
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

DoMAIns: Domain-based Modeling for Ambient Intelligence / BONINO D.; CORNO F.. - In: PERVASIVE AND MOBILE
COMPUTING. - ISSN 1574-1192. - STAMPA. - 8:4(2012), pp. 614-628.

Original

DoMAIns: Domain-based Modeling for Ambient Intelligence

Publisher:

Published
DOI:10.1016/j.pmcj.2011.10.009

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2458589 since:

Elsevier

DoMAIns: Domain-based Modeling for Ambient Intelligence

Dario Bonino∗,a, Fulvio Cornoa

aPolitecnico di Torino, Dipartimento di Automatica ed Informatica, Corso Duca degli Abruzzi 24, 10129 - Torino, Italy

Abstract

Ambient Intelligence and Smart Home Automation systems are currently emerging as feasible and ready to exploit
solutions to support more intelligent features inside future and current homes. Thanks to increased availability of
off-the-shelf components and to relatively easy to implement solutions we are experiencing a steady evolution of
households, causing an ever-increasing users’ awareness of the capabilities of such innovative environments. To
foster effective adoption of Smart Home Automation technologies in our home environments, traditional architectural
and plant design must be complemented by sound design methodologies and tools, supporting the whole environment
design cycle, including for example modeling, simulation and emulation, as well as, when feasible, formal model-
checking and verification. Several research efforts have already addressed the design of expressive modeling tools,
mostly based on Semantic Web technologies, as well as of suitable platforms for adding interoperation and rule-
based intelligence to home environments. This paper proposes a new modeling methodology designed to fit the
different phases of Intelligent Environments design, with a particular focus on validation and verification of the whole
system. Carefully designed separation of modeled entities permits to exploit the DoMAIns framework during all
phases of the environment design, from early abstract conception to the final in-field deployment. The DoMAIns
design methodology is applied to a sample use case that involves comprehensive modeling and simulation of a Bank
Security Booth, including the environment, the control algorithms, the automation devices and the user. Results
show that the approach is feasible and that can easily handle different types of environment modeling, required in the
different design phases, and for each of them it may support simulation, emulation, or other verification techniques.

Key words: Home automation, Intelligent Domotic Environment, Ambient Intelligence, State Diagrams, Domotic
Plant, Modeling

1. Introduction

Ambient Intelligence (AmI) and Smart Home Au-
tomation (SHA) systems are currently gaining momen-
tum by being recognized as affordable and easy to ex-
tend solutions for bringing intelligence to new and exist-
ing households. Although there exists a clear evidence
of incompatibilities between domotic systems available
on the market, researchers are converging on a com-
mon vision of SHA where traditional Home Automation
(HA) plants built with off-the-shelf components are in-
tegrated by a single “computationally strong” element
(device) supporting inter-plant interaction and bringing
intelligence to the home [1]. Initial efforts [2, 3, 4, 5]
involving these new Intelligent Domotic Environments

∗Corresponding author
Email addresses: dario.bonino@polito.it (Dario

Bonino), fulvio.corno@polito.it (Fulvio Corno)

(IDE) are nowadays maturing in a more structured re-
search field including contributions from Ambient In-
telligence [6], Pervasive Computing [7, 8] and Smart
Environments [9, 10, 11]. Moving from first, sparse ap-
proaches, the research community is now tackling the
design of next generation buildings and homes by ap-
plying well known, sound methodologies developed in
the context of Software Engineering [12, 13, 14]. At
the basis of this new wave of research lies the need to
organically design models for complex Intelligent Envi-
ronments [15, 16] and for the associated Context infor-
mation [17, 18]. These models must permit, on one side,
to address interoperability issues by exploiting a shared
environment abstraction that enables the development
of technology-independent home intelligence. On the
other hand, thanks to formal representation of environ-
ments, devices, and behaviors, design models can be
validated, verified and simulated prior to deployment,
checking the compliance of envisioned solutions to se-

Preprint submitted to Pervasive and Mobile Computing August 29, 2011

curity, functionality, reliability and other requirements
typical of such complex systems.

While context modeling originally attracted more at-
tention, nowadays increased focus on home and device
modeling has lead to several interesting approaches,
mainly based on ontologies [19, 15] and web services.
Only in the last years, modeling efforts started to focus
on formal and dynamic models with the goal of support-
ing simulation and formal verification [20, 21, 22, 23].
However, additional contributions are still needed since
most of available approaches limit the application of
modeling and validation techniques to the early de-
sign stages and/or to specific, homogeneous subsys-
tems. Conversely, the possibility of applying these tools
throughout the entire design and development chain
is seldom addressed, preventing the evolution of more
comprehensive and integrated solutions, that could ben-
efit form early verification as well as from development-
time emulation, with some simulated devices and some
real devices.

To overcome this issue and to support a more inte-
grated and engineered design of Intelligent Domotic En-
vironments, we propose a general and modular mod-
eling approach that seamlessly supports different de-
sign phases and their corresponding configurations,
by adopting modeling techniques that enable valida-
tion and verification at different stages. This design
framework, called DoMAIns (recursive acronym for
“Domain-based Modeling for Ambient Intelligence”),
supports the whole IDE design chain, from early spec-
ifications to final on-the-field deployment. To support
this ambitious goal, we strictly apply well known par-
titioning and modularity principles, striving to achieve
a clear separation between different modeling aspects
and concerns. Such a differentiation is crucial to sup-
port verification, simulation and emulation in the same
model. By keeping modeling concerns (i.e., repre-
sentation domains) separated, we expect the DoMAIns
framework to successfully tackle complex, intelligent
environments, supporting, in each case, clear identifi-
cation of solutions under test and concurrent design and
development of multiple, alternative ideas.

This paper contributes a first high-level view over Do-
MAIns modeling, basing on 5 pre-defined, yet extend-
able, Representation Domains and shows a concrete ap-
plication example with the aim of offering a better un-
derstanding of the proposed methodology as well as to
foster further investigations. Representation Domains
are different, and possibly overlapping, sub-models of
an Intelligent Domotic Environment connected through
explicit “boundary” definitions or interfaces. Within
each Domain, a given model is easily replaceable by

alternative ones (based on the same or on different for-
malisms, e.g. a statechart model can be replaced by a
finite elements model, etc.), or by its “real” counterpart,
i.e., by actual software modules, hardware devices or
users.

Whenever real and simulated items co-exist in the
same DoMAIns model, we refer to it as to an Emulation
Model, i.e., a model in which elements under test (ver-
ification / validation) are connected to real items in an
hardware-in-the-loop chain. Emulation models clearly
require suitable adapters to convert information across
the “virtual” and “real” domain elements.

Separating dynamic IDE models into Domains brings
several advantages:

1. It permits to detail domain models with differ-
ent granularities, depending on the representation
goals, e.g., pure simulation, preliminary design
verification, fine-tuning of control algorithms, etc.

2. It supports different representation techniques, en-
abling designers to tackle every domain with the
most suited solutions, e.g., finite elements simula-
tions for heat transfer, state machines for heating
actuators, robust control theory for fine tempera-
ture regulation.

3. It provides clean interface points for cutting “vir-
tual” IDE representations and for integrating real
devices in the end-to-end simulation chain (emula-
tion).

Clearly, many efforts are still needed to fully realize the
vision underlying the DoMAIns approach, however this
paper tries to lay down the general structure of Repre-
sentation Domains on top of which more effective and
comprehensive IDE modeling can be devised.

The remainder of the paper is organized as follows:
Section 2 reports an overview of relevant related and
complementary works. Section 3 introduces the rep-
resentation domains defined in DoMAIns, describing
their peculiar features and the interfaces between them.
Section 4 shows use cases and applications in which
DoMAIns can be successfully exploited, highlighting
the flexibility of the proposed modeling methodology.
Section 5 provides a modeling example where the Do-
MAIns framework is applied to the representation and
simulation of a Bank Security Booth control, whereas
Section 6 provides the relative implementation details.
Finally Section 7 concludes the paper and proposes fu-
ture works.

Figure 1: The Building Ecosystem in terms of representation domains.

2. Related Work

Research in modeling, simulation and verification of
Intelligent Environments is rather new and still consists
of sparse and mainly un-coordinated efforts. Currently,
few works try to tackle the whole IDE design life cycle,
from early design stages to final in-field deployment.
On the converse, several interesting approaches can be
found dealing with specific issues relevant to single de-
sign/development stages.

Habitation [14] is currently, to our knowledge, the
most relevant modeling effort tackling the whole IDE
design process. It is a Domain Specific Language (DSL)
explicitly designed for Home Automation and one of
the earliest attempts to apply Model Driven Engineer-
ing to the Home Automation domain. It combines a
model driven approach with DSLs to support the de-
sign of home automation systems, from high level,
technology independent graphical design to technology-
specific automatic code generation. The Habitation
language is based on a three-layered approach includ-
ing: (a) a computation-independent model, which rep-
resents the syntax and part of the semantics of the de-
fined DSL, (b) a platform-independent model, which
is a simplification of the UML meta-model for reactive
systems, and considers components, activities and state
diagrams, and (c) a platform-specific model in which a
meta-model for KNX/EIB home automation technology
is defined, exploiting the domain object model used by

the ETS1 tool. DoMAIns differs from Habitation in both
philosophy and technical details. On the philosophi-
cal point of view, while Habitation takes a clear verti-
cal modeling approach, whose main modeling choices
(and primitives) tend explicitly to semi-automatic code
generation, DoMAIns adopts an horizontal framework
approach aiming at defining easy separable domains
involved in IDE design, leaving technological details
to specific “instantiations” of the framework, depend-
ing on the specific definition of domain contents. On
the technical side, Habitation does not cover issues re-
lated to validation, verification and emulation, by be-
ing strongly biased towards generating home automa-
tion systems. DoMAIns, on the converse, defines a clear
set of representation domains that natively support de-
sign modularity and emulation scenarios. In addition it
is purposely designed for supporting formal verification
whenever all the domains required in a given modeling
task are represented by compatible formal models, e.g.,
state charts. Finally, while Habitation is mainly targeted
at programmable home automation systems, DoMAIns
strives to be agnostic on the kind of “smart environ-
ment” thus being more flexible and supporting smart
domotic systems made by not-programmable devices
whose predefined behaviors have to be combined in new
ways, or enhanced by an intelligent gateway controlling

1http://www.knx.org/knx-tools/ets/
description/

them, for achieving more intelligent functionalities.
The V-PlaceSims [24] approach is another relevant

example of “end-to-end” modeling approach for smart
environments, specifically targeted to simulation. In V-
PlaceSims, smart environments are modeled and sim-
ulated through Virtual Reality giving the users the op-
portunity to “directly experience” designed policies and
smart automation solutions. By means of context-aware
building data models, human-space interaction, which is
vital for simulating smart home functions and services,
is realized in a virtual environment. In addition, V-
PlaceSims allows to materialize invisible services, per-
forming real-time interactions with the home and mak-
ing users aware of configuration possibilities, with re-
spect to their real needs. Similarly to the Habitation
case, DoMAIns adopts a clearly different approach to
smart environment modeling: while V-PlaceSims tack-
les the whole design process through the lenses of user-
home interaction, DoMAIns aims at supporting many
different representation needs, also including user is-
sues. However, rather than being in contrast with the lat-
ter, DoMAIns can be exploited to rationalize and made
explicit the assumptions and needs lying at the basis
on the V-PlaceSims approach, thus contributing to a
cleaner and more integrated approach to smart home au-
tomation design.

DoMAIns applies to IDE design a modeling concern
separation which is quite similar to Aspect Oriented
modeling2 [25, 26], in particular it can be considered as
a specialized kind of symmetric AO3 modeling for the
smart home automation domain. Differently from As-
pect Oriented Software Development, concerns are not
relative to functionalities or software artifacts, but deal
with real and desired behaviors and configurations of
tangible environments. As a consequence, model weav-
ing cannot be carried in a completely automated way
and the contribution of a human modeler is required to
tailor the framework to specific representation issues.

Several modeling techniques can be integrated in the
DoMAIns framework, each related to specific model-
ing aspects and or design phases. Among the most
relevant efforts, we can distinguish approaches related
to context modeling (Environment and User domains)
[17, 18], to user behavior learning and profiling (User
domain), to usability evaluation [27], to the generation
of “task-supportive” environments [28], etc. (see [6] for
a quite complete review). Rather than being in con-
trast with DoMAIns, they are clearly complementary,

2AOSDwebsite,http://www.aosd.net
3similar to approaches in CaesarJ (http://www.caesarj.

org), and in CME (http://www.research.ibm.com/cme)

contributing to provide best suited modeling primitives
within each domain defined in DoMAIns, depending on
the target application and deployment.

3. Representation Domains

The domain-based modeling approach is quite gen-
eral and may be extended and customized to different
application requirements. In this paper we aim at show-
ing one particular set of domains, suitable for the Intel-
ligent Domotic Environments described in the introduc-
tion, where commercial off-the-shelf components are
used to build an home automation system, which is en-
riched by intelligent computational elements.

In the IDE context, DoMAIns predefines 5 different
representation domains (see Figure 1): User, Environ-
ment, Actionable, Controllable and AmI (i.e., Ambi-
ent Intelligence), typically sufficient to represent Smart
Home Automation environments. These 5 domains
emerge from the author’s extensive experience on IDE
design and from typical home configurations found in
the literature.

Domains are neither exhaustive nor complete and
they can be easily integrated by additional domains
and/or refinements depending on the modeling tasks
they are applied to. Nevertheless they achieve a de-
gree of modularization sufficient to support most design
tasks for Intelligent Environments as detailed in Sec-
tion 4.

Representation domains play different roles in the in-
telligent building ecosystem by supporting a kind of
closed loop interaction between users and intelligent en-
vironments (see Figure 1).

Domain definitions, given in the following sub-
sections, identify the sufficient conditions for which
a given environment entity belongs to one domain.
We explicitly refer to sufficient conditions as different
design needs might lead to different domain bound-
aries, while the proposed high-level subdivision is still
valid. In each domain, either pre-defined or specifically
designed, different representation techniques and for-
malisms are possible. To help the reader in understand-
ing the abstract definitions of the Domains, in Table 1
we provide some examples of modeling techniques that
are usually adopted in each of the 5 proposed domains.
In every domain, the table groups some possible models
according to their nature: real, ontology-based, simulat-
able, or formally tractable.

3.1. User
The user domain encompasses human inhabitants and

their interactions with surrounding environment enti-

Figure 2: The 5 pre-defined domains and their relations.

ties, i.e., it refers to user behavior representation. User
domain boundaries are defined by tangible interfaces
between humans and the surrounding building environ-
ment (see Figure 2), be they:

• physical objects, e.g., doors, handles, buttons
(Controllable/Actionable);

• physical quantities, e.g., heat transfer, acoustic or
gas emissions (Environment);

• software artifacts, e.g., graphical user interfaces,
mobile devices, pervasive and disappearing com-
puters (Controllable).

Users can either be real or they can be described in
terms of expected behaviors, by modeling typical inter-
action patterns involving the home environment. For
example a suitable user representation may model the
sequence of door openings and device activations that
takes place when someone in the house is accomplish-
ing a given task, e.g., cooking dinner. Users are central
players of the intelligent buildings eco-system, acting
both as source of requirements and as final consumers of
local AmI policies. This two-folded nature is reflected
by their role in the domain-based modeling approach
we propose. In particular, the User Domain explicitly
represents users as living in the modeled environment
and acting on the environment entities (with their ob-
servable behaviors) to accomplish their goals, and this
is clearly reflected by the user domain boundaries. We
also remark that users are the ultimate targets of intel-
ligent policies being designed, however this aspect is

not explicitly modeled in the User Domain, but it rather
drives the design process of AmI solutions.

3.2. Environment

The Environment domain includes all the building el-
ements that have a passive or background role in the
user-home interaction. The term “passive role” is re-
ferred to objects that are not directly actionable by elec-
trical devices but whose properties can be changed or
influenced by means of electrically controlled devices,
in an indirect relation. For example, a room belongs to
the environment domain since it is not directly action-
able by some electrical devices, however its properties
might be indirectly influenced by a home automation
system, e.g., through a heater that may cause changes to
the room temperature.

The Environment Domain encompasses two main ob-
ject categories: fixed architectural elements such as
rooms, walls, ceilings and floors and furniture like ta-
bles, chairs, and closets. The former domain subset acts
as a “container” for the latter as well as for other, dis-
tinct, representation domains including User, Action-
able and Controllable. While many fixed architectural
elements assume a background role in user-home inter-
actions, furniture is typically passive, unless enriched by
“pervasive” interface elements (but in this case it would
be considered as belonging to the Actionable domain).
The Environment domain, depending on different repre-
sentation needs, can be declaratively represented, fully
simulated, real, or emulated. Figure 2 clarifies the inter-
face and containment relations occurring between the

Table 1: Examples of representation techniques applicable in DoMAIns.

Domain Real Ontology Simulatable Formally Verifiable . . .

User foaf
Statecharts, Stocharts,
HMM, Decision trees,
. . .

Statecharts, Ontology,
.

Environment DogOnt, DomoML,
Soupa

Statecharts, Finite Ele-
ments, Simulink,. . . Statecharts,

Actionable DogOnt, DomoML Statecharts, Software
Simulators, . . . Statecharts,

Controllable DogOnt, DomoML Statecharts, Software
Simulators, . . . Statecharts,

AmI Software
DogOnt, Rules
(SWRL, Jena), In-
ference

Rules(Drools), Matlab,
Agents, Statecharts, . . . Statecharts,

Environment, the Actionable and the Controllable do-
main, highlighting (see smaller text on the diagram) that
the last 2 can be seen, at an higher abstraction level, as
belonging to a more general domain called Home Au-
tomation.

3.3. Actionable
The Actionable Domain includes environment ob-

jects that are (or that can potentially be) actioned by
means of one or more electrically controlled actuators,
e.g., doors, windows and gates. The main difference
between Actionable objects and other Environment en-
tities can be identified in the role that such elements
assume in user-home interactions and in the way these
elements are interfaced with the Controllable domain.
First, Actionable objects are directly involved in user-
home interactions, i.e., the user directly acts on these
objects, e.g., opens a door or moves up a shutter. Sec-
ondly, the interface between objects belonging to this
domain and the devices being part of the Controllable
domain is typically composed of mechanical bindings,
e.g., screws or rigid joints.

3.4. Controllable
The Controllable domain groups all the electrical de-

vices that are either part of the home automation/in-

telligence hardware (e.g., domotic plants) or that are
integrated through a myriad of protocols and commu-
nication means. The distinguishing feature of a con-
trollable device is its ability (either native or externally
added, e.g., by suitable interfacing modules) to inter-
face (or to be interfaced by) the main home automation
and intelligence plant, i.e., the home gateway. Control-
lable devices share the common characteristics of be-
ing electrical, of having some kind of communication
capability and of being able to “operate” on the envi-
ronment for performing actions (actuators), measuring
physical quantities (sensors), or to support user-home
interaction; we refer to this last class of devices as to
Human Home Interfaces (HHI) (see Figure 2). The do-
main boundaries are rather clear: on the Environment
side they include physical bindings such as direct me-
chanical connections (e.g., screws attaching actuators
to doors) or physical interactions (e.g. metal/air ther-
mal exchange between a heater and the air contained in
a room). On the AmI side, the domain boundaries are
implemented by the Home Gateway, which interfaces
and abstracts all the subsystems involved in a smart en-
vironment, offering a uniform access layer exploited by
technology independent intelligence policies and algo-
rithms.

3.5. AmI

The Ambient Intelligence (AmI) domain groups all
the software solutions, i.e., algorithms, models, inter-
faces, that enable a given automated environment to be-
come sensitive, adaptive and responsive to people ac-
tivities and to events occurring in the home environ-
ment. The domain extension is almost indefinite, but the
boundaries are well defined and correspond to the home
gateway on one side and to users on the other. Building
on top of the Controllable domain abstraction provided
by the gateway, the AmI domain population is com-
posed of modules, representation techniques, reasoning
systems sharing the common goal of making the build-
ing environment able to proactively, but sensibly, sup-
port people in their daily lives [6]. We do not define spe-
cific approaches belonging to this domain, instead sev-
eral contributions can be cited coming from many com-
plimentary research fields involving sensing technolo-
gies, reasoning on environment models and/or actions,
autonomous decision planning, spatial and temporal in-
ference, human computer interaction and context aware-
ness, security and privacy (see [6] for an overview of
recent research efforts).

4. Domains in Action

Dividing the intelligent building ecosystem into dif-
ferent domains permits to effectively tackle different de-
sign activities, and associated issues, starting from ini-
tial, abstract design (fully simulated, for example) and
reaching final deployment in the real world. By combin-
ing different modeling methodologies and detail levels
in each of the various Domains, several activities in the
design flow can be supported. Some, not exhaustive,
examples are reported in Table 2, where we list possible
use cases of DoMAIns models, by showing which Do-
mains are involved, and what kind of model is required
in each Domain. For many use cases, we also give ref-
erences to published results.

Among the cited applications, some use cases have
already been tackled by the authors in their previous
works. For example, in [29] structural verification of
IDE properties is addressed by exploiting the DogOnt
ontology model for describing entities belonging to the
Environment, Actionable and Controllable representa-
tion domains. On the other hand, the DogSim [23] sim-
ulator exploits the DogOnt ontology and a library of
state-machine templates to offer IDE simulation capa-
bilities, with a particular focus on design of automation
plants. Finally, the EmuDog [32] framework extends

DogSim to support mixed interaction of real and sim-
ulated entities, i.e., it supports the emulation use case
reported in Table 2.

Many combinations of simulated, real and formally
represented domain entities are allowed. Whenever a
given application scenario only involves ontology-based
representations and/or other formal models carrying a
well defined and verifiable semantics, simulation-based
validation and formal verification can be performed
[31, 32]. For example, state diagrams can be exploited
to describe formally verifiable end-to-end automation
scenarios, from user models to AmI. However, formal
verification of a whole system is not guaranteed even
in this case, due to model complexity that may grow
beyond the checkers capabilities. In these cases, the
availability of different models with different granular-
ity, and the natural partitioning of the model in domains,
may help taming the complexity.

The following section describes a sample model
based on the DoMAIns framework that exploits state
diagrams to provide an easy to simulate and verify rep-
resentation of a bank security booth. While a complete
evaluation of the approach would require modeling and
implementing a much larger system, our case study is
small and simple enough to be reported in the paper
with high level of detail. The goal of the case study
is to show how the methodology may be used, the types
of involved models, and the kinds of design steps that
are enabled by DoMAIns modeling.

5. The Bank Security Booth Example

We consider a very simple case study, namely a bank
security booth automation to show how a real world
system can be represented and simulated by applying
the proposed representation framework. Thanks to Do-
MAIns, several control algorithms, sensors and actua-
tors can be modeled and checked, in different config-
urations, supporting a complete design process which
allows to have guarantees on the final result, deployed
in the real world. For the sake of simplicity our sample
model, while realistic, concentrates on the main func-
tion of the device and neglects some ancillary aspects
such as accessibility, user flow rates, etc.

Bank security booths must respect a well defined set
of requirements concerning protection from harm, ac-
cess for people with disabilities, reasonable in / out flow
rate and direct entrance / exit prevention (to prevent
robbery). In the sample, we only concentrate on the
last issue, i.e., on the control algorithms that must pre-
vent users to be able to directly access or exit the bank

Table 2: Examples of domain-based modeling applications.

User Environment Actionable Controllable AmI Use Case

- - - S R Development of Automation Scenarios

- S S S R Development of Control Algorithms [23]

S S S S - (Automation) Plant Design

R S S S - User testing (no AmI)

R S S S R Human Home Interaction testing

- OF OF OF - Structural Property Check [29]

- R+S OF OF - Smoke/Fire propagation estimation

- - - (O+S)F - Simulation Library Verification [30]

SF SF SF SF SF End-to-end AmI verification [31]

R+S R+S R+S R+S - Emulation [32]

.

Legend: S = simulatable, R = real, O = ontology-based, F = formally verifiable

premises. These requirements can be synthesized as fol-
lows:

1. The bank security booth is composed of two doors
with an “isolated space” between the external the
internal entrance (Figure 3);

2. The 2 doors must never be opened at the same time
(no direct access);

3. Doors must be “controllable” from inside the “iso-
lated space,” allowing users to decide to either en-
ter or exit, and to prevent users from getting stuck
in-between the 2 doors.

4. Time for entering / exiting the bank must be finite
and higher than a minimum safety threshold.

A suitable bank security booth control algorithm
must respect the above requirements, independently
from user or door behaviors. Clearly we cannot rely
solely on field testing since failing algorithms may ei-
ther allow users to bypass security measures or they may
cause harm to users, for example by locking them in the
isolated space. Therefore, validation of such algorithms
must be first performed in a fully simulated environ-
ment. If the environment is based on models carrying
a well defined semantics, formal verification could also
be applied by transforming some of the above require-
ments in specific constraints to be checked, e.g., as tem-
poral logic assertions [31].

We provide here a state-diagram model that applies
the DoMAIns framework to cover end-to-end the Bank
Security Booth simulation: from User to AmI. State di-
agrams are chosen since they support both simulation
and model checking [33], thus enabling designers to en-
force and validate well-defined, strict requirements on
the bank security booth control system. We suppose
that the doors of the bank security booth are completely
automated and do not allow direct operation, e.g., open-
ing by turning an handle. Instead, they are attached to
suitable actuators, managed by the Bank Security Booth
control, which in turns interacts with the user by ex-
ploiting touch sensors (T1 . . . T4) installed on the door
frames.

5.1. User
In the Bank Security Booth scenario, a user can per-

form a variable set of actions. For example, upon enter-
ing she can:

a) decide to enter through the bank security booth or
not;

b) if the door does not open in a reasonable time, she
might decide to give-up;

c) once inside the isolated space, she can either decide
to enter the bank interior or to exit.

A symmetrical set of actions can happen when exiting
from the bank.

Figure 3: A typical Bank Security Booth layout.

To model this complex behavior through state dia-
grams, the plain UML2.0 specification is not sufficient
and non-deterministic transitions must be addressed
through a more expressive state diagram formalism
called P-State Charts [34]. P-State Charts extend state
diagrams by adding probabilistic elements: a transition
is allowed to lead to one of several states depending on
a probability distribution. The P-State Charts semantics
is formally defined as a mapping on (strictly) alternating
probabilistic transition systems [35], a subset of Markov
decision processes (MDP) [36]. To allow verification of
probabilistic temporal properties over probabilistic state
diagrams, properties may be expressed in the probabilis-
tic branching-time temporal logic PCTL [37], the prime
logic for property specification and verification of mod-
els that exhibit both probabilities and nondeterminism.

Modeling the previously cited user behaviors by
means of P-State Charts leads to the sample model re-
ported in Figure 4. We adopt it as User domain model
for the Bank Security Booth example.

As can easily be noticed, the user behavior is not
deterministic due to the many p nodes in the diagram,
where transitions to be executed are probabilistically
chosen between two or more alternatives, with a distri-
bution reported on the outgoing edges. The user model
is characterized by a set of 4 outgoing events:

1. entryRequest, representing the user touching the
external door handle or opening button (T1 in Fig-
ure 3);

2. entryRequest2, representing the user touching the
internal door handle or opening button, on the iso-
lated space side (T3);

3. exitRequest that models the user touching the in-
ternal door handle or opening button, on the bank
interior side (T4);

Figure 4: The P-State Chart User Domain model.

4. exitRequest2, which represents the user touching
the external door handle or opening button, on the
isolated space side (T2).

These events are exploited in the domain interface to
connect the user model with models belonging to adja-
cent domains, e.g., the Actionable and the Controllable
domains.

5.2. Environment

The environment domain exploits the DogOnt [38]
structural part (dogont:BuildingEnvironment)
to formally describe the booth architectural elements,
i.e., the walls, the floor and the ceiling, the inner and
outer spaces. Environment modeling through DogOnt
allows performing static structural checks on the bank
security booth design. For example, it allows to check
whether the booth doors have all required touch sensors
or not (see [29] for insights). In the Bank Security Booth
use case, models belonging to the Environment domain
do not take part in dynamic simulations shown in this
paper. However, they play a relevant role in design val-
idation allowing to verify constraints on the booth “ar-
chitectural” configuration, in addition to the functional
constraints defined for the booth control algorithm.

5.3. Actionable

Only two actionable objects are involved in the Bank
Security Booth example, i.e., the exterior and interior
doors. Their behavior can be easily modeled with two
identical deterministic state charts. Figure 5 reports
the corresponding diagram, where the three incoming
events dOpen, dClose and stop represent the access
point for the domain, i.e., the domain interface. Timed
transitions between the ‘moving’ state and the ‘rest’
state simulate the time needed for a door to become
completely open or closed.

Figure 5: Sample state diagram of a door.

This simple model can easily be extended, for exam-
ple by exploiting stochastic transitions, to represent pos-
sible door failures.

5.4. Controllable
In the Bank Security Booth example, we decided to

show two different models for the Controllable domain.
The two models presented here involve:

1. the first one, fully simulated entities (simulation);

2. the second one, partial integration of real devices
(emulation) together with some simulated ones.

Involved objects include touch sensors, door actuators,
and door sensors. The former two categories are both
simulated (simulation) and real (emulation), whereas
the latter is simulated in both variants.

Touch sensors are applied to each side of the booth
doors and on the door handles (see Figure 3) and they
support the control algorithm in detecting the user pres-
ence and desired actions, e.g., to open a door. They are
extremely simple to model as their only “output” is a
“touch” event used as a trigger by the door control al-
gorithm. In the fully simulated variant touch sensors
can therefore be easily represented by means of single-
state machines, with only one self-transition (Figure 6).
Instead, in the “emulation” variant, they are just sub-
stituted by domotic components behaving as normally-
open contacts.

Figure 6: A touch sensor model (Controllable domain) in the Bank
Security Booth scenario.

Door actuators are more complex, and their actual
behavior depends on the implementation provided by
each door actuator manufacturer. In this specific ex-
ample we decided to model a prototype door actuator
logic that derives from the actual door actuators com-
mercialized by BTicino,4 a leading Italian electric man-

4http://www.myhome-bticino.it

ufacturer. The resulting state diagram is reported in Fig-
ure 7. In the emulation variant, the actuator state chart
is replaced by the real BTicino door actuator, installed
in a demo case hosted in our Lab (Figure 13).

Figure 7: A door actuator model (Controllables domain).

5.5. Interfaces

To successfully accomplish end to end modeling in
the DoMAIns framework, glue-layers between differ-
ent domains shall be defined allowing to replace every
single domain (or sub-domain) with its real counterpart
(emulation support) or with alternative modeling tech-
niques. In the DoMAIns terminology these layers are
called interfaces; they can be automatically generated
given a formal representation of involved domains (e.g.,
an ontology-based description) [23] or they can be man-
ually defined for non-formal representations.

Since the Bank Security Booth scenario is completely
modeled by means of a formally verifiable represen-
tation, interfaces between different domains are auto-
matically generated and they are implemented as sim-
ple event-translation machines. Event-translation ma-
chines, or connectors, are single-state machines that
map an incoming event to an outgoing event having a
different name. Figure 8 shows the interface between
the Actionable and the Controllable domains whereas
Figure 9 depicts the glue layer between Controllable and
AmI.

5.6. AmI

The bank security booth control algorithm is imple-
mented as a state-chart controller, coherently with the
modeling choices taken for the other representation do-
mains. This design choice allows on one hand to get a
fully abstract and easy to simulate model. On the other
hand, state diagram modeling supports defining security
constraints on the control algorithm in terms of temporal
logic axioms that can subsequently be verified through
formal model checking techniques, e.g., by exploiting

Figure 8: Interfaces between the Actionable and Controllable do-
mains.

Figure 9: Interfaces between the Controllable and the AmI domains.

the UMC model checker [33]. Another advantage of
state charts, when used as a model for the AmI Domain,
is that the Home Gateway may interpret them directly:
in this case the simulation of the AmI Domain becomes
the real implementation of AmI functionalities, avoid-
ing the step of coding its behavior and the otherwise-
necessary correctness verification.

Figure 10: A sample Bank Security Booth control.

6. Bank Security Booth Verification

The Bank Security Booth use case described in the
previous section has been implemented both as a fully
simulated model (row 2 in Table 2, Section 4) by ex-
ploiting the DogSim framework [23] and as a partially
emulated model with real touch sensors and door actu-
ators (10th row of Table 2), by exploiting the EmuDog
libraries [32].

Simulation experiment. State diagrams referred to ev-
ery single domain components have been encoded in
SCXML [39] and probabilistic transitions have been
obtained by exploiting SCXML-Java integration pro-
vided by the Apache Commons SCXML engine5, which
is part of the DogSim simulation engine. In particu-
lar, probabilistic transitions have been implemented as
event triggers exploiting an external Java function able
to generate random numbers between 0.0 and 1.0, with
a uniform distribution (Figure 11 shows an excerpt of
the User domain state machine).

All domain models have been implemented in sep-
arated SCXML state machines and domain interfaces

5http://commons.apache.org/scxml/

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE scxml SYSTEM "template.dtd">
<!-- @device=bankUser -->
<scxml xmlns="http://www.w3.org/2005/07/scxml"

version="1.0">
<state id="&id;BankUserModel">

<datamodel>
<data name="&id;decisionProbability"/>

</datamodel>
<initial>

<transition target="&id;UserOut"/>
</initial>
<state id="&id;UserOut">

<onentry>
<send sendid="&id;decideToEnter"

targettype="’scxml’"
event="’&id;decideToEnter’"
delay="tmGen.tDecide()"/>

<assign name="&id;decisionProbability"
expr="rndGen.random()"/>

</onentry>
<!-- probabilistic transition: 0.5

remain in the decision state and
0.5 decide to enter -->

<transition event="&id;decideToEnter"
cond="&id;decisionProbability ge 0.5"
target="&id;UserOut"/>

<transition event="&id;decideToEnter"
cond="&id;decisionProbability lt 0.5"
target="&id;WaitingToEnter">

<send targettype="’scxml’"
event="’&id;entryRequest’"/>

</transition>
<onexit>

<cancel sendid="&id;decideToEnter"/>
</onexit>

</state>
<state id="&id;WaitingToEnter">

<onentry>
<send sendid="&id;decideToLeave"

targettype="’scxml’"
event="’&id;decideToLeave’"
delay="tmGen.tDecide()"/>

<assign name="&id;decisionProbability"
expr="rndGen.random()"/>

</onentry>
<!-- probabilistic transition: 20\% of

possibilities to decide to leave and
80\% probability to wait for entering
the bank -->

<transition event="&id;decideToLeave"
cond="&id;decisionProbability ge 0.8"
target="&id;UserOut"/>

<transition event="&id;decideToLeave"
cond="&id;decisionProbability lt 0.8"
target="&id;WaitingToEnter"/>

<transition event="&id;extDoorOpen"
target="&id;InBetweenEntering">

<send targettype="’scxml’"
event="’&id;entryRequest2’"
delay="tmGen.tStep()"/>

</transition>
<onexit>

<cancel sendid="&id;decideToLeave"/>
</onexit>

</state>
....

</state>
</scxml>

Figure 11: An excerpt of the User state machine in SCXML.

are created at runtime by instantiating suitable connec-
tor machine templates. The resulting environment ma-
chine is composed of 64 concurrent states and takes a
negligible time6 to be created. In order to enable vi-
sual inspection of simulation results, and to provide a
rough, immediate overview of simulation evolution we
developed a really simple graphical interface showing
the user moving in and out of the bank security booth
(Figure 12), as dictated by the state machine run-time
evolution.

Figure 12: The Bank Security Booth simulation GUI.

Emulation experiment. In the mixed emulation envi-
ronment (10th row of Table 2) touch sensor and door
actuator models are replaced by real devices: 4 but-
tons (KNX7) and 2 door actuators (MyHome8). We
exploit the DOG [38] gateway for accessing real do-
motic devices connected to two different home automa-
tion technologies: BTicino MyHome and KNX, respec-
tively. Actions on the real buttons are converted into
suitable state machines events by exploiting the ability
of DOG to abstract and dispatch domotic events in a
common, shared format named DogMessage. DogMes-
sages are converted to DogSim events by means of the
DOG2DogSim adapter bundled with the DogSim simu-
lation framework. On the other way around, events gen-
erated by the simulated elements, e.g., by the bank se-

6less than 100 ms on an Intel P8400 (2.2GHz) processor.
7http://www.knx.org/
8http://www.myhome-bticino.it/

curity booth control, are converted back to the DogMes-
sage format and, thanks to DOG, dispatched to the real
actuators, which can then operate a real door. In our
setting, we just limited the real part to buttons and ac-
tuators installed in 2 demo cases (shown in Figure 13),
while door sensors are virtual, i.e., simulated through
state charts.

Figure 13: The demo cases used for the emulation of the Bank Secu-
rity Booth use case, and the Asus eeePC running DOG.

Formal verification experiment. The DoMAIns ap-
proach also allowed formal verification of some sys-
tem properties of the Bank Security Booth. As detailed
in [31], to which the reader is referred for further de-
tails, the Statecharts for the system description (gener-
ated by DogSim) and for the Security Booth controller
have been verified by means of the UMC model checker
[40]. More than 50 system properties have been mod-
eled in the UCTL logic [41], and they have been proven
true over the Statechart model. Properties included live-
ness (each request mush eventually be honored by the
system), security (both doors may never be open at the
same time), as well as correct internal protocol imple-
mentation (i.e., correct handshake between the system
controller and door actuators).

7. Conclusions

This paper proposed DoMAIns: a flexible and neat
modeling approach that defines an engineered method-
ology and a modeling framework to effectively design
Intelligent (Domotic) Environments and Smart Home
Automation systems.

DoMAIns exploits so-called Representation Do-
mains to achieve modular and effective IDE design.

Modeling concerns and techniques are clearly identi-
fied and well separated, seamlessly supporting different
representation solutions as well as hardware-in-the-loop
simulation (emulation). A sample use case concerning
two steps of the design of a simplified Bank Security
Booth has been illustrated, showing how to apply the
DoMAIns approach to solve real world design tasks and
confirming the overall approach feasibility.

Clearly many efforts are still needed to fully realize
the vision underlying the DoMAIns approach, however
a first founding step has been accomplished, on top of
which more effective and comprehensive IDE modeling
can be devised.

Future work will target both semi-automatic gener-
ation of DoMAIns representations starting from Do-
gOnt descriptions of IDEs, and formal model checking
for statechart-based DoMAIns models. Both efforts are
driven by the goal of closing the design loop support-
ing semi-automatic end-to-end modeling and verifica-
tion for smart environments.

References

[1] V. Miori, D. Russo, M. Aliberti, Domotic technologies incom-
patibility becomes user transparent, Commun. ACM 53 (1)
(2010) 153–157.

[2] E. Tokunaga, H. Ishikawa, M. Kurahashi, Y. Morimoto, T. Naka-
jima, A Framework for Connecting Home Computing Middle-
ware, in: International Conference on Distributed Computing
Systems Workshops (ICDCSW02), 2002, pp. 765–770.

[3] D. Zhang, T. Gu, X. Wang, Enabling Context-aware Smart
Home with Semantic Technology, International Journal of As-
sistive Robotics and Mechatronics (formerly known as Inter-
national Journal of Human-friendly Welfare Robotic Systems)
6 (4) (2005) 12–20.

[4] V. Miori, L. Tarrini, M. Manca, G. Tolomei, An Open Stan-
dard Solution for Domotic Interoperability, IEEE Transactions
on Consumer Electronics 52 (2006) 97–103.

[5] P. Pellegrino, D. Bonino, F. Corno, Domotic House Gateway, in:
Proceedings of the 2006 ACM symposium on Applied comput-
ing, 2006, pp. 1915–1920.

[6] D. J. Cook, J. C. Augusto, V. R. Jakkulaa, Ambient intelli-
gence: Technologies, applications, and opportunities, Pervasive
and Mobile Computing Volume 5, Issue 4 (2009) 277–298.

[7] M. Weiser, The computer for the twenty-first century, Scientific
American September (1991) 94–100.

[8] M. McCullough, Digital Ground, Architecture, Pervasive Com-
puting, and Environmental Knowing, MIT Press, 2004.

[9] D. J. Cook, G. M. Youngblood, E. O. H. III, K. Gopalratnam,
S. Rao, A. Litvin, F. Khawaja, MavHome: An Agent-Based
Smart Home., in: International Conference on Pervasive Com-
puting and Communications, IEEE Computer Society, 2003, pp.
521–524.

[10] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura,
E. Jansen, The Gator Tech Smart House: A Programmable Per-
vasive Space, IEEE Computer 0018-9162/05 (2005) 64–74.

[11] S. Poslad, Ubiquitous Computing: Smart Devices, Environ-
ments and Interactions, Wiley, 2009.

[12] E. Meshkova, J. Riihijarvi, P. Mahonen, C. Kavadias, Modeling
the home environment using ontology with applications in soft-
ware configuration management, in: Proc. International Confer-
ence on Telecommunications ICT 2008, 2008, pp. 1–6.

[13] S. Runde, H. Dibowski, A. Fay, K. Kabitzsch, Integrated au-
tomated design approach for building automation systems, in:
Proc. IEEE International Conference on Emerging Technologies
and Factory Automation ETFA 2008, 2008, pp. 1488–1495.

[14] M. Jimenez, F. Rosique, P. Sanche, B. lvarez, A. Iborra, Habi-
tation: A domain-specific language for home automation, IEEE
SOFTWARE 26 (4) (2009) 30–38.

[15] L. Sommaruga, A. Perri, F. Furfari, DomoML-env: an ontology
for Human Home Interaction, in: Proceedings of SWAP 2005,
the 2nd Italian Semantic Web Workshop, Trento, Italy, Decem-
ber 14-16, 2005, CEUR Workshop Proceedings, 2005.

[16] D. Bonino, F. Corno, DogOnt - Ontology Modeling for Intelli-
gent Domotic Environments, in: A. Sheth, S. Staab, M. Dean,
M. Paolucci, D. Maynard, T. Finin, K. Thirunarayan (Eds.),
International Semantic Web Conference, no. 5318 in LNCS,
Springer-Verlag, 2008, pp. 790–803.

[17] A. Kofod-Petersen, A. Aamodt, Contextualised Ambient In-
telligence through Case-Based Reasoning, in: T. R. Roth-
Berghofer, M. H. Göker, H. A. Güvenir (Eds.), Proceedings
of the Eighth European Conference on Case-Based Reasoning
(ECCBR 2006), Vol. 4106 of Lecture Notes in Computer Sci-
ence, Springer Verlag, Ölüdeniz, Turkey, 2006, pp. 211–225.

[18] D. Preuveneers, J. V. den Bergh, D. Wagelaar, A. Georges,
P. Rigole, T. Clerckx, Y. Berbers, K. Coninx, V. Jonckers, K. D.
Bosschere, Towards an extensible context ontology for Ambi-
ent Intelligence, in: Second European Symposium on Ambi-
ent Intelligence, Vol. 3295 of LNCS, Springer, Eindhoven, The
Netherlands, 2004, pp. 148 – 159.

[19] H. C. T. Finin, A. Joshi, Ontologies for Agents: Theory and
Experiences, Birkhuser Basel, Los Alamitos, CA, USA, 2005,
Ch. The SOUPA Ontology for Pervasive Computing, pp. 233–
258.

[20] G. Conte, D. Scaradozzi, A. Perdon, M. Cesaretti, G. Morganti,
A simulation environment for the analysis of home automation
systems, in: Proc. Mediterranean Conference on Control & Au-
tomation MED ’07, 2007, pp. 1–8.

[21] G. Conte, D. Scaradozzi, Modeling and Control of Complex
Systems, CRC Press, 2007, Ch. 15 - An Approach to Home Au-
tomation by means of MAS Theory.

[22] F. Klugl, A Validation Methodology for Agent-Based Simula-
tions, in: R. Menezes, M. Viroli (Eds.), Symposium on Applied
Computing, ACM Press, 2008, pp. 39–43.

[23] D. Bonino, F. Corno, Dogsim: A state chart simulator for do-
motic environments, in: Eighth Annual IEEE International Con-
ference on Pervasive Computing and Communications Work-
shops (PerCom Workshops), 2010.

[24] J. Lertlakkhanakul, J. W. Choi, M. Y. Kim, Building data model
and simulation platform for spatial interaction management in
smart home, Automation in Construction 17 (2008) 948–957.

[25] R. Filman, T. Elrad, S. C. M.Aksit, Aspect Oriented Software
Development, Addison Wesley Professional, 2004.

[26] A. Rashid, T. Cottenier, P. Greenwood, R. Chitchyan, R. Meu-
nier, R. Coelho, M. Sudholt, W. Joosen, Aspect-oriented soft-
ware development in practice: Tales from aosd-europe, Com-
puter 43 (2010) 19–26.

[27] S. Propp, G. Buchholz, P. Forbrig, Task Model-Based Usabil-
ity Evaluation for Smart Environments, in: P. Forbrig, F. Pa-
terno(̀Eds.), HCSE/TAMODIA, Vol. 5247 of LNCS, IFIP Inter-
national Federation for Information Processing, Springer, 2008,
pp. 29–40.

[28] W. Maik, S. Propp, P. Forbrig, HCI-Task Models and Smart

Environments, in: A. M. P. Peter Forbrig, Fabio Paterno(̀Ed.),
Human-Computer Interaction Symposium, Vol. 272, IFIP Inter-
national Federation for Information Processing, Springer, 2008,
pp. 21–32.

[29] D. Bonino, F. Corno, Rule-based intelligence for domotic envi-
ronments, Automation in Construction 19 (2010) 183–196.

[30] F. Corno, S. Muhammad, Formal verification of device state
chart models, in: IE’11, The 7th International Conference on
Intelligent Environments,, 2011. doi:10.1109/IE.2011.36.

[31] F. Corno, S. Muhammad, Design time methodology for the for-
mal verification of intelligent domotic environments, in: P. No-
vais, D. Preuveneers, J. Corchado (Eds.), Ambient Intelligence
- Software and Applications, Vol. 92 of Advances in Intelligent
and Soft Computing, Springer Berlin / Heidelberg, 2011, pp.
9–16. doi:10.1007/978-3-642-19937-0 2.

[32] D. Bonino, F. Corno, Modeling, simulation and emulation of
intelligent domotic environments, Automation in Construction
In Press. doi:10.1016/j.autcon.2011.03.014.

[33] M. H. ter Beek, F. Mazzanti, S. Gnesi, CMC-UMC: A frame-
work for the verification of abstract service-oriented properties,
in: SAC ’09: Proceedings of the 2009 ACM symposium on Ap-
plied Computing, ACM Press, 2009, pp. 2111–2117.

[34] D. N. Jansen, H. Hermanns, J.-P. Katoen, A probabilistic exten-
sion of uml statecharts: Specification and verification, in: Intl.
Symp. on Formal Techniques in Real-Time and Fault-Tolerant
Systems, LNCS 2469, Springer, 2002, pp. 355–374.

[35] H. A. Hansson, Time and probability in formal design of dis-
tributed systems, Ph.D. thesis, University of Uppsala (1991).

[36] M. L. Puterman, Markov Decision Processes: Discrete Stochas-
tic Dynamic Programming, Wiley, New York, 1994.

[37] H. Hansson, B. Jonsson, A logic for reasoning about time and
reliability, Formal Aspects of Computing 6 (1994) 102–111.

[38] D. Bonino, E. Castellina, F. Corno, The DOG Gateway: En-
abling Ontology-based Intelligent Domotic Environments, IEEE
TRANSACTIONS ON CONSUMER ELECTRONICS 54/4
(2008) 1656–1664.

[39] J. Barnett, R. Akolkar, R. Auburn, M. Bodell, D. C. Burnett,
J. Carter, S. McGlashan, State Chart XML (SCXML): State Ma-
chine Notation for Control Abstraction, Tech. rep., W3C Work-
ing Draft (2009).

[40] S. Gnesi, F. Mazzanti, On the fly model checking UML State
Machines, in: ACIS International Conference on Software En-
gineering Research, Management and Applications, 2004, pp.
331 – 3382.

[41] F. Mazzanti, UMC 3.3 User Guide, ISTI Technical Report 2006-
TR-33, ISTI-NNR Pisa-Italy (September 2006).

