
08 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

The network neutrality bot architecture: A preliminary approach for self-monitoring of Internet access QoS / Basso,
Simone; Servetti, Antonio; DE MARTIN, JUAN CARLOS. - STAMPA. - (2011), pp. 1131-1136. ((Intervento presentato al
convegno 2011 IEEE Symposium on Computers and Communications (ISCC) tenutosi a Kerkyra nel June 28 2011-July
1 2011 [10.1109/ISCC.2011.5983857].

Original

The network neutrality bot architecture: A preliminary approach for self-monitoring of Internet access
QoS

Publisher:

Published
DOI:10.1109/ISCC.2011.5983857

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2481390 since:

IEEE

The network neutrality bot architecture: a
preliminary approach for self-monitoring of Internet

access QoS
Simone Basso∗, Antonio Servetti†, Juan Carlos De Martin∗

∗NEXA Center for Internet & Society
Dipartimento di Automatica e Informatica

Politecnico di Torino
†Dipartimento di Automatica e Informatica

Politecnico di Torino

Abstract—The “network neutrality bot” (Neubot) is an evolv-
ing software architecture for distributed Internet access quality
and network neutrality measurements.

The core of this architecture is an open-source agent that
ordinary users may install on their computers to gain a deeper
understanding of their Internet connections. The agent periodi-
cally monitors the quality of service provided to the user, running
background active transmission tests that emulate different
application-level protocols. The results are then collected on a
centralized server and made publicly available to allow constant
monitoring of the state of the Internet by interested parties.

In this article we describe how we enhanced the original
architecture both to deploy a distributed broadband speed test
and to allow the development of plug-in transmission tests. In
addition, we start a preliminary discussion on the results we have
collected in the first three months after the first public release
of Neubot.

I. INTRODUCTION

The debate on “network neutrality” is becoming a more
and more relevant topic in both economic and technical
environments. [1]

The basic question is whether network operators should be
allowed to differentiate the Internet traffic that goes through
their infrastructure or whether network neutrality should be
explicitly safeguarded by the law, thereby enshrining what has
been a characteristic of the Internet since its birth.

In fact, the ability to block or slow down the traffic, which
could be used to prevent the spreading of spam, viruses,
botnets, and other malwares, could also be used by Internet
Service Providers to implement very questionable policies [2].
Apart from the so-called “Great Firewall of China” and other
censorship efforts, which are beyond the scope of this paper,
differentiating technologies could also be employed to throttle:
(i) the “seeding” file-sharing traffic that flows out of ISPs
networks (traffic considered “bad” because often providers
are charged per-Megabyte for the traffic exchanged with
their upstream Internet Providers), (ii) the file-sharing traffic
generated during rush hours (in an effort to avoid the collapse
of under provisioned access networks,) (iii) the traffic of some
“over-the-top” (OTT), possibly free, services that compete

with “managed services” that an ISP sells (for example Skype
competing with ISP own Voice-over-IP solution.)

In particular, the conflict between managed and OTT ser-
vices, e.g. YouTube, Skype, is becoming more and more
relevant (particularly in the US). Providers (a) have started
to offer additional managed services along with the Internet
connection, such as television, video, and voice communica-
tion, and (b) often employ differentiating technologies, and
other practices such as bandwidth caps, to guarantee that
there is always enough bandwidth to carry the managed
services (while OTT services get the traditional “best effort”
treatment.) [3]

Technically, with the advent of “deep packet inspection”
and other classification technologies, fine-grained network
discrimination is performed filtering data packet to either set
them to a lower priority or to block them.

In particular, packets that belong to low priority classes
might be: (i) diverted on slower and/or more congested “vir-
tual links”, with traffic engineering technologies like MPLS
(Multiprotocol Label Switching), (ii) dropped from the router
queues in cases of congestion, (iii) scheduled for forwarding
after higher priority packets.

Despite the potential impact of packet filtering, users, devel-
opers, and most other network administrators are not provided
with enough information regarding this practices, and there are
not well established tools to assess whether a particular kind
of discrimination is active on a given connection.

As a consequence, we are designing Neubot as a soft-
ware architecture for distributed network measurements [4]
on which developers can implement tools and methodologies
that will help examining ISPs throttling of Internet traffic
depending on the protocol used and service offered.

We have a strong commitment towards opening data.
Neubot results will be made publicly available at
neubot.org [5] for further analysis by the research
community and to inform the international debate on network
neutrality with real, per-host, network measurements.

The rest of this paper is organized as follows. In section II,
we introduce the architecture and we describe the proposed

measurement techniques. In section III, we describe the imple-
mentation of our broadband speed test and the enhancements
that allow plug-in transmission tests. In section IV, we start a
preliminary discussion of the collected results. In section V,
we compare Neubot with related work. Finally, conclusions
are drawn in section VI.

II. ARCHITECTURE

The architecture of Neubot consists of an agent that vol-
unteer end-users shall install on their computers, and a set of
servers. There is a master server, master.neubot.org,
that coordinates the tests and collects the results. And there
are test servers that implement one or more transmission tests.

The agent runs in background. Under Linux, BSD, and other
Unixes the agent is started at boot time, becomes a daemon,
and drops root privileges, running on behalf of the restricted
user _neubot. Under Windows the agent is started when an
user logs in and runs in the context of such user’s session.

The agent listens on port 9774 of the local host and
implements a JSON API. The user can control the agent using
a web user interface, based on such API, that also allows to
review recent results. Given the flexibility of the JSON API,
other interfaces are possible.

The agent automatically performs a set of transmission tests
between the Neubot computer and one or more test servers
(client-server mode), and between the Neubot computer and
other Neubots (peer-to-peer mode). Periodically, test results
are archived, sending them back to the master server.

A. Client-server test description

The diagram in Fig. 1 shows the sequence diagram and
components involved in a generic test. The Database and
Coordinator components are installed on the master server.
In the case of a client-server test, the TestNegotiator and Test-
Provider are installed on a test server. Note that it’s possible
for the master server and the test server to be the same physical
(or virtual) machine, for simplicity and maintainability. Each
component plays a well-defined role, as follows.

The Coordinator keeps track of all the available test servers
and test peers – i.e. agents running in peer to peer mode and
accepting connections, as explained in section II-B – and binds
an agent that wants to perform a test with the test server (or
test peer) implementing such test.

The TestNegotiator assigns a temporary unique identifier to
each connecting agent that wants to perform a transmission
test, and manages the queue of incoming tests, to make sure
that tests are always well provisioned. At the end of the test,
the TestNegotiator collects and stores the test results on the
local database.

The TestProvider is the component that uses a given pro-
tocol to implement a certain transmission test to estimate
selected characteristics of the network between the agent and
the TestProvider itself. Note that we present the TestNegotiator
and the TestProvider separately, because they are different
components, but, in the current source tree, they are always
implemented together, for simplicity.

Fig. 1. Sequence diagram of a generic test.

The Database is the component that collects all the results
of all the tests that have been performed. This could either be
a single server or, possibly, a set of distributed servers.

At the beginning, the Coordinator knows in advance a list
of well-known test servers. So, when an agent connects (1) to
get the address of a test server, the Connector could return a
list of one or more addresses. The fact that the Coordinator
populates the list of tests allows for very flexible probing,
because different tests could be returned depending on the
circumstances.

Given the address of a TestNegotiator, the agent negotiates
the permission to perform the test (2a), possibly proposing
certain test parameters. The negotiator assigns the agent a
random unique identifier, informs the agent on its position in
queue, and possibly returns the negotiated parameters. When
the TestProvider load allows to unblock the client (2b), the
TestNegotiator informs the client that now it can perform the
transmission test, and starts a per-test timer. If such timer
expires, the negotiator assumes that the test is taking too long,
possibly because the agent computer was shut down, and the
temporary unique identifier is removed from the white list1.

Then there is the transmission test between the agent and the
TestProvider (3). The measured performance metrics depends
on the target protocol, but always include the hosting computer
load, i.e. network, CPU, and memory usage. An HTTP test
inspired to Speedtest.net test [6] is already implemented.
We are working at a BitTorrent test inspired to Glasnost
[7]. Other target protocols include RTP, the IETF Real-Time
Transport Protocol, used by many Internet-based multimedia
applications, and Skype’s proprietary peer-to-peer Voice-over-
IP protocol.

Completed the test, the agent uploads the results (4) to the
TestNegotiator, that stops the per-client timer and saves results
in the local database. When a significant batch of results has
been collected, the TestNegotiator will upload it upstream to
the master Database (5).

Finally, the agent goes idle for a long amount of time (at
least fifteen minutes) before repeating again the procedure
explained above.

1Of course, the TestProvider aborts the connection if the connecting agent
is not in the white list.

B. Peer-to-peer test description

In future, it will be possible for Neubot agents to listen
for incoming connections and implement the “server side”
of a test, i.e. the TestNegotiator and the TestProvider. The
difference is that, when an agent performs the rendezvous
(1), it registers with the Coordinator as a listener rather than
as a connector for a given protocol. The Coordinator would
then check whether the agent is not firewalled, and, if the
check succeeds, it will add the agent Internet address to its
list of available test negotiators and providers. The remainder
of the procedure is exactly as in the client-server test, with the
notable difference that now the connecting agent connects to
another agent and not to an ad-hoc test server.

III. IMPLEMENTATION

In this section we provide more details regarding Neubot
modules, discuss briefly how the implemented tests works,
and describe the deployment of Neubot. This discussion builds
on the more generic explanation of the required modules,
available in our previous work [8].

A. Modules

Neubot consists of: (i) an executable startup script, written
in Python, or, under Windows, a PE/COFF executable, frozen
using py2exe [9]; (ii) a library of modules, written for Python
2.5-2.7, implementing the agent and the server; (iii) a web
user interface written in Javascript using jQuery [10]; and
(iv) a Gtk+ status icon written in PyGtk [11], available under
GNU/Linux and other Unixes.

The design of Neubot is module oriented. Most Neubot
modules export a function, named main, that parses command
line options and implements some behavior. The startup script
is just a switch that selects by-name the proper module to pass
the control to. So, depending on the first command line option,
the startup script might start the Neubot agent in background,
run a background process that hosts any of the server side
components described in section II-A, run a given test from
command line, open the web user interface in the default
browser, or show the status icon in the notification area.

New tests could be added as plugins. For example, the dia-
gram in Fig. 2 shows the dependencies of a new hypothetical
transmission test named proto. These dependencies are: (i) the
protocol stream, on top of Neubot generic stream module; (ii)
the protocol test itself, depending on the marshal module as
well as on (i); (iii) a set of javascript protocol helpers for the
web user interface to represent the results and manage the test
parameters.

The http stream module, used to implement the transmission
test described in section III-B, is also employed to send the
“Neubot to Neubot” messages that implement the rendezvous,
negotiate, and collect transactions described in section II-A.
Such messages are encoded to (and decoded from) either
JSON or XML using the services provided by the marshal
module.

We now describe in detail the streams, marshal, and lib-
neubot.js modules of the Neubot library.

Fig. 2. This figure shows the dependencies of a new hypothetical transmission
test module named proto.

1) Streams: This module is built on-top of “asynchronous
event-based I/O”, implemented using select(). We use this
I/O strategy because it allows to handle multiple concurrent
small XML or JSON “Neubot to Neubot” messages without
consuming too much resources and because it enables better
performances. In particular, there is little overhead in receiving
many small messages – we don’t need to spawn extra pro-
cesses or threads, or manage thread pools – and the process
should never block waiting for I/O to complete.

This module provides consumer modules several facilities,
such as support for: scrambling messages using the RC4 im-
plementation provided by PyCrypto [12]; full encryption and
authentication using the Secure Socket Layer API available
since Python 2.6 [13]; support for enabling “time to connect”
and throughput measurements, eventually creating groups of
connections.

In addition, this module enforces a strict event model for
implementing protocols on top of the generic stream. Such
model is inspired to the “protocol” model of Twisted [14] and,
to some extent, to the “handler” model of BitTorrent mainline
[15]. This simplifies the task of writing new transmission tests
for Neubot.

2) Marshal: The marshal module provides mechanisms to
marshal and unmarshal simple classes, i.e. classes that contains
just simple types – integers, (unicode) strings, floating point
numbers – as well as vector and/or dictionaries of simple types.
This is almost automatic with simplejson [16], while for XML
we have written wrappers around Python Document Object
Model (DOM) that perform this task.

This module also implements helper code to generate the
queries to create per-test tables and to save data, given both
the name of the table and a prototype of the object that should
be saved into the table. This simplifies the task of writing new
transmission tests for Neubot.

3) libneubot.js: This module is a collection of helpers and
wrappers to retrieve data using the “Neubot web api”, i.e. the
JSON-based API to query the local Neubot daemon from the
web interface, or from other clients, such as the Gtk+ status
icon.

B. Speedtest

This transmission test is inspired to the online test available
at Speedtest.net [6]. Here we don’t describe the negotiate and
collect transactions, because they have been already described
in section II-A, and we just focus on the test.

This test employs two connections to increase throughput
with moderately congested long fat networks. We decided
to use two connections even if in literature it’s common to
suggest to use four connections (see for example the work
of Tierney [17]) because our goal is not to maximize the
throughput at the expense of other connections but rather to
get an estimate of the available bandwidth.

We are now going to discuss the three steps that compose
this test: the evaluation of the round-trip time latency, and the
estimation of the bandwidth available in the downstream and
upstream paths.

1) Latency: The first step consists in the evaluation of
the round-trip time (RTT) latency between the Neubot agent
and the server. We implement two techniques to do that: (i)
“time to connect” that estimates the round-trip time using the
time required for connect() to complete; and (ii) “short
HTTP transaction” that estimates the RTT using the time
elapsed between sending a small HEAD request, and receiving
the response – which, per RFC2616 [18], should consist of
headers only. The former technique collects a sample per
connection, while the latter allows to collect an arbitrary
number of samples per connection. On the other hand, the
former technique should yield a better estimate because it has
no application-level overhead, being the three-way handshake
performed entirely by the operating system kernel.

2) Download: The second step consists in the estimation
of the available downstream bandwidth. To do that, request
a range of an huge resource, doubling the range until the
download takes a significant amount of time. The current
implementation gives up when the test takes more than a
second to complete – not to disrupt the user experience for
too much time. We are refining the code to tune the download
interval so that it spans an integral amount of round-trip
times. Another forthcoming enhancement is to auto tune the
TCP buffer, given the estimated RTT and the bandwidth we
expect, either from guessing or by inspecting the download
history. These adjustment should make the test more robust
for connections with very high bandwidth-delay product.

3) Upload: The third step is the symmetric of the second
one, but it targets the upstream bandwidth. This step uses
POST, doubling the uploaded range until it takes more than
one second. The content we push upstream is a portion of the
data that has been downloaded during step two (the assumption
is that hardly the upstream speed will be much better than the
downstream one).

C. Deployment

We deployed our main test server at Torino-Piemonte Inter-
net eXchange (TOP-IX), the nearest Internet eXchange (IX)
to our campus, on a 1 GByte / 2 GHz / 1 core Debian 5.0
virtual machine, attached to a 1 Gbit/s upstream/downstream
pipe. We decided to deploy Neubot in the network of an IX in
order to minimize the “distance” between the installed Neubot
agents and our main server.

The virtual machine at TOP-IX runs a rendezvous and a
speedtest server, using two different processes, to allow to

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

P
e

rc
e

n
ta

g
e

Download speed (Mbit/s)

Aggregate download speed distribution

Fig. 3. Aggregate download speed distribution.

reload the list of known speedtest servers without stopping the
local speedtest server instance. Indeed, in a couple of cases,
we added one more speedtest server, located at Politecnico di
Torino, for the purpose of redirecting there half of the traffic,
to test experimental algorithms.

IV. PRELIMINARY RESULTS

In this section we present some preliminary results of the
speedtest test, extracted from our database that contains tests
since October, 3rd 2010 until January, 17th 2011, counting up
to 448317 tests and 1115 unique agents.

We focus on download speed because broadband connec-
tions are nearly always advertised “up to” a certain download
speed. Therefore, we are interested to study the difference
between the advertised speed and the measured speed when
downloading from a well-known nearby location in the net-
work (in our case, the server at TOP-IX).

We identify a reasonable goodset of the collected results,
show the distribution of download speed in that set, compute
the average speed and compare it with the one reported by
Speedtest.net [6] and Youtube [19]. Then, we select a Neubot
agent and we show the download speed distribution of the tests
performed by such agent. The agent choice is not random.
We choose an agent whose results are consistently within the
goodset.

In the goodset, we consider only tests where the measured
download speed was lower than 20 Mbit/s and the estimated
RTT latency2 was lower than 100 ms. Overall, this goodset
counts up to 338615 tests, i.e. 75% of the total number of
tests. And the tests in the goodset have been performed by
1035 distinct agent identifiers (94% of the total).

The restriction on the download speed is to single out tests
performed from ADSL connections. There were many high
speed results due to tests originating from our campus or

2To estimate RTT we use the “short HTTP transaction” method only,
because, with certain versions of Neubot, “time to connect” mistakenly
accounts for DNS resolution too.

from TOP-IX, and the best rated download speed for consumer
ADSL in Italy is indeed 20 Mbit/s.

The restriction on the RTT latency removes results collected
from locations “too far away” from our server at TOP-IX,
where the outcomes are less significant, mainly due to high
bandwidth-delay product, and possibly due to the presence of
cross traffic and congestion.

A. Aggregate download speed distribution

The plot in Fig. 3 shows the download speed distribution
of a goodset of the collected results. From the analysis of this
data, we clearly see peaks before 1, 2, and 7 Mbit/s, which
are common ADSL speeds in Italy.

B. Average download speed distribution

We calculated the average download speed distribution in
the goodset, and we compared the average with the one
provided by Speedtest.net [6] and Youtube [19]. We do not
show the variance because that makes little sense, being
the results collected from different connections with different
access speeds.

We compare the goodset average with Speedtest.net’s [6]
average download speed for Italy, not considering universities
and companies, because they have often better connectivity.
We use the average without universities and companies for
symmetry with the fact that we removed very high speed
clients from the goodset. With respect to Youtube Video Speed
History [19], we use the average for Turin rather than the
average for Italy because the goodset contains clients “not too
far” from Turin, due to the 100 ms RTT restriction.

The results are shown in table I.

C. Single-agent download speed distribution

In this subsection we comment on the distribution of the
download speed of a Neubot agent we have selected.

The selected agent’s tests consistently fall within the good-
set. It has performed 1383 tests and the RTT latency falls 84%
of the time within 100 ms. Moreover, it appears the be attached
to 7 Mbit/s ADSL connection. Indeed, a simple whois lookup
shows that the IP addresses employed by such agent belong
to an Internet Service Provider whose top offer features 7
Mbit/s downstream. Furthermore, the agent’s download speed
is always lower than 7 Mbit/s.

The diagram in Fig. 4 shows the distribution of the down-
load speeds measured by the selected agent. Note that we
extracted the results of this agent from the database, given
that each agent is identified by a random UUID. But, since
results are also saved locally, in principle the owner of the
selected agent could have done the same analysis, accessing
the local database and using custom scripts, or, possibly via
the Neubot agent’s web interface.

Note that most of the results in Fig. 4 are distributed in
proximity of 7 Mbit/s, but there are significant spikes near
4 Mbit/s and 1 Mbit/s too (two other common downstream
speeds for ADSL in Italy). We are currently investigating
the causes of the low speed spikes, and checking whether
performing longer tests would yield more stable results.

Source Download speed (Mbit/s)
Neubot 4.58
Speedtest.net 4.68
YouTube 3.03

TABLE I
AVERAGE RESULTS OF NEUBOT COMPARED WITH AVERAGE RESULTS OF
SPEEDTEST.NET IN ITALY AND YOUTUBE VIDEO DOWNLOAD HISTORY

FOR TURIN.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5 6 7

P
e

rc
e

n
ta

g
e

Download speed (Mbit/s)

Single-agent download speed distribution

Fig. 4. Single-agent download speed distribution.

V. RELATED WORK

In literature, most of the related work regarding network
neutrality tools is focused on testing only one specific kind of
disruption. Notable is, for example, Diffprobe [20], that tries
to infer whether there is protocol-dependent shaping.

It’s also Worth mentioning: (i) the work of Weaver, et
al. [21], that provides a rich set of heuristics to classify
incoming RST segments, being able not only to identify
the spoofed ones, but also to tell, with a certain degree of
confidence, which device should have injected the segments;
(ii) the Glasnost project [7], that provides an user-friendly Java
applet that performs a differential test (BitTorrent vs. random
data) trying to detect whether the user’s ISP blocks BitTorrent
traffic; (iii) the work of Zhang, et al. [22], that studied the
amount of traffic differentiation in the backbone, employing a
protocol-aware traceroute-like tool.

More general approaches, that are able to quantify a broad
range of network neutrality violations, as in Neubot, are
NANO and Grenouille.

The former one, NANO (Network Access Neutrality Ob-
servatory) [23], differently from Neubot employs passive
measurement. The client continuously monitors user-generated
traffic, and periodically sends throughput, round-trip-time, and
other general performance metrics to the server, as well as an-
cillary information including the state of the hosting computer,
the geographic location, the browser, and the operating system.
Interestingly, the server relies on stratification to cluster the
clients in strata where the difference in performance depends

only on the fact that different ISPs have employed different
policies.

The latter one, Grenouille [24], has an architecture similar
to Neubot, but a slightly different goal: to measure ISP
backbone congestion. Every 30 minutes, the client connects to
a server standing near the edge of the ISP network, to avoid
traversing (many) other ISPs networks. This way, the FTP
upload, FTP download, and ping tests are not (much) biased
by other ISPs, and hence it is possible to evaluate the average
quality of service. To avoid overloading the servers, each client
displaces tests in time by a random amount of seconds. Tests
results are reported to a central server, unless the client finds
that the user has consumed too much network resources during
the test. The central server analyzes the results, producing
daily and monthly, global and per-city charts.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented the Neubot architecture for
distributed network neutrality measurements. With respect to
the other known approaches, the value of Neubot lies in its
ability to permanently monitor the end-user Internet connec-
tion instead of performing isolated probes. Such results, made
publicly available, will allow a systematic analysis of Internet
services together with a deeper understanding of network
neutrality based on real, per-host, network measurements. In
addition, the ability to perform distributed test will give birth,
to the extent of our knowledge, to the first P2P overlay for
active network measurements.

In this early stage of Neubot we implemented a broadband
speed test and we collected a total of 448317 tests from 1115
unique agents in the first three months since the first public
release. The purpose of this initial phase was to validate the ar-
chitecture robustness and the effectiveness of the transmission
test, using a “testbed” transmission protocol like HTTP. So, we
compared the results with other, well known, online sources,
such as Speedtest.net [6], and YouTube Video Download
History [19]. The preliminary analysis of the collected data
set shows that the average download speed is comparable with
the one reported by such services, provided that we make
reasonable assumptions to single out tests performed by ADSL
connections that were not too far away from Neubot test server.

We have also described the ongoing work to enhance the
implementation, in order to ease the integration of diverse
transmission tests, that target other protocols, in order to start
to estimate differential treatment. The enhancements include
a stricter protocol model, support for marshaling and un-
marshaling test results, using both JSON/XML and SQL, and
helpers for the web user interface.

Current implementation of Neubot will be extended for dis-
tributed measurements with the inclusion of a client-server test
to detect BitTorrent discrimination. Then we plan to focus our
research on the analysis of the collected data with particular
attention on the relation of the measurements to the Internet
Service Provider and geographic location corresponding to the
Neubot agent that performed the tests.

REFERENCES

[1] J. Crowcroft, “Net neutrality: the technical side of the debate: a white
paper,” ACM SIGCOMM Computer Communication Review, vol. 37,
no. 1, pp. 49–56, 2007.

[2] S. Jordan, “Some traffic management practices are unreasonable,” in
Computer Communications and Networks, 2009. ICCCN 2009. Proceed-
ings of 18th Internatonal Conference on. IEEE, 2009, pp. 1–6.

[3] R. Ma, D. Chiu, J. Lui, V. Misra, and D. Rubenstein, “On cooper-
ative settlement between content, transit and eyeball internet service
providers,” in Proceedings of the 2008 ACM CoNEXT Conference.
ACM, 2008, pp. 1–12.

[4] J. De Martin and A. Glorioso, “The Neubot project: A collaborative
approach to measuring internet neutrality,” in Technology and Society,
2008. ISTAS 2008. IEEE International Symposium on. IEEE, 2008, pp.
1–4.

[5] Neubot, the network neutrality bot. [Online]. Available:
http://www.neubot.org/

[6] Speedtest.net - The Global Broadband Speed Test. [Online]. Available:
http://speedtest.net/

[7] M. Dischinger, A. Mislove, A. Haeberlen, and K. Gummadi, “Detecting
bittorrent blocking,” in Proceedings of the 8th ACM SIGCOMM confer-
ence on Internet measurement. ACM, 2008, pp. 3–8.

[8] S. Basso, A. Servetti, and J. De Martin, “Rationale, Design, and
Implementation of the Network Neutrality Bot.” [Online]. Available:
http://www.neubot.org/neubotfiles/aica2010-neubot-paper.pdf

[9] FrontPage - py2exe.org. [Online]. Available: http://www.py2exe.org/
[10] jQuery: The Write Less, Do More, JavaScript Library. [Online].

Available: http://jquery.com/
[11] PyGtk: GTK+ for Python. [Online]. Available: http://www.pygtk.org/
[12] PyCrypto – The Python Cryptography Toolkit. [Online]. Available:

http://www.dlitz.net/software/pycrypto/
[13] 17.3. ssl – SSL wrapper for socket objects. [Online]. Available:

http://docs.python.org/release/2.6.6/library/ssl.html
[14] Twisted Matrix Labs – Building the engine of your internet. [Online].

Available: http://twistedmatrix.com/trac/
[15] BitTorrent / open source. [Online]. Available:

http://www.bittorrent.com/opensource
[16] Simple, fast, extensible JSON encoder/decoder for Python. [Online].

Available: http://pypi.python.org/pypi/simplejson/
[17] B. Tierney, “TCP tuning guide for distributed application on wide area

networks,” USENIX & SAGE Login, vol. 26, no. 1, pp. 33–39, 2001.
[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “RFC2616: Hypertext Transfer Protocol–HTTP/1.1,”
RFC Editor United States, 1999.

[19] Youtube Video Speed History. [Online]. Available:
http://www.youtube.com/my speed

[20] P. Kanuparthy and C. Dovrolis, “Diffprobe: detecting ISP service
discrimination,” in INFOCOM, 2010 Proceedings IEEE. IEEE, 2010,
pp. 1–9.

[21] N. Weaver, R. Sommer, and V. Paxson, “Detecting forged TCP reset
packets,” in In Proc. of NDSS. Citeseer, 2009.

[22] Y. Zhang, Z. Mao, and M. Zhang, “Detecting traffic differentiation
in backbone ISPs with NetPolice,” in Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference. ACM,
2009, pp. 103–115.

[23] M. Tariq, M. Motiwala, N. Feamster, and M. Ammar, “Detecting
network neutrality violations with causal inference,” in Proceedings of
the 5th international conference on Emerging networking experiments
and technologies. ACM, 2009, pp. 289–300.

[24] Grenouille.com - la météo du net depuis 2000. [Online]. Available:
http://www.grenouille.com/

