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Abstract In Computer Experiments (CE), a careful selection of the design points
is mandatory to predict the system response at untried points, based on the values
observed at tried points. In physical experiments, the protocol is based on Design of
Experiments, a methodology whose basic principles are questioned in CE. When the
responses of a CE are modeled as jointly Gaussian random variables with covariance
depending on the distance between points, the use of the so called space-filling de-
signs (random designs, stratified designs and Latin Hypercube designs) is a common
choice, because it is expected that the nearer untried point is to the design points, the
better is the prediction. In this paper we focus on the class of Latin Hypercube (LH)
designs. The behavior of various LH designs is examined according the Gaussian
assumption, in order to minimize the total prediction error at the points of a regular
lattice. In such a special case, the problem is reduced to an algebraic statistical model
which is solved by using both symbolic algebraic software and statistical software.
We provide closed-form computation of the variance of the Gaussian linear predictor
as a function of the design, in order to make a comparison between LH designs. In
principle, the method applies to any number of factors and any number of levels, and
also to classes of designs other than LHs. In our current implementation, the applica-
bility is limited by the high computational complexity of the algorithms involved.
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1 Introduction

The official start of Computer Experiments (CE) the paper by McKay et al (1979),
while the contribution by Sacks et al (1989b) marked a new step by introducing
model-based methods. A compelling reason for using CE (in a single or a combined
approach with the physical experiments) comes from the fact that physical experi-
mentation may be, in a number of circumstances, expensive or even unapproachable.
On the contrary, the use of numerical experiments in product/process development
phase is relatively inexpensive and, because of that, has become straightforward. The
general availability of comprehensive computing facilities and the recent progresses
in software development make numerical simulation of complex systems an attrac-
tive alternative option to the execution of the expensive and time consuming physical
experiments. Standard modern references are Sasena (2002), Santner et al (2003),
Fang et al (2006).

In this context, a careful selection of the design points or training points is manda-
tory to predict how the unobserved responses depend on the observed ones. In physi-
cal experimentation, the researcher is asked to comply to a well set protocol in order
to achieve correct inferences. Such a protocol is the Design of Experiments (DoE)
methodology which is an helpful tool in carrying on the mentioned objectives. The
design of a CE, when it is used as a surrogate of the physical one, differs in several
aspects from designing a physical experiment and the applicability of basic principles
of DoE is questioned in CE. The selection of an experimental design in CE is a cru-
cial issue to get to an efficient and informative model and cannot be done by merely
importing the concepts developed for physical experiments. This means providing
efficient strategies for sampling the input space in order to get accurate predictions at
untried inputs.

As suggested by the pioneers of the model-based CE, the output can be predicted
by assuming joint Gaussian distribution of the responses with a covariance depending
on the distance between the locations, as it was in the Kriging model, see Krige
(1951) and Cressie (1986). The underlying principle is that the nearer an untried
point is to the design points the better is the prediction. Based on this view, a good
design strategy is to uniformly spread the points across the experimental region. That
prompts to the use of the so called space-filling designs. Random designs, Stratified
designs and Latin Hypercube designs are common choices, see e.g. McKay et al
(1979), Fang et al (2006). The first two designs are not really satisfactory because
they are not space filling marginally, i.e. in individual directions, and, moreover, are
quite not satisfactory for global space filling especially for small number of design
points. Whereas, even if the Latin Hypercube (LH) designs are not very satisfactory
for space filling, they are satisfactory for space filling in individual directions, and
this statement is valid for any number of design points. For a formal treatment of the
subject see Welch et al (1992), Park (1994), Fang et al (2000), Butler (2001).

The content of the paper is as follows. We focus on the class of LH designs among
the different space-filling ones. We want to investigate which LH designs have the
best prediction features.

In Section 2, the Gaussian field is assumed to have distance-dependent covari-
ance (stationarity) and it is defined on a subset of a regular lattice, i.e. the Cartesian
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product of uniform one-dimensional lattices. This case correspond to specific applica-
tions, see e.g. Pistone and Vicario (2009), and it is specially fit for the methodology
we use. The commonly used Euclidean distance is not natural when considering a
regular lattice; therefore we switch to the Manhattan distance, as other authors have
suggested, see Santner et al (2003, p. 138).

In Section 3, we assess the behavior of different LH designs by computing in
closed form the Mean Square Prediction Error (MSPE) of the linear predictor. It
should be noticed that the issue of identifiability which is of the highest importance
in standard DoE is not relevant here.

Section 4 contains the main results of the paper. Specific study of LH design is
performed through an example. We present a step by step discussion of LH designs
with 2 factors with 4 levels each, including a full example of the use of the algebraic
software.

In performing the aforementioned comparisons, there are two tricky computa-
tional problems: First, the computation of variance-covariance matrix of the design
points and, Second, the computation of the closed form expression of the predic-
tors variance. For the former problem, a solution is presented in a particular case of
exponential correlation function, which is actually one of the most commonly used
by the CE practitioners. For the latter, the difficulties are in the computation of the
rational functions in the covariances with rational coefficients. In order to compute
the predictor variances in closed form, we resort to the use of symbolic algebraic
software such as CoCoA (Computations in Commutative Algebra), a freely available
system for symbolic exact multivariate polynomial computation, see CoCoATeam.
Other computations related with the exponential model for covariances are done with
the software R, (http://www.R-project.org/). The final result is a general methodol-
ogy to analyze the MSPE efficiency of classes of interest of training sets for regular
lattices, with covariances of the form of an exponential of the Manhattan distance.
All LHDs are classified according to the algebraic form of the predictor variance and
the algebraic form of the determinant of the correlation matrix (entropy criteria). It is
remarkable to observe that, at least in the examples we discuss, the two classifications
coincide. This and other conclusions are discussed in Section 5.

2 Correlation function on a lattice

Let Y (x) be a zero mean and stationary covariance Gaussian random field over a
design space Xd ⊂ Rd , i.e.

E(Y (x)) = 0,

Cov(Y (x),Y (x+h)) = σ
2
Y R(h;ψψψ),

where σ2
Y is the field variance and R is its Stationary Correlation Function (SCF)

depending only on the displacement vector h between any pair of points in Xd and
on a vector parameter ψψψ . A popular choice for the SCF is the power exponential
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family

R(h;ψψψ) =
d

∏
s=1

exp(−θs|hs|p) = exp

(
−

d

∑
s=1

θs|hs|p
)
, 0 < p≤ 2, (1)

where h = (h1, . . . ,hd), θθθ = (θ1, . . . ,θd) are positive scale parameters, p is a com-
mon smoothing parameter, and ψψψ = (θθθ , p). The conditions on θθθ are necessary and
sufficient for (1) to be positive definite and, therefore, for the existence of a stationary
Gaussian field with an SCF of that form, see Berg et al (1984). The original Krige’s
idea of a positive correlation between the outputs that decreases with increasing dis-
tance between their sites is true for the given SCF.

Our algebraic methodology is best described if we assume equal scale parameters
θs = θ , s = 1, . . . ,d. Moreover, it requires an integer value of p and the Gaussian
field to be defined on a regular square lattice Xd = {1, . . . , l}d . As the Euclidean
distance would not be really adapted to the lattice case, we restrict ourselves to the
case p = 1, i.e. the Manhattan distance, ‖x− y‖1 = ∑

d
j=1 |x j − y j|, as other authors

have suggested, see Santner et al (2003, p. 138).
The SCF has the form

R(h;θ) =
d

∏
s=1

exp(−θ |hs|) = exp

(
−θ

d

∑
s=1
|hs|

)
= exp(−θ ‖h‖1) . (2)

Let us first consider the univariate case d = 1. The distance function is d1(i, j) =
|i− j|, and the covariance function in algebraic form is

R1(h;θ) = exp(−θd1(i, j)) = t |i− j|, h = i− j, i, j = 1, . . . , l,

where t = exp(−θ)> 0.
The matrix of the distances is

D1 =


1 2 · · · l

1 0 1 · · · l−1
2 1 0 · · · l−2
...

...
...

...
...

l l−1 l−2 · · · 0


and the covariance matrix is

Γ1 =


1 2 · · · l

1 1 t · · · t l−1

2 t 1 · · · t l−2

...
...

...
...

...
l t l−1 t l−2 · · · 1

 (3)

If d = 2, the distance function is (see Fig. 1):

d2((i1, i2),( j1, j2)) = | j1− i1|+ | j2− i2|= d1(i1, j1)+d1(i2, j2)
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(i1,i2) (j1,i2)

(j1,j2)

Fig. 1 A representation of the bivariate rectangular lattice X2 = {1,2, . . . , l}2

and the covariance function for h = i− j = (i1− j1, i2− j2) is:

R2(h;θ) = exp(−θd2((i1, i2),( j1, j2))) = t |i1− j1|t |i2− j2|

It follows that the elements of the distance and covariance matrices, ordering rows
and columns in lexicographic order, are given by:

D2((i1, i2),( j1, j2)) = D1(i1, j1)+D1(i2, j2), (4)
Γ2((i1, i2),( j1, j2)) = Γ1(i1, j1)×Γ1(i2, j2). (5)

We write the matrix operations defined in (4) and (5) as D2 =D1⊕D1 an Γ2 = Γ1⊗Γ1,
respectively. Note that D2 and Γ2 are l2× l2 matrices and ⊗ denotes the Kronecker
product of matrices, see e.g. Ortega (1987).

In generic dimension d ≥ 2, we have the induction formulæ

Dd = Dd−1⊕D1, Γd = Γd−1⊗Γ1. (6)

The special algebraic structure of Γd allows us an algebraic treatment of the pre-
diction problem. In particular, the computation of variances and covariances in closed
form may be done by a symbolic algebraic software, so that we can compare the per-
formance of each LH design on the basis of closed form algebraic expressions.

Indeed, the resulting statistical model is special. In fact, one can show by recur-
sion that detΓ1 = (1− t2)l−1 and that Γ−1

1 is tri-diagonal, e.g. for l = 4

Γ−1
1 = (1− t2)−1


1 −t 0 0
−t 1+ t2 −t 0
0 −t 1+ t2 −t
0 0 −t 1


As Γ−1

1 is tri-diagonal, the 1-dimensional case is a Gaussian Markov Chain, pre-
cisely a discrete Ornstein-Uhlembeck process, see (Santner et al 2003, p. 36). The
d-dimensional case is a Kronecker product of Markov chains, therefore it is a Gaus-
sian graphical model. We do not discuss further this interesting point and refer to
Lauritzen (1996).
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It has been observed by one of the anonymous referees that a Gaussian process
with SCF (2) exhibits peculiar symmetries, precisely the joint distribution over the
sites x ∈Xd depends only on the distances ‖x−y‖1, x,y ∈Xd , so that the distribu-
tion is invariant under any transformation of Xd for which the Manhattan distance
between points is an invariant. For example, the classification of subsets with 4 points
of a 4×4 grid we shall obtain in Table 3 is based on the action of the dihedral group
of the square. The method we present here does not require the preliminary study of
such symmetries.

3 Predicting the output on lattice points

Sacks et al (1989a,b) suggested that the joint use of Kriging model as a meta-model
together with Latin Hypercube designs as a training set is the option of choice in CE
where no specific model is imposed by the application itself. The model considers
the response Y (x), for x ∈Xd ⊂ Rd , to be a realization of a Gaussian random field
of the form

Y (x) = f′(x)βββ +Z(x),

where f′(x) = [ f1(x) · · · fm(x)] is a set of specified trend functions, βββ is a vector of
parameters, and Z(x) is a Gaussian random field with zero mean and SCF over Xd .
According to the Krige’s principle, the observed information on the random vector
of the field variables Yn = [Y (x1) · · ·Y (xn)]

′ at the training data set x1, . . . ,xn is used
to predict the unobserved output at x0. The underlying hypothesis, see Santner et al
(2003), which is consistent with the covariance function in (1), assumes that the joint
distribution of Y (x0) and Yn is[

Y (x0)
Yn

]
∼ N

[[
f′(x0)

Fn

]
βββ ,σ2

Z

[
1 r′0
r0 Rn

]]
,

were Fn is the n×m matrix with entries f j(xi), i = 1, . . . ,n, j = 1, . . . ,m, r′0 = [R(x0−
x1) · · ·R(x0−xn) is the correlation vector, and Rn is the n×n correlation matrix whose
(i, j)-element is R(xi−x j), i, j = 1, . . . ,n.

We consider in this paper the ordinary Kriging model, i.e. we assume f′(x)βββ = β ,
so that Y (x) = β +Z(x), where the trend is constant, and we assume the field variance
to be unit, σ2

Z = 1, so that our model reduces to[
Y (x0)

Yn

]
∼ N

[
β1,
[

1 r′0
r0 Rn

]]
.

We use the Linear Unbiased Predictor (LUP). When the covariance is known,
the Kriging methodology uses a linear spatial interpolation, i.e. the random variable
Y (x0) is predicted by an affine combination of the observed random variables,

Ŷ (x0) = a0 +
n

∑
i=1

aiY (xi). (7)

The predictor Ŷ (x0) is unbiased if and only if, for all β , β = E
(
Ŷ (x0)

)
= a0 +

∑
n
i=1 aiβ , i.e. a0 = 0 and ∑

n
i=1 ai = 1. The predictor Ŷ (x0) = ∑

n
i=1 aiYi, ∑

n
i=1 ai = 1
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is the Best LUP (BLUP) if the Mean Squared Prediction Error MSPE[Ŷ (x0)] =
E
(
(Ŷ (x0)−Y (x0))

2
)

is minimized. If β is known, the BLUP is the conditional ex-
pectation of Y (x0) given Yn = [Y (x1) · · ·Y (xn)]

′,

Ŷ (x0) = β + r′0(R
n)−1(Yn−β1) (8)

and the value of the MSPE is 1− r′0(R
n)−1r0.

If β is to be estimated, the BLUP is given by (8) with β replaced by its generalized
least squares estimator

β̂ = (1′(Rn)−11)−11′(Rn)−1Yn

In such a case the MSPE, usually called Kriging variance, is larger because of an
additional uncertainty component:

MSPE[Ŷ (x0)] =
(
1− r′0(R

n)−1r0
)

+(1−1′(Rn)−1r0)
′(1′(Rn)−11)−1(1−1′(Rn)−1r0)

In the next section we shall compute in closed form the MSPE as an algebraic
function of the parameter t = exp(−θ). Since the computational complexity of the
symbolic algorithms is high, any reduction of the number of operation—however
small—is of interest. To this aim, we derive now a more compact form of the BLUP
(7) and of its MSPE, to be used in the following section.

Consider the linear transformation that maps the vector[
Y (x0) Y (x1) · · · Y (xn)

]′
to the vector Ỹ whose entries are Ỹ1 = Y (x0)−Y (x1), Ỹi = Y (xi)−Y (x1), i≥ 2. The
the generic LUP Ŷ (x0) = ∑

n
i=1 aiY (xi), ∑

n
i=1 a1 = 1, can be written as

Ŷ (x0) = a1Y (x1)+
n

∑
i=2

ai(Ỹi +Y (x1))

= (
n

∑
i=1

ai)Y (x1)+
n

∑
i=2

aiỸi

= Y (x1)+
n

∑
i=2

wiỸi,

with unconstrained weights wi = ai, i= 2, . . . ,n. If the wi’s are such that E
(
Ỹ1|Ỹi, i = 2, . . . ,n

)
=

∑
n
i=2 wiỸi the variance

Var

(
Ỹ1−

n

∑
i=2

wiỸi

)
= Var

(
Y (x0)− Ŷ (x0)

)
is minimized. Let

R̃ =

[
R̃11 R̃12
R̃21 R̃22

]
be the covariance matrix of Ỹ partitioned 1|n−1. We have w = R̃12R̃−1

22 and

MSPE[Ŷ0] = R̃11− R̃12R̃−1
22 R̃21. (9)
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Table 1 The 24 LHDs for l = 4 and d = 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
11 11 11 14 14 11 11 11 13 13 13 14 14 13 13 13 12 12 12 14 14 12 12 12
22 22 24 21 21 24 23 23 21 21 24 23 23 24 22 22 23 23 24 22 22 24 21 21
33 34 32 32 33 33 34 32 32 34 31 31 32 32 34 31 31 34 33 33 31 31 34 33
44 43 43 43 42 42 42 44 44 42 42 42 41 41 41 44 44 41 41 41 43 43 43 44

Remark 1 The value of the parameter t = exp(−θ) is usually estimated from the set
of the training points, e.g. by Maximum Likelihood (or the restricted one), cross-
validation or the posterior mode, and plugged in into the formula of the estimator.
The estimated value is plugged into the BLUP formula: the final predictor is no more
linear, even if it is still named Empirical Best Linear Unbiased Predictor (EBLUP).
For a thoroughgoing reading, see Santner et al (2003, 64ff). In this paper, we do not
consider this issue, because the LH designs are compared at each value of the t pa-
rameter in [0,1]. Nevertheless, as the likelihood equations are algebraic, it is possible
to use Algebraic Statistics to discuss such a case as it is done in Catanese et al (2006)
for a different problem.

4 Latin Hypercube designs

A LH design (LHD) is a subset of the ld lattice with l points that fully projects on
each dimension. LHDs where introduced in CE by McKay et al (1979).There are
(l!)d−1 LHDs and their generation reduces to the generation of d− 1 permutations
of 1, . . . , l. Other types of fraction are much more difficult to sample from which
partly explains the popularity of LHDs. See Table 1 for an example with l = 4 and
d = 2. The point (i, j) is denoted by i j; the LHD # 11 proceeds from the permutation
1234→ 3412. It has been observed that some of the LHDs are not attractive because
they do not ensure a sufficient covering of the design space, see e.g. Ye et al (2000).
The covering requirement depends on the closeness between the training points and
prediction ones. The MSPE (9) is:

1. large when x0 is away from the training points x1, . . . ,xn;
2. small when it is close to them;
3. zero at the experimental points because of the interpolatory property of Kriging.

Hence, a good planning should look for a specific choice of an LHD among the
(l!)d−1 that are available. The present paper is aimed to discuss a specific algebraic
methodology to assess the properties of each LHD.

The computation of a BLUP from a LHD requires the inversion of a sub-matrix
of Γd defined in (6). The sub-matrix has a special structure that we illustrate in the
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case l = 4, d = 2. The full covariance matrix is

Γ2 =



11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44
11 1 t t2 t3 t t2 t3 t4 t2 t3 t4 t5 t3 t4 t5 t6

12 t 1 t t2 t2 t t2 t3 t3 t2 t3 t4 t4 t3 t4 t5

13 t2 t 1 t t3 t2 t t2 t4 t3 t2 t3 t5 t4 t3 t4

14 t3 t2 t 1 t4 t3 t2 t t5 t4 t3 t2 t6 t5 t4 t3

21 t t2 t3 t4 1 t t2 t3 t t2 t3 t4 t2 t3 t4 t5

22 t2 t t2 t3 t 1 t t2 t2 t t2 t3 t3 t2 t3 t4

23 t3 t2 t t2 t2 t 1 t t3 t2 t t2 t4 t3 t2 t3

24 t4 t3 t2 t t3 t2 t 1 t4 t3 t2 t t5 t4 t3 t2

31 t2 t3 t4 t5 t t2 t3 t4 1 t t2 t3 t t2 t3 t4

32 t3 t2 t3 t4 t2 t t2 t3 t 1 t t2 t2 t t2 t3

33 t4 t3 t2 t3 t3 t2 t t2 t2 t 1 t t3 t2 t t2

34 t5 t4 t3 t2 t4 t3 t2 t t3 t2 t 1 t4 t3 t2 t
41 t3 t4 t5 t6 t2 t3 t4 t5 t t2 t3 t4 1 t t2 t3

42 t4 t3 t4 t5 t3 t2 t3 t4 t2 t t2 t3 t 1 t t2

43 t5 t4 t3 t4 t4 t3 t2 t3 t3 t2 t t2 t2 t 1 t
44 t6 t5 t4 t3 t5 t4 t3 t2 t4 t3 t2 t t3 t2 t 1



(10)

A generic LHD has the form [1σ(1), . . . ,nσ(n)] and the element of the sub-matrix
with row name iσ(i) and column name jσ( j) is t | j−i|+|σ( j)−σ(i)| = t | j−i|× t |σ( j)−σ(i)|

therefore the sub-matrix is Γ1◦σ(Γ1) where ◦ denotes the component-wise (Hadamard)
product of matrices and σ(Γ1) is the σ -permutation of rows and columns. For exam-
ple, the correlation sub-matrix of the LHD # 11 is


13 24 31 42

13 1 t2 t4 t4

24 t2 1 t4 t4

31 t4 t4 1 t2

42 t4 t4 t2 1

=


1 2 3 4

1 1 t t2 t3

2 t 1 t t2

3 t2 t 1 t
4 t3 t2 t 1

◦


3 4 1 2
3 1 t t2 t
4 t 1 t3 t2

1 t2 t3 1 t
2 t t2 t 1



4.1 The method

We present below a step-by-step description of our algebraic way to perform a com-
parison in the class of LHDs with d variables and/or factors, each one with l levels.
Illustration is given for the case d = 2, l = 4. Computations are organized in a batch
which calls the statistical software R (for the manipulation of the matrices) and the
algebraic software CoCoA (for symbolic computations).

Global covariance matrix. The covariance matrix Γd = Γ⊗d
1 , where Γ1 is given in (3),

is computed by Kronecker products, e.g. (10).
Generation of the LHDs. Generation of permutations of the integers 1,2, . . . , l pro-

duces a l× (l!)d−1 table containing all the LHDs, e.g. Table 1.
Sub-setting. For each LHD and each x0 in its complement the joint covariance ma-

trix is computed by sub-setting Γd ; MSPE for each x0 is symbolically computed
as a rational function of t. The Total of the MSPEs over all points to be predicted
(TMSPE) are obtained for all LHD as rational functions of t and subsequently
TMSPEs are clustered according to the algebraic form of the rational function.
The TMSPE index replaces the Integrated MSPE in the discrete case. For exam-
ple, with l = 4 and d = 2, the following output is obtained from CoCoA. It is a list
of rational functions, each one representing the MSPE of one of the seven classes.
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Table 2 The 24 LHDs for l = 4 and d = 2 classified according the TMSPE criterion (bottom line)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
11 11 11 14 14 11 11 11 13 13 13 14 14 13 13 13 12 12 12 14 14 12 12 12
22 22 24 21 21 24 23 23 21 21 24 23 23 24 22 22 23 23 24 22 22 24 21 21
33 34 32 32 33 33 34 32 32 34 31 31 32 32 34 31 31 34 33 33 31 31 34 33
44 43 43 43 42 42 42 44 44 42 42 42 41 41 41 44 44 41 41 41 43 43 43 44
1 2 3 4 3 4 3 5 3 6 7 2 1 2 3 4 3 4 3 5 3 6 7 2

%% C1:

(2t^8 - 4t^7 - 12t^6 + 4t^5 + 8t^4 + 20t^3 + 12t - 30)/(t^4 - t^2 - 2)

C2:

(t^13 + t^12 + 1/2t^11 - 11/2t^10 - 31/2t^9 - 19/2t^8 - 5/2t^7 + 71/2t^6

+ 43/2t^5 + 71/2t^4 + 13t^3 - 27t^2 - 18t - 30)/

(t^7 + t^6 - 2t^4 - 2t^3 - 4t^2 - 2t - 2)

C3:

(1/2t^15 + 1/2t^14 + t^13 - 4t^12 + 3/2t^11 - 17/2t^10 - 47/2t^9 + 9/2t^8

- 7t^7 + 48t^6 + 59/2t^5 + 49/2t^4 + 16t^3 - 35t^2 - 18t - 30)/

(t^8 + t^7 - 4t^4 - 2t^3 - 5t^2 - 2t - 2)

C4:

(1/2t^14 - 1/2t^12 - 2t^11 + 3t^10 - 4t^9 - 18t^8 + 12t^7 - 27/2t^6

+ 40t^5 + 3/2t^4 + 38t^3 - 39t^2 + 12t - 30)/(t^6 - t^4 - 4t^2 - 2)

C5:

(t^15 + t^14 + t^13 - 7t^12 - 5t^11 - 5t^10 - 23t^9 + 13t^8 + 2t^7

+ 42t^6 + 20t^5 + 20t^4 + 22t^3 - 34t^2 - 18t - 30)/

(t^9 + t^8 + 2t^7 - 2t^6 - 4t^4 - t^3 - 5t^2 - 2t - 2)

C6:

(t^9 - 3t^8 + 2t^7 + 2t^6 - 22t^5 + 8t^4 + 28t^3 + 8t^2 - 9t - 15)/

(t^3 - t^2 - t - 1)

C7:

(3t^8 - 2t^7 + 6t^6 - 9t^5 - 5/2t^4 - 10t^3 + 10t^2 - 3t + 15/2)/

(t^2 + 1/2)

which, in turn, gives rise to the classification shown in the last row of Table 2.
Performance evaluation Each rational function is studied to assess the performance

in each class of LHD. For example, in graphical form as in Fig. 2; the classifica-
tion obtained is best appreciated by looking at a graphical representation of the
24 LHDs in Table 3. Each of the 7 classes is an orbit of the action of the dihedral
group of the square on the set of all LHDs, because of the dependence of the joint
distribution of the Gaussian field on L1 pairwise distance between points.

4.2 Discussion of the example

In this case there is not much difference between that the LHDs if the criteria is TM-
SPE. Some difference can be seen in the second graph showing relative difference
near t = 1, that is θ = 0 (constant covariance). As the computations are symbolic
there is no risk of numerical errors near the critical point. Other criteria have been
suggested, for example based on entropy, see Shewry and Wynn (1987). Our method-
ology, when applied to the entropy instead of TMSPE, produces the same classifica-
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Fig. 2 Performance of LHDs for l = 4 and d = 2

Table 3 24 LHDs classified according the TMSPE criteria

Class

1

2

3

4

5

6

7

tion of LHDs as in Table 2, because of the invariance argument, and the same ranking
of classes.

Class 6 shows the best performance. It consists of LHDs which are maximin in the
L1 distance, see Morris and Mitchell (1995); it also consists of “tilted” 22 designs; the
designs in this class are called U-design in Tang (1993). Classes 3, 4, 5, are essentially
equivalent and worse than class 6. Designs in class 5 are called cyclic designs in Bates
et al (1996). Class 2 is second worse. Classes 1 and 4 consist of regular fractions 42−1.
Class 3 is made of regular fractions 24−2 (pseudo factors).
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Fig. 3 Performance of LHDs for l = 4 and d = 3
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Fig. 4 Performance of LHDs for l = 6 and d = 2

4.3 Other examples

The methodology we have illustrated in the case l = 4 and d = 2 is, in principle,
of general applicability. Fig. 3 shows the results in the case l = 4 and d = 3, and
Fig. 4 the results for l = 6 and d = 2. The choice of these dimensions for levels
and number of factors is merely indicative of the type of comparisons that are avail-
able. The dashed lines represent the TMSPE of the LHDs whose points lie on the
diagonals of the grid. These designs are considered not properly space-filling, even
if they have nice marginal properties and the largest value of the respective TMSPE
confirm their poor capability of prediction. Other remarkable features shown are the
minimum value of the TMSPE corresponding to maximum correlation t = 1 and the
maximum value of the TMSPE corresponding to the null correlation t = 0 between
the training points (i.e. independence, according to the assumption of normality).



13

This is coherent with the Kriging prediction methodology: predicting at an untried
location, observations closer to it should influence more the prediction because of the
existing correlation. In the right-hand graphs, we resort to a different representation
of the comparison index relating the TMSPEs to the worst case, in order to magnify
the differences: the ratios between the TMSPE of the diagonal LH designs and the
ones corresponding to each of the other classes are plotted vs t = exp(−θ) .

5 Discussion

The main result of this paper is the illustration of symbolic computations in a par-
ticular model of Kriging. It shows the potential applicability, in this area, of ideas
from Algebraic Statistics, see. the review in Gibilisco et al (2009). Interesting ex-
ploratory results are obtained, for example the neat classification and ranking of the
4×4 LHDs shown in Table 2, Fig. 2, and Table 3. The same classification and rank-
ing was obtained for other optimality criteria, e.g. entropy. While the classes depend
on the symmetry of the problem under the dihedral group of the square, it is notable
that it is the result of a symbolic computation. The algebraic form is also of use in
evaluating the relative error near the critical point t = 1.

The methodology depends on the algebraic form of the SCF and could be im-
plemented for any class of training set, LHDs being an example. Some of the other
popular performance criteria are based on non-algebraic operations, typically max
MSPE at untried points, and cannot be solved algebraically in a standard way.

This methodology has limitations when the number of levels and/or factors is
large. Indeed, the very high complexity of the symbolic computations limits consid-
erably the dimension of the problems that can be practically solved. In this paper,
we have not tried any optimization of the program we have used, which consists of a
sequence on runs from standard packages, nor we considered writing any ad-hoc soft-
ware. Such an optimization would require the study of efficient ways to generate the
training sets from the class of interest, which is a general problem not depending on
the algebraic methodology, and the study of algorithms for the symbolic computation
of the inverse and the determinant of a correlation matrix with polynomial entries.
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