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Abstract  

 

This paper is focused on the use of artificial neural networks to monitor a pharmaceutical 

freeze-drying process.  

A detailed phenomenological model of the process is used to provide the dataset for the 

learning phase of the neural network. Then, a methodology based on a self-adaptive 

differential evolution scheme is combined with a back-propagation algorithm, as local search 

method, for the simultaneous structural and parametric optimization of the neural network 

which models the freeze-drying process.  

Using some experimentally available measurements at a generic time t, the neural 

network is able to estimate the temperature of the product and the thickness of the dried cake 

(the amount of residual ice, as well as the sublimation flux can be easily calculated from the 

cake thickness) at a future time t + ∆t, for the given operating conditions (the temperature of 

the heating shelf and the pressure in the drying chamber). Also, the duration of the primary 

drying phase and the maximum product temperature in the future are predicted, in case the 

operating conditions are not modified. By this way it is possible to understand if it is 

necessary to modify the operating conditions, if the product temperature should trespass the 

limit value before the ending point of the primary drying. 

Despite the artificial neural network is obtained using a learning set determined for 

specific values of heat transfer coefficient (between the heating shelf and the product at the 

bottom of the container) and of mass transfer resistance (of the dried cake to vapor flow), 

reliable and accurate estimations are obtained also in case the sensor is used to monitor a 

process characterized by different values of heat and mass transfer coefficients. 
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Introduction  

 

In a pharmaceutical freeze-drying process it is required to monitor the dynamics of the 

product, i.e. the evolution of the temperature and the residual amount of ice in the product, 

both in the phase of recipe design and during manufacturing. In fact, it is mandatory to avoid 

product damage due to overheating, in case the product temperature trespasses a limit value 

that is a characteristic of the formulation being freeze-dried. Besides, the operating conditions 

(the temperature of the heating shelf and the pressure in the drying chamber) used during 

primary drying (when ice sublimation occurs) have to be modified to allow desorption of the 

bound water (secondary drying) only when all the ice has been removed, in order to avoid 

collapse of the dried cake, or product meltback. During manufacturing, a properly designed 

sensor is thus required to point out if the selected operating conditions allow fulfilling the 

operating constraint about product temperature, and when primary drying is completed. 

Similarly, in the phase of recipe design, such sensor should be able to identify the optimal 

operating conditions that allow minimizing the duration of the process.[1-3]  

The search for a sensor having these characteristics is motivated also by the Guidance 

for Industry PAT (Process Analytical Technology), that encourages the design of innovative 

tools for in-line product quality monitoring, thus avoiding testing product quality at the end of 

the process.[4] A wide literature, presenting numerous devices that can be used in lab-scale 

freeze-dryers and, in some cases, also in industrial-scale units, is available to freeze-drying 

practitioners. Among these devices, those using some kind of physical measures (e.g. product 

temperature using a thermocouple, or chamber pressure using a capacitance manometer) and a 

mathematical model of the process appear to be particularly promising. These devices can be 

grouped into two categories: those based on the pressure rise test and the observers. The 

pressure rise test consists of closing the valve in the duct connecting the drying chamber to 

the condenser for a short time interval: the pressure in the chamber increases and the 

measured values are compared to those calculated using a mathematical model of the process. 

The unknown parameters (e.g. the ice temperature and the residual moisture) are retrieved by 

looking for the best fit between the measured and calculated values of the chamber pressure.[5-

10] The observer is a mathematical algorithm that uses some experimentally available 

measurements from a process (in this case, product temperature measured with a 

thermocouple) to “correct” model calculations and to estimate some unknown variables. Both 

the high gain technique and the Kalman filter were proposed to design the observer to monitor 

the primary drying of a vial freeze-drying process.[11-13] The observer allows monitoring the 



process taking into account the non-uniformity of the batch of vials (due to various reasons, 

e.g. non-uniform shelf temperature, uncontrolled nucleation, and the pressure gradients into 

the drying chamber [14,15]) using the measurement of product temperature in various vials in 

the batch. Besides, the observer can be used in a control loop with the goal to minimize the 

duration of the primary drying.[16] 

Drăgoi et al.[17] proposed a new soft-sensor, based on artificial neural network (ANN), 

that was able to monitor the freeze-drying process using the temperature measurement at the 

bottom of the vial. The sensor had the goal to estimate the thickness of the dried cake and, 

thus, the ending point of the primary drying.  

The ANNs (which are one of the many tools the Artificial Intelligence field puts at the 

disposal of the researcher) are mathematical models that simulates the behavior of the human 

brain, being composed of neurons organized into layers that perform specific calculations. 

Thus, the ANN models are not based on the physical and chemical laws governing the 

processes, and they can be particularly useful when process dynamics is too complex or not 

perfectly known. Moreover, the calculations required by ANN models are very simple and 

this can be of outmost importance when the calculation speed plays an important role as in 

process monitoring and control.[18-22] These very important characteristics are the main 

motivation for choosing the ANNs over other artificial intelligence techniques. 

The open literature presents several approaches related to the use of neural networks as 

soft sensors. For instance, a feed-forward neural network-based software sensor is applied for 

coagulation control in a water treatment plant, having as key feature the ability to take into 

account various sources of uncertainty such as atypical input data, measurement errors, and 

limited information content of the training set.[23] An artificial neural network was built for 

real-time prediction of the moisture and fat content in olive pomace, using two-phase olive oil 

processing. The results obtained indicate a very good predictive capacity of the three-layer 

ANN model.[24]  In the freeze-drying field, the neural networks are scarcely used to model and 

predict the behavior of various food products (carrots[25], strawberries[26], and apples[27]). 

Recently, Todorov et al.[28] and Todorov and Tsvetkov[29] have proposed a Volterra Fuzzy-

Neural model in a nonlinear model predictive controller with the goal to reduce the duration 

of the sublimation step. 

The ANN models are very easy to set up and use, but their performance is highly 

dependent on their structure and, thus, the determination of the optimal topology (number of 

inputs, outputs, hidden layers and neurons in each hidden layer) and of the optimal internal 

parameters (weights, biases and activation functions) are crucial steps. Various methods were 



proposed [30] to achieve these results, and evolutionary techniques appears to be particularly 

useful due to the ability to escape local minima, to their robustness, and to the ability to adapt 

in a changing environment.[31-37]  

Drăgoi et al.[17] combined a self-adaptive differential evolution with back-propagation 

algorithm as a local search method to improve the best solution (neural network) obtained 

locally. This approach is used in this paper to set-up a soft sensor that not only estimates the 

residual amount of ice in the product (or the dried cake thickness), but also the maximum 

product temperature and the drying time in case the operating conditions are not modified in 

the future. A detailed model of the process can be used to calculate the learning patterns, with 

the goal to minimize the experimental effort. [38-43] In this work, the detailed mono-

dimensional model of Velardi and Barresi is used.[43] Besides, process simulation using the 

same detailed model is used for validation purposes. In fact, mathematical simulation allows 

precisely knowing the values of product temperature and of ice content in the vial, thus being 

possible to accurately evaluate the error of the estimated variables. Such precise evaluation 

would be almost impossible to perform experimentally. This methodology poses a problem: 

the learning set is calculated using a specific set of values of the heat transfer coefficient 

(between the heating shelf and the product at the bottom of the container) and of the mass 

transfer resistance (of the dried cake to vapor flow) that can be obtained either from a 

previous experimental investigation (with small or high uncertainty),  either by estimations. 

Consequently, it is necessary to evaluate if reliable and accurate estimations can be obtained 

when the sensor is used to monitor a process characterized by different values of both 

coefficients.  

The structure of the paper is the following: first, the ANN algorithm based on the 

combination of differential evolution and back-propagation algorithms is briefly described, 

and the proposed artificial neural networks designed to monitor the freeze-drying process are 

described. Then, a section for the suggested training procedure and the case study is inserted. 

Finally, results demonstrating the effectiveness of the proposed sensor are presented and 

extensively discussed. 

 

 

Methods and Materials 

 

Description of the ANN algorithm 

In order to create a simple, flexible, and easy to use sensor for the primary drying of a freeze-



drying process, a bio-inspired computing technique, based on artificial neural networks and an 

auto-adaptive hybrid version of the Differential Evolution (DE) algorithm, is here applied. 

This approach was chosen due to the specific characteristics of each algorithm and of the 

advantages coming from the combination between them. The ANNs are highly nonlinear and 

their structure can be more flexible and representative compared to other types of models.[44] 

Also, they have the ability of estimating system behavior based on incomplete data.[45] The 

main disadvantage of the ANNs consist in the difficulty of selecting the optimal topology and 

choosing the best training algorithm (which also includes the training parameters). An 

alternative possibility to solve these problems is represented by the use of DE algorithm for 

developing and training ANNs.  

DE is a population based, simple and straightforward meta-heuristic; the key of its 

success consists in spontaneous self-adaptability, diversity control, and continuous 

improvement.[34] An own software was developed using C# and .NET Framework 4.0 to 

model and monitor the freeze drying process. The main aspects of the general methodology 

considered in this paper are:  

i) automation of the DE parameter selection based on an auto-adaptive technique in 

which the control parameters are included into the algorithm itself;  

ii)  evolutionary automation of the topological and internal parameters optimization for 

ANNs, by considering a population of encoded ANNs as the population on which 

DE works;  

iii)  improvement of the optimization by a local search procedure performed by back-

propagation algorithm, combined with global DE search;  

iv) flexibility and high generalization properties of the final neural model.  

The general steps of the algorithm are the followings: 

1. Generation of a set of potential solutions, where each solution is a neural network 

encoded using a real value vector approach. 

2. Set the current generation to 1. 

3. While the current generation is smaller than the maximum allowed value, the 

followings are repeated: 

a. Evolve the population by means of mutation, crossover and selection. 

b. Select the best individual in the population. 

c. Improve the best individual by applying the back-propagation algorithm. 

d. Replace the current population with the evolved one. 

e. Increase the value of the current generation with 1. 



4. Select the best individual from the current population as the determined ANN model 

for the problem at hand. 

The mutation and crossover procedures from the step 3.a are the means through which 

automatic optimization of ANNs is performed, having a significant influence on the overall 

results of the methodology. In the step 3.b, the best individual in the population is chosen 

based on its fitness function that measures the adaptation of each ANN to the environment, 

represented in this case by the system describing the primary drying. Since the scope of the 

methodology is to find the best possible model of the considered process, the fitness function 

is based on the mean square error (MSE) between the predicted and the desired values. Into 

the methodology, a combined stop criteria (consisting in a predefined number of iteration or 

MSE on a simple data set reaching a low value equal to 10-8) was used. Throughout the 

evolutionary process, each neuron of the network can have one of the eight types of activation 

functions: Linear, Hard Limit, Bipolar Sigmoid, Logarithmic Sigmoid, Tangent Sigmoid, 

Sinus, Radial Basis, and Triangular Basis functions. Further details about the algorithm can be 

found in Ref.[17] 

 

Description of the proposed artificial neural networks  

A general structure of the ANN is first considered (Figure 1A) and then, based on the process 

particularities, it is refined in order to find the best model (Figure1B). This implies the 

determination of the inputs, outputs, and number of time delayed recurrences of each output. 

The time delayed inputs are considered because the model is used not only for predicting the 

system at a future specified moment, but also for determining the maximum temperature and 

the drying time. This means that it must predict various variables for the duration of the entire 

process without having any kind of information provided, except for the state of the system at 

the chosen moment of time. In order to generate the entire dynamic of the system based on 

known information from a specific moment, the ANN must be very precise, the incorporation 

of time delay inputs allowing much better results than the simple case when the ANN is used 

without recurrences. In order to determine the optimal number of inputs, a series of 

simulations with different combinations were considered (Table 1). In Table 1, for the best 

neural network obtained in each case, the following parameters are listed: the input variables, 

topology, MSE in the training phase (MSEtraining), and MSE in the initial testing phase 

(MSEtesting), where a simple dataset was used. The methodology provides an optimized neural 

network from both topological and parametric point of view. Consequently, different 

comparisons (in different testing situations) between the models obtained in each case are 



redundant since the difference between MSEtesting is quite large (as it can be observed from 

Table 1).  

Figure 1B indicates the best neural network has 9 inputs, 1 hidden layer with 6 neurons, 

and 2 outputs. From considered inputs of the network 3 are fixed (time, temperature of the 

heating shelf, Tshelf, pressure in the drying chamber, Pchamber) and 6 are time recurrent (3 for 

each output). The 3 fixed parameters were chosen based on the idea that they have a major 

influence on the status of the process and can be relatively easy to measure. On the other 

hand, it is difficult to measure product temperature (T) and the thickness of the dried cake 

(Ldried). Also, the number of recurrences for the ANN must be chosen carefully, too low value 

having small effect on the outputs and too high value rising the complexity of the network. 

Consequently, a set of simulations was performed and, based on the obtained results, it was 

concluded that a number of 3 time delays for each output is a good trade-off. 

The outputs of the networks (T and Ldried) are chosen based on the following 

considerations: i) during freeze drying, the temperature of the product must be in a specific 

interval, thus knowing that its estimated value over long periods of time is an important aspect 

in choosing the best operating conditions; ii) the thickness of the dried layer is an indication 

of the status of the process and, based on the difference between this value and the thickness 

of the product after freezing (that corresponds to the thickness of the dried cake at the end of 

primary drying, in case no shrinkage or collapse occurs), the ANN knows when the process is 

finished. Consequently, when the predicted value of the dried layer is equal to the product 

thickness, the model extracts the time input used to make the prediction and provides it to the 

end user as the drying time. It has to be remarked that once the dynamics of the dried cake 

thickness is known, then it can be possible to calculate the sublimation flux from a simple 

mass balance at the interface of sublimation: 

( ) dried
w frozen dried

dL
J

dt
ρ ρ= −          (1) 

and, from this, the dynamics of the frozen layer thickness (i.e. of the residual amount of ice in 

the product) can be calculated: 

frozen
w

dL
J

dt
= −            (2) 

 

Description of the training procedure 

In order to design the ANNs, a set of data from which the network can learn is required. 

Although the ANNs can provide good models when using incomplete or high error data, the 



degree of performance is not the same as when using small error data. Taking into 

consideration that the scope of the ANN model is to estimate the evolution of the product in 

different conditions, the required performance for good predictions is quite high. 

Consequently, different aspects of the training data must be taken into account: i) reduction of 

the measurement errors; ii) good coverage of the search space, and iii) enough number of 

training exemplars. 

In this case, the learning data are provided by a detailed mono-dimensional model 

which considers all the chemical and physical laws that govern the process.[43] The goal of 

using an already existing model is to eliminate the need for experimental procedures which 

are time consuming and to provide a set of data with small measurement errors. 

In order to obtain a good coverage of the search space, the training data was selected 

based on the fact that the most important operating parameters are Pchamber and Tshelf.  The 

representation of this pair is realized in a two dimensional plan (a rectangle) determined by 

the physical limits imposed by the equipment and characteristics of the drying product.  If the 

third parameter (represented by the time) is considered, the Pchamber and Tshelf variation in time 

can be delimited in a three dimensional box. Since the primary drying was recorded from start 

to finish, and for each pair (Pchamber, Tshelf) a set of data was collected at an interval of 600s, a 

set of 9 pairs (4 from the corners of the search space delimiting the box and 5 randomly 

chosen from inside) was considered to be enough for the network learning. This value was 

chosen based on the complexity of the process and on the author experience related to the 

training and testing optimal neural network models. It is considered as a useful practice to 

have a good coverage of the search space, but a high number of training data can lead to high 

computational time. The methodology used here for determining the neural model, in its turn, 

has problems related to the high computational time required. One significant advantage of 

our software is that once a good model is generated (although its determination is time 

consuming), it can be easily used for modeling or monitoring the process in various 

conditions. 

 

Case study description 

The case study investigated in this paper is the freeze-drying of a 10% w/w sucrose aqueous 

solution. The values of the heat transfer coefficient (Kv), used to model the dependence of the 

heat flux from the shelf to the product at the bottom of the vial (Jq) on the driving force: 

( )q v shelf BJ K T T= −           (3) 



and of the resistance of the dried layer (Rp), used to model the dependence of the sublimation 

flux from the interface of sublimation to the drying chamber (Jw) on the driving force: 

( )w,i ,

1
w w c

p

J P P
R

= −           (4) 

are taken from Ref.[46] In particular, the dependence of Kv on Pchamber is modeled by means of 

the following equation: 

0.74
3.25

1 0.02
chamber

v
chamber

P
K

P

⋅= +
+ ⋅

         (5) 

and the dependence of Rp on Ldried is modeled with Equation (6): 

8
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1 542

dried
p

dried

L
R

L

⋅ ⋅= +
+ ⋅

         (6) 

These values have been obtained in a LyoBeta 25 freeze-dryer (Telstar, Spain); it is 

characterized by a vacuum-tight chamber (volume of 0.2 m3) equipped with four shelves, that 

provide a total area of 0.5 m2. The vacuum system consists of an external condenser 

(maximum ice capacity ≈  40 kg) and a vacuum pump to remove the incondensable gases. The 

formulation is processed in tubing vials having an internal diameter of 14.25 mm. The 

thickness of the frozen product at the beginning of the drying is equal to 10 mm. The intervals 

of values of the shelf temperature and of the chamber pressure used in the training phase are 

the followings: [243.15, 273.15] K and [5, 20] Pa, respectively. Product temperature can be 

measured by means of a thermocouple, inserted in one of the vials of the batch and put in 

contact with the vial bottom. 

 

Results and discussion  

 

As it has been pointed out in the introduction section, a detailed phenomenological model of 

the process is used to calculate the dynamics of the product in the vial and, thus, the learning 

data for the neural networks. By this way, it is possible to correctly evaluate the performance 

indexes of the neural network model when computing the evolution of product temperature 

and of cake thickness, as well as the maximum product temperature and the drying time for a 

given set of operating conditions. Besides, the goal of the neural network model is to replace 

the detailed model in the control loop, e.g. for the in-line optimization of the process, as the 

calculation time (for predictions) is significantly reduced. In order to assess the performance 

of the proposed model, different cases in which various values of the difference between the  

Kv used in the training phase (Kv,training) and in the monitored process (Kv,monitoring), and 



between the Rp used in the training phase (Rp,training) and in the monitored process (Rp,monitoring) 

were considered. 

Figure 2 shows a comparison between the values estimated using the soft-sensor based 

on the neural network model and the true values of the product temperature and of the frozen 

layer thickness during a cycle run with Tfluid = -20°C and Pchamber = 10 Pa. In this case, the 

difference between the parameters of the monitored process and the data used for training is    

-20% for Kv and +20% for Rp. Nevertheless, the accuracy of the sensor is very high for both 

monitored variables, thus evidencing the capacity of the ANN model to provide fairly 

accurate estimations even when Kv and Rp values are different from the ones used in the 

training phase. This is of outmost importance because: i) the experimentally determined 

values of both parameters can be affected by significant errors; ii) in some cases, the 

experimental investigation can be unfeasible, e.g. in industrial-scale freeze-dryers. Thus, the 

training of the ANN model is based on the values of Kv and Rp taken from the literature and 

these values are affected, among the others, by the type of freeze-dryer and vial used, as well 

as by the nucleation phenomena occurring in the freezing phase (completely stochastic 

phenomena). 

 Figure 3 summarizes the errors on the estimations of product temperature and on the 

drying time as a function of the difference between Kv,monitoring and Kv,training (graphs A and B). 

Even in case the difference on the value of the heat transfer coefficient is very large (+50%), 

the error on the estimation of product temperature is almost negligible. With respect to the 

duration of primary drying, in all cases, the error can be considered negligible (lower than 

1.5%). In addition, it can be evidenced that when the difference between Kv,monitoring and 

Kv,training increases, the error on the drying time reduces, while that on product temperature 

increases. In fact, the values of product temperature, sublimation flux (that determines the 

drying time), Kv and Rp are strictly related as they have to satisfy the energy balance at the 

interface of sublimation, that means that all the heat transferred by the shelf to the product is 

used for ice sublimation. This means that in case the error on Kv is high, the error on product 

temperature is expected to increase (as this is the variable estimated by the neural network 

trained for a different value of the parameter) and, thus, the drying force for the heat transfer 

to the product (given by the difference between the shelf temperature and the product 

temperature) is expected to decrease. This means that the sublimation flux will remain almost 

unaffected (in this case there are no errors on the value of dried cake resistance), or that it will 

exhibit a small variation (increasing or decreasing as a function of the error, depending on the 

values of Kv  and of the driving force), as it is shown in graph B of Figure 3. 



A similar analysis has been carried out with respect to the effect of the difference 

between Rp,monitoring and Rp,training (Figure 3, graphs C and D). It appears evident that the effect 

of the error on this variable is responsible for a higher error on product temperature, even if 

very low values are obtained in all cases. This means that the ANN model has to be used for 

the same type of product considered in the training phase (as limited variation of the Rp values 

are expected as a consequence of the variation in the nucleation temperature). Therefore, great 

care has to be paid: i) when using the ANN model with a different product (as the values of Rp 

would be significantly different); or ii) when using this sensor for the same type of product, 

but with a different filling volume or a different concentration (both variables can affect the 

values of resistance of the dried cake). 

Figure 4 summarizes the joint effect of the difference between Kv,monitoring and Kv,training 

and of the difference between Rp,monitoring and Rp,training. While the error on the duration of 

primary drying ranges from 0.7 % and 1.7 %, and, thus, it is fully acceptable, the error on 

product temperature remains bounded from -2·10-4 K to +2·10-4 K only in case the difference 

between the value of Rp,monitoring and the value used in the training phase is below 20-25 %. If 

the difference on Rp is +50%, and there is also a significant difference on Kv, then the error on 

product temperature can increase to 5 K. 

Results shown in Figures 3 and 4 evidence that the soft-sensor based on the ANN model 

can effectively applied to monitor a process where the values of the heat transfer coefficient 

from the shelf to the product at the bottom of the vial, and the values of the resistance of the 

dried cake to vapor flow are different from those used in the training phase. The use of 

experimental measurements from the process is able to reduce the error on product 

temperature and on duration of primary drying. In particular, the difference on the value of 

Kv,training  has a limited effect on the accuracy of the estimations. Thus, the same sensor can be 

used to monitor the evolution of the product in various vials of the same batch, as well as in 

different freeze-dryers (as these issues can affect the value of Kv). Instead, the effect of the 

difference on Rp is much more relevant, and the sensor can be used to monitor only the type 

of product considered in the training phase. 

 Further simulations have been carried out to test the effectiveness of the sensor 

designed to estimate the maximum product temperature and the duration of the drying time on 

the basis of the measurement of some process variables at a generic time instant t. In this case 

the capacity of the sensor to estimate product dynamics was tested, not only up to the 

following time instant (t + ∆t) when other experimental measurements become available, but 

up to the end of primary drying (according to the structure of Figure 1). As it is shown in 



Figure 5, the errors of the estimations of maximum product temperature and of the drying 

time become smaller as time goes on. In particular, the error on the estimation of the 

maximum product temperature is very small (about 0.6 K in this case) at the beginning of 

primary drying, while the accuracy of the estimations of drying time is improved in the 

second half of primary drying. As a consequence, at the onset of primary drying, the proposed 

soft-sensor allows to understand if the product temperature remains below the limit value or 

not and, thus, if the operating conditions have to be modified. With respect to the duration of 

primary drying, the uncertainty on the estimated values can be significant. Nevertheless it has 

to be remarked that the estimated duration is always higher than the current time and, at time 

t, the sensor will never provide the (erroneous) information that the drying is concluded, but 

in all cases the indication will be that more time is required. Then, when primary drying is 

approaching to the end, the estimated value of this variable becomes very accurate. As in 

previous cases, there is a remarkable difference between Kv,monitoring and Kv,training, and between 

Rp,monitoring and Rp,training, but the estimation of the maximum product temperature is very 

accurate.  

Similar conclusions can be obtained when investigating the effect of the difference 

between Kv,monitoring and Kv,training (Figure 6, graphs A and B). The error on the maximum 

product temperature is higher at the beginning of primary drying, where it ranges from -0.5 K 

and +0.2 K, and it is negligible near the end of the primary drying. This can be perfectly 

accepted. With respect to the error on the duration of primary drying, when about 50% of the 

ice has disappeared, the error on the estimation of drying time is roughly -20% and it reduces 

as far as drying goes on. Finally, it can be evidenced that the effect of the difference of Kv has 

a poor effect on both the estimated variables. The study has been repeated to investigate the 

effect of the difference between Rp,monitoring and Rp,training, and similar conclusions are obtained 

(Figure 6, graphs C and D). While the error on drying time is of the same order of magnitude 

of  that caused by Kv, the error on the estimated values of maximum product temperature can 

be fairly high (about 2 K) at the beginning of primary drying, in case the Rp difference is 

higher than 20%. This means that also in this case the resistance of the dried cake is the most 

critical parameter for the performance of the sensor, and that the sensor has to be used only 

with the same type of product whose parameters have been used in the training phase. 

 Figure 7 summarizes the errors on maximum product temperature and on drying time 

as a function of the difference between Kv,monitoring and Kv,training and between Rp,monitoring and 

Rp,training, in the middle and at the end of primary drying.  As the results indicate, the previous 

conclusions are confirmed. 



 
 
Conclusions 

 

Artificial neural networks can be effectively used to design a soft-sensor to monitor a freeze-

drying process, with the goal to estimate the dynamics of the dried cake thickness (and, then, 

of the residual amount of ice, as well as the sublimation flux), the product temperature, the 

duration of primary drying and the maximum product temperature for a given set of operating 

conditions. A detailed phenomenological model was used to calculate the data required in the 

training phase of the neural network design. In order to reduce the time necessary for 

designing the sensor, a specific couple of values of the overall heat transfer coefficient from 

the heating shelf to the product in the container and of the dried cake resistance to vapor flow 

is selected. The error committed by the sensor when monitoring a process characterized by 

different values of both coefficients is generally small, in particular with respect to product 

temperature. Thus, the proposed sensor could be used for both in-line process monitoring and 

in-line process optimization, as the time required by calculations is very small when using 

artificial neural networks. 
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Jq heat flux, W m-2 

Jw vapor flux, kg m-2 s-1 
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Rp resistance of the dried layer to vapor flow, m s-1 

Rp,monitoring value of Rp of the monitored product, m s-1 

Rp,training value of Rp used in the training phase, m s-1 

T product temperature (at the interface of sublimation), K 

TB product temperature at the vial bottom, K 

Tshelf temperature of the heating shelf, K 

Tmax maximum product temperature (at the interface of sublimation), K 

t time, s 

td drying time, h 
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ρdried apparent density of the dried product, kg m-3 

ρfrozen density of the frozen product, kg m-3 
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Case 

Inputs Outputs Topology 
of the 
best 
ANN 

MSEtraining  
of the 

best ANN 

MSEtesting  
of the 
best 
ANN 

Time Tshelf Pc 
Ti @ 
t-3∆t  

Ti @ 
t-2∆t 

Ti @ 
t-∆t 

Ldried @ 
t-3∆t 

Ldried @ 
t-2∆t 

Ldried @ 
t-∆t 

 Ti 
@ t 

Ldried 
@ t 

1 x x x   x    x x 4:9:2 4.82·10-4 5.63·10-3 
2 x x x   x   x x x 5:4:4:2 2.78·10-4 5.4·10-3 
3 x x x  x x   x x x 6:7:2 6.38·10-5 8.61·10-4 
4 x x x  x x  x x x x 7:5:3:2 3.27·10-5 3.69·10-5 
5 x x x x x x   x x x 7:8:2 1.46·10-6 4.86·10-6 
6 x x x x x x x x x x x 9:6:2 9.37·10-7 3.79·10-7 
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