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Abstract

This paper is focused on the use of artificial akuretworks to monitor a pharmaceutical
freeze-drying process.

A detailed phenomenological model of the processe to provide the dataset for the
learning phase of the neural network. Then, a nustlogy based on a self-adaptive
differential evolution scheme is combined with @kearopagation algorithm, as local search
method, for the simultaneous structural and pamameptimization of the neural network
which models the freeze-drying process.

Using some experimentally available measurementa generic timet, the neural
network is able to estimate the temperature optioeluct and the thickness of the dried cake
(the amount of residual ice, as well as the sulilonalux can be easily calculated from the
cake thickness) at a future tirhe At, for the given operating conditions (the temperinf
the heating shelf and the pressure in the dryiregndder). Also, the duration of the primary
drying phase and the maximum product temperatutbanfuture are predicted, in case the
operating conditions are not modified. By this wiayis possible to understand if it is
necessary to modify the operating conditions, & pnoduct temperature should trespass the
limit value before the ending point of the primairying.

Despite the artificial neural network is obtainesing a learning set determined for
specific values of heat transfer coefficient (betwéhe heating shelf and the product at the
bottom of the container) and of mass transfer tast® (of the dried cake to vapor flow),
reliable and accurate estimations are obtained ials@ase the sensor is used to monitor a

process characterized by different values of hedtraass transfer coefficients.
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Introduction

In a pharmaceutical freeze-drying process it isuireg to monitor the dynamics of the
product, i.e. the evolution of the temperature #raresidual amount of ice in the product,
both in the phase of recipe design and during natuifing. In fact, it is mandatory to avoid
product damage due to overheating, in case theuptddmperature trespasses a limit value
that is a characteristic of the formulation beiregke-dried. Besides, the operating conditions
(the temperature of the heating shelf and the press the drying chamber) used during
primary drying (when ice sublimation occurs) haweébe modified to allow desorption of the
bound water (secondary drying) only when all the ias been removed, in order to avoid
collapse of the dried cake, or product meltbackrimi@umanufacturing, a properly designed
sensor is thus required to point out if the sebbaiperating conditions allow fulfilling the
operating constraint about product temperature, whdn primary drying is completed.
Similarly, in the phase of recipe design, such sestould be able to identify the optimal
operating conditions that allow minimizing the dioa of the process:

The search for a sensor having these characteristimotivated also by the Guidance
for Industry PAT (Process Analytical Technologyjat encourages the design of innovative
tools for in-line product quality monitoring, thasoiding testing product quality at the end of
the proces§! A wide literature, presenting numerous devices tam be used in lab-scale
freeze-dryers and, in some cases, also in industréde units, is available to freeze-drying
practitioners. Among these devices, those usingeskind of physical measures (e.g. product
temperature using a thermocouple, or chamber pesising a capacitance manometer) and a
mathematical model of the process appear to beplaty promising. These devices can be
grouped into two categories: those based on thsspre rise test and the observers. The
pressure rise test consists of closing the valviénduct connecting the drying chamber to
the condenser for a short time interval: the pmesso the chamber increases and the
measured values are compared to those calculategl aisnathematical model of the process.
The unknown parameters (e.g. the ice temperatutahenresidual moisture) are retrieved by
looking for the best fit between the measured aicutated values of the chamber presstre.
%1 The observer is a mathematical algorithm that usese experimentally available
measurements from a process (in this case, protlmiperature measured with a
thermocouple) to “correct” model calculations aadstimate some unknown variables. Both
the high gain technique and the Kalman filter wen@posed to design the observer to monitor

the primary drying of a vial freeze-drying proc€s2® The observer allows monitoring the



process taking into account the non-uniformity le batch of vials (due to various reasons,
e.g. non-uniform shelf temperature, uncontrolledl@ation, and the pressure gradients into
the drying chambéf**®) using the measurement of product temperatureiiows vials in
the batch. Besides, the observer can be used amtaotloop with the goal to minimize the
duration of the primary drying®

Dragoi et al”! proposed a new soft-sensor, based on artificiatateetwork (ANN),
that was able to monitor the freeze-drying proaessg the temperature measurement at the
bottom of the vial. The sensor had the goal toest the thickness of the dried cake and,
thus, the ending point of the primary drying.

The ANNs (which are one of the many tools the Aaidl Intelligence field puts at the
disposal of the researcher) are mathematical makatsimulates the behavior of the human
brain, being composed of neurons organized interkayhat perform specific calculations.
Thus, the ANN models are not based on the physodl chemical laws governing the
processes, and they can be particularly useful vgnecess dynamics is too complex or not
perfectly known. Moreover, the calculations reqditey ANN models are very simple and
this can be of outmost importance when the calcuagpeed plays an important role as in
process monitoring and contfti?? These very important characteristics are the main
motivation for choosing the ANNs over other artdiantelligence techniques.

The open literature presents several approacha®deio the use of neural networks as
soft sensors. For instance, a feed-forward newaVark-based software sensor is applied for
coagulation control in a water treatment plant,ihg\as key feature the ability to take into
account various sources of uncertainty such ascaymput data, measurement errors, and
limited information content of the training $&t. An artificial neural network was built for
real-time prediction of the moisture and fat cohiarolive pomace, using two-phase olive oll
processing. The results obtained indicate a vendguredictive capacity of the three-layer
ANN model®! |n the freeze-drying field, the neural networks scarcely used to model and
predict the behavior of various food products @&, strawberried®, and applés?).
Recently, Todorov et &% and Todorov and Tsvetk6¥ have proposed a Volterra Fuzzy-
Neural model in a nonlinear model predictive colfgrowith the goal to reduce the duration
of the sublimation step.

The ANN models are very easy to set up and usethmit performance is highly
dependent on their structure and, thus, the detation of the optimal topology (number of
inputs, outputs, hidden layers and neurons in éadden layer) and of the optimal internal

parameters (weights, biases and activation fung}iare crucial steps. Various methods were



proposed® to achieve these results, and evolutionary techasigappears to be particularly
useful due to the ability to escape local minineathieir robustness, and to the ability to adapt
in a changing environmeft:*"

Drigoi et al*”! combined a self-adaptive differential evolutiorthwback-propagation
algorithm as a local search method to improve th& solution (neural network) obtained
locally. This approach is used in this paper teuget soft sensor that not only estimates the
residual amount of ice in the product (or the droadte thickness), but also the maximum
product temperature and the drying time in caseofi@ating conditions are not modified in
the future. A detailed model of the process candesl to calculate the learning patterns, with
the goal to minimize the experimental effof®* In this work, the detailed mono-
dimensional model of Velardi and Barresi is ud8dBesides, process simulation using the
same detailed model is used for validation purpoketact, mathematical simulation allows
precisely knowing the values of product temperatune of ice content in the vial, thus being
possible to accurately evaluate the error of thianased variables. Such precise evaluation
would be almost impossible to perform experimeptallhis methodology poses a problem:
the learning set is calculated using a specificoetalues of the heat transfer coefficient
(between the heating shelf and the product at ti®im of the container) and of the mass
transfer resistance (of the dried cake to vapow)flthat can be obtained either from a
previous experimental investigation (with smallhegh uncertainty), either by estimations.
Consequently, it is necessary to evaluate if ridi@nd accurate estimations can be obtained
when the sensor is used to monitor a process deawed by different values of both
coefficients.

The structure of the paper is the following: firfte ANN algorithm based on the
combination of differential evolution and back-pagation algorithms is briefly described,
and the proposed artificial neural networks desigioemonitor the freeze-drying process are
described. Then, a section for the suggested mi@imiocedure and the case study is inserted.
Finally, results demonstrating the effectivenessthef proposed sensor are presented and

extensively discussed.

Methods and Materials

Description of the ANN algorithm
In order to create a simple, flexible, and easyde sensor for the primary drying of a freeze-



drying process, a bio-inspired computing technidpased on artificial neural networks and an
auto-adaptive hybrid version of the Differentialdiwtion (DE) algorithm, is here applied.
This approach was chosen due to the specific cteaisiics of each algorithm and of the
advantages coming from the combination between tAémm ANNs are highly nonlinear and
their structure can be more flexible and represimet@ompared to other types of modéfs.
Also, they have the ability of estimating systenhdgor based on incomplete d&f.The
main disadvantage of the ANNs consist in the diffic of selecting the optimal topology and
choosing the best training algorithm (which alseludes the training parameters). An
alternative possibility to solve these problemseigresented by the use of DE algorithm for
developing and training ANNS.

DE is a population based, simple and straightfodwaweta-heuristic; the key of its
success consists in spontaneous self-adaptabitltyersity control, and continuous
improvement®* An own software was developed using C# and .NETmEmork 4.0 to
model and monitor the freeze drying process. Tha ragpects of the general methodology
considered in this paper are:

i) automation of the DE parameter selection basednoauto-adaptive technique in

which the control parameters are included intoatlgerithm itself;

i) evolutionary automation of the topological and int¢ parameters optimization for

ANNSs, by considering a population of encoded ANNgtse population on which
DE works;

iii) improvement of the optimization by a local searcbcpdure performed by back-

propagation algorithm, combined with global DE sbar

iv) flexibility and high generalization properties btfinal neural model.

The general steps of the algorithm are the follgsin

1. Generation of a set of potential solutions, whexehesolution is a neural network

encoded using a real value vector approach.

2. Set the current generation to 1.

3. While the current generation is smaller than theximam allowed value, the

followings are repeated:
a. Evolve the population by means of mutation, cross@nd selection.
b. Select the best individual in the population.
c. Improve the best individual by applying the backgagation algorithm.
d. Replace the current population with the evolved one
e

. Increase the value of the current generation with 1



4. Select the best individual from the current popafagas the determined ANN model
for the problem at hand.

The mutation and crossover procedures from the 8tapare the means through which
automatic optimization of ANNSs is performed, haviagignificant influence on the overall
results of the methodology. In the step 3.b, thst ledividual in the population is chosen
based on its fitness function that measures thptatian of each ANN to the environment,
represented in this case by the system describi@gtimary drying. Since the scope of the
methodology is to find the best possible modelhef tonsidered process, the fitness function
is based on the mean square error (MSE) betweepréukcted and the desired values. Into
the methodology, a combined stop criteria (consysin a predefined number of iteration or
MSE on a simple data set reaching a low value etudl0®) was used. Throughout the
evolutionary process, each neuron of the netwonkheeve one of the eight types of activation
functions: Linear, Hard Limit, Bipolar Sigmoid, Lagthmic Sigmoid, Tangent Sigmoid,
Sinus, Radial Basis, and Triangular Basis functiéusther details about the algorithm can be

found in Ref!’!

Description of the proposed artificial neural netks

A general structure of the ANN is first conside(Etjure 1A) and then, based on the process
particularities, it is refined in order to find tHeest model (FigurelB). This implies the
determination of the inputs, outputs, and numbeimoé delayed recurrences of each output.
The time delayed inputs are considered becausendigiel is used not only for predicting the
system at a future specified moment, but also &eminining the maximum temperature and
the drying time. This means that it must predicioss variables for the duration of the entire
process without having any kind of information pd®md, except for the state of the system at
the chosen moment of time. In order to generateetitige dynamic of the system based on
known information from a specific moment, the ANNishbe very precise, the incorporation
of time delay inputs allowing much better resuftart the simple case when the ANN is used
without recurrences. In order to determine the rogti number of inputs, a series of
simulations with different combinations were comesatl (Table 1). In Table 1, for the best
neural network obtained in each case, the follovgagameters are listed: the input variables,
topology, MSE in the training phasé1$E.ining), and MSE in the initial testing phase
(MSEesting, Where a simple dataset was used. The methodplayydes an optimized neural
network from both topological and parametric powit view. Consequently, different

comparisons (in different testing situations) betwehe models obtained in each case are



redundant since the difference betwéé8Eesing iS quite large (as it can be observed from
Table 1).

Figure 1B indicates the best neural network hagp@ts, 1 hidden layer with 6 neurons,
and 2 outputs. From considered inputs of the nétvdoare fixed (time, temperature of the
heating shelfTshel; pressure in the drying chamb®nampe) and 6 are time recurrent (3 for
each output). The 3 fixed parameters were chossedban the idea that they have a major
influence on the status of the process and carelad¢ively easy to measure. On the other
hand, it is difficult to measure product temperat@) and the thickness of the dried cake
(Larieg)- Also, the number of recurrences for the ANN nmaesichosen carefully, too low value
having small effect on the outputs and too highugaising the complexity of the network.
Consequently, a set of simulations was performet] based on the obtained results, it was
concluded that a number of 3 time delays for eathud is a good trade-off.

The outputs of the networksT (and Lgieq) are chosen based on the following
considerations: i) during freeze drying, the terape of the product must be in a specific
interval, thus knowing that its estimated valuerdeag periods of time is an important aspect
in choosing the best operating conditions; ii) thiekness of the dried layer is an indication
of the status of the process and, based on thereiifte between this value and the thickness
of the product after freezing (that correspondthethickness of the dried cake at the end of
primary drying, in case no shrinkage or collapseues), the ANN knows when the process is
finished. Consequently, when the predicted valu¢hefdried layer is equal to the product
thickness, the model extracts the time input usatddke the prediction and provides it to the
end user as the drying time. It has to be rematkationce the dynamics of the dried cake
thickness is known, then it can be possible toutate the sublimation flux from a simple

mass balance at the interface of sublimation:

‘Jw = (pfrozen_ pdried) dL(;;:iEd (1)

and, from this, the dynamics of the frozen layéckihess (i.e. of the residual amount of ice in

the product) can be calculated:

derozen _ —J (2)
a v

Description of the training procedure
In order to design the ANNSs, a set of data fromakhihe network can learn is required.
Although the ANNs can provide good models when gisntomplete or high error data, the



degree of performance is not the same as when usimgll error data. Taking into
consideration that the scope of the ANN model isgtmate the evolution of the product in
different conditions, the required performance fgood predictions is quite high.
Consequently, different aspects of the traininguaatist be taken into account: i) reduction of
the measurement errors; ii) good coverage of tlaechespace, and iii) enough number of
training exemplars.

In this case, the learning data are provided byetildd mono-dimensional model
which considers all the chemical and physical laat govern the proce¥é! The goal of
using an already existing model is to eliminate rieed for experimental procedures which
are time consuming and to provide a set of dath sntall measurement errors.

In order to obtain a good coverage of the seareatespthe training data was selected
based on the fact that the most important opergiangmeters arBchamperand Tspgs. The
representation of this pair is realized in a twmelsional plan (a rectangle) determined by
the physical limits imposed by the equipment anaratteristics of the drying product. If the
third parameter (represented by the time) is camsitl thePchamperand Tsheis Variation in time
can be delimited in a three dimensional box. Stheeprimary drying was recorded from start
to finish, and for each paiP{.amber Tshei) @ Set of data was collected at an interval ofs6@0
set of 9 pairs (4 from the corners of the seardrespdelimiting the box and 5 randomly
chosen from inside) was considered to be enouglthfometwork learning. This value was
chosen based on the complexity of the process anithe author experience related to the
training and testing optimal neural network mod#iss considered as a useful practice to
have a good coverage of the search space, buhanbigber of training data can lead to high
computational time. The methodology used here &emnining the neural model, in its turn,
has problems related to the high computational tiegriired. One significant advantage of
our software is that once a good model is gener@éitiough its determination is time
consuming), it can be easily used for modeling avnioring the process in various

conditions.

Case study description

The case study investigated in this paper is thezi-drying of a 10% w/w sucrose agueous
solution. The values of the heat transfer coeffic(,), used to model the dependence of the
heat flux from the shelf to the product at the dwttof the vial {y) on the driving force:

S

‘Jq =K, (T helf TB) ©)



and of the resistance of the dried lay®y)(used to model the dependence of the sublimation
flux from the interface of sublimation to the drginhamberJ,) on the driving force:

3 == (R~ R @)

Rp W, C

are taken from Réf® In particular, the dependencekaf on Pehamberis modeled by means of
the following equation:

0'74|:R:hamber (5)
1+0.02P

chamber

K, =3.25+

and the dependence Rf on Lgrieq iSs modeled with Equation (6):

R =10t + LA00 My
P 1+ 54'ZDLdried

(6)
These values have been obtained in a LyoBeta 2&zdrdryer (Telstar, Spain); it is
characterized by a vacuum-tight chamber (volum@.®f?) equipped with four shelves, that
provide a total area of 0.5°mThe vacuum system consists of an external comrdens
(maximum ice capacity 40 kg) and a vacuum pump to remove the inconddagmses. The
formulation is processed in tubing vials having iaternal diameter of 14.25 mm. The
thickness of the frozen product at the beginninthefdrying is equal to 10 mm. The intervals
of values of the shelf temperature and of the clarpbessure used in the training phase are
the followings: [243.15, 273.15] K and [5, 20] Raspectively. Product temperature can be
measured by means of a thermocouple, inserted enobrthe vials of the batch and put in

contact with the vial bottom.
Results and discussion

As it has been pointed out in the introduction isecta detailed phenomenological model of
the process is used to calculate the dynamicseoptbduct in the vial and, thus, the learning
data for the neural networks. By this way, it isgible to correctly evaluate the performance
indexes of the neural network model when computitegevolution of product temperature
and of cake thickness, as well as the maximum mtogmperature and the drying time for a
given set of operating conditions. Besides, thd gbthe neural network model is to replace
the detailed model in the control loop, e.g. fag th-line optimization of the process, as the
calculation time (for predictions) is significanttgduced. In order to assess the performance
of the proposed model, different cases in whichouasr values of the difference between the

Ky used in the training phas&(raining and in the monitored proceskymonitoring, and



between thdx, used in the training phasBy(raining @and in the monitored procedR, (monitoring
were considered.

Figure 2 shows a comparison between the valuema&sd using the soft-sensor based
on the neural network model and the true valugb®iproduct temperature and of the frozen
layer thickness during a cycle run with,ig = -20°C andPchamber= 10 Pa. In this case, the
difference between the parameters of the monitpredess and the data used for training is
-20% forK, and +20% foR,. Nevertheless, the accuracy of the sensor is gty for both
monitored variables, thus evidencing the capacitthe ANN model to provide fairly
accurate estimations even whkn and R, values are different from the ones used in the
training phase. This is of outmost importance bseau) the experimentally determined
values of both parameters can be affected by signif errors; ii) in some cases, the
experimental investigation can be unfeasible, ie.gndustrial-scale freeze-dryers. Thus, the
training of the ANN model is based on the valueXpandR, taken from the literature and
these values are affected, among the others, biypleeof freeze-dryer and vial used, as well
as by the nucleation phenomena occurring in thezing phase (completely stochastic
phenomena).

Figure 3 summarizes the errors on the estimabnsoduct temperature and on the
drying time as a function of the difference betw&®konitoring@Nd Ky raining (graphs A and B).
Even in case the difference on the value of thé tneasfer coefficient is very large (+50%),
the error on the estimation of product temperatsiralmost negligible. With respect to the
duration of primary drying, in all cases, the ercan be considered negligible (lower than
1.5%). In addition, it can be evidenced that whiea difference betweeKy monitoringand
Kuv,training iINCreases, the error on the drying time reducdslewthat on product temperature
increases. In fact, the values of product tempegatsublimation flux (that determines the
drying time),K, and R, are strictly related as they have to satisfy thergy balance at the
interface of sublimation, that means that all teathtransferred by the shelf to the product is
used for ice sublimation. This means that in chseetror orK, is high, the error on product
temperature is expected to increase (as this ivdhable estimated by the neural network
trained for a different value of the parameter),ahds, the drying force for the heat transfer
to the product (given by the difference between shelf temperature and the product
temperature) is expected to decrease. This meanght sublimation flux will remain almost
unaffected (in this case there are no errors owvahee of dried cake resistance), or that it will
exhibit a small variation (increasing or decreasas@ function of the error, depending on the

values ofK, and of the driving force), as it is shown in gr&pbf Figure 3.



A similar analysis has been carried out with resgecthe effect of the difference
betweenRy, monitoring@Nd Ry wraining (Figure 3, graphs C and D). It appears evidenttthaeffect
of the error on this variable is responsible fdrigher error on product temperature, even if
very low values are obtained in all cases. Thismadhat the ANN model has to be used for
the same type of product considered in the traipimase (as limited variation of thg values
are expected as a consequence of the variatitre inucleation temperature). Therefore, great
care has to be paid: i) when using the ANN modéh widifferent product (as the valuesRaf
would be significantly different); or ii) when ugjrthis sensor for the same type of product,
but with a different filling volume or a differembncentration (both variables can affect the
values of resistance of the dried cake).

Figure 4 summarizes the joint effect of the differe betweenKy monitoring@Nd Ky training
and of the difference betwed®y monitoring @Nd Ry training: While the error on the duration of
primary drying ranges from 0.7 % and 1.7 %, andstht is fully acceptable, the error on
product temperature remains bounded froriG2 K to +210“ K only in case the difference
between the value &, monitoring@Nnd the value used in the training phase is b5 %. If
the difference offiryis +50%, and there is also a significant differeand,, then the error on
product temperature can increase to 5 K.

Results shown in Figures 3 and 4 evidence thasdfiesensor based on the ANN model
can effectively applied to monitor a process whbeevalues of the heat transfer coefficient
from the shelf to the product at the bottom of ¥ie, and the values of the resistance of the
dried cake to vapor flow are different from thossed in the training phase. The use of
experimental measurements from the process is #bleeduce the error on product
temperature and on duration of primary drying. &stigular, the difference on the value of
Kv,raining has a limited effect on the accuracy of the edtona. Thus, the same sensor can be
used to monitor the evolution of the product inimas vials of the same batch, as well as in
different freeze-dryers (as these issues can dffiecvalue ofK,). Instead, the effect of the
difference onR, is much more relevant, and the sensor can be tosewnitor only the type
of product considered in the training phase.

Further simulations have been carried out to thet effectiveness of the sensor
designed to estimate the maximum product temperatod the duration of the drying time on
the basis of the measurement of some process lexmiaba generic time instantin this case
the capacity of the sensor to estimate product mycse was tested, not only up to the
following time instant {{ + At) when other experimental measurements becomeaaigilbut

up to the end of primary drying (according to theicture of Figure 1). As it is shown in



Figure 5, the errors of the estimations of maximpmoaduct temperature and of the drying
time become smaller as time goes on. In particulae, error on the estimation of the
maximum product temperature is very small (abo6tK.in this case) at the beginning of
primary drying, while the accuracy of the estimasioof drying time is improved in the
second half of primary drying. As a consequencéhebnset of primary drying, the proposed
soft-sensor allows to understand if the productpemrature remains below the limit value or
not and, thus, if the operating conditions havedanodified. With respect to the duration of
primary drying, the uncertainty on the estimatetlies can be significant. Nevertheless it has
to be remarked that the estimated duration is avgher than the current time and, at time
t, the sensor will never provide the (erroneousyrimfation that the drying is concluded, but
in all cases the indication will be that more timeaequired. Then, when primary drying is
approaching to the end, the estimated value ofvhisable becomes very accurate. As in
previous cases, there is a remarkable differentege®Ky monitoring@NAKy training, @nd between
Ro,monitoring @Nd Ry training, but the estimation of the maximum product temipeeais very
accurate.

Similar conclusions can be obtained when investigathe effect of the difference
betweenKy, monitoring 8N Ky raining (Figure 6, graphs A and B). The error on the maxmu
product temperature is higher at the beginningrohgry drying, where it ranges from -0.5 K
and +0.2 K, and it is negligible near the end & grimary drying. This can be perfectly
accepted. With respect to the error on the duraifgorimary drying, when about 50% of the
ice has disappeared, the error on the estimatiainyirig time is roughly -20% and it reduces
as far as drying goes on. Finally, it can be evigenthat the effect of the differencekafhas
a poor effect on both the estimated variables. fthdy has been repeated to investigate the
effect of the difference betwed) monitoring@Nd Ry training, @Nd similar conclusions are obtained
(Figure 6, graphs C and D). While the error on mlgyiime is of the same order of magnitude
of that caused bl,, the error on the estimated values of maximum yebtemperature can
be fairly high (about 2 K) at the beginning of paim drying, in case th®, difference is
higher than 20%. This means that also in this taseesistance of the dried cake is the most
critical parameter for the performance of the senaond that the sensor has to be used only
with the same type of product whose parameters bege used in the training phase.

Figure 7 summarizes the errors on maximum protimperature and on drying time
as a function of the difference betwel€monitoring @Nd Ky training and betweermR, monitoring and
Ro.training: IN the middle and at the end of primary dryirs the results indicate, the previous

conclusions are confirmed.



Conclusions

Artificial neural networks can be effectively useddesign a soft-sensor to monitor a freeze-
drying process, with the goal to estimate the dyinarof the dried cake thickness (and, then,
of the residual amount of ice, as well as the sudtion flux), the product temperature, the
duration of primary drying and the maximum prodigchperature for a given set of operating
conditions. A detailed phenomenological model wseduto calculate the data required in the
training phase of the neural network design. Ineortb reduce the time necessary for
designing the sensor, a specific couple of valddbe overall heat transfer coefficient from
the heating shelf to the product in the contaimet @f the dried cake resistance to vapor flow
is selected. The error committed by the sensor whenitoring a process characterized by
different values of both coefficients is generalyall, in particular with respect to product
temperature. Thus, the proposed sensor could lakfaseoth in-line process monitoring and
in-line process optimization, as the time requibgdcalculations is very small when using

artificial neural networks.
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