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Abstract 

 

The paper is focused on the development of a Kalman filter type observer for the monitoring 

of the primary drying phase of the freeze-drying of pharmaceutical products in vials. The 

proposed soft-sensor is able to estimate the evolution of temperature of the product, the 

duration of the primary drying phase, the value of the overall heat transfer coefficient between 

the heating shelf and the product, as well as the mass transfer resistance of the dried cake to 

vapor flow. Accurate results are obtained for various types of products, characterized by a 

different dependence of the mass transfer resistance on the dried cake thickness. Theoretical 

results are confirmed by experimental tests carried out in a pilot-scale freeze-dryer. Finally, 

the strength and the weakness of the proposed observer are pointed out. 
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1. Introduction 

 

Lyophilization is a drying process based on the sublimation of the solvent contained in the 

product to be treated. It is characterized by low operating temperatures and it is particularly 

suitable for those products, such as pharmaceuticals, which could be damaged by high 

temperature drying. Furthermore, the process allows obtaining a product with a porous 

structure that can be easily rehydrated and that can completely recover its properties after 

rehydration (see, among the others, Nail and Gatlin, 1992; Oetjen and Haseley, 2004; Franks, 

2007). 

The lyophilization process is carried out in three successive steps: freezing, primary 

drying, secondary drying. The most important phase is primary drying, when the vapor flows 

through the dried layer into the sublimation chamber, and then is continuously removed by a 

condenser. During this phase, process monitoring is crucial in order to obtain a product 

having the desired quality. In fact, it is required to monitor product temperature because it has 

to be maintained below a limit value. In the case of crystalline solutes, this limit temperature 

corresponds to the eutectic point, in order to avoid the formation of a liquid phase; if the 

solutes are amorphous, the limit value is the glass transition temperature in order to avoid the 

collapse of the dried cake.  

Another important variable that is useful to monitor is the position of the sublimation 

interface, whose evolution is representative of the progress of primary drying. This variable 

allows to know when it is possible to increase the set-point of the temperature of the heating 

fluid in order to allow the desorption of the water bounded to the product (secondary drying). 

If the secondary drying is started too early, the temperature of the product is increased when 

sublimation is still occurring, thus causing the melting of the ice and damaging the product. If 

secondary drying is delayed, the length and cost of the process are increased. 

The use of an effective in-line monitoring system allows closing a control loop, thus 

manipulating the operating conditions, namely shelf temperature and chamber pressure, in 

order to preserve (and also to build) product quality during processing (Fissore et al., 2008). 

This is one of the targets indicated by the Guidance for Industry PAT (Process Analytical 

Technology), issued by US-FDA in 2004: quality has no longer to be tested into products, but 

it has to be built-in or it should be by design 

In order to monitor the freeze-drying process it is possible to use a soft-sensor 

(observer), i.e. a device that uses a mathematical model of the process and the experimental 

measurements of one or more physical variables to provide an in-line estimation of the 
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product state and of other variables of interest. Various techniques were proposed in the 

literature to design an observer, e.g. the Extended Kalman Filter and the High Gain 

Technique. Velardi et al. (2009) proposed to use the Extended Kalman Filter to monitor the 

primary drying phase of a freeze-drying process: they used the measurement of the 

temperature of the product at the bottom of the vial, obtained inserting a thermocouple in the 

vial, and a simple mono-dimensional model of the process (Velardi and Barresi, 2008) to 

estimate in-line the temperature of the product, the position of the sublimating interface, the 

mass transfer resistance to vapor flow and the heat transfer coefficient. Velardi et al. (2010) 

designed also a High Gain observer to monitor the primary drying of a lyophilization process, 

evidencing that the accuracy of the estimations is similar to that obtained using the Extended 

Kalman Filter, but the time required by the calculations is significantly reduced, even if it is 

required to manipulate the system of differential equations modeling the dynamics of the 

system in order to get a structure suitable for the design of the High Gain observer. Both the 

Extended Kalman filter and the High Gain observer were developed for a particular type of 

product, characterized by a linear dependence of the mass transfer resistance (Rp) on the dried 

layer thickness (H); thus, these tool are only suitable for that type of product and they can not 

be used to monitor those products characterized by a non-linear dependence of Rp on H. 

Actually, the majority of products dried by means of a lyophilization process is characterized 

by a non linear dependence of Rp on H: this motivates the need for a new observer that is able 

to monitor all types of products. The Extended Kalman Filter approach will be chosen to built 

the desired observer, as the process is highly non-linear. 

The paper is structured as follows: at first, the structure of the proposed observer is 

introduced and, then, it will be validated by means of numerical and experimental 

investigations. The numerical validation is carried out to verify that the estimations provided 

by the observer converges to the true values (as in this case the state of the product is fully 

known from mathematical simulation), while the experimental validation is carried out to 

prove the adequacy of the soft-sensor to monitor real lyophilization cycles. 

 

 

2. Non-linear observer design 

 

The Kalman filter was firstly proposed by Rudolph E. Kalman in 1960 as a solution for the 

linear discrete data filtering problem (Kalman, 1960): it is a set of equations implementing a 

predictor-corrector estimator that minimizes the covariance of the estimation error. The filter 
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was developed for a discrete-time system, but it has also been applied to continuous-time 

systems, as well as to non-linear processes (Becerra et al., 2001; Judd, 2003).  

Let us consider the dynamics of a system described by the following set of differential 

equations: 

 ,ux f x               (1) 

where x is the array of state variables, u is the manipulated input and f is a non-linear function 

of x and u. Let y be the measured variable: 

 ,y h u x               (2) 

The Kalman filter type observer for the system described by equations (1)-(2) is based on the 

following equations: 

    ˆ ˆ ˆ,u t y y  x f x K            (3) 

 ˆ ˆh ,y u x              (4) 

   
ˆ

T

x

h
t t
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A detailed derivation of equations (3)-(6) can be found in various papers, e.g. in the Appendix 

A of the paper by Velardi et al. (2009). It has to be remarked that these equations have been 

obtained after a linearization of model equations (1)-(2) and, thus, the estimations of the state 

variables provided by the observer ( x̂ ) are guaranteed to converge to the real values (x) only 

in case the approximation introduced by the linearization is small. This makes the first guess 

of the estimated variables a critical step. 

 The equations of the observer are based on the mathematical model of the process. For a 

vial freeze-drying process various models have been proposed to describe the evolution of the 

temperature of the product and of the amount of ice vs. time as a function of the operating 

conditions (a brief review can be found in Velardi and Barresi, 2008). In this paper we use the 

simplified mono-dimensional model of Velardi and Barresi (2008): according to this model, 

the heat flux to the product and the solvent sublimation flux are calculated using the following 

equations: 

 q v fluid BJ K T T              (7) 

 , ,

1
w w i w c

p

J p p
R

              (8) 
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Kv is the overall heat transfer coefficient between the heating fluid and the product at the 

bottom of the vial and Rp is the resistance of the dried product to vapor flow. The coefficient 

Kv is a function of chamber pressure, for a given vial-freeze-dryer system: 

1
v

v

v

K c
v K

K c

b p
K a

c p
 


            (9) 

while Rp is a function of the thickness of the dried layer (H), for a given product. The 

following equation is generally proposed to describe the dependence of Rp on H:  

p

p

R

p p ,
R

A H
R R

B H

⋅
= +

+ ⋅0 1
           (10) 

where p,R 0 , 
pRA , 

pRB depend on the product under investigation. In case 0 0p ,R  and 

0
pRB  , the dependence of Rp on H is linear: 

pp RR A H= ⋅              (11) 

as in the model used by Velardi et al. (2009, 2010) to design a soft-sensor for the vial freeze-

drying process, where: 

1

i
p

R T
R H

M k

æ ö⋅ ÷ç ÷= ⋅ç ÷ç ÷ç ⋅è ø
             (12) 

At the moving interface there is no heat accumulation, and the heat flux is used for ice 

sublimation: 

   
1

, ,

1 1
fluid i S w i w c

v II p

L H
T T H p p

K k R


 

     
 

       (13) 

The following equation gives product temperature at the vial bottom: 

 
1

1 1
B fluid fluid i

v v II

L H
T T T T

K K k


 

    
 

        (14) 

Finally, the evolution of frozen product thickness is calculated by solving the following 

equation: 

 , ,

1 1
w i w c

II Ie p

dH
p p

dt R 
  


          (15) 

This model has been extensively validated by means of experiments (see, among the others, 

Velardi and Barresi, 2008, and Giordano et al., 2011). 

Various methods have been proposed to calculate model parameters (Kv and Rp). The 

coefficients 
vKa , 

vKb  and 
vKc can be calculated through various theoretical expressions 
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provided in the literature (see, among the others, Pikal et al., 1984); in any case experimental 

investigation is necessary to determine these values reliably. To this purpose a gravimetric 

method can be used. It requires to carry out a lyophilization cycle under well defined 

operating conditions (temperature and pressure) and filling the vials of the batch with water 

(or a solution). The ice temperature at the bottom of the vial (TB) and the weight loss of water 

(m) in each vial have to be measured. The value of  Kv can be calculated using the following 

equation: 

 
s

v

shelf B v

m H
K

t T T A

 

   

           (16) 

As an alternative, the value of the sublimation flux (  vm t A   ) required to calculate Kv  

can be determined using the Tunable Diode Laser Absorption Spectroscopy (Kessler et al., 

2006; Gieseler et al., 2007; Kuu et al., 2009). Another method to obtain the value of Kv is 

based on the use of the algorithms proposed for the monitoring of the primary drying using 

the pressure rise test (Milton et al., 1997; Chouvenc et al., 2004; Velardi et al., 2008; Fissore 

et al., 2011). In any case, at least three measurements at three different values of pc, are 

required to determine the values of 
vKa , 

vKb  and 
vKc . 

 The parameter RP can be determined from the measurement of the solvent flux, obtained 

using the Tunable Diode Laser Absorption Spectroscopy sensor, as shown in the following 

equation: 

,w i c
p

w

p p
R

J


              (17) 

or one of the algorithms used to interpret the pressure rise test. Furthermore, Fissore et al. 

(2010) proposed to use a special device placed in the lyophilization chamber to calculate Rp 

using of the measurement of the weight loss due to the sublimation of ice vs. time (i.e. of Jw) 

and of product temperature in the weighed vials (used to calculate pw,i). 

 For the process under investigation the state vector that the soft sensor has to estimate is 

the following: 

   1 2 3 i p

TT

R vx x x T A K x          (18) 

It can be remarked that the parameter 
pRA  has been selected to account for the value of Rp 

(the values of p ,R 0  and 
pRB have been kept constant and equal to their first estimations) thus 

reducing the number of variables that the soft-sensor has to estimate. The measured variable 

of the process (y) is the product temperature at the bottom of the vial. The manipulated 
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variable (u) is the temperature of the heating fluid. Model equation can then be written as in 

equations (1) and (2): 

 
 

   

1 1 1 2 3

2

3

1 2 3

, , ,

, 0

0

, , , ,

x f x x x u

u x

x

y u h x x x u

   
               
  

x f x
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          (19) 

where the first derivative of  x2 and x3 are set equal to zero because the parameters 
pRA and Kv 

do not change during the freeze-drying process. The following equation is used to calculate 

the first derivative of x1 = Ti with respect to time: 

1

1

1

dx dH H du H

dt dt u dt x


          

                                                           (20) 

Equation (20) requires the partial derivatives of H with respect to x1, u and t. To this purpose, 

it is necessary to determine the dependence of H on the state variables. By means of simple 

manipulations of equation (14) we get: 

0
pR

p ,

H
B

R

a b
b g a

-=
-

            (21) 

where: 

    s
1 3 w,i 1 w,c

3

,
H

x x p x p
x

  
            (22) 

   1 p,0 1,x u R u x              (23) 

 2 ,0 2pp Rx R B x                                                                              (24) 

Using equations (21)-(24) we calculate: 
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                                                                       (26) 

where 

 II IeSH                                                                                                                   (27) 
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At first we assume that 0
du

dt
=  and, thus, the calculation of 

H

u

¶
¶

 is not necessary: this 

assumption is justified by the fact that in most freeze-drying processes the shelf temperature is 

maintained constant throughout primary drying. Furthermore, this assumption allows to 

simplify the equations of the observer, and it can be useful also for validation purposes 

because the degrees of freedom of the system are reduced. In case 0
du

dt
¹  subsequent 

equations are modified and they are shown in Appendix A. When 0
du

dt
= , equation (20) 

becomes: 

1

1

1

dx dH H

dt dt x


 

   
            (28) 

By combining equations (25) and (26) into equation (28), and expressing the measured 

variable as a function of the state variables, we get:  

   

 

2

3
,0

,0
1 1

,0

1

,

0

0

,

p

p

R
P

p R

p

x B
R

uR B
x x

y u u
R

   

    



          
               
  
  

 


  


x f x

h x


                                                        (29) 

In order to calculate the gain of the observer ( )tK  we need the Jacobian matrix ¶ ¶f x  and 

the vector ¶ ¶h x : 

1 1 1

1 2 3

ˆ

ˆ

0 0 0

0 0 0

f f f

x x x

   
    

  
  

 
  

x

x

f

x
                             (30)                           

ˆ 1 2 3 ˆ

h h h

x x x

    
      x x

h

x
            (31) 

The components of ¶ ¶f x and of ¶ ¶h x are obtained from the equations (29): 
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Finally, it is necessary to calculate the derivative of the functions  1 3,x x ,  1,x u ,  2x , 

that can be determined from equations (22)-(24): 

,

1 3 1

w is
dpH

x x dx
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,

2 2
1 3 3 1 3 3
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3. Case studies 

 

The validation of the observer is carried out in two steps. In the first phase, process simulation 

using the model of Velardi and Barresi (2008) has been used to calculate the evolution of a 

product characterized by a non-linear dependence of the resistance Rp on dry cake thickness, 

as described by equation (10), and, thus, the temperature of the product at the bottom of the 

vial required by the observer. By this way it is possible to compare the estimations of 

interface product temperature, frozen layer thickness, and model parameters with the true 

values, thus validating the tool. Two different case studies have been considered to this 

purpose: in the first case the product is characterized by a high value of resistance to vapor 

flow (i.e. of 
pRA ) and a high value of Kv; in the second case we considered lower values of 

pRA and Kv. By this way we are able to account for the large variability of 
pRA and Kv when 

processing different products and, consequently, we are able to test the effectiveness of the 

soft sensor in case the process is heat-transfer controlled, as well as when freeze-drying is 

mass-transfer controlled. 

Afterwards, the performance of the observer used to monitor the dynamics of a product 

characterized by a linear dependence of resistance Rp on dry cake thickness, as shown in 

equation (12), has been investigated, in order to demonstrate the possibility of applying the 

proposed observer to a wide variety of products. Also in this case the values of the 

temperature at the bottom of the vial obtained by mathematical simulation are provided to the 

observer, and the convergence of the proposed tool is verified. 

Finally, experimental investigation has been used to verify the adequacy of the tool to 

monitor the primary drying phase of a real freeze-drying cycle. In this case a thermocouple 
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placed at the bottom of the vial is used to provide the product temperature measurement. The 

lyophilization cycle is carried out in a LyoBeta 25™ freeze-dryer (Telstar, Spain), using ISO 

8362-1 10R tubing vials filled with 2.5 ml of a 10% w/w aqueous solution of an active 

pharmaceutical ingredient, corresponding to 7.6 mm of product thickness. In this case the 

temperature of the heating shelf was not constant, while chamber pressure was kept constant 

and equal to 5 Pa. Product temperature was measured using a T-type miniature thermocouple 

(by Tersid S.p.A., Milano, Italy). It has to be remarked that the evolution of the product in 

vials placed in various positions over the shelf can be different according to various heat 

transfer mechanisms affecting the thermal balance of the product (Barresi et al., 2010a, 

2010b). With this respect, vials of the first rows receive additional heat due to radiation from 

chamber walls. Thus, for this test we have monitored the dynamics of product temperature in 

a vial placed in a central position over the shelf as it is representative of the largest part of the 

batch 

 

 

4. Results and discussion 

 

Numerical validation of the observer is carried out by using the mathematical model to 

simulate the primary drying. Figure 1 shows the results obtained for two different case 

studies, characterized by different values of Kv and 
pRA : in the first Kv = 30 J s-1m-2K-1 and 

pRA  = 1·109 s-1, while in the second Kv = 10 J s-1m-2K-1 and 
pRA = 2·108 s-1. Both shelf 

temperature and chamber pressure have been considered constant throughout primary drying. 

In order to test the performance of the observer, the initial values of ˆ
vK  and ˆ

pRA  have been 

set with an error of 5% compared to the reported true values. An excellent agreement is 

obtained between the temperature estimated by the observer and the true value; a good 

agreement is obtained with respect to the position of the moving interface vs. time, with an 

error on the estimation of the duration of primary drying of -1.6 % in the first case, and of -3.9 

% in the second case. As far as model parameters are concerned, the error on the estimation of 

Rp remains very small (lower than 5%), while the estimated value of Kv moves from the 

wrong initial guess to the true value in both cases. This is of outmost importance as the 

observer is not only able to provide a reliable estimation of product temperature at the 

interface of sublimation and of the sublimation flux (i.e. of the position of the sublimating 

interface, and of the duration of the primary drying), but it provides also reliable values of 
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model parameters and, thus, it can be used in a model-based control loop (Fissore et al., 

2008). In both cases we tested also the performance of the observer proposed by Velardi et al. 

(2009), evidencing that it does not converge to the correct values: as an example, the error on 

the duration of the primary drying is about 150%. These results confirm that the observer 

proposed by Velardi (2009) is able to monitor only the dynamics of  those products that 

exhibit a linear dependence of the mass transfer resistance on the dried layer thickness. 

 As it has been pointed out in the Introduction section, the convergence of the Kalman 

filter is guaranteed only in case the initial values of the estimated variables are sufficiently 

close to the real values. For this purpose it is worthwhile to analyze the effect of the initial 

error on the state variables on the performance of the observer. For this study we have 

considered a product whose resistance RP is calculated using the following parameters: 0p ,R = 

11300 m s-1, 
pRA = 4.1·108 s-1 and 

pRB = 1920 m-1; the value of the heat transfer coefficient is 

Kv = 17.1 J s-1m-2K-1. The values of Kv and Rp considered in this study corresponds to those 

obtained experimentally for the 10% w/w aqueous solution of the drug considered at the end 

of this section as case study for the experimental validation of the observer. Chamber pressure 

is considered constant at 8 Pa, and the heating fluid temperature is equal to -10°C. Wrong 

values of the parameters Kv and 
pRA are provided to the observer at t = 0 in order to verify the 

ability of the observer to converge to the correct values, starting from a bad estimation; the 

values of  ˆ 0vK t   and  ˆ 0
pRA t   are summarized in Table 1. Figure 2 shows the observer 

predictions in all the cases. In Figure 2 (a), the evolution of product temperature is shown, 

thus evidencing that the observer is able to provide good estimates regardless of the initial 

error on the value of parameters. The same results are obtained when considering the 

evolution of the moving front, shown in Figure 2 (b), and this proves that the evaluation of the 

duration of the primary drying obtained using the observer is reliable in all the cases (the error 

ranges from -0.7 % in case 4 to -5 % in case 2). Finally, Figures 2 (c) and (d) show that also 

the parameters Kv and Rp are correctly estimated, despite their final values are not perfectly 

coincident with the true ones, used by the mathematical model. This fact can be explained by 

considering that the observer, during its calculations, minimizes the difference between the 

model estimated temperature and the calculated one, and it is possible to find various couples 

of values of the parameters resulting in the same value of temperature. This leads to the 

conclusion that the final values of Kv and Rp are the results of a compensation between the 

values of the same  parameters. Furthermore, by observing the Figure 2 (c) and (d) it is 
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possible to underline that if initial guesses of Kv and Rp are both higher (or lower) than the 

true values, the tool is able to reduce the estimation error, otherwise the error can be 

increased. 

 With respect to the convergence of the observer calculations, it is interesting to 

investigate the maximum error allowed for the initial estimation of the parameters Kv and 
pRA  

to obtain the convergence of the observer. In this study we have considered that the initial 

value of product temperature is perfectly known, as it is generally the case when using a 

thermocouple to monitor product drying. The results of this study are presented in Figure 3, 

where the set of errors on  ˆ 0vK t   and on  ˆ 0
pRA t   that guarantee the convergence of the 

observer, is evidenced. More precisely we observe that the estimation error on the initial 

estimation of 
pRA  can roughly vary between -5% and +10% compared to the true value, while 

the error on the initial estimation of Kv can vary between -25% and +25% compared to the 

true value. In those ranges of parameters values the observer provide correct estimations, i.e. 

an error on the duration of the primary drying lower than 5%, and a maximum error on 

product temperature lower than 0.5°C. The occurrence of a relevant error on the initial 

estimation of product temperature has also been investigated, evidencing that the convergence 

of the observer is not significantly affected by the initial error on product temperature. Results 

of Figure 3 are of outmost importance if we consider that, using the methods previously 

described (e.g. the gravimetric method for Kv or the pressure rise test for Rp)  to determine the 

parameters Kv and 
pRA , their values are affected by uncertainty (generally about 5-10%). 

Thus, the observer is able to correct the initial estimation of model parameters in order to 

provide reliable estimations of the temperature at the interface of sublimation and of the 

sublimation flux (i.e. of the drying time), using the measurement of product temperature at the 

bottom of the container. 

 Figure 4 shows the results obtained when using the proposed observer to monitor the 

dynamics of a product whose dependence of the mass transfer resistance on the dry cake 

thickness is linear, as for the product considered by Velardi et al. (2009). In this case we 

considered the following parameters to calculate Rp: Rp,0 = 33969 m s-1, 
pRA  = 1.06·108 s-1 

and 
pRB  = 0 m-1; the parameter Kv has been considered equal to 16.2 J s-1m-2K-1. These 

parameter correspond to the values experimentally determined for a 5% w/w aqueous solution 

of lactose, processed in vials characterized by an internal diameter of 16.1 mm and a mean 

thickness of the vial bottom of 0.84 mm. As in the previous cases, chamber pressure and 
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heating fluid temperature have been considered constant and equal to 8 Pa and -10°C 

respectively. Also in this case the agreement between the correct values of product 

temperature, interface position, and model parameters with the values estimated by the soft-

sensor is very good. It can be pointed out that the dependence of the estimated values of Rp  

vs. Ldried is not perfectly linear: this is due to the fact that the observer continuously estimates 

pRA  during primary drying and, in this case, small variations in the estimated value of this 

parameter are responsible for the small variation in the slope of the curve of ˆ
pR  vs. Ldried. 

Thus, we can conclude that the proposed observer can be applied to various type of products, 

and in all cases it provides a good estimation of the variables of interest. 

Once the observer has been validated by means of numerical simulation, it is possible to 

prove its adequacy to monitor a real lyophilization cycle. The experimental validation is 

carried out with data obtained in freeze-drying cycles performed in laboratory and, as 

indicated in the previous section, the product that is freeze-dried is a 10% w/w aqueous 

solution of an active pharmaceutical ingredient. Preliminary investigation was required to 

determine the values of Kv and 
pRA  for this system: the previously described gravimetric 

method was used to determine the overall heat transfer coefficient to the product, while the 

DPE algorithm (Velardi et al., 2008), proposed to interpret the pressure rise test, was used to 

determine 
pRA . Both values were adopted as the initial estimations of model parameters 

required by the observer. In order to test the robustness of the soft-sensor we considered also 

different values of  ˆ 0vK t   and  ˆ 0
pRA t  , as shown in Table 2. The initial value of 

product temperature, in all the cases, has been considered equal to the first measure provided 

by the thermocouple at the bottom of the vial placed in a central position over the shelf. It has 

to be remarked that in this test the temperature of the heating shelf was not constant, and this 

is responsible of the evolution of product temperature that shows a maximum at about 1.5 h 

from the beginning of the primary drying. Although 0du dt  , we used the observer 

designed assuming 0du dt   and a good agreement between the true and the estimated 

values of product temperature was obtained, as shown in Figure 5. The error in the estimation 

of the duration of primary drying ranges from -3% to 5%. This result is due to the fact that the 

convergence of the observer is very fast, and the rate of change of fluid temperature is quite 

slow, as in most freeze-drying processes. This allows to use the observer (21)-(43). 

Obviously, in case the rate of change of Tfluid is high, the observer given in Appendix A has to 

be used. Also in this case we have tested the robustness of the observer, looking for the 
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maximum errors on  ˆ 0vK t   and  ˆ 0
pRA t   that guarantee the convergence of the observer. 

Results are shown in Figure 6, evidencing that the set of values of errors on Kv and on 
pRA  is 

similar to that shown in Figure 3 for the simulated experiment.  

 

 

5. Conclusions. 

 

A new observer for monitoring the primary drying phase of a lyophilization process has been 

designed in this paper. It is able to estimate reliably product temperature and the duration of  

primary drying, as well as model parameters describing heat transfer to the product and mass 

transfer from the interface of sublimation. The soft-sensor has been validated by means of 

numerical simulations and experimental tests, thus pointing out the strength of this tool, that is 

able to reliably monitor the dynamics of the temperature of the product and of the position of 

the interface of sublimation, and also to estimate the parameters of a simple model of the 

process, thus allowing the use of model-based control systems, as proposed by Fissore et al. 

(2008). Moreover, this soft-sensor appears to be quite robust with respect to the initial 

estimations of model parameters and of product temperature, and this is an important issue as 

the values of these parameters can be determined mainly with an experimental investigation 

and, thus, their values are affected by uncertainty. Moreover, using the proposed soft-sensor it 

is possible to monitor various vials placed in different positions in the freeze-dryer, thus 

allowing taking into account the heterogeneity of the batch due to the different heat transfer 

mechanisms to the product (e.g. radiation from chamber walls, or non-uniform temperature of 

the heating fluid). Finally, the soft-sensor has provided reliable estimations with various types 

of products, characterized by a different dependence of Rp on dried cake thickness, even in 

case the temperature of the heating fluid is not constant.  

The main weakness related to the use of this sensor is due to the use of a thermocouple 

to get the temperature measurement. The use of wireless sensors recently proposed (Vallan et 

al., 2005; Corbellini et al., 2010) may allow the use of thermocouples with the automatic 

loading/unloading systems used in industrial freeze-dryers. Finally, the insertion of a 

thermocouple in the vial could not be allowed because of sterility reasons, or because the 

presence of the thermocouple can affect the dynamics of the product. In this case it could be 

possible to place the thermocouple on the external wall of the vial (Grassini et al., 2009), thus 

avoiding any interference with the product. An example of observer for a product exhibiting a 
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linear dependence of Rp on dried cake thickness and using the measurement of the 

temperature of the external wall was patented by Barresi et al. (2007). 
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List of Symbols 

 

vKa    parameter used to calculate Kv, J m-2s-1K-1 

pRA    parameter used to calculate Rp, s
-1 

Av   cross sectional area of the vial, m2 

vKb   parameter used to calculate Kv, J m-2s-1K-1Pa-1 

pRB    parameter used to calculate Rp, m
-1 

vKc    parameter used to calculate Kv, Pa-1 

vKe   error on the initial estimation of Kv, 
 ˆ 0v v

v

K t K

K

 
 

Rp
Ae   error on the initial estimation of 

pRA , 
 ˆ 0

ˆ
p p

p

R R

R

A t A

A

 
 

f    vectorial function giving the derivatives of the state 

h state space equation of the measured variable  

H   moving front position (thickness of the dried layer), m 

ΔHs   enthalpy of sublimation, J kg-1 

Jq  heat flux, J m-2s-1 

Jw   sublimation flux of water, kg m-2s-1 

k1   effective diffusivity coefficient, m2 s-1
 

kII   thermal conductivity of the frozen layer, J m-1s-1K-1
 

K  observer gain 

Kv   overall heat transfer coefficient, W m-2K-1 

L  total product thickness, m 

Δm   weight loss of water, kg 

M   water molecular weight, kg kmol-1 

pc   chamber pressure, Pa 

pw,c  water partial pressure in the drying chamber, Pa 

pw,i  water pressure at the interface of sublimation, Pa 

R   ideal gas constant, J mol-1 K-1 

Rp   mass transfer resistance, m s-1 

Rp,0   parameter used to calculate Rp, m s-1 

S   matrix used to calculate the observer gain 
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Ti   product temperature at the sublimation interface, K 

TB   temperature of the product at the bottom of the vial, K 

Tfluid   heating fluid temperature, K 

t   time, s 

u   system input (manipulated variable) 

x  array of the state variables   

y   system output (measured variable) 

 

Greeks 

 variables defined by equations (22)-(24) 

  variable defined by equation (27) 

Λ  matrix of tuning parameters of the Kalman observer 

ρIe  apparent density of the dried product, kg m-3 

ρII   density of the frozen product, kg m-3 

 

Superscripts 

^  observer estimate 

˙  first time derivative 
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Appendix A. Observer equations in case of non-constant heating fluid temperature  

 

In case  0
du

dt
¹  it is necessary to calculate the partial derivative of H respect to variable u, 

thus obtaining: 
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. In this case, equation (20) is used to calculate 1dx

dt
, thus obtaining: 
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Equation (A.2) is then used to calculate the Jacobian matrix ¶ ¶f x , whose components are 

the followings: 
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List of Tables 

 

Table 1.  Values of  ˆ 0vK t   and  ˆ 0
pRA t   used for observer validation with simulated 

data.  

 

Table 2. Values of  ˆ 0vK t   and  ˆ 0
pRA t   used to validate the observer  with 

experimental data. 
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List of Figures 

 

Figure 1.  Comparison between estimated (lines) and true values (symbols) of product 

temperature (top graphs; ○: TB, ●: Ti, 
___: Ti), moving front position (middle 

graphs) and model parameters (bottom graphs; ● and ___: Rp, ○ and _ _ _: Kv) for 

two case studies (case 1: Kv = 30.0 J s-1m-2K-1, 
pRA = 1.0·109 s-1; case 2: Kv = 10.0 

J s-1m-2K-1, 
pRA = 2.0·108 s-1; ,0pR  = 1.1·104  m s-1, 

pRB = 2.0·103   m-1, L = 7.6 

mm, Tfluid = -10°C, pc = 8 Pa). 

 

Figure 2.  Comparison between true (___: TB, _ _ _: Ti) and estimated values (symbols: Ti; □: 

case 1, ○: case 2, Δ: case 3, ●: case 4) of product temperature (graph a), moving 

front position (graph b), heat transfer coefficient (graph c), and product resistance 

to vapor flow (graph d). 

 

Figure 3.  Range of values of errors on initial estimations of Kv and 
pRA  that ensures the 

convergence of the observer: symbols (■: values of 
vKe  and 

Rp
Ae  for which the 

convergence of the observer is obtained;  □: values of 
vKe  and 

Rp
Ae  for which the 

convergence of the observer is not obtained). 

 

Figure 4.   Comparison between estimated (lines) and true values (symbols) of product 

temperature at the interface of sublimation (graph a), moving front position (graph 

b), heat transfer coefficient (graph c), and product resistance to vapor flow (graph 

d) (Kv = 16.2 J s-1m-2K-1, Rp,0 = 33969 m s-1, 
pRA  = 1.06·108 s-1 and 

pRB  = 0 m-1,   

L = 3.4 mm, Tfluid = -10°C, pc = 8 Pa). 

 

Figure 5.  Comparison between experimentally measured values (symbols) of product 

temperature and the values estimated by the observer using the initial estimations 

of model parameters given in Table 2 (lines; ___: Ti, 
_ _ _: TB). 

 

Figure 6.  Range of values of errors on initial estimations of Kv and 
pRA  that ensures the 

convergence of the observer (■: values of 
vKe and 

Rp
Ae  for which the convergence 
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of the observer is obtained;  □: values of 
vKe and 

Rp
Ae  for which the convergence 

of the observer is not obtained). 



Table 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ( )ˆ 0vK t = , J s-1 m-2 K-1 vKe  ( )ˆ 0
pRA t = , s-1 pRe  

case 1  18.81 +10 % 4.305·108 +5 % 
case 2 15.39 -10 % 3.895·108 -5 % 
case 3 20.52 +20 % 4.510·108 +10 % 
case 4 15.39 -10 % 4.305·108 +5 % 

 
 

 



Table 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ( )ˆ 0vK t = , J s-1 m-2 K-1 vKe  ( )ˆ 0
pRA t = , s-1 pRe  

case 1 13.68 -20 % 2.52·108 -5 % 
case 2 20.52 +20 % 2.52·108 -5 % 
case 3 13.68 -20 % 2.78·108 +5 % 
case 4 20.52 +20 % 2.78·108 +5 % 
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