we will name
p (because it has the meaning of pressure), shows up in thénatress tensor. In this disser-
tation, we will call T4 the total Cauchy stress tensor of thheconstituent, wheread;, denotes
its constitutive part, i.e.

Ty =Ta + @apl.

In order to close the mathematical problem resulting fror@X}, (1.22), (1.37) and (1.40) it
is necessary to provide constitutive laws on the stre$gesf every constituent in the mixture
and the force densitiggy by andmy.

1.1.4 Elements of the Theory of Constitutive Law

As it should be clear form Section 1.1.3, balance laws rgdaitgsical quantities, providing a
set of necessary conditions that dependent variables mifist However, balance laws are not
sufficient to formulate the mechanical problem in a selfsistent form since they involve a
number of unknowns which is bigger than the number of eqnati@herefore, a certain number
of additional non-redundant conditions have to be impo3&ése conditions must be consistent
with phenomenological observations and experimentaliisesand must be able to predict the
mechanical behaviour of the body. In particular, refertiaghe classical theory of Continuum
Mechanics, these conditions must be consistent with thediila - Duhem inequality [38].
These conditions are the so-callédnstitutive Laws

We will not present the theory of constitutive laws and theriested reader should refer to the
principal books in Continuum Mechanics (e.qg. [21, 77, 105])

In the following, when a particular constitutive law is réepal, a short explanation of the different
terms involved is presented. Moreover some details on tip@nements that constitutive laws
should satisfy are presented in Section 1.2.4, in a frameauitable to describe living systems.
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1.2 — Living tissues in the framework of Continuum Mechanics

1.2 Living tissues in the framework of Continuum Mechanics

Cells and biological tissues are complex materials, madaudfiple elements [153]: each cell
is bounded by the plasma membrane to form a closed objectioarg the nucleus and a fluid,
the cytosol (made of water, soluble proteins, sugar anyl gdiere numerous organelles are im-
mersed. Animportant intracellular structure, that plaigeyarole in many biological process (e.g.
maintaining cell shape, enabling movement, aiding calldildsion) and that strongly affects cell
mechanical behavior, is the cytoskeleton, a complex mesghafgolymers crossing through the
cytosol. Each subcellular element is different from theeolmd mechanical properties are non-
homogenously localized inside each of them [155]. For imstacytoplasm properties strongly
depend on the amount of actin or tubulin and on the degreelpiasisation of these filaments.
Similarly, the membrane has a bending modulus which is digr@ron the number and the type
of proteins embedded in it [155]. This high heterogeneitgett composition and in subcellular
properties makes mechanical response difficult to be medielten for a single cell. In addition,
cellular materials are different from usual materials lsesthey can develop an active response
when subjected to stresses. This response is due to meddnasthiction, which is the ability of
cells to transform mechanical external stresses into leimatal signals (and vice versa) in order
to transfer information to and from the nucleus [34, 111,]1%&is ability of cells to deform and
generate forces in an active manner, coupled with theiemércomplexity and their non linear
response to mechanical stimuli, outlines the need of a Bp&cathematical model to describe
cellular dynamics.

Furthermore, cells are able to interact with each othernm ttssues and multicellular aggregates
in some stages of their life. The rheological propertiesumhsmaterials are quite uncommon,
because they contain both cells and fluids embedded insecsdl and in the extracellular
matrix (ECM) among them. It is then known that not only theiimdic properties of the base
components - cells and collagen - but also their relativeeentration can affect the rheological
properties of multicellular aggregates [35, 132, 154, 155]

Therefore there are big theoretical difficulties in clagsif a cell aggregate as a liquid or as a
solid [10]. Indeed, treating it like a fluid may bring some piifications (e.g. to deal with veloc-
ities rather than deformations). However, the fact tharegates are made of both intracellular
and extracellular liquid and elastic solid components destrates the simplifications introduced
by such an hypothesis. On the other hand, it is not correaiisider multicellular spheroids as
standard elastic solids, because they are composed af imaterial: cells forming the aggre-
gates continuously duplicate and die, the ECM is constartiyodelled by the same cells and,
even in absence of growth and death, cells can reorganissfonse to an external mechanical
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1 — Elements of classical Continuum Mechanics

stimulus [10]. Therefore it is impossible to define a timdapendent “natural” state, towards
which the system will naturally evolve.

Due to this complexity, the mechanical behavior of multidar systems is still far from being
understood [10] and most of our knowledge concerning theldggcal and mechanical proper-
ties of cell aggregates comes from previous studies on gatidical tissues [154, 155], usually
corresponding to visco-elastic materials or to non-Nevetofiuids [63].

A biphasic mixture consisting of a solid and a fluid phase baps the most essential model
of soft biological tissues and multicellular aggregates319, 74, 117]. The solid phase that
forms the porous structure represents cells and the netefdikers, whereas the fluid phase
stands for the interstitial fluid, that completely satusatiee pores of the solid and may move
throughout it.

In this work, the medium is assumed to$eurated and the conditiogs+ @ = 1 applies at all
times to all points. It is sometimes assumed that cells apadionly form a portion of the tissue
and that they can occupy a prescribed volume fraction, @ek @ = @nax All the equations
presented in the previous sections hold vath- s./.

According to [118], we callZ, the subset of the three-dimensional Euclidean sf&de which
the solid skeleton in the mixture is embedded. We denote the coordinates of the centroid of
the REV associated withg,. The set%; is also said to be the “reference configuration” and the
coordinatesX may be called “material coordinates”. A smooth motionZg§, which is referred
to ass-motion in [118], is a sequence of mappingsét, - ) : %; — R3, such thak = xs(t,X) € R3.
The material gradient of the mag equals the deformation gradief := Grad xs). In order

to describe the kinematics of the fluid phasg, as done in [118], we introduce the material
manifold %,, which consists of fluid particles. A fluid particle, labellby X,, is placed in the
Euclidean space by means of an embedding that locates tinggatrx. A smooth motion of?,

the ¢-motion, is a sequence of mappings definedyalf, - ) : B, — R3, such that = x,(t,X,).
The definitions ok- and/-motion imply the chain of identities

X= XS(t7X> = Xﬂ(t7X€)7 (148)

which means that both the solid and the fluid phase co-exieeatame point of the Euclidean
space.

The main difficulty in describing cell aggregates and biatagtissues consists in the fact
that even in the absence of growth the ensemble of cells gadsran internal re-organization
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1.2 — Living tissues in the framework of Continuum Mechanics

in response to an applied strain or stress, which is macposaity translated in anelastic defor-
mation. Therefore, when the structural changes of thediase considered beside deformation,
the picture sketched in the previous sections becomes noonplex. With the ternstructural
changesve mean processes that contribute to modify the propertitgedissue (e.g., the stiff-
ness, diffusivity and permeability) in response to gromtiass exchange between the fluid and
the solid phase, and re-organisation of cells and fibrilserEthough these phenomena are all
intermingled, a conceptual classification is usually painbut in the biomechanical literature
(cf., for example, Fung [64] and Taber [143]), wher@wth is said to lead to the variation of
mass of a body, while the re-organisation of cells and filisiteferred to asemodelling

From the point of view of Continuum Mechanics, and in pattacin the Theory of Plasticity,
the structural changes of the solid phase of a tissue arelladdsy means of a class of defor-
mations that describe how the material particles are diged in the tissue. The mathematical
object used to define these deformations is a second-omssrievhich we denote h,. With

the terminology of [43]JF4 measures the material inhomogeneities triggered by grawéss
exchange processes, and cellular re-organisation. Thaesirong conceptual difference be-
tween the standard deformations and those describ&g:byhereas the former ones are related
to the gradient of displacement of the body, the latter de&tions need not to be the gradient of
any vector field. Rather, they are primitive entities thétrae together with displacements, the
parameters that are necessary and sufficient for descritininematics of deformable bodies
with variable internal structure. Whé, is not the gradient of any vector field (not integrable), it
is said to be incompatible. Physically, this represents#se in which material points lose their
geometric compatibility and the reorganization possikelgds to residual stresses [108]. The
tensorF, represents the anelastic part of the deformation gradeesorFs, which describes the
overall change of shape of a solid. The tenBgmdividuates an evolving relaxed configuration
of body elements. The total evolution of the tissue is giveough the deformation tensr,
which is a mapping from the tangent space related to theenederconfigurationZ;, onto the
tangent space related to the current configuragrihat represents how the body is deforming
locally. Then itis possible to consider the map frogpnto %; as composed of two parts: the first
one describes rearrangement of the internal structurereabéhe second one refers to the acco-
modating part of the deformation. In many cases the firstipaglated to anelastic processes,
whereas the second part refers to elastic deformations.cbmsideration leads to the introduc-
tion of a virtual configurations: the “natural” (or locallyress-free) state4,,, which takes into
account cell internal re-organization due to anelastiect$f[120].
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Figure 1.1:Diagram of the states from the original unstressed configuras, to the current configuratiog,
in the framework of multiple natural configuration®, represents the natural state, which takes into account cell
internal re-organization.

The accommodating deformation, which determines the hcwaiguration of the body
from the relaxed one, also callegtural configurationis denoted byF,,, and obeys the multi-
plicative decompositiofis = F,F4 [98]. In many cases,, is said to be the elastic part B and
it is indicated withFe.

This setting, introduced in [120] in order to describe nmmb materials undergoing structural
changes, was then successfully applied [1, 3, 86, 87, 123, figldescribe the growth and re-
modelling mechanisms of several tissues, allowing to medphrately the contribution due to
growth from the one due to deformation alone (see [6] for &\

The rate of anelastic deformatiohg = Fa(IFa)_l, is related to the variation of body mass in
such a way that that the mass density of the body is constaem wieasured with respect to the
relaxed configuration [43].

To be more specifidf, may be decomposed as the product of tensors, which dissinghbe
anelastic deformations associated with growth from thesecated with the reorganization of
cells and fibers, without any mass exchange.
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1.2 — Living tissues in the framework of Continuum Mechanics

In particular, in Chapter 2 we will consider the simpler gasavhichF is prescribed and con-
stant in time. In Chapter 3 the anelastic part of deformasaelated to remodelling processes,
whereas in Chapter 4, the contribution due to growth is adaebthereforé™, = FpFg, where
[y is the term related to pure growth, wherégsis the term related to remodelling. In order
to make consistent the notation presented in the previat®osewith the theory for materials
with evolving natural configurations, we present a formaolathat follows, with some slight
differences, the picture put forward by Quiligotti [118].

1.2.1 Kinematics

Referring to the definition introduced in Section 1.1.2,ridey to complete the kinematic analysis
of the biphasic mixture undergoing structural changesh sscin the biological case, we have
to introduce a non-standard descriptor in addition to theddrd velocities collected itg; :=
{Vvs,W/s}. This descriptor has to model the internal structural cleamigthe solid phaseZs, in
response to interactions that lead to the variation andtrdalition of its mass [74]. These types
of structural evolution are viewed as anelastic processeseported, for example, in [1, 3, 40,
43, 86, 87, 104, 126]. Therefore, the kinematic descriptahese processes is the tensor of
anelastic deformatiorf,, which is related to the rate of anelastic deformatiof;= FaFgl.

1.2.2 Mass balance

The variations of volume of the solid phase due to the elastecthe anelastic deformations are
denoted byl, = det(F,) andJ; = det[F,), respectively. The multiplicative decompositionf
impliesJs = JnJa. The determinantd;, J, andJ;, are strictly positive.

In the following, the index &’ associated withFs andJs will be dropped for the sake of simpler
notation.

For what concerns the balance of mass, we remark that theigtrog := Jps in (1.28) defines
the mass of”s measured per unit volume &#,; indeedps is the mass of?s measured per unit
volume of%; andJ represents volumetric changes fro# to %;.

Using the fact thall = J,J,, the quantityps, can be rewritten as

Psr = JndapPs = JaPsn, (1.49)
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wherepgs, := Jnps indicates the mass density 88 computed with respect to the natural config-
uration%,. Furthermore, substituting (1.49) into (1.28) yields

tr(La)Psn+ Psn= Psnl’s, (1.50)

beingJa = Jatr(La) [74]. We enforce now the condition that the variation of badgss is com-
pensated by the ratgir,), which implies that the mass densty, is constant in time. Thus the
following relations hold

[s=1tr(La), Psn= P, (1.51)

wherepg may be a function of material coordinates only. A conseqe@fi¢l.49)—(1.51) is that
the solution to (1.28) is given by
Psr Psn Ja

_ o Ja_
Ps = 7, —pan —psOJ~ (1.52)

This means that the apparent density of the solid phaseés determined if the constant mass
distributionpsp, is assigned, and the volumetric deformatidremdJ, are known.

A simplification may be obtained under the hypothesis thatille mass densifi is a given
constant. This allows to reformulate (1.52) in terms of thergger condition

= =Un - (1.53)

In (1.53),@;n denotes the volumetric fraction ¥ “seen” by %4,. We remark thaip;, is constant
and should be regarded as a known quantity of the model.

For the liquid phase, considering a saturated incompressiixture, eq. (1.35) continues to
hold.

1.2.3 Momentum balance

The change of internal structure of the solid phase is a peogose kinematics are described by
the tensor majry and the generalised velocity gradidng = Fa(IFa)_l. The set of generalised
forces that perform working oh, = Fa(Fa)—l comprises an internal forcg;,, which drives the
structural evolution, and an external for@g,, which models the interaction of the system with
its surrounding environment. Both forces are second-dedesors. It is postulated [40] that they
obey the balance law

Zn=Yp, (1.54)
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1.2 — Living tissues in the framework of Continuum Mechanics

The index ‘h” means thaZ, andY, are conceived as forces acting on the natural configuration
%n, although they can be also written with respect4apand %; by performing proper transfor-
mations. Here, we simply state that, in analogy with theri@addaws (1.43) and (1.42) (which de-
scribe a balance of forces that perform working on the setamfdard velocities), also the forces
that perform working on the non-standard descriftgrshould satisfy a balance law. Some
extensions of the results presented in [40] can be foundéample, in [4, 5, 9, 65, 71, 72, 73].

The internal force-like variabla®, andZ, are responsible for dissipation, and should thus
comply with the dissipation inequality that characteriges system under investigation. In the
next Section the main step if the procedure are sketched.

1.2.4 Study of the residual dissipation inequality
We introduce the total internal power density of the systédj |
W(%) = W %) + W (%), (1.55)

where2u! (%, ) and0in (%) describe, respectively, the working performed by the sieshend
non-standard forces acting on the system. These two catitnits are defined by the following
expressions

s Br) = /ﬁ t (In) 1Zn : La, (1.56)

Q%) = /ﬁ {—m;-wys+ T, : gradwps) + (Ts+T) : gradvs) }. (1.57)
bt
In a purely mechanical context, we call dissipation the gjtyan
G- /ﬂ [0DYe+ oD, W] + 200 (%) + 200 () > 0, (1.58)
S S

wherepW = ps%+ p,¥ is the overall Helmholtz free energy density of the system.

Invoking the saturation constraint, under the hypothe$éyperelastic solid phase, depending
only on thelF, term of the factorization of the tensor gradient of the defation, and macro-
scopically inviscid fluid, the variation of the inequality.68) yields the following results for the
Cauchy stresséss andT, [74]

oW
Ts = —@pl+ (ps5— |Fa F', (1.59)
0Fn

T, = —qQpl. (1.60)
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Requiring the invariance of constitutive laws under supposed rigid motions places further
restrictions on the results (1.59) and (1.60). If a rigid imotis impressed, the pointse %;
transform as< — X = R x + ¢, whereR is a proper orthogonal tensor defining a pure rotation,
andcis a vector defining a pure rigid translation [77, 107]. Capsmtly,F, F, andF, transform
as follows

FsF=RF, F,— Fn=RF,, Fa Fa="Fa. (1.61)

However, the Helmholtz free energy densi#yhas to remain invariant under these transforma-
tions. Therefore$¥; may depend off,, only through the Cauchy stretch tengty = (Fn)TIFn,
which is independent oR. This yields the relation

ows\ oW
(ps(?TFn) =y <2psdTCn) ) (1.62)
where#s is the Helmholtz free energy density of the solid phase amitis a function of,. On

the other hand, the Cauchy stres8gandT, transform a§fa =RT,RT, with a = s,¢. Using
the definitions (1.53) and (1.46), the first Piola-Kirchhstffess tensors become

Ps = —Ja@gsnpF " +F {JaIFgl (2 ‘%i“) IF;;T] , (1.63)

P, = —(J—Jagsn)pF T, (1.64)

where#sn = @nds#s. SinceF—T =F TF; T, the stres®s can be rewritten as

_ _ ol 2
Po= JPeFaT, Peni= —@unpFaT +F, (2 ag”). (1.65)
n

Finally, the Mandel stress tensor is introduced [77]

oW s
Msn = Jn]FIT]FrTT — ]F;I‘-]P)sn = —%np'i‘ Cn (2 Sn) .

1.
ac, (1.66)

The constitutive results (1.63) and (1.64) allow for a sifigation of the expression of dissipa-
tion. After localisation, we obtain

D = —y - Wys+ (In) "2 : 1La > 0. (1.67)

22
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where
m, :=m, — pgrad @), Zn = Msn+Zn (1.68)

are the dissipative part of the force-like variabtesandZ, respectively.
Substitution of (1.68) into the balance laws (1.42) (wath= ¢ andb, = 0) and (1.54), and use
of the constitutive result (1.60) yield

m, = @gradp), (1.69)
Zn = Mgn+Yn. (1.70)

Before proceeding with the determination of the forea®, and (Jn)‘lin, a discussion about
the study of the dissipation inequality (1.67), and somésoifnplications, is mandatory.

Let us setlL, = 0 and focus on the pair—m,,wWys). In Biomechanics, it is often assumed
that fluid flow obeys Darcy’s law [13, 103, 117, 155]. Darcy’sdel of flow can be retrieved
consistently with the study of dissipation by expressiiy as a constitutive function a¥,s that
vanishes whew,s = 0 (see, for example, [80]). This function is then expandetaylor series
in a neighbourhood of/;s = 0 and, for small velocities, only the first-order term of tixp@nsion
is maintained.

—fy = AQWs. (1.71)

Assuming thatA is a positive-definite second-order tensor that represbetgesistivity of the

medium, substitution of this result into (1.69),

1
OWys = —;Kgrao{ p), (1.72)

whereK = vgA~1is the permeability of the porous structure ani$ the dynamic viscosity of
the fluid phase. Equation (1.72) is known as Darcy’s law.

Let us put noww;s = 0 and study the pait(J,) 1Zn,La). In some models of growth
mechanics, constitutive laws of the tyé?a = Hp : Ly have been proposed (cf., for example,
[4, 5,9, 71, 73, 102]), beindfl, a diagonally symmetric, positive-definite fourth-ordemder.
The rate of anelastic deformatidn, is presented in the formh, = Gy, : Zn, With Gy, = (Hp)~L.
Substitution of (1.70) in this relation yields

La — Gn . (Msn+ Yn) (173)
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Equation (1.73) follows from the hypothesis tiat can be assigned as a constitutive function
of L, that vanishes wheh, = 0. This function is then assumed to be smooth and linearrsed |
a neighbourhood of.; = 0. For a positive-definité,, the formula (1.73) admits the follow-
ing interpretation: the rate of anelastic deformatibp, becomes zero when the external force
Yn can be tuned in such a way that the s(iMis, + Y,,) vanishes. This situation implies that
F4 (which always satisfies the kinematic relatiBy = LalF5) either ceases to evolve in time or
remains equal to its initial value. In some biomechanicgliaptions,Y, is thought of as the
“target stress” that regulates the process with which itssoaiated (when the target stress is
reached, the process ceases). For example, in the moddeohhgrowth proposed in [108],
Yhn is related to the homeostatic stress. On the other hand ietiisorY, is zero (or negligibly
small), the equality.; = 0 cannot be recovered in general, since the Mandel siiégs,s not
compensated by any external force.

Another method for determining evolution laws is given i®]j2where rate-independent
plasticity is investigated. The dissipation is defined asrecfion of Ly and is assumed to be
continuous, but generally non-differentiable,lat = 0, while the tensof, is constitutively
indeterminate at.; = 0. Within this framework, a maximum-dissipation criterigrformulated
and it is proven that the dissipation function is everywtsre-differentiable and, thus, convex
with respect td_,, and thafZ, must belong to the sub-differential of the dissipation fimrz. The
evolution oflL, is determined by introducing a scalar yield criterion thglbuhe yield function
f and showing that.; has to be an element of the sub-differentiafofin the case of a smooth
yield functionf, it is found thatl, follows the “normality rule”

La:;\;—f, (1.74)

n
whereA is a Kuhn-Tucker multiplier satisfying the conditioAs> 0, f <0, A f =0, and deter-
mined by the consistency requirement = 0. Many of the mathematical tools for presenting
this theory can be found in [121, 122, 125].
We remark that (1.73)—(1.74) are all plausible ways to deitee the evolution of_;.
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Chapter 2

Confined compression of a cylindrical
sample of cartilage

The scope of this chapter is to study the transport of fluiddefarmable porous medium whose
mass and internal structure may vary in time. We formulatepooblem with the aid of Mixture
Theory and the framework of multiple natural configuraticaggplying the concept presented in
Chapter 1.

Thus, we consider a biphasic mixture consisting of a soldl afluid phase. The solid phase
represents the cellular constituent and the extraceliibiggs, whereas the liquid phase stands for
the extracellular liquid filling void spaces.

Structural changes occurring inside the sample are desthip the second-order tendgy. In
this first work, the anelastic part of the deformation is takenstant in time and we do not
distinguish between anelastic deformation due to pratfen of cells and pure remodelling.
Based on this approximation, we study the influence of dendtom sphericity of the anelastic
deformation tensorF, (which correspond to different possible ways of changirgyitiiernal
structure of the solid phase) on the deformation and, tiesdisplacement field, as well as the
distribution of pressure inside the medium.

The mathematical model is formulated in Section 2.2 and #pplied to the compression of a
cylindrical sample of biological material in Section 2.2Finally, results are presented in Section
2.3.



2 — Confined compression of a cylindrical sample of cartilage

2.1 Motivations

Among the factors that assess the health of a tissue, an tampaole is played by the amount
of constituents that supply nutriment to the cells and ragutheir metabolism. These chemi-
cals are transported by liquid flowing in the "solid" strueteomposed of cells and extracellular
matrix. Accepting the applicability of Darcy’s law to sucyssems, fluid flow is determined by
the hydraulic conductivityK, and pressure gradient. Therefore, the study of the tranepa
fluid in a deformable porous medium with variable mass anelrival structure reduces to the
determination of the influence &% on K and pressurep.

Under the hypothesis of negligible inertial terms and inpogssible solid and fluid phases, the
unknowns to be determined are the displacement field (whaderial gradient i¥), the pres-
sure, andF,. We formulate a boundary value problem for the calculatibpressure and dis-
placements. In this preliminary study, we consider the panyicular case in which the tensor of
anelastic deformation is kept constant (ifg.is constant and known from the outset).

In particular, we show that different choices of the initialuelFy lead to different pressure dis-
tributions and displacements. The latter ones, in turecaf and are thus able to influence the
capability of the medium of conveying fluid. The alteratidrpcessure may be relevant for some
biomechanical applications in which the health of the cella tissue depends on the pressure.
For example, this is the case of chondrocytes in articuldil@age. Moreover the most essential
model for articular cartilage can be represented by a bipmaixture, in which specialized cells
(chondrocytes), collagen fibres and matrix of proteoglgdanm the solid phase. In these soft
tissues the flow of the fluid phase, comprising water, ionsvamnitus chemical compounds (i.e.
nutrients for the cells or products of the cellular metabadtivity), is of fundamental importance
in order to preserve its functionality. Furthermore, ualdther connective tissues, cartilage does
not contain blood vessels, therefore chondrocytes ardisdgdyy diffusion, helped by the pump-
ing action generated by compression or flexion of the elastitilage due to load application.

2.2 Mathematical model

Our purpose is to study how the structural change of the pbléde influences fluid flow through
the modulation of the transport properties of the mixturee \Mge the concepts presented in
Chapter 1 and we accept the validity of Darcy’s law, so thatfthid flow depends on hydraulic
conductivity and pressure gradient. Therefore, to accmmur task, we have to show how,
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for a given type of problem and assigned boundary conditidifferent tensor&, modulate the
hydraulic conductivity of the medium and the pressure fiekide it.

We remark that the medium is assumed to be isotropic withexddp both its elastic properties
and permeability.

Referring to the concept introduced in Chapter 1, we indiedth ¢ the volume ratio of the
solid components of the mixture, i.e. cells and fibers, waege stands for the volume ratio for
the extracellular liquid. By substituting (1.72) into (B)3 using the constitutive results (1.63)
and (1.64) and writing the pressure gradient in materiatdioates, i.e. gragp) = F~ ' Grad p),
the equations to solve are

—Div|[-JpF T +P§ =0, (2.1)
Div[K;Grad p)] = J — Jagsrtr(La), (2.2)
Fa=LaFa (2.3)

whereP; = JLFF;1S;F; T denotes from here on the constitutive part of first PiolaeKimoff
stress tensoilPs (cf. (1.63)). S, is the constituive part of the second Piola-Kirchhoff sires
tensor of the solid phase, measured with respeétoandK; is the material form of the tensor
of hydraulic conductivity, i.e.K; = JFIKF~T. In the following, for sake of simplicity, we
will omit the apexx for the constitutive part of the stress tensor. The matesiassumed to be
hyperelastic and isotropic, and is modelled by the Neo-lg¢aakelastic energy given below [20],
which leads to the following expressionsSy,

War Cr) = B tr(Co) 3] — pain@n) + 2 In(30)]2 2.4)
Son = 22 = ll— (Co) ]+ Alin(an)}(Co) . 25)

The tensoiK is taken from [85] and adapted to our framework, i.e.

B @ J—@nla]™ my [J%—J2
IR e TS

where the numbensy andm, featuring in (2.6) are material parameters. According t6)(2he
hydraulic conductivity given in (2.6) is an isotropic tensélowever, other forms of hydraulic
conductivity, which account for tissue anisotropy, haverbeecently proposed in [13, 49].

To close the probleni,; should be supplied by one of the formulae (1.73)—(1.74).

In the absence of anelasticity, the field equations (2.1Y21&) were studied in [42] in the case of
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a linear viscoelastic biphasic model for soft tissues. Maifysis wants to focus on how different
anelastic deformation tensofi,, influence the pressure and flow inside the specimen. In order
to reduce the number of equations to solve numerically, wisider the very particular case in
which the tensor of anelastic deformation is constant (fgis constant and known from the
outset), so that no anelastic evolution occurs. This insglatlL, is zero. In other words, we
assume that anelastic deformations have already takegs, pldich means that the tissue has
already grown and remodelled. Physically, this can be @@t by saying that the tissue grows
and remodels over a time scale much larger than the scalendveh fluid flows and elastic
deformations take place. This is consistent with the faat,thompared to other connective
tissues, cartilage grows and repairs more slowly.

Then, the unknowns of the problem are displacemefttX) := x (t,X) — X, and pressurep.
Equations (2.1) and (2.2), which hold in the internal pooftss;, are completed with conditions
prescribed on the boundady%,. For each unknown, the boundaty; is split into a Dirichlet-
and a Neumann-type subset. This means @t admits the representatioas?, = I{' U}
andd %, = Uy, wherer! andrl are the subsets @%; on which Neumann boundary
conditions for the displacement and pressure are presiniale 3 andI'Dp are the subsets on
which Dirichlet conditions are supplied. Formally, boundeonditions are written as

u=up, onls,
[—JIpF T +Ps]N=fp,, only, 2.7)
p:FTbv OnI_Dp7

[—K;Gradp)] ‘N =Qu,, onr,

whereN is the unit vector normal td.%,. The surface forcd,y, is defined per unit area of the
reference boundarfyy' and is generally different from the fordg associated with the actual
configuration%;. An analogous argument holds true for the quanti@gs and Qp, the latter
being the flux prescribed per unit area of the bounda#} of the actual configuration. The
pairs f.,-f, andQ;p-Qyp are related to each other by the formulae [20]

fio=JVN&N:C1f,, Q,=JVNoN:C-1Q,. (2.8)
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2.2 — Mathematical model

I:appli

Figure 2.1: Schematic representation of the parallel @pparatus used in the benchmark prob-
lem: the lower plate is impermeable, whereas liquid can flonwugh the upper plate. Results
are reported in the case of an applied load linearly incnggisi time.

2.2.1 Compression of a cylindrical sample

We apply the model presented in section 2.2 to describe anemhfiompression test under given
loading conditions. We consider the case in which the bighasaterial is positioned inside a
rigid cylinder and left free to deform anelastically. Inglgreliminary study we do not distinguish
contributions due to pure growth from those due to the rertiadeof bonds among cells and
fibers remodelling.

The cylindrical sample is then compressed between twogl#te lower plate is impermeable,
whereas the upper plate allows fluid exudation, so that thediembedded in the material can
escape from the specimen due to compression (see Fig. 2.1).

The formulation of the confined compression is based on teanagtion that the matrix
representation of the deformation gradient is given a vanplke diagonal form. Indeed, since
the cylindrical walls of the parallel-plate-apparatus supposed to be rigid and impervious, it is
reasonable to assume deformations and velocities of adititoents to be along th&-axis.
Therefore, using a cylindrical coordinate system, the me&tion generated by a uniaxial force
applied along th&-axis is

XtX)=R  xPtX)=0, x(tX) =z (2.9)
whereX = (R©,Z). We restrict our investigation to the case in whjghdepends oz andt
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2 — Confined compression of a cylindrical sample of cartilage

only, so that the matrix representation of the deformati@ugnt tensor is diagonal and given
by

F = diag{1,1,02x°} . (2.10)

We remark that, due to the particular formifthe identityd = dz x# holds true.

Then, we assume thay, the tensor of anelastic deformation that maps the tangeesof the
reference configuratior, %, onto the tangent space of the natural configuraflo®,,, has the
diagonal form

Fa: diag{g].?gl?gS} . (211)

We choose a non-spherical anelastic deformation in ordetutdy the influence of anisotropy on
the distribution of load and pressure throughout compoasdtor the problem under investiga-
tion, g1 andgz are assumed to be constant in time and given from the outsatn 2.10) and

(2.11), it follows that
117
Fn=diagy —,—,— ¢ . 2.12
" g{gl 01 93} ( )
The next step is to re-write (2.1) and (2.2) in cylindricabodinates. For ease of notation, we
introduce the symbol

Q:=-K;Gradp). (2.13)

It follows from (2.2) that

. . 10 100° 004 J0OZ
I=BVQ = ~5r(RY) g aQe - a(% - an’

ROR (2.14)

where the last identity holds true by requiring that the\d®ives with respect to both the radial
and tangential directions vanish identically, and t@8tis zero. The latter condition amounts
to say that there is no fluid flow along the radial directionis thus sufficient to determin®@?,
which is given by

ap 10dp Kadp
Z_ o (w\2z9P _ 9P _ _Rop
Q"= -K)™57 "Rz~ ez (2.15)
By substituting (2.15) into (2.14), we obtain
.0 (Kdp
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2.2 — Mathematical model

Taking into account that the Piola-Kirchhoff stress teri&gis diagonal, i.e.
P, — diag{PrR,Pw,Pzz} (2.17)
. 117 J . Ja
— Bl Anl )= ra
IJnJad|ag{ g%vg%)g%} + [ n Og (Ja) I«ln] d|ag{‘]aa~]a, J } 9

and that the liquid and the solid phases move along-ttieection only, the balance of momentum
(1.45) reduces to

dp oP*
%: —. (2.18)
By coupling (2.18) with (2.16), we obtain
: d (KopP*
i-2 (3 - ) _ (2.19)

o0 [Kad [ & < ( J ) )gigs)]
= —|== =J+ | Aplog| —— | — 2=

It can be proven that the partial derivativeR¥¥ with respect to the axial direction reads

2.20
gg JZ JZ JZ ( )

aPZZ_ Jabn  Jatin . JaAn Ja)\nl i Q
0z Ja) |02

Therefore, the mass balance law acquires the form of a rearlidiffusion equation, in which
the “transported” quantity is the volumetric deformatihnindeed, by substituting (2.20) into
(2.19), we obtain

T oz

whereD(J) represents a effective diffusion coefficient defined by

j= 2 [D(J)g—ﬂ (2.21)

(2.22)

D(J)::KlJaHn Jaln . JaAn Ja)\n|n<‘])}

g TE TE o E NG

It is important to notice thad(J) is always positive, beind < J(0,Z) = J; because of compres-
sion, which leads td, < 1. Therefore, all the terms on the right-hand-side of (2a22)positive.
This is consistent with the diffusive nature of the problerd & will be important also in defining
boundary conditions.
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2 — Confined compression of a cylindrical sample of cartilage

Finally, the diffusion equation (2.21) has to be solved tbgewith the auxiliary equations

ox*
27 = J, (2.23)
ap Jalh  Jalln  JaAn  JaAn J 0J
— = — n{—)|==. 2.24
0z g% J2 J2 J2 Ja) | 0Z ( )

We remark, however, that (2.23) and (2.24) are decoupled {&21), and can thus be solvad
posteriorionced is known, provided proper boundary conditions are supplied

2.2.1.1 Boundary and initial conditions.

In order to solve (2.19), (2.23) and (2.24), we have to sujpplyndary conditions (BCs) and
an initial condition (IC). In particular, the mass balan@el@) requires two BCs and one IC,
whereas both (2.23) and (2.24) require one BC only. Boundanglitions have to be provided
at the boundary pointg = 0 andZ = L, which identify the lower and upper boundary of the
specimen, respectively.

The boundary conditions have to be consistent with theviolig requirements:

() the axial stress at the upper boundary of the specimemohas equal to the applied load,
Pappl<t);

(i) the velocity of the fluid and of solid phase have to be zatrthe bottom because the lower
plate is impermeable and fixed;

(i) the pressureg has to be zero & = L since the liquid is in equilibrium with the atmosphere.

These observations are translated in the following set ohiary conditions

X%(t,0) =0, (2.25)
X (t,0)=0 = %(t,o) =0, (2.26)
~Ip(F T (t,L) + P(t,L) = Pappi(t), (2.27)
p(t,L) =0. (2.28)

We remark that, by virtue of the identity (2.18), we may regder (2.26) as follows

opP# Japln  Japtn  JaAn  JaAn, [ J dJ
— = — In( — —(t,0)=0. 2.29
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2.2 — Mathematical model

We recall that the argument in the square brackets is alwasisiye. Therefore, this condition
leads to a homogeneous-Neumann BCJfat the lower boundary:

%(t,O) ~0. (2.30)

On the other hand, (4.32) leads to a Dirichlet conditiod @t the upper boundary:

JJ(t.L) Ja Ja . [IEL)
Hn SNARREANTAN '”( %

n = Pappi(t) - 2.31
g% J(t,l_) ) pp|( ) ( )

Since this equation is nonlinear with respecftaL ), solutions can be found by applying New-
ton’s method or other techniques.

As initial condition, we take)(0,Z) = J;(0,2)Jn(0,Z) = Ja. Indeed, at the initial time, there
is no elastic deformation, although the anelastic defaondtas already occurred. We remark
that, for consistency, the conditidfy(0,X) = I entails thaty; = 1.

2.2.2 Discretization

Equation (2.19) can be solved using central differencesace derivatives and then a proper
ODE solver to obtain the temporal evolution. In the follogriwe depict the main step of this
procedure.

The 1D-domain, represented by the interf@al], is divided intoN — 1 subintervals of the
same widthAZ through the introduction dfl equispaced nodes

O0=Z1 <=0 +AZ < .. <Zj<..<ZIn-1<ZIn=L.

Spaces derivatives are then approximated by finite diftaxgnso that the following system of
N — 2 equations is obtained:

: 1 K'+1 K'+1 K Kj
J = tipzz <_J +_]) pzZ _1pzZ ) : 2.32

J ( j+1 Jj+1 Jj J Jj j—1 ( )
Here, j enumerates the nodes of the grid, idle.= J(t,Z;), Kj = K(t,Z;) andP?* = P¥(,Z)),
with j = 2,....N—1. The boundary value} andJy are given by (2.30) and (4.34). A special
treatment is performed for the initial node: in order to pres the second-order-accuracy of the
discretization method, a fictitious nodg is introduced, and the Neumann boundary condition
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2 — Confined compression of a cylindrical sample of cartilage

(2.30) is approximated by the central difference [17]

b-J
2(AZ)

0,

which impliesJy = Jo. This allows to prolong the validity of the discretizatiosead in (4.67) to
the nodej = 1.

At the upper boundary, we solve (4.34) numerically in ordedéterminely. For this pur-
pose, we implement a standard Newton-Raphson method. diagpoto this procedure, the
initial partial differential equation (2.19) is approxited by a system of ordinary differential
equations that can be integrated by choosing a stable ODJerselith the initial condition
Jj(0) =J3(0,Zj) = g?gs, for j =1,...,N.

After computingJ, the functiony? is calculated by invoking (2.23) coupled with (4.30), and
using a standard forward Euler method. The variation ofunesinside the specimen can be
calculated a posteriori, oné®&? is known. Indeed, integrating the balance of momentum §2.18
with the boundary conditiop(t,L) = 0 MPa, yields

p(t,Z2) = P¥(t,2) — P(tL). (2.33)

2.3 Results

The model presented in the previous sections is applieddorithe the compression of a cylin-
dric specimen of soft biological tissues, which is posi@dnn a chamber delimited by a rigid
cylindric wall and two parallel plates. The wall and the lovpdate are impermeable to liquid,
whereas the upper plate allows for fluid exudation. An exkecompressive force is applied at
the upper plate, parallel to the symmetry axis of the specimiéhe experimental apparatus is
schematically shown in Fig. 2.1.

We restrict our analysis to the case in which the externakfancreases linearly in time until
tmax= 30 s when the maximum forcEyax= —0.2-9.81 N, is reached.

In (2.11), we consider

Fa = diag{91,01,03} = diag{9,9,9+ ¢}, (2.34)

wheree measures the deviation &f from a spherical anelastic deformation. Therefore, dif-
ferent values ot stand for different capabilities of the biological sampechange its internal
structure.
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2.3 — Results

The numerical results shown in this section are obtainednpyamenting in Matlab the proce-
dure described in section 2.2.2. All the parameters aredist Table I.

TABLE |
PARAMETERS OF THE BENCHMARK PROBLEM

Parameteﬂ Description Value

L Height of the specimen 10 mm
2R Diameter of the specimen 5mm
Fmax Maximum applied force —-0.2-981N
tmax Time of load application 30s

ko Hydraulic conductivity 3.6454.-1072 m*/(N-s)
10%) Material parameter 0.0848
my Material parameter 4.638

@ Referential value of solidity. 0.6

@sn Solidity in the relaxed configuration 0.6

An Lamé’s first modulus 0.3137 MPa
Un Shear modulus 0.3566 MPa

We recall that, for the considered problem, the only possiblue ofg is unity. This implies
that the deviations af; from a referential spherical tensor are actually the deatfrom the
identity tensor.

Equation (2.19), integrated with the initial conditid(0,Z) = J; and BCs (2.30) and (4.34),
gives origin to the curves in Fig. 2.2-(a), which represiniZ) plotted over space, at different
instants of time (every 5 s for 30 s). In this simulation, wesse: 0.1. The corresponding volu-
metric fraction of the solidgs(t,Z) = @snJa[J(t,Z)] 2, is reported in Fig. 2.2-(b).

The characteristic time of the diffusive process describg®.19) is defined bty := L?[D(J)] 1,
which is a function of time and material coordinates throdgkor the considered loa®,(J) is

an increasing function of. Thus, the maximum characteristic tim}, corresponds to the min-
imum value ofJ, which is reached at the end of the simulatioZig L (cf. Fig. 2.2-(a)). On the
other hand, the minimum characteristic tinjg, is reached at the beginning of the simulation,
for 3(0,2) = Ja andD(J(0,2)) = ko(finG3 2 + Hndz 2+ Ands2) = Ko(2n + An)Jz 2. We remark
that the factof2u, + An) coincides with the P-wave modulus of the material.

For the parameters listed in Table I, we fifli~ 38.26 s and' ~ 32.32 s. We notice thaf}’
andt] are of the same order gax
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Figure 2.2: Evolution in time and space &(ft,Z) (a) and solid volumetric fraction (b), when
€ = 0.1, starting from the initial value3(0,Z2) = J; and @ = @ Solutions are reported every
5 s for 30 s, which correspond to the maximum time of load aggibbn. All the parameters used
in the simulation are listed in Table I.
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Figure 2.3: Evolution in time and space &¥4(t,Z) (a) and relative displacement,

2(t,Z) — 2(0,2)] /Lin (b), with P?%(0,Z) = 0 MPa andz(0,Z) = J,Z. Results are plotted every
5supto 30 s, in the case of the parameters listed in Table £ anf.1.

The axial component of the constitutive part of the first &ilfirchhoff stress tensoR?,
and the relative displacemerit(t,Z) — z(0,2)] /L;, are plotted in Fig. 2.3-(a) and Fig. 2.3-(b),
respectively. Herel, denotes the length of the specimen at time 0s, which is defined by
Lin:= fo" 0zx%(0,Z2)dZ = J,L consistently with (2.23).

The value oP?# at the upper boundary is given B§(t,L) = (Fappi(t,L)) /S whereFapp(t,L) =
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Fmax(t/tmay andS= pRZ, the area of the surface over which the applied load is Bigted, coin-
cides with the cross section of the specimen in the refereacgguration.

The amplitude of the displacement increases in time witlagi@ied load (cf. Fig. 2.3-(b)). This
behaviour is qualitatively the same also for the other \&lofes considered in the following.
However, the diffusive process tends to become slowergets bigger.

In the following, we run a set of simulations with varyiagn order to highlight the influence
of this parameter on the response of the material (e.grilwlison of stress and deformation
inside the specimen). Results are presented in Figs. 2.2.&nir € = {0,0.01,0.1,0.2}. In
particular, the volumetric deformatiah which solves (2.19), and the volumetric fraction of the
solid phase atnhax= 30 s are reported in Fig. 2.4-(a) and 2.4-(b), respectiwlg.remark that
the value of the solid volumetric fraction at the upper bamgdgs(t,L), is the same for every
value ofe becausd,[J(t,L)] 1 is constrained to satisfy (4.34) independently of
Pressure and relative displacements are plotted in FigatdiBhet = tyax Pressure is obtained
solving eq. (2.33), consistently with the condition (4.3Bhe value of the pressure at the lower
boundary rises asincreases, and the pressure distribution tends to becomeinlmmogeneous
for larger deviations oF ; from sphericity.

For the considered load, the normalised final displaceme(ttaxZ) — z(0,2)] /Lin, which is
zero at the bottom of the specimen, diminishes with incregsi(cf. Fig. 2.5-(b)).

J S

1.251 0.665r

0.66
1.2}

0.655r

1.15F
4\ | — £=0
11t 0.645} — ¢=0.01
1.05 0.64f — ¢=01
_\ — £=02
0.635¢
i

0.63

0.95
\ 0.625F

0'90 0‘2 0‘4 0‘6 0‘8 1 0'620 0‘2 0‘4 o‘e 0‘8 1
Z/L . . . .

Z/L
(a) (b)

Figure 2.4: Distribution 0 (a) and solid volumetric fraction (b) at the final time of camegsion
tmax= 30 s, for different values of.

The results of the simulations obtained by means of the ctatipnal methods outlined in
sections 2.2.2 are in good agreement with the results aatahrough finite element simulation.
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Figure 2.5: Evolution of the pressure over space (a) antiveldisplacement (b) at the final time
of compressiommax= 30 s, for different values of.

Fig. 2.6 and 2.7 show the results for two values ofor comparison with the results obtained in
Matlab®. The finite element simulations have been developed inlmoi&ion with a group of
the Institute of Computational Science at the Universitiadgvizzera Italiana (Lugano, Switzer-
land) [74].
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Figure 2.6: Time evolution of the displacement and the preswithout growth § = 0).
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Figure 2.7: Time evolution of the displacement and the preswithe = 0.1.
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2.4 Discussion

In this chapter, we apply the theory of biphasic materiath wariable mass and internal structure
to the description of the uniaxial compression of a cylindrisample of soft biological tissue.
The structural change, described by the second-orderrt&gsand the variation of mass (which
is assumed to be due to growth) are connected with each dtiwr the rate at which mass
increases (or decreaseg),is related to the rate of anelastic deformatigithroughys = tr(LLj).
For our purposes, however, we considered a simplified fraoriem which L5 is set equal to
zero. Consequently, is taken to be constant. This amounts to study situationshictwthe
biphasic medium evolves under external actions after atielee-organization and growth has
already occurred. Physically, this means that we are hygsaing that the time scale over which
the medium grows and reorganizes is much slower than the geat which it deforms. Based on
this approximation, we study how different choice&gf(which correspond to different possible
ways of changing the internal structure of the solid phasi#)ence the deformation and, thus,
the displacement field, as well as the distribution of presgwside the medium.

Our next goal is to consider fully coupled equations, in Whice value off; changes in time.
Moreover we are also interested in distinguish the contiobudue to pure growth from the
one due to remodelling. Thus, in Chapter 3 we introduce alvigpequation able to describe
anelastic contributions due to the rupture of adhesive ontiereas in Chapter 4 we introduce
the growth of the cellular constituent.
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Chapter 3
Uniaxial compression of spheroids

In this chapter we apply the notion of multiple natural couafagions, presented in Chapter 1 to
study the mechanical behavior of multicellular aggregateder compression. Cell and aggre-
gate responses to mechanical stimuli have been succgssésitribed using this framework in
[7, 115, 116]. However, the viscous contribution of the iejancapsulated inside the multicel-
lular system has always been neglected, except for the texmaelling the exchange of linear
momentum among the phases. In many situations, this siogildn leads to unrealistic results
when compression is released.

We will treat the system as a deformable porous material,pos@d of cells and filled with
physiological liquid, in order to analyse the non-linearcmanical behavior related to the re-
organization of multicellular structures, when a load iplagul.

The cellular constituent is responsible for the elastic #uedplastic behavior of the material. In
particular, the plastic component is due to the rearrangewieadhesion bonds between cells
and it is translated into the existence of a yield stressemtlacroscopic constitutive equation.
On the other hand, the liquid constituent is responsibleiferviscous-like response during de-
formation.

In section 3.1 we present the biological motivation thatigsithis work and we revised previous
work present in literature.

The general mathematical framework is outlined in Sectigh13 where the constitutive
equation for cellular aggregates is introduces. The madebtained under the hypothesis of
incompressible homogeneous material, wgthconstant in space and time and deformations
depending on time only, so that equations presented in Ehaimplifies considerably.

Then the model is applied to describe uniaxial homogeneoogession (3.2.2) in the three
following situations
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e application of a constant pressure, possibly repeatedtioner(section 3.3.1),
e compression at constant force and subsequent releaseiise&.2),
e imposition of a fixed deformation and subsequent releas®i¢se3.3.3).

The qualitative properties of the solution are describedetail, with proofs and the numerical
results (in terms of spheroid deformation and applied s}raxe compared with the prediction of
previous models [115, 116] and mechanical experiment®padd in [52].

3.1 Motivations

In recent years, many studies, focused on cell microrhgodogl mechanical behavior, aim at
establishing the constitutive equation of cells and agapey[1, 3, 7, 115] and at measuring
properties like cell interfacial energy, elastic modulag aelaxation times [52, 53, 54, 159]. In
particular, in [7, 115] it was shown that the phenomena oteskeduring some compression ex-
periments performed in [52, 53, 54], where a fixed defornmaigcapplied to the cell aggregate,
or in [90], where a dense cell suspension is subjected ta,steabe explained using the con-
cept that the natural configuration evolves, due to the aegement of adhesion bonds. Then,
aggregate mechanical behavior can be modelled couplinggbeelastic behaviors with a yield
condition, generating a plastic reorganization, when tress becomes too high.

However, pressure controlled experiments (e.g. creepaedistress-release experiments can
not be fully explained with the models in [7, 115], in whicletlquid encapsulated in the system
is not considered. Indeed experimental evidence [52, 5Bsiggests that, when an imposed
deformation is removed, the shape recovery dynamics okgadgs, requires some time. On the
contrary in [1, 3, 7, 115, 116], when the stress is releasedslhape recovery is instantaneous. A
similar behavior is found when a stress is suddenly applied.

In addition, if the imposed stress is sufficiently high, whee stress is removed, the initial
configuration is no longer reached, which can not be destntieéh the models presented in
[52, 53, 54], that are based essentially on the existencesofface tension holding together the
cell aggregate. A similar difficulty is encountered whenlohggawith the description of periodic
compressions of spheroids.

Therefore, in this chapter we extend the elasto-viscotiplasodel presented in [115] to
include the effects described above. On one hand, we ta@aaount the existence of a maxi-
mum stress that can be sustained by the cell aggregate betwganizing and on the other hand,
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we consider the fact that the total stress exerted by therapads not only due to the cellular
component, but also to a further viscous term due to theradfithe liquid phase.

3.2 Mathematical Model

3.2.1 The Constitutive Model of Cell Spheroids

Cellular spheroids used in biological experiments [52, B8, have a diameter ranging from
200 and 60Qum, which means 1b— 10° cells. Therefore cell aggregates can be modelled as
continuum media, presenting elastic, viscous and plasti@tiors:

e the elastic component is mainly due to the cytoskeletonclvie composed of elastic
filaments strongly cross-linked,

¢ the dissipative component, responsible for the viscoua\deh originates primarily from
the flow of the cytosol along with and through the cytoskeieteeshwork and from extra-
cellular fluid movements,

¢ the plastic component is due to the re-organization of ddhd®nds between cells and to
actin network remodelling inside cells.

We use the theory for materials with evolving natural configions [86, 87, 126, 144], pre-
sented in Chapter 1, Section 1.2.
In particular, in the case of mechanical testing of multidal aggregates, it is natural to assume
that no growth occurs during stress-induced deformatimeesmitosis and apoptosis occur on
a much longer time scale (several hours) than the typica soale of mechanical deformation.
Therefore, referring to Fig. 1.1 the anelastic part of theaeation is merely due to the remod-
elling of the internal structure of aggregates, that we wdicate withF,. Itis therefore possible
to introduce the following multiplicative decompositiofitbe total deformation gradient

wherelF,, identifies the deformation without cell reorganizationgci&ing how the body is de-
forming locally while going from the natural configuratiog, to %), I, describes the anelastic
component due to the internal re-organization of cellsl(gian from %, to %4p).

In order to introduce the viscous contribution due to theitigencapsulated inside cells and
among them, we apply the concepts of Mixture Theory, preseimt Chapter 1. Cells form the
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3 — Uniaxial compression of spheroids

solid structure, with volume rati@s, whereas the liquid phase has volume fractpand obvi-
ously the saturation assumption holgs:+ @ = 1. We will assume thafs and¢ do not change
in time and thus they can be considered given constant ofrtitdgm. The total tension of the
mixture as a whol€T, is due both to the stress exerted by the cellular constitlignand to the
one exerted by the fluid contained in cells and in which thesspl is immersed],. Hence,
neglecting inertial terms, eq. (1.39) yields

T = Ts+T,. (3.2)

Treating the fluid as a linear incompressible Navier-Stdked and assuming that cells and
liquid move with the same velocity, the second term in equet8.2) read¥', = — p@l+2v gD,
whereD = (L +1")/2 andpis a Lagrangian multiplier due to the volume additivity o tton-
stituents and it represents the interstitial fluid pressure
Obviously this is only an approximation and a better desionpof the phenomenon should sep-
arate the contribution of the intracellular liquid, fromathof the extracellular liquid described,
for instance, by Darcy’s law (1.72). The introduction of tiscous term is consistent with
Saramito’s work [130, 131] on elasto-visco-plastic fluidgch as liquid foams, emulsions and
blood flows. Indeed in these works the 1D total stress is sgmted byo = 1+ né, wherert is
an extension of the Oldroyd model coupled with the Binghamstitutive equation, whereas the
second term takes into account viscous phenomena.

Concerning the tens@is representing the stress of the cellular constituent, auenigpresen-
tation of the constitutive equation representing livingteabehavior is still under investigation.
In this work we assume that cells behave elastically, olgegiltNeo-Hookean law, with coef-
ficient of the isotropic term-(p+ 2s(¢)) and shear modulug, the first term of the sum in
equation (3.2) is

Ts=—@s(p+ 2s(s)) [+ u@sBn, (3.3)

whereB,, = FF].

For what concern the description of the anelastic part, W& te [115], where plastic effects are
included starting from the idea that the rearrangement loésion bonds during the deformation
of multicellular spheroids is related to the existence ofieldycondition in the macroscopic

constitutive equation of the stress tensor. The yield sigesg very important quantity in rheology
and it is associated with the existence of strong interastioausing the impossibility for a fluid
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3.2 — Mathematical Model

to flow when small shear stresses are applied.
Indeed experimental evidence suggest that when a cell gaggrendergoes compression:

1. for moderate values of applied stress, cell aggregafeselastically;

2. above a limit value, the cell aggregate undergoes inteesarganization which can be
modelled at a macroscopic level as a visco-plastic defoomat

The so-called yield stress, denoted tygs), depends on the number of cells per unit volume
because the threshold of the onset of cell re-organizasiganaportional to the area of the cell
membranes in contact times the bond energy, that reprabenisrk needed to break cell-to-cell
bonds. This is related to the experimental observationatiaésion bonds between cells have a
finite strength and might break or build up during the evolo{il5, 27, 139].

To translate this idea into formal terms, we propose a madifo of the model presented
in [115]. Using the virtual-power formulation and consider that the Cauchy tensofis, is
work-conjugate with the elastic deformation ratg= Fanl whereas the plastic tensd@ry, is
work-conjugate withLp = I'FpIFgl and it should be deviatoric beindlts = 0, it can be proved
[77] that

Tp = deMign = JF T'sF,; T, (3.4)

whereMsp is defined in (1.66) and we use the fact that= 1 so thatl, = J. We remark thaf’s
is the deviatoric part df’s, i.e., T's = Ts— %(tr’]l“s)ﬂ.

Recalling Chapter 1, Section 1.2, we introduce the const#dree energyy and we pos-
tulate a dissipation principle, such that we can postulagefollowing inequality for the solid
constituent [77]

@sPs— Ts: Ln—J5 1Ty Dp < 0. (3.5)

Then takingys = @s(Fr) and using the classical Coleman-Noll procedure for theatgilon of
second law of thermodynamics, we obtain

o 1
Ts=@g—F .
s (Pden n (3.6)
Tp:Dp > 0. (3.7)
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3 — Uniaxial compression of spheroids

ThereforelL, = G(T)) satisfies the previous relations, given any positive lirgearatorG.
Taking into account the mechanical observations on theengs of a yield criterion and the fact
that the material can be considered isotropic, we can choose

1= gt (58 o

wheref(T’s) is a suitable frame invariant measure of the stress of tHalaektonstituent and

[-]+ and synmi-) stand for the positive and symmetric part of their argumesgpectively. The
parameterr is in the rangg0,1] and determines the viscous behavior at high shear rates. In
the following, the particular case = 1 will be considered, to obtain the following constitutive
equation

L,=D, 1- T(%)} sym(E1T'&F;T) . (3.9)
+

~2n(e) l f(T's)

Assuming isochoric transformationk= 1, and thus (3.9) becomes

1 )
2n(@) ll fT)

Lp=Dp= ] sym(FaT'sF, 7). (3.10)
+

Equation (3.10) can be interpreted, considering that ai@ruale in the reorganization of cells
is played by the shear Tin that can be mapped back to the natural configuration takitog in
account that a material vector transforms like Fnt, whereas the normal to a material surface
liken = det(IFn)IFngn = IFngn, sincelF,, is an isochoric transformation. Then, one has that
t-Tin =ty - FIT4F, Tnn. Therefore a crucial role in determining whether the mategorga-
nizes is the tenscfp = F} T'sF, .

We observe that in (3.10), the term containing the yieldsstvitches on just when the stress
overcomes the yield stress in terms of the set measure.dicélse the energy is no longer elas-
tically stored but it is spent in cell unbinding and cytositeh reorganization at the microscopic
scale, which produces the spheroid rearrangement at thestapic scale.

Referring back to equation (3.10), we explicitly observatth

tr(Tg) = tr(FR TgF, ) = tr(Dp) = O, (3.11)

and that the eigenvalues Bf T T4F! are the same as thosedf.
Furthermore bein’s objective, we have to study how the quantities in equatiotO)&ransform
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3.2 — Mathematical Model

under an euclidean change of frame. Denoting with a(?)ethe value of a field after the change
of frame and withR an orthogonal tensor, thanks to the relations (1.61) inited in chapter 1,
one has

if and only if
G (FITgF: ") =G (MRTT’SM;T) =G (FITeF, "), (3.13)

which implies the frame indifference ..

3.2.2 Uniaxial compression

In this section we will study in more detail the response of @eanal satisfying (3.2) - (3.3)
(3.10) subject to a uniaxial compression test. Though tkalt® of this section also apply to
an elongation test, we focus on compressive forces, bethegare the more relevant from the
biological point of view.

Typical experiments can be performed under the followinggdtions:

e a constant pressure is imposed to the specimen and the pamcksg deformation is
recorded upon time. Possibly the compression is releaded sdme time allowing a
stress-free evolution of the specimen. Then, the processmpression with the same
constant load can be re-iterated. We will call the first expent stress-controlled test
or creep testand we will denote the last process@glic stress-controlled tegor cyclic
creep test

e aconstantforce is imposed to the specimen and the corrésygptieformation is measured
(force-controlled tegt Also in this case, the compression is released after songeand
the process with the same constant force is reiteratgecli¢ force-controlled te3t We
remark that, considering the increase in the transversoeaxf the aggregate, the applied
stress is no more constant.

¢ a fixed deformation is applied and the evolution of the stiesigle the body is moni-
tored Etress relaxation tegt Finally the same deformation is applied periodicallytite
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3 — Uniaxial compression of spheroids

spheroids to freely expand between two subsequent connmessin the following we
will refer to this process asyclic deformation test

We will assume that the deformation, generated by a unidarak or strain applied along
thez-axis, is homogeneous inside the body, keeping a constéunearatiogs, and is given by

X_ Y
10} ¢(t)

Then the deformation gradient from the initial to the finahfiguration is given by

X =

. z=9(1)Z. (3.14)

(3.15)

1 1
— di , o
: 'ag{ TORVCIO M}

The deformation gradient due to the internal reorganinatibthe cytoskeleton can be repre-
sented by

1 1
{ V() /W(t)
whereW,(t) is a measure of how much the aggregate has reorganized andtthal configura-
tion has evolved. Fo#,(t) = 1 we have no contribution due to rearrangement of bondsensid
the body.
From equations (3.15) and (3.16), beiiig- FnIp, it is clear that

- Yo(t) [%p(t) ¢(t)
F, = dia LAMLANY l Ty . 3.17
: g{\/ 30 \/ B(0) (1) (347
Therefore, considering that in the uniaxial compressish ttee total force is applied in the
z-direction, eq. (3.2) and (3.3) lead to

T=—(p+®3s(®)) I+ u@Br+2(1 - @)vD = diag{o7o7 - Pappl(t)} ) (3.18)

where we conside?,pp, to be positive for a compressive load.

In a stress-controlled ted?; ) is a known constant and it vanishes in the stress release phas
whereas it is a function of time, when we consider that theiegjporce,F,pp, is kept constant,
Fappl

. =appl . . . : .
force is applied increases. Finally in a stress-relaxatiqperiment under constant deformation,

i.e., Papp = . Indeed, in this case the stress decreases in time as thewaewhich the
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3.2 — Mathematical Model

the applied force is one of the unknown of the problem.

Considering that the liquid and the cellular component maitk the same velocity,

_ qiagd L 1100
D‘d'ag{ 2 2’1}¢<t>’

being

P(t) " o(t) W)

we obtain the following equation for the stress exerted leyriixture

B, = dlag{ qu<t) "pp(t) ¢2(t) } :

2
T = —ZH+u(psdiag{ ((t))’ (('[t))’LPg((?)}JF
+2v(1—(ps)diag{—%,—%, }%, (3.19)

where we calll = p+ @25(@).
Imposing the condition on the r.h.s. of (3.18), we have

%) ¢t)

() = o5 ) _V<1_%)W’ (3.20)
3
Pappi(t) = u%%—%(l—w%- (3.21)

The first term in the r.h.s. of both (3.20) and (3.21) is theesaintained in [115], taking account

the cellular constituent only, whereas the second termss &mom the introduction of the viscous
phase in the model. Equation (3.21) can provide the stresdegkby the aggregate when a
deformation is imposed along tzeaxis (e.g. a fixed deformatiogy), or it can be used to derive

the evolution ofp (t) when, for instance, a constant load is applied

9 _ Pappl H@s %3—493
¢ v(l-@) 3v(l-@) ¢¥2 ’

(3.22)

where we omit the dependence frofior sake of simplicity. As a particular case, equation (3.22
can be used to model the stress-free evolution of the systemosingP,pp = 0.

We observe that, when no load is imposed in eq. (3.22), tﬁm}t}a{{% plays the role of a
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3 — Uniaxial compression of spheroids

characteristic time in the shape recovery process. Comsglthe fact that we are compressing
a multicellular aggregate, this characteristic time candbated to the consolidation time of a

saturated porous material filled with quigg, wherepy is the dynamic viscosity of the phys-
iological liquid, L the multicellular aggregate heightthe permeability of the porous structure
andE its elastic modulus. In this way it is possible to derive tlagmeterv from physical
guantities measurable in experiments and by means of knetimates ok, e.g. the Kozeny-
Carman relation. Therefore, it is important to remark tia{3.22), the viscous coefficient,

is proportional to the viscosity of the fluid encapsulatedhe cellular specimen, but it is not
simply the viscosity of the physiological liquid.

Equation (3.22) needs to be joined with equation (3.10)ntakto account that

3 w3
12}¢ wp. (3.23)

1
T. = diag{ —=, — =,=
and postulating an equation ff{fT).
Here we consider that the frame invariant measure of thessieethe maximum shear stress
magnitude, given by half of the difference between the maxmand the minimum stress in the

principal directions (Tresca’s criterion)

TE-TY _ pe %98
2 2 ¢w2

f(T) = | (3.24)
which means that cell unbinding is primarily caused by tiygpsige of cells along the maximum
shear stress surface, which seems reasonable in a celigsegate under compression. In a
more general case, in which the principal stresses are ia@lly known, it is possible to use
the von Mises criterion, taking into account that Trescaitedon is more conservative and,
therefore, it predicts plastic reorganization for stregbat are still elastic according to the von
Mises criterion.

The evolution for the internal reorganization is therefore

Lij (4_/2 (.IJS_ 3
Bo_ 1 ‘f b_| TP g’ (3.25)
Yo A MW7l 0¥

whereA = M is thecell-reorganization timgor plastic rearrangement time) ane-= 7(¢).

H s
Equation (3.25) states that when the quantity inside tharsgparenthesis is positive, théf
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will evolve. In the following we will call¢y(%,0) the unique value op that switches on the
square brackets for fixe#, = ¥, 0, i.€.,
Lpp%o - ¢$(Wp70) 21

_ L (3.26)
Wioby(ho)  Hs

when the imposed deformation is known, only valueg® ¢y(1) are able to trigger the internal
reorganization of the aggregates. Moreover, as we will seenim detail in Section 3.3.3, in a
stress relaxation experiment with constant deformatiaraktp ¢o < ¢y(1) the equilibrium of

(4_/3_ 3
(3.25) is reached Whenziqgo = “2_;5 i.e., from (3.22) aP,pp = 21, independently othg as
0"p
in [115].
3.3 Results

The model presented in Section 3.2.2 can provide some uséfumation on the mechanical

behavior of aggregates both when they are compressed withstant force and when they are
released. In Section 3.3.1 and 3.3.2 we present the resqised in the case of a cyclic creep
test and a cyclic force-controlled test, respectively. ti®ac3.3.3 is devoted to the the cyclic
deformation test, as performed in the experiments in [52].

The following proposition will be useful.

Proposition 1. When the aggregate is compressed according to the folloimpgsed deforma-
tion and stress histories:

a) any given compressive deformatigrit) with ¢(t) <0

b) any sequence of givei(t) with ¢ (t) < 0fort € [ty,tz1] followed by a stress release for
te [t2i+17t2(i+1)] withi=0,...,n

c) any compressive loadafy(t) >0

d) any sequence of compressive loag,RPt) > 0, fort € [tz,t2i 1] followed by stress release
fort € [tait1,toi40)), Withi=1,....n.

if ¥,(0) > ¢(0), then
W(t) > () vt > 0.
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3 — Uniaxial compression of spheroids

This proposition allows to get rid of the modulus in (3.253aawrite (3.22) and (3.25) as

- 1wt -ot)® 21

Holt) = _ﬁl F<)l>(t)tlJ.§(t) _u(psL%(t)’ (3:27)
Pappi(t) pps W) —o(t)3

0 = e e g (3.26

Proof. Case a)

We first prove the proposition in the case of a given deforomapi(t) < 1 with ¢ (t) < 0 applied

to the cellular aggregate for= [0,t1], wheret; is the time when the upper plate is possibly lifted
up. The same proof holds for — co.

Considering that,(0) = 1, if the imposed deformatiof(t) is so small that (t) < ¢y(1),
wheregy(1) satisfies the yield condition (3.26), from (3.25) the quignti the square parenthesis
is always negative anéh(t) = 1> ¢(t).

On the other hand, if the imposed deformation is not so smdlthe yield condition is over-
come, then we can rewrite equation (3.25) regulating thuéeo of the internal reorganization,
as

1
3A

W —¢° 2t

@ —
P I A

] sgn—¢)%. (3.29)
+

It is trivial to check that starting frori#,(0) = 1, ¥ (t) is always positive. For the thesis, we then
definew(t) = W,(t) — ¢ (t) and consider the positive paw,., given by

W (t) = max{w(t),0} = { \(/)V(t) w(t) > O

and the negative paw_ defined as

—w(t)  w(t) <O0;

w_ = max{ ~w(t),0} = { 0 w(t) > 0.

Therefore the functiow can be expressed in termswef andw_, asw=w, —w_.

Thenw evolves according to

1
- 3A

WS—¢% 21 ]
— sgnw)¥, — ¢ . (3.30)
PWE  He |,
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starting fromw(0) > 0O, since at the initial tim&},(0) =1 > ¢(0).
We multiply each side of (3.30) by_ and integrate from 0 to an arbitrary tihe (0,t;] to get

t 1/t |‘1"3—¢3| 21 f

wwodt = —— P — s WWWdt—/ w_dt =
- 5 - 2T wdts [ dt>0 3.31
- 3/\/ ¢w2 R #fy—pwdtzo, @3

being both integrands non negativiec (0.t;]. Hence
t t 1 5 .
Og/ viw._dt = —/ Viw_dt= —Zw2 () <0
0 0 2

where we used the condition0) > 0, i.ew_(0) = 0.
Therefore

w2 (1) = 0= w(f) > 0= W) > ¢(f) Ve (0ty].

Case b)
If at any time,t =t;, the upper plate is lifted up, then, the equations regugétie evolution of
the system, fromh = t; on, are (3.22) and (3.25), that can be rewritten as

_— wS—93 21

M TV TTY fgr(%_d))% (892
_ up B¢

" wae W o

We apply the same method presented above, computing fobaraay timef € (ty,t2], where
to is the time when the compression is possibly restored (olsWyothe same proof holds for

ty — o)
f f 3_ 43
. Hs |qu 0 21
ww_dt = — — sgnw)w_Ydt+
4 3n OWF e griwpw-5p
e fL[Jp2_|_¢L[Jp—|—¢2
Ty /t gp et (3.34)
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We observe that also in this case, (t1) = 0, beingw(t1) = W(t1) — ¢(t1) > 0 (as demon-
strated before) and thefﬁ Www_dt = —%vvz. On the other hand, both terms on the left hand side
are always greater or equal to zero, being(sgw_ = —w_ < 0 andww_ = —w? < 0.

Then also in this case, we can conclude that
w(t) =wi (f) 2 0= (1) = ¢() Vie (tut].

Then itis possible to reiterate the process, together Wwilohe in casa) to demonstrate the
thesis.

Case ¢)
In the case of the application of a compressive stifggsy(t) > 0, along the negativeaxis

W o= —5y ‘wi;?'—;;Lsgr(Wp—dJ)Wp (3.35)
Using the same definition fav(t) we have that
£ 2 2
_ (le-(ps(ps> /“P +?:)21p+¢ ww_dt +
/ 3vpapp' w_dt (3.37)

The last integral in equation (3.37) is obviously non negafind therefore also in this case

W(t) = ¢ (1).

Cased)
If at any timet = t; the plate compressing the aggregate is lifted up, the emjueggulation the
evolution are the same presented in case b) and the conb#iogw(t;) = W(t1) — ¢(t1) >0
continues to hold thanks to case c¢). Thus adopting the saasemiag of case b), the thesis is
easily demonstrated.
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3.3.1 Cyclic creep test

In a cyclic creep test a constant pressure is applied whéesttain induced on the spheroids
is measured over a period of time and then the stress on ther ppade is removed. Consid-
ering only forces directed along the negatavaxis, it was shown in Proposition 1 (casethat
W(t) > ¢(t) and therefore equations (3.27)-(3.28) hold. Obviouslyemwkhe upper plate is
lifted-up Papp = O in equation (3.28).

Using Proposition 1, scaling times witiA 3and introducing the dimensionless quantities

f=5—;sa ﬂzﬁ, ﬁ(t):%,
the system (3.27)-(3.28) can be written in dimensionless fas
Wy = —[g(Wh,) — T+ %, (3.38a)
{ ¢ = [g(¥h.¢) —P()]9, (3.38b)
3_43
whereg(%,¢) = Z’W' It can be readily noticed thatis a decreasing function gf for fixed

Y, and an increasing functions 84, for fixed ¢.
The system (3.38) admits non trivial steady state onl/4f T, as it is stated in the following
proposition.

Proposition 2. In creep tests

a) ifP<T,thenW(t)=1and¢(t) > ¢ : g(1,¢c) = (pi

(3.38), with initial conditions#,(0) = 1and ¢ (0) = 1.

— @2 = P are solutions of the system

b) if P(t) > T, ¥t, then equations (3.27) and (3.28) admit only the triviaksty state.

Proof. Case a)
If P(t) < T, vt, from equations (3.38), being},(0) = 1 and¢(0) = 1 the right hand side of
(3.38a) is initially null, that mearféfp(O) =0, whereas from (3.381§)(0) < 0. Moreovert, =1
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and¢ > ¢. makes|- | of (3.38a) equal to 0. Indeed, beigdl,¢) a decreasing function df,

9(1,¢) - T <g(L¢p)-P<g(Le)—P=0, (3.39)

which holds for allt > 0.

From (3.38b) it is then clear that = ¢. and ¥, = 1 makesp = 0 and thatp > ¢. and
% =1 makesp < 0. We will then show tha(t) > ¢cVt > 0, using the same argument as in
Proposition 1. We define = ¢ — ¢ and hence

£ f )
/Ov'vwdt - n/o (9(L.§) —B) pw_dt >0, (3.40)

where we used the fact that when # 0, ¢ < ¢ and the parenthesis in the integral is positive.
Therefore :
0< / vow_dt — —%\Nz_(t”) <o,
0

thanks to the conditiow(0) > 0, i.ew_(0) = 0.
For the arbitrariness df this means thap (t) > ¢Vt > 0.

Case b)
The stationary condition for equation (3.38a) is reach#ukeiif ¥,(t) = 0 or if the expression
in square brackets is negative (i.e. the region above thimed Fig. 3.1 on the right).
If P(t) > T, this second condition correspondingdi®¥y,¢) < T, would make the right hand
side of (3.38b) always strictly negative.
Therefore the only possible stationary point for (3.38}s. =0, ¢ =0
(]

In the particular case of constaf the right hand side of (3.38b) vanishes for non 1441
only if g(%,9) = P that makes the r.h.s. of (3.38a) vanishing onlfi& T. As it is evident
plotting the vector field corresponding to (3.38),Af< T the solution starting fron,(0) =
¢ (0) = 1 will keep¥, = 1 while ¢ will tend to ¢¢ : 9(1,¢¢c) = P (see Fig. 3.1, left). On the other
hand, ifP > 7, solutions of (3.38) will tend to the trivial equilibria @i 3.1, right).

Hence in a certain range of stress, i.e. BoK T, or equivalentlyP,pp < 21, the cellular
aggregate does not undergo an internal reorganization ) = 1, whereasp(t) decreases
until the valueg. is reached. In this case, if after some time the load is rechabe specimen
will go back to the initial configurationg, = 1, following the classical visco-elastic response,
due to the elastic response of cells and the viscous ternmedicghid component (see Fig. 3.2).
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Figure 3.1:Vector field (blue arrows) corresponding to (3.38Ri& T (on the left) and® > T (on the right). The
red curve corresponds t%,¢) = 7, whereas the green curvego¥,,¢) = P. Itis clear thatif° < 7, ¢ and¥
will tend to the green curve. On the other han@i# 7, %, — 0 and¢ — 0.
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Figure 3.2:Cycle of compressions whéh< T is applied and then removed. The simulation is performetihget
the yield stress = 0.2PaandP,pp = 0.25Pa, according to the yield condition. The cellular volume oatg is set
equal to 08, which is consistent with biological observations [148{dhe cell-reorganization time ls= 22s. The
other parameters can be scaled according to the chofeere: u = 1Paandv = 20Pa-s). The compression and
release times are both equal t(?3 = 33s. The applied stress being under the yield condition, thermiinternal
reorganization of bonds#,(t) = 1), therefore when the compression is removed aggregatgsgsisively go back
to the initial configurationg, = 1. The liquid component in the mixture is responsible of thag introduced in
the recovery dynamics of spheroids when the upper platéesl lup.
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We observe that if the stress is not constant, but smaller2nart, ¥,(t) = 1 is still a solution
of (3.27).

In order to trigger spheroid internal reorganizat®must be larger thai. In this case,
will decrease front#,(0) = 1 according to (3.38a), causing a macroscopic remodellirtheo
multicellular body. Therefore when the upper plate is reetba plastic deformation of the ag-
gregate can be observed. The internal reorganization egtendls on the intensity of the load
applied to the aggregate, compared to the yield stress {(ge®B) and, ifP(t) > T ¥, it con-
tinues until the stationary condition is reached, thgn— 0 and¢ — 0. This physically means
that the aggregate is totally squeezed out between the appdower plates of the apparatus.
These results are intuitively reasonable and analyticaltyect, however they need to be verified
with experimental tests, that unfortunately are not presetiterature yet. It is important to
observe that standard creep tests used for the measureimestioanical properties of inert ma-
terial, eventually need to be modified to be suitable for {h@iaation to living cell aggregates,
that must be kept in healthy conditions during measurements

——P=104
—P=12

P=16
—P=28

Figure 3.3:Creep test and release for valuesRafp above the yield condition, i.eP = P/f > 1. The other
parameters are the same specified in Figure 3.2. It is pedsilskee that, because of the internal reorganization that
occurs within the spheroid under compressig#f ¢ynamics), the natural configuration of the aggregate asng
and when the upper plate is removed the multicellular bodysdwt recover its original shape and a macroscopic
deformation can be seen. The process that leads to thecpda$tirmation of aggregates is fasteiRasy, increases
and, independently d%,,,, ¥ — 0 and¢ — 0, which physically means the rupture of the aggregate.
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3.3.2 Cyclic force-controlled test

In the previous section, a description of creep tests, mechanical experiments at constant
stress, is proposed. The assumption of constant stress fedte total disruption of the ag-
gregate when the imposed pressure is above the thresholeshdl@es the internal reorganiza-
tion. However, in many cases, experimental machines wankigmucontrolled force conditions.
Therefore in this case, the stress is no longer constag e transverse section of the sample
increases as the aggregate is compressed and thereforendtant force is distributed over a
larger area.

In this Section, we aim to study the influence of the incregsiansverse section on the ca-
pability of aggregates to reorganize in order to bear thereat load. We assume a cylindrical
sample of soft biological material under a homogeneous cessjpve constant force directed
along thez-axis, Fappi(t). Some properties of the solution are proved and numerisaltseare
presented for a cycle of constant compressive forces arskgubnt releases, making a compar-
ison with the results obtained in the previous section farege test under constant stress.

We remark that eq. (3.27)-(3.28) continue to hold, defiragyi(t) = Fappi(t)/Sappi(t) where
Sappi(t) is the surface on which the load is applied. In order to defiessiternal applied stress
we need to do some hypothesis on the geometry of the biologacaple. In this case we as-
sume a cylindrical sample of soft biological material, thdigse to the definition oF, we have
Pappi(t) = Fappi(t)@(t)/m.

As done before, we use Proposition 1 and we scale times witHr8roducing the new dimen-
sionless quantities

E(t) — rappl
s’
L’JS o ¢3
and the functiorh(%p,¢) = 3/274;2’ the system (3.27)-(3.28) can be written in dimensionless
p
form as
{% = —[0(%.9) — 1]+ %, (3.41a)
¢ = filh(%h.9) —F(1)]9?, (3.41b)
LIJS_ ¢3
where, as beforegy(¥,¢) = F:I-’T(P = h(¥,,¢)¢ . It can be readily noticed that bothandh
P

are decreasing functions ¢ffor fixed ¥, and increasing functions &#, for fixed ¢. We recall
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3 — Uniaxial compression of spheroids

thatgy(%,0) stands for the unique value that invegts- 7 for fixed ¥, = ¥, o, i.€., such that

ngo - ¢$(wp70)

=T.
Weody(Who)

9(%p.0,0y(¥p0)) =

Similarly, we define by (¥ 0) the unique value that inverts = Ry = max{F(t)} with
respect tap for fixed ¥, = W0, i.€., such that

WSO - ¢3F (%p0)

h(¥p.0,0cF(%ho)) = w20¢2F((,up 0)
p7 C’ ’

= kv, (3.42)

where of course we assume that the applied force is bounded.

We first derive, also in this case, the yield condition thigigier the internal reorganization of
cellular aggregates.

Proposition 3. For any given¥

~

T
Who) < W — k< . 3.43
by(¥h0) < dcr (o) M 5 ) (3.43)
If Fpm > L the unique solution of the system
¢y(1)
h(q‘]p7¢> = FM 9
in (0,1)%is ¢ = T/Fv and ¥, such that
T
h <Wp,—> =Fv. (3.45)
Fv

Proof. Sinceh is a decreasing function @f, if ¢y(¥0) < dcr(¥h0),

W, 0.0y( -
Fv = h(%.0.¢cF (%h.0)) < h(%p.0,8y(%p0)) = . 23,(&: o)pvo)) N ¢y('§’p 0)
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~

T
Viceversa, iflfy < ————, we have
. dy(%o)
9(%,0,y(¥0)) T
h(¥, 0,0y(W = ’ = > Fuv = h(¥0, W
( p,0 ¢Y< p70)) ¢y(qu,0) ¢y(wp,0) M ( p,0 ¢C:F< p70))

and because of the fact thits a decreasing function gf, we can conclude thak, (%, 0) < ¢cr(¥o).
On the other hand, for smapl and4}, it is possible to prove that the curi¥,¢ ) = Fv behaves
like

FM 2
¢ :qu_?wp7

while g(¥,¢) = T behaves like
¢ =a¥,, with a<1, solutionof a®+fa—1=0.

This means that in the squat6,1]? of the plane(%,,¢), for small ¥, the implicit curve
9(¥h,¢) = T always starts belova(%p,¢) = Fu and ends (a#, = 1) below or above accord-

ing to the criterium (3.43) (see Fig. 3.4). HenceFf > %(1) there is at least a solution of
y
(3.44). Uniqueness can be readily realized by observinggthah¢ and thus, substituting in the

equations (3.41) the value= T /Fv, %, is given by the solution of

which is unique due to the monotonicity lof O

We first consider a specimen subject to a controlled conftare F(t) = Fy. We will then
generalize the results for the case in which a bounded farémposed to the specimen and
the corresponding deformation is recorded upon time. Daipgron the imposed load, internal
reorganization can be triggered during cell aggregaterdefton (see the previous proposition).
We observe that initially in the experimergi$0) = ¥,(0) = 1. However, we will generalize the
following statement to an¥,(0) = Y0 > ¢o, because the result will be useful for the discussion
after the Corollary.

Proposition 4. If ¢(0) = ¢o > ¢cr(%h0) and ¥p(0) = %0 > ¢o, applying a constant force

F(t) = Fu < T/¢y(¥0), Vt, thenW¥(t) = W0, ¥t and the solution of eq. (3.38b), is such that
¢ (t) > dcr(Hpo) = Py(¥ho)-

Proof. First of all, beinghv < T/¢y(%¥0), from (3.43), we haveg > dcr (Hp0) > dy(¥ho).
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3 — Uniaxial compression of spheroids
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Figure 3.4:Vector field (blue arrows) corresponding to (3.41)5if < T/¢y(1) (on the left) andAy > T/¢y(1)

(on the right). The red curve correspondgt®,¢) = T, whereas the green curvelt@¥p,¢) = Fu. If Fappi(t) <

Fv < T/¢y(1), the trajectories will tend toward the green curve. On theephand, iffv > T/¢y(1), trajectories
starting from¢ = ¥, = 1 will tend to the intersection of the two curves (square greark), which represents the
solution of the system (3.41). The green curve delimitirgjar 1V is thicker because is composed of non-isolated
stationary points.

We have
h(¥,0,00) — F (0) < h(Wh0,0cF (¥ho)) —Fu =0,

and 9(¥h.0.¢0) — T < 9(%p0,¢y(¥p0)) — T =0,
because bothandh are decreasing functions ¢ffor fixed ¥,. Thenti’p(O) =0, while ¢ initially
decreases. Actually,(t) = %, o until ¢ eventually reacheg, (¥, 0). If this value is overcome,
then the material yields aré}, can only decrease (see region Il in Fig. 3.4, right panel).
However, we will now prove thap(t) does not decrease belafr (¥ 0) > ¢y(¥0), SO the
material never yields and(t) = ¥, 0, Vt.
To demonstrate thah(t) > ¢cr(¥p0),Vt > 0, we definew = ¢ — ¢c F(¥p,0) and recalling that
®o > ¢cF (%), so thatw_(0) = 0, we have

0> —@ = /ot ww_dt = /Otﬂ [h(Wp0.¢) — h(%.0,0cF (¥0))] $>w_dt.
Then the r.h.s. either vanishegpit> ¢cr (¥ 0) (becausev > 0), or is positive if¢p < ¢cr(¥0),
becauséh is a decreasing function df for fixed ¥},. Hence, because of the arbitrarinesg,of
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3.3 - Results

w_(t) = 0vt and thus
O(t) > dcr (W) = dy(¥po0), vt.

O

The condition on the constancy Bft) can be relaxed, if we assume th#to = ¢o = 1, as
stated in the following Corollary.

Corollary 5. If ¢(0) = LandW¥,o = 1andF(t) < T/¢y(1), then¥y(t) = 1, vt and the solution
of eq. (3.38b) is such that(t) > ¢ r (1) > ¢y(1).

Proposition 4 implies, for instance, that in the case ofgiressed aggregates that have al-
ready deformed plastically, during cyclic compressionstes constant load, beingpo > ¢o
at the beginning of every interval of compression (see Fsitpa 1), then remodelling is not
triggered iffy < T/¢y(¥p0) and (t) > ¢cr(¥ho) > dy(Hho), Vi.
The corollary 5 states that if an undeformed aggregate igstgal to compression with bounded
force F (t), with maximum below the critical valug/¢y(1), then the deformation of the aggre-
gate occurs without any plastic effect agict) > ¢c (1) > ¢y(1). This result can be applied
to the description of a cyclic creep test and release in wthiehforce is maintained constant,
F(t) = Rv, during compression and it is equal to zero during releasherefore, when a con-
stant external forcBy is periodically applied and then removedtif < T/¢y(1), no reorganiza-
tion occurs and the unloaded specimen will go back to thelmibnfigurationg = 1, following
the classical visco-elastic response, due to the elasporese of cells and the viscous term of
the liqguid component (see Fig. 3.5, top curve).
On the other hand, as we shall see, when a constant Ferce T/¢y (1) is applied, trajectories
enter in the region Il identified in Fig. 3.4, right panel, ahé natural configuration of the ag-
gregate changes, so that the solution tends to the intemsdtween the two curves in Fig. 3.4,
right panel. In this case, when the upper plate is removenhtiigcellular body does not recover
its original shape and a macroscopic deformation can be @@&gr curves in Fig. 3.5, right
panel). The internal reorganization rate depends on tlkeesity of the load applied to the aggre-
gate, compared to the yield stress and, in particular, &stet and more intense Bg increases,
as shown in Fig. 3.5, left panel. In particular we demonsttia¢ following proposition.

~

Proposition 6. If Fyy > T/¢y(1), solutions of (3.41) starting from(0) > Fi and%,0 > ¢(0),
M

~

are such thatp(t) € [Fi,l} andW¥(t) € [¥h,w,1], whereW, » is the solution of (3.45).
M
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3 — Uniaxial compression of spheroids

Proof. To prove the thesis we proceed by absurd assuming that tkiste a firstt with

W) = Yo, (<0, and ¢()> T

or ¢(t)= p(t) <0, and ¥(t) > M.

T
Fv’
In the former case, sinag(%p.w) = ¢cF (Hho) = o the same reasoning of the previous
M
proposition can be used. If the lig = ¥, », is reached, then the solution will always stay there.
In fact,

O(W(D),6(0) = 0 Wb ) < 9 (wp%) _1,

which implies thafg(W¥,(t),¢ (t)) — 7]+ = 0 and thereforein = 0, against what assumed.
In the latter case,

NH080) = (V0. ) > (Ve ) =P = FlO.

which implies thatp > 0, against what assumed.
(]

Corollary 7. If F(t) = Ry, being the r.h.s of (3.41) continuous and locally Lipschitz¢ and

: : : T . .
Y, belonging to the compact invariant s 1| X [W,»,1], then solutions of (3.41) will tends
M

to the stationary poin<FL,'4’p,oo) , WhereW), ., is the solution of (3.45).
M

The results demonstrated in Proposition 5 and 7 are alsemvdotting the vector field cor-
responding to (3.41). Indeed, i < T/¢y (see Fig. 3.4, left panel}) and ¥, will tend to the
green curve, which corresponds to the conditi#,,¢ ) = Fy. Then the solutions of the system
(3.41) starting fromp (0) = 1 and¥,(0) = 1, will keep ¥, = 1 while ¢ will tend to ¢ (1).

On the other hand iy > T/¢y(1) (see Fig. 3.4, right panel}) and ¥, will tend to the the
intersection of the green and red curve, which represeatsdhution of the system (3.44).

We remark that the conditioRy > T/¢y(1) is coherent with the one found in the previous sec-
tion for creep tests at constant stress. Indeed, defining¢hdstres ;ppl = Fu¢y/m, the creep
test yield condition becomd® ) | = 27.

However, in this case also the steady state deformationheneh&ximum internal reorganization
that can be induced depend on the intensity of imposed laadisla not necessary tend to the
trivial state, i.e.,%, — 0 and¢ — O, if the compression is maintained, in contrast with what
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shown in Fig. 3.3. This means that, as remodelling takespleallular aggregates reorganize
(i.e., ¥, decreases) in order to bear the load. Moreover bgintgcreasing, the external stress
Pappi generated by a constant force, decreases in time.

1.2¢ 1
Lir 0.9
1 E— ~
0.8 — F=125/m
0.9¢ —
o F=25/m
> < 07
0.8 — F=375/m
0.6 R _
07l F=5/m
06} 05y
0.5 : : - . . 0.4 - - - . ‘
0 5 10 15 20 25 30 0 5 10 15 20 25 30
i f

Figure 3.5:Cycle of compressions, when a constant external fgcés periodically applied and then removed:
reorganization (on the left) and deformation (on the rigfthe simulations are performed settifig= 0.625 and

fi = 1.6. The compression and release times are both eqiiaktdy = 3/2. From top to bottom the applied force
increases.

3.3.3 Cyclic deformation test

In the compression experiments, like those performed in$3254], a fixed deformation is ap-
plied to cellular spheroids, using a thermostated parnplége apparatus, immersed in a chamber,
filled with pre-warmed tissue culture medium. The specimesesl in [52, 53, 54] were obtained
from 5 to 6 day old chick embryos, whose cells were dissodigt@ solution of trypsin and then
placed in a tissue culture medium, to allow them to reorgan¥hen cultured for about a day,
in a 37C shaker bath, these multicellular aggregates adopted avsajmarfect spherical shape,
with a diameter ranging from 2@0n to 50Qum.

Recording the force exerted by aggregates upon the uppgaression plate, it is possible to ob-
serve that living structures undergoing constant defdonatre able to relax the internal stress
until an asymptotic value is reached [52, 54].

A variation of this experiment is the cyclic deformationttdike those performed in [52, 53],
in which multicellular bodies are forced to periodic congsiens at controlled deformation and
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3 — Uniaxial compression of spheroids

the compressive force is briefly interrupted at intervalsrduthe approach to shape equilib-
rium. When compression is interrupted early in this pro¢asscompared to the reorganization
time, A), aggregates can be observed to almost retrieve theialisiiape, over the course of a
few seconds, whereas after some releases from compressimasroscopic deformation can be
measured. The process is reiterated until the attainmean asymptotic behavior, described in
the following.

The force relaxation curve and the presence of a plastiauhefiton are consistent with the
visco-elastic model combined with the existence of a yi#ldss, described in [115], where the
experimental stress-relaxation curves are reproducelitajively (a direct comparison is not
possible due to the lack of some fundamental data as the sdpdsformation or the contact
area where the force is applied). Indeed the internal rexzgtion (due to the presence o,
leads to the relaxation of a part of the strég,,(t) to the yield valuePappl = 21, regardless
of the magnitude of the applied strag, as long aspy < ¢y(1), wheregpy(1) is defined by
(3.26). Indeed (3.26) determines the critical valugdadhat makes the square bracket in (3.25)
positive and thus it switches on the evolution#f. For ¢ < (0,1], beingg(%,¢) a positive
and decreasing function @f, only values of¢ sufficiently small, so that the yield condition is
satisfied, are able to trigger the internal reorganizatisidie spheroids.

For such values o, if the deformation is released, then the spheroid will egbrer its initial
shape, because in the meantime the natural configurationhaaged. As pointed out in the
motivation, the model proposed in [115] is not able to rep®lthe stress-release dynamic,
predicting an instantaneous shape recovery: if at anynhsiahe compression is released,
thenWy(t) = Wp(t1), vt >t and ¢ will suddenly adjust to the valug(t) = Wy(t1), vt > t1 so
that Pypp = O (see top curve in Fig. 3.6). This result does not couple wil biological
experiments [52, 53, 54], where aggregates progressixphral in height trying to recover their
previous shapes, in a process that takes few seconds (¢hg specific case of 5-day-old chick
embryonic liver cells, 11 s were allowed for this) [52].

The introduction of the viscous component in (3.2), due ®aljueous constituents of ag-
gregates is able to take into account of this phenomenon.hdw she behavior of the model
described in Section 3.2.2 and in order to compare the seshtained with mechanical data in
[52], we simulate cycles of compressions at constant deftiom.

We know that¥,(t) > ¢ (t) during the entire process thanks to Proposition 1 (baséence dur-
ing the compression stage, the deformation is imposed amatieq (3.27) holds, witlp (t) = ¢o,
whereas when the upper plate is removed, equation (3.27Dicechwith (3.28) and the condi-
tion Pypp = O (stress-free evolution) can describe the shape recotagg.s
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Figure 3.6:Shape dynamics of cell aggregates when the imposed defom{g = 0.7), above the yield value,

is released at a given tintg(heret, = A /2, whereA = 22s). All the simulations are performed with the fixed value
of T = 0.25Paand @ = 0.8, whereagu = 1Pa. The blue curves represent the model with no viscous effect0
corresponding to the model in [115]. It is possible to obsehe influence of the viscous paramefer: v/1, on

the internal reorganization and shape recovery dynamicsorling to the experiments in [52] the shape recovery
requires tens of seconds, which can be reproduced in oulaions (see magenta curve) setting= 40s (i.e.

v =10Pa-s).

The results of the integration of these two systems is ottd-ig. 3.6, where it is clear that the
shape recovery is not instantaneous and its dynamics isotiedtby the viscous coefficient: as
v increases the shape recovery will require more time.

Indeed the characteristic time for the shape recovery isrgby v /(L ¢s). Moreover, the body
will not recover the original heighg, but it presents some plastic deformation. Keeping the me-
chanical properties of the spheroid fixed, the amplituddefremodelling and hence the shape
recovery depend on the time under compression. In Fig. 8ig,possible to see that in our
simulations, with a reorganization time of 22 seconds, apression of 1 second will be recov-
ered up to 98% while a 10 second compression up to 95%. Thesksrare consistent with
biological observations, in fact in Figure 4 of [54] the spiid aggregate compressed for few
seconds almost recovers the original shape, showingaflattening of the top.

It is also important to remark that even for very long compi@s timest; > A, the body will
still recover an amount of the deformation, correspondmghe elastic component. Indeed,
keeping the compression for times much larger than the amargtion time, spheroids will still
experience an elastic recovery that can be considerabliesrtglmost 75% in our case, see the
leftmost curve in Fig. 3.7), consistently with Figure 5 ofi[5 In other words, aggregates will
not keep the imposed deformatiapy even if the upper plate is removed after a very long time.
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3 — Uniaxial compression of spheroids

It is also interesting to see that during the stress-frekuéen of spheroids, the internal reorgani-
zation continues following equation (3.27) until the siatiry situation is reached, corresponding
to the new natural configuration of the remodelled body.

Shape recovery

1r
( —_—t=1s
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Figure 3.7:Uniaxial compression test for different values of compiassime, t; (measured in seconds). The
viscosity is chosen in order to reach the stationary shapep@riod of 11 seconds (i..= 10Pas, see Fig. 3.6).
The shape recovery gets smaller and smaller as the congmésse increases, approaching a limit value.

Turning to cycles of compressions at constant deformatinahraleases, as in [52], a typical
result for a twenty-cycle compression/release test is shiomFig. 3.8. It is possible to see
that, at the end of the simulation, the aggregate reachesdikanum of internal reorganization
corresponding to the imposed deformatinnand therefore an asymptotic behavior in the shape
recovery is attained. An interesting parameter in the maglel, which affect the recovery
dynamics, along witlv: for small values of this parameter, we have no internalgaoization,
becausepo > ¢y(1), with ¢y (1) satisfying the yield condition (3.26) and therefore we have
changes in aggregate shapes; on the other hand, iasreases, the plastic reorganization of
aggregates is more pronounced (see Fig. 3.9).

In [52] measurements are presented in terms of height/wédib over time under compres-
sion. We try to report the results of our simulations in a &amway, observing that in our model
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Figure 3.8:Spheroid behavior under a cycle of 20 compressions at aurgédiormation and subsequent stress
releases. The figures report the internal reorganizéfp(ieft) and the deformation gradient along thexis, ¢
(right). The simulation is performed letting the aggreg&®rganize under compression for a tite= A /4 and
then remove the upper plate ford(torresponding ta /2).
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Figure 3.9:Influence ofil = ugs/1 on spheroid behavior under a compression cycle test). Aggregates are
compressed fa. = A /2 and are let free to expand fpr= 2A (in order to allow the fulfilment of shape recovery).
For the imposed deformatiogy = 0.7, value of1 < 2.1309 are not able to induce the internal reorganization of
cells, becauseg > ¢y(1). Therefore, = 1 (blue curve) and when the compression is released theaslitar
body comes back to the original shape in few seconds.

this quantity is represented W/z(t), from equation (3.14). The results are presented in Fig.
3.10 for different values of the parameteand in Fig. 3.11 for different values of reorganization
time (keepingu fixed). The best fit is obtained for a reorganization time é¢u&6s, whereas
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Figure 3.10:Height/width ratio chart for a cubic multicellular aggréga The height and width are computed
through equation (3.14) and therefore the rétié is represented by the quantify?/? that is plotted for different
value of 1 = u@s/1, considering the same imposed deformatpgr= 0.7 andA = 50s. Experimental data obtained
by Forgacs et al. [52] are marked with squares.

the best-fitting values qi depends on the imposed deformation. Indeed it is possilubderve
that the equilibrium of (3.22) and (3.25) is reached wiggh) = ¥,(t) = ¥, «, satisfying the
condition indicated in the following proposition.

Proposition 8. During the cyclic deformation test at constant deformatiy> ¢y (1), such that
¢y(1) satisfies the yield condition (3.28); is non increasing, tending to the asymptotic value
Y.« satisfying

I(Wperp0) =T (3.46)
Asymptoticallyg (t) € [¢o, %)

Proof. During each compression phase at constant deformatioreabewield condition, equa-
tion (3.27) states thé#}, is non increasing and thékp = 0 wheng(¥.»,9o0) = T, that corre-
sponds, recalling equation (3.21),Rgyp = 2T.

Considering the system (3.27) and (3.28), with the limitditian ¥,(t1) = ¥« and¢(t1) =
$o, we have thati’p(tl) = 0 whereag (t1) > 0. Actually, beingg (t) < ¥, vt > t; (Proposition
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Figure 3.11Height/width ratio chart for a cubic multicellular aggrégzafor different value of (s). The param-
eteru is fixed, in order to obtain the right asymptotic value (seg F.10), whereag changes. The best fit with
experimental data (square mark) is obtainedXer 66s.

1), ¢(t) > 0 and thenp increases until the limit value af = ¥, is reached, which corresponds
to the equilibrium of (3.28). From the physical point of vidhis means that the aggregate
expands when the compressive force is removed. At the sameg déisp (t) increasesg(%,9)
decreases, so that square brackets in (3.27) is still equairdo and thereforé’p(t) =0Vt >y,
then®(t) = ¥ -

Thus at the stationary condition we hafre = ¥ o : 9(%p,w,P0) = T.

The physical interpretation of the result presented in 8sdjon 8 is straightforward. In
the stress release process, the deformation gradient é&etive deformed configuration (where
¢ (t) = ¢o) and the final configuration (wheggt) = ¢o) is

Fn:diag{\/;gz,\/;E&%}

@@‘l’_@}
b b 97
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B = diag{
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Figure 3.12Height/width ratio chart for a cubic multicellular aggrégdor different value of initial deformation

¢o. To obtain the best fit with experimental data (squares), [82$ computed according to equation (3.46).

If we consider the asymptotic st = ¢ = ¥, ., as the reference configuration, a deforma-
tion 2 will not trigger further reorganization and the energy sstically stored, as

00

Tm=—21+ pu@B, =diag{0,0,21},

where we consider that, when the remodelling inside thersithbas attained the maximum, the
internal stress is equal ta2

We obtain
> = uqos%, (3.47)
$o $2 2t
%0 P2 3.48
oo $2 UG (3.48)

Taking into account thap, = ¥  this is the same result we have obtained only with analytical
considerations.

Thereforegbfc/2 is the asymptotic value in Fig. 3.10 and 3.11, and itis a flomadf ¢o, T, L1, @x.
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Thanks to this result, it is possible to find for eafgha value ofu (see Fig. 3.12), fitting experi-

mental data from [52], where the imposed deformation is daf@tely not known. As shown in

Fig. 3.12, knowing this datum it would be possible to get thsthitting value ofi = #

3.4 Discussion

The 3D elasto-visco-plastic model provided here is basetherexistence of a yield criterion,
above which cells reorganize.

Indeed, the cyclic deformation test presented in [52] catweodescribed only resorting on a
surface tension model, while the model characterized bla giondition, as the one presented
here, is able to qualitatively reproduce the deformationaayic observed during biological ex-
periments.

With the introduction of the liquid component, we have impd the model presented in [115],
to take into account the viscous component of cell aggregdteough the constitutive model is
kept as simple as possible, we have shown how it can repraducpression tests performed by
[52, 53, 54] and how it can explain creeping phenomena.

In particular, results presented in Section 3.3.1 refentexgeriment in which the external stress
is preserved constant in time and it is always above the libtédhat induces the ruptures of
bonds. The internal reorganization continues until alldare totally broken, i.e., the aggre-
gates is disrupted. On the other hand, the results presgnsedtion 3.3.2, highlight that, when
the force (and not the stress) is maintained constant, é\tbe load is initially able to trigger
the rupture of adhesive bonds, cells re-allocate in orderdease the transverse section and to
reach a new internal configuration that does not underggaearation under the same imposed
load.

Unfortunately, in both cases only a partial comparison Wwitilogical experiment is possible.

In Section 3.3.3 we show that, thanks to the the introduabtioiine viscous term, the model is
able to reproduce aggregate release dynamics observexd)dimiogical experiments.

Of course, the model can be improved in several directionsdar to reproduce more closely
the behavior of cell aggregates. An extension can be repiexdy the inclusion of more cell
re-arrangement times, that can be related, for instandbgtdetachment of different adhesion
proteins inside the cell membrane or to the response oogunside the cell itself with the rear-
rangement of the actin cytoskeleton. The introduction ofarrelaxation times would certainly
lead to a better understanding of the mechanics and a bettérefkperimental data. Indeed in
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the experiments in [52] it is evident the existence of attléas relaxation times in the cellular
matter (one of the order of few seconds and the other of ther@fitens of seconds). More-
over eg. (3.10) is based on empirical observations and & doétake into account the micro-
scopic mechanisms that leads to the rupture of bonds betwedisn A more detailed description
of the reorganization mechanism should incorporate inédion deriving from the subcellular
scale. Furthermore, more realistic 2D and 3D simulatiorexygfregates deformation have to be
performed, in order to obtain a more precise calculatiorheftieight/width ratio, which is of
relevant importance for comparing computational data freerental ones.
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Chapter 4

Growth and remodelling of cancer
spheroids

In this Chapter, we present a theoretical and numericaystfidjrowth and remodelling of a
cancer spheroid, surrounded by healthy tissue, consgleoth the cellular constituent and the
fluid phase. In order to consider separately the contributibpure growth from the one due
to pure remodelling, a new virtual configuration is added, “girown configuration". Thus, the
anelastic part of the deformatidfy, introduced in Chapter 1, Section 1.2 is further decomposed
in IFgy, which describes deformations due to growth, &pdwhich refers to internal reorganiza-
tion. Thus, by means of the multiplicative decompositios,vavelFa = F[Fg.

Section 4.1 is devoted to the presentation of the biologicablem and a brief review of
some existing papers on spheroid growth is provided. We tlolamn to be exhaustive, because
the literature on the growth of cellular aggregates is widead, so that we will focus only on
those contributions that were fundamental for this workdaBee laws and constitutive equations
are summarized in Section 4.2.1. For more details on theateyn of equations, please refer to
Chapter 1. Equations are then set in spherical coordimatsdtion 4.2.2 and some details on the
dimensionless formulation of the problem and on the diszagon are discussed in Section 4.2.3
and 4.2.4, respectively. Results are presented in Sect®rednsidering different situations. As
a first step, the effect of the surrounding tissue is modelted known stress exerted at the outer
boundary of the spheroid: both the case of quiescent aggegadergoing pure remodelling
(Section 4.3.1) and the case of growing aggregates, wittwahdut remodelling (Section 4.3.2)
are considered. For what concerns the growth term, we firssider that cell proliferation
depends on the volume fraction only (4.3.2.1). Then, weodhice the diffusion of nutrients



4 — Growth and remodelling of cancer spheroids

inside the cellular structure, so that cell growth is lirditey the availability of these chemical
substances (Section 4.3.2.2). Finally, in (Section 4. @8model the surrounding tissue as an
ensemble of cells in which growth is balanced by physiolalgieath, i.e., the net growth is equal
to zero.

4.1 Motivations

The formulation of a mathematical model able to simulateptioeess of cell growth in vitro and
in vivo is of great interest both from the biological and thathematical point of view. Indeed
modelling the proliferation of tumors has the potentialleédding light on the biological mech-
anisms involved and on their interactions, becoming a foretaal tool in cancer research.
From the mathematical point of view, due to the high compyeaf living structures, this prob-
lem is a really challenging task, that has risen more and sibeation in the mathematical com-
munity. However, the attempt to give a unified descriptiotunfior progression is still hopeless,
both because there are several tumors with different oagahcharacteristics and because there
are many concurrent causes on tumor development and evo[aR].

Solid tumours develop initially as a single mass of cellgt throliferate more rapidly than the
healthy cells around them. Tumors are known to progressitiirdwo distinct phases of growth
[50, 51]:

e the avascular phase, so called because it is not associaketthe/formation of new blood
vessels;

e the vascular phase, which sets up with tumor ability to imdnew blood vessels from
the surrounding tissue, that sprout towards the cances, sltround the tumor mass and
gradually penetrate into it, providing an adequate bloqapsu

The very early stages of tumour growth are rarely seen dilyibecause of the small size of the
cell masses and the absence of symptoms. However, thd avdacular growth phase can be
easily studied in vitro, by culturing cancer cells in thenfoof 3D multicellular spheroids in a
liquid medium containing appropriate nutrients [41, 106his assay, introduced by Sutherland
and coworkers in the early 1970s [140, 141], has been usetsxely to study properties of
tumor spheroids, to investigate subsequent stages of tuprogression, and to predict the re-
sponse to therapeutic treatments (see [78, 95] for revielys$ in vitro multicellular system can
be of great value in understanding the progression of tunb@sause it possess growth kinetics
which are very similar to the one shown by tumors in vivo.
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Multicellular spheroids have a well-established charatie structure: tipically the avascular
mass grows up to several millimetres in diameter [30, 13nt cell towards the centre, being
deprived of vital nutrients, die forming the central nearaire [69]. Proliferative cells can be
found in a thin layer (a few hundrgdm thick) at the outer boundary of the tumor mass. Between
these regions there is a layer of quiescent cells, whichareividing but are alive, and can begin
dividing again if environmental conditions change. At theng time, a portion of the quiescent
cells can be recruited by the proliferative ring or they cadergo apoptosis, i.e., programmed
death, increasing the size of the necrotic region. The refsacells in a multicellular spheroid
becoming quiescent and then undergoing necrosis has hesiadgextensively, but there is still
no definitive answer [135]. Levels of oxygen and glucose @layimportant role, but several
other factors can be involved (e.g. growth factors, redun#dchondrial function,...).

From the biological point of view, the study of multicellulapheroid is well set, and many
experimental data on the internal architecture of spheraitt on the distribution of nutrients
[41, 56, 57, 75, 142, 158] are available in literature. Hogrethe introduction of this huge
amount of data in mathematical modelling is still missing.

Indeed, even though mathematical modelling of avasculaotu growth has a long history,
dating back to the middle '50s [146], a reliable complete slable to predict the growth of
multicellular spheroids in vivo is still needed.

The description of solid tumors as a multiphasic mixturee téack to the late-1990s [113, 114].
In the last years several multiphase models have been gedeland applied with success to
describe tumor growth [2, 22, 23, 24, 25, 31, 55]. For a motaildel review of mathematical
modelling of solid tumor growth, refer to [11, 18, 68, 103].

We formulate our model using the tools provided by mixtureotly. Indeed, as we saw in
Chapter 1, Section 1.2, in a first approximation, one can saydells, forming a compact tu-
mor, live in a watery environment full of proteins, includinutrients, that cells need to survive
and duplicate, and chemical factors, in particular cheotmtdactor, growth promoting and in-
hibitory factors, which trigger sub-cellular chemical patys determining the behavior of cells
[12].

Therefore, we study the growth and remodelling of a sphemoiadelled as a porous medium
composed of a “solid" fractiongs, representing cells, and a liquid phage, representing the
interstitial fluid. We assume that the saturation condifienthe aggregate igs+ @ = @Gnax
where@naxis a given constant.

Then, we adopt the theory for materials with evolving ndtamnfigurations (see Chapter 1,
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Section 1.2), in order to distinguish the plastic comporwdrthe deformation, from the elastic
response of the material to stresses and strains. Thegxtastiponent refers both to growth and
to the internal reorganization of cells, that are modelleplsately. Therefore, we consider the
deformation gradientf, as composed of three parts:

¢ the first one related to pure growth/death (therefore acemmep with cell mass variation),
¢ the second one due to internal rearrangement of cells
¢ the third one due to stress-induced deformation

Growth and remodelling are responsible of the plastic deédion of the tissue. Elastic defor-
mations and internal reorganization are assumed to oc¢howtichanges of mass.

These considerations leads to the introduction of one mioneaV configuration, betwee,

and %;, besides the “natural state?, (introduced in Chapter 1, Section 1.2 and exploited in
Chapter 2 and 3): the “grown configurationZy that represents cells that have undergone pure
growth, without undergoing either remodelling or strasdticed deformation (see Fig. 4.1).
Therefore tensoFg represents the growth of the material, mapping vectorstathto%; into
vectors attached &y, whereas the tensal, is a mapping from the tangent space related to the
grown configuratioZy onto the tangent space related to the relaxed configuragioend thus it
represents anelastic deformations due to remodellingllfif,, which gives the evolution from
the natural configuration to the actual state, refers to klgtie component of the deformation,
as in Chapter 2 and 3. Hence,

F = FoFplg. (4.1)

The variations of volume of the solid phase due to the deftomavhen no growth and re-
modelling take place is denoted By = det(F,,), whereas the volume increase due to growth
is represented byy = detFg). We assume that deformations due to remodelling takes place
without changes in volume, i.&y = det(Fp) = 1. Thus, the multiplicative decomposition Bf
impliesJ = JnJpJg = JnJg.

The model presented follows the work done by Ambrosi and il|1, 3], in which the
response of tumor spheroids undergoing growth is studretlbg Preziosi and Ambrosi [7, 115]
in which the role of remodelling in tumor response is introgd. In [1, 3], spheroids are con-
sidered as a monophasic elastic material, undergoing groegending on the external loading
and the availability of nutrients, without considering tioée of remodelling. On the other hand
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Reference configuration Current configuration
F
Fp
Grown configuration Natural configuration

Figure 4.1:Diagram of the states from the original unstressed configuras; to the current configuratiog,
in the framework of multiple natural configuratiorg, identifies the deformation without anelastic deformatjons
Fp describes the internal reorganization of cells &gdhe growth of the aggregate.

in [115] a remodelling equation is introduced, but the pssocef growth inside spheroidal aggre-
gates is not exploited. In [7] a similar model, with diffeteemodelling equation, is presented
and applied to the description of tumor growth inside cylical duct (with rigid wall). More-
over, in these works the presence of the surrounding hasigtiand the diffusion and transport of
nutrients are not exploited. Nutrient availability corérthe duplication of cells and its depletion
limits the expansion of the tumor spheroids. In order to priypdescribe the flow of nutrients
inside multicellular spheroids, the introduction of thguiid phase is fundamental.

We start considering a simple setting, composed of a neatotie and a quiescent ring, under-
going radial compression (Section 4.3.1). We then conglteinterplay between growth and
remodelling in a tumor composed of a necrotic core and afpralive ring (Section 4.3.2). In
these models we consider both the case in which the centedtieecore is composed by calci-
fied debris resulting from the death of cells (i.e., rigidmoic core) and the case in which debris
have been removed and the spheroid is left with a liquid rieccore. Both morphologies have
been observed in biological experiments.

In these first models the presence of the blood vessels i®nstdered and nutrients are assumed
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to penetrate in the whole spheroid. Indeed mathematicakttiog of avascular tumours is the
first step in building models for tumour growth in later stag€&inally, we introduce the diffu-
sion of nutrients, from vessels surrounding the tumor mas#hat cell growth is limited by the
availability of these chemical substances (Section £R.Zhen, in (Section 4.3.3) we model the
surrounding tissue, an an ensemble of cells in which grosvbalanced by physiological death,
i.e., the net growth is equal to zero.

Quiescent Ring Proliferative Ring
Necrotic Core Necrotic Core
. Healthy Tissue
Healthy Tissue
Proliferative Ring
Proliferative Ring Quicscont Ring

Necrotic Core Necrotic Core

Figure 4.2: Schematic representation of the different spti€onfigurations that we consider in
this Chapter. First we look at the mechanical response asgent aggregates with a necrotic
core. Then we consider the case of proliferative aggregates first assumption we can con-
sider that all cells in the tumor mass can proliferate uh& maximum cell volume fraction is
reached, then nutrients are included in order to model tiesgent region. We then implement
the comprehensive model in which also the surrounding Ime&iksue is described.

4.2 Mathematical model

4.2.1 Balance laws

Referring to Chapter 1, we consider the balance law in thagrangian local form, in order
to have all the quantities expressed in the reference caafign which is fixed in time. For a
biphasic mixture, composed by incompressible solid andgidigphases (i.e. the true densities
ps and p, are constant), eq. (1.28) and (1.29) hold. Enforcing theratibn assumption and
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assuming thaps = g, (which is reasonable being cells mainly composed of wated) that
wls=—q@fly (i.e., growth of cells occurs with liquid absorption fronetbutside), eq. (1.28) and
(1.35) become

(Jps) = Il (4.2)
J+Div (J@F (v, —vs)) =0, (4.3)

where the operator Div is the divergence computed with i@dpehe material coordinates.

As observed in Chapter 1, Section 1.2.2 the solution of (4.8)ven by (1.53), i.e.qx = q:sn‘?]—g.
This means that the volumetric fraction of the solid phageis determined if the constant mass
distributiongyn is assigned, and the volumetric deformatidradJy are known. We remark that
(n is constant and should be regarded as a known quantity of dlakelm

Together with mass balance, we have to provide also the dedaosf momentum of the cel-
lular and liquid phases.
We accept the validity of Darcy’s law, so that the fluid flow dads on the permeability of the
medium {K) and on the gradient of the interstitial pressyre,

vy (vp —Vs) = —Kgrad(p), (4.4)
wherev is the dynamic viscosity of the fluid. Substitution of thisué into (4.3) yields
J= %Div (JF'KF "Grad p)), (4.5)

where we wrote the pressure gradient in material coordsnate, gradp) = F~ " Grad p).

The material, local form of the momentum balance law for thetune, written with respect
to the reference placemesd; and neglecting inertial terms, is given by (1.45). assuntinay
the external body force density is null, we have

Div(P) = 0, (4.6)

whereP is the first Piola-Kirchhoff stress tensor of the mixtureyegi by (1.47), i.e., it can be
approximated with the sum of the stress tensors of the sotidiguid phaseP = Ps-+ P, where
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Ps andP, are defined through the Piola transformations (1.46)

Ps:=JTJF ' (4.7)
Py :=JT,FT. (4.8)

whereTs and T, denote the Cauchy stress tensors of the solid and fluid ph#seemark that
in (4.7) and (4.8),) andF refers to the solid phase. In order to close the mathematroalem
resulting from (4.5) and (4.6), it is necessary to providermation about the stress&sandT),.

The cellular component is assumed to be a hyperelastic atrdgc material, and it is mod-
elled by the following constitutive relation [7]:

Ts= —%(p+ Z(rps)%tr(ulﬂ%n))ﬂwcpﬁn, (4.9)

whereB, = F,F] and > (g) is a stress function that in the following we will assume toéda

g B-®

the form> (@) = . We will use the apekto indicate the deviatoric part of the stress

ax—
tensor of the solid phase, whereas the apstands for the constitutive part, i.e.,

1

Once it is known how the material behaves from the naturdiigoration to the actual state, we
need to describe how the natural configuration evolvesutgiraemodelling and growth.

For the evolution of the internal reorganization, we useréhation (3.10), introduced in Chapter
3,i.e.,

Lp

_ [1_ (%)
2n(®) f(T’s)

where the different terms have the meaning explained in €h&p

We then have to set an equation representing the growth atthdar constituent. In [7], it was

shown that

} FIT/$FRT,
+

Jy =15, (4.10)
Jg
that can be rephrased as
tr (GG 1Y) =Ts. (4.11)

The termls is the source term in the mass balance equation and it camasditferent forms,
depending on the assumption we use. The simplest equatighi$aterm isl's = y(@nax— &)
which states that the proliferation of cells continues Iuhe maximum cell volume fraction is
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reached. Of course, more complicated relation can be chasearticular we will also consider
the case in whiclig depends on nutrient concentration.

4.2.2 Spherical symmetry

We apply the model presented in section (4.2.1) to deschibegtowth of tumor spheroids.
Since all processes are considered homogeneous and ispthapinitial spherical geometry is
preserved. Therefore it is reasonable to rewrite equa(rag and (4.6) in material spherical
coordinates(R,0,®). We assume deformations and velocities of all constituerte along the
R-axis.

We restrict our investigation to the case in which the radébrmation depends dRandt only.
Therefore we have

(LX) =X(LR), 9(tX)=0, §(tX) =0, (4.12)

so that the matrix representation of the deformation gradensor is diagonal and given by

_di X X
F= dlag{de, R’ R} . (4.13)
We remark thad = dRX)Fg—z holds true. Then, beindy = 1 and enforcing spherical symmetry, we

take

R Wy
Fp:dlag{ag,ﬁp,ﬁp} : (4.14)

where¥, = ¥,(t,R) is a measure of the internal remodelling of the spheroid. W#a tissume a
spherical growth

Fq = diag{9,9.9} . (4.15)

whereg = g(t,R). The next step is to re-write (4.5) and (4.6) in sphericardotes.
We assume that the medium is isotropic with respect to bs#ildstic properties and permeabil-
ity. Thus the permeability tensor is diagoiial= K(¢)1. It follows, from (4.5), that

1 0

J= Wa—R(XZK((Ps)”R), (4.16)
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which leads to
1x% 0

K J
~ SR orK @+ 25

~nR 4.17
X (4.17)

where MR is the radial component of the material gradient of the sitgal pressure pulled-
forward to the actual configuration and it can be computealitin (4.6), as

1.
F~TGradp = DIV (Pg) = (MR0,07, (4.18)

whereP; = diag((P;)rR,(Pg)ge,(PS*)""D) is the constitutive part of the first Piola-Kirchoff stress
tensor of the cellular component. Writing (4.18) in spha&rzoordinates we obtain

M7= | P & (@ @) | (4.19)

Using the constitutive equation (4.9) and the Piola tramsé&tion, we have

. 1 PP +2x%)\ X2 vy
(Ps )l’R = —Jg (Z((Ps) + :—,’IJ ng2X4 IR HIGU— 5 ngsz ) (4.20)
1 P¥S+2x8\ R xR
90 . (pr\¢P _ = p — A,

Equation (4.17) needs to be coupled with equations (4.1dY&10), representing the evolution
in time of g and¥, respectively, i.e.,

g = I—Sg (4.22)
: Josu 2T JAP — x®
g o= 1- . 4.23
P 6n 26 X6l gt (429

In (4.23), as done in Chapter 3, we use the Tresca criteriandar to give a representation of
frame invariant measure of the stress in (3.10), f(&%) = |(T{")' — (TZ?)’| /2. Moreover it is
possible to rewrite (4.23) as

J2WH — x®
PP¥ix?

B 2T
H@s

U
6

] sign(JzLIJl;3 — X6) W, (4.24)
+
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whereA = n/u. Equations (4.17)-(4.22)-(4.24) should be solved togettith the auxiliary
equation

0 R
We remark that, eq. (4.18) leads to
0 R
Eﬁmuwzfpnﬁ (4.26)

that can be solved a posteriori, once the other unknownslies®e determined.

In order to solve (4.17)-(4.22)-(4.24)-(4.25), we haveupmy proper boundary conditions
(BCs) and initial conditions (ICs) for the unknowns. In peutar, the mixture mass balance
(4.17) requires two BCs and the valueJodit the initial time, whereas eq. (4.25) is well defined
provided that one BC is given. In order to solve eq. (4.22) @n24) the initial conditions og
and¥, are required.

As initial condition, we set

JOR) =1, (4.27)
%(0,R) =R, (4.28)
g(O,R) =1. (4.29)

Indeed, at the initial time, there are no elastic and plaiformations and we assume that also
the deformation due to growth is null.

For what concerns boundary conditions, we have to distgsighetween internal calcified
core and liquid core. We consider a spheroid of initial ragRi= Ry with an internal calcified
core of radiudRy. Therefore equations (4.17)-(4.25) hold Ry < R < Ryy.

For what concerns the calcified core case, boundary conditiave to be consistent with the
following requirements:

(i) the radial stress at the external boundary of the speatinas to be equal to the applied
stressPappi(t);

(ii) the velocities of the fluid and of solid phases have to @@zt the inner boundary because
we assume that the necrotic core is impermeable and fixed;
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(i) the pressurep has to be zero & = Ryt since the liquid is in equilibrium with the liquid
outside the spheroid.

These observations are translated in the following set ohiary conditions

X(t,Ro) = Ro, (4.30)
MR(t,Ro) =0 (4.31)
(T (t, X (Rout)) = Pappi(t), (4.32)
p(t,X (t,Rout)) = 0. (4.33)

Indeed (4.30) guaranties that the interface between th@tecalcified core and the surround-
ing living cells is fixed, whereas (4.31) states that the flutha inner boundary is null, being
velocities null. Eq. (4.32) and (4.33) arise directly froonditions (i) and (iii), respectively.

We remark that (4.31) is a Robin BC fdrat the inner boundary, whereas (4.32) looks like a
Dirichlet condition onJ at the external boundary, even thoubtiepends on the derivative gt
Indeed, for the particular form df(¢s) that we chose,

— 132W8 +2x° Joys
[—%(E(ps LRSS O T

= PappI(t). (4.34)

Grax— ¢ 3 gPWEX X' ] ro

Since this equation is nonlinear with respectl{v,R,), solutions can be found by applying
Newton’s method or other techniques.

On the other hand, when we consider the case of spheroids@ctiotic liquid core, we can-
not assume that the inner boundary of the spheroid is impsleand fixed. Initial conditions
are still valid and equations (4.17)-(4.25) still hold Ry < R < Royt, with the conditions (4.32)-
(4.33) atR = Ryt, Whereas at the inner boundary, BCs have to be consistemthatfollowing
requirements:

(i) the radial stress exerted by the mixture equals thedigore radial stres3,";

(ii) the flux at the inner boundary is preserved and the inmemidary moves with the solid

phase.
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These observations are translated in the following set ohdary conditions

X(t7R0) = VS7 (435)
T (LX(1,R0)) = T/ (t,X (t.R0)), (4.36)

that replace eq. (4.30)-(4.31). Eqg. (4.36) entails that

(T$)™ (t,x(t,Ro)) = 0. (4.37)

Looking at the mass-balance equation of the liquid and tHelaephase for an incompressible
mixture, (1.30), we can write

0 )

E%‘i‘ d|V(%Vs) — %rs, (438)

0 )

E(pgqtdlv((pm) =q@ly. (4.39)
(4.40)

As already observed, the global mass balance imglies= — @[5, so that
div(@vs+ @v,) =0 (4.41)

holds, thanks to the saturation assumption. Enforcingrspesymmetry and assuming that the
velocities of the components are directed alongthgis, the previous relation can be rephrased
as

0
o (P(@vs+av) =0, (4.42)
which entails
r?(qs+ @Vy) = constant (4.43)

Beingv = @Vs+ @V, continues across the interface,

(@Vs+ @Vy) |y (ry) = O,
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becaus& = 0 in the liquid core. Thus, in (4.43), constaa and
v, = —%vs (4.44)

in the whole spheroid domain.
Substituting the previous relation in the Darcy’s equatoil coming back to the Lagrangian
formulation, we have

Vs = @HR. (4.45)

Observing thafl, = —pll, conditions (4.35) and (4.37) can be rephrased, thanks48)4giving
the following set of BCs

K(®)

X(6R0) = == MTR(t,Ro), (4.46)
[ a-@ 1 J2w§+2x6> 2y
— (E 2H THG— 7> =0 (4.47)
_ 3 2q,/2 4 4~2
: Phnax— P 9°¥EX X9 a0
ea-@ 1 J2w§+2x6 JZLIJ;‘
o (Efnnax—rps st qugxe ) THE YA = Fapnl0), (449
L - X(thOUI)
p(t,x(t,Rout)) = 0. 4.49
(4.49)

We remark that in this case we have Dirichlet conditiond both at the internal and at the exter-
nal boundary, whose solutions can be found by applying Newtnethod or other techniques.
Both in the liquid and in the calcified core case, eq. (4.18uies the condition (4.33), in order
to be solved, once the other variables are known.

4.2.3 Dimensionless system

Results in Section 4.3 are presented in terms of dimenssmjaantities. We report here the
dimensionless system. Spatial quantities are scaled w#perct to the initial external radius
of the spheroidR,y;, whereas temporal quantities scale with the typical callifgration time,

1 . - _— :

tr = WYL whereys is the coefficient weighting the growth term (i.Bs = ys(@nax— @&)). Ten-
axys

sion and material parameters scale with respect to the si@dulus of the materialy and the
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volume fraction are compared to the maximum cellular vol@iraetion, gnax Thus, introducing

~ R . o~ X ~ %
R=—, T=X=", ¥%=—,
Rout X Rout P Rout
il oo ®
_tr7 _%ax7
~ E ~ (@) = Pappl 5 A
EZ_? = ’ P, ’ )\:_7
i T e P g t

Al K20 o~ sn o J o n . -
- 170 ~n 2/ = - -
= SRR (@ @)) Ro<R<1, (45)
d_)F% — J; Ry<R<1 (4.52)
d 1-~ 1 ~ ~
& = 30=31-®)g RosRs1, (459)
d¥% @ [|PE X 2@ s we\g & A
F - el e e S|gn<J W —X ) b ROSR<1, (4.54)
P +
kO“(»qnaXtr «+\IR _ /p*\IR x\90 _ (p*x\90 i
wherekp = VR2 and(Ps)™ = (F)™/ (Mtinax), (F$)”™ = (F5)”" /(H¢@max) are given by
ut
, @ 1PWE2%5\ 2 . a9
pr R _ -J E(pS (fb = p~ - J p... 4.55
( S) (Ps< 1-@ + 3 gijpzx4 JR? + (pSXZQZRZ ( )
N - als—@ 1PWE+28°\ R . %R
B9 — _ja(gB R 10" SAAN 17 AL 4.56
(Fs) (PS< 1- G +3 92%2)?4 X+ (PsgqupZ ( )

The frame invariant measure of the stress is defined, as ipt@h, through the Tresca criterion
and thus

N o | 3298 — 58
T = B2~ 4.57
( S) 2 gijpz)?4 ( 5 )
The tensoiK is taken from [85] and adapted to our framework, i.e.,
- - _ Mo J2 _JZ
K(@) = { ®o (85"‘]9} exp{ﬂ{ . g] } (4.58)
1-@o Jg®n 2 Jg
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The dimensionless form of (4.26) is
R, (4.59)

with = p/(U@hax)-
Initial conditions (4.27) and (4.29) continues to hold, wdees (4.28) rephrases as

@ (0,R) =R (4.60)

X({Ro) = Ro, (4.61)
FR(ER) =0 (4.62)
pEX(1) =0, (4.63)
cem—q@ 1PWE+270\ L IR <
[‘"’“‘(E 1 3 g )Py  The® (469
X

On the other hand, when we consider the case of spheroid etttotic liquid core, we have

—=(E.R0) = koK (@) IT7(E.Ro), (4.65)

e @  1POE+285 . 20
— E = — ~ =
[ (ps< 14 '3 gPwEX i

and conditions (4.63) and (4.64) continue to hold.
In the following for sake of simplicity in the notation, we Mdlrop the(f) and all the quantities
reported are dimensionless.

=0 (4.66)

4.2.4 Discretization

We solve the system of equations (4.50)-(4.52)-(4.534using central differences for space
derivatives and then a proper ODE solver to obtain the teadwolution [17]. In the follow-
ing we depict the main steps of this procedure. The 1D-donrepresented by the interval
[Ro,1], is divided intoN + 1 subintervals of widtlAR; = Rj+1 — R; through the introduction of
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N Chebyshev nodes i{Ry,1)

Rj = (14 Ro) + 5 (1 Ro)cos(z‘;ln)

with j = 1,...,N. Spaces derivatives are then approximated by finite diffee, so that the
following system of Bl + 4 equations is obtained:

2 R . .
; X] Ki+1(%7i+1)nj+1_KJ<¢S,J) Jj R
Ji = ko=L ﬁik—K nk, j=1..N, (4.67
. Isj .
9 = %%w j=0,.,N+1,4.68)
- Jies J2W6 —x6 21 .
W, _an) e $m1f —x8) W, j=0,..N+1(4.69)

Here, j enumerates the nodes of the grid, ik(t) = J(t,R;), ¥ j(t) = ¥(t,R)) andgj(t) =

9(tRy), @ j(t) = &(t,Ry) = @sng(t,R))3I(t,R)) T andK;(t) = K(t,R;).

In eq. (4.67)1Ris given by (4.51), that, approximated with finite differescgives
LPIR-PIFy (PR (P)7°

nk = = — 42 . 4.70
: J (4Rj_1) JiR (.70

The functiony is calculated by invoking (4.52) and using a standard fodvarler method.

X = x40 50

" HTxw
coupled with (4.30) for the calcified core and (4.35) for tiggiid core. Condition (4.30) gives
Xo(t) = Ro, whereas (4.35) can be rephrased as

AR;, (4.71)

X6 = Xb+ AtkoKS(MR)' (4.72)

where the apekenumerates the discretized instant in time. The bounddmgsd, andJy. 1 are
computed imposing boundary conditions (4.31)-(4.34)terdalcified core and (4.37)-(4.34) for
the liquid core.

The boundary valuedy 1, both for the calcified core and the liquid core, is given by,
which is solved numerically, by means of a Newton-Raphsothate
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In the case of liquid core simulations (4.37) gives the valtidy, always using the Newton-
Raphson method, whereas in the case of the first node, we daw@& 0, according to (4.31),
in eq. (4.67) prolonged to node= 0.

According to this procedure, the initial system of partidfiestential equations (4.50)-(4.53)-
(4.54) is approximated by a system of ordinary differengi@lations that can be integrated by
choosing a stable ODE solver, with the initial conditidp®) = J(0O,R;) =1,0;(0) = g(0,R;) =
1,%,;(0) = % (0,R)) =R, for j=1,...,N.

The variation of pressure inside the specimen can be cédclikm posteriori, oncélR is
known, using (4.59), that can be solved with the boundargitimm (4.33) with an explicit Euler
scheme.

4.3 Results

In this section we first present the results of a quiescergrgjth undergoing pure remodelling
due to the application of an external load at the outer boyn@ection 4.3.1). We then consider
the case of a proliferative spheroid with a necrotic core{iSa 4.3.2.1). Nutrients are included
in Section 4.3.2.2 in order to model the presence of a qurtgegion in which cells do not
proliferate because of the lack of nutrients. The presemfdkeohealthy tissue is modelled in
Section 4.3.3.

4.3.1 Remodelling without growth

We first consider the case of a spheroid composed of a necatic(that can be either com-
posed of calcified debris, i.e., rigid, or filled with liquidnd a quiescent shell, in which cell
proliferation is compensated by death. Therefore in thi€ a@e do not have any net production
of the cellular phase, i.els = 0in (4.53), which implieg(t,R) = 1, Vvt andvR. The evolution of
the system is represented by (4.50)-(4.52)-(4.54), calwiéh the initial conditions (4.27) and
(4.60) and the boundary conditions (4.61)-(4.62)-(4.®%)the rigid necrotic core and (4.64)-
(4.65)-(4.66) for the liquid core. We remark that if no strés applied at the outer boundary,
the stationary case corresponds to the initial conditi@n,we do not have any evolution of the
system.

The external stress can represent a controlled stresedxentitro by the gel in which cancer
cells are plated or the stress exerted by the external tigauhis case the stress exerted at the
outer boundary is known.

Applying an external compressive loadjecreases, which means that the volume of the spheroid
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Figure 4.3: Calcified core without growth: simulations foménsionless parameteRs,p =
—0.2809,k, = 0.7745,mg = 0.0848,m; = 4.638,7 = 0.0281,A = 0.0281,E = 0.2809. Lines
report the evolution in space of the variable at the insténitnoe specified. For the final time
reported the system is at the stationary condition.

diminishes, and, if the applied load is sufficiently highe thternal reorganization of the spheroid
is triggered.

Fig. 4.3 shows the evolution in time and spacepdt,R) = ¢,/J(t,R), ¥(t,R) — R, x(t,R) —R
and p(t,R) for a spheroid subjected to a constant stress at the outerdaoy Every curve
represents the trend ove of the different quantities at a fixed time step (see legerit)s
possible to see that, in the first time steps, the cell voluméaction strongly increases at the
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4 — Growth and remodelling of cancer spheroids

outer boundary where the load is applied. Then the wholeeggde is strongly compressed (see
Fig. 4.3-(a)). We remark that aftér~ 0.1 the trend in the curves changes in proximity of the
internal boundary. This change corresponds to the adaivati the internal reorganization (see

Fig. 4.3-(b)). Forwhat concerns remodelling, we remarklﬂjﬁz JpZ' Whereast:pee = F,é”q’ =

%
—, thus
R

o Y~ R<0+= FR>1andFY® = F{® < 1, which means that remodelling occurs
through extensions along the radial direction and compess the transverse directions;

o Y~ R>0 < FR<1andF =F{® > 1, which means that remodelling occurs
through compression along tReaxis and extensions along tBeand @ directions.

Fig. 4.4 intuitively explains the biological meaning of tteanodelling term.

YW—R>0 YW—R=0 Y—R<0

/ !
S ea © »
e e W

/

Figure 4.4: Diagram of the possible internal reorganization occuriirgide a spheroid: remodelling through
compression (on the left), physiological condition (cejitremodelling through extension (on the right).

In Fig. 4.3-(b), it is possible to see that, in the first ingsamf time, consistent remodelling
occurs at the external boundary due to compression alonR theection and extension along
the © and @ directions, as a consequence of the external compressdealpplication. Then
remodelling at the external boundary reaches the steatéyaadition (indeed, for the specific
parameters used in Fig. 4.3, aftex 0.06 the curves at the external boundary almost overlap),
while remodelling starts at the internal boundary wherés@ke constrained not to penetrate the
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necrotic core. Close to the internal boundd#y,— R > 0, being cell compressed towards the
necrotic core. Also in this case, remodelling continuesl anstationary condition is reached
(aftert =~ 0.5). We remark that, thanks to the remodelling occurring ergion near the cal-
cified core and in the outer regiog; is higher than in the central region, where remodelling is
not triggered. Therefore the effect of bonds rupture, winenatggregate is constrained on both
sides, leads to a closer packaging of cells.

Moreover we observe that, for the parameters setted inithigations, remodelling occurs only
in some region of the aggregate, therefore we have that tlcbanecal behaviour of the aggre-
gate changes in space: in the central region it behavescalistwhereas close to the inner and
the outer boundary it behaves as an elasto-plastic matérras difference in the mechanical
response of cells leads to the non-homogeneous distribatigariables inside the domain.

For what concerns displacement it is possible to see thatgheroid radius decreases until the
stationary condition is reached and due to the BC (4.61) thglatement is null in proximity
of the necrotic core. Moreover at the end of the simulati@ngressure in homogeneously dis-
tributed in the whole domain, which implies that fluxes aré and thus the stationary condition
is reached (after 0.5).

On the other hand, looking at the liquid core case, in Fig.wWeSobserve that, also in this
case, in the first instants of time, cells are more compreatstek outer boundary (Fig. 4.5-(a)),
then, as the deformation of the aggregate increases (sed Bigc)), cells volumetric fraction
increases in the whole domain. However, in this case, theé golumetric fraction in the region
near the necrotic core is less influenced by the applicatianaexternal load, being cells not
compressed towards a rigid wall. Indeed in this case, caltsnaove toward the liquid core, as
fluid encapsulated inside the central core flows inside thyesate, leading to the decrease of the
central liquid core radiusy((t,Ry) — Ro < 0 in Fig. 4.5-(c)). Moreover, consistent remodelling
initially occurs at the external boundary, due to compmassilong theR direction and exten-
sion along the transverse directions. In order to reachttdaly state condition, in proximity of
the external boundary where load is applied, remodellirgh8l decreases until the condition
f(Ts) = 1 is reached. Then, remodelling starts at the internal bayndfse remark that in this
case, at the internal boundaky, — R is negative which means that remodelling occurs through
extension along th&-axis. Indeed the effect of bond rupture, in this case, idltwecells to
move more freely towards the central liquid core, as lonchasnecrotic region is all filled by
cells. For what concerns displacement it is possible tolss#ele spheroid radius decreases and
intense negative displacements are recorded also at teebonndary, where cells move toward
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Figure 4.5: Liquid core without growth: simulations for teeme value used in the simulation
of the calcified core. Lines report the evolution in spacehef variable at the instant of time
specified. We remark that in this case at tilne- 1 the steady state is not yet reached. Indeed,
for the liquid core undergoing remodelling the internal bdary continues to move until cells
fill all the internal gap.

the necrotic liquid core. In this case, fior 1 the steady state condition is not reached yet.
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Figure 4.6: Liquid core without growth and without remodwet simulations for the same value
used in the simulation of the calcified core, but for a value fufr which no remodelling occurs.
Lines report the evolution in space of the variable at thwamtof time specified. We remark that
at the stationary state (afters 15) there’s still some liquid in the central necrotic core.

Fig. 4.6 reports the value @k(t,R) andx(t,R) — Rin the case in which a quiescent aggregate
with a liquid necrotic core is compressed, without experieg remodelling. Differently from
what observe in the case in which the internal reorganizatdriggered, in this case, at the
steady state condition (which is reached after 15 unit oé}jrthe internal liquid core is not fully
filled by cells.

Fig. 4.7 reports the values @k(t,R), ¥(t,R) — R and x(t,R) — R at the reference time
t =5, both for the calcified core with and without remodellingdland blue curves, respectively)
and the liquid core with and without remodelling (purple digiht-blue curves, respectively).
From Fig. 4.7 it is clear that, for the calcified core, whermoéelling is triggered, cells are
closer-packed than in the region in which remodelling doatsatcurs. Thus, at the internal
and external boundaries, the cell volumetric fraction ghier than in the central region. On
the other hand, remodelling in the liquid core strives tontan the cell volumetric fraction
closer to the physiological value and thus, when it is triggeless intense volumetric changes
are perceived in proximity of the necrotic region. Indeedthis case, the rupture of bonds
leads to more intense cell movements toward the centrabtiecegion and thus more intense
displacement are recorded at the interface between thetiteand the quiescent regions. When
no remodelling is triggered, the displacement of the sdiigige at the interior boundary is smaller
and sog; is bigger, compared to case in which remodelling occurs.

97



4 — Growth and remodelling of cancer spheroids

We remark that in the case in which the solid volumetric facthanges consistently, due to
growth or the application of an external load, the assumytiat the permeabilitiK is a function
of ¢ is fundamental. Asy increases (i.eJ decreases), being(gs) an increasing function of
J in the interval(gsn,1), the velocity of the fluid and the solid phases decreasesistensly,
leading to a slowing-down of the overall process.

4.3.2 Growth and remodelling

We consider the growth of a cancer spheroid with a given egptiad at the outer boundary. We
consider both the case in which the central core is compokedicified cells debris, i.e., the
tumor has a central rigid necrotic core, and the case in whieltentral core is filled with water.
In a first assumption we consider that growth depends onhjhercellular volume fraction

(Section 4.3.2.1). This condition represents a cellularegate composed of a necrotic core
and a proliferative shell in which growth is limited only bgr@tact inhibition. We then include
nutrients (Section 4.3.2.2), in order to model the presehae&juiescent ring between the necrotic
core and the proliferative ring, in which the concentratddmutrients is not enough in order to
support the anomalous growth of cancer cells.

4.3.2.1 Growth depending only on the cell volumetric fracton

Fig. 4.8 shows the evolution of the dependent variaBlesR), g(t,R), ¥(t,R) — R, @(t,r) =
@ng®/J(t,r), x(t,R) — R and T (t,r) along R at different time steps (different lines) for a
spheroid with a necrotic rigid core, whose growth is limitaady by geometrical constraints,
i.e., cells duplicate until the maximum cell volume fractis reached. Thereforlg = (1— @),
which biologically means that the growth of cells is govetaly by contact inhibition. Thus
g(t,R) > 1 in all the domain (see Fig. 4.8-(b)). This situation repres the case in which nu-
trients are available in all the domain and thus it is suéabldescribe only tumors in the first
stages. When remodelling occurs, consistent volumetaogés are experienced both at the in-
ternal and the external boundary of the tumor (see Fig. @.84ndeed, at the external boundary,
the spheroid is let free to expand and thus volume incredsgs & 0). Cells at the interior of
the spheroid are pulled from the cells at the outer boundwatydan freely move and so the ag-
gregate expands. However in living cells closed to the fiattcore are forced to stay attached to
the central necrotic core. If remodelling occurs (see Fig-(4)), bonds breaks and cells detach
one from the others. In this cas4 — R is highly negative in the region close to the necrotic
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Figure 4.7: Comparison between liquid core and calcifie& eathout growth: results at time
t =05.
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core, because remodelling occurs through extension alefg-axis and compression along the
© and @ directions, as explained in Section 4.3.1. Moreover, atsthe external boundary,
where cells can moveéy, — R is negative. We remark that, being the growth terms depénden
only by the cellular volumetric fraction, whedancreases alsgincreases (see Fig.4.8-(b)). The

action of remodelling on an expanding cellular spheroid isyaintain the solid volumetric frac-
@snJ
3
than in those region in which bonds break and cells are motdend®Ve remark that intense
displacements are experienced also in proximity of theraénecrotic core (Fig. 4.8-(e)).

tion, ¢ = close to the physiological value: where remodelling dogsogour ¢ is higher

We observe that in our model, we do not fix the volumetric foacof the cellular constituent to
be equal tap, but the boundary condition ahis obtained imposing the free stress condition at
the outer boundary and, thus, it is in general different fg@neven wherP, ) = 0.

Fig. 4.8-(f) reports the radial component of the constieitCauchy stress tensor of the mixture,
T4 We remark that at the external boundagy equals the imposed load, which is zero in this
case.

In Fig. 4.9 we reports the results of the growth of a spheraitth walcified liquid core,

without remodelling. Parameters are the same used in Fgj.e4cept fort that we choose in
order not to have remodelling.
In this case, being the mechanical behaviour of the aggeehgatsame in the whole domain, the
curves are smoother. In particular we observe that, wheodefting does not occur, cells at the
interior of the spheroid, being attached to the centralotexcore, are less motile (indeed in this
case, we do not have any reorganization).

Therefore, volumetric changes are less consistent in piitxiof the inner boundary (see Fig.
4.9-(a)), and the growth of cells is less intense (see FRy(l4)), because cells are more packed
(see Fig. 4.9-(c)). In this case, displacements in pro¥imitthe necrotic core are less intense
(cf. Fig. 4.9-(d) with 4.8-(e)). The total mass is preserbedause of the highe.

We then look at the growth of a spheroid under compressiwsi¢see Fig. 4.10). In the first
instants of time the aggregate is compressed due to exteathlthen cells duplication becomes
high enough in order to make the spheroid expands (aftefl.6). Indeed, if we look at the
evolution of x (t,R) — R it is possible to see that when an external load is imposedagiyre-
gate size decreasegp(t,R) — R < 0 untilt < 1.6. Then growth predominate and the spheroid
expandsx(t,R) — R> 0. Consistently]J(t,R) > 1 in the first instants of time in the whole do-
main. Looking at remodelling it is possible to see thHgt-— R is positive at the outer boundary

100



4.3 — Results

Volumetric changes] s Growth,g
4.5 t=0
1.7 t=04
ol
t=0.38
35 Lo —t=12
15 —t=16
3 t=2
LANN t=24
25 & t=28
13 \ t=32
N ;
2 12 t=3.6
t=4
15 11r t=4.4
t=4.38
b1 o0z 03 04 05 _o06 07 08 09 1 b1 02 03 04 05 _06 07 08 0o 1
(a) (b)
, Remodelling¥, — R . Cell volumetric fraction g
-0.005 \
0.85
—-0.01
—-0.015 08
-0.02
-0.025 0.75¢
—-0.03|
0.7F
—0.035
004 R S 065 ‘ ‘ ‘
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 1 15
R r
(c) (d)
Displacementy — R Mixture constitutive stresg;;"
0.6 0.06
051 0.04
0.021
ol
-0.02 1
-0.041
-0.06 -
01 R S o008 ‘ ‘ ‘
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 r 1 15
(e) ®

Figure 4.8: Free growth of a spheroid composed of a calcifiee surrounded by a proliferative
shell. All the other parameters are the same used for thdatimmw without growth.
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Figure 4.9: Free growth without remodelling of a spheroidhposed of a calcified core sur-
rounded by a proliferative shell. In this simulatianis chosen in order not to have internal
reorganization of the multicellular aggregate. All thegraeters are the same used for the simu-
lation with growth and remodelling.

of the tumor, indeed while expanding, cells at the outer bampare compressed because of the
application of the external stress. On the other hand, ainther boundary¥, — R is initially
positive, which means that remodelling occurs through aesgon along th&-axis, as in the
case of the compression of a quiescent aggregate, thenplésnation increasesf, - R < 0
because proliferative cells expand.

Fig. 4.11 shows the typical results for the stress free grafan aggregate with a necrotic
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Figure 4.10: Calcified core simulation under compressia lat the external boundai,pp =

(f)

—0.1. All the other parameters are the same used for the siranlatthout growth.
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Figure 4.11: Free growth of a spheroid with a necrotic ligoade. Growth is limited only
by contact inhibition, so that the internal boundary exmatmvards the central necrotic core.
Simulations are performed settikg = 0.0333,mp = 0.0848,m = 4.638, 7 = 3, A = 0.03,

E =0.33.

liquid core. It is possible to see that in this case we haveistent volumetric changes also in
proximity of the necrotic core of the spheroid. Indeed irsttase the spheroid is not constrained
by a rigid wall; therefore cells can proliferate also in groity of the necrotic region (Fig. 4.11-
(b)) and proliferative cells moves towards the liquid cdfgg( 4.11-(d)). We remark that for the
particularls chosen, the production of new cells is limited only by thellawdity of space. This
simulation corresponds, for instance, to the case in whagharoid is left free to grow inside an
environment in which nutrients are not sufficient. Thus tkerotic core is formed. Then, after
some time the spheroid is positioned in an environment futiudrients and the quiescent cells
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in the central region can re-start to grow, filling the celniad space.

However, considering the growth of a spheroid inside a éssus unlikely that cell growth
can occur in proximity of a necrotic region. It is therefotmflamental to introduce nutrients
diffusion in order to consider the dependency of growth ftbese chemical factors.

4.3.2.2 Inclusion of nutrients

Results presented in the previous subsection are strintted to the assumption we made on
the expression of the growth teriiy, which depends only on the volume fraction of the cellular
constituent, i.e., in the dimensionless formulatidg= (1 — ¢). This assumption means that
cell can grow until the saturation condition is reachedhwaitt any other constraints. This as-
sumption leads to the unrealistic growth of cells even irxpnity of a necrotic region, as seen
in Fig.4.8-(b), 4.9-(b) and 4.11-(b).
In reality, cell growth is limited by different factors. Inagticular the availability of nutrients,
that diffuse inside the tissue and are transported by thedimoving in the interstitial space,
strongly affects cells capability to duplicate.
In this section, we include nutrients, in order to differate the proliferative region from the qui-
escent region of the spheroid. In particular we fix a minimaneshold of nutrients concentra-
tion, chp above which cells can proliferate. It can be postulatediatys( @nax— @) (Ch— Cno) +-
In this way we have the introduction of a quiescent zone irciviihe amount of nutrients is not
sufficient to maintain cell proliferation.
In order to insert the dependency on nutrients in the groari it is necessary to give the evo-
lution of these chemicals inside the spheroid.
The mass balance for nutrients dissolved in the liquid phiaskagrangian coordinates, reads
[73]

b= — (F'K(@)F " Gradp) - Gract, + L piv (IF D F T Gracty) — ¢ Bc,,  (4.73)

vy Jo @

wherec, = m,/my is the mass concentration of the nutrienfsis the rate of consumption of
nutrients for cell biological functions arid, is the diffusion coefficient of nutrients.
Eq. (4.73) is obtained from the mass balance of nutrients

d / acndV = / @Cvy - ndS— / @is-ndS+ / racadV+ / GudV . (4.74)
dt Jv v v v Vv
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wherej, = —Dpgract, is given by the Fick’s law ands, represents the production/decay of
nutrients. The local form of (4.74) is

d . .
E((Pﬁcn) +div(@cavy) = div(@yDngractn) + M@ cn+ Gn, (4.75)

which in the Lagrangian formulation, reads

(Jgrcn) + Div(IgcnFwys) = Div(J@F 1D F~Tgrad) + Jry@cn +JGn, (4.76)

Recalling the mass balance of the liquid phase (1.34) an®#ney’s Law (1.72), eq. (4.73) is
easily obtained, settinG, = —{ @Cy.
Eq. (4.73) in spherical coordinates reads

R 'C ROCn
b = Igre MR
Dn d [ x* dcy @
*3@:@@ﬁ(ﬁ@ﬁ)5@%- (4.77)

Writing eq. (4.77) with respect to the dimensionless quigstpresented in Section 4.2.3 and
the quantitycy = cn/cp, Wherec, is the mass concentration of the nutrients in the blood , we
have

~

. 1 2 [ x* 0Cn) [ S,
D ~ ~ o~ ~ T~ -_— ~ 4.78
IR R (JRZ IR Z(1—<ps)c”’ (4.78)

Dnt o .
n r2 . We remark that, in this case, for the particular expreseidi, we have

@Omaxout
thatt, = 1/(ys(nnaxcl;), so that eq. (4.53) holds. Eq. (4.78), coupled with (4.30%%)-(4.53)-
(4.54) and the new growth term

whereD,, =

Fs=(1—@)(&—C)+ . (4.79)

represents the evolution of a spheroid, whose growth igdithiby the availability of nutrients.
Indeedcyp represents the threshold of nutrients concentration, @lduch cells can duplicate.
For what concerns boundary conditions, we can assume that) @il the domain is composed
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by tumor cells, both in the case of a calcified core and in tise cd a liquid core, we have that
ca(t,1) =1, (4.80)

which corresponds to the presence of a vessel in proximity,gf= 1 with a wall perfectly
permeable to nutrients.
On the other hand for what concerns the internal boundarganesssume that the rigid necrotic
core is impermeable to nutrients, which leads to the comdliti

0Ch -~ ~

ﬁ(t,Ro) =0. (4.81)
In the liquid core case, we can consider that the conceotrati nutrients in the central liquid
region is homogeneous, which leads also in this case to thaitaan

0Ch -~ ~
ﬁ(t,Ro) =0. (4.82)
In the following, in order to simplify the notation, we willnait the tilde, as done for the other
dimensionless variables.
Results are shown in Fig. 4.12 for the rigid necrotic core 4@ for the liquid necrotic core.
We remark that, in the free growth case, i.e. Wity = 0, the condition at the inner boundary
does not affect significantly the results of the simulatjdresng the growth concentrated at the
external boundary that can freely move. Both in the calcified in the liquid core case, it is
possible to see that the more intense volumetric change®eused at the external boundary
(see Fig. 4.12-(a) and 4.13-(a)), where nutrients conagaoltris above the threshold (Fig. 4.12-
(d) and 4.13-(d)) that guarantee the proliferation of c@fig. 4.12-(b) and 4.13-(b)). In this
case remodelling is due to deformations occurring for thadifieration of cells and not to the
application of an external load.

Therefore in the first instants of time proliferation of sediccurs without remodelling (up to

t ~ 0.9). Then remodelling due to extension along Radirection starts at the external boundary
(see Fig. 4.12-(c) and 4.13-(c)). The solid volumetricti@achighly increases in the proliferative
region. In the first instants of time cells in the quiescegiae are pulled by proliferative cells
and thusg; slightly decreases in the proliferative region. Then, aspioliferative process goes
on, ¢ increases in the whole domain (Fig. 4.12-(e) and 4.13-())m the displacement plot
(Fig. 4.12-(f) and 4.13-(f)) it is possible to see that theolehaggregate is expanding.
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108



4.3 — Results

Volumetric changes]

11F

Growth,g

. PROLIFERATIVE
: REGION

QUIESCENT REGION

Remodelling ¥, — R

L Il L
09 1 01 0.2

03 0.4 05 0.6 0.7 0.8 0.9 1

R

(b)

Nutrient concentratiorg,

0.706 -

0.705

0.704 -

0.703

0.702

0.701

e ————

Cell volumetric fractiongy

16

14

12

0.1

0.2

0.3 0.4 0.5

r

()

10

Displacementy — R

Figure 4.13: Free growth of a spheroid with a liquid core, &sgent region and an external
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4.3.3 Inclusion of surrounding tissue

Finally, in order to make a step towards a more realistic gtsen of tumor growth in-vivo, we
introduce the surrounding healthy tissue.

In order to consider the influence of the surrounding tissaweehave to split our computational
1D-domain into two parts:

e the tumor regionRy < R< Rt
¢ the healthy tissue regidR < R< 1

For the moment we will consider that the tumor grows pushiegiealthy tissue, without induc-
ing the death of the surrounding cells and we will assumed&kiproliferation is balanced by
cell death in the healthy region. Therefore in this regiordeeot have any anomalous prolifer-
ation and thds term in (4.53) is null, whereas cells can proliferate in teatcal tumor region,
for Ry < R < Ry. We first consider the case in which the growth term depentisanthe cell
volumetric fraction. Thus, eq. (4.50)-(4.52)-(4.53)54) hold forRy < R< Ry, whereas (4.50)-
(4.52)-(4.54), withls = 0 andg(t,R) = 1 hold inRt < R< 1. Being the mathematical model is
different in the two domains, the continuity of the depertdamiables is no more guaranteed in
the whole domain, but only fdRy < R< Rt andRr < R< 1. In order to solve the problem, we
apply the domain decomposition technique [17]. The domeagochposition technique requires
to solve the problem separately in the two subdomains amdtthigansmit the information from
one subdomain to the other, imposing additional conditanthe interface, keeping in mind the
physical origin of the continuum model used.

We indicate the dependent variables in the tumor domaintwélapex 1), whereas the ape)
refers to quantities in the healthy tissue. Therefore tblpm can be formulated as

dJ® pxH% 8 1\ R 1 J® 1)\ R

= K grK @I -2 K e, (4.83)
rRoy _ 1 i IRy (1) E IR\ (1) (p*901(1)

1 = | RE4 2 (R - o)) (@.84)

ax(l) B (1) R2

e = I o (4.85)
1

_ng _ %rmg(l) (4.86)
t

(1) DD [ 02e®8_ @6 5

o = o | oy | sian(3 %) witasn)

RS A I
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for the tumor domain and

dJ@ 5 X(2>2 ) 2 2) 2 J@) 2 (2
o = e ar K@) g K P e, (4.88)
e - [a_Rm;R)@ + 5 (PR @ - <P;"‘@><2>)} (4.89)
o - o (4.90)
6 6

dWéZ) J(z)qéz) ‘](2)24152) —X(Z) 2T . ((2)2 2)6 2)6 (

_ ~ sign( 3@y — x@ )%2%4-91)
dt 612 W@y 2 @? .

for the healthy tissue, whepg? = 1.

The material interface between the tumor and the healtbydidocated & = Rt moves with
tumor cells, with velocityys. In particular, we have to guarantee the continuity of dispment,
stress and flux iR= Ry, i.e.,

[X]lry =0 (4.92)

[Pllr; =0 (4.93)

[[Trm”x(RT) =0 (4.94)

[ (Ve —Vs) -] |x(rr) =0, (4.95)

where((-)] indicates the jump of the variable) across the boundary located = Rr. Eq.
(4.95) entails that

[(K(@)F~TGradp) - n[| y(ry) = [K (@) T |y(ry) = 0. (4.96)

These conditions, coupled with the BCs (4.61)-(4.62)3%@&.64) for the necrotic rigid core,
fully define the problem in both domains. Indeed boundanddans are provided at the interior
boundary and the outer boundary of the tissue, i.e.J®kt,Ry) andJ@ (t,Roy), through the
conditions (4.62) and (4.64), whereas at the tumor interfa® impose

Tnﬁrr(l) (t,RT) _ Tr;rr (2) (t)RT> (498)
K(@) R (ERr) = K(@) 1R (LRy). (4.99
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In both domains, the dependent variaglbas a Dirichlet BC prescribed in the first node, which
allows to solve (4.85) and (4.90). The valueldah the first node of each domain is determined
through a Robin BC, whereas the valueJoh the last node is given by a Dirichlet condition.
Indeed eq. (4.98) can be seen as a Dirichlet conditiod iRy ), provided that)® (Ry) is
known, whereas eq. (4.99) gives a Robin BCI6H(Ry), givenl‘lR(l) (t,Rr). Since the value of
JB(Rr) andJ@(Ry) are unknowns, the solution has to be computed via an iterptivcedure.
At every time step one has to

1. seta guessed value bt the interfacelyuess

2. solve (4.83)-(4.85)-(4.86)-(4.87), with BGS) (Rr) = Jyuess [1R(1)(Ro) = 0 andy M (Ry) =
Ro

3. compute the flux through the interfagen = KU 7()

4. solve (4.88)-(4.90)-(4.91), witk(® 12 = q-n, J@(Ry) given by (4.64) angt? (Rr) =
X (Rr)

5. compute the stress at the interfaté,? (Ry)

6. calculate) (Rr) in order to insure the continuity of stress along tkexis, T" (Y (Ry) =
T (2)(RT)

7. go back to step 2, puttindyuess= (1— a)IW(Rr) + aJi2ss(wherea is a relaxation
parameter) and iterate until convergence.

Fig. 4.14 reports the results of a spheroid whose growtimidid only by contact inhibition,
i.e.,[s=(1—¢@). We remark that in this case, we consider only spheroids avitecrotic core
composed by calcified debris.

Finally, we modelled the effects of a nutrient-controlledwth on a spheroid growing inside
an healthy tissue. In this case the growth inside the tungiomeis controlled by nutrients,
whereas in domain 2 nutrients are not considered being thgroeth null. Therefore in (4.86)
we set

r= (1-@)(cn—co)+-
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Equations (4.83)-(4.85)-(4.86)-(4.87) are coupled wihté dimensionless equation representing
the evolution of nutrients

2
@ _ kX (1), (D) ;RO IS
e ©) oK (@)
Pnad D (1 - @ )R? R
4 5ad (1)
Lt o (xWowl) . &
ob J(l)(l_(psgl))RZ(?R (J(l)RZ JR Z(l_(ps(l)>0n ) (4.100)

in domain 1. We assume that vessels are located at the bdrither toomor, therefore
Ch(t,Rr) =1. (4.101)

At the boundary between the tumor and the necrotic calcifoed, condition (4.81) holds.
Fig. 4.15 shows the simulations in which the effect of nuitsas considered.

In both cases, the most consistent volumetric changes aexierced in proximity of the
interface between the tumor and the healthy tissue (seelHig-(a) and 4.15-(a)).

In particular, in the case in which the growth of cells ocaarthe whole spheroid (4.14-(b))
because it is limited only by cell volume fractiah;> 1 in the expanding tumor domain, whereas
J < 1in the healthy tissue, which is compressed by prolifeeatiglls. Healthy cells are more
compressed in proximity of the tumor boundary. Cell volunedtaction increases in the tumor
region due to cell growth, but we can observe also some shghtase, i.e@ > @, also in the
healthy tissue, due to the compression of cells (Fig. 4c)y-(

We remark thad(t,R) andg(t,R) are not continuous in the whole domain and that no restrictio
on ¢ are imposed, neither at the interface between the tumortentidalthy tissue nor at the
external boundary of the tissue, but the valueppis obtained by the continuity of stresses (Fig.
4.14-(f)). Indeed, we observe that pressure (Fig. 4.14a@®) stresses (Fig. 4.14-(f)) as well as
displacements (Fig. 4.14-(d)) are continuous at the iatexsfas imposed in the domain decom-
position procedure. For the instant of time considered baghairameters used in the simulation,
no remodelling is observed inside the spheroid.

With the introduction of nutrients, the model is able to siate the necrotic core, the quies-
cent region and the proliferative shell, along with the sunding healthy tissue (Fig. 4.15).
Nutrients diffuses and are transported by the fluid movisgdi& the spheroid, from the network

113



4 — Growth and remodelling of cancer spheroids

o Volumetric changes] . Growth,g
1.04
1.02[-
1.03 —_— —_t=0
1.02 _ —t=01
1.015F
—+=0.02
101 ——t=0.08
) 1015 —t=011
t=0.14
0.99
1.005 —t=017
0.98 —t=02
o 931.1 0‘2 0‘3 U.‘A 0‘.5 R 0‘.5 0‘7 O‘S U.‘B ‘1 %].1 0‘.2 0‘.3 0‘.4 05 R 0‘.6 0‘.7 0‘.8 0‘.9 i
(@) (b)
. Cell volumetric fraction g 20" Displacementy —R

01 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1 11 0.1 02 03 04 05 0.6 0.7 08 0.9 1
r R
(© (d)
X0 Pressurep 0 Mixture constitutive stresg,\"

~14 L L L L L L L L T L L L L L L L L L Il
0.1 0.2 03 0.4 0.5 R 0.6 0.7 0.8 0.9 1 0.1 0.2 03 0.4 05 Drﬁ 0.7 08 0.9 1 11
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of vessel inRy. Only in the region close to the vessel, nutrient conceiotnas high enough in
order to guarantee the proliferation of cells (see Fig. 4f))5 Thusg > 1 only in the external
portion of the tumor spheroid, which correspond to the fedditive shell (see Fig. 4.15-(b)). In
the rest of the tumog = 1 (quiescent region). Volumetric changes occurs at thefade be-
tween the tumor and the healthy tissue. As before, whers padliferateJ > 1, whereas where
cells are compressebl< 1. We remark that in this case, not only healthy cells are cesged
by proliferative cancer cells, but also quiescent cellsroxpmity of the proliferative region are
compressed (cf. Fig. 4.15-(a) with Fig. 4.14-(a)). Tlwysncreases both in the proliferative
region and in the region close to the proliferative one (FglL5-(e)). From the displacement
plot (Fig. 4.15-(d)) it is clear that the proliferative shexpands both toward the healthy tissue
and towards the quiescent region. Some remodelling dugéngon along the radial directions
occurs where cells are proliferating (Fig. 4.15-(c)).

4.4 Discussion

In this Chapter we formulated a mathematical model able pooduce the growth of a tumor
spheroid, described as a biphasic material.

The model is able to take into account anelastic deformatiesulting both from growth pro-
cesses and internal reorganization of cells. At the same, tihanks to the introduction of the
liquid phase, the transport of nutrients regulating groeah be properly described. The effect
of the surrounding tissue on the overall process can bedated in this framework, in order to
obtain a comprehensive model of tumor growth in-vivo.

Therefore, the model presented is able to simulate diftengperimental conditions.

In particular, here we show that when an external load is Beddo a quiescent aggregate
with liquid necrotic core, if no remodelling occurs, the aggate is able to bear the load, if it is
not too high. On the other hand if remodelling occurs, borésk and the internal liquid core
is filled by cells.

Looking at proliferative aggregate, the introduction ofrients is fundamental in order to guar-
antee that no growth occurs at the interior of the spheroepedding on nutrients diffusion and
transport inside the aggregate, the amplitude of the jgralifve region changes.

Finally, the introduction of the surrounding tissue is vanportant in order to simulate a situa-
tion closer to the pathological one, in which tumor cellsswarounded by healthy cells.

However, more simulations should be performed in order ttebeharacterize the effect of
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remodelling on the overall process. At the same time, mdi@egit ways to solve the model can
be proposed in order to speed up simulations and to increasacturacy. From the biological
point of view, in order to apply the model to study the reallation of tumor growth both in
vitro and in vivo, simulations need to be fitted to biologiexiperiments, through parameter
estimation.
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Chapter 5

Influence of nucleus deformability on cell
entry into cylindrical ECM structures

In this Chapter we study the influence of cell mechanical eriogs on the process of single cell
migration inside the surrounding fibrous environment, wiit& aim to incorporate this informa-
tion into a macroscopic model describing the movement ofnsemble of cells.

Looking at the process of an ensemble of cell moving in theosunding tissue, as long as contin-
uum models are concerned, cell movements inside the eltriacenatrix (modelled as a porous
structure) are described by Darcy’s law [103, 117, 155].rbteoto properly define this process,
it becomes important to determine the permeability of thepse structure in order to quantify
its capability of transporting matter. This capability éeds on geometrical factors of the porous
structure (i.e., geometry of the pore space) but also on amcal properties of single cells com-
posing the whole cellular aggregate. However, to our kndgde mechanical properties of cells
have always been neglected in the description of cell aggesgnigration in porous structures.
We start to tackle this complex problem, looking at the pssaaf a single cell entering inside a
cylindrical channel composed of extracellular matrix (EdMorder to highlight the influence
of cell deformability and the capability of cell to generatgive forces on the overall process of
cell migration.

In Section 5.1 we briefly review the biological experimentsé in order to assess cell and
cell nucleus mechanical properties. In particular, migretie experiments and the related clas-
sical aspiration criteria are presented in Section 5.2,maenting how they can be applied to
the the description of a cell entering an ECM channel, whieeefdrce is provided by the active
contraction of cell cytoskeleton. Indeed in order to migratells form adhesive sites with the
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external environment, though the expression of transmangbproteins of the integrin family.
As a consequence of bond formation, an internal tensileefergenerated, through actomyosin
contraction. Migrating cells exert traction on the undierysubstrate or ECM, where the bond
is formed. The active traction force is responsible of catvement along the ECM fiber and
of the deformation of the cell nucleus. Cell traction forseessential for migration in many
types of cells, being the way in which cells move along the Eit}dr and deform their nucleus.
However, recent findings [96, 124] have highlight that otimechanism of motion, that do not
require adhesion, are possible.

A simple mathematical model for active forces, requireddoomplish the process, is analysed
in Section 3. We focus here only on integrin-dependent rtimnd160], in which the process of
cell adhesion with the substrate is fundamental in orderctvate the actomyosin contraction
necessary for nucleus deformation and cell movement alomgack.

Here, we started from the biological observations thatthetion force is related to focal adhe-
sion [156] and we make different hypothesis on the activetita force (acting on the nucleus),
generated after the formation of a single bond. In particul@ point out two possible repre-
sentations of the active force generate after the formatiansingle cell-ECM bond (linear vs.
constant) and we make some considerations on the exterfdioa adhesive area (boundedness
assumption). The results obtained applying the activeefonodels proposed coupled with the
micropipette criteria are presented in Section 5.5.1, gmgwhat they lead to some unrealistic
results, because they do not consider the boundednesdof cel

We therefore derive an energetic approach in order to desdthie process of cell migration.
The mathematical model presented in Section 5.4, based ememgetic approach, is able to
describe the deformation of a spherical finite elastic stmec(representing the nucleus) into an
elongated deformed one, that can move inside the channeldifierent representations for nu-
clear deformation are implemented (ellipsoidal vs. cigfaaped). The nucleus is mechanically
assimilated either to an elastic membrane (Section 5.4.8) an elastic solid (Section 5.4.3).
The computational findings are reported and discussed iticB€s.5.2. Results are presented
in terms of dimensionless parameters that represent thlay between active and mechanical
properties. With the term active properties we will refercedl adhesive and contractile skills,
which together determine the capability of the cell to agthngenerate forces.
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5.1 Motivations

Cell migration inside extracellular matrix networks playsritical role in many physiological and
pathological processes. For instance, in wound healindepesition of ECM and the migration
of cells through it contribute to repair both epithelial éay and connective tissues, whereas in
immune surveillance and inflammation, leukocytes activeigrate towards the site of infection
[60]. On the other hand, in pathological conditions, celgration is involved, for example, in
chronic inflammatory diseases and in cancer cell invasiodmagtastasis formation [129].
Moreover, with the advent of tissue engineering, the peadscell migration is finally ex-
ploited in biomedical applications for the regeneratiorvafious tissues, both in vivo and in
vitro [28, 163].

From the biological point of view, an increasing number opesmental works has been de-
signed in order to determine cell properties and functibias &re involved in the dynamics of
motion inside the extracellular microenvironment, anddbetribution of this complex network
of structural fibrous proteins on the overall process (seeirnfstance, [76, 97, 127, 160]). In
particular, the key factors for cell migration on flat subg#s are the dynamic adhesion of cells
on it via the expression of adhesive molecules (in particultegrins) and the generation of
the force necessary for propulsion by contraction of cyatetial elements [61]. These are also
the basic “ingredients” in the process of migration insid@é-dimensional (3D) porous envi-
ronments. However, in this case, cells require steering tay throughout steric obstacles.
This process can be supported by the production of proieayizymes (e.g. Matrix Metallo-
proteinases, MMPs) able to degrade matrix components gr tocbpen gaps for cell movement
[58, 59, 128, 162]. The migratory and invasive process iegkdimensional environments is gen-
erally associated with both significant cell deformationd agtoskeletal force generation while
passing through constricted openings of the ECM [127, 166¢ cell body basically consists of
the cytoplasm and the nucleus. The cytoplasmatic regioigtgyhadaptable to morphological
changes and it can adjust to virtually any shape [62]. On therdhand, the nucleus, is 5-10
times stiffer tha the surrounding cytoskeleton and it casiste to changes in shape [26, 62].
Thus, nucleus deformability is a limiting factor in the pess of cell migration [62, 160].

Cell nuclei are exposed are exposed to a variety of mecHastresses and deformations [93],
especially, when the proteolytic machinery is inhibitediaring migration inside artificial rigid
scaffolds. Cellular and nuclear deformation require safitsdl reorganization of the cytoskeleton
and compression of the keratin envelope of the nuclear megicorder to acquire an elongated
configuration, allowing the entire cell to completely sqge@nd stretch (see Fig. 5.1(a)). In-
deed, it has been observed that inside ECM channels, nigtiepe and keratin network structure
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strongly deviate from the normal spatial distribution ie timdeformed cell [127].

These biological findings highlight that the geometry of émvironment strongly affects cell
migratory capabilities and that the deformability of thél,@nd in particular of the nucleus, are
crucial for cell migration in 3D structures.

The first efforts in describing mechanical behaviour oflyicells were aimed at understanding
cell response to mechanical stress in the vascular systgmrgd and white blood cells) [136].
In order to measure the mechanical properties of cellsethesst be deformed by a known force
or stress and the corresponding deformation must be mehasure

In the last years several tests have been developed to thislaiparticular some of the most
used mechanical instruments are atomic force microscop&ijAoptical trap (laser tweezers),
microcompression method and micropipette suction [83,184]. Despite the wide range of
technological instrument available, the description othamical properties of cells is still at a
primitive stage and a constitutive theory able to descréddebehaviour is still missing.

Even though the scientific community is becoming aware ofitigortance of mechanical prop-
erties of cells in their process of migration inside poraugctures, poor investigations have been
carried from the mathematical modelling point of view ancchranical information is generally
neglected in the description of cell movements.

Nowadays, if we want to describe the movement of a populati@ells inside a region contain-
ing extracellular matrix, from the continuum mechanicspoif view, Darcy’s Law is generally

used
K(@ecm)

LP.
V(1—gEcm)

VC:_

Therefore cells are viewed as a liquid continuum with veloei and dynamic viscosity that
can flow through the static and rigid ECM structure, with @itype = 1 — @cm (Where@cm

is the volume fraction of the ECM) driven by the gradient of thterstitial pressure,lP. The
permeabilityK(@=cwm), Which is a scalar only if the ECM is isotropic (with respezthe flow),

is generally a function of porosity (e.g. Kozeny-Carman airies-Mow [85]), but it is often
assumed to be a constant [103, 117, 155]. Sometimes theaireemof ECM fibres is considered
[32, 33, 109]. However, to our knowledge, mechanical priopeiof cells are always neglected
in the description of cell migration in porous structurasthie Conclusion section we will give
some hints on how the model of single cell migration can gome information on the perme-
ability coefficient.

Even when we move towards the length scale at which discretkels are used, the mechanical
properties of cells are poorly considered, unless we mowarts really detailed models of the
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cells. One of them, is the tensegrity model [88, 89], in wHdds are supported by struts in
compression and cables in tension. Clearly, this desorips close to reality, but the high com-
plexity of this model makes it difficult to be used in simutats with a big number of cells and
to be up-scaled to the description of macroscopic behasiour

Some first efforts to include cells mechanical propertisgdi@ the description of cell movement
on 2D and inside 3D substrates has been done in [133, 134] Gglular Potts Models (CPM),
which allow intuitive representation of cells and their magical properties, without requiring
too expensive computations.

The introduction of microscopic mechanical propertiesaifcinto continuum macroscopic
equations are of fundamental importance in order to makemtstvards a more comprehen-
sive representation of cells and tissue. To do that, we dtogythe nucleus deformability can
influence the process of a cell entering a 3D extracellutaiciire, using a continuum descrip-
tion of the cell nucleus. Even though, in vivo, fibre struesiand bundles are arranged into
really complex networks of strongly varying local denstj261], that create pores and gaps, we
simplify the problem, considering the ECM structured ingdiat cylindrical channels composed
of fibres and bundles that provide directional guidance toe®lls. This is of course a strong
assumption of the far more complex real structure of theaegttular environment, but it can be
a good approximation for regular scaffolds used in tissugreering, for microchannel set-up
used to test cell deformability and migration capacity,dacked collagen bundles consisting of
multiple aligned fibers, for myofibers and for nerve straridd2]. Moreover it helps to make a
first step towards the description of the real phenomenon.

5.2 Mathematical Model of Micropipette Aspiration

A cell can be schematically represented as consisting ohtaim compartments, the cytoplasm
and the nucleus, both surrounded by lipid bilayer membraié® cytoplasm holds all cell’s
internal sub-structures (except for the nucleus) immeirs&dat is called cytosol. The cytosol,
which fills much of the volume of the cell, is composed by a ctammnixture of cytoskeleton
filaments, dissolved macro-molecules and water. The ctadsg&gleton is a network of long fila-
ments interacting with motor proteins, which use the endegywing from the hydrolysis of ATP
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BIOLOGICAL BIOLOGICAL MATHEMATICAL
EXPERIMENT REPRESENTATION REPRESENTATION

@ Cytoplasm @ Cytoplasm
ECM

ECM channel

(b) (c)

Figure 5.1: Nuclear deformation during cell migration: Ibgical experiments and schematic
representation of the process. (a) Confocal time-lapspséd of cell migration inside mid-

density collagen (3.3 mg/ml) shows nuclear (in green) artdptgismic (in red) shape change
(with permission from [62]). (b) Biological sketch of theqmess of cell migrating through 3D

matrix of fibres. Dots denote focal contacts, pink linesgtiam ECM fibres (adapted from [62]).

(c) Schematic representation of the geometry considerdaeimodel: the cytosol (light blue)

can freely move into one of the cylindrical channels compasieECM bundles, whereas the
nucleus stands on the back and progressively deforms im twéater the channel.

(adenosine triphosphate hydrolysis) to produce activeefand deform the network and conse-
qguently cell nucleus [81]. The nucleus, however, is lessme@ble than the cytoplasm [26, 62]
and its deformability is mainly regulated by both chromatiructure, and lamin intermediate
filaments [62, 66].

When migrating inside a thick 3D fibrous environment madextfaeellular matrix, with typical
channel size smaller than the cellular diameter, cells t@ddform both their cellular body and
their nucleus. Being the nucleus the stiffest organelle §26, the nuclear deformability strongly
contributes to the migratory efficiency of a cell, whereas ihuch easier for the cytosol (and the
embedded organelles) to intensively change its shape aextéad into the channel while the
nucleus lags behind (see Fig. 5.1(a)).

In order to describe the above complex environment we sfynflle geometry considering the
motion of a cell in a cylindrical microchannel. In this respmicropipette aspiration is one of the
most common way to study the mechanical behavior of lividig @nd it can help understanding
the process of a cell entering inside a channel. In a typiga¢ement, a cell is aspirated into a
small glass tube applying a suction pressure. The leadigg efits surface is tracked with light
microscopy. It is observed that, if the suction pressureifcsently high, both soft cells (e.qg.,
neutrophils, that normally transmigrate across small poaed more rigid cells (e.g., chondro-
cytes and endothelial cells) completely enter pipettethiwa certain range of calibers (see [84]
for areview). In both cases the response to an aspirati@spre is similar until a hemispherical
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projection is formed inside the pipette. Beyond that pdimt,cells behaving like a liquid sur-
rounded by a membrane, a further increase in the suctiosymesan cause the complete entry
of the cell into the channel [48]. On the other hand, whersdehaving like a solid are aspirated,
they do not flow into the micropipette when the aspiratiorgtenlp in Fig. 5.2) exceeds the
pipette radius, rather the surface extends until a new ibquin position is reached [91, 145].
Because of the small suction pressures relative to the aspressure of isotonic saline solution
in which cells are positioned, in all these experimentsscadually deform at constant volume
[84].

Some simple continuum models, treating the cell either aguadl droplet surrounded by an
elastic cortical shell [164], or as a homogeneous elastimibnane [37], or as a solid [145] have
been formulated in order to fit experimental data. Even thdbgse models average out the high
heterogeneity in cell composition, they surprisingly mgked predictions of the cell deforma-
tion response to known suction forces produced by the @it they are still used today in the
biomechanical community.

In Evans’ model [164], cells are described as passive vstiquid droplet encapsulated by a
distinct cortical layer, with cortical tensiofig. The equilibrium condition comes directly from
Laplace law applied to the suction of a cell until a hemispiaiprojection is formed inside the
pipette. Callind-, the aspired length arf@, the pipette radius, the critical suction pressure drop
AP is obtained folL,/Rp = 1, when the following relation holds

APR, Rp)
_2(1-2» 5.1
Te ( Re G-

whereR; is the radius of the cell outside the pipette (WheyiR, = 1).

This relation can be easily obtained [46], observing thabifriction exists between the pipette
wall and the cell membrane, then the membrane tension iemmmibver the cell surface and
the Laplace Law can be applied, both to the cap of the projedtiside the pipette and to the
spherical portion outside the pipette (see Fig. 5.2),

2T¢

Peell —Po = ﬁv (5-2)
2T,

Peell =Pp = R—C (5.3)
p

wherePee i, Pp, Py are respectively the pressure inside the cell, in the m@ettl outside the cell.
Eliminating the cell cell pressure from (5.2), it is possibi obtain (5.1), definind P = Py — Pp.
The cortical tension creates a threshold pressure dropvbelach the cell will not enter the
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EVANS' MODEL CHIEN'S MODEL

[
P
L

Figure 5.2: Schematic representation of the geometry wsderive Evans’ and Chien’s equation.

pipette and above which cells can flow into it. Moreover Evetra. [164] observed that the rate
at which a cell flows into a pipette is almost constant, witly@small nonlinearity over time
until the cell completely enters the pipette.

When the cell has totally entered the pipette all the miapsxr‘ruffles” and “folds” have been
pulled smooth. However they observed that there exists arltimit below which cells cannot
enter the pipette, that for the specific cells used in thalodgjical experiments (granulocytes)
corresponds to a caliber ofum [47, 48].

For what concerns cells behaving like a solid, many studé&® tbeen done on human red
blood cell. The biconcave shape of this anucleate cells sdnoen their membrane. The de-
formation of such cells has been studied under a constaataasimption [37, 45, 46, 157], to
derive the suction pressureP needed to aspire a portion of cell of lendthinside a cylindri-
cal channel of radiuR, (see Fig. 5.2), which is given by the following relation (ttalds for
Lp > Rp)

— IO 9 .

wherey is the shear elastic modulus of the membrane.
Eq. (5.4) is obtained as the stationary condition of the dyinaelation

APR, _Lp < Lp) N Lp
— P_2P 14log(2=P)+4-=2, 5.5
" Ry g Ro VR (5.5)
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where a viscoelastic stress-strain relation is assumethéomembrane. Therefore in (5.9)
represents the elastic properties of the membrane whRresaiss viscosity.

APRy

L
It has been experimentally observed that, WhR@n> 1, the relation betweenr—— and Rp

almost linear, with a slope equal to45%. This conS|derat|on leads to the well known Chlens

relation [37]
APRp = 2.45ﬁ (ﬁ > 1) (5.6)
y Ro  \Rp
Finally, Theret et al. [145] studied the entry into a charufel cell treated as a homogeneous
elastic solid, with Young’s modulus equal B2 Their analysis for an infinite, homogeneous
half-space drawn into a micropipette can be summarizeddyollowing relation

AP _ 21 Lo
E 3 Ry’
where® is a factor linking the external and internal radius of thegpie, which is assumed to be
equal to 21 in many works [84].

(5.7)

The process of a cell entering a glass tube has some simegawith the process of a cell
entering a channel composed of ECM fibres. Of course in thiedimal movement of cell mi-
gration across matrix channels, we do not have any aspirnesspre, but what makes the cell
deform and enter the channel is the capability of the celbtomifadhesive bonds with the ECM
and translate this “adhesive information” into the contoacof the internal cytoskeletal struc-
ture, that actively pull the cell and deform the nucleus. sTimigratory mechanism is strictly
linked to cell capability to establish bonds (integrin-degent migration) and it is the preferen-
tial way of moving of those kind of cells which are highly adhe (e.g. smooth muscle cells and
fibroblasts). Recent works [96, 124] show that integrinejpeindent mechanisms of motion are
possible in confined environment. However in this paper werefier only to adhesion-driven
motion. Therefore, trying to apply these classical modeh&description of a cell entering a
channel, theAP in eq. (5.4)-(5.7) should be related to the active force WBd through cy-
toskeleton contraction as a consequence of cell-ECM bamaftion, TREAP ~ FZ, .., where
FZ, . ac IS the component on the long axis of the cell. We will give rmi)e&alls about this force
in Section 5.3
Moreover, we can assume that only the nucleus of the celMestes an elastic material, apply-
ing eqg. (5.4)-(5.7) to the deformation of the cellular nusl®nly. Even though results obtained
under these hypothesis seem promising (see Section 3v& hgve to be aware that we are push-
ing the criteria away from their limit of validity. In fact, l@en’s and Theret's models have been

127



5 — Influence of nucleus deformability on cell entry into agfical ECM structures

obtained assuming, respectively, an infinite 2D membraeasBD half space aspired inside a
pipette. Moreover, the pipettes used in Chien’s biologeegleriments ranged from®um up to
0.8 um and the volumes aspired into the pipettes were alwa$%o of the cell volume [37]. At
the same time, even though the pipettes used by Theret et44] yvere bigger (with an inter-
nal diameter ranging betweenn and 3um), the portion of the cell aspired was two-to-four
timesRp. Therefore both validations stay away from the completeyewitthe cell. Actually,
all these studies were designed in order to determine théanézal properties of cells in the
first stages of the deformation and they better apply to prablin which deformations are quite
small (normallyL,/R, up to 5 [145]), whereas micropipette experiments accowst &ir the
total aspiration of the cell.

5.3 Active forces in integrin-dependent motion

To describe cell entry into ECM channels, a fundamental stéipe definition of active forces,
that lead to cell deformation and migration inside the clehnn

Cell migration into 3D environments consists of differetaps, cyclically reiterated by the cell
[62]. In integrin-mediated locomotion, first the cell potas, assembling actin at the cell front
into filaments which push the plasma membrane outward amd footrusions. Then these
protrusions interact with the ECM, building strong adhaspoints with the substrate, through
the expression and activation of transmembrane receptdteantegrin family [81, 96]. At
this stage, cell eventually activate the proteolytic ddgteon and realignment of ECM fibers,
forming tracks for cell motion. Then actomyosin contratis &ctin networks, generating local
traction and the force necessary for nucleus deformatidrcathmovement along the track [62].
For most cell types, adhesion and migration is so intimdieked that regulation of substrate
adhesiveness is the main factor guiding the locomotiont{kapetic). In this type of cells, the
internal cytoskeleton is strictly linked to the ECM, thrdugansmembrane receptors (primarily
integrins), on one side, and to the cellular nucleus, on thercside, through the lamin inter-
mediate filaments forming a part of the nuclear envelope §&2, This adhesiveness largely
determines cell shape and nuclear deformation [160]. M@ed has been experimentally ob-
served [156] that the traction force generated through myasntraction depends on the focal
adhesion area of the cell.

Even though recent works [96, 124] shows that, at least foreskind of cells (e.g. leukocytes
and some metastatic tumor cells), the migration in confim@t@nment is sustained by integrin-
independent mechanisms, here, we consider only adhespendent movements, in which the
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deformation of the nucleus during cell movement is driverii®/generation of an active force
in the cytoskeleton meshwork, as a consequence of bond fiormaVe do not give an explicit
model of active force generation, but we postulate diffecemstitutive forms for the force ex-
erted after the formation of a bond.

Then, the active force related to adhesive processes cdhdugiht as the resultant of all forces
generated by cytoskeleton contraction after single cEMBbond formation on the surface of
adhesion. Cell-matrix adhesion is mainly mediated by integon the cell surface that con-
nect ECM to the cytoskeleton. The adhesion can be modulgtéuebdensity of expressed and
activated integrinspp = Nintegrin/ Scell-ecm (WhereNintegrin is the number of integrins over the
surface of contact between the cell and the EQ\y_ecwm), and by the density of substratum
ligands (ECM adhesive sites), here represented by the E@scsuratio 0ecv = Secm/ Schannet
We will assume that the cytoplasm can easily penetrategribichannel, acquiring an elongated
shape with an hemispherical cap (see Fig. 5.3), so thataleédn will cause on one hand the
displacement of the cytosolic region (keeping the sameeshéih a tip that will be modelled as
a spherical cap) and on the other hand the advancement afitkeus, that, being at the entrance
of the microchannel, will deform to penetrate into it. Wewase that the length of the region on
which bonds are formed is constant in time and it corresptmtiee portion of the cell in contact
with the channel wall and in front of the nucleus. Therefoegerring to Fig. 5.3 and defining
S={(X.Y,Z) : X2+Y2 =R, Ziou(t) < Z < Zup(t) } the surface for which ECM-bonds are ex-
pressed, we can say that the length for which bonds are forimed Zyp(t) — Zjow(t) remains
constant in time during cell deformation.

Accepting that the density of bonds on cell surfgag,and the portion of the channel wall com-
posed of ECM adhesive sitesgcy, do not depend on time, the total integrin-dependent active
force is

Factive= /Spb(x>aECM(X>Fbond(X)dsv (5.8)

whereFpong(X) is the traction force exerted on the nucleus through cylesie contraction, as
a consequence of bond formation. Thoyglandagcy may be generally functions of the space,
in the homogeneous case, eq. (5.8) simplifies into

Factive= PpAECM /SFbondO()dS- (5.9)

Considering only th&-component of this force, we have
Zz Lo Z
Factive= 27praECMRp/O FoonddZ. (5.10)
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The total active force pulling the cell is therefore a fuoatof the radius of the pipette, the density
of bondspy, the surface fraction of the channel composed of extrdeglinatrix, agcu, and the
integral of the single bond forces over the contact surfdcgarticular, under the assumption
that the bonds are formed only on the portion of the cell imffraf the nucleus in contact with
the channel (see Fig. 5.3), we have

Lp = L2y — Rp— LY (5.11)

whereL?,, is the initial length of the cell inside the channel (whichresponds to the length of
the region filled by the deformed cytoplasm) drfblis the portion of the nucleus that can enter
the pipette without any deformation. To obtain (5.11), wedhassumed that the cytoplasm forms
an hemispherical projection inside the channel. Impodiegbnservation of the volume for the
cytosol (before and after the entrance in the channel) we hav

4 2 1 2

SR~ R = 1% (L2~ Ro) — (L7 (R 312 + 53 5.12)
whereR;, is the radius of the cylindrical channé;, the radius of the nucleus afr} the radius
of the spherical cell. Thus, the left-hand-side of (5.13esents the volume of the cytosol in
the spherical cell, whereas the left-hand-side standh®wrblume of the cytosol totally inside
the channel (see Fig. 5.3). Eq. (5.12) leads to

AR R

3R

Lcen = Rp %+% (L9)° (Rn— %Lﬂ)] ; (5.13)
p

cell

+

whereld =R, — ,/R2 — R%. Once that a proper function representing bond forces igighed,

the description of active force is accomplished. In paléicuwve will consider the following
simple forms ofFZ;, which is theZ-component of the force transmitted to the nucleus when a
bond is established.

Linear bond force

We assume that, as a consequence of a single bond formattonegroportional to the distance
between the nucleus and the site in which the bond is formexdeded on the nucleus, through
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FZ
bond,|
LINEAR FORCES

CONSTANT FORCES

FORCES OVER A
BOUNDED REGION

Figure 5.3: Schematic representation of the length of theesige region and of the types of
forces considered.

actomyosin contraction, i.e.,
Fond = knZ, (5.14)

whereky is the elastic constant of a virtual spring linking the boitd ® the nucleus Substituting
(5.14) into (5.9) we obtain

Fittive= TRpPo0ECMKoLE - (5.15)

This relation takes into account the biological observativat the biggest traction forces are
expressed at the apical portion of the cell [8, 39, 99, 112pweler, it has the disadvantage
that there is no upper limit to the force that can be exertduchvis not true. This may become
important when the size of the channel is very small causing kell extensions (see Section
5.5.2and 5.5.2).
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Constant bond force

We assume that the traction force acting on the nucleusygeakeby a single bond activation, is
constantRZ ;= FM, which implies that

I:actlve— 27-[R|C)pbaECMFbM Lp. (5.16)

This relation represents the fact that there is a mean fhiatecn be exerted and a maximum
traction force above which bonds break [15, 110, 112, 138]thns the cytoskeleton no more
contracts, because the cell looses adhesion to the s@bstrat

Force over a bounded region

We consider the case in which cells are able to form bondsawdya certain area of the contact
region, e.g. the apical portion of the deformed cell. Thameftaking a constant force assump-
tion, we haverZ = FM X (2), whereLY represents the length of the maximal area of contact
for which bonds are formed (adhesive region) and

1 if (Ly—LM"M; <Z <Ly

X (2) =
> 0 if 0<Z<(Lhb—LM:vZ>Ly

where(-) stands for the positive part ¢f), to take into account that for protrusions smaller
than L't‘)’I all the cytoplasmic membrane participates in the adhesioogss. Therefore, the total
active force is represented by the following relation

I:actlve 27-[RppbaECM|:b Ly, (5.17)

whereL; = min{Lp,L} }. This relation prevents active forces to growth dramaltidal R, — 0
and it represents the fact that for very small pipette rathescell cannot extend his protrusion
over too large areas.

A similar relation would be achieved if the interval ov&rs substituted by several disconnected
intervals. In this casg is the sum of the sizes of the intervals. Also the localizatb these
“adhesive sites" does not affect the final result, provided the overall length is the same.
Analogously, it is possible to use the linear force assumnpﬂlaklnngond kaXLM ( ), that
leads to

l *
FaC'[IVe 27TRppr7ECMkb|—be| (Lb 2|-b,e|)7 (5.18)
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whereL o = min{Lb,Lg{'e,}. However with a proper re-definition &f, as a function ot.M,
eq. (5.18) leads to the same results as (5.17), vdgen Lg".

5.4 Energy Balance Models

In order to overcome the limits of models present in literatun which the finite size of the
cell is not considered, we tackle the problem of a cell entemto a cylindrical structure by
an energetic approach. Always working under constant velassumption, we develop two
models to analyse the total energy required to deform thialispherical nucleus (see Fig. 5.4-
(a)) into a nucleus that is totally inside a cylindrical cheh As observed in [156] the central
nucleus takes an elongated shape when the cell is forced$s channels of different radius.
Experimental evidence [92, 156] suggests that, when tHeelmigates, the initially spherical
nucleus significantly deforms, orienting with respect te ¢ell long-axis direction. Cell elonga-
tion is associated with the formation on either sides of thdeus of actin bundles parallel to the
channel wall, that are responsible of the nuclear defoonatnd help maintaining the deformed
configuration. Indeed, during cell elongation, the tensipactin filaments grows and generates
compressive forces acting laterally on both sides of théausd156].

The shape of the deformed cell, when it is totally inside thenmel can be approximated either
The shape of the deformed cell can be approximated either

¢ by a prolate ellipsoid [156, 162], with smaller aXg (see Fig. 5.4(b)) or

e by a cigar-like shape (see Fig. 5.4(c)), with cylindricahtal region of radiuRR, and
hemispherical caps [62].

Both morphologies have been observed in vivo and in vitreeerpents [26, 62, 156]. Of course
the morphology acquired in vivo by the nuclear shape, eapigdi the geometry of the channel
is not so regular, can be more complex.

Concerning the calculation of the energy required to defiwemucleus, we consider the two
cases in which:

¢ all the energy is spent to increase the membrane area of theusywhereas the material
inside is treated as an inviscid liquid that freely rearesgccording the geometry of the
channel (see subsection 5.4.2);
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¢ all the energy is spent to deform the internal solid nucldub@cell, treated as an elastic
material (see subsection 5.4.3).

Of course, these hypotheses can be considered extremeacaksiegermediate situations should
be studied (i.e., energy of membrane plus bulk energy). \é&lrence again that, in both cases,
the cytoplasm can freely move inside the channel.

The energy required to deform the initial spherical shagktiaén be compared to the work
done by active forces, described in section 5.3, to makedhadvance in the microchannel. We
will give more details on the work done by adhesive-mediataction in subsection 5.4.1.

INITIAL ELLIPSOIDAL CIGAR-SHAPED
CONFIGURATION DEFORMATION DEFORMATION
Z 4 z
- - ‘ hE N ap
H Ri) h
Y
y
X “ y
X

(@) (b) (©)

Figure 5.4: Deformation from (a) the initial spherical cguiiation to the final one, considering
(b) an ellipsoidal and (c) a cigar-shaped deformed nucleus

5.4.1 Active force work

The work required to have the cell completely inside the aledshould be provided by active
forces. We can express this work as

Wactive = Fa%:tiveA L, (5.19)

134



5.4 — Energy Balance Models

whereAL is the total displacement of the cell nucleus inside the oBhrandFZ,, . is the re-

sultant directed along th#-axis of all bond forces developed after cell-ECM bond fatiorg
described in Section 5.3. In the following we will assumet thi = L™ — L, whereL" is the
final length of the nucleus when it is totally inside the chelrend it varies depending on the

representation chosen for the deformation of the nuclendedd, for the ellipsoidal shape we
have that g, o = 2he, where

he = (5.20)

<R/ &,

is the longer semi-axis of the prolate ellipsoid that presgrthe initial volume, whereas con-
sidering the cigar nucleus;:ggar = 2(h+Ryp), whereh can be easily computed, assuming the
conservation of the nuclear volume
2 ~-R
h= —Rph. (5.21)

3R

On the other hant? is the initial length of the nucleus that can freely enterchannel without
any deformation and it is given by eq. (5.13).

5.4.2 Membrane Energy Model

As a first example, we consider the case in which the volumeeohticleus is treated as a liquid
droplet surrounded by an elastic shell. The energy reqtirettrease the surface arggg,, can
be approximated by the following relation [46]

Wo = A(AS)? (5.22)

whereASis the increase in the surface area of the cell passing fromitzad spherical shape to

its final conformation.

More complex formulae can be applied to describe the enexgyired to increase shell area,
such as those proposed in [82, 137, 150, 151], however eg2)(6an be used to make easy
analytical computations and it has been shown to well reprtesell behaviour at least in a
certain range of deformations [46].

The increment in the surface are&S, can be easily calculated, assuming that the volume is
preserved and computing the new surface area of the defonongdus. Using the ellipsoidal
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INITIAL CONFIGURATION
Ry

n

(@)
ELLIPSOID NUCLEUS

(b)
CIGAR-SHAPED NUCLEUS

(©)

Figure 5.5: Schematic representation of cell displacermedtucleus deformation.
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deformation assumption, the increment in the surface argeén by

ASllips = Sellips— Ssphere= 277R2< +§Sm 1 ))_47TR%:

— 4R {;R% (1+msinl<\/l—ﬁg)) —1] . (5.23)

| R
wheree= {/1— W andhe is given by (5.20) and all distances have been convenieodied
s

v/
i (4nRZ)2
is a function ofR,. Actually, in the following all the quantities with a tildepresent the corre-
sponding distance scaled wiiy.
On the other hand, using the cigar-shaped deformation hgp® we have

with the nucleus radius, defining the dimensionless qqal%jt: Rp/Rn. Therefore

ASigar = Sigar — Ssphere= 477R2 + 27TRp (2h) 47TR% =

= 4nR§( 2p 1) (5.24)

3R

where the height of the cylindrical portion of the cigahn, & given by (5.21).

5.4.3 Solid Nucleus Model

To compute the energy required to deform the nucleus of thetreated as a simple solid,
we have to assume a proper constitutive equation, repregeahe response of the material to
deformations, and calculate the deformation gradiént,

Nowadays, a representation of the Cauchy stress tensoelfiofac components is still under
investigation. For sake of simplicity, we assume an incasgible neo-Hookean constitutive
law for the nucleus of the cell, therefore the elastic st@neergy per unit volume is given by

wV = H

5 [1(€) -3, (5.25)

whereC = J~2/3FTF, J = det(F) andu is the shear modulus of the nucleus [20]. We observe
that being the nucleus incompressihle; 1.
In both the cases in which the deformed nucleus has an atligisshape and the case in which
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it takes a cigar-shaped conformation, we assume that phpédines perpendicular to the axis of
the cylinder in the undeformed configuratiah== c, are mapped into parallel planes in the final
deformed geometrg,= ¢/, with c.c’ € R. Using the standard notation of continuum mechanics,
capital letters refers to quantities in the initial configtimn whereas lower cases refer to quanti-
ties in the deformed configuration. Therefore wi¥1Y,Z) we indicate the cartesian coordinates
in the undeformed configuration and witky,z) the corresponding cartesian spatial coordinates.
Sometimes cylindrical coordinates are used, denoted (pith,Z) and with (r,¢,z) in the un-
deformed and deformed configuration, respectively. Theutafion shown in the following are
based on merely geometrical considerations.

5.4.3.1 Ellipsoidal deformed nucleus

The deformation of a sphere in a prolate ellipsoid with th@eaolume is simply given by a
uniaxial deformation

. Ry R . ~ ~ 1
F = dlag{ﬁp,ﬁp,%} = dlag{Rp,Rp,ﬁ—%} . (5.26)

For the particulai given by (5.26), we can rewrite eq. (5.25) as
v By Ll 3 (5.27)
2 P R} ’

which integrated over the total volume of the initial sphgirees the total energy required to pass
from the initial to the final configuration, i.e.,

thtz/%"dvzgunr«ﬁ 2R 1 3, (5.28)
Vi 3 R}

whereV, is the volume of the cell in the reference configuration.
Eq. (5.28) links the elastic energy of deformation to the namical properties of the nucleys,
the morphological properties of the nuclé®sand the radius of the chann&,.

5.4.3.2 Cigar-shaped nucleus

Another slightly different possibility is that the solidisgre (representing the nucleus), deforms
into a cigar-shaped nucleus, composed of a cylinder of @Elg,uand heighlﬁ = % and two
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hemispherical caps (see Fig. 5.4-(c)).

In order to obtain the deformation gradient we subdivideititéal spherical nucleus into three
regions: the central one, of scaled heigtht= % is mapped into the cylindrical portion of
dimensionless radiu’, and scaled heiglitdefined by (5.21), whereas the upper and lower poles

of the nucleus are mapped into the apical and basal hemegphbéthe cigar-shaped nucleus.
Therefore the deformation gradient can be described as

FN_pole for H<Z<1;
F=1 F, for —H<Z<H; (5.29)

Assuming symmetry, we can restrict our analysis to the upakof the nucleus, i.e., & Z < 1.
To derive the deformation gradient of the central regi®g, we consider a reference slice of
heighte and volumé/; (¢), which is mapped into the final volunwg () (see Fig. 5.6). Assuming
that the volume is conserved and passing to the infinitedimd| we obtain

V mR2 (z(Z+¢€)—2(Z =%
1= 1im &) _jim pld2te)-22) Ry oz (5.30)
g0V, (€)  e-0 g3 1-7297
m(l-2Z2)e—m|Ze2+ — 3
which leads to 5
Jz 1-Z
ﬁ—T%. (5-31)

We assume that all the slices of the reference “barrel” nerparallel while deforming, i.e.,
x=x(X,Y,2),y =y(X,Y,Z) andz= z(Z). We then consider an internal volume of the reference
spherical region of height and volumeV; (e) = mp?e + o(¢) (for € — 0), which is deformed
into a volumeVs = 1r?(z(Z+¢) —z(Z)). Keeping in mind the relation (5.31) we obtain

r— \/&ﬁep. (5.32)

Assuming thatp = @, for the central volume of the sphere, one then has the follpwmatrix
representation of the deformation gradient in normalizases of cylindrical coordinates (for
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UNDEFORMED CONFIGURATION DEFORMED CONFIGURATION
Zh | ZT

d| /7N
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\
|[\
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N

Figure 5.6: To derive the deformation gradient of a spheferdeng in a cigar, we consider a
reference slice of heigtatin the central region of the sphere which is mapped into andgli of
radiusR, and heightd; = z(Z; + €) — z(Z1) and a slice of height in the upper portion of the
sphere which is mapped in the spherical segment of hdightz(Z, + €) — z(Z).

both configurations)

[ Ry RpZp
0
Fe = 0 Rp 0 . (5.33)
1-22 ,
1-2
0 0 ~
i RE

To fulfil the problem of describing the total deformation djent, we have to consider the
upper and lower portion of the sphere, which are mapped Iigdvwo hemispheres of the cigar-
shaped nucleus. Considering a slice in these region (see5m8y, in analogy with the central
region case, we have the followizg-component of the deformation gradient

0z 1-22

wherez=z(Z). An explicit relation betweemandZ will be derived in the following. We remark

that (5.34) holds foH < Z < 1 andh <z< h+R,.
Also in this case, assuming that undeformed parallel plaessin parallel in the deformed
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configuration, we obtain
r= |i%—(Z_mzp (5.35)
vi-zz2 7’ '

that coupled with the hypothesgs= @ gives the following deformation gradient in cylindrical
coordinates, for the upper pole of the sphere

RZ2 —(z—h)2

0 rZ

T2 (Z2)p

2 _ (7 R)2
FN-pole = 0 Rp—(z=h) 0 (5.36)

1-272 )

0 0 e,

i Ro—(z=h)*" |

where

1-22%  (R—(z—h?)¥?
We observe that, for the particular formIe§ andFy_ pole the deformation gradient; is contin-
uous. Indeedy_pole(Z = H) = Fc(Z = H), beingz(H) = h.
In order to express all the quantities in the material frawe jntegrate eq. (5.34), which gives
the implicit relation between the eulerian coordinatand the corresponding material oze,

)= (Z RR—(z-h?  (_h/i-2 )

(z—h)®—3R3(z—h)+3(z—H)—(Z*-H3 =0. (5.37)

Eq. (5.37) is a cubic function imand it has three real solutions, but only the root

(5.38)

o V(722 76
Z(Z):h‘f’szCOSI%COSl((Z H)(2"+H"+2ZH 3>> 4]

+ —
ZRE; 3
is acceptable, in order to satisfy the conditior z < h+ Ry, and can be substituted in (5.36) to
have the deformation gradient in terms of the Lagrangiamdinates.

Eq. (5.37) can also be used to deri¥egivenh. Indeed substituting= h+ FNQp, with h given by
eq. (5.21), an& = 1 in (5.37) we have a cubic function of the new unkndsnwhich gives the

only acceptable solution
~ 1 ~ 4
H = 2cos §)cos‘1 (R —1) +37 - (5.39)
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As for the ellipsoidal deformation, once that the deformafradient is known it is possible to
compute the total energy required to pass from the initiafigoration to the final configuration.
Stillassuming an incompressible neo-Hookean constéudw (5.25) for the nucleus of the cell,
the elastic energy stored per unit volume in the centraigouf the sphere is

R Rz%p? (1-22)°
v__H _
A 5 [21 Zz+(1 ZZ) 3+ Iig 3|, (5.40)
whereas the energy for the upper and lower poles of the spiwere
u [ RE—(z—h?
I pole =15 pole = 5 Zpl_—zg +
r _ _ 2
u | (ZyRe—(z=h?  (z_fhI_22 )
* 2 2\3/2 + 50 F\2\3/2 N
(1-27) (Rp—(z—h)
[ (1-2%)?
+ % "2( ) ) 2—3] , (5.41)
_(Rp_(z_h) )

wherez = z(Z) is given by (5.38). To obtain the total energy required tospgfasm the initial
spherical configuration to the cell totally deformed ingide channel, we have to integrate over
the corresponding domains in the undeformed body, i.e.,

Wmt - / WVdV—l—/N pole p0|edv+/&pole p0|edv_

B 2(/\, 7YV / v pote /N poledV ) (5.42)

whereV¢ is the volume of the central zone in the reference configumat ~P%'® andyv;> '@
are the volume of the north and south pole of the spher&/ahds the volume of the upper-half

central part of the sphere, i.e.,
Vi {(p,@,Z) cR3:0<p<\V1-72,0<0<2m0<Z< H} ,

whereas

VN-pole _ {(p,@,Z) eR3:0<p<V1-220<O@<2mFA<z< 1} :
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The previous integral can be easily computed in the cerdgabn
am dn EPR
W = unRﬁ[zRf,HJréR%(tanth—H)%
1 (s ~3,375 1la7 < H®
— (H-—H3+ZH>-ZH" | -3(H-—)|. 4
—I—unRﬁ[R%< +z 7)3( 3 (5.43)

tot
We observe that sindg is a function ofR, through (5'39)’7%% is a function ofR;, .

On the other hand, for what conceryiimfpoueWNpro,edV, using the fact that the domain of

integration is normal with respect to tier-plane, we can express the triple integral as a simple
integral

U o [
Wl\tl()tpole = 7R§ 2/

7)oz +
2
z,/Re—(z—h Wz
+ IR 2/ ( SV ) (1-2%)"az| +

(1—72)%? (R —(z—h)2)?

st (122 3 .
f /“ Bl e J?R%] (5.44)

that needs to be evaluated numerically, in order to obtagstimate of the total energy required
to deform the nucleus.

5.5 Results

In subsection 5.5.1 we present results obtained adaptindel®mdrom the literature for mi-
cropipette aspiration of a cell through a cylindrical chelnrconscious that we are pushing
Chien’s and Theret’s criteria far from their limit of valtgli In subsections 5.5.2 we show re-
sults obtained with our energetic approach, both underlistie membrane and the elastic solid
nucleus assumptions.

5.5.1 Micropipette models applied to cell migration insidechannels

We consider here the case in which nucleus entry obeys thsictd relations (5.4) or (5.7), de-
forming the initial spherical nucleus into a cigar-like peawith the assumption thay, in (5.4)
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and (5.7) represents the length of the deformed nucleusl je= L:,'ngar = 2(h+Rp) with h

given by eq. (5.21). We define the critical pressure as thgevaf AP for which Lp = er"gigar
o FZ
and we assume that a proper representatiod®m eq. (5.4) and (5.7) |s%'§’e, whereFZ,; o

is theZ-component of the active traction force given either by e§1%) or (5 16) or (5.17).
Then, for a pressure above the critical one, the cell mowvaderthe pipette. This way we obtain
the yield value of the ratio between mechanical and activarpaters that a cell should have in
order to enter the channel, depending on the geometricpepties (i.e R,, Rc andRy).

The inequalities that should be satisfied in each case armatiged in Table 5.1, as a function
of the diameter rati®y, = &. On the left-hand-side of each relation we have charatitepa-
rameters representing the ratio between cell active ptiegeand nuclear mechanical properties
of cell nucleus. In particular, we identify

ok _ PoEcmKoRG oF — PoEcMP) Ry
y— <, y — .,
y y
Gk PoAecmKoRn GF — PoecmFM .
E ’ E
Table 5.1: Entry criteria
| Model | Linear Force | Constant (bounded) Forcd
L L L L
2|§—IO —1+log (2§—p) 2|§—IO —1+log <2|§_p)
Chien || Gk> —P PGl > P P
y L2 y ZI:(*)
2 L 2 bL
Theret Gk > TP GE > Mo
3 12 3 2L< )

On the right-hand-side of each relation we have the critiahle of the characteristic number
(indicated withG/, with with i = {y,E} , j = {k,F}), which is a function of the diameter ratio,

being ,
- L 2 ~ 1
Lp:ﬁp_éRp 1+2<§—p) :
~ 3 ~0\2
- L 5 |4(R 101 (W) 1eo

with L) =1—,/1— R andRc = Rc/R,. The notatiorf_é*) means that the value af, = Ly/R, is
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Figure 5.7: Critical value of the characteristic numbergoted applying (a) Chien’s model and
(b) Theret's model, under the assumption of a linear for¢ee(p a constant force (black) or a

constant force over a bounded region (red dashed). We retatkb is a factor linking the

external and internal radius of the pipette, which is assltoée equal to 4 in many works
[84].

used in the case of the constant force assumption wheregaltheofL: = &/ Rn is considered
for the bounded adhesive region case.

The critical characteristic numbers are plotted in Fig. &7a function of the diameter ratio of
the channel. The graphs represent the minimum value thatddaensionless parameter should
assume in order to have the cell totally inside the chanmebraling to Chien’s criterion (Fig.
5.7(a)) and Theret’'s one (Fig. 5.7(b)). Results obtainetth Wie linearized Chien’s equation
(5.6) are comparable with the ones obtained with the moreptmnformula (5.4). In Fig. 5.7
the dashed line represents results obtained using corigtaes over a bounded domain (where
we setlM = 5). It is possible to see that for b@,, Gf, andGE are obviously not influenced by
the assumption on the boundedness of the contact regioniahwitegrins are expressed (i.e.,
the red-dashed curve and the black-solid one overlap) ebhdeexists arﬁ’lg such thatl} = Ly

for Rp > R, wheread | = LM for Ry < Ry, Therefore the work of active forces is influenced by
the boundedness assumption onlyRpr< Ry,

For instance, Fig. 5.8 explains how these graphs can bepieted (for the particular case
of Chien model): the bar charts below the graph representahge oflip for which a cell
characterized by a give@'f, ora givenGE can enter the channel.

In the figure, 'cell 1’ (orange) is characterized by highiéy or G)F, than ’cell 2’ (violet).
This means that 'cell 1’ is either a softer cell (i.e., smgllor a cell that is able to establish
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Figure 5.8: Interpretation of the results: bar charts regmés the range for which a cell, with a
givenG'f, or G)F, can enter the channel, for the different hypothesis of boncek.

a higher number (i.e., highep,aegcm) of stronger (i.e., biggeky, or Fb'V' ) adhesive bonds. In
any case, the range for which ’'cell 1’ can enter the pipetteigger than for 'cell 2’ (orange
bars vs. violet bars), according to what we expect from lgialal observations. Moreover,
using the constant force assumption it is possible to sedttbaange for which cells can enter
the pipette is bounded both from below and from above. On therdiand, using the linear
force assumption, we do not have any inferior limit, in castrwith biological observation.
This contradictory result is due to the hypothesis used énrépresentation of forces. Indeed
in this case the more the cytoplasm of the cell spread insidethannel (smalﬁp), the more
bonds can pull the nucleus inside. In particular, even thaheg force required to deform the
nucleus grows ai;3, asRp — 0, the bond force raises faster, sirige= ¢ (R,*). On the
other hand, when a constant force assumption is used, fdl Ryahe length for which bonds
are formed augmentd, = ¢ (R;?) forR, — 0). Thus, the total active force increases, but it
is not sufficient to compensate the greater deformationiredjtio the nucleus, which goes like
Ii53for|§p — 0. Conversely, introducing the boundedness assumptidn otte active force is
limited.

In particular, we have that fdfip — 0, GK goes Iikelig"r (with a = 1 for unbounded., and

o = 3 when the adhesive region is limited) a@ﬁ grows linearly.
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On the other hand, when the radius of the pipette is very begentry of the cell into the channel
is limited due to the decrease in the contact area betweetethand the channel wall, where
adhesive bonds are formed. It is likely that, in this case, libnd force is not equal to the
maximum applicable force. Thus, a linear force can bettecidee the physiological behaviour.
Therefore, a good choice for the bond force relation could tanp force on a bounded adhesive
region, which is also the most conservative case.

In Theret's model it is possible to see that, Ry — 0, Gg = & (R3) andGg = ¢ (1) when
the constant force assumption with unbounded adhesiverrégimplemented. Thus neither the
constant force assumption nor the linear force one can atd¢outhe inferior limit in pipette
calibers. Only enforcing the boundedness of the adhesgienethe capability of cells to enter
very small channels is prevented.

Both Chien’s and Theret's models, with the assumption ostamt bond forces over a bounded
region, provide evidence for a biphasic cell migratory hébrathat reveals most optimal migra-
tion at channel sizes at nuclear and subnuclear diametdrdiarinishes at gaps greatly bigger
or smaller than the cell nucleus diameter.

However, even though results obtained applying the clabsiodels above seem promising,
especially when adhesion is active on a bounded domain, daegot account for the finite
boundaries of the nucleus. Indeed Chien’s model refers tofanite 2D membrane, whereas
Theret's one was derived for a 3D half space aspired insidpedtp, only for a small portion.
Therefore these criteria cannot be applied to describeothkdntry of the cell into a pipette. The
consequence of this assumption are evident in Fig. 5.7,e/vrfxmrf€p =1, the force needed to
deform the nucleus does not vanish.

Table 5.2: Behaviours @&, andGg for Ry, — 0
| Model | Linear Force| Constant Forcg Bounded adhesive regidn

. —k 5\ | =F 1 =F 1
Chien || G, =0(R G:@’<~—) G, =0 =
y ( p) y Rp y (R%)

) | Gg=0(1) GEzﬁ(%)

Theret|| Gg = 0 (
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5.5.2 Energetic models

In this subsection we present the results obtained with tleegy balance model, presented in
Section 5.4. When the elastic membrane model (subsecto)3s used, we consider that the
cell can enter the channel if

Wactive> Wyay» (5.45)

where #active IS given by (5.19) and/tgt has the form presented in eq. (5.22). On the other
hand, when the elastic solid nucleus model (subsectioB)aglapplied, the nucleus can enter
the cylindrical structure if

Wactive > Wt},’t, (5-46)

where#; ¥, has the form presented in either eq. (5.28) for the ellipgaldformation or eq. (5.42)
for the cigar-shaped one. Depending on the hypothesis osgestribe the adhesive-dependent
active force (linear vs. constant vs. bounded) and the gagroleosen for the deformed nucleus
(ellipsoid vs. cigar-shaped), inequalities (5.45) and@blead to the results presented in Table
5.3, with respect to the diameter raig. As before,lié*) stands either fok, = Lp/R, in the case

of the constant force assumptionfcgr: Li/Rn for the bounded adhesive region case. By scaling
all distances withr, and writing all material parameters on the right-hand-sieidentify four
dimensionless numbers that represent the ratio betwese aobperties and nuclear mechanical
parameters. In particular, for the elastic membrane modatame

PoecmFM /Ry
)\ )

PoOECMKh

k

and G =

whereas, when the elastic nucleus model is used, we inteoduc

a agcmFM
Gk = Po E(;lebRn and  Gf = Pb EZM b
At the numerator we have all the parameters that charaetbamds forces (densities of bonds,
surface ratio of ECM, elasticity or maximum executable &rahereas at the denominator we
have the parameter describing the mechanical propertiggeafell nucleusX in the case of an
elastic membrangy in the case of an elastic solid).

In Table 5.3, ot
N Wtot WN—
j(Rp) = 4 < +2 4 )

TR STHRS

pole
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5.5 - Results

Table 5.3: Energy based criteria

| Model | | Linear Force | Constant (bounded) Force |
2 2
1~ sin1(e) 1~ sin1(e)
“R2(1 = -1 “R2(1 = -1
- [2(*@) ] [2‘3(*@
Elastic | Ellipsoid | Gk > 16m e Gi >8m —
RoL§A Lellips , Rply " ALeliips
<%R‘%+3; _1) <%R‘%+3é 1)
membrane  Cigar Gk > 16m——x =" G} > 8
RprALcigar Rp b ALClgar
1 |
22R§,+@—3 , Rt =3
Elastic | Ellipsoid Gk>2 P GL> oo
S RPL%AEEHIPS . 3Rp|-l()*)4|—ellips
: 4 JR 2 7
nucleus | Cigar Gl > == ~2( %) Gl > S Nm( E)
3RprALc|gar 3Rpr ALcigar

where 71° and V/,f,‘fpole are defined in (5.43) and (5.44) respectively. The rightehside of
each relation identifies the critical value of the charastiernumber and it is indicated in the
following with Gij (withi={A,u},j={kF}). Therefore, once a proper model is chosen, for
every diameter ratiép, itis possible to define the valueéf, above which a cell, with a nucleus
of dimensiornR, can enter a channel of radiﬁag,Rn.

We remark that this model, taking into account the finiterefdbe nuclear dimensions, is valid
only for Iip < 1. Indeed, Wherﬂp — 1, the elastic energy required to deform the nucleus is
almost null, whereas, allowing the cytoskeleton to enterdhannel, the work done by active
forces is not null and it can easily pull the nucleus insidedhannel.

Fig. 5.9 shows the value of (ﬁ_ﬁ in the case of linear forces, (@E in the case of constant
forces and (CI_BE for constant force over a bounded adhesive region, abovehvthe cell can
enter a channel of scaled radis, when the elastic membrane model is used. On the other
hand, Fig. 5.10 reports the ratios (@f and (b-c)GZ obtained applying the elastic nucleus
model, under the same hypothesis of active traction forces.

Both in Fig. 5.9 and 5.10 solid lines represent ellipsoidefbdnations, whereas dashed lines
stand for cigar-shaped final configurations. In any casea#issmption on the geometry ac-
quired by the deformed nucleus does not affect the quaiaiehaviour of the solutions.

We remark that in Fig. 5.9-(a) and (b), for very small radihg, energy required to increase the
area of the nuclear membrane increases but the active focoeaises faster and therefore, for
Iip — 0, the criticaIGK and GK go to zero when the unboundég is used, giving rise to the
contradiction that cell can enter pipettes of very smaliciters.
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5 — Influence of nucleus deformability on cell entry into agfical ECM structures

Indeed, when the radius of the channel is small, the lengtihefcytoplasm inside it grows
considerably, leading, in the linear case, to active toactorces that are unrealistically high.
In particular, 1‘0r|§p — 0, we have that the energy required to deform the elastic memelin-
creases a§52, given that the increase in the surface area groW%gals On the other hand, at
the denominator o6/, we haveAL = & (R,?) andLy, = ¢ (R;?). Therefore, when the linear
force assumption is useE'; =0 (Ii%) for R, — 0, whereas, when the bond force is assumed
constant(_BE =0 (Iip) for Iip — 0. In order to avoid the unphysical result, we more reakdityc
assume that bonds are formed on the surface of the chanriethenmaximum length.Y is
reached. Restricting the extent for which bonds are forroeal ¢ertain lengthl, = L}), will
dramatically limit the work done by active forces for veryaihﬁp. In this case, foﬁp — 0,

Lp = &' (1) and thus the critica}, goes to infinity likeR;* (see Fig. 5.9-(c)).

The same unrealistic result is obtained using the lineaefarodel coupled with the elastic solid
nucleus model (see Fig. 5.10-(a)). In this case, for veryllsmadii, the energy required to de-
form the elastic nucleus grows ég“ and hence, under the linear force assumption, the critical
GI'§ goes linearly foﬂip — 0. On the other hand, when a constant force assumption is weed
have tha(_BE goes to infinity afk; 1, whereas limiting the adhesive region, it goes Ilﬁgé, for

Rp — 0.

Fig. 5.10-(b) reports the results obtained applying theteaolid nucleus model with the con-
stant force assumption, whereas Fig. 5.10-(c) is obtaineéthe boundedness assumption. In
both cases the relation betwe@ﬁ and Iip is a bijection. Therefore, for eveﬂi?p it is possible

to uniquely define a minimum value GE above which the nucleus is pulled inside the chan-
nel, conversely knowing nuclear mechanical and activegnags, the minimum value @&, that
allows the nucleus of radiug, to enter the channel, is determined.

Table 5.4: Behaviours @&, andG, for R, — 0

| Model | Linear Force| Constant Forcg Bounded adhesive regidn
_ — | = - — 1
Elastic membrang Gi = & (R) G, =0 (Rp) G, =0 (§—>
P
Elastic nucleus | G5 = & (Ry) | G = o (= o=
astic nucleus | G, = 0 (Rp) | G, = & u= @p

Being the discrepancy between results obtained assunergiygar-shaped and the ellipsoidal
deformation very small, it is possible to use the analytretdtion obtained for the ellipsoidal
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Figure 5.9: Elastic membrane model: (_515 (in the case of linear forcesg_sf in the case of
constant forces (b) and in the case of constant forces oveuaded region, Witr[g" =5 (c).

The curves indicate the minimum value of the characterratimbers that need to be overcome
in order to have the cell enter a channel of radigs
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Figure 5.10: Elastic solid nucleus model:
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(_aﬁ in the case of linear forces, (5_35 in the case

of constant forces and (GZ in the case of constant forces over a bounded region &Mth: 5),
above which the cell can enter a channel of radys

case

(5.47)

Being GE the ratio between active and mechanical properties, e4j7YShows that with respect
to cells with softer nuclei, in order to enter the same chihmnere rigid cells (greaten) should
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5 — Influence of nucleus deformability on cell entry into agfical ECM structures

either increase the number of adhesive bomg} ¢r the number of focal points in contact with
ECM (agcwm) or even force strengthF@"). This finding is in qualitative agreement with a number
of experimental works, such as [16, 127, 160], where celratayy capability is associated with
nuclear deformations and the existence of critical chanadius above which cell can enter
has been observed. Moreover, it is comparable with thetsesblained with discrete model
[133, 134], confirming that mechanical properties of thelews can affect the cell entry into
channels.

Eq. (5.47) can be of great value, for instance, in scaffolsigie Indeed, assuming that cell
mechanical properties and their capabilities to expreagldare known it is possible to evaluate
the pore size that allows the cells to penetrate the rigio/owet

5.6 Discussion

Due to the increasingly recognized importance of cell ntigraprocess in extracellular matrix
environments and its exploitations, e.g., in tissue eregging, theoretical models, able to analyse
the relative influence of single and interrelated paransedarthe overall migratory process, are
needed.

We identified some energy-based criteria that take into watcthe mechanical properties of
cell nucleus, the adhesive characteristics of cell mengyrtdre active force generated through
cytoskeleton contraction, the finiteness of the nucleusthadspect ratio of the structures in-
volved in cell migration, trying to maintain the model as pimas possible in order to obtain
easily manageable results.

For the examples presented, some analytical results aaeelt providing the relation between
active and mechanical properties that should be satisfiedlgr to have cells entering a channel
of given radius. Therefore, knowing the adhesive, meclamiod contractile properties of the
cell, it is possible to derive the minimum channel size andyersely, observing experimentally
the capability of a cell to enter cylindrical channels ofeliént dimensions, it is possible to char-
acterize the interplay between mechanical and active piepe

Results show that cells are able to enter ECM-networks amypbre radii bigger than a crit-
ical one, depending on the stiffness of the nucleus of thieacel their capabilities to express
adhesion molecules in order to bind to the extracellularimalndeed, a rigid cell body would
nullify any attempt of the cell to squeeze through channetsraetwork gaps narrower than the
nucleus dimension, as observed in [127, 160].

Therefore the approach described here could be appliedetalekign of synthetic scaffolds,
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5.6 — Discussion

with optimal values of pore size and fibre density, that magebrate cell transport and in-
growth, critical for regenerative treatments (see Fig.1&)). Moreover results show that ap-
plying Darcy’s law to describe the motion of a continuum ofs;eve have to consider that the
permeability depends not only on the geometry and dimessibrihe pores, but also on the
microscopic mechanical properties of cells nucleus. Iddkere is a region in which the perme-
ability of the structure is null even though the radius of ploee is not null (see Fig. 5.11(b)).

CELL MECHANICAL AND
ADHESIVE PROPERTIES

5

F
G

3

2

(b)

Figure 5.11: Application of the energetic model propose): determination of the minimum
pore size in the design of scaffold with cylindrical chars€b) definition of a region with null
permeability.
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However, in order to obtain reliable quantitative resuttsre studies are required, both from
the biological and from the mathematical point of view. Intpgaular, more experiments are
needed in order to characterize cell mechanical resportsa @anoper relation for the integrin-
mediated active force. A more comprehensive understarahniye microscopical mechanism
regulating nucleus deformation and cytoscheletal reargéion, when the cell is anchored to
ECM, can also help to obtain a more realistic descriptionhef process. Indeed, it has been
observed that one of the major determinants of cell rigigitshe filamentous cytoskeleton. In
particular, microtubules seem to be implicated in cell €@panges and migration, whereas actin
filaments are generally considered more important for ielessistance to deformation [92].
Moreover, biological experiments are necessary to vaitla model presented, once the me-
chanical characterization of cells is accomplished.

From the mathematical point of view, the model can be impdaueseveral directions in order
to reproduce more closely the behavior of cells. For ingamcour ongoing work we want to
study the whole dynamic process, considering all the stéfiseccell entering the channel. In-
deed, the model we proposed is based on an “integral” apgproag it considers the total work
required to pass from the initial to the final configuratiom athus, it gives an estimate of the
“mean" active force required, scaled by the mechanicalrd&bility of the nucleus. However,
this method does not take into account the possible existehiatermediate states in which the
force exerted by bounds should be greater than the forceeddedsqueeze the nucleus inside
the channel. That is, the integral criterion used here tainlanalytical expressions gives a nec-
essary but not sufficient condition for the passage of theicglde the channel. Therefore, a
criterion able to establish the maximum force needed woaldhbre precise, though it requires
3D time-dependent numerical simulations.

Of course, one could use more realistic constitutive mogisesenting cell response to stress
(hopefully supported by experimental tests) and more cern@lations for the active force ex-
erted by the cytoskeleton. In order to obtain a model ablegooduce more closely the behaviour
of cells, in particular, it seems very promising to study #itive component that characterizes
living matter response to external stimuli.

In spite of all possible developments, the energetic fraonkwresented here is quite general
and continues to be valid even for more complex cell and manconstitutive assumptions.
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Conclusions

This work presents some crucial aspects of cell and celdggregates mechanics. All the prob-
lems have been addressed in the continuum mechanics fraknan referring to specific sys-
tems, relevant from the biophysical point of view.

Chapters 2, 3 and 4 are devoted to the macroscopic desorgftan ensemble of cells, whereas
Chapter 5 refers to processes occurring at the cellulae scal

The results exposed in Chapter 2-3 and 4 represents a devahbpf previous models [1, 3, 7,
115, 116]. The mathematical theory stands on known resufitie the novelty of this contribu-
tion is in the application of such results to a comprehensiuiphase model, in which both the
cellular and the liquid phase are considered, along withienis diffusion and the presence of
the healthy tissue. In particular, the aim of these Chajpsetse exploitation of the remodelling
equation proposed in [7, 115] and its introduction into a ptate model able to simulate a vari-
ety of physiological and pathological conditions.

In Chapter 2, we apply the theory of biphasic mixtures to #scdption of the uniaxial com-
pression of a cylindrical sample of soft biological tisstie this preliminary work, the internal
structural changes are prescribed and constant in timerefidre we do not have any evolu-
tion of the natural configuration. Starting from this appnoation, we study how different ways
of changing the internal structure of the solid phase (iiferént choices off'y) influence the
deformation and, thus, the displacement field, as well agligtebution of pressure inside the
medium. We show that deviation from the sphericity of thelastec tensoi, affects the distri-
bution of pressure inside the sample of soft biological miatevhich can be of great interest in
all those biological processes in which the transport ostanxesis fundamental.

The evolution of the natural configuration is considereda@er 3. Here, we propose a modi-
fication of the equation introduced in [7, 115], which emgatly linked the evolution of internal
structural changes to anelastic contributions due to tbeira of adhesive bonds. The new model
is based on the existence of a yield criterion, above whidls ceorganize. In particular, the
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elasto-plastic model proposed in [115] is extended in otdl@ncorporate the viscous contribu-
tion due to the fluid encapsulated in the cellular structtlites 3D elasto-visco-plastic model we
derived is able to reproduce the dynamic observed duringréxents, providing an explanation
of the stress-relaxation phenomenon and of the dynamicnadseluring the stress-free shape
recovery procedure. Indeed, the cyclic deformation tessgmted in [52] cannot be described
only resorting on a surface tension model, whereas a moadeacterized by a yield condition,
as the one presented here, can account for the phenomesstdigerved during biomechanical
experiments.

At the same time, thanks to the introduction of the viscousstituent, the model is able to re-
produce aggregate release dynamics observed during lmal@xperiments.

Moreover, in Chapter 4 we introduce into this framework tbatdbution due to cell prolifera-
tion. The model proposed is able to describe the remodediivtygrowth of a cellular spheroid,
under different simulation settings. In particular we laklifferent stages of tumor progression:
we first describe the mechanical response of a quiesceregafgrwith a necrotic core. We show
that if the imposed load is not able to trigger the internatganization of cells, the aggregate is
able to bear the load even if the necrotic core is filled byitigiVe then consider the capability
of cells to proliferate, when they are not subjected to aeredl mechanical stress and in the
case in which the aggregate is compressed. Then, in orderd@gnore detailed description of
the growth terms, nutrients are introduced. The continuastdption of cell aggregates allows
to introduce in the framework also the presence of the sadimg tissue, which would be com-
putationally too expensive with a discrete model.

The model provided in Chapter 4 is therefore able to simulagegrowth of a tumor spheroid,
described as a biphasic material, taking into account atieldeformations resulting both from
growth processes and internal reorganization of cellsh@tstame time, thanks to the introduc-
tion of the liquid phase, the transport of nutrients regaotagrowth can be properly described.
The model also allows to describe the surrounding tissuerder to obtain a comprehensive
model of tumor growth in-vivo.

Finally, in Chapter 5, we focus on the last stage of tumor mrsgjon: the detachment and
migration of single cells across the surrounding extraailenvironment in order to invade the
whole organism. In particular, in recent year, it has gagiéehtion the study of different factors
involved in cell migration inside 3D structures, becauseit be fundamental in order to assess
the metastatic potential of cancer cells and it can be etquian bioengineering studies, e.g.,
tissue engineering.
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Despite the great importance of this subject, a mathentatiodel able to incorporate the me-
chanical properties of cells in the description of cell maigry process is still lacking.

We apply the tools provided by continuum mechanics in ordeleiscribe the effects of nucleus
deformability on the process of cell migration inside cglilcal channels. In particular, we iden-
tified some energy-based criteria that take into accountgehanical properties of cell nucleus
and the active characteristics of the cell, trying to mamthe model as simple as possible in
order to obtain easily manageable results.

Results show that cells are able to enter inside cylindgbahnels only if the lumen radius is
bigger than a critical one, which depends on the rigidityre hucleus and its capabilities to
express molecules of adhesion in order to bind to the exXtueematrix. The results shown
in Chapter 5 can therefore be of great value in the design mthsyic scaffolds, with optimal
values of pore size and fiber density, that may acceleraltéegtowth, critical for regenerative
treatments. Moreover the results highlight that applyirrgdy’s law to describe the motion of a
continuum of cells, we have to consider that the permegtulkpends not only on the geometry
and dimensions of the pores, but also on the microscopic amécal properties of cells nucleus.

Even though, we are conscious that a realistic descripfitmeanechanical behaviour of sin-
gle cells and multicellular aggregates is still far fromrgeachieved, we believe that this work
provides the basis for a more detailed understanding ofiieence of remodelling phenomena
on tumor response to stress and on the interplay betweerdedling and growth. Moreover, we
provide some new hints on modelling the influence of nucleferchability and the capability
of cells to actively develop a force when anchored to the EG@Ming the migratory process.

Of course, we are aware that the models presented in thisffasien can be improved in several
directions in order to reproduce more closely the behavigetls and multicellular aggregates.
In particular, future works, should be addressed to thevdioin of the remodelling equation
directly from microscopic measurements on the detachnmoes$ of single adhesion bonds.
Indeed the inclusion of microscopic information into cowitim models and a rigorous math-
ematical theory to upscale data arising from the subcellsdale are still at their first stage.
Moreover the simulation of the whole 3D process, both forsjhleeroid compression and growth
problem, in absence of symmetry, and for the process of dghation is highly required.

At the same time, from the biological point of view, more esipeents are needed in order to
characterize cell constitutive response to stress, to fipper expression of the force arising
from cytoskeletal contraction during cell movements inBbéhvironments and to better under-
stand the microscopical mechanism regulating nucleusrahafiton and cytoscheletal reorgani-
zation. Moreover, biological experiments are necessawalkidate the models presented and to
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find realistic parameters.

In spite of all the possible improvements, the frameworlsprged in this work is quite general
and it continues to be valid even if more complicated refafar cell capability to reorganize,
proliferate, adhere to the ECM and respond to stress aredaayv
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