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Abstract. The transport properties of magnetized plasma configurations are studied that arise
from a one-dimensional, current layer that is unstable to reconnecting modes. These magnetic
configurations are partially stochastic. It is shown that ridges in the Finite Time Lyapunov
Exponents (FTLE) distribution are aligned with the invariant manifolds related to the lines of
uniform hyperbolicity. It is shown that these ridges form approximate Lagrangian Coherent
Structures (LCS) and act as barriers to the transport of magnetic field lines.

1. Introduction
In this paper we study the spatial topology of 3D magnetic configurations with a strong
background magnetic field. Such configurations will be a mixture of volumes where the field is
regular and the field lines form periodic or quasi-periodic trajectories, and volumes where the
field is irregular and the trajectories are chaotic. The standard tool for analyzing such structures
is the method of Poincaré sections in which the field equations are integrated for sufficiently large
values of the parameter along the field lines that plays the role of an effective-time and one starts
from many initial conditions. Although this technique is rather powerful, it has some serious
limitations. In the first place it is limited to periodic or quasi-periodic systems and cannot deal
with fully 3D systems. In the second place, Poincaré plots will not tell you where and to what
degree a system becomes chaotic so that it does not provide information on the transport process
that characterize the transition from local to global chaos.
The magnetic field is represented by

B = B0ez + ez ×∇Ψ, (1)

where the strong background field B0 is constant and normalized to unity, and Ψ = Ψ(x, y, z, t)
is the poloidal magnetic flux function, which varies in time under a reconnection process.
At each time t the trajectory x(z; z0,x0) of the magnetic field passing through x(z0) = x0, obeys
the Hamiltonian system

dx

dz
= −∂Ψ

∂y
,

dy

dz
=
∂Ψ
∂x

. (2)

These equations describe a dynamical system moving in field line time z in the (x, y) plane in
the presence of a flow field with components (−Ψy,Ψx).
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The system is integrable if the flux function does not depend on the field-line-time, i.e., the
axial coordinate z. Then, the elliptic and hyperbolic points of (2) are the solutions for which its
right-hand vanishes.
At a hyperbolic point (X-point) lines emanate, the separatrices, that form the stable and unsta-
ble manifolds associated with the hyperbolic point. These manifolds, curves in the (x, y) plane
in the 2D context, are invariant surfaces that separate topologically different type of field lines,
i.e., they separate regions with closed field lines from regions with open field lines.
Perturbations that are z-dependent will destroy the integrability. The position of an X-point,
i.e. a point where the gradient of the flux function vanishes, will also be z-dependent. The path
that is traced out by such a point is, however, not a solution of Eq.(2). This means that in 2D
motions with arbitrary z-dependence, the trajectory of the ”instantaneous” X-point of the field
is not a hyperbolic trajectory and no invariant surfaces are related with it! Nevertheless, there
exist hyperbolic trajectories in 3D phase-space (x, y, z) that are the generalizations of the 2D
hyperbolic points. Such a trajectory is a solution of the equations of motion and, thus, a field
line. It has the property that all neighboring field lines approach this trajectory exponentially
either forward or backward in ’time’ z ([1, 2, 3, 4]). It also means that the largest associated
Lyapounov exponent is real and positive. The invariant manifolds associated with these trajec-
tories, are the generalizations of the 2D separatrix surfaces, and play an essential role in the
topology of magnetic fields.
The stable and unstable manifolds cannot intersect themselves, but they can intersect each
other. The intersections of the unstable and stable manifolds of the same hyperbolic trajectory
form homoclinic tangles, which determine the local transport. Intersections between a stable
(unstable) and an unstable (stable) manifold belonging to different hyperbolic trajectories form
heteroclinic tangles. These govern the global transport between nearby chaotic layers. The
transition between regular and chaotic configurations was studied in [5] in terms of the field-
line-time it takes for heteroclinic intersections to appear.

Although the invariant manifolds contain essential information on the transport properties of
the system, a drawback of this method is that these invariant surfaces become so densely folded
that they are impossible to trace for sufficiently long times such that their intersections become
numerically visible. A consequence is that it is impossible to quantify transport on this basis.
Therefore, it might be rewarding to settle for a less exact method and to define transport on
the basis of approximate, asymptotic properties of the system.
In this article, we base our investigations on the properties of the field of the Finite Time
Lyapunov Exponent (FTLE). The largest positive FTLE measures the exponential separation
between two neighboring field lines after a given interval of field-line-time. As will be discussed,
this field exhibits clear ridges that form approximate Lagrangian coherent structures (LCS). It is
argued that these LCS’s play a decisive role in the transition from local to global chaos. During
this phase, these hidden coherent structures in the developing chaotic sea, attract field lines and
act as barriers to transport of magnetic field lines. The properties of transport between regions
separated by such barriers are the subject of this paper. As far as we know this is the first time
that the FTLE properties are used to describe chaotic magnetic fields in the context of fusion
plasmas.
The paper is organized as follows. Section 2 describes the model and the chaotic system that
is generated by a collisionless reconnection event; section 3 describes the LCS we find in this
chaotic configuration; section 4 shows why these LCS can be interpreted as transport barriers.
We conclude in section 5.
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2. 3D chaotic magnetic configuration
We generate a chaotic magnetic field by means of a collisionless reconnection process, extensively
described in [6]. We recall here its main features. The two-fluid model derived in [8] is adopted.
In this model the reconnection of magnetic field lines is permitted by considering the effect of the
electron inertia in Ohm’s law, which takes into account also electron pressure gradient effects.
The model is valid in the presence of a strong guide field. The model equations are solved
numerically in a 3D-periodic slab geometry starting from a static equilibrium configuration
with a one-dimensional shear magnetic field. The spontaneous reconnection process is induced
by the onset of multiple helicity perturbations in a configuration with large values of the linear
stability parameter ∆′. We consider a configuration with background toroidal and poloidal
magnetic fields such that a resonant mode is excited at each of two neighboring surfaces.
The magnetic flux function consists of an equilibrium part ψeq(x) and a wave-like contribution
ψ(x, y, z; t),

Ψ(x, y, z, t) = ψeq(x) + ψ(x, y, z; t), (3)

where ψ(x, y, z; t) may be written as a sum over perturbations with different helicities

ψ(x, y, z; t) = Σiψi(x, kyiy + kziz, t). (4)

with kyi = 2πmi/Ly, kzi = 2πni/Lz.
The surfaces x = xsi where the modes are resonant are characterized by Beq · ∇Ψ = 0, which
yields

dψeq(x)
dx

= −∂ψi/∂z
∂ψi/∂y

= −kzi
kyi

. (5)

where kyi = 2πmi/Ly, kzi = 2πni/Lz with Ly = 4π, Lz = 32π.
The numerical simulations were carried out in a triple-periodic slab, with size Lx = 2π,
Ly = 4π, Lz = 32π, starting from an equilibrium configuration with magnetic flux function
ψeq = 0.19 cos (x). The initial perturbation consists of two unstable contributions, ψ1 and ψ2,
with different helicities

ψ(x, y, z; t) = ψ̂1(x, t) exp (iky1y + ikz1z) + ψ̂2(x, t) exp (iky2y + ikz2z). (6)

The functions ψ̂1,2(x, t) are chosen so as to approximate the analytic solutions of the linearized
dynamical equations. The wave numbers (mi, ni) of the two components of the perturbation are
(1, 0), for i = 1, and (1, 1), for i = 2. The amplitude ψ̂1 is of order 10−4 and is ten times bigger
than ψ̂2.
In the small amplitude linear phase, when the two helicities evolve independently from each
other, each mode induces a magnetic island chain around its resonant surface x = xsi, where
Beq · ∇Ψ = 0. For the case we present here xs1 = 0, π and xs2 = 0.71, π− 0.71. We remark that
resonant surfaces with xs > π/2 are simply due to the periodicity of the magnetic equilibrium
ψeq. Since we are interested in the interaction between different helicities, hereafter we we will
focus on the magnetic field structure in the reduced interval −π/2 < x < π/2.
When the magnetic islands are sufficiently large to interact with each other, the nonlinear
phase of the process enters. Modes with different helicities and higher order modes of the same
helicities of the initial perturbation are generated. At this stage the magnetic field topology
exhibits volumes where field lines are stochastic and whose extension tends to spread during the
evolution of the reconnection process [6].
Here we will not deal with the dynamic evolution of the magnetic field, but we will focus on
investigating the transport properties of magnetic field lines at a particular fixed value in real
time, chosen just before the transition to global chaos.

3

Rettangolo

Rettangolo



3. FTLE ridges and LCS
The solution to (2) for the maximum value of the distance ||δx(z)|| between two neighboring
field lines can be written as

max ||δx(z)|| = eσ(z,z0,x0)|z−z0| ||δx(z0)|| (7)

where ||δx(z0)|| is the initial distance at field-line-time z0 and σ is defined by

σ(z, z0,x0) =
1

|z − z0|
ln

√
λ(z, z0,x0), (8)

where |z − z0| is the length of the effective time at which the FTLE is computed and λ is the
largest positive eigenvalue of the tangent map associated with (2)[11]. The square root of λ is
the factor by which a perturbation is maximally stretched.
In the infinite time limit |z − z0| → ∞ the standard Lyapunov coefficient is obtained. While
this standard Lyapunov coefficient is constant along each field line, the FTLE is not. In [10] it
is shown that

dσ(z, z0,x0)
dz0

= O(
1

|z − z0|
), (9)

so that at long field-line-times, the FTLE becomes a constant.
Within the context of FTLE theory, Lagrangian Coherent Structures may be defined as second-
derivative ridges of the scalar FTLE field and following [10] we define a ridge as a curve in the
(x, y) plane such that the gradient in the FTLE-field is along the curve and such that the second
order derivative, given by the Hessian

Σ =
d2σ(x)
dx2

(10)

in the direction perpendicular to the curve is minimal.
In order to extract the ridges in the FTLE field from the magnetic data obtained by the numerical
simulations of 3D reconnection processes we developed a new computational algorithm. This
solver starts with the computation of the Lyapunov exponents for a set of magnetic field lines at
different finite effective-time z according to the method described in [12]. Finite Time Lyapunov
exponents for magnetic field line trajectories obtained from both forward and backward time
integration of eqs.(2) have to be computed. Forward-time integration, in fact, allows to reveal
the repelling branches of the Lagrangian coherent structures, e.g., the unstable manifolds, while
in order to locate the attracting patterns, e.g., the stable manifolds, a backward-time integration
has to be carried out.
In order to simplify the numerical analysis, controlling in particular the computational time
of the FTLE field, we will use approximate descriptions of the Hamiltonian function ψ. As
shown in [5], only the higher amplitude modes obtained from the Fourier decomposition of the
original data need to be considered, in order to approximate the Hamiltonian accurately. This
truncation results in a magnetic flux function with 20 spectral components. For the evolution
times considered here it turns out that these latter modes have the helicity of either of the two
original perturbations.
As stated in Ref.[13] when ridges are computed using the Hessian of the scalar field, noise
amplification can become an issue, especially when chaotic ”velocity fields” are taken into
account, as in the case of the magnetic fields we considered in this paper. A large collection of
criteria addressing ridge filtering is available in technical literature [13]. Here, in order to remove
numerical noise effects, we have chosen a natural, easy to implement, criterion which prescribes
a minimum height of the ridge. It has be shown that in the case of finite Lyapunov exponent
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Figure 1. Contour plots of the FTLE computed at z = 16Lz forward (left frame) and backward
(right frame) for a set of magnetic field, initially distributed over a uniform 8000× 16000 mesh
on the domain 0 < x < 0.8, −2π < y < 2π of the z = 0 section. Superimposed are the ridges
extracted by the corresponding FTLE fields.

ridges this leads to significant, consistent, and reliable visualizations [14].
In fig. 1 we show the contour of the FTLE fields evaluated for the dynamical time of the
reconnection process we are focusing on and that refers to the local-global chaos transition. The
left frame refers to the forward-time integration of the magnetic field line equations, while the
right frame refers to the backward-time integration. These FTLE fields have been calculated for
a set of 1.28 · 108 magnetic field lines initially distributed at z = 0 over a uniform 8000× 16000
mesh on the domain 0 < x < 0.8, −2π < y < 2π.

Figure 1 shows the results after 16 iterations along the toroidal direction. This choice is
motivated by a comparison of the results obtained for different integration times. In particular we
have carried out simulations up to 20 iterations. Indeed, the essential structures are pretty well
represented already after 12 integration times. Superimposed on the contour the corresponding
ridges that have been extracted from the FTLE fields are shown in black. These ridges have
already been proved in [7] to act as barriers to magnetic field line transport and in the next
section we analyze their properties.

4. LCS as transport barriers
In this section we focus on the transport properties of magnetic field lines in the presence of the
LCS identified in the previous section. We recall that within the context of a reconnecting system
transport of field lines is related with heteroclinic intersections of unstable/stable manifolds with
stable/unstable manifolds belonging to different hyperbolic lines, as extensively discussed in [5].
Unfortunately, it is numerically impossible to follow these manifolds sufficiently long in z in order
to obtain any realistic estimate of transport based upon heteroclinic intersections. Nevertheless,
a comparison of the ridges with the stable and unstable manifolds associated with hyperbolic
trajectories show that ridges play the role of magnetic field line transport barriers. This is
evident in fig. 2 where we show that the ridges of fig. 1 tend to be aligned with and largely
coincide with the initial pieces (i.e. evaluated for a few Lz) of the branches of specific stable
and unstable manifolds.

In particular, the ridges are shown together with the stable and unstable manifolds
associated to the hyperbolic points (0,−2π) (green), (0.51, 0) (magenta), (0.617, 0)) (light
blue), (0.51827,−1) (dark blue), (0.71, 0) (red). The stable and unstable manifolds have been
calculated with a Contour Dynamics code [5, 15] only for a few Lz periods. These manifolds are
characterized by different frequencies. In particular, we verified that corresponding hyperbolic
points have the following periodicities along z: 0Lz (green manifold), 5Lz (magenta manifold),
3Lz (dark blue manifold), 4Lz (light blue manifold) and 1Lz (red manifold ). Since magnetic
field lines can not cross these invariant manifolds and since the ridges tend to coincide with the

5

Rettangolo

Rettangolo



Figure 2. Ridges extracted from the FTLE distribution shown in fig.1 (black curves) with
superimposed the corresponding stable and unstable manifolds.

initial part of these manifolds it is expected that these FTLE ridges form barriers with respect
to magnetic field line transport.

To quantify how robust these barriers are with respect to the magnetic field line penetration
we compare the magnetic topology and the ridges distribution at different effective times in fig.
3. Here the Poincarè plots, obtained for a sample of magnetic field lines initially distributed
around a circle centered at the hyperbolic point (0,−2π) are overplotted together with the
FTLE ridges. We observe that up to z = 2000LZ the magnetic field lines remain confined
by the barrier associated with the magenta manifold. Then up to z = 7000LZ the confining
structure is identified by the barriers associated to the dark blue manifold. After that the
relevant confining barriers become the ones associated with the light blue and red manifolds
respectively for z = 12000Lz and z = 20000Lz. This step-like behavior, where the magnetic
field lines remain trapped inside the ridges for finite effective time intervals, is a clear sign of
the efficiency of the ridges as barriers.

5. Conclusions
We analyzed the transport properties of a partially chaotic system generated by a collisionless
reconnection process, when the transition from local to global chaos occurs. The Lagrangian
Coherent Structures that influence the transport of magnetic field lines in this transition phase
have been identified by means of the ridges of the Finite Time Lyapunov Exponents. These ridges
have been shown to play the role of transport barriers by showing that they partly coincide with
the branches of specific stable and unstable manifolds. We observe that the transport of magnetic
field line has a step-like behavior. Field lines are at first trapped by the barrier corresponding to
the first LCS structures that they encounter in their motion. Then, once they pass this barrier,
they spread in a larger volume surrounded by a new barrier and stay there for a second field
line time interval. Further in effective time they proceed in the same way until they cross all
the barriers and spread over all the chaotic volume.
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Figure 3. Poincarè maps obtained integrating the field line equations for four different z
intervals: up to 2000 toroidal periods (left frame top row), up to 7000 toroidal periods (right
frame top row), up to 12000 toroidal periods (left frame bottom row) and up to 20000 toroidal
periods (right frame bottom row). Superimposed are the relevant barriers.
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