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Figure 4.5: In the graphs on the left, dots represent TES counts, solid lines are the Gaussian
fits on the experimental data, and the dotted vertical lines are the thresholds. In the plots on the
right, the experimental probability distribution (black bars) is compared with the corresponding
Poisson distribution of mean value ηµ (with η = 6, 70%) (red bars). Graphs (a), (b) and (c)
are obtained with a coherent state characterized by a mean photon number per pulse µ = 87,
µ = 101 and µ = 130 respectively. The fidelities obtained in cases (a), (b) and (c) are 99, 98%,
99, 95% and 99, 97% respectively. 70



Figure 4.6: Fidelity between the experimental probability distribution p(n, j) and a Poisson
distribution of mean value ην (with η = 6, 70%), for the different states |αj〉 with mean photon
number per pulse µj . Fidelities higher than 99, 5% for all the input states are a confirmation of
an excellent agreement between experimental results and theoretical predictions.

of the ideal photon number spectral measure with

Bnm =

 m

n

 ηn(1− η)m−n (4.6)

where η is the quantum efficiency of the detector.

In order to compare the POVM elements Bnm of the linear detector with the re-

constructed POVM elements Πnm, we have to first estimate the value of the quantum

efficiency η. This can be done on the sole basis of the experimental data using ML

estimation, i.e. we average the values of η which maximize the log-likelihood functions

Lj =
∑
n

Nnj log

(∑
m

Bnmqmj

)
(4.7)

where Nnj is the number of n-count events obtained with the jth input state |αj〉.
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Figure 4.7: Reconstruction of the POVM of our TES photon couinting system. Continuous lines
represent the POVM elements of a linear photon counter with quantum efficiency η = 6, 70%.
Histograms show the matrix elements Πnm as a function of m = 0, ..., 100 for (a) n = 0, 1, 2, (b)
n = 3, 4, 5, (c) n = 6, 7, 8 and (d) n = 9, 10, 11.

For each signal probe the value of an ηj is estimated and the value of η is given by

the average over the ensemble. The overall procedure leads to an estimated value of the

quantum efficiency η = (6, 70±0, 04)%, where the uncertainty accounts for the statistical

fluctuations.

As shown in Figure 4.7, an excellent agreement between the reconstructed POVM

and the one expected from a linear photon counter with the estimated quantum effi-

ciency is obtained. In particular, for m . 100 the elements of the POVM are reliably

reconstructed, while the quality of the reconstruction degrades for values of m & 100.

As shown in Figure 4.8, the fidelity Fm =
∑

n

√
ΠnmBnm is larger than 99% in the

regime m ≤ 100, whereas it degrades to 95% for 100 ≤ m ≤ 140. The effects of the

experimental uncertainties are investigated by performing a sensitivity analysis taking

into account the uncertainties on the energy of the input state and on the attenuators

obtaining, for the twelve entries, fidelities greater than 98, 35%.
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Figure 4.8: Fidelity between the reconstructed POVM elements at fixed m and those of a linear
photon counter with quantum efficiency η = 6, 70%. Values of F larger than 99, 5% for m 6 100
are the evidence of the reliability of the reconstruction.

The measured distributions p(n, j) are compared with those obtained for a linear de-

tector, l(n, j), and with those obtained using the reconstructed POVM elements, r(n, j),

with the aim to further confirm the linearity hypothesis, as well as to assess the reliability

of the reconstruction. The expression for the distribution of a linear detector is

l(n, j) = ηne−ηµj
µnj
n!

(4.8)

while the distribution expression using the reconstructed Πnm is

r(n, j) =
M∑
m=n

Πnmqmj . (4.9)

The three distributions for the whole set of probing coherent states are reported in

Figure 4.9. The absolute differences between te measured distribution and the distribu-

tions of Eqs. (4.8) and (4.9), |p(n, j)− l(n, j)| and |p(n, j)−r(n, j)|, are shown in Figure

4.10. As is apparent from the plots, the different determinations of the distributions are

in excellent agreement. This confirms the linear behaviour of the detector, and proves

that the reconstructed POVM provides a reliable description of the detection process.

To take into account the possible presence of dark counts, the detection model was
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Figure 4.9: Comparison of the measured distributions p(n, j) (blue bars on the left of each
group) of the coherent state |αj〉 used for the POVM reconstruction, with those obtained using
the reconstructed POVM elements r(n, j) (green central bars) and with those obtained under
the linear hypothesis l(n, j) (red right bars).

modified: in this case, upon assuming a Poissonian background, the matrix elements of

the POVM are given by

Πnm = e−γ
∑
j

γj

j!
B(n−j)m. (4.10)

A ML procedure is developed to estimate both the quantum efficiency η and the

mean number of dark counts per pulse γ. The value of η found with this procedure

is statistically indistinguishable from the one obtained with the linear-detector model.

The estimated dark counts per pulse are γ = (−0, 03 ± 0, 04), in excellent agreement

with the direct measurement carried out on our TES detector using the same fitting

technique discussed above, providing a substantially negligible dark count level γ =

(1, 4± 0, 6)× 10−6.

The same conclusion is obtained for any other model of the background, e.g. super-
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Figure 4.10: This graph shows the absolute differences between the |p(n, j)− l(n, j)| (red left
bars) and |p(n, j)− r(n, j)| (light blue right bars). The differences are less of 10( − 2) in all the
cases.

Poissonian.

The results of this experiment clearly validate the description of TES detectors as lin-

ear photon counters and, together with the precise estimation of the quantum efficiency,

pave the way for practical applications of TES photon counters in quantum technology.
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Chapter 5

Ancilla-asisted calibration of a measuring

apparatus

A quantum measurement can be described by a set of matrices, one for each possible

outcome, which represents the positive operator-valued measure (POVM) of the sensor.

In the first section of this chapter, the theory of the first experimental POVM recon-

struction that takes explicit advantage of a quantum resource (non-classical correlations

with an ancillary state), is presented. In section 2, 3 and 4 is presented the experiment

to reconstruct the POVM of a phase-insensitive photon-number-resolving detector by

using strong quantum correlations of twin beams generated by PDC.

5.1 Quantum calibration of measurement devices

The calibration of a measuring apparatus, in a quantum mechanical description, corre-

sponds to the knowledge of its POVM, i.e the form of the measurement operators Π̂(n).

An experimental method to extract the POVM of the apparatus under calibration is

described in this section [65].

For an arbitrary input state the POVM of a measuring apparatus gives, via the Born
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rule, the probability p(n) of any measurement outcome n as:

p(n) = tr[ρ̂Π̂(n)] (5.1)

where ρ̂ is the density operator of the state on the Hilbert space H of the system and

the POVM is given by the set of operators {Π̂(n)} on H.

In Figure 5.1 the basic scheme of the experimental setup for a general quantum

calibration is presented. A bipartite system is prepared in a predetermined state R̂: one

channel of the system is measured using the unknown apparatus A giving an outcome

n, while in the other channel (described by the state ρ̂(n)) an observable B(k) from the

quorum {B(k)} is measured by a tomographer, producing an output m. The combined

outcome (n,m) is processed using a tomographic algorithm to obtain the POVM {Π̂(n)}

of the unknown apparatus.

R 
B (k)

A

{P
(n)
}

m

n

r(n)

Figure 5.1: Scheme of the experimental setup used to determine the POVM of an unknown
measurement apparatus A. A tomographer is used together with the device A on a bipartite
system prepared in a predetermined state R̂. An observable B(k) is measured from the quorum
{B(k)} by the tomographer, giving an output m, while the unknown apparatus gives an output
n. Using a tomographic algorithm, the joint outcomes (n,m) are processed to obtain the POVM
{Π̂(n)} of A.

The outcome (n,m) of the joint measurement is predicted to occur, by the Born rule

(Eq. 5.1), with a probability:

p(n,m) = tr[(Π̂(n) ⊗ |bm〉 〈bm|)R̂] (5.2)

where {|bm〉} is a fix observable at the tomographer, the generic bipartite state of the
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two quantum systems is denoted by R̂ =
∑

l |A(l)〉〉〈〈A(l)|, and the POVM of the joint

measurement is given by the tensor product of the individual POVM’s. The joint prob-

ability p(n,m) can be rewritten in terms of the conditional probability p(m | n) via de

Bayes’s rule as

p(n,m) = p(n)p(m | n). (5.3)

At the tomographer a convenient state ρ̂(n), conditioned by the outcome n at the

unknown measurement apparatus A, is introduced. Then, if Eqs. (5.1) and (5.3) are

substituted in Eq. (5.2) the next result is obtained:

p(n,m) = p(n)tr[ρ̂(n) |bm〉 〈bm|] = tr[p(n)ρ̂(n) |bm〉 〈bm|]. (5.4)

Expression (5.4) can be rewritten by evaluating the trace in two steps, i.e.:

p(n,m) = tr[|bm〉 〈bm| tr1((Π̂(n) ⊗ 1)R̂)], (5.5)

and by equalizing Eqs. (5.4) and (5.5) for any possible observable the following equality

is obtained:

ρ̂(n)p(n) = tr1((Π̂(n) ⊗ 1)R̂). (5.6)

If we introduce the map

R(X) = tr1((X ⊗ 1)R̂) (5.7)

where X is an operator on H, the POVM element Π̂(n) can be recovered from the

conditioned state ρ̂(n) by applying the inverse map R−1 as:

Π̂(n) = p(n)R−1(ρ̂(n)). (5.8)

To recover the POVM element Π̂(n), the input state R̂ must be known, consequently
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a precalibration stage is needed to determine it.

5.2 General Idea of the experiment

In this section, the general idea for the experimental reconstruction of a POVM is pre-

sented. The method takes advantage of a quantum resource, more specifically exploits

non classical correlations with an ancillary state.

In our experiment, the device under test (DUT) is one of the fundamental components

in quantum technology: a phase-insensitive photon-number-resolving (PNR) detector.

The POVM elements of this detector are diagonal operators in the Fock basis and may

be written as:

Π̂(n) =
∑
m

Π(n)m |m 〉〈m| (5.9)

with Π(n)m the probability of observing n counts when m photons impinge on the DUT,

and the constraint that
∑

n Π(n)m = 1.

The bipartite state that is used in our experiment is an optical twin beam with a

state described by:

R = |R 〉〉〈〈R| (5.10)

with:

|R〉〉 =
∑
i

Ri|i〉|i〉 (5.11)

where |i〉 is the state of one beam with i photons and Ri is the probability amplitude of

a particular state |i〉. The tomographer is an on-off detector with a selectable quantum

efficiency η. The POVM of the tomographer is composed by the following operators:

T̂no =
∑
k

(1− η)k|k〉〈k| (5.12)

T̂yes =
∑
k

[1− (1− η)k]|k〉〈k| (5.13)

where T̂no corresponds to a non-click event (a non-photon detection) in the tomographer

79



and T̂yes corresponds to a click event (detection) in the same channel.

According to Eq. (5.2), the joint probability of observing n photons on the DUT

and having a no-click event in the tomographer is given by:

p(n,no) = tr
[(

Π̂(n) ⊗ T̂no

)
|R〉〉〈〈R|

]
. (5.14)

When put in explicit form, the trace becomes:

p(n, no) =
∑
l,s

〈l| ⊗ 〈s|

[(∑
m

Π(n)m|m〉〈m|

)
⊗

(∑
k

(1− η)k|k〉〈k|

)
·

·

(∑
i

RiR
∗
i |i〉〈i| ⊗ |i〉〈i|

)]
|l〉 ⊗ |s〉

and then:

p(n, no) =
∑
l,s

∑
m,k,i

Π(n)m(1− η)k |Ri|2��
�*
δlm

〈l|m〉��
�*δmi〈m|i〉���*

δil
〈i|l〉 ⊗��

�*
δsk

〈s|k〉��
�*
δki

〈k|i〉��
�*δis〈i|s〉

=
∑
m

Π(n)m(1− η)m |Rm|2 (5.15)

Analogously, the joint probability of observing n photons on the DUT and having a

click event in the tomographer is

p(n, yes) =
∑
m

Π(n)m[1− (1− η)m] |Rm|2 . (5.16)

The unknown elements Π(n)m are recovered by inverting the relations (5.15) and (5.16),

once the |Rm|2 elements have been determined.

We extract those elements by reconstructing the photon number distribution of the

beam addressed to the tomographer (identical to its twin that is sent to the DUT). For

this purpose, we exploit a least squares method based on the collection (at different

tomographer’s efficiencies) of the unconditional no-click events [73]:
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p(no) =
∑
m

|Rm|2 (1− η)m. (5.17)

It is important to highlight that, with respect to the full quantum tomography [74–

78], in this procedure no additional calibration is needed to determine the coefficients

|Rm|2 except for the calibration of the efficiencies of the tomographer.

5.3 POVM reconstruction of a tree detector

In this section, an experiment to reconstruct the POVM of a PNR detector based in

a tree of single photon detectors is presented. An article based on this experiment is

published in Physical Review Letters, reference [79].

5.3.1 Optical setup

The experimental setup is shown in Fig. 5.2. A pulsed Ti-Sapphire laser at 800 nm with

a repetition rate of 76 MHz is duplicated via second harmonic generation to 400 nm. A

10 mm long nonlinear lithium iodate(LiIO3) crystal is pumped by the ultraviolet beam

to produce non collinear type-I PDC, and degenerate twin beams (800 nm) are selected.

One of the generated beams is sent to the tomographer, while the other is addressed to

the DUT.

The tomographer is composed by a calcite polarizer, a 800 nm interference filter with

20 nm bandwith, a lens to couple the light into a multimode fiber and a fiber coupled

silicon single-photon avalanche diode (SPAD). Because in both arms the down-converted

photons have the same linear polarization, a variable attenuation is obtained by rotating

the polarizer, varying the tomographer efficiency.

On the DUT arm, the PDC beam is filtered using an interference filter similar to

that used in the tomographer (20 nm FWHM at 800 nm), coupled to a multimode fiber

and delivered to the detector. The DUT is a detector tree composed by a 50:50 fiber

beam splitter whose outputs are connected to two Si-SPADs. This tree detector can give

three different outcomes corresponding to the detection of 0, 1, and 2 or more photons
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Figure 5.2: Experimental setup: A 800 nm Ti-Sapphire mode-locked laser is doubled via
second harmonic generation to 400 nm and sent to a LiIO3 crystal, generating type-I PDC. A
half-waveplate (λ \ 2) is placed before the crystal to control the PDC generation by rotating
the polarization. Correlated beams are selected: one is sent to the tomographer (T) and the
other to the DUT. A linear polarizer (POL) is mounted in the T-path to allow the efficiency
tuning. Interference filters (IF) with 20 nm FWHM are used to limit out-of-band light on the
detectors. In both channels, a lens is used to couple the light to a multimode fiber. Two Si-
SPADs connected through a 50:50 fiber beam splitter (FBS) constitute the PNR DUT to be
characterized. The trigger pulse of the laser and the output signal of the three detectors are sent
to a A for a real-time signal processing and data acquisition.

per laser pulse. An event 0 occurs when neither of the SPADs click, while an event 1

takes place when either SPAD click, but not both. An event 2 corresponds to the click

of both SPADs.

The two Si-SPADs outputs of the PNR detector, the output of the tomographer

detector (another Si-SPAD) and the laser trigger, are sent together to a Field Pro-

grammable Gate Array (FPGA) based precessing and data collection system.
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5.3.2 Coincidence electronics

A Field Programmable Gate Array (FPGA) is the core of the coincidence electronics of

this experiment. A scheme of the circuit programmed in the FPGA board is shown in

Figure 5.3. The laser trigger output pulse is used as an external clock for the FPGA.

If any of the three detectors gives a click signal in correspondence of a clock signal, the

system discards any following event for a time interval corresponding to the dead time

of the last detector clicking. In this way, the system allow to take data only if the three

detectors are ready, ignoring the events affected by the dead time of the Si-SPADs.

Tomographer

Ext. Clock

DUT

T

A

0

1

2

T – 0

B T – 1

T – 2

Event (yes, 0)

DUT “0” events

DUT “1” events

DUT “2” events

Event (yes, 1)

Event (yes, 2)

Figure 5.3: Scheme of the FPGA circuit. The external clock (Ext.Clock) is given by the laser
trigger. Module A input are the signal of the tomographer’s detector and the signal of the DUT
(i.e. the signal of the two detectors of the PNRD). The circuit allows collection data only if
the three detectors of the experiment are “alive” (i.e. are not in their dead time). Module A
gives an output T when an event is registered in the tomographer’s detector, and outputs 0,
1, and 2 correspond to the three outcomes of the PNR detector. Module B is a coincidence
circuit between the T signal and the outputs 0, 1 and 2 of module A. The circuit gives 6 different
outputs: the three outputs of the unconditional events in the PNR detector (DUT “0” events,
DUT “1” events, and DUT “2” events), and the conditional events to have an outcome 0, 1 or
2 in the PNR detector and a click in the tomographer (“Event (yes, 0)”, “Event (yes, 1)” and
“Event (yes, 2)” respectively).

In module A the outputs of the tree detector are analyzed, providing three possible

outputs: “0” when neither of the two detector clicks, “1” when only one of the detectors

clicks, and “2” when both detectors click (corresponding to “DUT “0” events”, “DUT

“1” events”, and “DUT “2” events” respectively, in Figure 5.3 ). This three outputs are
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then used as input signals of module B. A fourth output (T) is present on module A,

corresponding to a click signal from the tomographer’s detector. This output is sent to

module B to be analyzed.

Module B analyzes the correlations between T and the 0, 1, and 2 output signal of

module A. The three outputs of module B are the events correspondig to a click in the

tomographer and 0, 1 or 2 in the tree detector (“Event (yes, 0)”, “Event (yes, 1)” and

“Event (yes, 2)” respectively respectively in Figure 5.3).

A more detailed scheme of the FPGA circuit can be seen in Figure 5.4

By adding the unconditional events “DUT “0” events”, “DUT “1” events”, and

“DUT “2” events”, the number of total events is obtained and, together with the con-

ditional outputs of module B, the probability to have 0, 1 or 2 event in the DUT when

a click in the tomographer occurs, and the probability to have a 0, 1 or 2 event when

there is no-click in the tomographer are obtained.

Trigger

Ext. Clock

Tomographer

SPAD

DUT

SPAD 1

DUT

SPAD 2

click

click

click

clock

clock

clock

data

data

data

data

C2C2

C1

C3
clock

clicklatch

clicklatch

clicklatch

clickfilter

AND

AND

AND

AND

AND

AND

AND

AND

NOR

XOR

Event (yes, 0)

DUT “0” events

Ext. Clock

DUT SPAD 1

DUT “1” events

DUT “2” events

Event (yes, 0)

Event (yes, 0)

DUT SPAD 2

Tomographer  SPAD

Figure 5.4: Detail of the FPGA circuit. The four input signals for the circuit, corresponding
to the 3 detectors and the external clock (Ext. Clock), are represented in the right part of
the scheme. The FPGA give ten different outputs, corresponding to the six output detailed
in the scheme of Figure 5.3, the Ext. Clock and three extra output providing the coincidence
counts between the Trigger and each detector. This three extra output are useful to monitor the
experiment parameters.
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5.3.3 Detectors and tomographer calibration

Before the data acquisition, we provide the calibration of the two SPADs of the PNR

DUT (whose efficiencies are needed to calculate the expected POVM to be compared

with the reconstruction result) and of the tomographer detector. The three Si-SPADs

detectors are calibrated exploiting the Klyshko’s method introduced in the Chapter 2 of

this thesis. On Table 5.1 the quantum efficiency of the detectors are shown.

Table 5.1: Using Klyshko’s method, the three detectors of the experiment are calibrated. The
efficiency of the tomographer’s detector (ηT ) and the efficiency of the Si-SPAD A (ηA) and
Si-SPAD B (ηB) are shown in this table.

Efficiency Uncertainty

Tomographer’s
detector

10,83 % 0,04 %

DUT’s
detector A

6,778 % 0,05 %

DUT’s
detector B

6,218 % 0,05 %

To provide different system efficiencies, the tomography arm polarizer is calibrated.

The attenuation of the beam is measured for different angles of the polarizer, as seen in

Figure 5.5.

To obtain the total efficiency of the tomographer’s arm, the attenuation of the po-

larizer must be multiplied by the efficiency of the tomographer detector. In Figure 5.6,

the graph of efficiency versus polarizer angle is shown.
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Figure 5.5: Attenuation of the beam in the tomographer arm vs the polarizer for twenty
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Figure 5.6: Efficiency of the tomographer (ην) vs the polarizer angle.
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5.4 Results

Looking at each of the twin beams separately, the photon statistics of a single mode of

PDC light is purely thermal. As the amount of contributing modes increase, like in our

experimental conditions, the photon number distribution change from a thermal towards

a Poissonian distribution [80,81].

A first step in the reconstruction of the DUT’s POVM is to determine the relative

probabilities f(0), f(1) and f(2), corresponding to the probability to have 0-, 1-, 2-clicks

events respectively in the output of the tree detector. The expected probability to have

no-click in our PNR DUT can be written as

f(0) =
∞∑
m,n

e−µ

m!n!

(µ
2

)m+n
(1− ηA)m(1− ηB)n (5.18)

where a Poissonian distribution for the beam impinging on the DUT is assumed, where

µ is the mean number of photons per pulse, m (n) is the number of photons in the

output A (B) of the beam splitter, ηA (ηB) the efficiency of detector A (B). By solving

Eq. (5.18) the following expression for f(0) is obtained:

f(0) = e−
1
2

(ηA+ηB)µ (5.19)

In analogy, the probabilities f(1) and f(2) are calculated, obtaining:

f(1) =
∞∑
m,n

e−µ

m!n!

(µ
2

)m+n
[(1− ηA)m(1− (1− ηB)n) + (1− ηB)n(1− (1− ηA)m)]

= e−
1
2
ηAµ + e−

1
2
ηBµ − 2e−

1
2

(ηA+ηB)µ (5.20)

f(2) = 1− f(0)− f(1)

= e−
1
2

(ηA+ηB)µ
(
−1 + e

1
2
ηAµ
)(
−1 + e

1
2
ηBµ
)

(5.21)

In addition, for each efficiency ην of the tomographer, the relative probabilities of condi-
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tional events paired with the tomographer’s clicks (fην (yes, 0) , fην (yes, 1), fην (yes, 2))

are determined as follows:

fην (yes, 0) =

∞∑
m,n

e−µ

m!n!

(µ
2

)m+n
(1− ηA)m(1− ηB)n(1− (1− ην)m+n)

= −e−
1
2

(ηA+ηB)µ
(
−1 + e

1
2

(−2+ηA+ηB)ηνµ
)

(5.22)

fην (yes, 1) =

∞∑
m,n

e−µ

m!n!

(µ
2

)m+n
[(1− ηA)m(1− (1− ηB)n) +

+(1− ηB)n(1− (1− ηA)m)](1− (1− ην)m+n) (5.23)

= e−
1
2
ηAµ + e−

1
2
ηBµ − 2e−

1
2

(ηA+ηb)µ + 2e
1
2

(−2+(−2+ηA+ηB)(−1+ην))µ −

−e
1
2

(ηA(−1+ην)−2ην)µ − e
1
2

(ηB(−1+ην)−2ην)µ (5.24)

fην (yes, 2) =

∞∑
m,n

e−µ

m!n!

(µ
2

)m+n
(1− (1− ηA)m)(1− (1− ηB)n)(1− (1− ην)m+n)

= e−(ηA+ηB+ην)µ
(
−e(ηA+ηB)µ − e

1
2

(ηA+ηB)(1+ην)µ + e(ηA+ηB+ην)µ+

+e
1
2

(ηA+ηB+2ην)µ + e
1
2

(ηA+2ηB+ηAην)µ + e
1
2

(2ηA+ηB+ηBην)µ −

−e
1
2

(ηA+2ηB+2ην)µ − e
1
2

(2ηA+ηB+2ην)µ
)
. (5.25)

The probability of “yes” events for each tomographer efficiency ην is obtained by

adding up all the conditional probabilities

fην (yes) = fην (yes, 0) + fην (yes, 1) + fην (yes, 2) = 1− e−ηνµ (5.26)

The relative probabilities of conditional events corresponding to no-click events on

the tomographer, are also determined:
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fην (no, 0) =
∞∑
m,n

e−µ

m!n!

(µ
2

)m+n
(1− ηA)m(1− ηB)n(1− ην)m+n

= e
1
2

(−2+(2+ηA+ηB)(−1+ην))µ (5.27)

fην (no, 1) =
∞∑
m,n

e−µ

m!n!

(µ
2

)m+n
[(1− ηA)m(1− (1− ηB)n) +

+(1− ηB)n(1− (1− ηA)m)](1− ην)m+n

= −2e
1
2

(−2+(−2+ηA+ηB)(−1+ην))µ + e
1
2

(ηA(−1+ην)−2ην)µ

+e
1
2

(ηB(−1+ην)−2ην)µ (5.28)

fην (no, 2) =

∞∑
m,n

e−µ

m!n!

(µ
2

)m+n
(1− (1− ηA)m)(1− (1− ηB)n)(1− ην)m+n

= −e−ηνµ
(
−1 + e

1
2
ηA(−1+ην)µ + e

1
2
ηB(−1+ην)µ−

−e
1
2

(ηA+ηB)(−1+ην)µ
)
. (5.29)

For each efficiency ην in the tomographer, the probability of “no” events is obtained

by adding up all the conditional probabilities

fην (no) = fην (no, 0) + fην (no, 1) + fην (no, 2) = e−ηνµ. (5.30)

As mentioned before, the reconstruction of the photon number distribution |Rm|2 of

the bipartite state, is a necessary preliminary step to obtain the POVM of the DUT.

The |Rm|2 elements are extracted exploiting the no-click probability of the tomographer

f(no).

In the experiment, 300 measurements of 1 second are realized for each of the 20

calibrated efficiencies in the tomographer. In Figure 5.7, logarithm of the unconditioned

probability to have a no-click in the tomographer detector (p(no)) is plotted vs the

efficiency of the tomographer (ην). The best fit of the data points is a Poisson distribution
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with µ = 0,5983 ± 0,0017 mean photons per pulse.
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Figure 5.7: A linearized Poisson distribution with respect to detection efficiency. The best fit
(line) of the p(no) data (points) yields a Poisson distribution with µ = 0, 5983 ± 0, 0017 mean
photons per pulse.

The |Rm|2 elements are obtained by minimizing the following square difference

∑
ν

[
pexpην (no)− pην (no)

]2
=
∑
ν

[
pexpην (no)−

∑
m

[
|Rm|2 (1− ην)m

]]2

(5.31)

where pexpην (no) is the experimental unconditional tomographer no-click event and the

second term comes from Eq. (5.17).

In Figure 5.8 the experimentally reconstructed photon distribution is compared with

the Poisson distribution with average photon number per pulse µ = 0,5983 ± 0,0017,

as obtained from the fit of Figure 5.7. The experimentally reconstructed photon dis-

tribution is in excellent agreement with the Poisson distribution, with a fidelity larger

than 99.4%, where the conventional definition of fidelity is used [73]. In our experiment

the probability of observing more than 5 photons per pulse is negligible (less than 4 x
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10−4), that is why data are shown only up to m = 5 photons. The reconstruction is

performed on 30 different data sets, the uncertainty bars in the histogram represent the

1σ variation of the reconstructions.

0 1 2 3 4 50 , 0

0 , 1

0 , 2

0 , 3

0 , 4

0 , 5

0 , 6

 

 

| R m | 2

m

Figure 5.8: In this histogram, reconstructed bipartite state distribution |Rm|2 (green bars)
are compared to a Poisson distribution (violet bars) with the photon mean photon number per
pulsed determined by the fit in Figure 5.7. Since in this experiment the probability of observing
5 or more photons per pulse is negligible, data are shown only up to m = 5 photons. The
uncertainties represent the 1σ variations in the reconstructions performed on 30 different data
sets.

The reconstructed |Rm|2 and the calibrated efficiencies ην are substituted on Eqs.

(5.15) and (5.16) to reconstruct the quantities Πnm. To minimize the deviation between

the measured and theoretical values of the probabilities, a regularized lest-square method

[64, 69] is used. In particular, for each output n of the DUT and for each efficiency ην

of the tomographer, the deviation between the observed pexpην (n, yes) and the theoretical

probabilities p(n, yes) is minimized, as well as the deviation between pexpην (n, no) and

p(n, no).

In Figure 5.9 the reconstructed Π0m, Π1m and Π2m are presented (respectively in

plots a, b and c) for input photons up to m = 5. The excellent agreement between

experimental and theoretical results is supported by the low uncertainties and fidelities
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Figure 5.9: Reconstruction of the POVM elements up to m = 5. Theoretical histograms are
shown in violet, experimentally reconstructed histograms are shown in green for: (a) Π0m, (b)
Π1m and (c) Π2m. The uncertainty bars represent the statistical fluctuations in the reconstruc-
tions performed on 30 different data sets. (d) Fidelity of the reconstructed POVM entries (with
respect to the theoretical model) for each m. For elements with m < 5, the quality of the POVM
elements reconstruction is independently confirmed by observed fidelities above 99.9%. For input
states with m ≥ 5, the accuracy starts deteriorating.
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larger than 99, 9% for the first five valued values (m ≤ 4). In inset (d) of Figure 5.9

the fidelities of the reconstructed POVM elements shown in Figure 5.9 are reported: the

high values obtained confirm that the extracted POVM provides a reliability quantum

description of the detector process. The quality of the POVM reconstruction rapidly

decreases for m ≥ 5 because of the lack of high photon number events, as discussed in

connection with Figure 5.8. We want to highlight that this limitation is not inherent to

our calibration method: in practice, the estimation of the probabilities with sufficient

accuracy in the photon number range of interest, requires a bipartite state with enough

Fock states in that range. Our twin beam source produces enough states up to m = 4.

Moreover, to further confirm the reliability of the reconstruction, in Figure 5.10 we

compared the measured probabilities pexpην (n, no) and pexpην (n, yes), with the ones obtained

from Eqs. (5.15) and (5.16) using the POVM and the reconstructed state. The near-unity

fidelities, confirm that the reconstructed POVM provides reliable quantum description

of the detection process of our PNR DUT.
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Figure 5.10: Comparison between theoretical (lines) and experimental (points) probabilities
to (a) p(n, yes) and (b)p(n, no), for n = 0,1 and 2, for each measurement ην . In panel (a),
probabilities for n = 1 and 2 are scaled by 5 and 10 respectively, while in panel (b) this quantities
are scaled by 10 and 300 respectively. By substituting the measured values of the efficiencies ην ,
the reconstructed POVM and the reconstructed |Rm|2 into Eqs. (5.15) and (5.16), the theoretical
probabilities are obtained. Panel (c) The agreement between the theory and the experimental
data is demonstrated in terms of the fidelity (F) that is larger than 99, 99%.
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