
03 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An Empirical Validation of FindBugs Issues Related to Defects / Vetro' A.; Morisio M.; Torchiano M.. - STAMPA. - 2011-
1(2011), pp. 144-153. ((Intervento presentato al convegno 15th Annual Conference on Evaluation & Assessment in
Software Engineering (EASE 2011) tenutosi a Durham (UK) nel 11-12 April 2011.

Original

An Empirical Validation of FindBugs Issues Related to Defects

Publisher:

Published
DOI:10.1049/ic.2011.0018

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2382167 since:

IEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234883478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Empirical Validation of FindBugs Issues Related to Defects

Antonio Vetro’, Maurizio Morisio, Marco Torchiano
Politecnico di Torino

first.last@polito.it

Abstract

Background: Effective use of bug finding tools

promise to speed up the process of source code
verification and to move a portion of discovered
defects from testing to coding phase. However, many
problems related to their usage, especially the large
number of false positives, could easily hinder the
potential benefits of such tools.

Aims: Assess the percentage and type of issues of a
popular bug- finding tool (FindBugs) that are actual
defects.

Method: We analyzed 301 Java Projects developed
at a university with FindBugs, collecting the issues
signalled on the source code. Afterwards, we checked
the precision of issues with information on changes, we
ranked and validated them using both manual
inspection and validation with tests failures.

Results: We observed that a limited set of issues
have high precision and conversely we identified those
issues characterized by low precision. We compared
findings first with our previous experiment and then to
related work: results are consistent with both of them.

Conclusions: Since our and other empirical studies
demonstrated that few issues are related to real defects
with high precision, developers could enable only them
(or prioritize), reducing the information overload of
FindBugs and having the possibility to discover defects
earlier. Furthermore, the technique presented in the
paper can be adopted to other tools on a code base
with tests to find issues with high precision that can be
checked on code in production to find defects earlier.

1. Introduction
Automatic static analysis (ASA) is performed on

source code with different goals: improve important
characteristics of code (such as maintainability), check
a standard compliance or detect possible defects. We
call Bug Finding tools those ASA tools whose principal
goal is to identify defects on source code. Bug Finding
tools look for violations of reasonable and

recommended programming practices, bug and design
patterns, and they are able to automatically list all
violations (we call them issues, that are supposedly
defects of the program that ought to be removed),
statically analyzing source code or intermediate code
(at compile time). They are easy to use (it is just a
matter of running the main and check the output), they
are scalable (they can analyze thousands of lines of
code in few minutes). Furthermore, Bug Finding tools
promise to speed up the verification process because
they evaluate software in the abstract, without running
it or considering a specific input. Another possible
advantage in terms of time is that these tools do not
need a working code base, contrary to the other usual
VV activities like testing and code inspections that
have hence a consistent delay injection. Given that the
longer the delay of a fault insert-remove is, the higher
the cost of removing that defect is (Boehm and
Basili(2001)), the introduction of Bug Finding tools in
VV process, and especially in production code, could
lead to important economical benefits.

However, despite all the advantages we have listed,
several problems and obstacles to the adoption of these
tools were identified in the literature in the last years:

•••• high number of false positives (Wagner
et al.(2005)Wagner, Jürjens, Koller,
Trischberger, and München) (Li et al.(2006)Li,
Tan, Wang, Lu, Zhou, and Zhai)

•••• detection of a reduced subset of possible bugs
only (Wagner et al.(2005)Wagner, Jürjens,
Koller, Trischberger, and München) (Zheng
et al.(2006)Zheng, Williams, Nagappan,
Snipes, Hudepohl, and Vouk)

•••• dubious efficiency of the default issues
prioritization decided by tool’s author (Kim and
Ernst(2007))

•••• questionable economical benefits brought by
their usage (Wagner et al.(2008)Wagner,
Deissenboeck, Aichner, Wimmer, and Schwalb)

(Zheng et al.(2006)Zheng, Williams, Nagappan,
Snipes, Hudepohl, and Vouk)

We focus our research on the first problem. In our
previous work (Vetro’ et al.(2010)Vetro’, Torchiano,
and Morisio), we analyzed the issues produced by
FindBugs v1.3.8 (Hovemeyer and Pugh(2004)) on a
pool of 85 similar small programs, each of them
developed by a different student in our university. The
goal of our experiment was to verify which FindBugs
issues were related to real defects on source code and
which not. In the work we present in this paper we
reproduce the same experiment, with the following
improvements: we enlarge the code base (301
projects), we consider the single FindBugs issues
instead of considering only the categories and we use
functional tests failures to validate the relationship
FindBugs between issues and defects in the code. The
knowledge of the issues related to defects is very
important to provide the developers with accurate
information that can be used effectively in developing
and maintaining the software.

We describe the context in which the experiment is
conducted in Section 2. Then we define the experiment
design and discuss threats to validity in Section 3. In
Section 4 we show results and their validation, then in
Section 5 we discuss the results, comparing them with
previous and related work. We conclude in Section 6
summarizing our findings and contributions to the state
of the art and we introduce the future work.

2. Experiment Context
The program pool was developed in the context of

the Object Oriented Programming (OOP) course at the
authors’ university, where students develop Java
programs for the exam. The exam procedure is carried
out on six steps.

1) Teachers define the project and provide the
students with a textual description and a set of
wrapper classes. The students develop a first
version of the program in the laboratory (the
“lab” version) and submit it to a central server
by means of an Eclipse Plugin.

2) A tool on the server, PoliGrader (Torchiano
and Morisio(2009)), manages the delivery
process and runs a suite of black box
acceptance tests (JUnit classes). Acceptance
tests are written by teachers of the course to
check all functionalities required and the
highest possible code coverage is obtained
running tests on a correct solution program.

3) Results of test execution and test source code
are sent back to the students.

4) Students improve the lab version at home,
creating a new version of the program (the
“home” version), that must pass all acceptance
tests. This new version is submitted back to
the server.

5) The PoliGrader tool checks that home
versions pass all tests and compute marks
taking in considerations the numbers of tests
passed in the lab version and the diff between
lab and home version.

6) All information (marks, source code, tests,
and changes) is available to teachers in order
to finally evaluate the students.

The code base used in the experiment consists of
301 Java projects from 7 different exam sessions:
requirements are the same for all projects belonging to
the same session. Each project contains both lab and
home versions syntactically correct, the mean size of
projects is about 200 non commented source statements
(NCSS), each project containing from 4 up to 9 Java
classes. As anticipated above, the issues reported by
FindBugs are violations of rules of correct
programming or bug patterns in the source code that
could be related to real defects: if so, we call them
“good defect predictors”, otherwise “bad defect
predictors”. Moreover, the same issue can be detected
in different places of the code: we call them
occurrences or detections.

3. Experiment Design
Adhering to the Goal-Question-Metric approach

(Basili et al.(1994)Basili, Caldiera, and Rombach) we
first define the goal of the research at conceptual level,
which is formally presented in Table1. The goal aims at
identifying the issues revealed by FindBugs and their
relationship with the defects. Corresponding to the goal
we formulate the research question (RQ1) and
identified the relative metric (M1).

Table 1. Goal of the study

 Goal
Purpose Identify and characterize

Issue issues linked to real defects and
generated

Object
(Process)

by FindBugs 1.3.8 analysis on 301
University Java Projects

Viewpoint from the view point of a student Java
programmer

• RQ1: Which FindBugs issues are related to

defects (good defect predictors) and which not
(bad defect predictors)?

• M1: Issue precision (spatial + temporal
coincidence)

To address research question RQ1 we consider a

main dependent measure: the precision of the issues
(M1) that can be defined as the proportion of the
signaled issues that correspond to actual defects. The
precision is a derived measure that can be computed on
the basis of the following primitive measures: NI, the
number of issues signaled by FindBugs and NA, the
number of issues corresponding to actual defects. To
determine NA we adopted the concepts of temporal and
spatial coincidence, previously presented in literature
in (Boogerd and Moonen(2008)) and (Kim and
Ernst(2007)), and used also in our previous work
(Vetro’ et al.(2010)Vetro’, Torchiano, and Morisio).
We have temporal coincidence when one or more
issues disappear in the evolution from the lab to the
home version, and in the same time one or more defects
are fixed: probably those issues were related to the
fixed defects. In this context defects fixed are revealed
when a test that in lab version fails instead in home
version succeeds. Figure 1 and Figure 2 show a real
example of temporal coincidence, extracted from the
programs examined with FindBugs in the experiment.
We observe in Figure 1 that an issue (self assignment
of a field) is signaled on line 9: the field forum is
assigned to it self. In the evolution from lab to home
version (Figure 2) the student discovers the error and
adds a parameter to the constructor’s method, in such a
way it is assigned to the field forum. The issue
effectively disappears in the home version. However,
the real cause of the fault isn’t on line 9, but on the list
of parameters on lines 1-2-3: in fact the student
modified only line 3 (underlined in Figure 2).

Hence, there is a possibility that a disappearing
issue is not related to the disappearing defect: this is
the noise of temporal coincidence metric that can be
filtered out by adding the spatial coincidence. We
observe spatial coincidence when an issue's location
corresponds to lines in the source code that have been
modified in the evolution from the lab to the home
versions. Figure 3 and Figure 4 show an example of
temporal + spatial coincidence. In the lab version
(Figure 3), an issue is signaled on line 6: it is an infinite
recourse loop, because the function calls itself without
any stopping criterion. In the new version (Figure 4),
the student detects the error and fixes it changing line 6
(underlined): in the home version the issue is no longer

signaled and it was located in the same line changed
during the fix, therefore we observe temporal + spatial
coincidence. In practice the combination of temporal
and spatial coincidence is interpreted as a change
intended to remove the issue, which is linked to a
defect. After the computation of precision with
temporal + spatial coincidence method, we establish 2
precision thresholds and we perform a statistical test
against null hypotheses to determine whether an issue
is a good or bad defect predictor.

Figure 1. Temporal coincidence. Lab Version

Figure 2. Temporal coincidence. Home Version

Figure 3. Spatial + temporal coincidence. Lab Version

Figure 4. Spatial + temporal coincidence. Home Version

The 2 thresholds are:
• a minimum precision threshold that issue must

exceed to be considered as good defect
predictor,

• a maximum precision threshold that issues must
not exceed to be eligible to the role of bad
defects predictors.

Given the exploratory nature of this work, we
decide to consider an issue as a good defect predictor if
it has a precision greater or equal to 50%. Such
threshold is also a compromise between the different
true positive ratios of FindBugs issues found in
literature, and it is higher than the threshold used in
(Vetro’ et al.(2010)Vetro’, Torchiano, and Morisio)
because we want to achieve stronger results. Therefore,
we can formulate the first null hypothesis as follows:

HA0: the precision of issue I is not greater than 50%.

The next step is to find false positives, i.e. bad
defects predictors. We consider as bad defects
predictors those issues with precision <=5%, a very
low threshold, that we consider a strict inclusion
criterion. So we formulate the following null
hypothesis:

HB0: the precision of issues I is not lower than 5%.

Read together, the two hypotheses mean that an
issue I is a good predictor (GP) if hypothesis HA0 can
be rejected, i.e. its precision is >=50%, conversely it is
a bad predictor (BP) (or source of false positives) if
hypothesis HB0 can be rejected, i.e. its precision is
<=5%. The goal of the data analysis is to reject the
above null hypothesis by means of statistical tests.
Since data is not normally distributed, for these tests
we select the Mann-Whitney test (Sheskin(2007)) that
estimates the median. To reject the null hypotheses we
adopt the standard significance level at 5%, that is the
probability of rejecting a null hypothesis when it is true
(type I error).

Furthermore, to increase results reliability, we
perform a sensitivity analysis and a validation of
results. The sensitivity analysis is carried out by
computing threshold ranges in which the composition
of good/bad predictors sets remains the same: in this
way we understand the impact of the thresholds choice
on results, and we also exanimate border values. The
validation is based on the idea that the good predictors
effectively identify real bugs in the programs, therefore
affecting their external quality, whereas the bad
predictors are not related to defects and do not have
impact on external quality. Hence quality of projects
that contain good predictor issues detections should be

lower than the mean quality of all the other projects,
whilst quality of projects that contain bad predictor
issues detections should be not different from the mean
quality of the remaining projects. The proxy for
projects’ external quality is the percentage of passed
tests in lab versions, positively correlated to the quality.
Therefore we carry out the validation by comparing the
proportion of acceptance tests passed by projects
containing at least one occurrence of the issues in the
set to be validated vs. the same proportion in the
remaining programs.

3.1. Data Collection

An issue produced by FindBugs is characterized by
an ID, a textual explanation, and a location in the
source code. The issues are grouped by FindBugs in
category (Bad Practice, Correctness, Style,
Performance, and Malicious Code have at least one
occurrence in the code base) and priority (Low,
Medium, and High): hence the single issue is uniquely
identified by the combination of ID, category, and
priority. We store also their locations in the source
code (file name, class, method, line number) and in the
project (course ID, student ID, lab/home version).
Afterwards, we use the DiffJ tool1 to collect the
changes done to evolve the lab version into the home
version: DiffJ operates on two versions of a Java
program and is able to compute for each pair of
corresponding Java classes which lines changed.
Finally, results of functional tests are obtained through
the PoliGrader tool. The data collection process is
represented in Figure 5.

3.2. Threats to Validity

We can identify three main threats: two external
and one construct threat. The first external threat is: we
study small student projects, hence the application of
findings in industrial context is debatable. However,
this weakness is balanced by the fact that this study
eliminates the effect of developer style on the results,
because a large pool of developers is used for the same
projects. In addition, we recall the study of P. Runeson
(Runeson(2003)), whose conclusions could neither
reject nor accept the hypothesis on differences between
freshmen, graduate students and industry people. We
also draw in section 5.2 similar conclusions. The
construct threat is concerning the identification of
defects. We do not have a bug database but only tests
failures: we make the assumption that all changes are
done to fix a defect. It could be possible that some
changes are not related to real defects, but to other

1 available at http://www.incava.org/projects/java/diffj/

motivations (cleaner code, more readable code, and so
on).

Figure 5. Data Collection Process

Nevertheless, we do not think that this

approximation could affect change results, because
students correct the lab versions doing as few changes
as possible, for two reasons. Firstly, the home version
is the last version of the project and actually no
maintenance has to be done. Secondly students are
discouraged from doing many changes because the
mark suggested by PoliGrader decreases with the
quantity of changes made (see details in (Torchiano
and Morisio(2009))). However, the drawback is that
many issues related to other aspects of quality beyond
the correctness (for example maintainability or
efficiency) could remain in the code and indicated as
bad defects predictors, whilst in other contexts they
could be fixed: this is the final thread.

4. Results
The automatic application of FindBugs on all the

301 projects (both versions, lab and home) produced a
large collection of detections: 1692 in lab versions,
belonging to 77 issues, whilst home versions detections
are 1662, belonging to 73 issues (this does not mean
that 30 issues were removed across all projects, since
the number of issues in home version is given by:
issues in lab version – issues fixed + new issues
introduced). We answer to RQ1 computing Metric M1,
that is the precision of the issues, with respect to
temporal + spatial coincidence. Table 2 indicates
minimum, maximum, 1st and 3rd quartile, median and
mean of precisions (NA/NI) in projects.

The mean of precisions in projects is low (0.126)
and the variability is high (standard deviation is 0.22,
almost the double of the mean). More than 2/3 of
projects have a precision lower than the selected
minimum threshold 0.50 (only 6 projects out of 301
have a higher precision), and in half of the projects
precision is about 1/5 of this threshold. These
observations show that the threshold selected is very

strict, despite of the initial considerations. Table 3 and
Table 4 show the issues for which we could reject
either of the two null hypotheses. We do not provide
the precision of issues for which we can not reject
either of the two null hypotheses because of their large
number (77), however the full list is available on line2.

The columns in the tables show: the issues ID, the
average precision (sum of NA/sum of NI), the
estimated median of precision, and finally the p-value
of the Mann-Whitney single-tailed test.

Table 2. Distribution of issues precision

Min 1st q Median Mean 3rd q Max

0 0 0 0.126 0.20 1

Table 3. Precision of good defect predictor issues

Issue ID NA/NI

Prec.
Est.

p-val

GC_UNRELATED_TYPE
S (Correctness,1)

12/15 1 0.048

SA_FIELD_SELF_ASSIG
NMENT(Correctness,1)

7/10 1 0.012

UR_UNINIT_READ
(Correctness,1)

6/7 1 0.012

UUF_UNUSED_FIELD
(Performance,2)

26/55 0.5 0.045

Table 4. Precision of bad defect predictor issues

Issue ID NA/NI Prec.
Est.

p-val

DM_NUMBER_CTOR
(Performance,2)

0/6 0 0.018

DM_STRING_CTOR
(Performance,2)

0/29 0 <0.01

DM_STRING_TOSTRING
(Performance,3)

0/5 0 0.018

EQ_COMPARETO_USE_
OBJECT_EQUALS
(Bad_Practice,2)

5/275 0 <0.01

ES_COMPARING_STRIN
GS_WITH_EQ
(Bad_Practice,2)

0/10 0 <0.01

IL_INFINITE_LOOP
(Correctness,1)

0/5 0 0.036

NM_CLASS_NAMING_C
ONVENTION
(Bad_Practice,2)

0/17 0 <0.01

NM_CONFUSING
(Bad_Practice,3)

0/6 0 0.01

2 http://softeng.polito.it/vetro/confs/ease2011/data.zip

NM_METHOD_NAMING
_CONVENTION
(Bad_Practice,2)

2/44 0 <0.01

NP_NULL_ON_SOME_P
ATH (Correctness,2)

0/4 0 0.036

OS_OPEN_STREAM
(Bad_Practice,2)

0/71 0 <0.01

OS_OPEN_STREAM_EX
CEPTION_PATH
(Bad_Practice,3)

0/5 0 0.018

SE_BAD_FIELD
(Bad_Practice,3)

0/11 0 <0.01

SE_COMPARATOR_SHO
ULD_BE_SERIALIZABLE
(Bad_Practice,2)

0/49 0 <0.01

SIC_INNER_SHOULD_B
E_STATIC_ANON
(Performance,3)

0/92 0 <0.01

URF_UNREAD_FIELD
(Performance,2)

33/259 0 <0.01

The set of good defects predictors is composed of 4

elements: 3 out of 4 have an estimated median
precision of 1, the double that of the threshold. The
median of the last issue, UUF_UNUSED_FIELD
(Performance, 2), is exactly the threshold value: this is
a border value and it will be examined in depth in
Section 5. The 4 issues are:

• GC_UNRELATED_TYPES: a call to a generic
collection method that contains an argument
with an incompatible class from the collection’s
parameter.

• SA_FIELD_SELF_ASSIGNMENT: a self-
assignment of a field, like int y = y.

• UR_UNINIT_READ: the constructor reads a
field which has not yet been assigned a value.

• UUF_UNUSED_FIELD: a field is never used.

In contrast there are many more issues among the
defect predictors set i.e. 16. All of them have median =
0. Since they are many, for their descriptions please
refer to FindBugs website3.

We perform a sensitivity analysis of results to check
their stability with respect to the inclusion criteria: we
compute the threshold ranges in which the composition
of groups remains the same. The good predictors set is
stable in the range 0.21–0.50. For threshold values
greater than 0.5 the issues GC_UNRELATED_TYPES
(Correctness,1) and UUF_UNUSED_FIELD

3 http://findbugs.sourceforge.net/bugDescriptions.html

(Performance,2) are excluded, and above 0.51 the set
becomes empty. Analyzing instead lower bound, a new
issue could be included in the set of good predictors
only putting a very low threshold: at 0.20 issue
NP_UNWRITTEN_FIELD (Correctness,2) could enter
the group, and 2 more issues can enter with even lower
thresholds : 0.12 and 0.11. Since the upper bound is
already very strict and lower bound must be relaxed
from 0.50 to 0.20 to change the set, we can affirm that
results about good predictors are reliable.

The sensitivity analysis of bad predictors have the
following result: the set is stable in the threshold range
0 – 0.15, so again a wide range. In fact we should use a
high threshold, 0.16 (3 times bigger than the 5% of the
original one) to change the set and include a new issue,
NM_FIELD_NAMING_CONVENTION(BadPractice,
3). A further issue, REC_CATCH_EXCEPTION
(Style,3), enters only with threshold = 0.25. We
conclude that also bad predictors set is robust.

4.1. Validation of Good Defects Predictor
issues

Figure 6 shows the boxplots of passed tests
percentages in lab versions: NO_GP is the set of
projects that do not contain any detection of a good
predictor issue (259 projects), while GP is the set of
projects containing at least one good predictor issue
detection (the remaining 42 projects). The box plots
clearly show that external quality of GP set is lower
than external quality of NO_GP set: medians are
respectively 63.64% and 40.91% . According to Mann-
Whitney tests, we observe significant (p=0.001)
differences between the two groups of projects. The
95% confidence interval for the difference between the
medians is [6.29,∞]. There is strong statistical evidence
that average external quality of projects with at least
one good defect predictor issue detected is lower than
the average externally quality of all projects. It is very
likely that defects in projects with lower quality are
correctly identified by the good predictor issues.

We continue the validation and we inspect all the
good predictors issues signaled on source code,
manually determining whether they were correctly
detected by the tool and whether the problem signaled
actually caused a wrong behavior of the program
(failure of functional test). The detections of issues
identified as good defects predictors are 87. We present
the results of the manual code inspection in Table 5:
for each issue, we indicate the ID, the total number of
detections, the number of correct detections and the
number of detections that impacted the functionality.
Three issues of four have all detections correct and are
the cause of an incorrect behavior of the program.

Figure 6. Box plots of passed tests percentages: good

defect predictors

Figure 7. Box plots of passed tests percentages: bad defect

predictors

Table 5. Manual inspection of good defects predictors

issues

Issue Nr of
dete-
ctions

Correct
detections

Impact on
functiona-
lity

GC_UNRELATED_T
YPES (Correctness,1)

15 15 15

SA_FIELD_SELF_AS
SIGNMENT(Correctn
ess,1)

10 10 10

UR_UNINIT_READ
(Correctness,1)

7 7 7

UUF_UNUSED_FIEL
D (Performance,2)

55 46 0

UUF_UNUSED_FIELD (Performance,2) is the

exception: we discuss it in Section 5.

4.2. Validation of Bad Defects Predictor Issues
Figure 7 contains boxplots of passed tests

percentages: NO_BP is the set of projects that do not
contain any detection of a bad predictor issue (they are
just 9), on the right BP is the set of projects with at
least one detection of a bad predictor issue (292
projects). We observe that projects BP have higher
percentages of passed tests then NO_BP projects. The
medians are respectively 62.02% and 31.25%.

However, the number of projects in NO_BP is so small
that they cannot be a representative sample. In fact,
although medians are so different, the null hypothesis
that the two medians are equals cannot be rejected with
α=0.05 and p-value is 0.1041 (according to Mann-
Whitney test). The 95% confidence interval for the
difference is [-∞,+3.75]. We can therefore assume that
no difference exists among the two sets. We do not
perform a manual validation because of the high
number of detections related to bad predictors issues
(888 in lab versions): we consider the manual check of
a representative sample of this bigger population an
error prone task.

5. Discussions
5.1. Discussion on Results

Answer to RQ1. On the basis of the temporal +
spatial coincidence criterion, issues related to defects
are: call to unrelated types, field self assignment,
uninitialized read of field in constructor (Correctness,
1), and unused field (Performance,2).

The manual validation (see Table 5) of detections
showed that Correctness detections are all valid and
have an impact on functionality. However, the
Performance issue is the only one that has no correct
detections that cause an incorrect behavior of the
program. This fact is reasonable because the issue, as
the name of the category suggests, is just signaling
waste of memory (variable never used), and it is not a
real error (because in this kind of little Java projects,
performance of the program is neither mission nor
safety critical). However, since their detections are
about the 63% of all detections in the set (see Table 3),
their contribution to the external quality prediction is
important. In fact, there is a reason why projects with
detections of unused fields have lower quality: their
presence in a program means that the student
encountered difficulties in the design of the program,
because he planned to use more/different variables that
in fact were not necessary. In contrast students who
developed applications with higher external quality did
not have this kind of problem. This is the reason why
we decided to leave this issue in the set of good defect
predictors issues, despite the category it belongs is
Performance. Furthermore, the double validation
process confirmed that all the 4 issues have a clear
impact on external code quality and they can be
considered as good defects predictors, with high
confidence.

We also identify 16 issues that are bad defects
predictors, and the statistical validation performed in
Section 4.2 confirms that their detection has no
correlation with the external quality of the projects.

However, we should be cautious with the bad defects
predictors set, because the effect of the third threat to
validity could affects this result. In fact, students must
make as few changes as possible, otherwise their mark
will decrease: for this reason, they just correct errors
and do not perform any change related to performance,
maintainability or even errors that are in impossible
paths. Therefore, it is probable that in industrial
projects some of these issues could be fixed by
developers. Observing the type of issues in the set, we
could assert that the majority of them could be related
to this fact. For instance, 3 issues are naming
convention violations, whose importance for code
comprehension is well known, and 4 of the 5 issues
belonging to the category Performance are memory
leaks (useless constructor of String and Number,
unread field and field that should be static). The fifth
issue of Performance, i.e. useless toString()
applied on a String, could indicate that students have
not fully understood the nature of the objects in Java,
as the GC_UNRELATED_TYPES “good” issue
demonstrates. Also the issues on the comparison of
Strings or Objects with == (Bad Practice) could be
related to this problem. The remaining issues of
category Bad Practice do not signal bugs but do
indicate code that could lead to a waste of resources or
to difficulties in maintenance. Finally, there are 2 issues
in the category Correctness in the list: the infinite loop
and the null pointer dereference in some path. We
checked them manually and we discovered that they are
actually errors: however all the 9 detections are on
unfeasible paths, and this is probably the reason that
students did not notice these errors with tests
execution. Thus, we decided to remove the two issues
of category Correctness from the list of bad predictors.

An important practical application of the findings is
a filtering strategy that can avoid information overload
on developers caused by a very large number of
detections. In particular fixing issues with a low
probability of being related to a defect is dangerous
because we know from Adam’s law (Adams(1984))
that the probability of introducing a new error during a
fault correction is always greater than zero. The
ranking could be adopted by developers that want to
enable only those issues with the highest precision. For
instance, in this experiment, the good defects predictors
issues are just 4 out of 359 in FindBugs 1.3.8 database
(about 1%) and they are responsible for only the 4.4%
of all detections in lab versions. Instead, the bad
predictors issues (about 4% of the complete set)
produced about the 45% of detections in lab versions.

Furthermore, from an educational perspective,
although the occurrences of good predictors are few,

we consider them important topics to be stressed more
in future iterations of the OOP course.
5.2. Comparison with Previous and Related
Work

In our previous work (Vetro’ et al.(2010)Vetro’,
Torchiano, and Morisio), we analyzed a smaller
repository of OOP projects (85 projects) and we
studied the precision of issues at group level
(combination of category and priority): the analysis
demonstrated that only 2 groups (Bad Practice High,
Correctness High) out of 15 groups of issues could be
considered as reliable predictors of actual defects, and
one group of issues (Bad Practice Medium) had a
precision that was practically negligible.

We group the good and bad defects predictors
issues found in this study with the same criteria of the
previous work to compare the findings. Since the
repository in the replicated study is bigger, we find
more issues and more groups, however the group
Correctness High is still in the good defects predictors
set as Bad Practice Medium is still the Bad Defect
Predictors set. The group Bad Practice High instead is
not present in either of the two sets. Therefore, 2 out of
3 groups are confirmed in the respective sets and there
are no conflicts in the group compositions of the two
studies: we conclude that the finding of our previous
work are confirmed and improved in this study.

 Before us, Boogerd and Moonen (Boogerd and
Moonen(2008)) (Boogerd and Moonen(2009)) and
Kim and Ernst (Kim and Ernst(2007)) also used
temporal and spatial coincidence in their research. Our
research confirms the findings of Boogerd and
Moonen: a reduced set of rule violations are related to
defects in source code, and many violations are not
related to real defects. Furthermore, in our analysis
there are 3 high priorities issues and 1 medium priority
in the good defects predictors, whilst the majority of
issues in the bad predictors set are medium and low
priority (respectively 10 and 5 issues, 1 high priority):
thus the tool’s default prioritization of issues seems to
be effective, in contrast with what is found by Kim and
Ernst (Kim and Ernst(2007)) in open source projects.
In the same study, the authors list the FindBugs issues
with shortest and longest “life” in multiple versions of
two open source projects: the underlying idea is that if
some issues are resolved quickly by developers, those
issues are important and likely related to real defects.
The issue self assignment of field, that we identify as
good defect indicator, is also among the issues with
shortest life in one of the two projects analyzed by Kim
and Ernst. The bad defect predictors issues in common
are instead two:
ES_COMPARING_STRINGS_WITH_EQ and

OS_OPEN_STREAM, both of (BadPractice,2).
Furthermore, we do not observe any conflict, i.e. none
of our “good” issues have long life in the experiment of
Kim and Ernst and none of the “bad” have short life.

We are also able to compare our findings with the
findings of Ayewah and Pugh (Ayewah and
Pugh(2010)), who analyzed thousands of FindBugs
warnings fixed by engineers during the May 2009
“Google FixIt”. The authors used a lightly modified
temporal coincidence to find which FindBugs issues
were fixed with higher frequency in the Google code
base in a period of 9 months. In their paper they show
12 issues with high removal rate and 3 with low
removal rate, distinguishing issues only by bug pattern
and category. We found in the first set 3 out of 4 of our
“good” issues (only the self assignment is not present).
Moreover, “our” bad issue DM_NUMBER_CTOR
(Performance) has low fix rate. The only conflict found
is provoked by the issue
NP_NULL_ON_SOME_PATH, that was originally in
our bad predictors set and has a high removal rate in
the other study: this confirms our choice to take it out
from the set of bad defects predictors (see 5.1).

In a previous work of the same authors, (Ayewah
et al.(2007)Ayewah, Pugh, Morgenthaler, Penix, and
Zhou), they tried to understand the efficiency of
FindBugs by manually checking medium/high priority
Correctness issues signaled on 3 projects. The authors
further classified issues in 4 groups, based on their
impact on code. Overall, they observe that in JDK
1.6.0-b105 almost 50% of them had an impact
(misbehavior of the program), a further 10% had a
serious impact, 160/379 were trivial, whilst 5 issues
were due to bad analysis by FindBugs. We find among
the issues with at least one impact or serious impact the
uninitialized read of field in constructor (1 detection
had impact and 7 tagged as trivial) and the self
assignment of field (1 “impact” and 2 “trivial”). Thus,
there is no conflict between our study and theirs. In the
same paper the authors provide the results of a similar
review that was performed at Google, where they
classified issues reviewed in impossible (i.e. wrong
detection), trivial, open, fixed. Looking at the results, 2
out of 13 uninitialized reads were fixed (but 7 were
wrong), whilst all the 7 detections of the issue
GC_UNRELATED_TYPES (Correctness) were still
open. Among the 12 detections of the self assignment
issue, 5 were fixed, 1 classified as trivial and the
remaining left open. Among the set of our bad issues
we found two conflicts, because both the two
Correctness issues in the initial set of bad defects
predictors were instead related to real defects in the
Google Code Base. In fact, 30 out of 31 warnings of

infinite loop were corrected and 35 out of 98 detections
of possible null pointer deference were fixed (but 10
tagged as trivial and the remaining half was a detection
error or still open). However, since after discussion in
5.1 we removed these issues from the set, this conflict
also confirms our decision.

In summary, the bad defects predictor issues in
common with other studies are few: the low reliability
of bad issues set is explained by the construct threat,
because students fixed only code that caused a test
failure, and did not look to other aspects like
performance and maintainability that are signaled by
FindBugs issues. This fact, on the flip side, together
with the double empirical validation that we conducted,
make results on the “good” issues very reliable,
because we have a high confidence that changes were
made to fix errors, and the disappearing issues were
related to that errors. Additionally, we observe that
these issues are a subset of those ones identified by
other studies conducted in industrial and open source
projects. Therefore, we can assert that the empirical
evidence of the goodness of these issues is growing in
literature. For this reason, these issues could have
higher priority than others and ease the tool
customization, having a practical impact of filtering
issue notifications for developers that should reduce the
information overload. Furthermore, the adoption of our
modification of the temporal + spatial technique with
information on test failures, could be used in other
contexts. In fact, issues with highest precision can be
identified in programs that are already tested and then
used to check software that is still in production code:
in this way many bugs could be found before the
testing phase, when the removal cost is lower.

Finally, we can also assert that our main external
threat (study on small students projects) has a weak
impact, because our results are generally consistent
with the findings of similar studies.

6. Conclusions and Future Work
We analyzed the relationship between FindBugs

issues and defects on 301 University Java projects,
using information on changes in source code and tests
failures. We obtained that only 4 issues could be
considered as reliable predictors of real defects and 14
issues had a negligible precision. We compared the
results with our previous work, confirming the former
findings. Subsequently we compared our results with
three similar studies in the literature: we found few
intersections for the set of bad defects predictor issues.
However, the issues we classified as good defect
predictors were also identified as related to defects by
other researchers, and no conflicts were found. In

summary, the main contributions of this work are: we
provide more empirical evidence about the validity of
some issues as bug predictors (I) and we improve the
temporal + spatial coincidence technique using tests
failures information (II).

Our future work will be devoted to a repetition of
this study on industrial and open source projects.

7. References

[Adams(1984)] Adams, E. N., 1984. Optimizing
preventive service of software products. IBM Journal
of Research and Development 28 (1), 2–14.
[Ayewah and Pugh(2010)] Ayewah, N., Pugh, W.,
2010. The google findbugs fixit. In: Proceedings of the
19th international symposium on Software testing and
analysis. ISSTA ’10. ACM, New York, NY, USA, pp.
241–252.
[Ayewah et al.(2007)Ayewah, Pugh, Morgenthaler,
Penix, and Zhou] Ayewah, N., Pugh, W.,
Morgenthaler, J. D., Penix, J., Zhou, Y., 2007.
Evaluating static analysis defect warnings on
production software. In: PASTE ’07: Proceedings of
the 7th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering.
ACM, New York, NY, USA, pp. 1–8.
[Basili et al.(1994)Basili, Caldiera, and Rombach]
Basili, V., Caldiera, G., Rombach, D. H., 1994. The
goal question metric approach. In: Marciniak, J. (Ed.),
Encyclopedia of Software Engineering. Wiley.
[Boehm and Basili(2001)] Boehm, B., Basili, V. R.,
2001. Software defect reduction top 10 list. Computer
34 (1), 135–137.
[Boogerd and Moonen(2008)] Boogerd, C.,
Moonen, L., 28 2008-Oct. 4 2008. Assessing the value
of coding standards: An empirical study. Software
Maintenance, 2008. ICSM 2008. IEEE International
Conference on, 277–286.
[Boogerd and Moonen(2009)] Boogerd, C.,
Moonen, L., 2009. Evaluating the relation between
coding standard violations and faults within and across
software versions. In: MSR ’09: Proceedings of the
2009 6th IEEE International Working Conference on
Mining Software Repositories. IEEE Computer
Society, Washington, DC, USA, pp. 41–50.
[Hovemeyer and Pugh(2004)] Hovemeyer, D., Pugh,
W., 2004. Finding bugs is easy. In: OOPSLA ’04:
Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications. ACM, New York, NY,
USA, pp. 132–136.
[Kim and Ernst(2007)] Kim, S., Ernst, M. D., 2007.
Prioritizing warning categories by analyzing software

history. In: MSR ’07: Proceedings of the Fourth
International Workshop on Mining Software
Repositories. IEEE Computer Society, Washington,
DC, USA, p. 27.
[Li et al.(2006)Li, Tan, Wang, Lu, Zhou, and Zhai] Li,
Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C.,
October 2006. Have things changed now? An empirical
study of bug characteristics in modern open source
software. In: ASID ’06: Proceedings of the 1st
workshop on Architectural and system support for
improving software dependability.
[Runeson(2003)] Runeson, P., 2003. Using students as
experimental subjects - an analysis of graduate and
freshmen student data. In: Proceedings of the 7th
International Conference on Empirical Assessment in
Software Engineering (EASE 2003). pp. 95–102.
[Sheskin(2007)] Sheskin, D. J., January 2007.
Handbook of Parametric and Nonparametric Statistical
Procedures, Fourth Edition. Chapman & Hall/CRC.
[Torchiano and Morisio(2009)] Torchiano, M.,
Morisio, M., 2009. A fully automatic approach to the
assessment of programming assignments.
INTERNATIONAL JOURNAL OF ENGINEERING
EDUCATION 24 (4) (0), 814–829.
[Vetro’ et al.(2010)Vetro’, Torchiano, and Morisio]
Vetro’, A., Torchiano, M., Morisio, M., 2010.
Assessing the precision of FindBugs by mining java
projects developed at a university. In: MSR. pp. 110–
113.
[Wagner et al.(2008)Wagner, Deissenboeck, Aichner,
Wimmer, and Schwalb] Wagner, S., Deissenboeck,
F., Aichner, M., Wimmer, J., Schwalb, M., 2008. An
evaluation of two bug pattern tools for java. In: ICST
’08: Proceedings of the 2008 International Conference
on Software Testing, Verification, and Validation.
IEEE Computer Society, Washington, DC, USA, pp.
248–257.
[Wagner et al.(2005)Wagner, Jürjens, Koller,
Trischberger, and München] Wagner, S.,
Jürjens, J., Koller, C., Trischberger, P., München,
T. U., 2005. Comparing bug finding tools with reviews
and tests, 40–55.
[Zheng et al.(2006)Zheng, Williams, Nagappan,
Snipes, Hudepohl, and Vouk] Zheng, J.,
Williams, L., Nagappan, N., Snipes, W., Hudepohl,
J. P., Vouk, M. A., 2006. On the value of static analysis
for fault detection in software. Software Engineering,
IEEE Transactions on 32 (4), 240–253.

