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Abstract

This paper presents two innovative units linked
together to build the main frame of a UAV Mis-
sion Management System. The first unit is a Path
Planner for small UAVs able to generate optimal
paths in a tridimensional environment, generat-
ing flyable and safe paths with the lowest com-
putational effort. The second unit is the Flight
Management System based on Nonlinear Model
Predictive Control, that tracks the reference path
and exploits a spherical camera model to avoid
unpredicted obstacles along the path. The control
system solves on-line (i.e. at each sampling time)
a finite horizon (state horizon) open loop optimal
control problem with a Genetic Algorithm. This
algorithm finds the command sequence that min-
imizes the tracking error with respect to the ref-
erence path, driving the aircraft far from sensed
obstacles and towards the desired trajectory.

1 Introduction

Mission Management Systems (MMSs) of un-
manned aircraft run the vehicle in order to ac-
complish with the mission. Platform and mission
characteristics, payload and reference scenario
drive the MMS complexity which normally en-
closes ground and in-flight segments, made up of
different subsystems interacting together. In the
present discussion the main onboard-MMS units
of an unmanned fixed-wing vehicle are identified
in the Path Planner (PP), the Navigation System

(NS), the Guidance System (GS), the Flight Con-
trol System (FCS) and the Sense&Avoid (S&A)
unit. GS and FCS are linked to compose the
Flight Management System (FMS) as shown in
Figure 1. This architecture strongly simplifies
the real MMS complexity, neglecting many other
subsytems such as the Health Monitoring and
Failure Management units, the Ground Segment
and the Payload Management System that are ba-
sical components of any MMS for UAVs.

Fig. 1 Basic Mission Management System archi-
tecture

The best path to perform the mission is
planned with the PP and it is uploaded on the
Flight Management System (FMS) providing the
references for the aircraft navigation. The GS
merges the optimum-waypoint sequence with in-
formation coming from the NS and the S&A unit
in order to generate the right guidance for the
FCS. Tracking the path and avoiding unpredicted
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obstacles in flight is the way to link kinematic
references related to the desired aircraft positions
with its dynamic behaviors, to generate the right
command sequence. Different PP and GS have
been developed, that exploit wide range of tech-
niques providing encouraging results. However
UAV dynamics is nonlinear and control systems
able to optimize aircraft performance are desir-
able in order to plan complex trajectories and in
turn face challenging mission tasks.

Path planning is the capability to generate a
real-time trajectory to the target, avoiding known
obstacles or collisions (assuming reference flight-
conditions and providing maps of the environ-
ment) and optimizing a given functional un-
der kinematic and/or dynamic constraints. Sev-
eral solutions were developed matching differ-
ent planning requirements: performances opti-
mization, collision avoidance, real-time planning
or risk minimization, etc. Graph search algo-
rithms were developed for computer science to
find the shortest path between two nodes of con-
nected graphs. The A* algorithm was devel-
oped between 50s and 70s, explicitly oriented
to motion-robotics [8]. It improved the graph
search logic of the previous methods adding a
heuristic component to the cost function. How-
ever to avoid obstacles on the map fixed position
of obstacles was assumed. This is a logic as-
sumption for many planning problems, but rep-
resents a limit when robots move in unknown en-
vironments. This problem excited research on al-
gorithms able to face map modifications during
path execution. Dynamic re-planning with graph
search algorithms was introduced. D* (Dynamic
A*) was published in 1993 [18] and it represents
the evolution of A* for re-planning. D* focused
was the evolution of D*, published by the same
authors and developed to improve its characteris-
tics [19]. Then, research on dynamic re-planning
brought to development of Lifelong Planning A*
(LPA*) and D* Lite [12], [13]. Onother impor-
tant drawback of A* and the entire dynamic algo-
rithms resides on heading constraints connected
with graph structure. Different approaches were
developed to cope with this problem, based on
post-processing algorithms or on improvements

of the graph-search logic. Very important exam-
ples are Field D* [6] and Theta*[14].

In the last decades wide research has been
done on Receding Horizon Control (RHC) tech-
niques [7] to cope with: a) intrinsically nonlinear
dynamic systems, b) high quality requirements,
c) growing use of robotic systems in any work-
ing division. Sprinkle et al. [17] presented a
NMPC system applied to trajectory tracking for
persuit/evasion games between two fixed wing
UAVs. This control technique works on the
"planning" level. In other words an optimal tra-
jectory is provided to the autopilot in order to per-
form mission tasks. Our interest is on the other
hand in a control technique able to work at lower
level generating optimal commands so that the
desired path is tracked with the UAV. Kang et
al. [11] implemented an interesting NMPC sys-
tem to cope with trajectory tracking problems.
They designed a high-level tracking controller for
a small fixed-wing UAV and they studied close-
loop stability extracting some performance prop-
erties of the control strategy adding an outer loop
to the inner control loop. Whether theoretical and
mathematical support is fundamental to convert a
simple problem solving approach in a deeper in-
vestigation able to provide general concepts on
this control technique, on the other hand this ap-
proach to the problem requires simplifications
that could mismatch with a real implementation
problem.

This paper describes a PP unit, a S&A unit
and a FMS working together to steer the air-
craft over the mission path. In more details the
proposed PP architecture exploits a novel graph
search algorithm (named Kinematic A*), devel-
oped to face an important drawback of classic
graph search algorithms applied to path plan-
ning. As a matter of fact any aircraft kinemat-
ics is included into the problem formulation in
order to constraint path search on classic graph
search methods. Kinematic A* implements the
graph search logics to generate feasible paths,
introducing basic kinematic constraints to drive
the search. On the other hand the proposed
FMS exploits Nonlinear Model Predictive Con-
trol (NMPC) together with a spherical camera
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model to accomplish with collision avoidance
and trajectory tracking tasks. The FMS solves
in real time an optimal control problem with two
concurring objectives: tracking the optimal path
provided with KA* and avoid unpredicted obsta-
cles detected with the S&A sytem that exploits a
spherical camera and visual servoing techniques.
Further simplifications are needed to test these
subsystems. The NS is assumed unaffected by
noise and sensor errors. A simple aircraft plant
has been implemented, particularly the FMS has
been linked to the Aerosonde UAV Simulink
model to perform the tests.

2 Reference path

Fig. 2 Valley way out test (3D view)

The higher-level PP system that provides the
path the aircraft must follow exploits Kinetamic
A* algorithm [5]. The output of the PP system is
a sequence of waypoints used as a reference in or-
der to steer the aircraft towards the path (Figure
2). Kinematic A* includes a simple kinematic
model of the vehicle to evaluate the moving cost
between waypoints in a tridimensional environ-
ment. Movements are constrained with minimum
turn radius and maximum rate of climb.

The aircraft model used to generate the way-
point sequence is given by equations:






Ẋ =V · cosχ · cosγmax ·w
Ẏ =V · sinχ · cosγmax ·w
Ż =V · sinγmax ·w
χ̇ = V

R
·u

(1)

The model is a set of four differential equations
describing the aircraft motion in Ground refer-
ence frame (G frame). (X ,Y,Z) is the position
vector, the two angles (χ and γ) are respectively
the angle between the X-axis and the projection
of the speed vector (V , constant in magnitude) on
the X −Y plane and the angle between the speed
vector and its projection on the X − Z plane.
Command variable w (−1 ≤ w ≤ 1) modules the
climb angle between its minimum and maximum
values coincident with γmax. The second com-
mand u (−1 ≤ u ≤ 1) on the other hand modules
the turn speed with respect to the minimum turn
radius R.

KinematicA* being derived from classic
graph search algorithms exploits the same search
logics. The best path is obtained iteratively, eval-
uating a cost function J from the starting state
up to reach the target one. Each iteration mini-
mizes functional Fi j of each state composing the
path and the global functional J is obtained sum-
ming up minimum Fi js at each iteration. Choos-
ing the smaller value of Fi j the algorithm selects
a new state that reduces distance from the target
minimizing the commands. Then the optimum
path minimizes Fi j at each step and global op-
timality of J is not evaluated. This is the typ-
ical "greedy" approach that characterizes graph
search algorithms. Fi j is made of two terms re-
lated respectively with states and commands. At
each step ( j) the algorithm generates the set of
movements (i) from the current state. Then it
evaluates Fi j for each new state and chooses the
one with the smaller value, so that J is defined as:

J =
j=St

∑
j=S0

min(Fi j) =
j=St

∑
j=S0

min
�

H̄
T

i j
·α · H̄i j

+ Ḡ
T

i j
·β · Ḡi j

�
(2)

H represents cost to go then it is the distance
between the new state (Xi,Yi,Zi) and the target
(Xt ,Yt ,Zt). On the other hand G substitutes cost
to come of classic graph search algorithms with
the amount of command needed to reach the new
state. Gain matrices α and β are diagonal matri-
ces, used to weight state variables and commands
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tuning their influence on F :

H̄i =




Xt −Xi

Yt −Yi

Zt −Zi



=




∆Xi

∆Yi

∆Zi





Ḡi =

�
ui

wi

�
(3)

ᾱ =




α1 0 0
0 α2 0
0 0 α3





β̄ =

�
β1 0
0 β2

�
(4)

KA* output is a waypoint sequence with
each point represented by the state vector
(X ,Y,Z,γ,χ,V,). The NMPC system predicts fu-
ture aircraft positions over the prediction horizon,
then the tracking task is performed trying to re-
duce the error between predicted and reference
positions. For each time step a receding frac-
tion of the reference path is extracted by the full
path and provided to the NMPC system as a refer-
ence. NMPC finds the optimal command which
reduces the tracking error. When an unpredicted
obstacle is detected, the GS steers the aircraft to
avoid collision (as it will be described in the fol-
lowing sections) going back to the reference path
when the obstacle is avoided.

3 Sense&Avoid System

S&A strategy is inspired by visual servoing tech-
niques commonly adopted in robotics. The
robotic system is controlled moving a set of
visual features (designed from image measure-
ments) on the image plane so that a desired refer-
ence is followed. Mathematically visual servoing
task is the reduction to zero of an error expressed
in the image as the difference between actual fea-
ture and desired one.

A spherical camera is assumed to represent
the sensing system exploited here. As a matter of
fact large perceptual field is fundamental to cope
with collision avoidance problems and standard
perspective cameras do not have a sufficient view

Fig. 3 Feature representation in the image surface

angle. Then spherical view do not need to keep
features in the field of view providing a wider
controllability.

In spherical cameras image plane becomes a
surface represented by a unit sphere and image
features (i.e. intruders) are considered points pro-
jected on this sphere. This assumption is quite
usual for this kind of approaches. Majority of
fixed-wing UAVs have kinematic and dynamic
constraints that affect their time to react. To im-
plement a safe recovery maneuver the aircraft has
to sense the intruder when it is some kilometers
far and it has to change immediately its trajectory
flying far enough from it. Then at detection stage
the obstacle in the image feature is very small and
it remains so for the most part of collision avoid-
ance maneuver.

Figure (3) shows image unit sphere and pro-
jection of a feature on it. Reference system
adopted for the camera is assumed coincident
with aircraft body frame and located in its CG.
A feature in real world is in P(X ,Y,Z) position
relative to the camera reference system while its
projection on the image surface is in p(x,y,z).
Parameters identifying feature on the sphere are
relative longitude ζ and latitude σ angles. Rela-
tive range would be required to determine relative
position, but this information can not be achieved
from image.

Kinematic relations describe feature vector
in image surface f (σ,ζ) and equations that link
camera dynamics with feature-vector variation
have been determined [2]:
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�
σ̇
ζ̇

�
= [JVc

] ·






V
c
x

V
c
y

V
c
z




+[Jωc
] ·






ωc
x

ωc
y

ωc
z




 (5)

with:

V̄c=






V
c
x

V
c
y

V
c
z




 (6)

ω̄c=






ωc
x

ωc
y

ωc
z




 (7)

[JVc
] =





−cosσ · cosζ
R

−cosσ · sinζ
R

sinσ
R

sinζ
R · sinσ − cosζ

R · sinσ 0





(8)

[Jωc
] =




sinζ −cosζ 0

cosσ · cosζ
sinσ

cosσ · sinζ
sinσ −1





(9)

where V̄c is the camera linear speed vector, ω̄c is
the camera angular speed vector and R is range.
Equation (5) relates feature angles variation with
camera dynamics and thanks to the assumptions
already expressed in turn also with the aircraft
dynamics. This is the sensor model exploited
to predict feature behavior on image surface ac-
cording with aircraft dynamic evolution. In other
words the sensor model is exploited to predict fu-
ture aircraft behaviors such that predicted feature
would reach a prescribed position on image sur-
face.

A reference feature position is needed to trig-
ger the avoidance manouver, minimizing the er-
ror between the current and the desired feature
position. Then the S&A system has to provide
the right reference to the GS in order to move the

Fig. 4 Recovery maneuver

feature towards the reference position on image
surface and in turn avoid the obstacle perform-
ing the recovery maneuver. Figure (4) shows a
recovery maneuver where an obstacle is detected
on the right side of the aircraft and slightly above
it. The reference feature-vector assigned to per-
form the maneuver is f (90,90). Then the aircraft
is forced to increase the altitude up to drive σ
to ninety degrees and turn on the left so that γ
reaches the same value.

4 NMPC formulation

NMPC acts solving a finite horizon open-loop
optimal control problem in real-time. The cost
function is the function minimized with the opti-
mal commands. This function characterizes the
problem containing variables that represent the
optimization task. A classical quadratic function
has been selected here made of two terms:

• State error: this term evaluates the error
between the reference states and the pre-
dicted one and it is the term where pre-
dicted positions are compared with the de-
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sired one provided by KA*.

• Command: this term evaluates the amount
of command needed to perform the pre-
dicted maneuver.

The cost function depends from initial states
measured with sensors at each time-step and
from a predicted control sequence. Indicating
with (∗) the predicted variables over the predic-
tion horizon (Tp) the task is to find:

min
Ū∗(·)

J(X̄0,Ū
∗(·)) =

�
t+Tp

t

�
ˆ̄
X
∗(τ)T ·Q · ˆ̄

X
∗(τ)

+Ū
∗(τ)T ·R ·Ū∗(τ)dτ

�
(10)

with:
ˆ̄
X
∗(τ) = X̄

∗(τ)− X̄re f (τ) (11)

where X̄0 = X̄(t) ∈ ℜn is the initial-state vector
and Ū

∗(·) ∈ ℜm is the predicted-command vec-
tor. Then X̄

∗
τ ∈ ℜn is the predicted-state vec-

tor and X̄re f (τ) ∈ ℜn is the reference-state vec-
tor. Finally Q and R are diagonal matrices of
gains weighting state-variables effects over the
cost function.

The command horizon Tc defines the hori-
zon of optimal commands generated for each
optimization loop and it commonly differs from
Tp. The command strategy is then the other
fundamental element to formulate NMPC. The
classic command vector of an aircraft contains:

Ū =






δe, δemin
≤ δe ≤ δemax

δa, δamin
≤ δa ≤ δamax

δr, δrmin
≤ δr ≤ δrmax

T h, 0 ≤ T h ≤ 1

(12)

The command strategy is just the strategy
to build the command signal over the command
horizon and in general over the prediction hori-
zon. A linear commands variation has been cho-
sen here over the command horizon. Particularly
a peacewise linear function is built over the pre-
diction horizon based on functions:

Ū
∗
i
(τ) = Ū

∗
i0
+ Āi ∗ τ 1 ≤ i ≤ nc (13)

where Ū
∗
i
(τ) is the i

th linear function, Ū
∗
i0

is the
i
th initial command value and Āi is the i

th function
slope.

The horizon of commands is then arranged
subdividing the time interval in a number of steps
(nc) according with the command horizon and the
command frequency(hzc). As an example with
Tp = 2 [s], Tc = 1 [s] and hzc = 2 [1/s] two lin-
ear functions (nc = 2) are built over the command
horizon:

Ū
∗
1 (τ) = Ū0 + Ā1 ∗ τ t −1 ≤ τ ≤ Tc/2

Ū
∗
2 (τ) = ŪTc/2 + Ā2 ∗ τ Tc/2 ≤ τ ≤ Tc

(14)
and the command over the time step Tp − Tc =
1[s] given by:

Ū
∗(τ) = Ū

∗
nc
(Tc) Tc ≤ τ ≤ Tp −Tc (15)

This command sequence has been chosen to
guarantee continuity of command functions and
in turn of external forces and couples acting
on aircraft. Commands generated with (13) are
bounded with disequalities in (12) but Āi vector
must be bounded too. Maximum command vari-
ation over unitary time-step is chosen such that:

∆Ū
∗
min

≤ Āi ≤ ∆Ū
∗
max

(16)

∆Ū =






∆δemin
≤ ∆δe ≤ ∆δemax

∆δamin
≤ ∆δa ≤ ∆δrmax

∆δrmin
≤ ∆δr ≤ ∆δrmax

∆T hmin ≤ ∆T h ≤ ∆T hmax

(17)

Solving online the optimization problem the
linear-function slopes in (13) are chosen in order
to minimize the cost function.

Defining the state vector as:

X̄ =
�

u v w p q r φ θ ψ xV yV zV ωp

�
(18)

the complete optimization problem prescribes to
find:

Ū
∗
opt

= f (τ,Ū0, Āopt ,Tc,Tp,nc) (19)

so that equation (10) is satisfied according with
system of equations (12) and (17) but also with
the aircraft nonlinear equations of motion:

˙̄
X = f (X̄ ,Ū) (20)
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5 Results

To implement the tests Kinematic A* algorithm
is exploited to generate the reference path on the
DEM of a mountainous area. The area in the
North-West of Italy is inside the alpine region
"Valle d’Aosta" and it includes wide orographic
obstacles. The aircraft is forced to climb and
turn all along the path to maintain distance from
ground because of continuous-obstacle distribu-
tion.

Genetic algorithm has 48 individuals that
compose population and convergence tolerance
fixed to 10−3. NMPC has 40 [Hz]integration fre-
quency, 1 [Hz] command frequency, 1 [s] integra-
tion horizon and 1 [s] command horizon. Sim-
ulation starts with the aircraft in trim condition
and command bounds are ±0.5 [rad] for elevator,
aileron and rudder (equal to ±29 [deg]), 0−1 for
throttle. Command slopes are then ±1 [rad/s] for
each aerodynamic surface and ±1 for throttle.

5.1 Tracking task
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Fig. 5 Comparison between reference and real
path on each Ground axis

Figure 5 represents the tracking error on the
three axis that evidences altitude loss during first
2 seconds and that shows the system is able to
track the reference path with high accuracy. The
real trajectory in red completely overlaps the ref-
erence one in green. The error on the Z-axis is
high when the simulation begins because of small
trim-condition inaccuracies. However the alti-
tude mismatch is just 2 meters and it is quickly
reduced by the control system.

0 1 2 3 4 5 6 7 8 9 1022

24

26

time [s]

U
 [m

/s
]

 

 

0 1 2 3 4 5 6 7 8 9 10−5

0

5

time [s]

V 
[m

/s
]

 

 

0 1 2 3 4 5 6 7 8 9 100

2

4

time [s]

W
 [m

/s
]

 

 

Fig. 6 Comparison between predicted and real speed
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Fig. 7 Comparison between predicted and real
angular rate

Figures 6 and 7 collect time-histories for each
B-axis of speeds and angular rates. Tuning cost-
function gains, constraints on these state vari-
ables are imposed. Relative wind speed is com-
pared with cruise speed introduced into the KA*
model. The control system tries to keep this
speed constant and equal to the reference. Co-
ordinated turns are then imposed keeping to zero
the lateral speed (Y -axis component) and in turn
the sideslip angle. Angular rates on the other
hand are bounded in order to avoid aggressive
maneuvers. However, strong turns are imposed
during the first five seconds of simulation and this
is due to the errors on the trim-conditions. As a
matter of fact at the very beginning of the simula-
tion the aircraft tryes to track the path recovering
the altitude loss. To do this it has to perform a
steep turn on the X−axis.

Finally the command time-histories are
shown in Figure 8. Aileron deflections are
bounded and linked to the rudder one providing
coordinated turns. Throttle on the other hand
is decreased to lose altitude and follow the de-
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Fig. 8 History of the optimal commands

scent. Then it is kept almost constant and in-
creased to climb in the last 4 seconds. The ele-
vator is quickly deflected up to the limit in order
to compensate the altitude tracking error.

5.2 Collision avoidance task
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x 10
5

5.0608

5.0609

5.0609

5.0609

5.0609

5.0609

5.061

5.061

x 10
6

Longitude [m]

L
a
tit

u
d
e
 [
m

]

 

 

Obstacle
Reference path
NMPC path

Fig. 9 Comparison between reference and real
path in Longitude-Latitude plane

To test the collision avoidance task a static
obstacle is introduced on the reference path (yel-
low marked in Figure 9). It is detected by the sen-
sor when the simulation starts being closer then
two kilometers. This is the maximum distance
assumed for detection and no tracking loss is con-
sidered. The algorithm is able to follow the fea-
ture evolution and drive the aircraft to avoid the
obstacle for the whole simulation without distur-
bances. The desired feature-attitude is 90 degrees
for σ and γ. Because the camera reference system
is aligned with the B system the Z-axis is directed
downward. Then σ = 0 is reached when the fea-
ture is along this axis. In this case the obstacle
is on the path and the aircraft too. Then σ al-
ready is equal to 90 degrees and the navigation

system has to maintain the current value working
just on γ to reach the desired attitude. Figure 9
shows that the navigation system is able to avoid
the obstacle performing a fast and effective re-
covery maneuver on the lateral-directional plane.
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Fig. 10 Error between the desired feature and the
real one

Once the algorithm has completed the re-
covery maneuver it starts to go back to the ref-
erence path as the last part of the simulation
can show. Good performances are evidenced on
lateral-directional control but more tuning and in-
vestigation is required to improve longitudinal
behavior. The feature error is plotted on Figure
10; while first graph shows constant decrease of
the error on γ, condition kept on σ is not suffi-
cient. The error is small during first 5 seconds
but when it start to go up the system needs too
much time to compensate. Further improvements
are required to solve this issue. Aircraft speed in
B frame is shown in Figures (11).
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Fig. 11 Comparison between predicted and real
speed

Coordinated turn is required for this task too
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then the component along Y -axis is kept very
low for the whole simulation. Figure (12) shows
angular-rate time histories. Again strong angular
rates are asked when the simulation begins to re-
cover from trim errors. Some spikes are present
particularly on the Y component. This is due to
visual servoing control. As a matter of fact con-
trol signals are provided on the basis of feature
evolution in the image surface that in turn de-
pends from aircraft angular rates. Then contin-
uous corrections to align the image feature to the
reference are directly reflected on these states.
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Fig. 12 Comparison between predicted and real
angular rate

Figure (13) shows the aircraft attitude compo-
nents reflecting the maneuver already described.
Looking at roll and yaw angles the wide turn to
avoid the obstacle is depicted. Pitch angle on the
other hand follows altitude variations and speed
fluctuations.
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Fig. 13 Comparison between predicted and real
attitude

Commands time-histories are reported in Fig-
ure (14). Lateral-directional commands reach

high value when the simulation begins in order
to start coordinated turn and avoid the obstacle.
The elevator is kept to high angles trying to com-
pensate altitude losses.
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Fig. 14 History of the optimal commands

6 Conclusions

The tracking system proposed in this paper seems
to reflect merits of NMPC and to accomplish with
the task. As a matter of fact good tracking perfor-
mance is evidenced with the results and effective
control actions seem to provide smooth and safe
paths. It must be stressed though that this is just
the first implementation of this method and fur-
ther improvements have been planned. Particu-
larly the GA algorithm will be improved intro-
ducing modern genetic operators in order to opti-
mize its convergence. On the other hand present
results are sufficient to motivate further investi-
gations and to confirm that model prediction is a
powerful and robust technique particularly useful
in these field of research.
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