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Decentralized Neyman-Pearson Test with
Belief Propagation for Peer-to-Peer

Collaborative Spectrum Sensing
Federico Penna, Student Member, IEEE, and Roberto Garello, Senior Member, IEEE

Abstract—In this paper we propose a decentralized approach
for cooperative signal detection, based on peer-to-peer collabora-
tion among sensor nodes. The proposed method combines belief
propagation, implemented in a distributed fashion through the
exchange of local messages to and from neighboring nodes, with
a Neyman-Pearson framework, that allows control over the false-
alarm rate of each node. At the same time, nodes gradually learn
their degree of correlation with neighbors, and clusters of nodes
under homogeneous conditions are formed automatically. The
performance of the resulting “Neyman-Pearson belief propaga-
tion” (NP-BP) algorithm is shown to be nearly equivalent to that
of cooperative energy detection applied separately at each cluster.
Thanks to its decentralized structure, NP-BP provides improved
robustness, flexibility, and scalability compared to traditional,
centralized schemes. In addition, its ability to adaptively form
clusters makes the algorithm suitable for heterogeneous or time-
varying radio environments.

Index Terms—Multi-sensor signal detection, cognitive ra-
dio, distributed Neyman-Pearson test, belief propagation, sum-
product algorithm, Markov random fields.

I. INTRODUCTION AND RELATED WORKS

D ISTRIBUTED signal detection has been extensively in-
vestigated over the last decades. Research in this area

has been motivated by applications such as multi-sensor
surveillance systems [1]–[5] and, more recently, collaborative
spectrum sensing in cognitive radio systems [6]–[10]. Prob-
lems of distributed detection and estimation are also studied
in the literature of sensor networks [11]–[13].

Regardless of the specific application, distributed signal
detection problems can be classified as follows.

• According to the problem configuration: if all sensors
observe the same event (H = 0 or H = 1), we refer to
homogeneous or global detection problems; if different
sensors may observe different, localized events, we refer
to heterogeneous or local detection problems.

• According to the approach: the Bayesian approach as-
sumes prior distributions of the two alternative events
(H = 0: signal absent, H = 1: signal present) and aims
at maximizing an a posteriori likelihood function; the
Neyman-Pearson (NP) approach, on the contrary, uses as
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test statistic the likelihood of observations, and aims at
maximizing the probability of detection given a constraint
on the false-alarm rate.

• According to the architecture: distributed systems may be
centralized (if there is a fusion center which processes
the data sent from the other sensors), or decentralized (if
all sensors behave as peers and work without a central
control unit)1.

In this paper we focus on spectrum sensing applications.
With respect to the above classification, the problem of
multi-sensor signal detection for spectrum sensing has been
traditionally treated as a homogeneous detection problem
(all sensors are to detect the presence of the same primary
signal), addressed from a NP perspective (motivated by the
fact that cognitive radio systems should meet fixed constraints
on the false-alarm and missed-detection rates), assuming the
existence of a fusion center (centralized architecture).

Attempts to map cooperative spectrum sensing to a fully
decentralized architecture, while at the same time considering
a heterogeneous problem setting, include [14] and our previous
work [15]. These two papers independently proposed the
use of a decentralized implementation of the belief propa-
gation (BP) algorithm [21], in which nodes’ test statistics
are iteratively updated by exchanging peer-to-peer messages.
We denote this approach peer-to-peer collaborative spectrum
sensing, where the term “peer-to-peer” is used to emphasize
the absence of hierarchical structures (e.g., fusion centers
or predefined clusters): network-wide cooperation is gradu-
ally achieved through iterative exchange of local, peer-to-
peer messages. Previously, in [22] BP was introduced as a
computational tool for spectrum sensing, but still assuming
a traditional architecture with a fusion center. On the other
hand, examples of decentralized BP over wireless networks
had appeared in the literature of cooperative positioning [23],
[24] and sensor networks [11].

Both [14] and [15] adopt Bayesian approaches. The main
inconvenience with Bayesian detection is that it does not
make it possible to precisely select the decision threshold
as a function of a target false-alarm rate. Typically, in the
Bayesian framework, costs are associated to the events of
false alarm and missed detection, and the threshold can be
chosen so as to minimize the total expected cost. In this

1Note that this terminology is not universal: in the literature the word
“distributed” is sometimes used as a synonym of “decentralized”. To avoid
any ambiguity, in this paper we use “distributed” with a general meaning of
“multi-sensor”, and we then distinguish between centralized and decentralized
architectures.
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paper we combine the peer-to-peer collaborative spectrum
sensing approach, based on the BP algorithm, with local
Neyman-Pearson tests, allowing for a precise control of the
false-alarm probability of each node, as needed in cognitive
radio applications. Note that a similar problem (applied to
sensor networks, and generalized to multivariate observations)
is addressed in [13] by another method that, in contrast to the
NP approach, aims at minimizing the expected global “false
discovery rate” over all network nodes.

Similar to [15], we model the dependency among neighbor-
ing nodes through a pairwise Markov random field (MRF). We
introduce here a simple algorithm to learn the values of such
inter-dependencies based on a certain observation window.
This algorithm results in automatic clustering of the groups
of nodes that observe similar data. We will show that, after a
sufficient learning period, the detection performance of each
single node converges to that achieved by the relevant cluster
performing centralized cooperative energy detection. At the
same time, if the statistical correlation between two neighbor-
ing nodes vanishes, the proposed learning procedure ensures
that the detection performance of both nodes is restored to
the original single-node level within a limited number of time
slots.

The paper is organized as follows. In Sec. II we define a
mathematical system model, we introduce basic concepts of
signal detection, and we present a model for statistical correla-
tions between neighboring nodes. In Sec. III we introduce the
BP algorithm and we discuss its application in the considered
NP framework. In Sec. IV we analyze the performance of
the proposed NP-BP algorithm, thus deriving expressions for
the decision threshold and for the detection probability of the
algorithm; we then discuss the impact of cycles in the graph. In
Sec. V we illustrate the performance of NP-BP by numerical
simulations. Conclusions are drawn in Sec. VI.

II. MATHEMATICAL FORMULATION

A. System Model

We consider a cognitive network composed of K “sec-
ondary” users, coexisting with a “primary” network. The
channel occupation for a certain secondary node k at time
t is denoted by H(t)

k ∈ {0, 1}. As explained in Sec. I, we
consider a potentially heterogeneous detection setting, where
the channel may be occupied by primary users in a certain
location and free in another location. This is the case of
spectrum holes in space, as discussed in [16]. The extent of
a spectrum hole in space is determined by the transmit power
and communication range of primary users, or by the presence
of physical barriers (e.g., walls).

The time is modeled as slotted. At each time slot, secondary
users perform spectrum sensing by measuring the average
energy, 1

N ‖y(t)
k ‖2, where y(t)

k !
[
y(t)k (1), . . . , y(t)k (N)

]
is

a vector of N complex base-band received signal samples.
Depending on H(t)

k , the generic sample can be written as

y(t)k (n) =

{
vk(n) if H(t)

k = 0,

xk(n) + vk(n) if H(t)
k = 1,

(1)

where vk(n) ∼ N (0,σ2
v) is complex white Gaussian noise,

and xk(n) represents the signal received from a primary user

if active. Signals are modeled as zero-mean random variables
with E|xk(n)|2 ! σ2

k , which includes the channel gain. The
signal-to-noise ratio (SNR) at node k is defined as

ρk ! σ2
k

σ2
v

. (2)

B. Single Node Detection

Since hypotheses H(t)
k may be different for different nodes

and at different time slots, the most general approach is
obtained assuming all sensors as independent and performing
signal detection separately at each single node and time slot.
In this perspective, the test statistic available at node k is the
vector y(t)

k . Assuming the received signal samples as complex
Gaussian distributed (which is a reasonable approximation for
practical modulated signals, taking into account the effects
of fast fading and non-coherent reception), the single-sensor
likelihood ratio test (LRT) is given by

L(t)
k ! p(y(t)

k |H(t)
k = 1)

p(y(t)
k |H(t)

k = 0)
(3)

=
(σ2

v)
N−1

1 + ρk
exp

(
‖y(t)

k ‖2

σ2
v

ρk
1 + ρk

)
Ĥ(t)

k =1

≷
Ĥ(t)

k =0

τ. (4)

The above LRT can be seen from two points of view: as a
Bayesian test, if the prior distributions of H(t)

k and of y(t)
k

are uniform (non-informative); or as a NP test, in which case
the threshold τ is chosen as a function of the desired false
alarm rate α. From (4) it follows that the energy 1

N ‖y(t)
k ‖2 is a

sufficient statistic for the LRT, i.e., energy detection is optimal
in case of single-sensor detection. Thus, taking logarithms on
both sides of Lk, we can rewrite the test as

1

N
‖y(t)

k ‖2
Ĥ(t)

k =1

≷
Ĥ(t)

k =0

η (5)

with

η ! σ2
v

N

(
1 +

1

ρk

)[
log(1 + ρk) + log τ − (N − 1) log σ2

v

]
.

(6)
If the NP approach is adopted, the new threshold η needs
not be computed from τ , but it is chosen such that
Pr
(

1
N ‖y(t)

k ‖2 > η
∣∣∣H(t)

k = 0
)
= α, which yields

η(α) = σ2
v

[
1 +N−1/2Q−1(α)

]
, (7)

as follows from well-known results on energy detection (cf.
[17], [18]).

We then define for each node an individual observation
factor

F (t)
k ! 1

N
‖y(t)

k ‖2 − η(α)
Ĥ(t)

k =1

≷
Ĥ(t)

k =0

0. (8)

Note that the above statistics have the form of log-likelihood
ratio (LLR) tests. We also remark that, thanks to the adoption
of a NP approach, factors Fk only require knowledge of the
noise variance (which can be estimated as the average energy
of no-signal slots, offline or online) but not of the SNR of the
signal to be detected. On the contrary, Bayesian likelihood
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ratios (e.g., [14], [15]) require prior knowledge of the SNR
under hypothesis H = 1 and lack a general analytic method
to set the decision threshold as a function of the false-alarm
rate.

C. Statistical Dependencies

Single-user detection is optimal only when all sensors are
uncorrelated. In realistic scenarios, it is likely that some cor-
relation exists between the channel occupancy of neighboring
nodes [14], [19], although such correlation is a priori unknown
and may be time-varying (e.g., due to mobile primary users,
changes in the radio environment, etc.). We propose to take
into account this condition through a pairwise Markov random
field (MRF) model [20]. As such, we introduce a joint prior
distribution of variables H(t)

k in the form of a product of
pairwise exponential terms:

p(H(t)
1 , . . . ,H(t)

K ) =
1

Z

∏

j∈Nk
k<j

exp
(
λ∆(t)

kj · 1{H(t)
k = H(t)

j }
)
,

(9)
where Nk is the set of nodes within the communication range
of k (“neighbors”), Z is a normalization constant such that
the probability sums to 1, λ < 1 is a small positive constant,
1{x} = 1 if x is true or 0 otherwise, and ∆(t)

kj is learned from
a number T of previous time slots as follows:

∆(t)
kj !

t−1∑

q=t−T

1{Ĥ(q)
k = Ĥ(q)

j }− 1{Ĥ(q)
k %= Ĥ(q)

j }. (10)

In practice, ∆(t)
kj can be updated recursively by

∆(t)
kj = ∆(t−1)

kj +1{Ĥ(t−1)
k = Ĥ(t−1)

j }−1{Ĥ(t−1)
k %= Ĥ(t−1)

j }.
(11)

The rationale for the proposed model is the following: the
exponential terms in (9) assign higher probability to the event
of nodes k and j having the same state H(t)

k = H(t)
j , if the

decisions of nodes k and j have been equal in the majority
of previous observations. The strength of interconnection
between H(t)

k and H(t)
j is adjusted by the product λ∆kj . Since

−T < ∆kj < T , the constant λ should be chosen such that
exp(λT ) & 1, i.e., a large number of equal decisions between
nodes k and j results in a high probability of H(t)

k and H(t)
j

being equal. On the other hand, if |∆kj | is small (no significant
correlation between previous decisions of nodes k and j),
then exp(λ∆kj) ≈ 1, i.e., the MRF distribution becomes non-
informative.

D. Resulting Model

By combining the prior MRF joint distribution with in-
dividual observation likelihoods, we can express the joint a
posteriori distribution of variables H(t)

1 , . . . ,H(t)
K as

p(H(t)
1 , . . . ,H(t)

K |y(t)
1 , . . . ,y(t)

K ) ∝
K∏

k=1

p(y(t)
k |H(t)

k )×

∏

j∈Nk
k<j

exp
(
λ∆(t)

kj · 1{H(t)
k = H(t)

j }
)
. (12)

Note that, if p(H(t)
k ) is uniform, then p(y(t)

k |H(t)
k ) and

p(H(t)
k |y(t)

k ) are equivalent up to a proportionality constant.
Then, the signal detection problem for every node k can be
formulated as a LRT of the marginal a posteriori probabilities,

Lpost
k ! p(H(t)

k = 1|y(t)
1 , . . . ,y(t)

K )

p(H(t)
k = 0|y(t)

1 , . . . ,y(t)
K )

, (13)

with

p(H(t)
k |y(t)

1 , . . . ,y(t)
K ) =

∑

∼{H(t)
k }

p(H(t)
1 , . . . ,H(t)

K |y(t)
1 , . . . ,y(t)

K )

(14)
where the notation

∑
∼{H(t)

k } denotes multiple summation

over all variables {H(t)
1 , . . . ,H(t)

K } except H(t)
k .

We next introduce a decentralized algorithm which, through
an iterative exchange of local messages between network
nodes, approximates the marginal LRTs of interest (13) while
at the same time setting constraints on the local false-alarm
probabilities for each node, in a NP-like fashion. A summary
of the notation used throughout the paper is provided in Tab.
I.

III. MESSAGE PASSING ALGORITHM

In order to estimate the marginal LRTs, we apply the sum-
product algorithm over factor graphs [21] to the model defined
by Eq. (12). In our model, each factor is connected to at most
two variables, therefore we can express message update rules
directly from one variable to another. Note that a decentralized
implementation of the BP algorithm is enabled by the one-to-
one correspondence between variables H(t)

k and nodes in the
network. As such, a generic message from node k to node j
at iteration l is given by

µ(t,l)
k→j(H

(t)
j ) ∝

∑

H(t)
k ∈{0,1}

(
p(y(t)

k |H(t)
k )× (15)

exp(λ∆(t)
kj · 1{H(t)

k = H(t)
j })

∏

n∈Nk\{j}

µ(t,l−1)
n→k (H(t)

k )

)
.

Messages at iteration l = 0 are initialized as uniform distri-
butions. Beliefs, i.e., estimates of the marginal probabilities
(14), are computed at each iteration l as

b(t,l)k (H(t)
k ) ∝

∏

n∈Nk

µ(t,l)
n→k(H

(t)
k ). (16)

The proportionality sign in (15) and (16) indicates that beliefs
and messages are expressed up to a constant, which can be
found by normalizing b(·) and µ(·) so as to sum to 1.

We now express message update rules in terms of LLRs.
We define LLR beliefs

Λ(t,l)
k ! log

b(t,l)k (H(t)
k = 1)

b(t,l)k (H(t)
k = 0)

(17)

and messages

M (t,l)
k→j ! log

µ(t,l)
k→j(H

(t)
j = 1)

µ(t,l)
k→j(H

(t)
j = 0)

. (18)
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TABLE I
SUMMARY OF SYMBOLS USED IN THE PAPER AND THEIR MEANING.

Symbol Definition Meaning

‖a‖2
∑N

i=1 |ai|2 Euclidean squared norm of a vector a ∈ Cn

H(t)
k ∈ {0, 1} Channel occupation of user k at time slot t

y(t)
k – Received signal vector (N samples) of user k at time slot t

L(t)
k

p(y
(t)
k |H(t)

k =1)

p(y
(t)
k |H(t)

k =0)
Individual likelihood ratio

F (t)
k

1
N ‖y(t)

k ‖2 − η(α) Individual observation factor
η(α) σ2

v

[
1 +N−1/2Q−1(α)

]
Decision threshold for false-alarm rate α

Q(x) 1√
2π

∫∞
x e−t2/2dt Gaussian tail function

Nk – Set of neighboring nodes of k
1{x} 1 if x is true, 0 otherwise Indicator function
λ 0 < λ < 1 Learning factor (constant)

∆(t)
ij Eq. (10) Strength of interaction between nodes i and j (learned)

Lpost
k

p(H(t)
k =1|y(t)

1 ,...,y
(t)
K )

p(H(t)
k =0|y(t)

1 ,...,y
(t)
K )

A posteriori likelihood ratio

S(a, b) log 1+ea+b

ea+eb
S-function used in message computation

µ(t,l)
k→j , b(t,l)k Eqs. (15,16) Messages/beliefs at time t, iteration l (probability domain)

M
(t,l)
k→j , Λ(t,l)

k Eqs. (17,18) Messages/beliefs at time t, iteration l (LLR domain)

rkj
E[(Hk−µk)(Hj−µj )]

σkσj
Statistical correlation between Hk and Hj

C {k : Hk = 0 ∀k or Hk = 1 ∀k} Cluster (set of nodes under homogeneous radio conditions)
ηC(α) σ2

v

[
1 + (|C|N)−1/2Q−1(α)

]
Decision threshold taking cooperation into account

After algebraic manipulations, we can rewrite message and
belief update rules in LLR form as

M (t,l)
k→j = S



λ∆(t)
kj , logL(t)

k +
∑

n∈Nk\{j}

M (t,l−1)
n→k



 , (19)

Λ(t,l)
k = logL(t)

k +
∑

n∈Nk

M (t,l)
n→k, (20)

where

S(a, b) ! log
1 + ea+b

ea + eb
, (21)

and L(t)
k is given by (3). As explained in Sec. II-B, expressing

L(t)
k in explicit form requires knowledge of the distribution of

y(t)
k under the hypothesis of signal present, which ultimately

amounts to the knowledge of the SNR ρk. Furthermore, even
assuming a prior knowledge, or guess, of the signal strength,
the problem of setting the decision threshold τ remains
unsolved: if one assigns equal weights to type-I and type-II
errors (false alarms and missed detections), then the threshold
should be set to 1 (i.e., 0 in the LLR domain), but this approach
is not useful to ensure a false-alarm rate lower than a specified
value.

On the other hand, we have shown in Sec. II-B that the LRT
on L(t)

k is equivalent to a LLR test of the energy 1
N ‖y(t)

k ‖2
against a modified threshold η(α) that can be expressed
directly as a function of the false-alarm rate. Therefore, we
set

logL(t)
k := F (t)

k =
1

N
‖y(t)

k ‖2 − η(α) (22)

in (19) and (20), with F (t)
k defined in (8). In this way we

have applied a combined NP-Bayesian methodology to the
multi-sensor detection problem: individual observations are
processed by a NP approach, which is insensitive to SNR
knowledge and offers control over the false-alarm rate, and

are reinforced by peer-to-peer collaboration, implemented by
means of a Bayesian joint prior distribution estimated from
previous time slots.

After a sufficient number of iterations (l∗), each node makes
a decision on H(t)

k simply based on the sign of its LLR belief:

Λ(t,l∗)
k

Ĥ(t)
k =1

≷
Ĥ(t)

k =0

0. (23)

Observe that the threshold on beliefs is set to zero as a result
of (8). This implies that for each node the achieved false-alarm
probability is always equal to α (in case of no correlation with
neighbors) or lower. More details about this property are given
in Sec. IV.

The graphical model is illustrated in Fig. 1 for a simple
network of K = 3 nodes. Since all factors are pairwise, we
represent factors simply as edges in the graph, and variables
as vertices. This representation allows an intuitive mapping
between graphical model and physical network. The figure
shows the intrinsic information of each node, Fk, which
can interpreted as a factor connected to a single variable,
and messages Mk→j exchanged in the network at a certain
iteration and time slot.

The resulting algorithm, called NP-BP, is summarized in
Alg. 1. From the point of view of implementation it is worth
noting that messages defined in LLR form are scalar numbers,
which can be represented using few bits in the packets that are
exchanged in the network. Finally, the number of iterations
needed to reach convergence of the algorithm depends, in
general, on the size and on the structure of the “clusters” of the
network, i.e., the groups of nodes under the same hypothesis.
It is observed empirically that very few iterations (e.g., 3) are
enough to reach convergence (at least of final decisions, i.e.,
binary beliefs) even in large-scale networks.

AE googleusercontent.TN
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Fig. 1. Graphical model for a simple network of 3 nodes, representing
messages and individual likelihood functions at a certain time slot t and
iteration l. The statistical graph matches with the network topology, therefore
messages can be exchanged by nodes in a decentralized fashion.

Algorithm 1: Decentralized NP-BP algorithm
Input : Number of iterations l∗; false alarm rate α; max.

number of time slots used for learning Tmax; constant
λ.

Output: Decisions {Ĥ(1)
k , . . . , Ĥ(S)

k } ∀k ∈ {1, . . . ,K}.

1 for time slot t = 1 to S do
2 Set T = min{t, Tmax};
3 for nodes k ∈ {1, . . . , K} do
4 for neighbors j ∈ Nk do
5 if k < j then
6 Update ∆(t)

kj using (10);
7 else
8 ∆(t)

kj = ∆(t)
jk ;

9 end
10 end
11 end
12 for nodes k ∈ {1, . . . , K} in parallel do
13 Collect N received signal samples, y(t)

k ;
14 Compute F (t)

k from (8);
15 Initialize and broadcast M (t,0)

k→j = 0 ∀j ∈ Nk;
16 for iteration l = 1 to l∗ do
17 Receive incoming messages from neighbors:

M (t,l−1)
n→k ∀n ∈ Nk;

18 for nodes j ∈ Nk do
19 Compute outgoing message M (t,l)

k→j from (19)
and send it to node j;

20 end
21 end
22 Compute belief Λ(t,l∗)

k from (20);
23 Make decision Ĥ(t)

k using (23);
24 end
25 end

IV. PERFORMANCE ANALYSIS

In this section we investigate the performance of the
proposed NP-BP method. First of all, we observe that, for
sufficiently large T , the quantity ∆(t)

kj defined in (10) is
directly related to the correlation rkj between variables Hk

and Hj
2:

rkj > 0 ⇔ ∆(t)
kj → ∞ (24)

rkj = 0 ⇔ ∆(t)
kj → 0 (25)

rkj < 0 ⇔ ∆(t)
kj → −∞. (26)

2The correlation coefficient is defined as rkj ! E[(Hk−µk)(Hj−µj)]
σkσj

=

E[HkHj ]−0.25

0.25 . The index t is dropped as Hk and Hj are considered here

as random variables, of which H(t)
k and H(t)

j are realizations at time t.
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Fig. 2. Plot of S(a, b) for different values of a.

The first case includes in particular rkj = 1, which means
Hk = Hj (two nodes under the same hypothesis). The
second case represents nodes that observe uncorrelated data,
for example activity from different primary users. The third
case occurs if two nodes remain under opposite hypotheses
for long time.

Having established a relation between the learned parameter
∆(t)

kj and the statistical correlation rkj , an asymptotic perfor-
mance analysis of the NP-BP algorithm will be developed
next (Sec. IV-A) for two opposite correlation regimes: uncor-
related nodes and highly correlated nodes. The analysis of
the dynamics of BP, which is very complex in general (see,
e.g., [30], [32]), is considerably simplified under the above
limiting conditions. Nevertheless, the results derived for these
simple cases give insight into the performance of the NP-BP
algorithm in conditions of most practical interest.

Before moving forward, it is useful to analyze the asymp-
totic behavior of the function S(a, b) defined by (21). We note
that: (i) S(a, b) is symmetric with respect to its arguments, a
and b; (ii) when one of the arguments is significantly larger
than the other one, the function tends to min{a, b}. The
function S(a, b) is plotted in Fig. 2 for different values of the
parameters. In the message update rule (19), the first argument
is λ∆(t)

kj , i.e., a quantity that grows with the number of
available previous observations when these reveal correlation
with neighboring nodes; the second argument is the sum of the
neighbor’s individual likelihood ratio and incoming messages.

A. Asymptotic Analysis

We can identify two extreme operating conditions of NP-
BP. For each case, we first express a generic message between
two neighboring nodes k and j, and then the belief of a generic
node k.

1) No available past observations or no correlation be-
tween nodes k and j: λ∆(t)

kj - F (t)
k . In this case, from

(19) we have
M (t,l)

k→j ≈ λ∆(t)
kj . (27)

Then, assuming that a node k is uncorrelated from its
neighbors n ∈ Nk, we obtain from (20)

Λ(t,l∗)
k ≈ F (t)

k + λ
∑

n∈Nk

∆(t)
nk. (28)
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Since λ is a small constant (typically - 1) and, in
absence of correlation between nodes, ∆(t)

nk ≈ 0 (25),
Eq. (28) reduces to Λ(t,l)

k ≈ F (t)
k . Note that this

approximation is motivated not only for long observation
periods (large T ), but also for small T , because by
definition λ∆(t)

nk takes significant values only after a
certain number of time slots. In addition, if there are
enough neighbors having no correlation with k, the sign
of ∆(t)

nk is positive or negative with equal probability,
hence the sum tends to zero.
As a result, in absence of correlation, the proposed
spectrum sensing procedure reduces to single-user en-
ergy detection: each node separately tests F (t)

k ≷ 0,
which is equal to 1

N ‖y(t)
k ‖2 ≷ η(α). This property

guarantees that the average false-alarm rate achieved by
each node is, in the worst case (no cooperation among
nodes), equal to α, thus satisfying the Neyman-Pearson
requirement of an upper bound to the false-alarm rate.
In case of a sudden change in the radio environment that
makes two previously correlated nodes (k, j) become
uncorrelated, the system automatically learns the new
situation within a few time slots thanks to the update
of ∆(t)

kj (10). The learning rate is determined by the
coefficient λ: lower λ results in a slower adaptation
and more conservative use of neighbors’ data; higher
λ makes the system more reactive to changes, but may
result in overconfident estimation of correlations with
neighbors. The optimization of λ is a subject beyond the
scope of this paper. Empirically, the value of λ = 0.1
was chosen and used in simulations (see Sec. V).

2) Significant correlation between nodes k and j: λ∆(t)
kj &

F (t)
k . In this case, (19) becomes

M (t,l)
k→j ≈ F (t)

k +
∑

n∈Nk\{j}

M (t,l−1)
n→k . (29)

Applied iteratively, the above expression leads to for-
mation of clusters of nodes correlated with each other:
after a number of iterations L sufficient to span the
entire cluster, the test statistic of each node in the cluster
converges to the sum of individual LLR functions of all
such nodes. More formally, let C be a set of nodes under
the same hypothesis H(t)

k = 0 or H(t)
k = 1 ∀k ∈ C. If

the state H(t)
k does not change for a sufficient number of

consecutive time slots, ∆(t)
kj increases and the condition

λ∆(t)
kj & F (t)

k is eventually satisfied for all nodes k ∈ C.
Hence, for any k ∈ C,

Λ(t,l∗)
k ≈

∑

k∈C
F (t)
k = |C|

(
1

|C|N
∑

k∈C
‖y(t)

k ‖2 − η(α)

)
,

(30)
where |C| is the cardinality of C, i.e., the number of
nodes in the cluster. Hence, the test for any k ∈ C can
be rewritten as

1

|C|N
∑

k∈C
‖y(t)

k ‖2
Ĥ(t)

k =1

≷
Ĥ(t)

k =0

η(α) (31)

and is equivalent to cooperative energy detection (CED)
by all nodes in the cluster. Note that the beliefs of all

nodes k ∈ C converge to the same test statistic (31),
therefore the NP-BP algorithm can be interpreted (for
highly correlated nodes) as a cluster-wise consensus
scheme.

B. Comparison to Centralized Cooperative Energy Detection
Approaches

CED has been extensively studied in the spectrum sensing
literature. Examples of different CED approaches can be found
in [25]–[29], all assuming a centralized architecture.

A first distinction can be made between soft-decision and
hard-decision fusion schemes. In the first case, every sensor
sends the measured energy value to the fusion center, while in
the second case it sends only one bit representing the sensor’s
local decision. Intermediate versions (e.g., 2-bit quantization)
are presented in [27]. Clearly, hard-decision is suboptimal
compared to soft-decision, but requires less bandwidth.

CED algorithms can be further divided based on the weights
assigned to different sensors. If the measurements from all sen-
sors are equally weighted, we refer to equal gain combining
(EGC) schemes. In [26], an optimization procedure for the
weighting coefficients is proposed. Maximal ratio combining
(MRC) schemes, where weights are proportional to local SNRs
ρk, are presented in [25], [27]. Then, in [27], the optimal
combining (OC) scheme in the Neyman-Pearson sense for soft
energy measurements is shown to be

TOC =
∑

k

ρk
1 + ρk

‖y(t)
k ‖2. (32)

According to the above classification, the scheme proposed
in this paper can be interpreted as a decentralized, cluster-
wise CED-EGC soft-decision scheme (31). Note that a CED-
OC scheme equivalent to (32) can be obtained in the NP-
BP framework as well, by including coefficients ρk

1+ρk
, which

appear in (4), into F (t)
k (8). However, since exact knowledge of

the SNRs ρk is difficult to obtain in a decentralized cognitive
radio setting, all results presented in this paper refer to the
EGC case.

From an architectural point of view, the advantage of the
NP-BP method compared to centralized CED is that coop-
eration is achieved in a fully decentralized way, without a
fusion center like in traditional cooperative spectrum sensing
approaches. In addition, the proposed method does not require
prior knowledge of the nodes participating in cooperative de-
tection, because clustering is determined automatically based
on the evolution of coefficients ∆(t)

kj . The above properties
ensure robustness and scalability of the sensing algorithm.
From the point of view of performance, the gain is twofold:
(i) NP-BP is able to iteratively fuse data from nodes that
are more than one-hop away (multi-hop gain); (ii) thanks to
the learning procedure, each node performs a selective data
fusion, i.e., only measurements from neighbors under similar
radio conditions are considered (clustering gain). The resulting
performance improvement is illustrated by simulation results
in Sec. V.

We finally remark that the the concept of clustering is not
new in the literature of spectrum sensing. However, previous
works such as [28], [29] consider clustering as a way to re-
duce the number of messages exchanged between the sensors

fede Esageratamente
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and the fusion center (still in a centralized architecture), by
selecting only the most representative node of each cluster.
Our approach, on the contrary, introduces clustering as a way
to cope with heterogeneous radio conditions and to enable
identification of local spectrum holes (see also [14], [18]).

C. False-alarm Probability and Selection of the Threshold

1) Single-user threshold: The threshold η(α) given by (7)
is tailored for the single-user case. Clearly, if a node has no
collaborating neighbors, the resulting false-alarm probability
is Pfa = α. However, cooperation among multiple nodes
provides an improvement of the false-alarm probability at a
given threshold: if all nodes in C are under the same condition
(H = 0), the resulting false-alarm probability is

Pfa(C) = Q

[√
|C|N

(
η

σ2
v
− 1

)]
, (33)

as in an energy detector with |C|N samples. Therefore, setting
η as (7) in the cooperative case gives a false-alarm rate lower
than the nominal value α.

2) Cooperative threshold: In case of cooperation, a new
threshold

ηC(α) = σ2
v

[
1 + (|C|N)−1/2Q−1(α)

]
(34)

can be then computed from inversion of (33), resulting exactly
in Pfa(C) = α for all k ∈ C. The new “cooperative” threshold
can be set once clusters are established with sufficient stability,
and the number of nodes in the cluster (|C|) must be constantly
verified based on coefficients ∆(t)

kj . Note that such a threshold
selection may fail to guarantee the required false-alarm rate in
case of changes in the radio environment for the nodes in C.
However, thanks to the automatic update of coefficient ∆(t)

kj ,
normal conditions are restored within a few time slots.

D. Detection Performance

The resulting detection probability for a cluster C can be
computed again by using results from energy detection theory
(cf. [17], [18]). From (31), the test statistic can be written as

TC ! 1

|C|N
∑

k∈C
‖y(t)

k ‖2 =
1

|C|
∑

k∈C
Tk, (35)

and Tk ∼ N
(
1 + ρC ,

1
|C|2N

∑
k∈C(1 + ρk)2

)
, with ρC !

1
|C|
∑

k∈C ρk, by linearity of the normal distribution. Hence,
the detection probability is

Pd(C) = Pr[TC > η] = Q

(
|C|

√
N

η/σ2
v − 1− ρC√∑
k∈C(1 + ρk)2

)
.

(36)
If all nodes in C are under the same SNR ρ, the above

formula reduces to

Pd(C) = Q

[√
|C|N

(
η/σ2

v

1 + ρ
− 1

)]
, (37)

which is the same performance of a single energy detector
with |C|N samples, similarly as in (33).

Note that, if a node has no cooperating neighbors, the same
result (37) holds with |C| = 1 thus reducing to traditional
single-user energy detection.

E. Impact of Cycles in the Graph

Convergence and performance of the proposed algorithm
may be affected by the presence of cycles in the statistical
graph, which in turn depends on the network topology and the
communication range of nodes. It is known that BP may not
converge to the true posterior probabilities in case of “loopy”
graphs. In [30] it was shown that, due to cycles, beliefs tend
to be overconfident, because the same piece of information
may reach a node through multiple paths. In [31], [32], we
have proposed a simple method, named “uniformly reweighted
(URW) BP”, able to mitigate this problem while admitting
a decentralized implementation. In URW-BP, messages are
weighted by a constant ε ∈ (0, 1), which represents the
average appearance probability of edges in the graph.

In the considered application, URW-BP message and belief
update rules – cf. (19), (20) – are given by

M (t,l)
k→j = S

(
λ∆(t)

kj

ε
, logL(t)

k + (ε− 1)M (t,l−1)
j→k (38)

+ ε
∑

n∈Nk\{j}

M (t,l−1)
n→k

)
,

Λ(t,l)
k = logL(t)

k + ε
∑

n∈Nk

M (t,l)
n→k, (39)

with
ε ! min(1, 2/nD), (40)

where nD is the average degree of the graph, i.e., the average
number of connections of the nodes in the network. Note that
nD can be computed in a decentralized architecture by an
average consensus algorithm [33].

We remark that there is no need to apply URW-BP when
the number of iterations is small (more precisely: lower than
the size of cycles in the graph). In this case, messages do not
propagate long enough to affect the performance of standard
BP. On the other hand, if the number of iterations is larger
than the loop size, URW-BP is able to provide a significant
performance improvement over BP, as shown in the next
section.

F. Complexity

The computational complexity of NP-BP is very low, since
in the adopted LLR representation all messages are scalar
quantities, and their computation only involves sums and
products. From a networking point of view, the main issue
is message exchange, because (i) messages occupy some
bandwidth (although limited), and (ii) packet transmission may
fail and require retransmission(s). The latter problem is partic-
ularly relevant if nodes communicate over the same wireless
channel that they are sensing, and that is possibly occupied
by a primary user. In order to minimize both bandwidth usage
and transmission errors, it is convenient to reduce the number
of iterations of NP-BP. As an example, simulation results
shown in the next section demonstrate that 3 iterations per time
slot already provide excellent performance in all considered
scenarios.
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(a) Small-scale network (K = 6 nodes). 3 nodes are un-
der H = 1, 3 under H = 0. Each node can communicate
with its neighbors; connections are indicated by dotted
lines.

(b) Large-scale network: K = 50 randomly
deployed nodes, with communication range r.
Nodes in the left sector are under H = 0, nodes
in the right sector are under H = 1.

Fig. 3. Simulation scenarios.

V. SIMULATION RESULTS

A. Simulation Scenarios

We evaluate the performance of the proposed algorithm in
two different simulation scenarios: the small network of Fig.
3(a) and the large-scale, random network of Fig. 3(b).

The first case consists on K = 6 nodes; 3 of them experi-
ence the presence of a primary signal (H = 1), while the other
3 nodes are located in a “spectrum hole” region (H = 0). Each
node can communicate with a limited number of neighbors,
indicated by dotted lines in the figure. The second case is a
large-scale network modeled as a “random geometric graph”
[34], where K = 50 nodes are deployed randomly and can
communicate with each other if their distance is less than
r. It is assumed that nodes in the left part of the plane are
under hypothesis H = 0, while nodes on the right are in
the presence of a signal. In all simulations, primary user
signals are modeled as constant-envelope signals transmitted
over a Rayleigh fading channel, such that the received signal
amplitude changes at every sample. In some examples we
assume the average SNR to be the equal for all nodes in
the region with H = 1, while in other examples we assume
different average SNRs, due to different distances of sensor
nodes from the signal source, or to other attenuation factors.

The performance of the proposed NP-BP algorithm is
compared to that of the following alternative CED schemes:

• CED-EGC-Cluster, i.e., the test statistic (31) computed
in a centralized way assuming ideal prior knowledge of
clusters.

• CED-EGC-Neighbors, i.e., CED-EGC performed by each
node using own and (1-hop) neighbors’ data. This is
equivalent to a conventional CED scheme, where each
node acts as a local fusion center.

For a fair comparison, EGC is used for all CED methods.
If knowledge of local SNRs is available, the OC coefficient
ρk

1+ρk
can be inserted in CED and NP-BP test statistics (see

Sec. IV-B), with no effect on the relative performance of NP-
BP and CED approaches.

B. Results in the Small-Scale Scenario

Results for the small-scale scenario are reported in Figures
4, 5, and 6. The plot in Fig. 4(a) illustrates the false-alarm
probability, computed for one of the nodes under H = 0,
namely node 4, and the detection probability, computed for
one of the nodes under H = 1, namely node 2, at three
different time slots: t = 1, t = 5, and t = 10. For all slots,
BP is stopped at the third iteration. Observe that at t = 1, the
NP-BP algorithm reduces to single-user detection, because no
observations are available, hence all variables ∆(t)

kj are equal
to 0. All three nodes under hypothesis H = 1 are affected
by Rayleigh fading and have in this case the same average
SNR (−5 dB).. The plot shows that NP-BP significantly
improves the performance of single-user energy detection (i.e.,
results at t = 1), in terms of both false-alarm and detection
probabilities. The gap increases with time, as the system
gradually learns the correlation parameters. At t = 10, NB-BP
reaches exactly the ideal CED-EGC-Cluster performance, thus
validating (37). On the contrary, the conventional CED-EGC-
Neighbors method is suboptimal, mainly because the lack of
an appropriate clustering procedure makes nodes fuse their
information with neighbors that are under different conditions
(e.g., node 4 with node 3). The other benefit of the NP-BP
method over conventional CED, i.e., multi-hop collaboration,
is less important in this small-scale example. Note that in this
simulation the threshold is set like in the single-user case (7),
therefore the achieved false-alarm probability is lower than
the nominal rate α. The impact of the learning procedure is
illustrated more clearly in Fig. 4(b), which shows the evolution
of false-alarm and detection probability for all nodes in the
network as a function of time. All nodes exhibit performance
improvements thanks to the proposed learning strategy. The
slope of the learning curves depends on the constant λ, as
discussed in Sec. IV-A.

Variations of the previous simulation scenario are consid-
ered in Fig. 5. In Fig. 5(a) the threshold is reset using (34),
with |C| = 1 + |N2| = 3. In this case, the system achieves
the nominal false-alarm rate α asymptotically3 in t, while
the detection probability is significantly improved and still
consistent with the performance of CED-EGC-Cluster (with
cooperative threshold as well). Fig. 5(b) shows the results
obtained again in the small-scale network, but with different
average SNRs for the three nodes under H = 1. In this
case the performance of the NP-BP method converges to the
CED-EGC-Cluster curve (36) in the rightmost part of the plot,
and it performs slightly better for α → 0. The reason is that

3In practice, for t ≈ 10. Also note that expressions (7) and (34) are derived
by applying the central limit theorem, and turn out to be slightly biased
upwards for α → 0.
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(a) Pd for node 2, Pfa for node 4.
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(b) Results for all nodes at α = 0.1.

Fig. 4. Simulation results for the small-scale network of Fig. 3(a). Average SNR={−5,−5,−5} dB, Rayleigh fading. 3 iterations. (a) Single-node Pd and
Pfa. (b) Pd, Pfa vs. t.
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Fig. 5. Simulation results for the same scenario as in Fig. 4, but: (a) cooperative threshold ηC(α) with |C| = 1+ |N2| = 3; (b) different average SNR for
nodes 1, 2, 3.

an additional advantage comes from the (negative) correlation
with the nodes of the other cluster. Although this advantage
is negligible in most cases, it becomes relevant when α is low
and when the nodes in the cluster have different SNRs. To
give insight into this fact, we compare in Fig. 6 the detection
probability achieved (a) in the same scenario of the previous
figure (two clusters, three nodes under H = 1 and three under
H = 0), and (b) in the first cluster alone. It can be observed
that in the second case the CED-EGC-Cluster curve is an
upper bound, whereas in the presence of other nodes the bound
can be attained and even passed. In all cases, however, the
theoretical expression (36) provides useful information about
the expected performance of the NP-BP method.

C. Results in the Large-Scale Scenario

We next consider the large-scale network of Fig. 3(b).
The specific network configuration used in the simulation is
depicted in Fig. 7(a). For nodes under H = 1, the received
signal is affected by Rayleigh fading and the average SNR
varies from node to node, in a range between −8 and −1
dB. Results shown in Fig. 7(b) represent the false-alarm
and detection probability averaged over all the nodes under

H = 0 and H = 1, respectively. Also in this scenario, NP-
BP provides a substantial improvement compared to single-
user detection as well as to CED-EGC-Neighbors. The gap
here is lower than in the small-scale example, because results
are averaged over all nodes, most of which are surrounded
by neighbors under identical spectrum conditions. Thus, the
main NP-BP gain is in this case multi-hop collaboration. The
centralized CED-EGC-Cluster scheme is not considered here,
as it would not be practical in a large-scale, multi-hop network.
The threshold is set according to the single-user formula (7),
hence the achieved false-alarm probability is lower than the
nominal value.

D. Reweighted NP-BP

Finally we address the issue of convergence, and we com-
pare the performance of standard BP with that of URW-BP.
To this purpose, we consider again the small-scale network of
Fig. 3(a), and we increase the number of iterations to 10 so as
to appreciate the effect of loops. Results are reported in Fig.
8. In this scenario, standard BP does not provide satisfactory
performance as loops degrade the quality of test statistics; as
a consequence, the detection probability of BP is far from the
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Fig. 6. Detection performance comparison: single cluster vs. two clusters. (a) Configuration of Fig. 3(a). (b) Only left cluster (H = 1). Average
SNR={−4,−5,−7} dB.
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Fig. 7. Simulation results for the large-scale network of Fig. 3(b). The average SNRs of nodes under H = 1 are chosen from a uniform distribution in
[−8,−1] dB. Rayleigh fading. 3 iterations. The reported Pd and Pfa are averaged among all nodes under H = 1 and H = 0, respectively. In panel (a),
edges represent links between neighboring nodes.

CED-EGC-Cluster curve. On the contrary, URW-BP restores
the performance of NP-BP and slightly outperforms CED-
EGC-Cluster. Therefore, whenever the number of iterations is
comparable to the size of loops in the graph, the reweighted
version of NP-BP (Sec. IV-E) can be used to counteract the
effect of loops.

VI. CONCLUSIONS

In this paper we have proposed a novel approach for
cooperative signal detection, called NP-BP, that combines
the belief propagation algorithm with local Neyman-Pearson
tests. This method is suitable for cooperative spectrum sensing
in cognitive radio networks, as it provides a number of
advantages compared to traditional approaches:

• Thanks to the NP formulation, it allows for a precise
control of the false-alarm probability of each node.

• It operates in a fully decentralized manner, in contrast to
other cooperative spectrum sensing schemes that require
a central unit (fusion center) to process the data and make
a final decision for the whole network.

• It achieves cooperation among nodes in a peer-to-peer
fashion, thus ensuring robustness, flexibility, scalability.

• It performs automatic learning of correlations and clus-
tering of the nodes in the network, hence it is suitable
for heterogeneous as well as time-varying radio environ-
ments.

The performance of the proposed NP-BP algorithm has
been evaluated analytically and by simulation results. It has
been shown that, after a sufficient number of iterations and
time slots, NP-BP provides nearly the same performance as
cooperative energy detection applied separately by each cluster
of the network – which would require (i) prior definition
of clusters, (ii) selection of a fusion center for each cluster
(“cluster-head”), and (iii) broadcast of the final decision from
the cluster-head to all members of the clusters.
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