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Model-based guidance and control for atmospheric guided 
entry 

Enrico Canuto1 and Jose A. Ospina2  
Politecnico di Torino, Torino, 10129, Italy 

and 

Marcello Buonocore3 
Thales Alenia Space, Torino, 10146, Italy 

This paper presents a solution of the translational control for a biconic atmospheric entry 
capsule using the bank angle as a command. The control algorithm is separated into path 
planning and reference-path tracking. The path-planning algorithm computes the entry 
trajectory from the navigated state at the Entry Interface Point until the desired Parachute 
Deployment Point. The algorithm aims to recover the landing site uncertainty caused by 
Entry Interface Point dispersions. Atmospheric and aerodynamic dispersions are 
compensated in real-time following the Embedded Model Control methodology in which 
parametric uncertainty is estimated and rejected as an external disturbance. A hierarchical 
control structure is designed for facilitating non-linear dynamic inversion of the 
altitude/density relation and tuning of noise estimators and control laws. Both path planning 
and reference-path tracking exploit longitudinal and lateral decomposition of the 
translational dynamics, as well as state equation linearization around a reference trajectory. 
The main concepts and solutions of the algorithms are presented without formal proofs of 
convergence, performance and stability. The results of a Monte Carlo simulation campaign 
conducted on a high fidelity simulator are provided and discussed. 

Nomenclature 
a  = commanded acceleration variation 

c  = cosine of a generic angle   

Dc  = drag coefficient 

Lc  = lift coefficient 

Dd  = drag disturbance 

Ld  = lift disturbance 

dre  = error of the longitudinal state 

cre  = error of the lateral state 

DF  = drag force 

LF  = lift force 
g  = Mars gravity 
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jka  = partial derivative of j  with respect to k  times the discrete time unit T . 
h  = altitude above the reference ellipsoid 

atmH  = scale height of the atmospheric density exponential function 
i  = discrete-time step (integer) 
k  = iteration step (integer) 
m  = number of discrete steps of the entry phase 
m  = vehicle mass 
r  = distance to the planet center of mass 

MR  = local radius of the planet surface 
s  = down-range 
S  = reference aerodynamic surface 
s  = sine of a generic angle   

crS  = sensitivity of the lateral state to displacements of the bank reversal starting time 
T  = discrete equations time unit 

knt  = starting time of the n -th bank reversal at the k -th iteration 

dru  = cosine of the bank angle 

cru  = sign of the bank-angle sine 
v  = magnitude of the co-rotating velocity 
x  = translational state  Tr v    

,p kx  = path-planning trajectory at each step k  

drx  = longitudinal state  Ts v h   

crx  = longitudinal state  Ty   
y  = cross-range 
  = co-rotating heading angle 
  = co-rotating flight path angle 
  = longitude 
  = latitude 
  = bank angle 

M  = planet angular rate 
  = atmospheric density 

s  = density at zero altitude 

I. Introduction . 
Atmospheric entry, descent and landing on Mars is a challenging problem. From a registered number of 16 

landing attempts, only seven of them have been successful. Of the successful missions, the landing dispersion 
ellipses varied from 80 to 200 km long (semi-major axis), and low altitude landing sites were selected to dispose of a 
longer atmospheric entry. Landing close to sites with higher scientific interest requires drastically smaller (from tens 
of km to a pin point target) dispersion ellipses and the capability of reaching higher altitude sites. 

Currently, the key solution to such problems is offered by the technology of lifted entry vehicles (Wolf 1). Lift 
allows for the parachute to be deployed at higher altitudes and for an active guidance/control of the vehicle 
trajectory during the atmospheric entry phase. The latter feature is referred to as Guided Entry. 

Biconic capsules become controllable by offsetting their center of mass from the geometric axis, what results 
into a nonzero equilibrium angle of attack and, in turn, into a lifting aerodynamic force. By controlling the bank 
angle of the capsule, the direction of the lift can be adjusted and the vehicle motion can be (slightly) driven. 
According to Braun 2, a lifted capsule should be capable of following a dynamic-pressure-Mach-number profile, 
which is particularly suitable for reaching safe parachute conditions at higher altitudes; further, the capsule could be 
designed to have higher ballistic coefficients, and consequently to allow heavier payloads. 

Lifted biconic entry capsule with a guided entry algorithm have been tested on Earth, first by NASA on the 
Apollo missions 3 and then by ESA with an Atmospheric Reentry Demonstrator 4. In both cases the same "Apollo-
derived" guided entry was adopted: a drag-range profile is tracked using a linear feedback law to adjust the lift 
vertical component, while bank reversal maneuvers (BRM) are commanded each time the capsule leaves a 
predefined cross-range corridor. Apollo derived guided entry has been used on the US Space Shuttle5. The first 
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guided entry on Mars will be attempted by the NASA Mars Science Laboratory (MSL) 6 , which was launched on 
November 2011, and is planned to reach Mars in the early August 2012. 
Several techniques 7,8,9,10,11,12,13,14,15,16,17,18,19 have been proposed for improving the performance of the guided entry 
control. According to Kluever 7, the approaches can be broadly separated into two methodologies: 1) reference-path 
tracking and 2) path-planning algorithms. Path planning usually computes a reference path from the current state to 
the desired parachute deployment state in real-time, using a nominal and simplified model of the entry dynamics. 
Path-tracking algorithms employ an error feedback law in which the deviation of the capsule trajectory, relative to 
the reference one, is used to compute the command in real-time. To our knowledge, the Apollo-derived of Carman 3 
and profile tracking methods proposed by Hormigo 8, Bharadwaj 9 and Andres 10 exploit feedback linearization 
techniques (see Chapter 6 of Slotine 20) and belong to the category of reference-path tracking. The methodologies 
proposed by Kluever 7, Tu 11 and de Lafontaine 12 fall into the category of path planning.  

The approach followed here exploits the principles of the Embedded Model Control (see Canuto 21,22,23,24), and 
combines path-planning with a reference-path tracking algorithm. Specifically the path-planning algorithm is not 
computed in real time, but only at the entry point interface (EIP), the scope being confined to recover initial 
dispersions. The approach exploits a linearized version of the longitudinal dynamics coupled with the output of the 
navigation algorithm, which provides the so called pseudo-measurements. The main goal and achievement is 
estimating the dispersion causes (the combined effect of atmospheric density variation, wind and aerodynamic 
coefficients errors) in real-time and adjusting the vertical component of the lift in order to compensate (cancel) their 
effect. The control algorithm is split into the measurement law (combination of embedded model and noise 
estimation), including the real time estimation of the external/internal disturbances, and the control law, aiming to 
cancel the estimated disturbances and to stabilize the dynamics around the reference trajectory. The rationale of the  
approach is outlined in the paper. 

The paper provides a description of the selected solution for the path planning and reference-path tracking 
algorithms, and the output of a simulation campaign using a high-fidelity 6 degrees-of-freedom simulator. The 
attitude control, in charge of actuating a reaction control system for regulating the vehicle bank angle is described by 
the same authors in 25. A preliminary description of the selected solution can be found in 26. The paper is subdivided 
into five sections. 

1) The first section provides a short discussion of the selected solution for the translational control. 
2) The second section describes the 3 DoF translational dynamics, decoupling into the longitudinal and the 

lateral dynamics, and linearization of the longitudinal dynamics. 
3) The third describes the path-planning algorithm. 
4) The fourth section  the reference-path-tracking algorithm.  
5) The last section shows the time profile of the relevant signals of the translational control systems and 

summarizes the results of a Monte Carlo campaign. 

II. The reasons of the proposed solution 
The proposed solution comes out by considering the causes of the landing site dispersion for a typical Mars 

atmospheric entry. According to Wolf 1 they can be summarized as: (i) initial state dispersion, i.e. position and 
velocity errors at the EIP, (ii) uncertainty and variability of the atmospheric conditions, mainly of the atmospheric 
density and wind, and (iii) incomplete knowledge of the entry vehicle aerodynamics, as the latter is derived from an 
uncertain aerodynamic database. 

The Embedded Model Control (EMC) methodology subdivides control analysis and design into three sub-
problems:  

1) Reference generator: the control problem is solved in open loop as a baseline. Based on the initial state 
and on a model of the system dynamics, reference trajectory and command are computed such that 
terminal (or intermediate) requirements are met and command/state constraints are respected.  

2) Measurement law: the model used to build the reference trajectory is extended to include disturbance 
dynamics (the complete model is referred to as embedded model). The difference between the sensor 
measurements and the embedded model output (model error) becomes the source for estimating, in real-
time, the causes (external signals and parametric errors) drifting the trajectory from the reference one. 

3) Control law: the command is adjusted for compensating the estimated disturbance, and a state-feedback 
law is included to stabilize the dynamics around the reference trajectory.0) 
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As a consequence, the reference trajectory should be re-computed only when one or more of the following 
conditions occur: the estimated initial state largely differs from the reference state, the knowledge of the model 
parameters greatly improves, the desired (final) state changes, command/state saturation occurs. Such conditions can 
be rephrased in terms of the following guided-entry circumstances: 

1) The navigated state at the EIP largely differs from the nominal one. 
2) Atmospheric and/or aerodynamic conditions change, and their variation can be estimated and predicted 

for the rest of the trajectory, so as to update the reference model. 
3) The final state, here referred to as the parachute deployment point (PDP), changes during the entry phase. 
4) The command saturates (the bank angle cosine reaches its maximum) in which case re-computing the 

trajectory helps in recovering linear conditions.0) 
The first circumstance occurs at the EIP, when the known vehicle state differs from the nominal one because of 

trajectory deviations during cruise and coasting phases. The second circumstance may occur when a real time 
estimation of atmospheric and/or aerodynamic parameters are made available. Actually, in order to improve the 
reference model, a mere estimation of the current deviation of the parameters (density, lift and drag coefficients) 
from their nominal values would be insufficient. Instead, a prediction of their average value or of a mean profile 
valid for the rest of the trajectory should be the rather challenging goal. The third circumstance will not be treated 
here. Adjusting the PDP during the entry would mean that new information about the landing site was gathered by 
the descent module prior to the PDP. The fourth circumstance suggests a way to recover from command saturation. 
The problem, not yet been tackled by the authors, has not been found in the literature either. 

In summary, the path-planning algorithm is only run when the capsule reaches the EIP. As such, it re-computes 
an entry trajectory from the EIP navigation state to the desired PDP state. The result is a complete recovery of the 
landing dispersion as long as the EIP errors are known. If they are unknown, because they are dominated by 
navigation errors, they cannot be in principle reduced by an active control system which is only fed by navigation 
data.  

Beside navigation errors, to be recovered by appropriate sensors during the terminal descent phase, uncertainty 
and variability of aerodynamic and atmospheric data become the residual cause of landing dispersion, to be 
compensated by a reference-path-tracking algorithm. The proposed approach follows the EMC methodology by 
extending the entry model with a disturbance dynamics capable of capturing the combined causes of the residual 
dispersion in the form of disturbance signals, and by continuously adjusting the bank angle command to cancel their 
effect on the vehicle trajectory. Besides being at the core of EMC, disturbance modeling and estimation is well 
known in the literature (see for instance Han 27) as active disturbance cancellation.  

As a final remark, the development of path-planning and reference-path-tracking algorithms assumes that a 
nominal entry profile, characterized by EIP state, bank angle profile, and PDP state, is available. It is also assumed 
that trajectory requirements in terms of load factor, heat flux, etc., are guaranteed by the nominal trajectory with a 
sufficient margin for recovering EIP dispersions. The assumption has been verified a posteriori for typical entry 
conditions and dispersions. Extension of the algorithms to guarantee load factor and heat flux limits will be a further 
development. 

III. Entry translational equations 
In this section, the generic 3 degrees-of-freedom (DoF) nonlinear equations describing the center-of-mass (CoM) 

motion of an entry capsule are presented (see Chapter 4 in Vinh  28). Under assumptions to be clarified below, the 
whole dynamics can be arranged into the series of longitudinal and lateral dynamics, driven by cosine and sine of 
the bank angle, respectively. The control of the longitudinal and lateral trajectories can be thus decomposed if the 
longitudinal trajectory is assumed to be a known input to the lateral one, and a factor of the bank angle sine (the 
sign) which is independent of the cosine is employed as the lateral command. Moreover, a nominal trajectory being 
available, only the relevant trajectory variations need to be computed, which suggests to linearize the longitudinal 
dynamics around a reference path. 

The original 3 DoF dynamics provides the best on-board tool for integrating the reference entry trajectory, given 
the command solved by the path-planning algorithm. Decomposed longitudinal and lateral dynamics, together with 
their linearization around the reference trajectory, are intermediate design models for solving both path-planning and 
reference-path tracking. Interconnection of models and control algorithms is sketched in Fig 6. 
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A. Set of the CoM motion equations  
The following assumptions will be used in the derivation of the entry equations. 

1) The planet is spherical and rotating. 
2) The gravity is radial and constant. 
3) The aerodynamic lift and drag coefficients ( Lc  and Dc , respectively) are assumed constant. 
4) The density is an exponential function of the altitude above the surface. 
5) Notations of the trigonometric functions are simplified to cosc  , sins   and tant  ,   being 

a generic angle.0) 
These assumptions are coherent with literature 28. The resulting equations are 
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. (1) 

The notations that have been employed in (1) are as follows. The radius r  is the distance from the planet center 
of mass,   is the longitude,   is the latitude, v  is the magnitude of the co-rotating velocity,   is the co-rotating 
flight path angle (FPA),   is the co-rotating heading, M  is the angular rotation rate of the planet, g  is the planet 
gravity obtained as a function of the radius r , and m  is the mass of the capsule. The bank angle   plays the 
command role.  

The aerodynamic forces are written as 
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. (2) 

The atmosphere density is written as a function of the radius r   

    M atmr R H
sr e    , (3) 

where MR  is the mean radius of Mars (in general of the planet), and atmH  is the atmosphere scale height. 

B. Simplified set of longitudinal and lateral equations 
Equation (1) can be simplified by arranging longitudinal and lateral dynamics so that they are coupled in series. 

Series arrangement is made possible by assuming that (i) the altitude h  above the planet surface is small compared 
to the planet radius MR , (ii) the planet rotation M  is neglected, and (iii) the heading angle is written as the 
variation eip      of the current heading angle   with respect to the same angle eip  at the EIP. 

The longitudinal dynamics is found to be 
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, (4) 

where cosdru   is the command and s  is the downrange (arc-length along the direction of the velocity at the 
EIP). 

Lateral dynamics becomes  
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where y  is the cross-range (arc-length perpendicular to the direction of the velocity at the EIP). 
The set of variables  Tdrx s v h   is referred to as the longitudinal state, whereas  Tcrx y    denotes 

the lateral state. Though equations (4) and (5) are forced by the cosine and sine of the same variable   (the bank 
angle), they can be converted into two independent command variables, by making explicit the sign u  of the sine 
as follows  
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. (6) 

As a result, equations (4) and (5) become connected in series, since the longitudinal dynamics (4) is independent 
of the lateral dynamics (5), whereas the latter equation depends through the variables v ,  ,  h  and   on (4), 
and can be controlled by toggling cru  from 1 to -1 and vice versa. 

Command separation in (6) provides the basis for the design of the bank reversal maneuver. Each BRM performs 
a jump of the bank angle, say from 0  to 1 , such that  
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cos cos
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. (7) 

C. Linearization of the longitudinal dynamics 
To fully exploit a reference entry trajectory, the longitudinal motion can be expressed as a perturbation with 

respect to the latter. The perturbations drx  and dru  of the longitudinal state drx  and of the command dru , 
respectively, are defined as the difference between the state variables and the command in (4), and the reference 
variables (underline distinguishes reference from state variables) as follows  

 ,  dr dr dr dr dr dr

ss

vv
x x x u u u

hh



  
  
  
           
  
  
     

. (8) 

Linearization of (4) around a reference trajectory together with Euler discretization provides the following fourth 
order discrete state equations, written in the state vector drx  defined in (8) and in the integer step i  as follows 
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Given a time unit T   (sampling time of the Inertial Measurement Unit) the entries jka  in (9) ( j  and k  indicate 
generic elements of drx ) are the partial derivatives of (4) along the reference trajectory, i.e.  
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Finally  

 . /0 5 atmH
s L

hb T e c S m   . (11) 

Using a typical atmospheric entry profile, it can be proved that 1vva   and 1a  , and consequently they can 
be dropped without degrading the approximation degree of (9). A block diagram of the perturbed longitudinal 
dynamics is in Fig 1.Blocks with the symbol   stand for discrete time integration (dimensionless). The block 
diagram shows the guided entry controllability principle (see The block diagram shows the guided entry 
controllability principle (see Buonocore et al. 26 and Benito et al. 29). In order to (ideally) force the downrange 
deviation s  to zero, the velocity perturbation v  must be driven by an altitude variation h  which in turn 
demands a FPA variation   to be commanded by the lift vertical component dru . 
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Fig 1. Block diagram of the perturbed longitudinal dynamics including the effects of the atmospheric and 
aerodynamic dispersions. 

 
 
A longitudinal path-planning algorithm must find the command (the bank angle cosine) which drives 

longitudinal dynamics to the desired PDP state. Being a two-dimensional (2D) motion problem driven by a single 
command, controllability needs to be verified. Non-linear controllability analysis using Lie derivatives (see 30 for 
theory and procedure) have been used to investigate the local accessibility (a weak form of controllability for 
nonlinear systems defined in Chapter 3 of 31) by the command dru . Only some results are summarized below. 

1) Neglecting gravity and the density dependence on the altitude in (3), longitudinal dynamics becomes 
uncontrollable, implying that deceleration cannot be modulated by a variable bank angle. 

2) Making explicit gravity, but neglecting the density dependence on h , longitudinal dynamics becomes 
controllable. 

3) Making explicit the density dependence on h , and neglecting gravity, longitudinal dynamics becomes 
controllable. 0) 



Published by Proc. AIAA Guidance, Navigation, and Control Conference, Minneapolis, 13 - 16 August 2012.  

8 
 
 
 
 

The second case might suggest acting on the FPA for modulating the acceleration component due to gravity. The 
strategy seems inappropriate here, since deceleration is mostly caused by aerodynamic drag and not by gravitation. 
On the contrary, the third case is coherent with the principle (mentioned by de Lafontaine 12) that a guided entry can 
be pursued if the capsule is made capable of flying at higher or lower altitudes in order to modulate deceleration. 
Recovering longitudinal controllability through density correlation with h  is at the core of the proposed reference-
path-tracking algorithm. As a main controllability result, all the four state variables of the longitudinal dynamics (4) 
can be moved to any arbitrary value at the PDP by modulating the lift vertical component (the bank angle cosine) 

dru .  

IV. Path-planning algorithm 
The path-planning algorithm is computed at the EIP, with the aim of finding a bank angle profile guiding the 

capsule from the EIP navigation state to the desired PDP state. The algorithm must solve a two-point boundary value 
problem for the non-linear dynamics in (4).  

Different methods and solutions have been proposed. Drag-based methods like the one by Tu 11 rewrite 
equations (1) in a simpler form by using the energy as independent variable. Other authors like de Lafontaine 12 and 
Kluever 7 employ a form of parameterized trajectories, whose parameters are recomputed at each control step in 
order to guarantee that the target PDP conditions are met. De Lafontaine 12 trajectories either assume a piecewise 
constant vertical velocity, or a constant FPA. These assumptions simplify the entry equations (1) and facilitate the 
finding of a solution. Polynomial trajectories connecting EIP and PDP have been proposed by Kluever 7. An 
advantage of such methods is that they do not need a linearized dynamics, and can provide closed-form solutions of 
the path-planning algorithm. A drawback comes by considering a trajectory that has been computed in the previous 
time steps as a new nominal trajectory, that must be corrected in the next steps because of parameter uncertainty. 
Since such a nominal trajectory imposes a variable bank angle in order to track the specific profile of the adopted 
trajectories, the bank angle cosine may progressively approach saturation thus leaving a smaller margin for future 
corrections.  

On the contrary, a linearized dynamics allows exploiting a nominal path driven by a bank angle profile which is 
as simple as possible (usually constant, ,0dr dru u ), thus leaving a wider range to the command variations in charge 
of recovering EIP dispersions and of compensating atmospheric and aerodynamic uncertainty. Iterations of the 
algorithm are only needed to approach target conditions, because no exact closed-form solution is available. The 
main differences of the proposed path-planning algorithm with respect to literature can be summarized as follows: 

1) Path-planning algorithm is computed only once at EIP. 
2) A preliminary (quasi) optimal flight time is computed so as to reduce command authority and attenuate 

the saturation risk. 
3) Longitudinal path-planning is combined with lateral path-planning into a full 3D guidance. 0) 

The need of reversing bank angle (BRM), and longitudinal/lateral decomposition suggest the splitting of the 
algorithm into a sequence of three sub-problems. 

1) To compute the optimal flight time from the navigated EIP to the nominal PDP. 
2) To compute the longitudinal trajectory by finding the time profile of the lift vertical component capable 

of reaching the desired altitude, downrange, velocity and FPA at PDP. 
3) To compute the lateral trajectory by finding the bank reversal instants capable of reaching the desired 

cross-range and heading at PDP. 0) 

A. Longitudinal path planning 
The algorithm aims to find the k -th, 0,1,..., 1k p  , time profile ,dr ku  (bold symbols denote the whole 

sequence of discrete-time samples) bringing the longitudinal state drx  from the initial EIP point  0drx  to the 
desired PDP point  1drx m  where drx  denotes the target PDP longitudinal state. Discrete times at EIP and PDP 
have ben denoted with 0i   and 1i m  , respectively. Subscript k  denotes the current iteration, p  the total 
number of iterations and m  the duration, in discrete steps, of the entry phase. A point-to-point control problem for 
the non-linear equations (4) is in general rather difficult to solve. The solution can be approximated (as it is done by 
Stengel 32 in Chapter 4) using linear and discrete-time equations of the perturbations around a (variable) reference 
trajectory as in (9). 
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The algorithm uses the initial navigation state  , 0dr navx  and the current bank angle profile (from 0i   to 
1i m  ) to numerically integrate equations (4) for the state trajectory ,dr kx . Integration allows to compute the final 

longitudinal error    , ,1 1dr k dr k dre m x m x     at the iteration step k . Equations (9) are then used to solve for a 
command variation ,dr ku  capable of making  , 1dr kx m   equal to  , 1dr ke m  , and of forcing  , 1 1 0dr ke m    
through the iteration , 1 , ,dr k dr k dr k   u u u  in (4). 

Computing ,dr ku  is a point-to-point control problem with fixed time, but under linear and time-varying state 
equations. Linearity allows to express the final state as a function of the command profile (the initial perturbation is 
zero) 

    , , ,1dr k dr m dr kx m C k   u , (12) 

where  

      , , , ,0 1 ... 1
T

dr k dr k dr k dr ku u u m       u , (13) 

and  ,dr mC k  is a controllability matrix of dimension 4 m  built from (9) using the current reference trajectory 

,dr kx . Expression (12) is the linear set of four equations to be solved for 4m   unknowns. A solution exists 
because of controllability, and an optimal solution must be looked for because of the large number of unknowns. 
The least (weighted) Euclidean norm solution has been chosen, that is 

           11 1
, , , , , 1T T

dr k dr dr m dr m dr dr m dr kQ C k C k Q C k e m
    u , (14) 

where drQ  is a weight matrix for exploiting the available degrees-of-freedom and constraining the solution along 
specific portions of the entry phase (for instance for reducing command perturbations at the end of the trajectory). 

The solution ,dr ku  is combined with ,dr ku  and replaced in (4) to yield , 1dr ku . The optimal solution (14) can be 
thus iterated to further reduce the residual terminal error. It has been proved experimentally - a formal prove is not 
reported here – that less than five iterations are sufficient for bringing the residual terminal error close to tens of 
meters. Thus it  does not contribute to a target PDP dispersion of the order of 1 km. 

B. Optimization of the entry phase duration 
A least-squares perturbation of the nominal bank angle profile has been obtained in the previous section 

assuming a fixed maneuver duration mT . Actually, m  is an additional degree of freedom, which becomes essential 
because of the hard limit [-1,1] of the bank angle cosine. It has been experimentally observed that the shape of ,dr ku , 
and specifically the peak values (min and max) strongly depend on m . 

To better clarify the point consider Fig 2, left, in which the longitudinal path-planning aims to recover an initial 
FPA which is 0.5 degree steeper than the nominal one. Were the path correction computed along the nominal 
duration 300 smT  , the adjustment ,dr ku  would make , 1dr ku  to overcome the interval  1, 1 . The 
corresponding profile in Fig 2, dotted line,  shows that the cosine of the bank angle almost reaches the value of -1.5, 
much lower than -1, at about 70 s. Were the duration extended to 325 s, then , 1k u  would reenter inside  1, 1  as 
shown by the continuous line in Fig 2. Gray lines are intermediate solutions in the case of intermediate durations 
between 300 s and 325 s.  

Instead of exploiting an analytical relation between a norm of the bank angle profile and m  , a gradient descent 
method has been implemented which minimizes the l  norm of ,dr ku , i.e.   max cosi k i . Once a local 
minimum is found, the solution is selected as optimal. The profile of the l  norm (normalized) compared with  1l  
and 2l  norms for different variations of the time duration is shown in Fig 2, right.  
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Fig 2.  Left: optimal bank angle cosine for different entry durations, from the nominal value of 300 s (dotted 
line) to the optimal value of 325 s (continuous line). Gray lines are intermediate solutions. Right: profile 

of the l  norm compared  together to 1l  and 2l  norms. 

The optimal-time search algorithm greatly extends the algorithm capability of recovering larger EIP dispersions. 
Some performance variables of the longitudinal path planning featuring the optimal-time algorithm are shown in Fig 
4 and Fig 4. The altitude h  is plotted versus the downrange s  and the velocity magnitude v . The load factor and 
the bank angle cosine cos  are plotted versus time. Five different cases of EIP radial dispersion, namely -10, 5, 0, 5 
and 10 km, are considered. One may observe that the bank angle cosine is always feasible. 

 

Fig 3. Bank angle cosine and altitude versus downrange for EIP radial dispersions of -10, 5, 0, 5 and 10 km. 
The legend in Fig 4, right, applies to subfigures. 
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Fig 4. Altitude versus velocity and load factor for EIP radial dispersions of -10, 5, 0, 5 and 10 km. The right 
legend applies to subfigures. 

C. The lateral path-planning algorithm 
The second-order linearized lateral dynamics of (5), at the iteration step k , is obtained through the 

approximation sin      as follows 
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. (15) 

The lateral command ,cr ku  in (15) toggles between 1 and -1 at a finite number 1,...,n N  of times knt  ( N  is the 
number of bank reversal maneuvers,  as a baseline equal to 4N  ). That is, knt  denotes the starting time of the n -th 
bank reversal at the k -th iteration. The lateral path-planning algorithm exploits the sensitivity of the terminal error 
(at the PDP) to a variation knt  of knt  (delay or anticipation). A command ,cr ku  where knt  has been modified into 

kn knt t  is denoted with ,cr knu , and the corresponding state variable with ,cr knx . The differential command and state 

, , ,cr kn cr k cr knu u u    and , , ,cr kn cr k cr knx x x    satisfy (15), and , , ,cr kn cr k cr knu u u    is zero everywhere except 
during the open interval  ,kn kn knt t t . Passing to discrete time, a linear relationship can be found from (15) 
between the command perturbation ,cr knu  and the final lateral state variation at the PDP  , 1cr knx m  , namely 

    , , ,1cr kn cr m cr knx m C k   u . (16) 

Since ,cr knu  only depends on the interval  ,kn kn knt t t , (16) provides the sensitivity bi-dimensional vector knc  
of the PDP lateral state to a shift knt  of the n -th bank reversal time, namely 

 
 , 1cr kn

kn
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x m
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t

 



. (17) 

By collecting the sensitivity coefficient in the sensitivity matrix 2 N   

    1 2cr k k kNS k c c c  , (18) 

and the variations of the bank reversal times in the vector 
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  1 2

T

k k k kNt t t    t  ,  (19) 

and by defining the terminal lateral error as    , ,1 1cr k cr k cre m x m x    , where crx  denotes the target PDP lateral 
state, the linear relation is obtained 

    , 1cr k cr ke m S k   t . (20) 

Equation (20) can be solved for the unknown kt  using the weighed least squares as follows  

           11 1
, 1T T

k cr cr cr cr cr cr kQ S k S k Q S k e m
    t . (21) 

As in the case of the longitudinal path planning, an iterative procedure is pursued so as to progressively reduce 
the residual errors. A typical evolution of the lateral guidance solution for an initial cross-range dispersion of 10 km 
and a heading error equal to -1 degree is shown in Fig 5. One may observe that keeping the nominal starting times of 
the bank reversal in the presence of a lateral error at the EIP (see the ‘NotControlled’ profile in Fig 5, right) 
generates a lateral error of more than 20 km at the PDP, whereas at the third iteration of (21) it has been reduced to 
less than 200 m. The heading angle is also recovered. 

 

Fig 5. Typical profile of the lateral guidance for an initial cross-range dispersion of 10 km and a heading 
error of -1 degree.  

D. Overall control structure 
Longitudinal and lateral path-planning algorithms are not separately solved, but they are combined into a single 

3D algorithm exploiting the series connection of equations (4) and (5) until convergence is attained.  
The output of the path-planning algorithm to be used by the reference-path-tracking is denoted by px , and 

corresponds to the last iteration k p . Besides px , the path-planning algorithm provides the initial state 
   0 0navx x , the bank angle profile p , the bank angle cosine ,dr pu , the BRM starting times brt  and the PDP 

state  1p px m   where pm  provides the entry duration  1pt m T  . The sensitivity matrix ,cr pS  is also 
provided. The lower bar is employed together with subscript p  to indicate that the path-planning output becomes 
the reference trajectory for the reference-path-tracking algorithm. 

The outcome of the path-planning algorithm can be accurately tracked by the capsule, except for atmospheric 
and aerodynamic uncertainty to be handled by reference-path tracking. Interconnection between the 3 degrees-of-
freedom entry dynamics, the decomposed longitudinal and lateral dynamics and the path-planning and reference-
path-tracking algorithms are shown in Fig 6. 
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Fig 6. Interconnection between path-planning, reference-path-tracking algorithms and entry dynamic 
models. 

V. The reference-path-tracking algorithm 
The reference-path-tracking algorithm has been designed to adjust in real-time the longitudinal command ,cr pu  

and the BRM starting times brt  so as to keep the capsule as close to the reference trajectory as possible. The 
algorithm assumes, as for the path-planning algorithm, longitudinal and lateral decomposition of the entry dynamics, 
but further decomposes the fourth order longitudinal dynamics into a pair of second order dynamics: the 
altitude/flight-path-angle dynamics and the downrange/velocity dynamics. 

The reference trajectory obtained as the output of the path-planning algorithm cannot be exactly tracked by the 
capsule under realistic conditions, mainly due to deviations of atmospheric conditions and of aerodynamic 
coefficients from their nominal values. A correction algorithm, the reference-path-tracking algorithm, has been 
designed to adjust in real-time the longitudinal command , pu  and the BRM starting times brt  so as to keep the 
capsule close to the reference trajectory as much as possible. 

The altitude/FPA dynamics is commanded by the lift vertical component, whereas the down-range/velocity 
dynamics is commanded by the altitude itself, exploiting the altitude effect on the atmospheric density, since it 
allows full controllability as outlined in a previous section. Since altitude dynamics becomes the actuator of the 
velocity magnitude, a hierarchical control organization is suggested, in which the altitude perturbation driving the 
downrange control (the outer loop) is obtained by driving the vertical component of the lift (the inner loop).   

Because inertial navigation in its standard form cannot provide the exogenous and parametric disturbances 
requested by Embedded Model Control, the errors between the navigated states and the reference trajectory 
counterparts are used as pseudo measurements of the model error between embedded model and reality. Feeding the 
model errors back to the embedded model state variables (controllable and disturbance) a form of state observer 
(actually a state predictor) is obtained capable of estimating in real-time the requested disturbances. Disturbances 
can be split in two classes: disturbances affecting the downrange/velocity dynamics are referred to as drag 
disturbances, those affecting altitude/FPA dynamics are referred to as lift disturbances. The embedded model is built 
around the linearized and discrete-time longitudinal dynamics (9), completed with a stochastic disturbance dynamics 
driven by noise vectors to be estimated, and by the command perturbation cru , defined in (9). 

The lateral control is simple. It uses the sensitivity matrix ,cr pS  to compute deviations of the BRM triggering 
times brt  from the navigated lateral error. 

 
 
 

A. Modeling the coefficient uncertainty 
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The embedded model of the longitudinal dynamics is obtained by including into (4) additional input signals 
accounting for the effect of  atmospheric and aerodynamic uncertainty on the longitudinal state variables. 
Perturbations of the density   and of  the aerodynamic coefficients Lc  and Dc  are defined as follows 

 

 

L L L

D D D

h

c c c

c c c

    

  

  

. (22) 

The linearized dynamics (9) can be modified to include the expressions in (22). The result is shown in the block 
diagram of Fig 1, where the signals  ,D Dd c   and  ,L Ld c   are referred to as drag and lift disturbances, 
respectively. The parameter jka  connecting Dd  and Ld  to the state variables of (9) stands for the unknown 
perturbation of the parameter xya  in (9) caused by  , Lc  and Dc . 
According to EMC,  the signals Dd  and Ld  can be conveniently estimated in real time if they are modeled as 
external signals that are the output of dynamical systems made of pure integrators (in this case, two cascaded 
integrators) and forced by arbitrary signals (referred to as noise, see Canuto 21,24). The relevant dynamics is referred 
to as disturbance dynamics, and the command to state dynamics is referred to as controllable dynamics. Of course 

Dd  and Ld  in Fig 1 cannot be claimed to be actually driven by noise signals, as they are connected to controllable 
state variables. Therefore closed-loop stability must be guaranteed as in Canuto 21,24. No analysis of this sort is 
provided here.  

To this end, a drastic assumption is made which consists in considering the perturbations shown in Fig 1 to be 
described by the disturbance dynamics shown in Fig 7. In addition a pair of noise terms are added to the entrance of 
the h  and s  integrators. A great advantage of the stochastic model of Dd  and Ld , shown in Fig 7, is that allows 
dropping all the parasitic interconnections of Fig 1, leaving only the series interconnections ensuring controllability. 
The gain hva  has been purposely modified to the non-linear function  f h  in the double-bordered box, for 
reasons to be explained below.  

Once the longitudinal dynamics have been converted to the embedded model shown in Fig 7, it is possible to use 
data from the navigation algorithm for building pseudo-measurements of drx . They are referred to as pseudo 
measurements since they are not obtained from sensors, but as the output of the navigation algorithm. They are 
reported in Fig 7 as y , hy , vy  and sy .  
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Fig 7. Longitudinal fourth order embedded model with disturbance dynamics and noise estimator blocks. 

The longitudinal dynamics of Fig 7 is implemented as the core of the control algorithms in the form of a (closed-
loop) state observer. The noise estimator (Canuto et al. 23) of the longitudinal control employs the pseudo-
measurements in Fig 7 to update the state variables ,d Lx  and ,d Dx  of the disturbance dynamics and predict 

aerodynamic uncertainty. The estimator is designed on the embedded model of Fig 7, having four output signals and 
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eight state variables to be observed. Actually, a decomposition of the output variables is made as in Canuto et al.  23. 
The output y  (or better the model error y  ) estimates the driving noise components of Ld , vy v   

estimates those driving Dd . Finally hy  and sy  estimates the noise terms driving  h  and s  respectively. 

The resulting decoupled noise estimator can be written as 
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, ,

, ,

, ,

d D D D D dr D dr dr d D

d L L L L dr L dr dr d L

x d c f x o x x e

x d c f x o x x e





       

       
, (23) 

where  ,Df v   and  ,Lf v   are the neglected interconnections from Fig 1 to Fig 7, Ld  and Dd  are shown 
in Fig 1,  ,D dr dro x x  and  ,L dr dro x x  are higher order terms, ,d De  and ,d Le  are estimation errors to be bounded 
by the sensitivity of the state observer, combination of embedded model and noise estimator. 

B. Hierarchical longitudinal control 
A fourth-order control law designed around the embedded model in Fig 7 was preliminary tested providing 

satisfactory performance for small uncertainty, but in some worst cases performance was not satisfactory. The main 
contributor was identified as the nonlinear parameter vha ,, that was treated as a an average parameter in the closed-
loop eigenvalue tuning. To cope with such a weakness, the fourth order dynamics was decomposed in two second-
order parts, one describing altitude and FPA, and the other downrange and velocity. In this way the above nonlinear 
relation could be treated in an explicit way. As a consequence, a hierarchical control was implemented.  

The higher level control monitors the evolution of s , v  and ,d Dx , and computes the altitude variation comh . 
The lower level monitors the evolution of h ,   and ,d Lx , and forces h  to track comh .  

The higher level dynamics describes the evolution of s  and v , and is driven by h . The evolution of v  is 
obtained from (9) and the nonlinear longitudinal dynamics in (4). The aerodynamic force and density profile from 
(2) and (3) are included as follows 
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, (24) 

where 

  1atmh Ha v e     (25) 

stands for the commanded acceleration variation, and Df , Dd  and Do  coincide with the same notations in (23). The 
term v  is the nominal deceleration obtained from the path-planning trajectory px . The higher level dynamics as in 
Fig 7 becomes 
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. (26) 

Equation (26) is the cascade of the controllable dynamics ( s  and v ) driven by a  and of the disturbance 
dynamics ( ,d Dx  and 2,d Dx ) only driven by noise components. The noise estimator in charge of estimating the 
components of the four-dimensional noise vector Dw  in (26) with components ,D kw , employs the pseudo-
measurements vy  and sy  of v  and s  to update the disturbance state ,d Dx . The control law computes a  to 
stabilize v  and s , and to cancel the effect of ,d Dx  as follows 
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. (27) 

The commanded altitude perturbation is obtained by inverting (25), as 

 ln 1com atm

a
h H

v

 
   

 
. (28) 

The gains 0,Dk  and 1,Dk  are computed by fixing the closed-loop poles of (26) and (27), which makes them 
dependent on vsa . The resulting control law is a combination of nonlinear dynamics inversion as in Reiner et al. 33, 
disturbance rejection and state feedback law. 

The lower level dynamics describes the evolution of h  and  , and is forced by the perturbation of the lift 
vertical component dru . State equations repeat (26) upon a change of coordinates as follows 
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. (29) 

Equation (29) is the cascade of the controllable dynamics ( h  and  ) driven by  dru i  and of the disturbance 
dynamics ( ,d Lx  and 2,d Lx ) only driven by noise components. The noise estimator has the same structure of the 
higher level, and employs the pseudo-measurements of h  and   to update ,d Lx . The control law has the same 
structure of the higher level law (27), that is, 

 0, 1, ,

com

dr L L d L

h h
u k k x



  
        

. (30) 

The control law (30), besides cancelling ,d Lx , stabilizes h  around comh  and   around zero. The gains 0,Lk  and 

1,Lk  are computed by fixing the closed-loop poles of (29) and (30). 
The feedback gains of (27) and  (30) are computed in real-time from the time-varying parameters given by (10) 

and (11), in such a way that the closed-loop eigenvalues 1k k   , 0,1k   are kept fixed. Eigenvalues are related 
to the coefficients 0c  and 1c  of the characteristic polynomial written in the variable 1    as 

 0 0 1 1 0 1,  c c      . (31) 

The  characteristic polynomial of the closed-loop dynamics holds  

     det 1 0c cI A B K    , (32) 

where  cA i  and  cB i  are the state transition and command matrices of the (controllable) time-varying dynamics 
in  (26) and in (29). The closed form of the elements of  K i  is the following  

  
0, 0 1, 1

0, 0 1, 1

,  

,  

v sv v

h v

k c a k c

k c b a k c b   

 

 
. (33) 

Linearization of the longitudinal dynamics has been made around the reference trajectory computed by the path-
planning algorithm at the EIP, and it remains valid during the whole atmospheric entry. However, limited 
controllability at the beginning and at the end of the entry phase, because of small b  and vha , makes impractical a 
closed-loop control of the capsule displacement, as it may lead to command saturation, and  instability conditions. 
The overcoming approach is to employ weighting signals for scaling the location of the closed-loop eigenvalues 
taking them close to one (infinite time-constant, zero-state feedback) when control authority becomes low, and 
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shifting them to their nominal location when control authority reaches the maximum value, which occurs at the peak 
of the dynamic pressure. 

A block diagram showing the overall longitudinal reference-path-tracking law is shown in Fig 8. 
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Fig 8. Block-diagram of the longitudinal reference-path-tracking algorithm.  

C. Lateral control 
Lateral trajectory is computed by the path-planning algorithm. Variations of the bank angle due to longitudinal 

control may affect lateral dynamics. On the other hand lateral path planning (a sub problem of the path-planning 
algorithm) computes in (18) the sensitivity matrix crS  of the lateral state (cross-range and heading) at the parachute 
deployment point with the respect to the time shift of the bank reversal maneuvers. Restricting the sensitivity to 
cross-range y , equation (17) becomes a scalar equation as follows  

  1 /yn nk y m t   , 1, ,n N   (34) 

where  1y m   is the cross-range variation at the PDP caused by a time displacement nt  of the n -th bank 
reversal, and N  is the number of bank reversals to be performed. The time instants of each bank reversal is thus 
adjusted to recover the current deviation  y i  of the cross-range, as follows 

     /n ynt i y i k   . (35) 

VI. Simulated results 
The capsule motion has been computed by a high-fidelity simulator which includes the 6-DoF motion of the 

vehicle, off-the-shelf pulsed thrusters and a state-of-the art inertial measurement unit. The atmospheric parameters 
are extracted from the European Mars Climate Database (EMCD), the aerodynamics coefficients are interpolated 
from a 2D database driven by Mach number and total angle of attack. Gravity includes the planet flattening 
component (J2). 
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A. 10 % error of the drag coefficient  
The time evolution of the tracking law, combined with the path-planning algorithm and the attitude control in 

Canuto et al. 25  is shown below assuming a 10 % dispersion of the drag aerodynamic coefficient. This should be a 
worst-case condition since 10 % corresponds to the 3  dispersion of the capsule aerodynamic database.  

Under these conditions, the drag experienced by the capsule becomes greater than the one expected by the 
guidance. The drag deviation in Fig 9, left, is estimated as a drag disturbance ,d Dx  by the noise estimator of the 
higher level control (see Fig 7), and is converted by (27) and (28) into a commanded altitude variation comh  (a 
higher altitude of about 1.5 km is requested as in Fig 9, right). The lift vertical component dru   is then adjusted to 

dru
 
 by the lower level control in (30) to drive the altitude h  to track the commanded comh . Altitude variation 

adjusts also velocity variation v  and downrange variation s . The cross-range error remains bounded by 
adjusting the BRM starting times. 

       

Fig 9.  Left: estimated drag acceleration deviation. Right: commanded and navigated altitude deviation. 

 

Fig 10. Lower level longitudinal control. Left: FPA deviation. Right: vertical lift deviation (commanded  
and navigated). 

B. Mont Carlo simulations 
The outcomes of 500 Monte Carlo runs are outlined. EIP navigation errors are neglected to keep the results 

aligned with literature. 
The initial state (at eipt ) and the parametric dispersions are summarized in Table 1 and in Fig 11.   and   

denote latitude and longitude, CoMx  is the center of mass offset providing lift, ,maxtu  is the maximum thrust of each 
pulsed thruster, , ,...xx yyJ J  denote inertia matrix entries, Ac  and Nc  are the axial and normal aerodynamic 
coefficients. The parachute deployment point is triggered at the time computed by the path-planning trajectory. This 
means that a time-based trigger (a conservative assumption) is employed to obtain the dispersion plots in Fig 12 and 
Fig 13. The bias on the Mach error in Fig 12, right, is caused by systematic large-scale deviations of the density 
compared to the profile used by the path-planning algorithm. 
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PDP navigated position and velocity dispersions are shown in Fig 12 while the dispersions of the load factor and 
of the entry phase duration are shown in Fig 13. Taking into account that PDP is triggered on a time-based logic, the 
dispersion plots in terms of position and velocity are rather encouraging. 

 

Table 1. Parameters and initial state of Monte Carlo runs 

Variable Unit Value 
Dispersion 
(3 ) 

Variable Unit Value 
Dispersion (3
 ) 

 eipr t   m  3516200  5 000 Ac      10 % 

 eipt   deg  0 10 000 Nc      10 % 

 eipt   deg  0 10 000  ,0u      -0.5 - 

 eipv t   m s  5560 20  ,maxTu   N  160 10 % 

 eipt   deg  -13.4 0,05 xxJ  2kg m    2400 5 % 

 eipt   deg  90 0,05 yyJ  2kg m    2000 5 % 

m   kg  2200 1 % zzJ  2kg m    1400 5 % 

CoMx   m  0.1 0.005 xy xz yzJ    2kg m    0 10 

  3kg m    EMCD EMCD     

 

 

Fig 11. Drag and lift coefficient dispersion and atmospheric density variation. 

 

Fig 12. PDP dispersion: horizontal position (left) and altitude versus velocity (right). 
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Fig 13. Dispersion of the entry phase duration (left) and of the load factor (right). 

VII. Conclusion 
A detailed analysis and solution of the guided atmospheric entry problem have been presented without formal 

proofs of stability, convergence and performance. The case of a low-lift-to-drag biconic capsule has been 
considered. The solution combines a path-planning algorithm for recovering the Entry-Interface-Point dispersion 
with a reference-path-tracking algorithm for compensating atmospheric and aerodynamic uncertainty. Standard 
separation between longitudinal and lateral dynamics has been extended by further decomposing longitudinal 
dynamics into down-range and altitude dynamics.  

The path-planning algorithm is coherent with the cited literature and exploits the linearization of the longitudinal 
dynamics. The concept of optimal entry duration has been studied and implemented with the scope of reducing the 
bank-angle variations (with respect to nominal value) that are demanded for recovering the Entry-Interface-Point 
dispersion. 

The core of the paper is devoted to the reference-path-tracking algorithm, that has been developed on the basis of 
the EMC methodology. The algorithm design starts from the perturbed longitudinal dynamics (obtained as the 
linearization of the longitudinal dynamics), splits the fourth order dynamics in two second-order parts, one 
describing downrange and velocity and the other altitude and FPA evolution. Then it designs two control algorithms 
interconnected in a hierarchical structure. Controlled altitude and FPA become the actuators of the 
downrange/velocity dynamics. Each control algorithm follows the EMC methodology and as such is separated into 
state predictor (embedded model plus noise estimator) capable of estimating in real time external disturbances and 
parametric errors, and control law. The latter cancels the effect of the estimated disturbance and stabilizes the 
dynamics around the reference trajectory.  

The time profiles of the simulated variables are such to validate the designed algorithms. In fact, they show that 
the effects of the aerodynamic uncertainty is bounded and reduced. Horizontal and velocity dispersions at the 
Parachute Deployment Point (from Monte Carlo runs) remains within a 2 km horizontal ellipse (3   radius) and 
less than 10 m/s (0.05 Mach). Such values are obtained in the worst case of a time-triggered logic for parachute 
deployment. 
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