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Abstract

We describe a one-step detergent solubilisation protocol for isolating a highly active form of Photosystem II (PSII) from 

Pisum sativum L. Detailed characterization of the preparation showed that the complex was a monomer having no light 

harvesting proteins attached. This core reaction centre complex had, however, a range of low molecular mass intrinsic  

proteins as well as the chlorophyll binding proteins CP43 and CP47 and the reaction centre proteins D1 and D2. Of  

particular note was the presence of a stoichiometric level of PsbW, a low molecular weight protein not present in PSII of 

cyanobacteria.  Despite  the  high  oxygen  evolution  rate,  the  core  complex  did  not  retain  the  PsbQ extrinsic  protein 

although there was close to a full complement of PsbO and PsbR and partial level of PsbP. However, reconstitution of  

PsbP and PsbPQ was possible. The presence of PsbP in absence of LHCII and other chlorophyll a/b binding proteins  

confirms that LHCII proteins are not a strict requirement for the assembly of this extrinsic polypeptide to the PSII core in  

contrast with the conclusion of Caffarri et al. (2009). 
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Abbreviations

BN-PAGE Blue native polyacrylamide gel electrophoresis;  Chl Chlorophyll;  DCBQ 2,6-dichlorobenzoquinone; DCMU 

3-(3,4-dichloropheny1)-l,l-dimethylurea;  EM Electron microscopy;  ESI Electrospray ionization;  K3Fe(CN)6 Potassium 

ferricyanide;  LC  Liquid  chromatography;  LHC  Light  harvesting  complex;  MALDI-TOF  Matrix-assisted  laser 

desorption/ionization-time of flight;  MS Mass spectrometry;  OEC Oxygen evolving complex;  PEG6000 Polyethylene 

glycol Mr 6000; PSII Photosystem II;  SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis;  α-DM 

alpha-Dodecylmaltoside; β-DM beta-Dodecylmaltoside

Introduction

There has been considerable success in obtaining detailed information of the structure of Photosystem II (PSII) isolated 

from cyanobacteria (Zouni et al. 2001; Kamiya and Shen 2003; Ferreira et al. 2004 ; Loll et al. 2005; Guskov et al. 2009;  

Shen JR et al. unpublished). The challenge is to extend this degree of structural knowledge to PSII of higher plants and 

green algae. 

There is a number of significant differences between the PSII of cyanobacteria and that of higher plants and green algae.  

Higher plant PSII contains at least two unique low molecular mass subunits not found in cyanobacteria,  the intrinsic 

PsbW and the extrinsic PsbR and,  in the case  of  the extrinsic proteins  which form a part  of  the Oxygen  Evolving  

Complex  (OEC),  the  PsbP  and  PsbQ  (Bricker  and  Burnap  2005)  are  present  rather  than  PsbU  and  PsbV  as  in  

cyanobacteria,  although the latter may have similar proteins under some circumstances (Thornton et al. 2004). Other  

differences concern the outer antenna systems. In higher plants the PSII reaction centre core complex is serviced by an 

intrinsic light harvesting complex (LHC) binding chlorophyll (Chl) a and Chl b, while in cyanobacteria there are extrinsic 

phycobilisomes attached to the stromal surface of PSII, where their phycobilines absorb light and transfer the excitons to  

the reaction centre. This difference in the outer antenna systems suggests significant differences in binding sites for these  

peripheral pigment containing proteins.

So far the structural picture for PSII of  higher plants and green algae is limited to studies using relatively low resolution  

freeze fracture and transmission electron microscopy (Hankamer et al. 1997a; Staehelin 2003; Dekker and Boekema 

2005). At present the highest resolution 3D structures available for higher plant PSII have been obtained at 8 to 9 Å by  

electron cryo-crystallography for the reaction centre core (Rhee et al. 1997; Rhee et al. 1998; Hankamer et al. 2001) and  

about 17 Å by analysis of single particles of a LHCII-PSII supercomplex viewed by electron cryo-microscopy (Nield et  

al. 2000; Nield et al. 2002). The latter has been used to build a more detailed model of the LHCII-PSII supercomplex  
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(Nield and Barber 2006) using the crystal structure of the cyanobacterial core dimer (Ferreira et al. 2004) and the isolated 

higher plant LHCII (Liu et al. 2004; Standfuss et al. 2005), PsbP (Ifuku et al. 2004) and PsbQ (Calderone et al. 2003).  

Clearly such a model has serious limitations and uncertainties. Therefore, to fully address the architecture of the PSII in  

higher  plants  or  green  algae  and to complement  biochemical  and molecular  biological  studies  of PSII  and its  OEC 

proteins (Miyao and Murata 1989; Bricker and Frakel 2003; Meades et al. 2005; Roose et al. 2007; Yi et al. 2008), 

structural information at high resolution is required.

There have been reports of plant PSII preparations which form 3D crystals (Adir et al. 1992; Fotinou et al. 1993; Piano et 

al. 2010), but unfortunately they did not give X-ray diffractions at sufficient quality for analysis.

To make progress with the determination of  higher plant PSII structure it will be necessary to isolate a fully characterized 

and highly active and homogeneous preparation. Several methods have been used to prepare PSII reaction centre cores  

from higher plants which include multiple steps membrane solubilization with rather long exposure to different non-ionic 

detergents (i.e., Triton X-100, n-octyl beta-D-glucopyranoside, beta-dodecylmaltoside (β-DM), digitonin) followed by a 

final isolation step through sucrose density centrifugation (Ikeuchi et al. 1985; Bricker et al. 1985; Haag et al. 1990;  

Hankamer et  al. 1997b; Wang et  al.  2010), column chromatography (Tang and Satoh 1985; Ghanotakis et al. 1987; 

Leeuwen et al. 1991) or a combination of these two methods (Satoh and Butler, 1978). A few of these preparations start 

from  digitonin  solubilized  chloroplasts,  whereas  the  majority  relies  on  grana  membrane  fractions  derived  by 

solubilization of whole intact thylakoids with Triton X-100 (often called BBYs, see Berthold et al. 1981), a detergent  

suggested to partially destabilize PSII (Yu et al. 1993). Nevertheless, such isolated reaction centre cores, depleted of LHC 

proteins and generally characterized by the presence of a minimal number of  subunits (i.e., CP47, CP43, D2, D1, PsbO  

and Cyt b559 alfa- and beta- subunits), have provided an excellent system for the study of primary photochemistry and  

oxygen evolution as well as for structural studies by electron microscopy (EM) (see for review Barber 2003). Single and 

milder detergent treatment of isolated thylakoids has already been performed by using alpha-dodecylmaltoside (α-DM) 

and β-DM, yielding a variety of different oligomeric forms of PSII: monomeric PSII and different sized supramolecular  

LHCII-PSII supercomplexes (Dekker et al. 2002; Bumba et al. 2004, Caffarri  et al. 2009) and a discrete LHCII-PSII 

supercomplex (Eshaghi et al. 1999; Morosinotto et al. 2006) respectively.

In  this  paper  we  describe  an  efficient  one-step  method to  isolate  highly  active  PSII  cores  directly  from thylakoid 

membranes of peas grown under controlled conditions, by performing only one very short and mild solubilization step 

directly on stacked thylakoids. The procedure employs low concentration of a single detergent (β-DM) in combination 

with sucrose density gradient centrifugation in the presence of glycine betaine, avoiding either long multi-step treatments  

with different non-ionic detergents or the requirement of the BBYs intermediate, as commonly reported in the traditional 

PSII core isolation procedures. This is an innovative protocol because it allows the isolation of a highly active PSII core  
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depleted of the light harvesting proteins as is the case for previously reported preparations (Ikeuchi et al. 1985; Tang and 

Satoh 1985; Hankamer et al. 1997b), but retaining an almost full complement of PsbO and PsbR and a considerable  

amount of PsbP among the extrinsic OEC polypeptides, and a conspicuous number of detected small intrinsic proteins 

(i.e., PsbJ, PsbT, PsbI, PsbK, PsbL, PsbF, PsbW, PsbH and PsbE).

 

Materials and methods

Plant growth conditions

Before sowing,  pea (Pisum sativum L., var. Palladio nano) seeds were treated as described in Pagliano et al. (2006). 

Germinated seedlings were transferred to pots and grown hydroponically in Long Ashton nutrient solution (Hewitt 1966)  

into a growth chamber with 8 h daylight, 20°C, 60% humidity and 150 μmol m -2 s-1 photons. Leaves from plants grown 

for three weeks were harvested and used for experiments. 

Thylakoids isolation and PSII preparation

Thylakoids membranes from 21 day-old pea leaves were isolated according to Eshaghi et al. (1999) and finally stored in  

25 mM MES pH 6.0, 10 mM NaCl, 5 mM MgCl2 and 2 M glycine betaine (MNMβ buffer). Thylakoid membranes at a 

Chl concentration of 1 mg ml-1 were incubated for 1 minute with 20 mM β-DM at 4°C in the dark in the presence of the 

protease inhibitor phenylmethylsulphonylfluoride (500 μM). After a short centrifugation at 20000  g for 10 minutes at 

4°C, 450 μl of the supernatant were loaded onto a 0.1-1 M linear sucrose gradient containing 25 mM MES, pH 5.7, 10 

mM NaCl, 5 mM CaCl2, 0.5 M glycine betaine and 0.03% β-DM. This gradient was centrifuged at 39000 rpm for 18 h at 

4°C (TH-641 rotor, Thermo Scientific). The third sucrose band, containing PSII, was carefully removed using a syringe  

and, when necessary, concentrated by membrane filtration with Amicon Ultra 100 kDa cut-off devices (Millipore) and 

then stored at -80°C.

Spectroscopy and pigment analysis

The concentration of Chl was measured according to Arnon (1949). Absorption spectra of sucrose gradient bands were  

recorded using a Lambda25 spectrophotometer (Perkin Elmer). Low temperature (77K) fluorescence emission spectra  

were determined using a FL55 spectrofluorometer (Perkin Elmer), equipped with a red sensitive photomultiplier and a 
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low temperature device. Samples were excited at 436 nm. The spectral bandwidth was 7.5 nm (excitation) and 5.5 nm 

(emission). The Chl concentration was approximately 0.5 μg ml-1 in 90% glycerol/MNMβ buffer.

Oxygen evolution measurements

The oxygen evolution was measured at 20°C using a Clark-type oxygen electrode (Hansatech) under saturating light 

intensity (1000 and 5000 μmol m-2 s-1 photons respectively for thylakoids and PSII). 10 μg Chl of thylakoids (or 5 μg of 

PSII) were added to 1 ml of a medium made of 25 mM MES pH 6.5, 2 M glycine betaine, 10 mM NaHCO 3 and 10 mM 

NaCl, either in the presence or without 25 mM CaCl2. A mixture of 1 mM potassium ferricyanide (K3Fe(CN)6) and 200 

μM 2,6-dichlorobenzoquinone (DCBQ) or 500 μM DCBQ alone were used as electron acceptors for thylakoids and PSII 

respectively.

Biochemical characterization of the isolated PSII complex

The purity of the PSII preparation was analysed by size-exclusion chromatography on a Jasco HPLC system with a 

BioSep-SEC-S 3000 (Phenomenex)  column.  The 20-μl  sample  injected  contained  5  µg of  Chl  and  the  profile  was  

monitored at 280 nm. The mobile phase consisting of 20 mM MES pH 6.5, 10 mM MgCl2, 30 mM CaCl2, 0.5 M mannitol 

and 0.03%  β-DM  passed through the column at a flow rate of  1 ml min-1.  The molecular weight of the complex was 

determined by using a gel filtration calibration kit (Gel filtration standard, Bio-Rad).  Electrophoresis was carried out 

using either the Laemmli’s system (Laemmli 1970) or the Kashino’s system (Kashino et al. 2001) in order to resolve the  

small subunits. In the former, protein bands were resolved on 12.5% polyacrylamide gels in the presence of 5 M urea; in 

the latter on a linear gradient gel (18-22% acrylamide) containing 6 M urea. Pre-stained protein size markers (Bio-Rad)  

were used for estimation of apparent size of PSII components. The separated proteins were either stained by Coomassie 

brilliant  blue  R-250  or  transferred  onto  nitro-cellulose  membrane  and  immunodetected  with  specific  antisera  as  

previously reported (Pagliano et al. 2006). To estimate the amount of PsbP and other subunits present in the PSII core 

(ie., PsbO, PsbR and PsbW), quantitative western blot analyses were performed and calculations done in the following 

way: 1) Standard curves with increasing concentrations of thylakoids (based on Chl level) were generated to test different  

molar amounts of antibodies towards the reaction centre subunits CP47 and D1, as well as the extrinsic polypeptide PsbP  

and other PSII subunits, in order to find a range of linear response antigen-antibody with the most similar signal intensity  

for  all  the  antibodies;  2)  In  the  case  of  PsbP,  five  sucrose  gradient  tubes from five  independent  experiments  were 

completely fractionated from top to bottom in 33 fractions of equal volume, and a same volume of each fraction was 
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loaded on a gel, followed by blotting with antibodies towards CP47, D1 and PsbP at the previously determined molar  

amounts. In this way the signals obtained were not saturated. The sum of the density signals of all the fractions of the 

sucrose  gradient  corresponding  to  the  isolated  PSII  core  was  calculated  for  the  CP47 and  D1  antibodies  (referred  

hereafter to as ∑ CP47 and ∑ D1 respectively), resulting very similar and therefore taken as representative of the 100% of  

the isolated PSII core. Analogous sum of density signals was calculated for PsbP (referred hereafter to as ∑ PsbP) and 

then the ratio between ∑ PsbP and ∑ CP47 was calculated. Similarly the same assessment was conducted for PsbO, PsbR 

and PsbW. Assuming that in the thylakoid membrane there is a constant ratio of 1:1 between these proteins and CP47 and  

D1, then the ratios for these subunits within the isolated PSII core could be estimated.  

Intact  protein complexes were  separated  onto a Blue Native  polyacrylamide  gel  electrophoresis  (BN-PAGE) system 

according to Schagger and von Jagow (1991) by a linear gradient gel (3.5-15% acrylamide). As molecular mass marker, a  

mixture of lyophilized standard proteins (Amersham, high molecular weight, GE Healthcare) was used. 

Cross-Reconstitution experiment

Spinach BBYs, prepared according to Berthold et al. (1981), were washed with 1 M CaCl2 for removal of the extrinsic 

proteins according to Bricker (1992). Briefly, spinach BBYs were resuspended at Chl concentration of 0.1 mg ml -1 in a 

buffer composed of 50 mM MES-NaOH, pH 6.0, 10 mM NaCl, 5 mM MgCl 2, 0.4 M sucrose supplemented with 1.0 M 

CaCl2. After 3 h of incubation in the dark on ice, membranes were centrifugated at 40000 g for 30 minutes at 4°C. The 

supernatant  containing the extrinsic proteins  PsbO, PsbP and PsbQ was dialyzed  against  5 mM Mes/NaOH, pH 5.7 

overnight and further concentrated by membrane filtration with Amicon Ultra 10 kDa cut-off devices (Millipore).

For  cross-reconstitution,  pea  PSII  cores  (100  µg of  Chl)  were  diluted  at  a  Chl  concentration  of  0.05 mg ml-1 in  a 

reconstitution buffer made of 25 mM MES-NaOH, pH 6.0, 10 mM NaCl, 5 mM CaCl 2, 0.4 M sucrose and incubated with 

the spinach extrinsic subunits in a ratio of 1:10 between PSII:OEC for 30 minutes in the dark on ice. After reconstitution, 

PSII cores were diluted at a Chl concentration of 0.75 µg ml-1 in the reconstitution buffer and centrifuged at 47000 g for 2 

h at  4°C after  addition of 40% PEG6000, and the resulting precipitates  finally suspended in a buffer  similar to the  

previous one with the only difference of CaCl2 substituted by MgCl2. 

MS analyses

For mass spectrometry (MS) analysis, bands of interest were cut from the gel run according to the Kashino’s system and  

proteins were digested in-gel with trypsin (Roche), as described by Hellmann et al. (1995).
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MS/MS analysis of the digested peptide was performed using a QSTAR XL hybrid quadrupole-TOF instrument (Applied 

Biosystems)  coupled  with  LC  Packings  Ultimate  nanoflow LC  system  (Dionex).  The  tryptic  peptides  mixture  was  

desalted and concentrated in ZipTipC18 devices (Millipore), and then the eluted mixture was dried in speed vac and 

reconstituted in 0.1% formic acid/5% acetonitrile in water for the separation in nano-HPLC. 

For MALDI-TOF mass spectrometric measurements the isolated PSII complexes (30 μg Chl ml -1) were mixed with an 

equal volume of a saturated matrix (sinapic acid, Laser Biolabs) solution which consists of 60% acetonitrile and 0.1%  

trifluoroacetic acid. After drying droplets of sample onto a target plate, MALDI-TOF mass analysis was performed using 

a Voyager-DE PRO MALDI-TOF mass spectrometer (Applied Biosystems). The instrument was operated in linear mode 

at 25 kV accelerating voltage and 400 ns ion extraction delay with the nitrogen laser working at 337 nm and 3 Hz as 

described in Jin and Manabe (2005). One hundred laser flashes were accumulated per spectrum. Internal calibration was 

performed on the samples premixed with the ProteoMass™ Peptide and Protein MALDI-MS Calibration Kit (MSCAL1, 

Sigma-Aldrich). 

EM analyses

Transmission electron microscopy was performed on material prepared by the droplet method, with 2% uranyl acetate as 

the negative stain, with a Phillips CM200, at 50000 magnifications. 

Results 

1. Isolation of a PSII core complex from Pisum sativum

Pea thylakoids, extracted by young pea leaves and stored in a buffer containing 5 mM MgCl2 to maintain granal stacking 

(Berthold et al. 1981), were usually characterized by a Chl a/b ratio of 3.20-3.30 and oxygen evolution rates around 190  

μmol O2 mg Chl-1 h-1 (either with or without Ca2+ and Cl- in the measurement buffer).

After a very short solubilization of the thylakoids with a low concentration of β-DM, a high percentage of solubilized  

membranes were separated from the insolubilized material and loaded onto the top of sucrose gradient tubes containing 

glycine-betaine. After sucrose density gradient centrifugation five main bands, labeled B1-5, were separated (Fig. 1a).  

The polypeptide composition of each band was assessed by SDS-PAGE (Fig. 1b). It was clear that the bands B1 and B2 

were enriched in LHCII subunits in different state of oligomerization, band B3 contained PSII core proteins and bands B4 

and B5 corresponded to PSI and PSI-LHCI supercomplexes respectively.
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The PSII core located in B3 had no traces of LHCII and PSI proteins, as confirmed either by spectroscopic analyses, with 

absorption peaks at 674 and 437 nm (Fig. 1c) and a single fluorescence (at 77K) emission peak at 685 nm (Fig. 1d), or by  

western blot analyses using antibodies against LHCII and PsaA (Fig. 2).

2. Integrity of the isolated PSII core

a. Polypeptide composition and functionality of the basic core complex

The integrity of the PSII core complex isolated from the sucrose density gradient assessed by comparative western blot 

analyses (Fig. 3a), showed a stoichiometric presence of the CP47, CP43, D2, D1 and the small intrinsic subunit PsbW. 

On the contrary only a low amount of PsbS was detectable (Fig. 3a). 

Compared to other PSII cores depleted of LHCII and isolated by sucrose gradient (Ikeuchi et al. 1985; Haag et al. 1990; 

Hankamer et al. 1997b; Wang et al. 2010), the pea PSII core complex reported here showed a higher integrity in the poly -

peptide composition of the OEC: an almost stoichiometric presence of PsbO and PsbR was confirmed, as well as a detect -

able amount of PsbP (Fig. 3b). On the contrary PsbQ was undetectable and present mainly at the very top of the sucrose 

density centrifugation tube, thus being lost at the beginning of the ultracentrifugation (data not shown). A quantification  

of the amount of the PsbP extrinsic subunit in the PSII core was performed as described in the Materials and Methods.  

Comparing the densities of the non-saturating immunological signals of PsbP with those of the reaction centre subunits  

D1 and CP47 in band B3 (assuming a constant ratio of 1:1 between reaction centre subunits and extrinsics in PSII within  

the thylakoids), the amount of PsbP bound to the PSII reaction centre core was evaluated as 30%, indicative of a retention 

of a significant quantity of this subunit during the isolation procedure. Immunoblotting indicated that the remaining PsbP 

was lost along the sucrose density gradient in lower amount than PsbQ and in a more spread out way (data not shown).  

The partial binding of PsbP probably contributes to the relatively high light saturated oxygen evolution activity displayed 

by the isolated PSII core complex, reaching oxygen evolution rates of 1010 ± 42 μmol O 2 mg Chl-1 h-1 in the presence of 

an optimal concentration of Ca2+ and Cl-  (25 mM CaCl2) in the measurement buffer (and 545 ± 28 μmol O2 mg Chl-1 h-1 

without CaCl2), values comparable or even much higher than those previously reported for monomeric plant PSII cores, 

some of which already used for structural studies (Haag et al. 1990; Hankamer et al. 1997b). Moreover our preparation  

displayed a remarkable sensitivity to 3-(3,4-dichloropheny1)-l,l-dimethylurea (DCMU), indicating that the QB site in the 

PSII core was not severely damaged. Indeed, in the presence of 10 µM DCMU the PSII core displayed a severe inhibition  

(70%) of the oxygen evolving activity, suggesting that, in contrast to previous similar PSII preparations which were com-

8



pletely insensitive to this herbicide (Ikeuchi et al. 1985; Ghanotakis 1987), the mild isolation procedure adopted here is  

able to largely preserve the PSII core from a severe damage of its acceptor side.

b. Small subunits content

In Fig. 4 the Coomassie stained gel according to Kashino and colleagues (2001) shows the polypeptide resolution pattern  

of PSII cores and thylakoid membranes from  Pisum sativum.  The higher resolution of the Kashino’s electrophoresis 

system,  especially  for  the  low  molecular  mass,  allowed  a  far  better  separation  of  the  PSII  polypeptides  than  the 

Laemmli’s SDS-PAGE shown in Fig. 1b and provided samples for nanoLC-MS/MS analyses.

After in-gel trypsin digestion of the bands, nanoLC ESI MS/MS analysis of the digested peptides revealed the identity of 

the first 13 bands, confirming that, besides the presence of the reaction centre subunits D1 and D2 and of the inner  

antenna CP47 and CP43 proteins, other components of the isolated PSII core are: the extrinsic polypeptides PsbO, PsbP, 

PsbR and Psb27 and the small  intrinsic  subunits PsbE and PsbH. Table 1 reports  the sequences  of  peptides of  the  

extrinsics and the small intrinsic subunits identified and sequenced by ESI-MS/MS (third column). For each identified 

protein (fourth column), the protein molecular  mass (Mr),  calculated  from the amino acid sequence  in the ExPASy  

database (fifth column), the accession number of the identified protein and the database in which the protein was found  

(sixth column) and the percentage of residue identities with the  P. sativum,  when available, or  A. thaliana homolog, 

determined  with  the  BLAST  program  (http://www.expasy.org)  and  the  similarity  searching  tool  Proteomes  Fasta 

(http://www.ebi.ac.uk/fasta33/proteomes.html) (seventh column), are reported.

The total  number of  low molecular  mass proteins  identified by MALDI-TOF MS was higher  than that  detected by 

nanoLC-ESI-MS/MS. Figure 5 shows all the small subunits identified by MALDI-TOF as components of the isolated  

PSII cores (from the lower to the higher molecular weight): PsbJ, PsbT, PsbI, PsbK, PsbL, PsbF, PsbW, PsbH and PsbE.  

A list of all the MALDI-TOF assignments for the small subunits is reported in Table 2, as well as some referenced m/z 

peaks  for  these  proteins  when  available  in  the  literature.  It’s  noteworthy  that  the  PSII  components  with  the  lower  

molecular weights (i.e., PsbJ, PsbT, PsbI, PsbK, PsbL and PsbF) could only be identified by MALDI-TOF MS and not by 

nanoLC-ESI-MS/MS  after  in  gel  trypsin  digestion,  probably  because  of  a  the  higher  hydrophobicity  of  these 

transmembrane  proteins  (almost  completely  embedded  in  the  membrane,  due  to  their  short  length),  lowering  the 

accessibility of trypsin enzyme and the presence in their sequences of a lowered number of tryptic cleavage sites.

c. Presence of other polypeptides
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NanoLC ESI-MS/MS analyses revealed the presence of some other polypeptides, either proteins related to the PSII or 

contaminants, in the isolated  PSII core (Fig. 4 and Table 3). In the first category: the thylakoid lumen protein of 18.3 kDa 

(TLP18.3) and the thylakoid-bound FtsH protease, both involved in the regulation of the PSII repair cycle and clearly 

tightly bound to the thylakoid membrane; in the second category: the α and β subunits of the chloroplast CF 1-ATPase, the 

Ferredoxin-NADP+ Reductase  and  the  Rieske  protein  of  the  cytochrome  b6/f  complex,  all  impurities  in  the  PSII 

preparation. The level of these additional proteins, however, is likely to be very low compared to those of the PSII core.

A summary of all proteins identified in the preparation is displayed in Table 3.

d. Restoration of the OEC proteins of the PSII core by cross-reconstitution

Since the mature PsbO, PsbP and PsbQ proteins are highly conserved in higher plants (Bricker and Burnap 2005), the pea 

PSII core could be complemented with these proteins by reconstitution with OEC extrinsic proteins isolated from spinach 

(Fig. 6, lane 3). It is noted that the band of PsbP became somewhat broad and double after reconstitution, the reason for  

this is the slightly different mobility of spinach and pea PsbP. 

This cross-reconstitution allowed the restoration of these OEC polypeptides in pea PSII cores partially missing PsbP and 

completely PsbQ, generating a more complete and homogeneous PSII preparation. However, their binding to the PSII 

reaction centre core gave only a partial restoration of its oxygen evolving capability:  a 12% improvement of oxygen  

evolution rates over the native particles when measured in absence of Ca2+ and Cl- and the same rate with saturating CaCl2 

concentration (Table 4), indicating that the cross-reconstitution protocol could be further optimized to reduce the Ca2+ and 

Cl- requirement for maximum activity.

3. Assessment of the oligomeric form of the isolated PSII core

The oligomeric form of the PSII isolated as band B3 was assessed either by electrophoresis in native conditions or by  

size-exclusion  chromatography.  In  the  first  case,  thylakoid  membranes  solubilized  with  β-DM  (according  to  the 

procedure used for the sucrose gradient separation) and PSII cores were applied directly to BN-PAGE (Fig. 7a). When 

pea thylakoids were solubilized with β-DM, a sharp green band corresponding to the PSII monomer was distinguished 

(340 ± 20 kDa, lane 2), with a molecular mass slightly larger than the purified PSII core complex (320 ± 20 kDa, lane 1) 

which clearly is also monomeric. The different migration length and the less sharp shape of the band of the purified PSII  

core  could be  ascribed  either  to  the sub-stoichiometric  association to  the  core  of  PsbP and PsbQ (both detected  in  
10



comparable amount in the initial and in the solubilized thylakoids,  data not shown) or to a decrease in bound lipids  

corresponding  to  the  increase  in  concentration  of  the detergent  during the isolation procedure  as  suggested  also by 

Takahashi  et  al.  (2009).  The  monomeric  state  of  the  isolated  PSII  core  was  also  confirmed  by  size-exclusion  

chromatography. Fig. 7b shows the size exclusion HPLC profile of the PSII particle displaying a single distinct peak of a  

homogeneous sample eluting at 6.80 min, with molecular mass estimated to be 310 ± 20 kDa.

4. Structural analyses

With respect to PSII enriched membrane fragments (BBYs), in which there is heterogeneity in activity and biochemical 

composition, isolated highly pure PSII core complexes offer a superior experimental system suitable as starting material  

for electron microscopy and single particle analyses and for crystallization trials with the aim to grow 3D crystals of  

higher plants PSII. A preliminary electron microscopy study using negative stain showed that the PSII preparation was  

homogeneous and confirmed that the isolated complex was monomeric.

Discussion

In this paper we describe the isolation of a PSII monomeric core complex by a one-step detergent solubilization of  

thylakoids membranes of Pisum sativum (pea) plants, grown under precise environmental conditions and harvested in a 

consistent way.  Such care was also required for the isolation of PSI from peas for successful crystallization studies  

(Amunts et al. 2005). Following solubilization of thylakoids with 20 mM β-DM in the presence of 2 M glycine betaine, 

we found that almost all PSII was located in a single band (B3) after sucrose density centrifugation. Optical absorption  

spectroscopy,  77K fluorescence spectroscopy,  SDS-PAGE and immunoblot analyses  confirmed that  B3 was highly 

enriched in PSII and established that there was no LHCII present or contamination by PSI. This PSII complex was  

highly active in light induced oxygen production under optimal conditions. The composition of the complex was further 

investigated using high resolution gel electrophoresis (Kashino et al. 2001) and mass spectrometry (MALDI-TOF MS,  

nanoLC-ESI MS/MS), identifying not only the reaction centre proteins (D1 and D2), the inner antenna proteins (CP47  

and CP43) and α- and β- cytochrome b559 subunits, but also low molecular mass intrinsic proteins (PsbH, PsbI, PsbJ,  

PsbK, PsbL, PsbT, PsbW). Traces of PsbS, Psb27, TLP18.3 and FtsH proteins were also detected. 

Of the extrinsic OEC proteins PsbO, PsbP and PsbR were present, although PsbP was non-stoichiometric in contrast to 

PsbO and PsbR. We detected no PsbQ in the preparation, but were able to reconstitute this OEC subunit and also PsbP, 

using proteins isolated from spinach with some benefit for functional activity.
11



Perhaps the most surprising outcome of the mild isolation procedure described here was that the isolated PSII was 

almost exclusively in the form of a monomeric core complex (only traces of a pellet of LHCII-PSII supercomplex was 

present at the bottom of the sucrose gradient tube). Over the years, and based on extensive biochemical and structural  

analyses, it has been concluded that PSII is mainly present in the granal regions of the chloroplast thylakoids of higher  

plants and green algae, where it forms a dimeric core complex with LHCII attached to its periphery (Boekema et al. 

1995; Dekker and Boekema 2005). Monomeric PSII is found in the stromal thylakoids, where it is likely to be located  

transiently as part of the repair-assembly cycle which is characteristic of this photosystem (Aro et al. 2005).

A dimeric organization of PSII in cyanobacteria is also generally accepted and this is the oligomeric state which has  

been used for most X-ray crystallographic studies (Zouni et al. 2001; Ferreira et al. 2004; Loll et al. 2005; Kern et al.  

2005; Guskov et al. 2009). Nevertheless, monomeric PSII is also present after detergent solubilization of cyanobacterial  

thylakoids (Zouni et al. 2001; Kern et al. 2005; Mamedov et al. 2007) and very recently a crystal structure of this form 

of PSII has been reported (Broser et al. 2010). 

However, it has been argued that the monomeric form of cyanobacterial PSII is the native state of the complex in vivo 

and that dimerization is a consequence of the isolation procedure (Watanabe et al. 2009).  In this study, it was shown 

that  with  low  β-DM concentrations  a  monomeric  form  of  PSII  was  isolated,  while  treatment  with  higher  β-DM 

concentrations caused its dimerization. So it has been argued that the detergent was inducing a dimerization and that 

this oligomeric state is an artifact (Takahashi et al. 2009). Whether this is a legitimate conclusion is unclear, but it is a  

difficult  argument  to  apply  to  higher  plants  and  green  algae,  where  EM  studies  have  clearly  identified  that 

supercomplexes binding LHCII and other Chl a/b binding proteins (CP24, CP26 and CP29) have a dimeric PSII core  

(Nield et al. 2000; Dekker and Boekema 2005). This dimeric organization is readily observed in membrane fragments 

(Boekema et al. 1999; Morosinotto et al. 2010) as well as in the isolated LHCII-PSII supercomplex (Nield et al. 2000). 

It  is therefore difficult to reconcile this dimeric state of PSII in higher plants as being an artefact due to detergent  

treatment. It  is  for  this reason that  our results  are surprising.  The solubilization was conducted in the presence  of 

sufficient salts (5 mM MgCl2 and 10 mM NaCl) to keep the grana thylakoids in their stacked configuration and was 

almost complete with only about 5% of total Chl remaining in the pellet after the initial centrifugation. 

In our higher plant monomeric core we detected the PsbL and PsbT small subunits. These proteins together with PsbM 

were suggested to be required for the dimeric organization of PSII in cyanobacteria,  where they are located at the 

monomer-monomer interface (Ferreira et al. 2004; Loll et al. 2005; Kern et al. 2005). However, this idea seems unlikely 

since all three proteins are present in the crystal structure of the monomeric cyanobacterial PSII (Broser et al. 2010). It  

has also been claimed that the PsbW subunit, which is not found in cyanobacteria, is required for dimerization of higher  
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plant PSII and is only found in the dimeric form of the complex (Thidholm et al. 2002). Here we detected this protein in 

the monomeric PSII at a level equal to that of the reaction centre proteins.

We included glycine betaine in our buffers during the isolation of thylakoids and PSII for the purpose of stabilizing the  

OEC extrinsic proteins (Murata et al. 1992; Papageorgiou and Murata 1995; Catucci et al. 1998; Wang et al. 2010).  

This, coupled with the gentle solubilization procedure, did yield a complex with high oxygen evolving rates and binding 

more-or-less  a  full  complement  of  the  PsbO and PsbR proteins  and  about  30% PsbP.  In  contrast,  most  reported 

procedures for isolation of PSII core complexes depleted of LHCII from higher plants resulted in a significant loss of  

OEC extrinsic proteins and none has been reported to bind PsbP or PsbQ. It has been suggested by Caffarri et al. (2009) 

that the reason for this is that LHCII and other Chl a/b binding proteins must be present for their binding to occur as in  

the case of the LHCII-PSII supercomplex (Boekema et al. 1998; Nield et al. 2000) and BBY particles (Berthold et al.  

1981). The fact that we identified about 30% binding of PsbP to an isolated PSII core complex devoid of Chl a/b 

binding proteins places doubt on the conclusion made by Caffarri et al. (2009). Moreover, it seems that reconstitution of 

PSII with PsbP and PsbQ is possible in the absence of the Chl a/b binding proteins although more work is needed to 

optimize the reconstitution protocol. 

It  is  noteworthy that  we detected Psb27, TLP18.3  and FtsH in the PSII  preparation.  All  three proteins have been  

implicated in the turnover of PSII (Sirpiö et al. 2007; Nixon et al. 2010) and, as such, they would be expected to be 

associated with a small fraction of the PSII pool and possibly in a relative loose association with the complex. Their 

presence could reflect the mild solubilization procedure used.

In conclusion we have found that with the detergent treatment reported here, PSII cores can be isolated from higher 

plants mainly as a monomeric complex and that this monomeric form has high oxygen evolving capacity. The reason 

for this is unclear, but presumably represents a combination of factors ranging from the growth regime of the plants to  

the detergent/protein ratio used during solubilization and possibly the presence of a relatively high level of glycine  

betaine in buffers used for isolation. To address whether thylakoids used for this study contained dimeric PSII, other 

procedures were explored and the presence of LHCII-PSII supercomplexes was detected with good yields (details to be 

published in due course), suggesting that the dimeric organization of PSII is the main state in our starting material.  

Nevertheless the reproducibility of the monomeric preparation reported here could provide a source of material for 

crystallization trials and detailed structural studies as has been the case for the cyanobacterial equivalent (Broser et al. 

2010).
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Fig.  1 PSII  core  isolation  and  characterization:  (a)  sucrose  density  gradient  of  solubilized  pea  thylakoids.  Chl 

containing fractions labeled B1-5; (b) SDS-PAGE of prestained protein markers Bio-Rad with their apparent Molecular 

weight (kDa) indicated on the left (lane 1), polypeptide composition of sucrose gradient bands B1-5 (22 µl, lane 2-6) 

and  thylakoid  membranes  (4  µg Chl,  lane  7);  (c)  absorption  spectrum at  room temperature  and  (d)  fluorescence 

spectrum at low temperature (77K) of band B3

Fig. 2

Western blots with antibodies against LHCII and PsaA: pea PSII (1 µg Chl, lane 1) and pea thylakoids (1 µg Chl, lane 

2)

Fig. 3

Western blots with antibodies against PSII intrinsic (a) and extrinsic polypeptides (b): pea PSII (1 µg Chl, lane 1), pea 

thylakoids (1 µg Chl, lane 2)

Fig. 4

Profiles of protein composition of pea PSII and thylakoids membranes resolved by SDS-PAGE according to Kashino et  

al. (2001): pea PSII (5 µg Chl, lane 1), pea thylakoids (10 µg Chl, lane 2), protein standards Bio-Rad (lane 3)

Fig. 5

MALDI-TOF mass spectra of small subunits of isolated PSII. Numerals under the names of PSII subunits indicate m/z 

values. The peak of m/z at 5734.59 corresponds to Insulin (Sigma) as calibration marker 

Fig. 6 

Western blot with antibodies against PsbO, PsbP and PsbQ polypeptides: pea thylakoids (1 µg Chl, lane 1), pea PSII (1 

µg Chl, lane 2), cross-reconstituted pea PSII (1 µg Chl, lane 3)

Fig. 7 Assessment of the oligomeric form of the isolated pea PSII core: (a) BN-PAGE of pea PSII isolated by sucrose 

gradient (0.8 µg Chl, lane 1), solubilized pea thylakoids (3 µg Chl, lane 2) and native high molecular weight marker GE 

Healthcare (lane 3); (b) Size-exclusion chromatographic elution profile of a pea PSII isolated by sucrose gradient

Table title
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Table 1

ESI MS/MS identifications of extrinsic and small intrinsic subunits of isolated PSII

Table 2

MALDI-TOF assignments of small subunits of isolated PSII

Table 3

Subunits composition of PSII core determined by different methods

Table 4

Oxygen evolution of the isolated PSII core and its reconstituted form with the extrinsic proteins measured in a buffer  

composed of 25 mM MES pH 6.5, 2 M glycine betaine, 10 mM NaHCO3 and 10 mM NaCl, either in the presence or 

without 25 mM CaCl2. The O2 evolution rate values are the average of at least four independent determinations
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