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The Cell Method, similar to the Finite Integration Technique, is a well-established numerical method for the solution
of field problems, however an often raised criticism is that it is limited to constant fields within elements. In this paper
we show that for the case of Poisson’s equation the Cell Method can be extended to the second order convergence.
Numerical results showing the order of convergence of the method are presented.

Index Terms—Cell Method, Edge elements, Finite Integration Technique, Higher order elements.

I. INTRODUCTION

FOR several physical problems the Cell Method (CM) [1],
as well as the Finite Integration Technique (FIT) [2],

allows a direct construction of a system of linear algebraic
equations starting from integral field equations. The basic
building block of the CM are: topological operators, repre-
sented by rectangular incidence matrices, defined on pairs of
dual grids, which express flux, circulation or difference laws
which are exactly satisfied and material operators (often called
discrete “Hodge operators”), represented by square matrices,
which express, in an approximate way, physical relationships
between different physical quantities.

Both CM and FIT have received considerable interest in the
electromagnetics community and are at the heart of successful
research and commercial codes. However, such methods have
been criticized because they have been limited up to now
to first order convergence of the potentials. Notwithstanding
the great effort for the definition of material operators for
hexahedra [3], tetrahedra [4], [5], [6], [7], [8], and generic
polyhedra [9], very few attempts have been targeted at in-
creasing the order of convergence [10], [11] while remaining
within the above mentioned framework. In fact some results
for 2d problems have been obtained but the resulting methods
are quite far from the CM or FIT basic philosophy [12].

In this paper we show how the above-defined characteristic
building blocks of the CM (dual topological operators and
material operators) can be extended to second order and
substantiate this novel method with numerical evidence.

II. TOPOLOGICAL OPERATORS

The CM requires the definition of two cell complexes,
usually referred to as primal and dual, linked by duality
relations. If N is the dimensionality of the manifold, duality
implies a one-to-one correspondence between a generic primal
p-geometrical entity (node, edge, face or volume) and the
correspondent dual N − p one (volume, face, edge, node,
respectively). Each physical variable is univocally associated
to an oriented spatial element. When global variables are used

Manuscript received May 31, 2010. Corresponding author: F. Freschi (e-
mail: fabio.freschi@polito.it).

(e.g. integration of pointwise quantities on the spatial element
they are related to), this geometric set up allows the use of
discrete operators which are representative of the continuous
gradient, curl and divergence. It is easy to prove that these
discrete operators are the incidence matrices G (edge-to-node),
C (face-to-edge), D (volume-to-face). Geometric duality is
required to maintain the duality relation between primal and
dual topological operators [1]. As far as Poisson’s problems
are concerned, duality requires that:

D̃ = −GT (1)

where the ˜ indicates that the incidence matrix is constructed
on the dual mesh.

III. DISCRETE HODGE OPERATOR

Material operators, represented by square matrices M, link
together quantities associated to dual pairs of cell complexes.
In the case of Poisson’s equation such operator links surface
integrals (fluxes) to line integrals. Without loss of generality,
in the remainder of this paper we will refer to an electrostatic
problem. The stiffness matrix representing the discretized
version of the continuous problem can be assembled by the
product of topological and constitutive matrices:

K = D̃MG = −GTMG (2)

Algebraic techniques like CM and FIT are less flexible than
Finite Elements because they require that variables associated
to edges have the physical meaning of line integrals of the
tangential component of the field [13].

A. Interpolating function

In [14] Kameari proposed second order edge elements
which are suitable for building a discrete Hodge operator.
Given a tetrahedral discretization, six additional nodes are
added at the middle of each edge and four at face centers (see
Fig. 1(a)). The resulting element has 14 nodes, 24 edges and 12
faces. This second order cell fulfills the necessity of expanding
the Nedelec functional space with additional degrees of free-
dom. Fig. 1(b) shows a possible choice of corresponding dual
geometric entities which satisfy the duality relations, namely
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IV. NUMERICAL RESULTS 
The presented method is validated by solving a hollow 

sphere capacitor problem, where the outer shell, with V = 0, 
has rout = 2, while the inner shell, with V = 1, has rin = 1. 
Fig. 1(c) shows that the presented second order CM has the 
same order of convergence in the L2 norm as the 
corresponding FE scheme. The slightly erratic behavior for 
large values of h is due to the bad approximation of the 
geometry in those cases. 

 
(a) 

  
(b) (c) 

 

Fig. 1. (a) Localization of degrees of freedom, (b) dual volumes, (c) L2 
norm of the error. 
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Fig. 1. Degrees of freedom (a) and dual faces and volumes (b).

dual faces in one-to-one correspondence with primal edges
bounding dual volumes in one-to-one correspondence with
primal nodes. It should be noted that the position and shape
of the dual surfaces is by no means unique and the presented
configuration is just one of the infinite possibilities. Our choice
is based on an analogy with first order case and because, since
each dual face consists of two triangles, simple quadrature
formulas can be implemented.

The degrees of freedom of Kameari’s element are allocated
onto 24 edges defined on a tetrahedron and can be expressed
in terms of barycentric coordinates, which facilitates their
numerical integration. Calling λi the barycentric coordinate
associated to the ith vertex of a tetrahedron, two sets of edge-
based interpolating functions can be defined: ~wij is associated
to the first order half-edge connecting nodes i and j, and ~wi

is associated to the short edge connecting the mid-edge and
mid-face nodes (see Fig. 1(a)):

~wij = 1
10 ((63λi + 30λj − 33)λi∇λj
− (18λi − 15λj + 5)λj∇λi)

~wi = 3
5 (31λjλk∇λi + 7λiλj∇λk + 7λiλk∇λj)

(3)

This physical meaning of the degrees of freedom is ensured
since the orthogonality condition (the line integrals of the
basis functions on each edge are independent from each other)
is explicitly imposed in the construction of the interpolating
functions. The edge shape functions 3 derive from the fol-
lowing corresponding second order nodal functions related to
vertices i, mid-edge nodes ij and mid-face nodes ijk:

Ni = 2λ2
i − λi + 3λi (λjλk + λkλl + λlλj)

Nij = 4λiλj − 12λiλj (λk + λl)

Nijk = 27λiλjλk

(4)

B. Whitney Hodge operator

The discrete Whitney Hodge operator, sometimes also de-
scribed as the canonical discrete Hodge operator [15], [16]
consists in the sequential application in each tetrahedron of:
• an interpolation operator (the second order Kameari edge

element in this case)

~E =

24∑
k=1

~wkek, (5)

which allows to express a quantity associated to line
integrals (the electric field ~E) as a linear combination
of edge basis functions;

• a continuous Hodge operator (the constitutive equation)

~D = ε ~E

linking a quantity associated to surface integrals (the
electric induction field ~D) to a quantity associated to line
integrals;

• a discretization operator (the de Rham map, consisting of
surface integration in this case)

d′ =

∫
S̃

~D · ~ndS

where the ′ symbol indicates that this is a partial con-
tribution coming from a single element (which will then
be assembled with those of neighboring elements sharing
the same edge).

The discrete Whitney Hodge operator can thus be constructed
element-by-element by assembling local contributions of the
form

m′jk =

∫
S̃j

ε~wk · ~njdS (6)

where the subscript j refers to the local dual face of Fig. 1(b)
and subscript k refers to the local primal edge of Fig. 1(a).

The final assembled material operator matrix M is not
symmetric. This may not be a major issue for some lowest
order Cell Methods, as shown e.g. in [15], [16], because the
non-symmetric part of M may vanish in the multiplication
with the topological operator matrices, but this is not the case
when the Whitney hodge is inserted in (2)

C. Galerkin Hodge operator

A different way to build a discrete Hodge operator is to
ensure that the energy calculated as the volume integral of
the energy density in each element W is equal to the discrete
energy calculated by resorting to global quantities:

W =
1

2

24∑
k=1

ekd
′
k (7)

where ek is electric voltage and d′k the dielectric flux. For a
generic tetrahedron, the energy density is

w =
1

2
~D · ~E =

1

2
ε ~E · ~E (8)

By using the interpolator (5), the total energy becomes:

W =
1

2

∫
Ω

ε
( 24∑

k=1

~wkek

)
·
( 24∑

j=1

~wjej

)
dΩ

=
1

2

24∑
k=1

ek

∫
Ω

ε~wk ·
( 24∑

j=1

~wjej

)
dΩ (9)

By imposing the equality of (9) and (7) the following definition
of dielectric flux must hold:

d′k =

∫
Ω

ε~wk ·
( 24∑

j=1

~wjej

)
dΩ (10)
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Finally, the constitutive matrix is made by terms of the form

m′jk =

∫
Ω

ε~wj · ~wkdΩ (11)

With this approach the Hodge operator is clearly symmetric
and therefore also the final stiffness matrix (2) is symmetric.
Furthermore, it can be easily shown that the final stiffness
matrix (2) coincides with the one which can be obtained from
a Finite Element method based on the second order nodal
shape functions (3).

IV. NUMERICAL RESULTS

Results shown in this section refer to the solution of Laplace
equation on the unit cube with imposed exact solution on the
whole boundary. The first test case is a consistency benchmark,
i.e. the ability to reconstruct the quadratic potential:

V = x2 + y2 − 2z2 + xy + xz + zy + x+ y + z + 6

and results are shown in Fig. 2. It can be noted that while the
standard first order CM converges as h2 the proposed second
order Whitney and Galerkin approaches have constant error
and the solution is almost exact since it is contained in the
basis function space. The difference between these latter two
cases is examined in the next subsection.

The second benchmark refers to a case for which the
solution is not contained in the basis function space:

V = cos(x) sin(y)e
√

2z

and results are shown in Fig. 3. The first order CM and
second order Galerkin converge as h2 and h3, respectively, as
expected. Contrary to expectations the second order Whitney
CM converges as h2 and an explanation of the cause of such
behavior is presented in the next subsection.

From a computational point of view a comparison with
respect to CPU time is more interesting than the one with
respect to the average element size h. Fig. 4 clearly shows the
benefits of the second order approach since a much higher
accuracy can be obtained for a given computational time.
Results have have been obtained with a direct sparse solver.

A. Critical analysis

While the behavior of the second order Galerkin CM is
in line with theoretical predictions due to its coincidence
with FEM, the second order Whitney CM does not have the
expected dependence on h3 for benchmark 2 and has a very
small constant error for benchmark 1 which is nonetheless
definitely not in the order of the machine epsilon. Differently
from the first order CM, the two approaches do not give raise
to the same stiffness matrix. In fact, in the first order CM,
the identity of the final matrices is due to the fact that some
particular properties hold only for first order edge elements,
e.g. the volume integral of the kth basis function equals the
kth dual face area vector [17]:∫

Ω

~wkdΩ = ~̃Sk (12)

together with additional constraints imposed by the discrete
grad operator.

||V
-V

h||
L2

10-15

10-10

10-5

100100

h
0,01 0,1 11

Galerkin
Whitney
1st order
h2

Fig. 2. Comparison of standard CM, Galerkin and Whitney second order
CM on benchmark 1.
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Fig. 3. Comparison of standard CM, Galerkin and Whitney second order
CM on benchmark 2.
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Fig. 5. Eigenvalue spectra (eigenvalue magnitude vs eigenvalue index in a
sorted list by increasing magnitude) for the Galerkin and Whitney approaches
on a sample mesh.

TABLE I
CONDITIONING OF GALERKIN AND WHITNEY MATRICES

Nodes Cond. Galerkin Cond. Whitney Ratio
1593 4.01 12.58 3.14
5005 19.90 174.03 8.75

16093 49.20 3243.70 65.93
28865 90.37 8310.60 91.97
58493 143.30 16971.60 118.43

Although our analysis of this behavior is not entirely
satisfactory, a possible cause may be related to the widely
different conditioning of the stiffness matrix in the Galerkin
and Whitney cases. Fig. 5 shows the eigenvalue spectrum of
the two approaches for one of the meshes. It can be seen that
while the spectra look similar the conditioning of the matrix
obtained from the Whitney approach is much worse than the
one of the Galerkin approach. Furthermore, Table I shows that
things get worse as the mesh is refined with the conditioning
of the matrix obtained from the Whitney approach becoming
orders of magnitude worse than the one of the Galerkin
approach.

It should also be noted that the Galerkin approach, in spite
of its convergence properties, may be considered somewhat
incoherent with the philosophy of the CM since (10) specifies
the computation of a flux in terms of a volume integral and
thus does not specify explicitly the dual face associated to such
flux. This on the other hand suggests that a different choice of
the faces used for the definition of the fluxes in the Whitney
approach may lead to an improved convergence performance.

V. CONCLUSION

This paper presents a first attempt at developing second
order discrete Hodge operators suitable for the construction
of second order Cell Method or FIT schemes based on
tetrahedral meshes. The merits and deficiencies of two possible
alternatives, based on Whitney and Galerkin construction
schemes, are discussed. Work is in progress to combine the

methodological advantages of the Whitney-type operator with
the computational efficiency of the Galerkin-type one.
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